]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
s12z regen
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
82704155 2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
b99bd4ef
NC
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
ec2655a6 13 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
b99bd4ef 25
42a68e18 26#include "as.h"
5287ad62 27#include <limits.h>
037e8744 28#include <stdarg.h>
c19d1205 29#define NO_RELOC 0
3882b010 30#include "safe-ctype.h"
b99bd4ef
NC
31#include "subsegs.h"
32#include "obstack.h"
3da1d841 33#include "libiberty.h"
f263249b
RE
34#include "opcode/arm.h"
35
b99bd4ef
NC
36#ifdef OBJ_ELF
37#include "elf/arm.h"
a394c00f 38#include "dw2gencfi.h"
b99bd4ef
NC
39#endif
40
f0927246
NC
41#include "dwarf2dbg.h"
42
7ed4c4c5
NC
43#ifdef OBJ_ELF
44/* Must be at least the size of the largest unwind opcode (currently two). */
45#define ARM_OPCODE_CHUNK_SIZE 8
46
47/* This structure holds the unwinding state. */
48
49static struct
50{
c19d1205
ZW
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
7ed4c4c5 55 /* The segment containing the function. */
c19d1205
ZW
56 segT saved_seg;
57 subsegT saved_subseg;
7ed4c4c5
NC
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
c19d1205
ZW
60 int opcode_count;
61 int opcode_alloc;
7ed4c4c5 62 /* The number of bytes pushed to the stack. */
c19d1205 63 offsetT frame_size;
7ed4c4c5
NC
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
c19d1205 67 offsetT pending_offset;
7ed4c4c5 68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
7ed4c4c5 72 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 73 unsigned fp_used:1;
7ed4c4c5 74 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 75 unsigned sp_restored:1;
7ed4c4c5
NC
76} unwind;
77
18a20338
CL
78/* Whether --fdpic was given. */
79static int arm_fdpic;
80
8b1ad454
NC
81#endif /* OBJ_ELF */
82
4962c51a
MS
83/* Results from operand parsing worker functions. */
84
85typedef enum
86{
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90} parse_operand_result;
91
33a392fb
PB
92enum arm_float_abi
93{
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97};
98
c19d1205 99/* Types of processor to assemble for. */
b99bd4ef 100#ifndef CPU_DEFAULT
8a59fff3 101/* The code that was here used to select a default CPU depending on compiler
fa94de6b 102 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
b99bd4ef
NC
107#endif
108
109#ifndef FPU_DEFAULT
c820d418
MM
110# ifdef TE_LINUX
111# define FPU_DEFAULT FPU_ARCH_FPA
112# elif defined (TE_NetBSD)
113# ifdef OBJ_ELF
114# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115# else
116 /* Legacy a.out format. */
117# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118# endif
4e7fd91e
PB
119# elif defined (TE_VXWORKS)
120# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
121# else
122 /* For backwards compatibility, default to FPA. */
123# define FPU_DEFAULT FPU_ARCH_FPA
124# endif
125#endif /* ifndef FPU_DEFAULT */
b99bd4ef 126
c19d1205 127#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 128
4d354d8b
TP
129/* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
e74cfd16 132static arm_feature_set cpu_variant;
4d354d8b
TP
133/* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
e74cfd16
PB
135static arm_feature_set arm_arch_used;
136static arm_feature_set thumb_arch_used;
b99bd4ef 137
b99bd4ef 138/* Flags stored in private area of BFD structure. */
c19d1205
ZW
139static int uses_apcs_26 = FALSE;
140static int atpcs = FALSE;
b34976b6
AM
141static int support_interwork = FALSE;
142static int uses_apcs_float = FALSE;
c19d1205 143static int pic_code = FALSE;
845b51d6 144static int fix_v4bx = FALSE;
278df34e
NS
145/* Warn on using deprecated features. */
146static int warn_on_deprecated = TRUE;
147
2e6976a8
DG
148/* Understand CodeComposer Studio assembly syntax. */
149bfd_boolean codecomposer_syntax = FALSE;
03b1477f
RE
150
151/* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
4d354d8b
TP
154
155/* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157static const arm_feature_set *legacy_cpu = NULL;
158static const arm_feature_set *legacy_fpu = NULL;
159
160/* CPU, extension and FPU feature bits selected by -mcpu. */
161static const arm_feature_set *mcpu_cpu_opt = NULL;
162static arm_feature_set *mcpu_ext_opt = NULL;
163static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165/* CPU, extension and FPU feature bits selected by -march. */
166static const arm_feature_set *march_cpu_opt = NULL;
167static arm_feature_set *march_ext_opt = NULL;
168static const arm_feature_set *march_fpu_opt = NULL;
169
170/* Feature bits selected by -mfpu. */
171static const arm_feature_set *mfpu_opt = NULL;
e74cfd16
PB
172
173/* Constants for known architecture features. */
174static const arm_feature_set fpu_default = FPU_DEFAULT;
f85d59c3 175static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
e74cfd16 176static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
f85d59c3
KT
177static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
e74cfd16
PB
179static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
69c9e028 181#ifdef OBJ_ELF
e74cfd16 182static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
69c9e028 183#endif
e74cfd16
PB
184static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186#ifdef CPU_DEFAULT
187static const arm_feature_set cpu_default = CPU_DEFAULT;
188#endif
189
823d2571 190static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
4070243b 191static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
823d2571
TG
192static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
e74cfd16 198static const arm_feature_set arm_ext_v4t_5 =
823d2571
TG
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
823d2571
TG
207static const arm_feature_set arm_ext_v6_notm =
208 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
209static const arm_feature_set arm_ext_v6_dsp =
210 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
211static const arm_feature_set arm_ext_barrier =
212 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
213static const arm_feature_set arm_ext_msr =
214 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
215static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
216static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
217static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
218static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
69c9e028 219#ifdef OBJ_ELF
e7d39ed3 220static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
69c9e028 221#endif
823d2571 222static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
7e806470 223static const arm_feature_set arm_ext_m =
173205ca 224 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
16a1fa25 225 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
823d2571
TG
226static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
227static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
228static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
229static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
230static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
ddfded2f 231static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
4ed7ed8d 232static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
16a1fa25
TP
233static const arm_feature_set arm_ext_v8m_main =
234 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
235/* Instructions in ARMv8-M only found in M profile architectures. */
236static const arm_feature_set arm_ext_v8m_m_only =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
ff8646ee
TP
238static const arm_feature_set arm_ext_v6t2_v8m =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
4ed7ed8d
TP
240/* Instructions shared between ARMv8-A and ARMv8-M. */
241static const arm_feature_set arm_ext_atomics =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
69c9e028 243#ifdef OBJ_ELF
15afaa63
TP
244/* DSP instructions Tag_DSP_extension refers to. */
245static const arm_feature_set arm_ext_dsp =
246 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
69c9e028 247#endif
4d1464f2
MW
248static const arm_feature_set arm_ext_ras =
249 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
b8ec4e87
JW
250/* FP16 instructions. */
251static const arm_feature_set arm_ext_fp16 =
252 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
01f48020
TC
253static const arm_feature_set arm_ext_fp16_fml =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
dec41383
JW
255static const arm_feature_set arm_ext_v8_2 =
256 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
49e8a725
SN
257static const arm_feature_set arm_ext_v8_3 =
258 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
7fadb25d
SD
259static const arm_feature_set arm_ext_sb =
260 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
dad0c3bf
SD
261static const arm_feature_set arm_ext_predres =
262 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
e74cfd16
PB
263
264static const arm_feature_set arm_arch_any = ARM_ANY;
49fa50ef 265#ifdef OBJ_ELF
2c6b98ea 266static const arm_feature_set fpu_any = FPU_ANY;
49fa50ef 267#endif
f85d59c3 268static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
e74cfd16
PB
269static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
270static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
271
2d447fca 272static const arm_feature_set arm_cext_iwmmxt2 =
823d2571 273 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
e74cfd16 274static const arm_feature_set arm_cext_iwmmxt =
823d2571 275 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
e74cfd16 276static const arm_feature_set arm_cext_xscale =
823d2571 277 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
e74cfd16 278static const arm_feature_set arm_cext_maverick =
823d2571
TG
279 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
280static const arm_feature_set fpu_fpa_ext_v1 =
281 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
282static const arm_feature_set fpu_fpa_ext_v2 =
283 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
e74cfd16 284static const arm_feature_set fpu_vfp_ext_v1xd =
823d2571
TG
285 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
286static const arm_feature_set fpu_vfp_ext_v1 =
287 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
288static const arm_feature_set fpu_vfp_ext_v2 =
289 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
290static const arm_feature_set fpu_vfp_ext_v3xd =
291 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
292static const arm_feature_set fpu_vfp_ext_v3 =
293 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
b1cc4aeb 294static const arm_feature_set fpu_vfp_ext_d32 =
823d2571
TG
295 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
296static const arm_feature_set fpu_neon_ext_v1 =
297 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
5287ad62 298static const arm_feature_set fpu_vfp_v3_or_neon_ext =
823d2571 299 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
69c9e028 300#ifdef OBJ_ELF
823d2571
TG
301static const arm_feature_set fpu_vfp_fp16 =
302 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
303static const arm_feature_set fpu_neon_ext_fma =
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
69c9e028 305#endif
823d2571
TG
306static const arm_feature_set fpu_vfp_ext_fma =
307 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
bca38921 308static const arm_feature_set fpu_vfp_ext_armv8 =
823d2571 309 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
a715796b 310static const arm_feature_set fpu_vfp_ext_armv8xd =
823d2571 311 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
bca38921 312static const arm_feature_set fpu_neon_ext_armv8 =
823d2571 313 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
bca38921 314static const arm_feature_set fpu_crypto_ext_armv8 =
823d2571 315 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
dd5181d5 316static const arm_feature_set crc_ext_armv8 =
823d2571 317 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
d6b4b13e 318static const arm_feature_set fpu_neon_ext_v8_1 =
643afb90 319 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
c604a79a
JW
320static const arm_feature_set fpu_neon_ext_dotprod =
321 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
e74cfd16 322
33a392fb 323static int mfloat_abi_opt = -1;
4d354d8b
TP
324/* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
325 directive. */
326static arm_feature_set selected_arch = ARM_ARCH_NONE;
327/* Extension feature bits selected by the last -mcpu/-march or .arch_extension
328 directive. */
329static arm_feature_set selected_ext = ARM_ARCH_NONE;
330/* Feature bits selected by the last -mcpu/-march or by the combination of the
331 last .cpu/.arch directive .arch_extension directives since that
332 directive. */
e74cfd16 333static arm_feature_set selected_cpu = ARM_ARCH_NONE;
4d354d8b
TP
334/* FPU feature bits selected by the last -mfpu or .fpu directive. */
335static arm_feature_set selected_fpu = FPU_NONE;
336/* Feature bits selected by the last .object_arch directive. */
337static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
ee065d83 338/* Must be long enough to hold any of the names in arm_cpus. */
ef8e6722 339static char selected_cpu_name[20];
8d67f500 340
aacf0b33
KT
341extern FLONUM_TYPE generic_floating_point_number;
342
8d67f500
NC
343/* Return if no cpu was selected on command-line. */
344static bfd_boolean
345no_cpu_selected (void)
346{
823d2571 347 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
8d67f500
NC
348}
349
7cc69913 350#ifdef OBJ_ELF
deeaaff8
DJ
351# ifdef EABI_DEFAULT
352static int meabi_flags = EABI_DEFAULT;
353# else
d507cf36 354static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 355# endif
e1da3f5b 356
ee3c0378
AS
357static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
358
e1da3f5b 359bfd_boolean
5f4273c7 360arm_is_eabi (void)
e1da3f5b
PB
361{
362 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
363}
7cc69913 364#endif
b99bd4ef 365
b99bd4ef 366#ifdef OBJ_ELF
c19d1205 367/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
368symbolS * GOT_symbol;
369#endif
370
b99bd4ef
NC
371/* 0: assemble for ARM,
372 1: assemble for Thumb,
373 2: assemble for Thumb even though target CPU does not support thumb
374 instructions. */
375static int thumb_mode = 0;
8dc2430f
NC
376/* A value distinct from the possible values for thumb_mode that we
377 can use to record whether thumb_mode has been copied into the
378 tc_frag_data field of a frag. */
379#define MODE_RECORDED (1 << 4)
b99bd4ef 380
e07e6e58
NC
381/* Specifies the intrinsic IT insn behavior mode. */
382enum implicit_it_mode
383{
384 IMPLICIT_IT_MODE_NEVER = 0x00,
385 IMPLICIT_IT_MODE_ARM = 0x01,
386 IMPLICIT_IT_MODE_THUMB = 0x02,
387 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
388};
389static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
390
c19d1205
ZW
391/* If unified_syntax is true, we are processing the new unified
392 ARM/Thumb syntax. Important differences from the old ARM mode:
393
394 - Immediate operands do not require a # prefix.
395 - Conditional affixes always appear at the end of the
396 instruction. (For backward compatibility, those instructions
397 that formerly had them in the middle, continue to accept them
398 there.)
399 - The IT instruction may appear, and if it does is validated
400 against subsequent conditional affixes. It does not generate
401 machine code.
402
403 Important differences from the old Thumb mode:
404
405 - Immediate operands do not require a # prefix.
406 - Most of the V6T2 instructions are only available in unified mode.
407 - The .N and .W suffixes are recognized and honored (it is an error
408 if they cannot be honored).
409 - All instructions set the flags if and only if they have an 's' affix.
410 - Conditional affixes may be used. They are validated against
411 preceding IT instructions. Unlike ARM mode, you cannot use a
412 conditional affix except in the scope of an IT instruction. */
413
414static bfd_boolean unified_syntax = FALSE;
b99bd4ef 415
bacebabc
RM
416/* An immediate operand can start with #, and ld*, st*, pld operands
417 can contain [ and ]. We need to tell APP not to elide whitespace
477330fc
RM
418 before a [, which can appear as the first operand for pld.
419 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
420const char arm_symbol_chars[] = "#[]{}";
bacebabc 421
5287ad62
JB
422enum neon_el_type
423{
dcbf9037 424 NT_invtype,
5287ad62
JB
425 NT_untyped,
426 NT_integer,
427 NT_float,
428 NT_poly,
429 NT_signed,
dcbf9037 430 NT_unsigned
5287ad62
JB
431};
432
433struct neon_type_el
434{
435 enum neon_el_type type;
436 unsigned size;
437};
438
439#define NEON_MAX_TYPE_ELS 4
440
441struct neon_type
442{
443 struct neon_type_el el[NEON_MAX_TYPE_ELS];
444 unsigned elems;
445};
446
e07e6e58
NC
447enum it_instruction_type
448{
449 OUTSIDE_IT_INSN,
450 INSIDE_IT_INSN,
451 INSIDE_IT_LAST_INSN,
452 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
477330fc 453 if inside, should be the last one. */
e07e6e58 454 NEUTRAL_IT_INSN, /* This could be either inside or outside,
477330fc 455 i.e. BKPT and NOP. */
e07e6e58
NC
456 IT_INSN /* The IT insn has been parsed. */
457};
458
ad6cec43
MGD
459/* The maximum number of operands we need. */
460#define ARM_IT_MAX_OPERANDS 6
461
b99bd4ef
NC
462struct arm_it
463{
c19d1205 464 const char * error;
b99bd4ef 465 unsigned long instruction;
c19d1205
ZW
466 int size;
467 int size_req;
468 int cond;
037e8744
JB
469 /* "uncond_value" is set to the value in place of the conditional field in
470 unconditional versions of the instruction, or -1 if nothing is
471 appropriate. */
472 int uncond_value;
5287ad62 473 struct neon_type vectype;
88714cb8
DG
474 /* This does not indicate an actual NEON instruction, only that
475 the mnemonic accepts neon-style type suffixes. */
476 int is_neon;
0110f2b8
PB
477 /* Set to the opcode if the instruction needs relaxation.
478 Zero if the instruction is not relaxed. */
479 unsigned long relax;
b99bd4ef
NC
480 struct
481 {
482 bfd_reloc_code_real_type type;
c19d1205
ZW
483 expressionS exp;
484 int pc_rel;
b99bd4ef 485 } reloc;
b99bd4ef 486
e07e6e58
NC
487 enum it_instruction_type it_insn_type;
488
c19d1205
ZW
489 struct
490 {
491 unsigned reg;
ca3f61f7 492 signed int imm;
dcbf9037 493 struct neon_type_el vectype;
ca3f61f7
NC
494 unsigned present : 1; /* Operand present. */
495 unsigned isreg : 1; /* Operand was a register. */
496 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
497 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
498 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 499 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
500 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
501 instructions. This allows us to disambiguate ARM <-> vector insns. */
502 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 503 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 504 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 505 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
506 unsigned hasreloc : 1; /* Operand has relocation suffix. */
507 unsigned writeback : 1; /* Operand has trailing ! */
508 unsigned preind : 1; /* Preindexed address. */
509 unsigned postind : 1; /* Postindexed address. */
510 unsigned negative : 1; /* Index register was negated. */
511 unsigned shifted : 1; /* Shift applied to operation. */
512 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 513 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
514};
515
c19d1205 516static struct arm_it inst;
b99bd4ef
NC
517
518#define NUM_FLOAT_VALS 8
519
05d2d07e 520const char * fp_const[] =
b99bd4ef
NC
521{
522 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
523};
524
c19d1205 525/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
526#define MAX_LITTLENUMS 6
527
528LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
529
530#define FAIL (-1)
531#define SUCCESS (0)
532
533#define SUFF_S 1
534#define SUFF_D 2
535#define SUFF_E 3
536#define SUFF_P 4
537
c19d1205
ZW
538#define CP_T_X 0x00008000
539#define CP_T_Y 0x00400000
b99bd4ef 540
c19d1205
ZW
541#define CONDS_BIT 0x00100000
542#define LOAD_BIT 0x00100000
b99bd4ef
NC
543
544#define DOUBLE_LOAD_FLAG 0x00000001
545
546struct asm_cond
547{
d3ce72d0 548 const char * template_name;
c921be7d 549 unsigned long value;
b99bd4ef
NC
550};
551
c19d1205 552#define COND_ALWAYS 0xE
b99bd4ef 553
b99bd4ef
NC
554struct asm_psr
555{
d3ce72d0 556 const char * template_name;
c921be7d 557 unsigned long field;
b99bd4ef
NC
558};
559
62b3e311
PB
560struct asm_barrier_opt
561{
e797f7e0
MGD
562 const char * template_name;
563 unsigned long value;
564 const arm_feature_set arch;
62b3e311
PB
565};
566
2d2255b5 567/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
568#define SPSR_BIT (1 << 22)
569
c19d1205
ZW
570/* The individual PSR flag bits. */
571#define PSR_c (1 << 16)
572#define PSR_x (1 << 17)
573#define PSR_s (1 << 18)
574#define PSR_f (1 << 19)
b99bd4ef 575
c19d1205 576struct reloc_entry
bfae80f2 577{
0198d5e6 578 const char * name;
c921be7d 579 bfd_reloc_code_real_type reloc;
bfae80f2
RE
580};
581
5287ad62 582enum vfp_reg_pos
bfae80f2 583{
5287ad62
JB
584 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
585 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
586};
587
588enum vfp_ldstm_type
589{
590 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
591};
592
dcbf9037
JB
593/* Bits for DEFINED field in neon_typed_alias. */
594#define NTA_HASTYPE 1
595#define NTA_HASINDEX 2
596
597struct neon_typed_alias
598{
c921be7d
NC
599 unsigned char defined;
600 unsigned char index;
601 struct neon_type_el eltype;
dcbf9037
JB
602};
603
c19d1205 604/* ARM register categories. This includes coprocessor numbers and various
5aa75429
TP
605 architecture extensions' registers. Each entry should have an error message
606 in reg_expected_msgs below. */
c19d1205 607enum arm_reg_type
bfae80f2 608{
c19d1205
ZW
609 REG_TYPE_RN,
610 REG_TYPE_CP,
611 REG_TYPE_CN,
612 REG_TYPE_FN,
613 REG_TYPE_VFS,
614 REG_TYPE_VFD,
5287ad62 615 REG_TYPE_NQ,
037e8744 616 REG_TYPE_VFSD,
5287ad62 617 REG_TYPE_NDQ,
dec41383 618 REG_TYPE_NSD,
037e8744 619 REG_TYPE_NSDQ,
c19d1205
ZW
620 REG_TYPE_VFC,
621 REG_TYPE_MVF,
622 REG_TYPE_MVD,
623 REG_TYPE_MVFX,
624 REG_TYPE_MVDX,
625 REG_TYPE_MVAX,
626 REG_TYPE_DSPSC,
627 REG_TYPE_MMXWR,
628 REG_TYPE_MMXWC,
629 REG_TYPE_MMXWCG,
630 REG_TYPE_XSCALE,
90ec0d68 631 REG_TYPE_RNB
bfae80f2
RE
632};
633
dcbf9037
JB
634/* Structure for a hash table entry for a register.
635 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
636 information which states whether a vector type or index is specified (for a
637 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
638struct reg_entry
639{
c921be7d 640 const char * name;
90ec0d68 641 unsigned int number;
c921be7d
NC
642 unsigned char type;
643 unsigned char builtin;
644 struct neon_typed_alias * neon;
6c43fab6
RE
645};
646
c19d1205 647/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 648const char * const reg_expected_msgs[] =
c19d1205 649{
5aa75429
TP
650 [REG_TYPE_RN] = N_("ARM register expected"),
651 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
652 [REG_TYPE_CN] = N_("co-processor register expected"),
653 [REG_TYPE_FN] = N_("FPA register expected"),
654 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
655 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
656 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
657 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
658 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
659 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
660 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
661 " expected"),
662 [REG_TYPE_VFC] = N_("VFP system register expected"),
663 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
664 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
665 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
666 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
667 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
668 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
669 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
670 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
671 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
672 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
673 [REG_TYPE_RNB] = N_("")
6c43fab6
RE
674};
675
c19d1205 676/* Some well known registers that we refer to directly elsewhere. */
bd340a04 677#define REG_R12 12
c19d1205
ZW
678#define REG_SP 13
679#define REG_LR 14
680#define REG_PC 15
404ff6b5 681
b99bd4ef
NC
682/* ARM instructions take 4bytes in the object file, Thumb instructions
683 take 2: */
c19d1205 684#define INSN_SIZE 4
b99bd4ef
NC
685
686struct asm_opcode
687{
688 /* Basic string to match. */
d3ce72d0 689 const char * template_name;
c19d1205
ZW
690
691 /* Parameters to instruction. */
5be8be5d 692 unsigned int operands[8];
c19d1205
ZW
693
694 /* Conditional tag - see opcode_lookup. */
695 unsigned int tag : 4;
b99bd4ef
NC
696
697 /* Basic instruction code. */
c19d1205 698 unsigned int avalue : 28;
b99bd4ef 699
c19d1205
ZW
700 /* Thumb-format instruction code. */
701 unsigned int tvalue;
b99bd4ef 702
90e4755a 703 /* Which architecture variant provides this instruction. */
c921be7d
NC
704 const arm_feature_set * avariant;
705 const arm_feature_set * tvariant;
c19d1205
ZW
706
707 /* Function to call to encode instruction in ARM format. */
708 void (* aencode) (void);
b99bd4ef 709
c19d1205
ZW
710 /* Function to call to encode instruction in Thumb format. */
711 void (* tencode) (void);
b99bd4ef
NC
712};
713
a737bd4d
NC
714/* Defines for various bits that we will want to toggle. */
715#define INST_IMMEDIATE 0x02000000
716#define OFFSET_REG 0x02000000
c19d1205 717#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
718#define SHIFT_BY_REG 0x00000010
719#define PRE_INDEX 0x01000000
720#define INDEX_UP 0x00800000
721#define WRITE_BACK 0x00200000
722#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 723#define CPSI_MMOD 0x00020000
90e4755a 724
a737bd4d
NC
725#define LITERAL_MASK 0xf000f000
726#define OPCODE_MASK 0xfe1fffff
727#define V4_STR_BIT 0x00000020
8335d6aa 728#define VLDR_VMOV_SAME 0x0040f000
90e4755a 729
efd81785
PB
730#define T2_SUBS_PC_LR 0xf3de8f00
731
a737bd4d 732#define DATA_OP_SHIFT 21
bada4342 733#define SBIT_SHIFT 20
90e4755a 734
ef8d22e6
PB
735#define T2_OPCODE_MASK 0xfe1fffff
736#define T2_DATA_OP_SHIFT 21
bada4342 737#define T2_SBIT_SHIFT 20
ef8d22e6 738
6530b175
NC
739#define A_COND_MASK 0xf0000000
740#define A_PUSH_POP_OP_MASK 0x0fff0000
741
742/* Opcodes for pushing/poping registers to/from the stack. */
743#define A1_OPCODE_PUSH 0x092d0000
744#define A2_OPCODE_PUSH 0x052d0004
745#define A2_OPCODE_POP 0x049d0004
746
a737bd4d
NC
747/* Codes to distinguish the arithmetic instructions. */
748#define OPCODE_AND 0
749#define OPCODE_EOR 1
750#define OPCODE_SUB 2
751#define OPCODE_RSB 3
752#define OPCODE_ADD 4
753#define OPCODE_ADC 5
754#define OPCODE_SBC 6
755#define OPCODE_RSC 7
756#define OPCODE_TST 8
757#define OPCODE_TEQ 9
758#define OPCODE_CMP 10
759#define OPCODE_CMN 11
760#define OPCODE_ORR 12
761#define OPCODE_MOV 13
762#define OPCODE_BIC 14
763#define OPCODE_MVN 15
90e4755a 764
ef8d22e6
PB
765#define T2_OPCODE_AND 0
766#define T2_OPCODE_BIC 1
767#define T2_OPCODE_ORR 2
768#define T2_OPCODE_ORN 3
769#define T2_OPCODE_EOR 4
770#define T2_OPCODE_ADD 8
771#define T2_OPCODE_ADC 10
772#define T2_OPCODE_SBC 11
773#define T2_OPCODE_SUB 13
774#define T2_OPCODE_RSB 14
775
a737bd4d
NC
776#define T_OPCODE_MUL 0x4340
777#define T_OPCODE_TST 0x4200
778#define T_OPCODE_CMN 0x42c0
779#define T_OPCODE_NEG 0x4240
780#define T_OPCODE_MVN 0x43c0
90e4755a 781
a737bd4d
NC
782#define T_OPCODE_ADD_R3 0x1800
783#define T_OPCODE_SUB_R3 0x1a00
784#define T_OPCODE_ADD_HI 0x4400
785#define T_OPCODE_ADD_ST 0xb000
786#define T_OPCODE_SUB_ST 0xb080
787#define T_OPCODE_ADD_SP 0xa800
788#define T_OPCODE_ADD_PC 0xa000
789#define T_OPCODE_ADD_I8 0x3000
790#define T_OPCODE_SUB_I8 0x3800
791#define T_OPCODE_ADD_I3 0x1c00
792#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 793
a737bd4d
NC
794#define T_OPCODE_ASR_R 0x4100
795#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
796#define T_OPCODE_LSR_R 0x40c0
797#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
798#define T_OPCODE_ASR_I 0x1000
799#define T_OPCODE_LSL_I 0x0000
800#define T_OPCODE_LSR_I 0x0800
b99bd4ef 801
a737bd4d
NC
802#define T_OPCODE_MOV_I8 0x2000
803#define T_OPCODE_CMP_I8 0x2800
804#define T_OPCODE_CMP_LR 0x4280
805#define T_OPCODE_MOV_HR 0x4600
806#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 807
a737bd4d
NC
808#define T_OPCODE_LDR_PC 0x4800
809#define T_OPCODE_LDR_SP 0x9800
810#define T_OPCODE_STR_SP 0x9000
811#define T_OPCODE_LDR_IW 0x6800
812#define T_OPCODE_STR_IW 0x6000
813#define T_OPCODE_LDR_IH 0x8800
814#define T_OPCODE_STR_IH 0x8000
815#define T_OPCODE_LDR_IB 0x7800
816#define T_OPCODE_STR_IB 0x7000
817#define T_OPCODE_LDR_RW 0x5800
818#define T_OPCODE_STR_RW 0x5000
819#define T_OPCODE_LDR_RH 0x5a00
820#define T_OPCODE_STR_RH 0x5200
821#define T_OPCODE_LDR_RB 0x5c00
822#define T_OPCODE_STR_RB 0x5400
c9b604bd 823
a737bd4d
NC
824#define T_OPCODE_PUSH 0xb400
825#define T_OPCODE_POP 0xbc00
b99bd4ef 826
2fc8bdac 827#define T_OPCODE_BRANCH 0xe000
b99bd4ef 828
a737bd4d 829#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 830#define THUMB_PP_PC_LR 0x0100
c19d1205 831#define THUMB_LOAD_BIT 0x0800
53365c0d 832#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
833
834#define BAD_ARGS _("bad arguments to instruction")
fdfde340 835#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
836#define BAD_PC _("r15 not allowed here")
837#define BAD_COND _("instruction cannot be conditional")
838#define BAD_OVERLAP _("registers may not be the same")
839#define BAD_HIREG _("lo register required")
840#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 841#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
842#define BAD_BRANCH _("branch must be last instruction in IT block")
843#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 844#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
845#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
846#define BAD_IT_COND _("incorrect condition in IT block")
847#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 848#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
849#define BAD_PC_ADDRESSING \
850 _("cannot use register index with PC-relative addressing")
851#define BAD_PC_WRITEBACK \
852 _("cannot use writeback with PC-relative addressing")
9db2f6b4
RL
853#define BAD_RANGE _("branch out of range")
854#define BAD_FP16 _("selected processor does not support fp16 instruction")
dd5181d5 855#define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
a9f02af8 856#define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
c19d1205 857
c921be7d
NC
858static struct hash_control * arm_ops_hsh;
859static struct hash_control * arm_cond_hsh;
860static struct hash_control * arm_shift_hsh;
861static struct hash_control * arm_psr_hsh;
862static struct hash_control * arm_v7m_psr_hsh;
863static struct hash_control * arm_reg_hsh;
864static struct hash_control * arm_reloc_hsh;
865static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 866
b99bd4ef
NC
867/* Stuff needed to resolve the label ambiguity
868 As:
869 ...
870 label: <insn>
871 may differ from:
872 ...
873 label:
5f4273c7 874 <insn> */
b99bd4ef
NC
875
876symbolS * last_label_seen;
b34976b6 877static int label_is_thumb_function_name = FALSE;
e07e6e58 878
3d0c9500
NC
879/* Literal pool structure. Held on a per-section
880 and per-sub-section basis. */
a737bd4d 881
c19d1205 882#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 883typedef struct literal_pool
b99bd4ef 884{
c921be7d
NC
885 expressionS literals [MAX_LITERAL_POOL_SIZE];
886 unsigned int next_free_entry;
887 unsigned int id;
888 symbolS * symbol;
889 segT section;
890 subsegT sub_section;
a8040cf2
NC
891#ifdef OBJ_ELF
892 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
893#endif
c921be7d 894 struct literal_pool * next;
8335d6aa 895 unsigned int alignment;
3d0c9500 896} literal_pool;
b99bd4ef 897
3d0c9500
NC
898/* Pointer to a linked list of literal pools. */
899literal_pool * list_of_pools = NULL;
e27ec89e 900
2e6976a8
DG
901typedef enum asmfunc_states
902{
903 OUTSIDE_ASMFUNC,
904 WAITING_ASMFUNC_NAME,
905 WAITING_ENDASMFUNC
906} asmfunc_states;
907
908static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
909
e07e6e58
NC
910#ifdef OBJ_ELF
911# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
912#else
913static struct current_it now_it;
914#endif
915
916static inline int
917now_it_compatible (int cond)
918{
919 return (cond & ~1) == (now_it.cc & ~1);
920}
921
922static inline int
923conditional_insn (void)
924{
925 return inst.cond != COND_ALWAYS;
926}
927
928static int in_it_block (void);
929
930static int handle_it_state (void);
931
932static void force_automatic_it_block_close (void);
933
c921be7d
NC
934static void it_fsm_post_encode (void);
935
e07e6e58
NC
936#define set_it_insn_type(type) \
937 do \
938 { \
939 inst.it_insn_type = type; \
940 if (handle_it_state () == FAIL) \
477330fc 941 return; \
e07e6e58
NC
942 } \
943 while (0)
944
c921be7d
NC
945#define set_it_insn_type_nonvoid(type, failret) \
946 do \
947 { \
948 inst.it_insn_type = type; \
949 if (handle_it_state () == FAIL) \
477330fc 950 return failret; \
c921be7d
NC
951 } \
952 while(0)
953
e07e6e58
NC
954#define set_it_insn_type_last() \
955 do \
956 { \
957 if (inst.cond == COND_ALWAYS) \
477330fc 958 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
e07e6e58 959 else \
477330fc 960 set_it_insn_type (INSIDE_IT_LAST_INSN); \
e07e6e58
NC
961 } \
962 while (0)
963
c19d1205 964/* Pure syntax. */
b99bd4ef 965
c19d1205
ZW
966/* This array holds the chars that always start a comment. If the
967 pre-processor is disabled, these aren't very useful. */
2e6976a8 968char arm_comment_chars[] = "@";
3d0c9500 969
c19d1205
ZW
970/* This array holds the chars that only start a comment at the beginning of
971 a line. If the line seems to have the form '# 123 filename'
972 .line and .file directives will appear in the pre-processed output. */
973/* Note that input_file.c hand checks for '#' at the beginning of the
974 first line of the input file. This is because the compiler outputs
975 #NO_APP at the beginning of its output. */
976/* Also note that comments like this one will always work. */
977const char line_comment_chars[] = "#";
3d0c9500 978
2e6976a8 979char arm_line_separator_chars[] = ";";
b99bd4ef 980
c19d1205
ZW
981/* Chars that can be used to separate mant
982 from exp in floating point numbers. */
983const char EXP_CHARS[] = "eE";
3d0c9500 984
c19d1205
ZW
985/* Chars that mean this number is a floating point constant. */
986/* As in 0f12.456 */
987/* or 0d1.2345e12 */
b99bd4ef 988
c19d1205 989const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 990
c19d1205
ZW
991/* Prefix characters that indicate the start of an immediate
992 value. */
993#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 994
c19d1205
ZW
995/* Separator character handling. */
996
997#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
998
999static inline int
1000skip_past_char (char ** str, char c)
1001{
8ab8155f
NC
1002 /* PR gas/14987: Allow for whitespace before the expected character. */
1003 skip_whitespace (*str);
427d0db6 1004
c19d1205
ZW
1005 if (**str == c)
1006 {
1007 (*str)++;
1008 return SUCCESS;
3d0c9500 1009 }
c19d1205
ZW
1010 else
1011 return FAIL;
1012}
c921be7d 1013
c19d1205 1014#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 1015
c19d1205
ZW
1016/* Arithmetic expressions (possibly involving symbols). */
1017
1018/* Return TRUE if anything in the expression is a bignum. */
1019
0198d5e6 1020static bfd_boolean
c19d1205
ZW
1021walk_no_bignums (symbolS * sp)
1022{
1023 if (symbol_get_value_expression (sp)->X_op == O_big)
0198d5e6 1024 return TRUE;
c19d1205
ZW
1025
1026 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 1027 {
c19d1205
ZW
1028 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1029 || (symbol_get_value_expression (sp)->X_op_symbol
1030 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
1031 }
1032
0198d5e6 1033 return FALSE;
3d0c9500
NC
1034}
1035
0198d5e6 1036static bfd_boolean in_my_get_expression = FALSE;
c19d1205
ZW
1037
1038/* Third argument to my_get_expression. */
1039#define GE_NO_PREFIX 0
1040#define GE_IMM_PREFIX 1
1041#define GE_OPT_PREFIX 2
5287ad62
JB
1042/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1043 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1044#define GE_OPT_PREFIX_BIG 3
a737bd4d 1045
b99bd4ef 1046static int
c19d1205 1047my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 1048{
c19d1205 1049 char * save_in;
b99bd4ef 1050
c19d1205
ZW
1051 /* In unified syntax, all prefixes are optional. */
1052 if (unified_syntax)
5287ad62 1053 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
477330fc 1054 : GE_OPT_PREFIX;
b99bd4ef 1055
c19d1205 1056 switch (prefix_mode)
b99bd4ef 1057 {
c19d1205
ZW
1058 case GE_NO_PREFIX: break;
1059 case GE_IMM_PREFIX:
1060 if (!is_immediate_prefix (**str))
1061 {
1062 inst.error = _("immediate expression requires a # prefix");
1063 return FAIL;
1064 }
1065 (*str)++;
1066 break;
1067 case GE_OPT_PREFIX:
5287ad62 1068 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
1069 if (is_immediate_prefix (**str))
1070 (*str)++;
1071 break;
0198d5e6
TC
1072 default:
1073 abort ();
c19d1205 1074 }
b99bd4ef 1075
c19d1205 1076 memset (ep, 0, sizeof (expressionS));
b99bd4ef 1077
c19d1205
ZW
1078 save_in = input_line_pointer;
1079 input_line_pointer = *str;
0198d5e6 1080 in_my_get_expression = TRUE;
2ac93be7 1081 expression (ep);
0198d5e6 1082 in_my_get_expression = FALSE;
c19d1205 1083
f86adc07 1084 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 1085 {
f86adc07 1086 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
1087 *str = input_line_pointer;
1088 input_line_pointer = save_in;
1089 if (inst.error == NULL)
f86adc07
NS
1090 inst.error = (ep->X_op == O_absent
1091 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
1092 return 1;
1093 }
b99bd4ef 1094
c19d1205
ZW
1095 /* Get rid of any bignums now, so that we don't generate an error for which
1096 we can't establish a line number later on. Big numbers are never valid
1097 in instructions, which is where this routine is always called. */
5287ad62
JB
1098 if (prefix_mode != GE_OPT_PREFIX_BIG
1099 && (ep->X_op == O_big
477330fc 1100 || (ep->X_add_symbol
5287ad62 1101 && (walk_no_bignums (ep->X_add_symbol)
477330fc 1102 || (ep->X_op_symbol
5287ad62 1103 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
1104 {
1105 inst.error = _("invalid constant");
1106 *str = input_line_pointer;
1107 input_line_pointer = save_in;
1108 return 1;
1109 }
b99bd4ef 1110
c19d1205
ZW
1111 *str = input_line_pointer;
1112 input_line_pointer = save_in;
0198d5e6 1113 return SUCCESS;
b99bd4ef
NC
1114}
1115
c19d1205
ZW
1116/* Turn a string in input_line_pointer into a floating point constant
1117 of type TYPE, and store the appropriate bytes in *LITP. The number
1118 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1119 returned, or NULL on OK.
b99bd4ef 1120
c19d1205
ZW
1121 Note that fp constants aren't represent in the normal way on the ARM.
1122 In big endian mode, things are as expected. However, in little endian
1123 mode fp constants are big-endian word-wise, and little-endian byte-wise
1124 within the words. For example, (double) 1.1 in big endian mode is
1125 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1126 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1127
c19d1205 1128 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1129
6d4af3c2 1130const char *
c19d1205
ZW
1131md_atof (int type, char * litP, int * sizeP)
1132{
1133 int prec;
1134 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1135 char *t;
1136 int i;
b99bd4ef 1137
c19d1205
ZW
1138 switch (type)
1139 {
1140 case 'f':
1141 case 'F':
1142 case 's':
1143 case 'S':
1144 prec = 2;
1145 break;
b99bd4ef 1146
c19d1205
ZW
1147 case 'd':
1148 case 'D':
1149 case 'r':
1150 case 'R':
1151 prec = 4;
1152 break;
b99bd4ef 1153
c19d1205
ZW
1154 case 'x':
1155 case 'X':
499ac353 1156 prec = 5;
c19d1205 1157 break;
b99bd4ef 1158
c19d1205
ZW
1159 case 'p':
1160 case 'P':
499ac353 1161 prec = 5;
c19d1205 1162 break;
a737bd4d 1163
c19d1205
ZW
1164 default:
1165 *sizeP = 0;
499ac353 1166 return _("Unrecognized or unsupported floating point constant");
c19d1205 1167 }
b99bd4ef 1168
c19d1205
ZW
1169 t = atof_ieee (input_line_pointer, type, words);
1170 if (t)
1171 input_line_pointer = t;
499ac353 1172 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1173
c19d1205
ZW
1174 if (target_big_endian)
1175 {
1176 for (i = 0; i < prec; i++)
1177 {
499ac353
NC
1178 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1179 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1180 }
1181 }
1182 else
1183 {
e74cfd16 1184 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1185 for (i = prec - 1; i >= 0; i--)
1186 {
499ac353
NC
1187 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1188 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1189 }
1190 else
1191 /* For a 4 byte float the order of elements in `words' is 1 0.
1192 For an 8 byte float the order is 1 0 3 2. */
1193 for (i = 0; i < prec; i += 2)
1194 {
499ac353
NC
1195 md_number_to_chars (litP, (valueT) words[i + 1],
1196 sizeof (LITTLENUM_TYPE));
1197 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1198 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1199 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1200 }
1201 }
b99bd4ef 1202
499ac353 1203 return NULL;
c19d1205 1204}
b99bd4ef 1205
c19d1205
ZW
1206/* We handle all bad expressions here, so that we can report the faulty
1207 instruction in the error message. */
0198d5e6 1208
c19d1205 1209void
91d6fa6a 1210md_operand (expressionS * exp)
c19d1205
ZW
1211{
1212 if (in_my_get_expression)
91d6fa6a 1213 exp->X_op = O_illegal;
b99bd4ef
NC
1214}
1215
c19d1205 1216/* Immediate values. */
b99bd4ef 1217
0198d5e6 1218#ifdef OBJ_ELF
c19d1205
ZW
1219/* Generic immediate-value read function for use in directives.
1220 Accepts anything that 'expression' can fold to a constant.
1221 *val receives the number. */
0198d5e6 1222
c19d1205
ZW
1223static int
1224immediate_for_directive (int *val)
b99bd4ef 1225{
c19d1205
ZW
1226 expressionS exp;
1227 exp.X_op = O_illegal;
b99bd4ef 1228
c19d1205
ZW
1229 if (is_immediate_prefix (*input_line_pointer))
1230 {
1231 input_line_pointer++;
1232 expression (&exp);
1233 }
b99bd4ef 1234
c19d1205
ZW
1235 if (exp.X_op != O_constant)
1236 {
1237 as_bad (_("expected #constant"));
1238 ignore_rest_of_line ();
1239 return FAIL;
1240 }
1241 *val = exp.X_add_number;
1242 return SUCCESS;
b99bd4ef 1243}
c19d1205 1244#endif
b99bd4ef 1245
c19d1205 1246/* Register parsing. */
b99bd4ef 1247
c19d1205
ZW
1248/* Generic register parser. CCP points to what should be the
1249 beginning of a register name. If it is indeed a valid register
1250 name, advance CCP over it and return the reg_entry structure;
1251 otherwise return NULL. Does not issue diagnostics. */
1252
1253static struct reg_entry *
1254arm_reg_parse_multi (char **ccp)
b99bd4ef 1255{
c19d1205
ZW
1256 char *start = *ccp;
1257 char *p;
1258 struct reg_entry *reg;
b99bd4ef 1259
477330fc
RM
1260 skip_whitespace (start);
1261
c19d1205
ZW
1262#ifdef REGISTER_PREFIX
1263 if (*start != REGISTER_PREFIX)
01cfc07f 1264 return NULL;
c19d1205
ZW
1265 start++;
1266#endif
1267#ifdef OPTIONAL_REGISTER_PREFIX
1268 if (*start == OPTIONAL_REGISTER_PREFIX)
1269 start++;
1270#endif
b99bd4ef 1271
c19d1205
ZW
1272 p = start;
1273 if (!ISALPHA (*p) || !is_name_beginner (*p))
1274 return NULL;
b99bd4ef 1275
c19d1205
ZW
1276 do
1277 p++;
1278 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1279
1280 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1281
1282 if (!reg)
1283 return NULL;
1284
1285 *ccp = p;
1286 return reg;
b99bd4ef
NC
1287}
1288
1289static int
dcbf9037 1290arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
477330fc 1291 enum arm_reg_type type)
b99bd4ef 1292{
c19d1205
ZW
1293 /* Alternative syntaxes are accepted for a few register classes. */
1294 switch (type)
1295 {
1296 case REG_TYPE_MVF:
1297 case REG_TYPE_MVD:
1298 case REG_TYPE_MVFX:
1299 case REG_TYPE_MVDX:
1300 /* Generic coprocessor register names are allowed for these. */
79134647 1301 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1302 return reg->number;
1303 break;
69b97547 1304
c19d1205
ZW
1305 case REG_TYPE_CP:
1306 /* For backward compatibility, a bare number is valid here. */
1307 {
1308 unsigned long processor = strtoul (start, ccp, 10);
1309 if (*ccp != start && processor <= 15)
1310 return processor;
1311 }
1a0670f3 1312 /* Fall through. */
6057a28f 1313
c19d1205
ZW
1314 case REG_TYPE_MMXWC:
1315 /* WC includes WCG. ??? I'm not sure this is true for all
1316 instructions that take WC registers. */
79134647 1317 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1318 return reg->number;
6057a28f 1319 break;
c19d1205 1320
6057a28f 1321 default:
c19d1205 1322 break;
6057a28f
NC
1323 }
1324
dcbf9037
JB
1325 return FAIL;
1326}
1327
1328/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1329 return value is the register number or FAIL. */
1330
1331static int
1332arm_reg_parse (char **ccp, enum arm_reg_type type)
1333{
1334 char *start = *ccp;
1335 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1336 int ret;
1337
1338 /* Do not allow a scalar (reg+index) to parse as a register. */
1339 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1340 return FAIL;
1341
1342 if (reg && reg->type == type)
1343 return reg->number;
1344
1345 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1346 return ret;
1347
c19d1205
ZW
1348 *ccp = start;
1349 return FAIL;
1350}
69b97547 1351
dcbf9037
JB
1352/* Parse a Neon type specifier. *STR should point at the leading '.'
1353 character. Does no verification at this stage that the type fits the opcode
1354 properly. E.g.,
1355
1356 .i32.i32.s16
1357 .s32.f32
1358 .u16
1359
1360 Can all be legally parsed by this function.
1361
1362 Fills in neon_type struct pointer with parsed information, and updates STR
1363 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1364 type, FAIL if not. */
1365
1366static int
1367parse_neon_type (struct neon_type *type, char **str)
1368{
1369 char *ptr = *str;
1370
1371 if (type)
1372 type->elems = 0;
1373
1374 while (type->elems < NEON_MAX_TYPE_ELS)
1375 {
1376 enum neon_el_type thistype = NT_untyped;
1377 unsigned thissize = -1u;
1378
1379 if (*ptr != '.')
1380 break;
1381
1382 ptr++;
1383
1384 /* Just a size without an explicit type. */
1385 if (ISDIGIT (*ptr))
1386 goto parsesize;
1387
1388 switch (TOLOWER (*ptr))
1389 {
1390 case 'i': thistype = NT_integer; break;
1391 case 'f': thistype = NT_float; break;
1392 case 'p': thistype = NT_poly; break;
1393 case 's': thistype = NT_signed; break;
1394 case 'u': thistype = NT_unsigned; break;
477330fc
RM
1395 case 'd':
1396 thistype = NT_float;
1397 thissize = 64;
1398 ptr++;
1399 goto done;
dcbf9037
JB
1400 default:
1401 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1402 return FAIL;
1403 }
1404
1405 ptr++;
1406
1407 /* .f is an abbreviation for .f32. */
1408 if (thistype == NT_float && !ISDIGIT (*ptr))
1409 thissize = 32;
1410 else
1411 {
1412 parsesize:
1413 thissize = strtoul (ptr, &ptr, 10);
1414
1415 if (thissize != 8 && thissize != 16 && thissize != 32
477330fc
RM
1416 && thissize != 64)
1417 {
1418 as_bad (_("bad size %d in type specifier"), thissize);
dcbf9037
JB
1419 return FAIL;
1420 }
1421 }
1422
037e8744 1423 done:
dcbf9037 1424 if (type)
477330fc
RM
1425 {
1426 type->el[type->elems].type = thistype;
dcbf9037
JB
1427 type->el[type->elems].size = thissize;
1428 type->elems++;
1429 }
1430 }
1431
1432 /* Empty/missing type is not a successful parse. */
1433 if (type->elems == 0)
1434 return FAIL;
1435
1436 *str = ptr;
1437
1438 return SUCCESS;
1439}
1440
1441/* Errors may be set multiple times during parsing or bit encoding
1442 (particularly in the Neon bits), but usually the earliest error which is set
1443 will be the most meaningful. Avoid overwriting it with later (cascading)
1444 errors by calling this function. */
1445
1446static void
1447first_error (const char *err)
1448{
1449 if (!inst.error)
1450 inst.error = err;
1451}
1452
1453/* Parse a single type, e.g. ".s32", leading period included. */
1454static int
1455parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1456{
1457 char *str = *ccp;
1458 struct neon_type optype;
1459
1460 if (*str == '.')
1461 {
1462 if (parse_neon_type (&optype, &str) == SUCCESS)
477330fc
RM
1463 {
1464 if (optype.elems == 1)
1465 *vectype = optype.el[0];
1466 else
1467 {
1468 first_error (_("only one type should be specified for operand"));
1469 return FAIL;
1470 }
1471 }
dcbf9037 1472 else
477330fc
RM
1473 {
1474 first_error (_("vector type expected"));
1475 return FAIL;
1476 }
dcbf9037
JB
1477 }
1478 else
1479 return FAIL;
5f4273c7 1480
dcbf9037 1481 *ccp = str;
5f4273c7 1482
dcbf9037
JB
1483 return SUCCESS;
1484}
1485
1486/* Special meanings for indices (which have a range of 0-7), which will fit into
1487 a 4-bit integer. */
1488
1489#define NEON_ALL_LANES 15
1490#define NEON_INTERLEAVE_LANES 14
1491
1492/* Parse either a register or a scalar, with an optional type. Return the
1493 register number, and optionally fill in the actual type of the register
1494 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1495 type/index information in *TYPEINFO. */
1496
1497static int
1498parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
477330fc
RM
1499 enum arm_reg_type *rtype,
1500 struct neon_typed_alias *typeinfo)
dcbf9037
JB
1501{
1502 char *str = *ccp;
1503 struct reg_entry *reg = arm_reg_parse_multi (&str);
1504 struct neon_typed_alias atype;
1505 struct neon_type_el parsetype;
1506
1507 atype.defined = 0;
1508 atype.index = -1;
1509 atype.eltype.type = NT_invtype;
1510 atype.eltype.size = -1;
1511
1512 /* Try alternate syntax for some types of register. Note these are mutually
1513 exclusive with the Neon syntax extensions. */
1514 if (reg == NULL)
1515 {
1516 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1517 if (altreg != FAIL)
477330fc 1518 *ccp = str;
dcbf9037 1519 if (typeinfo)
477330fc 1520 *typeinfo = atype;
dcbf9037
JB
1521 return altreg;
1522 }
1523
037e8744
JB
1524 /* Undo polymorphism when a set of register types may be accepted. */
1525 if ((type == REG_TYPE_NDQ
1526 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1527 || (type == REG_TYPE_VFSD
477330fc 1528 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
037e8744 1529 || (type == REG_TYPE_NSDQ
477330fc
RM
1530 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1531 || reg->type == REG_TYPE_NQ))
dec41383
JW
1532 || (type == REG_TYPE_NSD
1533 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
f512f76f
NC
1534 || (type == REG_TYPE_MMXWC
1535 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1536 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1537
1538 if (type != reg->type)
1539 return FAIL;
1540
1541 if (reg->neon)
1542 atype = *reg->neon;
5f4273c7 1543
dcbf9037
JB
1544 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1545 {
1546 if ((atype.defined & NTA_HASTYPE) != 0)
477330fc
RM
1547 {
1548 first_error (_("can't redefine type for operand"));
1549 return FAIL;
1550 }
dcbf9037
JB
1551 atype.defined |= NTA_HASTYPE;
1552 atype.eltype = parsetype;
1553 }
5f4273c7 1554
dcbf9037
JB
1555 if (skip_past_char (&str, '[') == SUCCESS)
1556 {
dec41383
JW
1557 if (type != REG_TYPE_VFD
1558 && !(type == REG_TYPE_VFS
1559 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2)))
477330fc
RM
1560 {
1561 first_error (_("only D registers may be indexed"));
1562 return FAIL;
1563 }
5f4273c7 1564
dcbf9037 1565 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
1566 {
1567 first_error (_("can't change index for operand"));
1568 return FAIL;
1569 }
dcbf9037
JB
1570
1571 atype.defined |= NTA_HASINDEX;
1572
1573 if (skip_past_char (&str, ']') == SUCCESS)
477330fc 1574 atype.index = NEON_ALL_LANES;
dcbf9037 1575 else
477330fc
RM
1576 {
1577 expressionS exp;
dcbf9037 1578
477330fc 1579 my_get_expression (&exp, &str, GE_NO_PREFIX);
dcbf9037 1580
477330fc
RM
1581 if (exp.X_op != O_constant)
1582 {
1583 first_error (_("constant expression required"));
1584 return FAIL;
1585 }
dcbf9037 1586
477330fc
RM
1587 if (skip_past_char (&str, ']') == FAIL)
1588 return FAIL;
dcbf9037 1589
477330fc
RM
1590 atype.index = exp.X_add_number;
1591 }
dcbf9037 1592 }
5f4273c7 1593
dcbf9037
JB
1594 if (typeinfo)
1595 *typeinfo = atype;
5f4273c7 1596
dcbf9037
JB
1597 if (rtype)
1598 *rtype = type;
5f4273c7 1599
dcbf9037 1600 *ccp = str;
5f4273c7 1601
dcbf9037
JB
1602 return reg->number;
1603}
1604
1605/* Like arm_reg_parse, but allow allow the following extra features:
1606 - If RTYPE is non-zero, return the (possibly restricted) type of the
1607 register (e.g. Neon double or quad reg when either has been requested).
1608 - If this is a Neon vector type with additional type information, fill
1609 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1610 This function will fault on encountering a scalar. */
dcbf9037
JB
1611
1612static int
1613arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
477330fc 1614 enum arm_reg_type *rtype, struct neon_type_el *vectype)
dcbf9037
JB
1615{
1616 struct neon_typed_alias atype;
1617 char *str = *ccp;
1618 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1619
1620 if (reg == FAIL)
1621 return FAIL;
1622
0855e32b
NS
1623 /* Do not allow regname(... to parse as a register. */
1624 if (*str == '(')
1625 return FAIL;
1626
dcbf9037
JB
1627 /* Do not allow a scalar (reg+index) to parse as a register. */
1628 if ((atype.defined & NTA_HASINDEX) != 0)
1629 {
1630 first_error (_("register operand expected, but got scalar"));
1631 return FAIL;
1632 }
1633
1634 if (vectype)
1635 *vectype = atype.eltype;
1636
1637 *ccp = str;
1638
1639 return reg;
1640}
1641
1642#define NEON_SCALAR_REG(X) ((X) >> 4)
1643#define NEON_SCALAR_INDEX(X) ((X) & 15)
1644
5287ad62
JB
1645/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1646 have enough information to be able to do a good job bounds-checking. So, we
1647 just do easy checks here, and do further checks later. */
1648
1649static int
dcbf9037 1650parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1651{
dcbf9037 1652 int reg;
5287ad62 1653 char *str = *ccp;
dcbf9037 1654 struct neon_typed_alias atype;
dec41383
JW
1655 enum arm_reg_type reg_type = REG_TYPE_VFD;
1656
1657 if (elsize == 4)
1658 reg_type = REG_TYPE_VFS;
5f4273c7 1659
dec41383 1660 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
5f4273c7 1661
dcbf9037 1662 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1663 return FAIL;
5f4273c7 1664
dcbf9037 1665 if (atype.index == NEON_ALL_LANES)
5287ad62 1666 {
dcbf9037 1667 first_error (_("scalar must have an index"));
5287ad62
JB
1668 return FAIL;
1669 }
dcbf9037 1670 else if (atype.index >= 64 / elsize)
5287ad62 1671 {
dcbf9037 1672 first_error (_("scalar index out of range"));
5287ad62
JB
1673 return FAIL;
1674 }
5f4273c7 1675
dcbf9037
JB
1676 if (type)
1677 *type = atype.eltype;
5f4273c7 1678
5287ad62 1679 *ccp = str;
5f4273c7 1680
dcbf9037 1681 return reg * 16 + atype.index;
5287ad62
JB
1682}
1683
c19d1205 1684/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1685
c19d1205
ZW
1686static long
1687parse_reg_list (char ** strp)
1688{
1689 char * str = * strp;
1690 long range = 0;
1691 int another_range;
a737bd4d 1692
c19d1205
ZW
1693 /* We come back here if we get ranges concatenated by '+' or '|'. */
1694 do
6057a28f 1695 {
477330fc
RM
1696 skip_whitespace (str);
1697
c19d1205 1698 another_range = 0;
a737bd4d 1699
c19d1205
ZW
1700 if (*str == '{')
1701 {
1702 int in_range = 0;
1703 int cur_reg = -1;
a737bd4d 1704
c19d1205
ZW
1705 str++;
1706 do
1707 {
1708 int reg;
6057a28f 1709
dcbf9037 1710 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1711 {
dcbf9037 1712 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1713 return FAIL;
1714 }
a737bd4d 1715
c19d1205
ZW
1716 if (in_range)
1717 {
1718 int i;
a737bd4d 1719
c19d1205
ZW
1720 if (reg <= cur_reg)
1721 {
dcbf9037 1722 first_error (_("bad range in register list"));
c19d1205
ZW
1723 return FAIL;
1724 }
40a18ebd 1725
c19d1205
ZW
1726 for (i = cur_reg + 1; i < reg; i++)
1727 {
1728 if (range & (1 << i))
1729 as_tsktsk
1730 (_("Warning: duplicated register (r%d) in register list"),
1731 i);
1732 else
1733 range |= 1 << i;
1734 }
1735 in_range = 0;
1736 }
a737bd4d 1737
c19d1205
ZW
1738 if (range & (1 << reg))
1739 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1740 reg);
1741 else if (reg <= cur_reg)
1742 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1743
c19d1205
ZW
1744 range |= 1 << reg;
1745 cur_reg = reg;
1746 }
1747 while (skip_past_comma (&str) != FAIL
1748 || (in_range = 1, *str++ == '-'));
1749 str--;
a737bd4d 1750
d996d970 1751 if (skip_past_char (&str, '}') == FAIL)
c19d1205 1752 {
dcbf9037 1753 first_error (_("missing `}'"));
c19d1205
ZW
1754 return FAIL;
1755 }
1756 }
1757 else
1758 {
91d6fa6a 1759 expressionS exp;
40a18ebd 1760
91d6fa6a 1761 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1762 return FAIL;
40a18ebd 1763
91d6fa6a 1764 if (exp.X_op == O_constant)
c19d1205 1765 {
91d6fa6a
NC
1766 if (exp.X_add_number
1767 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1768 {
1769 inst.error = _("invalid register mask");
1770 return FAIL;
1771 }
a737bd4d 1772
91d6fa6a 1773 if ((range & exp.X_add_number) != 0)
c19d1205 1774 {
91d6fa6a 1775 int regno = range & exp.X_add_number;
a737bd4d 1776
c19d1205
ZW
1777 regno &= -regno;
1778 regno = (1 << regno) - 1;
1779 as_tsktsk
1780 (_("Warning: duplicated register (r%d) in register list"),
1781 regno);
1782 }
a737bd4d 1783
91d6fa6a 1784 range |= exp.X_add_number;
c19d1205
ZW
1785 }
1786 else
1787 {
1788 if (inst.reloc.type != 0)
1789 {
1790 inst.error = _("expression too complex");
1791 return FAIL;
1792 }
a737bd4d 1793
91d6fa6a 1794 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
c19d1205
ZW
1795 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1796 inst.reloc.pc_rel = 0;
1797 }
1798 }
a737bd4d 1799
c19d1205
ZW
1800 if (*str == '|' || *str == '+')
1801 {
1802 str++;
1803 another_range = 1;
1804 }
a737bd4d 1805 }
c19d1205 1806 while (another_range);
a737bd4d 1807
c19d1205
ZW
1808 *strp = str;
1809 return range;
a737bd4d
NC
1810}
1811
5287ad62
JB
1812/* Types of registers in a list. */
1813
1814enum reg_list_els
1815{
1816 REGLIST_VFP_S,
1817 REGLIST_VFP_D,
1818 REGLIST_NEON_D
1819};
1820
c19d1205
ZW
1821/* Parse a VFP register list. If the string is invalid return FAIL.
1822 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1823 register. Parses registers of type ETYPE.
1824 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1825 - Q registers can be used to specify pairs of D registers
1826 - { } can be omitted from around a singleton register list
477330fc
RM
1827 FIXME: This is not implemented, as it would require backtracking in
1828 some cases, e.g.:
1829 vtbl.8 d3,d4,d5
1830 This could be done (the meaning isn't really ambiguous), but doesn't
1831 fit in well with the current parsing framework.
dcbf9037
JB
1832 - 32 D registers may be used (also true for VFPv3).
1833 FIXME: Types are ignored in these register lists, which is probably a
1834 bug. */
6057a28f 1835
c19d1205 1836static int
037e8744 1837parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1838{
037e8744 1839 char *str = *ccp;
c19d1205
ZW
1840 int base_reg;
1841 int new_base;
21d799b5 1842 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1843 int max_regs = 0;
c19d1205
ZW
1844 int count = 0;
1845 int warned = 0;
1846 unsigned long mask = 0;
a737bd4d 1847 int i;
6057a28f 1848
477330fc 1849 if (skip_past_char (&str, '{') == FAIL)
5287ad62
JB
1850 {
1851 inst.error = _("expecting {");
1852 return FAIL;
1853 }
6057a28f 1854
5287ad62 1855 switch (etype)
c19d1205 1856 {
5287ad62 1857 case REGLIST_VFP_S:
c19d1205
ZW
1858 regtype = REG_TYPE_VFS;
1859 max_regs = 32;
5287ad62 1860 break;
5f4273c7 1861
5287ad62
JB
1862 case REGLIST_VFP_D:
1863 regtype = REG_TYPE_VFD;
b7fc2769 1864 break;
5f4273c7 1865
b7fc2769
JB
1866 case REGLIST_NEON_D:
1867 regtype = REG_TYPE_NDQ;
1868 break;
1869 }
1870
1871 if (etype != REGLIST_VFP_S)
1872 {
b1cc4aeb
PB
1873 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1874 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
1875 {
1876 max_regs = 32;
1877 if (thumb_mode)
1878 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1879 fpu_vfp_ext_d32);
1880 else
1881 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1882 fpu_vfp_ext_d32);
1883 }
5287ad62 1884 else
477330fc 1885 max_regs = 16;
c19d1205 1886 }
6057a28f 1887
c19d1205 1888 base_reg = max_regs;
a737bd4d 1889
c19d1205
ZW
1890 do
1891 {
5287ad62 1892 int setmask = 1, addregs = 1;
dcbf9037 1893
037e8744 1894 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1895
c19d1205 1896 if (new_base == FAIL)
a737bd4d 1897 {
dcbf9037 1898 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1899 return FAIL;
1900 }
5f4273c7 1901
b7fc2769 1902 if (new_base >= max_regs)
477330fc
RM
1903 {
1904 first_error (_("register out of range in list"));
1905 return FAIL;
1906 }
5f4273c7 1907
5287ad62
JB
1908 /* Note: a value of 2 * n is returned for the register Q<n>. */
1909 if (regtype == REG_TYPE_NQ)
477330fc
RM
1910 {
1911 setmask = 3;
1912 addregs = 2;
1913 }
5287ad62 1914
c19d1205
ZW
1915 if (new_base < base_reg)
1916 base_reg = new_base;
a737bd4d 1917
5287ad62 1918 if (mask & (setmask << new_base))
c19d1205 1919 {
dcbf9037 1920 first_error (_("invalid register list"));
c19d1205 1921 return FAIL;
a737bd4d 1922 }
a737bd4d 1923
c19d1205
ZW
1924 if ((mask >> new_base) != 0 && ! warned)
1925 {
1926 as_tsktsk (_("register list not in ascending order"));
1927 warned = 1;
1928 }
0bbf2aa4 1929
5287ad62
JB
1930 mask |= setmask << new_base;
1931 count += addregs;
0bbf2aa4 1932
037e8744 1933 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1934 {
1935 int high_range;
0bbf2aa4 1936
037e8744 1937 str++;
0bbf2aa4 1938
037e8744 1939 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
477330fc 1940 == FAIL)
c19d1205
ZW
1941 {
1942 inst.error = gettext (reg_expected_msgs[regtype]);
1943 return FAIL;
1944 }
0bbf2aa4 1945
477330fc
RM
1946 if (high_range >= max_regs)
1947 {
1948 first_error (_("register out of range in list"));
1949 return FAIL;
1950 }
b7fc2769 1951
477330fc
RM
1952 if (regtype == REG_TYPE_NQ)
1953 high_range = high_range + 1;
5287ad62 1954
c19d1205
ZW
1955 if (high_range <= new_base)
1956 {
1957 inst.error = _("register range not in ascending order");
1958 return FAIL;
1959 }
0bbf2aa4 1960
5287ad62 1961 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1962 {
5287ad62 1963 if (mask & (setmask << new_base))
0bbf2aa4 1964 {
c19d1205
ZW
1965 inst.error = _("invalid register list");
1966 return FAIL;
0bbf2aa4 1967 }
c19d1205 1968
5287ad62
JB
1969 mask |= setmask << new_base;
1970 count += addregs;
0bbf2aa4 1971 }
0bbf2aa4 1972 }
0bbf2aa4 1973 }
037e8744 1974 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1975
037e8744 1976 str++;
0bbf2aa4 1977
c19d1205
ZW
1978 /* Sanity check -- should have raised a parse error above. */
1979 if (count == 0 || count > max_regs)
1980 abort ();
1981
1982 *pbase = base_reg;
1983
1984 /* Final test -- the registers must be consecutive. */
1985 mask >>= base_reg;
1986 for (i = 0; i < count; i++)
1987 {
1988 if ((mask & (1u << i)) == 0)
1989 {
1990 inst.error = _("non-contiguous register range");
1991 return FAIL;
1992 }
1993 }
1994
037e8744
JB
1995 *ccp = str;
1996
c19d1205 1997 return count;
b99bd4ef
NC
1998}
1999
dcbf9037
JB
2000/* True if two alias types are the same. */
2001
c921be7d 2002static bfd_boolean
dcbf9037
JB
2003neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2004{
2005 if (!a && !b)
c921be7d 2006 return TRUE;
5f4273c7 2007
dcbf9037 2008 if (!a || !b)
c921be7d 2009 return FALSE;
dcbf9037
JB
2010
2011 if (a->defined != b->defined)
c921be7d 2012 return FALSE;
5f4273c7 2013
dcbf9037
JB
2014 if ((a->defined & NTA_HASTYPE) != 0
2015 && (a->eltype.type != b->eltype.type
477330fc 2016 || a->eltype.size != b->eltype.size))
c921be7d 2017 return FALSE;
dcbf9037
JB
2018
2019 if ((a->defined & NTA_HASINDEX) != 0
2020 && (a->index != b->index))
c921be7d 2021 return FALSE;
5f4273c7 2022
c921be7d 2023 return TRUE;
dcbf9037
JB
2024}
2025
5287ad62
JB
2026/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2027 The base register is put in *PBASE.
dcbf9037 2028 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
2029 the return value.
2030 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
2031 Bits [6:5] encode the list length (minus one).
2032 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 2033
5287ad62 2034#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 2035#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
2036#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2037
2038static int
dcbf9037 2039parse_neon_el_struct_list (char **str, unsigned *pbase,
477330fc 2040 struct neon_type_el *eltype)
5287ad62
JB
2041{
2042 char *ptr = *str;
2043 int base_reg = -1;
2044 int reg_incr = -1;
2045 int count = 0;
2046 int lane = -1;
2047 int leading_brace = 0;
2048 enum arm_reg_type rtype = REG_TYPE_NDQ;
20203fb9
NC
2049 const char *const incr_error = _("register stride must be 1 or 2");
2050 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 2051 struct neon_typed_alias firsttype;
f85d59c3
KT
2052 firsttype.defined = 0;
2053 firsttype.eltype.type = NT_invtype;
2054 firsttype.eltype.size = -1;
2055 firsttype.index = -1;
5f4273c7 2056
5287ad62
JB
2057 if (skip_past_char (&ptr, '{') == SUCCESS)
2058 leading_brace = 1;
5f4273c7 2059
5287ad62
JB
2060 do
2061 {
dcbf9037
JB
2062 struct neon_typed_alias atype;
2063 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2064
5287ad62 2065 if (getreg == FAIL)
477330fc
RM
2066 {
2067 first_error (_(reg_expected_msgs[rtype]));
2068 return FAIL;
2069 }
5f4273c7 2070
5287ad62 2071 if (base_reg == -1)
477330fc
RM
2072 {
2073 base_reg = getreg;
2074 if (rtype == REG_TYPE_NQ)
2075 {
2076 reg_incr = 1;
2077 }
2078 firsttype = atype;
2079 }
5287ad62 2080 else if (reg_incr == -1)
477330fc
RM
2081 {
2082 reg_incr = getreg - base_reg;
2083 if (reg_incr < 1 || reg_incr > 2)
2084 {
2085 first_error (_(incr_error));
2086 return FAIL;
2087 }
2088 }
5287ad62 2089 else if (getreg != base_reg + reg_incr * count)
477330fc
RM
2090 {
2091 first_error (_(incr_error));
2092 return FAIL;
2093 }
dcbf9037 2094
c921be7d 2095 if (! neon_alias_types_same (&atype, &firsttype))
477330fc
RM
2096 {
2097 first_error (_(type_error));
2098 return FAIL;
2099 }
5f4273c7 2100
5287ad62 2101 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
477330fc 2102 modes. */
5287ad62 2103 if (ptr[0] == '-')
477330fc
RM
2104 {
2105 struct neon_typed_alias htype;
2106 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2107 if (lane == -1)
2108 lane = NEON_INTERLEAVE_LANES;
2109 else if (lane != NEON_INTERLEAVE_LANES)
2110 {
2111 first_error (_(type_error));
2112 return FAIL;
2113 }
2114 if (reg_incr == -1)
2115 reg_incr = 1;
2116 else if (reg_incr != 1)
2117 {
2118 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2119 return FAIL;
2120 }
2121 ptr++;
2122 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2123 if (hireg == FAIL)
2124 {
2125 first_error (_(reg_expected_msgs[rtype]));
2126 return FAIL;
2127 }
2128 if (! neon_alias_types_same (&htype, &firsttype))
2129 {
2130 first_error (_(type_error));
2131 return FAIL;
2132 }
2133 count += hireg + dregs - getreg;
2134 continue;
2135 }
5f4273c7 2136
5287ad62
JB
2137 /* If we're using Q registers, we can't use [] or [n] syntax. */
2138 if (rtype == REG_TYPE_NQ)
477330fc
RM
2139 {
2140 count += 2;
2141 continue;
2142 }
5f4273c7 2143
dcbf9037 2144 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
2145 {
2146 if (lane == -1)
2147 lane = atype.index;
2148 else if (lane != atype.index)
2149 {
2150 first_error (_(type_error));
2151 return FAIL;
2152 }
2153 }
5287ad62 2154 else if (lane == -1)
477330fc 2155 lane = NEON_INTERLEAVE_LANES;
5287ad62 2156 else if (lane != NEON_INTERLEAVE_LANES)
477330fc
RM
2157 {
2158 first_error (_(type_error));
2159 return FAIL;
2160 }
5287ad62
JB
2161 count++;
2162 }
2163 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2164
5287ad62
JB
2165 /* No lane set by [x]. We must be interleaving structures. */
2166 if (lane == -1)
2167 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2168
5287ad62
JB
2169 /* Sanity check. */
2170 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2171 || (count > 1 && reg_incr == -1))
2172 {
dcbf9037 2173 first_error (_("error parsing element/structure list"));
5287ad62
JB
2174 return FAIL;
2175 }
2176
2177 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2178 {
dcbf9037 2179 first_error (_("expected }"));
5287ad62
JB
2180 return FAIL;
2181 }
5f4273c7 2182
5287ad62
JB
2183 if (reg_incr == -1)
2184 reg_incr = 1;
2185
dcbf9037
JB
2186 if (eltype)
2187 *eltype = firsttype.eltype;
2188
5287ad62
JB
2189 *pbase = base_reg;
2190 *str = ptr;
5f4273c7 2191
5287ad62
JB
2192 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2193}
2194
c19d1205
ZW
2195/* Parse an explicit relocation suffix on an expression. This is
2196 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2197 arm_reloc_hsh contains no entries, so this function can only
2198 succeed if there is no () after the word. Returns -1 on error,
2199 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2200
c19d1205
ZW
2201static int
2202parse_reloc (char **str)
b99bd4ef 2203{
c19d1205
ZW
2204 struct reloc_entry *r;
2205 char *p, *q;
b99bd4ef 2206
c19d1205
ZW
2207 if (**str != '(')
2208 return BFD_RELOC_UNUSED;
b99bd4ef 2209
c19d1205
ZW
2210 p = *str + 1;
2211 q = p;
2212
2213 while (*q && *q != ')' && *q != ',')
2214 q++;
2215 if (*q != ')')
2216 return -1;
2217
21d799b5
NC
2218 if ((r = (struct reloc_entry *)
2219 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2220 return -1;
2221
2222 *str = q + 1;
2223 return r->reloc;
b99bd4ef
NC
2224}
2225
c19d1205
ZW
2226/* Directives: register aliases. */
2227
dcbf9037 2228static struct reg_entry *
90ec0d68 2229insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2230{
d3ce72d0 2231 struct reg_entry *new_reg;
c19d1205 2232 const char *name;
b99bd4ef 2233
d3ce72d0 2234 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2235 {
d3ce72d0 2236 if (new_reg->builtin)
c19d1205 2237 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2238
c19d1205
ZW
2239 /* Only warn about a redefinition if it's not defined as the
2240 same register. */
d3ce72d0 2241 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2242 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2243
d929913e 2244 return NULL;
c19d1205 2245 }
b99bd4ef 2246
c19d1205 2247 name = xstrdup (str);
325801bd 2248 new_reg = XNEW (struct reg_entry);
b99bd4ef 2249
d3ce72d0
NC
2250 new_reg->name = name;
2251 new_reg->number = number;
2252 new_reg->type = type;
2253 new_reg->builtin = FALSE;
2254 new_reg->neon = NULL;
b99bd4ef 2255
d3ce72d0 2256 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2257 abort ();
5f4273c7 2258
d3ce72d0 2259 return new_reg;
dcbf9037
JB
2260}
2261
2262static void
2263insert_neon_reg_alias (char *str, int number, int type,
477330fc 2264 struct neon_typed_alias *atype)
dcbf9037
JB
2265{
2266 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2267
dcbf9037
JB
2268 if (!reg)
2269 {
2270 first_error (_("attempt to redefine typed alias"));
2271 return;
2272 }
5f4273c7 2273
dcbf9037
JB
2274 if (atype)
2275 {
325801bd 2276 reg->neon = XNEW (struct neon_typed_alias);
dcbf9037
JB
2277 *reg->neon = *atype;
2278 }
c19d1205 2279}
b99bd4ef 2280
c19d1205 2281/* Look for the .req directive. This is of the form:
b99bd4ef 2282
c19d1205 2283 new_register_name .req existing_register_name
b99bd4ef 2284
c19d1205 2285 If we find one, or if it looks sufficiently like one that we want to
d929913e 2286 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2287
d929913e 2288static bfd_boolean
c19d1205
ZW
2289create_register_alias (char * newname, char *p)
2290{
2291 struct reg_entry *old;
2292 char *oldname, *nbuf;
2293 size_t nlen;
b99bd4ef 2294
c19d1205
ZW
2295 /* The input scrubber ensures that whitespace after the mnemonic is
2296 collapsed to single spaces. */
2297 oldname = p;
2298 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2299 return FALSE;
b99bd4ef 2300
c19d1205
ZW
2301 oldname += 6;
2302 if (*oldname == '\0')
d929913e 2303 return FALSE;
b99bd4ef 2304
21d799b5 2305 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2306 if (!old)
b99bd4ef 2307 {
c19d1205 2308 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2309 return TRUE;
b99bd4ef
NC
2310 }
2311
c19d1205
ZW
2312 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2313 the desired alias name, and p points to its end. If not, then
2314 the desired alias name is in the global original_case_string. */
2315#ifdef TC_CASE_SENSITIVE
2316 nlen = p - newname;
2317#else
2318 newname = original_case_string;
2319 nlen = strlen (newname);
2320#endif
b99bd4ef 2321
29a2809e 2322 nbuf = xmemdup0 (newname, nlen);
b99bd4ef 2323
c19d1205
ZW
2324 /* Create aliases under the new name as stated; an all-lowercase
2325 version of the new name; and an all-uppercase version of the new
2326 name. */
d929913e
NC
2327 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2328 {
2329 for (p = nbuf; *p; p++)
2330 *p = TOUPPER (*p);
c19d1205 2331
d929913e
NC
2332 if (strncmp (nbuf, newname, nlen))
2333 {
2334 /* If this attempt to create an additional alias fails, do not bother
2335 trying to create the all-lower case alias. We will fail and issue
2336 a second, duplicate error message. This situation arises when the
2337 programmer does something like:
2338 foo .req r0
2339 Foo .req r1
2340 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2341 the artificial FOO alias because it has already been created by the
d929913e
NC
2342 first .req. */
2343 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
2344 {
2345 free (nbuf);
2346 return TRUE;
2347 }
d929913e 2348 }
c19d1205 2349
d929913e
NC
2350 for (p = nbuf; *p; p++)
2351 *p = TOLOWER (*p);
c19d1205 2352
d929913e
NC
2353 if (strncmp (nbuf, newname, nlen))
2354 insert_reg_alias (nbuf, old->number, old->type);
2355 }
c19d1205 2356
e1fa0163 2357 free (nbuf);
d929913e 2358 return TRUE;
b99bd4ef
NC
2359}
2360
dcbf9037
JB
2361/* Create a Neon typed/indexed register alias using directives, e.g.:
2362 X .dn d5.s32[1]
2363 Y .qn 6.s16
2364 Z .dn d7
2365 T .dn Z[0]
2366 These typed registers can be used instead of the types specified after the
2367 Neon mnemonic, so long as all operands given have types. Types can also be
2368 specified directly, e.g.:
5f4273c7 2369 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2370
c921be7d 2371static bfd_boolean
dcbf9037
JB
2372create_neon_reg_alias (char *newname, char *p)
2373{
2374 enum arm_reg_type basetype;
2375 struct reg_entry *basereg;
2376 struct reg_entry mybasereg;
2377 struct neon_type ntype;
2378 struct neon_typed_alias typeinfo;
12d6b0b7 2379 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2380 int namelen;
5f4273c7 2381
dcbf9037
JB
2382 typeinfo.defined = 0;
2383 typeinfo.eltype.type = NT_invtype;
2384 typeinfo.eltype.size = -1;
2385 typeinfo.index = -1;
5f4273c7 2386
dcbf9037 2387 nameend = p;
5f4273c7 2388
dcbf9037
JB
2389 if (strncmp (p, " .dn ", 5) == 0)
2390 basetype = REG_TYPE_VFD;
2391 else if (strncmp (p, " .qn ", 5) == 0)
2392 basetype = REG_TYPE_NQ;
2393 else
c921be7d 2394 return FALSE;
5f4273c7 2395
dcbf9037 2396 p += 5;
5f4273c7 2397
dcbf9037 2398 if (*p == '\0')
c921be7d 2399 return FALSE;
5f4273c7 2400
dcbf9037
JB
2401 basereg = arm_reg_parse_multi (&p);
2402
2403 if (basereg && basereg->type != basetype)
2404 {
2405 as_bad (_("bad type for register"));
c921be7d 2406 return FALSE;
dcbf9037
JB
2407 }
2408
2409 if (basereg == NULL)
2410 {
2411 expressionS exp;
2412 /* Try parsing as an integer. */
2413 my_get_expression (&exp, &p, GE_NO_PREFIX);
2414 if (exp.X_op != O_constant)
477330fc
RM
2415 {
2416 as_bad (_("expression must be constant"));
2417 return FALSE;
2418 }
dcbf9037
JB
2419 basereg = &mybasereg;
2420 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
477330fc 2421 : exp.X_add_number;
dcbf9037
JB
2422 basereg->neon = 0;
2423 }
2424
2425 if (basereg->neon)
2426 typeinfo = *basereg->neon;
2427
2428 if (parse_neon_type (&ntype, &p) == SUCCESS)
2429 {
2430 /* We got a type. */
2431 if (typeinfo.defined & NTA_HASTYPE)
477330fc
RM
2432 {
2433 as_bad (_("can't redefine the type of a register alias"));
2434 return FALSE;
2435 }
5f4273c7 2436
dcbf9037
JB
2437 typeinfo.defined |= NTA_HASTYPE;
2438 if (ntype.elems != 1)
477330fc
RM
2439 {
2440 as_bad (_("you must specify a single type only"));
2441 return FALSE;
2442 }
dcbf9037
JB
2443 typeinfo.eltype = ntype.el[0];
2444 }
5f4273c7 2445
dcbf9037
JB
2446 if (skip_past_char (&p, '[') == SUCCESS)
2447 {
2448 expressionS exp;
2449 /* We got a scalar index. */
5f4273c7 2450
dcbf9037 2451 if (typeinfo.defined & NTA_HASINDEX)
477330fc
RM
2452 {
2453 as_bad (_("can't redefine the index of a scalar alias"));
2454 return FALSE;
2455 }
5f4273c7 2456
dcbf9037 2457 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2458
dcbf9037 2459 if (exp.X_op != O_constant)
477330fc
RM
2460 {
2461 as_bad (_("scalar index must be constant"));
2462 return FALSE;
2463 }
5f4273c7 2464
dcbf9037
JB
2465 typeinfo.defined |= NTA_HASINDEX;
2466 typeinfo.index = exp.X_add_number;
5f4273c7 2467
dcbf9037 2468 if (skip_past_char (&p, ']') == FAIL)
477330fc
RM
2469 {
2470 as_bad (_("expecting ]"));
2471 return FALSE;
2472 }
dcbf9037
JB
2473 }
2474
15735687
NS
2475 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2476 the desired alias name, and p points to its end. If not, then
2477 the desired alias name is in the global original_case_string. */
2478#ifdef TC_CASE_SENSITIVE
dcbf9037 2479 namelen = nameend - newname;
15735687
NS
2480#else
2481 newname = original_case_string;
2482 namelen = strlen (newname);
2483#endif
2484
29a2809e 2485 namebuf = xmemdup0 (newname, namelen);
5f4273c7 2486
dcbf9037 2487 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2488 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2489
dcbf9037
JB
2490 /* Insert name in all uppercase. */
2491 for (p = namebuf; *p; p++)
2492 *p = TOUPPER (*p);
5f4273c7 2493
dcbf9037
JB
2494 if (strncmp (namebuf, newname, namelen))
2495 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2496 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2497
dcbf9037
JB
2498 /* Insert name in all lowercase. */
2499 for (p = namebuf; *p; p++)
2500 *p = TOLOWER (*p);
5f4273c7 2501
dcbf9037
JB
2502 if (strncmp (namebuf, newname, namelen))
2503 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2504 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2505
e1fa0163 2506 free (namebuf);
c921be7d 2507 return TRUE;
dcbf9037
JB
2508}
2509
c19d1205
ZW
2510/* Should never be called, as .req goes between the alias and the
2511 register name, not at the beginning of the line. */
c921be7d 2512
b99bd4ef 2513static void
c19d1205 2514s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2515{
c19d1205
ZW
2516 as_bad (_("invalid syntax for .req directive"));
2517}
b99bd4ef 2518
dcbf9037
JB
2519static void
2520s_dn (int a ATTRIBUTE_UNUSED)
2521{
2522 as_bad (_("invalid syntax for .dn directive"));
2523}
2524
2525static void
2526s_qn (int a ATTRIBUTE_UNUSED)
2527{
2528 as_bad (_("invalid syntax for .qn directive"));
2529}
2530
c19d1205
ZW
2531/* The .unreq directive deletes an alias which was previously defined
2532 by .req. For example:
b99bd4ef 2533
c19d1205
ZW
2534 my_alias .req r11
2535 .unreq my_alias */
b99bd4ef
NC
2536
2537static void
c19d1205 2538s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2539{
c19d1205
ZW
2540 char * name;
2541 char saved_char;
b99bd4ef 2542
c19d1205
ZW
2543 name = input_line_pointer;
2544
2545 while (*input_line_pointer != 0
2546 && *input_line_pointer != ' '
2547 && *input_line_pointer != '\n')
2548 ++input_line_pointer;
2549
2550 saved_char = *input_line_pointer;
2551 *input_line_pointer = 0;
2552
2553 if (!*name)
2554 as_bad (_("invalid syntax for .unreq directive"));
2555 else
2556 {
21d799b5 2557 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
477330fc 2558 name);
c19d1205
ZW
2559
2560 if (!reg)
2561 as_bad (_("unknown register alias '%s'"), name);
2562 else if (reg->builtin)
a1727c1a 2563 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2564 name);
2565 else
2566 {
d929913e
NC
2567 char * p;
2568 char * nbuf;
2569
db0bc284 2570 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2571 free ((char *) reg->name);
477330fc
RM
2572 if (reg->neon)
2573 free (reg->neon);
c19d1205 2574 free (reg);
d929913e
NC
2575
2576 /* Also locate the all upper case and all lower case versions.
2577 Do not complain if we cannot find one or the other as it
2578 was probably deleted above. */
5f4273c7 2579
d929913e
NC
2580 nbuf = strdup (name);
2581 for (p = nbuf; *p; p++)
2582 *p = TOUPPER (*p);
21d799b5 2583 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2584 if (reg)
2585 {
db0bc284 2586 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2587 free ((char *) reg->name);
2588 if (reg->neon)
2589 free (reg->neon);
2590 free (reg);
2591 }
2592
2593 for (p = nbuf; *p; p++)
2594 *p = TOLOWER (*p);
21d799b5 2595 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2596 if (reg)
2597 {
db0bc284 2598 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2599 free ((char *) reg->name);
2600 if (reg->neon)
2601 free (reg->neon);
2602 free (reg);
2603 }
2604
2605 free (nbuf);
c19d1205
ZW
2606 }
2607 }
b99bd4ef 2608
c19d1205 2609 *input_line_pointer = saved_char;
b99bd4ef
NC
2610 demand_empty_rest_of_line ();
2611}
2612
c19d1205
ZW
2613/* Directives: Instruction set selection. */
2614
2615#ifdef OBJ_ELF
2616/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2617 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2618 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2619 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2620
cd000bff
DJ
2621/* Create a new mapping symbol for the transition to STATE. */
2622
2623static void
2624make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2625{
a737bd4d 2626 symbolS * symbolP;
c19d1205
ZW
2627 const char * symname;
2628 int type;
b99bd4ef 2629
c19d1205 2630 switch (state)
b99bd4ef 2631 {
c19d1205
ZW
2632 case MAP_DATA:
2633 symname = "$d";
2634 type = BSF_NO_FLAGS;
2635 break;
2636 case MAP_ARM:
2637 symname = "$a";
2638 type = BSF_NO_FLAGS;
2639 break;
2640 case MAP_THUMB:
2641 symname = "$t";
2642 type = BSF_NO_FLAGS;
2643 break;
c19d1205
ZW
2644 default:
2645 abort ();
2646 }
2647
cd000bff 2648 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2649 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2650
2651 switch (state)
2652 {
2653 case MAP_ARM:
2654 THUMB_SET_FUNC (symbolP, 0);
2655 ARM_SET_THUMB (symbolP, 0);
2656 ARM_SET_INTERWORK (symbolP, support_interwork);
2657 break;
2658
2659 case MAP_THUMB:
2660 THUMB_SET_FUNC (symbolP, 1);
2661 ARM_SET_THUMB (symbolP, 1);
2662 ARM_SET_INTERWORK (symbolP, support_interwork);
2663 break;
2664
2665 case MAP_DATA:
2666 default:
cd000bff
DJ
2667 break;
2668 }
2669
2670 /* Save the mapping symbols for future reference. Also check that
2671 we do not place two mapping symbols at the same offset within a
2672 frag. We'll handle overlap between frags in
2de7820f
JZ
2673 check_mapping_symbols.
2674
2675 If .fill or other data filling directive generates zero sized data,
2676 the mapping symbol for the following code will have the same value
2677 as the one generated for the data filling directive. In this case,
2678 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2679 if (value == 0)
2680 {
2de7820f
JZ
2681 if (frag->tc_frag_data.first_map != NULL)
2682 {
2683 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2684 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2685 }
cd000bff
DJ
2686 frag->tc_frag_data.first_map = symbolP;
2687 }
2688 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2689 {
2690 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2691 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2692 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2693 }
cd000bff
DJ
2694 frag->tc_frag_data.last_map = symbolP;
2695}
2696
2697/* We must sometimes convert a region marked as code to data during
2698 code alignment, if an odd number of bytes have to be padded. The
2699 code mapping symbol is pushed to an aligned address. */
2700
2701static void
2702insert_data_mapping_symbol (enum mstate state,
2703 valueT value, fragS *frag, offsetT bytes)
2704{
2705 /* If there was already a mapping symbol, remove it. */
2706 if (frag->tc_frag_data.last_map != NULL
2707 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2708 {
2709 symbolS *symp = frag->tc_frag_data.last_map;
2710
2711 if (value == 0)
2712 {
2713 know (frag->tc_frag_data.first_map == symp);
2714 frag->tc_frag_data.first_map = NULL;
2715 }
2716 frag->tc_frag_data.last_map = NULL;
2717 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2718 }
cd000bff
DJ
2719
2720 make_mapping_symbol (MAP_DATA, value, frag);
2721 make_mapping_symbol (state, value + bytes, frag);
2722}
2723
2724static void mapping_state_2 (enum mstate state, int max_chars);
2725
2726/* Set the mapping state to STATE. Only call this when about to
2727 emit some STATE bytes to the file. */
2728
4e9aaefb 2729#define TRANSITION(from, to) (mapstate == (from) && state == (to))
cd000bff
DJ
2730void
2731mapping_state (enum mstate state)
2732{
940b5ce0
DJ
2733 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2734
cd000bff
DJ
2735 if (mapstate == state)
2736 /* The mapping symbol has already been emitted.
2737 There is nothing else to do. */
2738 return;
49c62a33
NC
2739
2740 if (state == MAP_ARM || state == MAP_THUMB)
2741 /* PR gas/12931
2742 All ARM instructions require 4-byte alignment.
2743 (Almost) all Thumb instructions require 2-byte alignment.
2744
2745 When emitting instructions into any section, mark the section
2746 appropriately.
2747
2748 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2749 but themselves require 2-byte alignment; this applies to some
33eaf5de 2750 PC- relative forms. However, these cases will involve implicit
49c62a33
NC
2751 literal pool generation or an explicit .align >=2, both of
2752 which will cause the section to me marked with sufficient
2753 alignment. Thus, we don't handle those cases here. */
2754 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2755
2756 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
4e9aaefb 2757 /* This case will be evaluated later. */
cd000bff 2758 return;
cd000bff
DJ
2759
2760 mapping_state_2 (state, 0);
cd000bff
DJ
2761}
2762
2763/* Same as mapping_state, but MAX_CHARS bytes have already been
2764 allocated. Put the mapping symbol that far back. */
2765
2766static void
2767mapping_state_2 (enum mstate state, int max_chars)
2768{
940b5ce0
DJ
2769 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2770
2771 if (!SEG_NORMAL (now_seg))
2772 return;
2773
cd000bff
DJ
2774 if (mapstate == state)
2775 /* The mapping symbol has already been emitted.
2776 There is nothing else to do. */
2777 return;
2778
4e9aaefb
SA
2779 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2780 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2781 {
2782 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2783 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2784
2785 if (add_symbol)
2786 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2787 }
2788
cd000bff
DJ
2789 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2790 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205 2791}
4e9aaefb 2792#undef TRANSITION
c19d1205 2793#else
d3106081
NS
2794#define mapping_state(x) ((void)0)
2795#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2796#endif
2797
2798/* Find the real, Thumb encoded start of a Thumb function. */
2799
4343666d 2800#ifdef OBJ_COFF
c19d1205
ZW
2801static symbolS *
2802find_real_start (symbolS * symbolP)
2803{
2804 char * real_start;
2805 const char * name = S_GET_NAME (symbolP);
2806 symbolS * new_target;
2807
2808 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2809#define STUB_NAME ".real_start_of"
2810
2811 if (name == NULL)
2812 abort ();
2813
37f6032b
ZW
2814 /* The compiler may generate BL instructions to local labels because
2815 it needs to perform a branch to a far away location. These labels
2816 do not have a corresponding ".real_start_of" label. We check
2817 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2818 the ".real_start_of" convention for nonlocal branches. */
2819 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2820 return symbolP;
2821
e1fa0163 2822 real_start = concat (STUB_NAME, name, NULL);
c19d1205 2823 new_target = symbol_find (real_start);
e1fa0163 2824 free (real_start);
c19d1205
ZW
2825
2826 if (new_target == NULL)
2827 {
bd3ba5d1 2828 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2829 new_target = symbolP;
2830 }
2831
c19d1205
ZW
2832 return new_target;
2833}
4343666d 2834#endif
c19d1205
ZW
2835
2836static void
2837opcode_select (int width)
2838{
2839 switch (width)
2840 {
2841 case 16:
2842 if (! thumb_mode)
2843 {
e74cfd16 2844 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2845 as_bad (_("selected processor does not support THUMB opcodes"));
2846
2847 thumb_mode = 1;
2848 /* No need to force the alignment, since we will have been
2849 coming from ARM mode, which is word-aligned. */
2850 record_alignment (now_seg, 1);
2851 }
c19d1205
ZW
2852 break;
2853
2854 case 32:
2855 if (thumb_mode)
2856 {
e74cfd16 2857 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2858 as_bad (_("selected processor does not support ARM opcodes"));
2859
2860 thumb_mode = 0;
2861
2862 if (!need_pass_2)
2863 frag_align (2, 0, 0);
2864
2865 record_alignment (now_seg, 1);
2866 }
c19d1205
ZW
2867 break;
2868
2869 default:
2870 as_bad (_("invalid instruction size selected (%d)"), width);
2871 }
2872}
2873
2874static void
2875s_arm (int ignore ATTRIBUTE_UNUSED)
2876{
2877 opcode_select (32);
2878 demand_empty_rest_of_line ();
2879}
2880
2881static void
2882s_thumb (int ignore ATTRIBUTE_UNUSED)
2883{
2884 opcode_select (16);
2885 demand_empty_rest_of_line ();
2886}
2887
2888static void
2889s_code (int unused ATTRIBUTE_UNUSED)
2890{
2891 int temp;
2892
2893 temp = get_absolute_expression ();
2894 switch (temp)
2895 {
2896 case 16:
2897 case 32:
2898 opcode_select (temp);
2899 break;
2900
2901 default:
2902 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2903 }
2904}
2905
2906static void
2907s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2908{
2909 /* If we are not already in thumb mode go into it, EVEN if
2910 the target processor does not support thumb instructions.
2911 This is used by gcc/config/arm/lib1funcs.asm for example
2912 to compile interworking support functions even if the
2913 target processor should not support interworking. */
2914 if (! thumb_mode)
2915 {
2916 thumb_mode = 2;
2917 record_alignment (now_seg, 1);
2918 }
2919
2920 demand_empty_rest_of_line ();
2921}
2922
2923static void
2924s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2925{
2926 s_thumb (0);
2927
2928 /* The following label is the name/address of the start of a Thumb function.
2929 We need to know this for the interworking support. */
2930 label_is_thumb_function_name = TRUE;
2931}
2932
2933/* Perform a .set directive, but also mark the alias as
2934 being a thumb function. */
2935
2936static void
2937s_thumb_set (int equiv)
2938{
2939 /* XXX the following is a duplicate of the code for s_set() in read.c
2940 We cannot just call that code as we need to get at the symbol that
2941 is created. */
2942 char * name;
2943 char delim;
2944 char * end_name;
2945 symbolS * symbolP;
2946
2947 /* Especial apologies for the random logic:
2948 This just grew, and could be parsed much more simply!
2949 Dean - in haste. */
d02603dc 2950 delim = get_symbol_name (& name);
c19d1205 2951 end_name = input_line_pointer;
d02603dc 2952 (void) restore_line_pointer (delim);
c19d1205
ZW
2953
2954 if (*input_line_pointer != ',')
2955 {
2956 *end_name = 0;
2957 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2958 *end_name = delim;
2959 ignore_rest_of_line ();
2960 return;
2961 }
2962
2963 input_line_pointer++;
2964 *end_name = 0;
2965
2966 if (name[0] == '.' && name[1] == '\0')
2967 {
2968 /* XXX - this should not happen to .thumb_set. */
2969 abort ();
2970 }
2971
2972 if ((symbolP = symbol_find (name)) == NULL
2973 && (symbolP = md_undefined_symbol (name)) == NULL)
2974 {
2975#ifndef NO_LISTING
2976 /* When doing symbol listings, play games with dummy fragments living
2977 outside the normal fragment chain to record the file and line info
c19d1205 2978 for this symbol. */
b99bd4ef
NC
2979 if (listing & LISTING_SYMBOLS)
2980 {
2981 extern struct list_info_struct * listing_tail;
21d799b5 2982 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2983
2984 memset (dummy_frag, 0, sizeof (fragS));
2985 dummy_frag->fr_type = rs_fill;
2986 dummy_frag->line = listing_tail;
2987 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2988 dummy_frag->fr_symbol = symbolP;
2989 }
2990 else
2991#endif
2992 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2993
2994#ifdef OBJ_COFF
2995 /* "set" symbols are local unless otherwise specified. */
2996 SF_SET_LOCAL (symbolP);
2997#endif /* OBJ_COFF */
2998 } /* Make a new symbol. */
2999
3000 symbol_table_insert (symbolP);
3001
3002 * end_name = delim;
3003
3004 if (equiv
3005 && S_IS_DEFINED (symbolP)
3006 && S_GET_SEGMENT (symbolP) != reg_section)
3007 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3008
3009 pseudo_set (symbolP);
3010
3011 demand_empty_rest_of_line ();
3012
c19d1205 3013 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
3014
3015 THUMB_SET_FUNC (symbolP, 1);
3016 ARM_SET_THUMB (symbolP, 1);
3017#if defined OBJ_ELF || defined OBJ_COFF
3018 ARM_SET_INTERWORK (symbolP, support_interwork);
3019#endif
3020}
3021
c19d1205 3022/* Directives: Mode selection. */
b99bd4ef 3023
c19d1205
ZW
3024/* .syntax [unified|divided] - choose the new unified syntax
3025 (same for Arm and Thumb encoding, modulo slight differences in what
3026 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 3027static void
c19d1205 3028s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 3029{
c19d1205
ZW
3030 char *name, delim;
3031
d02603dc 3032 delim = get_symbol_name (& name);
c19d1205
ZW
3033
3034 if (!strcasecmp (name, "unified"))
3035 unified_syntax = TRUE;
3036 else if (!strcasecmp (name, "divided"))
3037 unified_syntax = FALSE;
3038 else
3039 {
3040 as_bad (_("unrecognized syntax mode \"%s\""), name);
3041 return;
3042 }
d02603dc 3043 (void) restore_line_pointer (delim);
b99bd4ef
NC
3044 demand_empty_rest_of_line ();
3045}
3046
c19d1205
ZW
3047/* Directives: sectioning and alignment. */
3048
c19d1205
ZW
3049static void
3050s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 3051{
c19d1205
ZW
3052 /* We don't support putting frags in the BSS segment, we fake it by
3053 marking in_bss, then looking at s_skip for clues. */
3054 subseg_set (bss_section, 0);
3055 demand_empty_rest_of_line ();
cd000bff
DJ
3056
3057#ifdef md_elf_section_change_hook
3058 md_elf_section_change_hook ();
3059#endif
c19d1205 3060}
b99bd4ef 3061
c19d1205
ZW
3062static void
3063s_even (int ignore ATTRIBUTE_UNUSED)
3064{
3065 /* Never make frag if expect extra pass. */
3066 if (!need_pass_2)
3067 frag_align (1, 0, 0);
b99bd4ef 3068
c19d1205 3069 record_alignment (now_seg, 1);
b99bd4ef 3070
c19d1205 3071 demand_empty_rest_of_line ();
b99bd4ef
NC
3072}
3073
2e6976a8
DG
3074/* Directives: CodeComposer Studio. */
3075
3076/* .ref (for CodeComposer Studio syntax only). */
3077static void
3078s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3079{
3080 if (codecomposer_syntax)
3081 ignore_rest_of_line ();
3082 else
3083 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3084}
3085
3086/* If name is not NULL, then it is used for marking the beginning of a
2b0f3761 3087 function, whereas if it is NULL then it means the function end. */
2e6976a8
DG
3088static void
3089asmfunc_debug (const char * name)
3090{
3091 static const char * last_name = NULL;
3092
3093 if (name != NULL)
3094 {
3095 gas_assert (last_name == NULL);
3096 last_name = name;
3097
3098 if (debug_type == DEBUG_STABS)
3099 stabs_generate_asm_func (name, name);
3100 }
3101 else
3102 {
3103 gas_assert (last_name != NULL);
3104
3105 if (debug_type == DEBUG_STABS)
3106 stabs_generate_asm_endfunc (last_name, last_name);
3107
3108 last_name = NULL;
3109 }
3110}
3111
3112static void
3113s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3114{
3115 if (codecomposer_syntax)
3116 {
3117 switch (asmfunc_state)
3118 {
3119 case OUTSIDE_ASMFUNC:
3120 asmfunc_state = WAITING_ASMFUNC_NAME;
3121 break;
3122
3123 case WAITING_ASMFUNC_NAME:
3124 as_bad (_(".asmfunc repeated."));
3125 break;
3126
3127 case WAITING_ENDASMFUNC:
3128 as_bad (_(".asmfunc without function."));
3129 break;
3130 }
3131 demand_empty_rest_of_line ();
3132 }
3133 else
3134 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3135}
3136
3137static void
3138s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3139{
3140 if (codecomposer_syntax)
3141 {
3142 switch (asmfunc_state)
3143 {
3144 case OUTSIDE_ASMFUNC:
3145 as_bad (_(".endasmfunc without a .asmfunc."));
3146 break;
3147
3148 case WAITING_ASMFUNC_NAME:
3149 as_bad (_(".endasmfunc without function."));
3150 break;
3151
3152 case WAITING_ENDASMFUNC:
3153 asmfunc_state = OUTSIDE_ASMFUNC;
3154 asmfunc_debug (NULL);
3155 break;
3156 }
3157 demand_empty_rest_of_line ();
3158 }
3159 else
3160 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3161}
3162
3163static void
3164s_ccs_def (int name)
3165{
3166 if (codecomposer_syntax)
3167 s_globl (name);
3168 else
3169 as_bad (_(".def pseudo-op only available with -mccs flag."));
3170}
3171
c19d1205 3172/* Directives: Literal pools. */
a737bd4d 3173
c19d1205
ZW
3174static literal_pool *
3175find_literal_pool (void)
a737bd4d 3176{
c19d1205 3177 literal_pool * pool;
a737bd4d 3178
c19d1205 3179 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3180 {
c19d1205
ZW
3181 if (pool->section == now_seg
3182 && pool->sub_section == now_subseg)
3183 break;
a737bd4d
NC
3184 }
3185
c19d1205 3186 return pool;
a737bd4d
NC
3187}
3188
c19d1205
ZW
3189static literal_pool *
3190find_or_make_literal_pool (void)
a737bd4d 3191{
c19d1205
ZW
3192 /* Next literal pool ID number. */
3193 static unsigned int latest_pool_num = 1;
3194 literal_pool * pool;
a737bd4d 3195
c19d1205 3196 pool = find_literal_pool ();
a737bd4d 3197
c19d1205 3198 if (pool == NULL)
a737bd4d 3199 {
c19d1205 3200 /* Create a new pool. */
325801bd 3201 pool = XNEW (literal_pool);
c19d1205
ZW
3202 if (! pool)
3203 return NULL;
a737bd4d 3204
c19d1205
ZW
3205 pool->next_free_entry = 0;
3206 pool->section = now_seg;
3207 pool->sub_section = now_subseg;
3208 pool->next = list_of_pools;
3209 pool->symbol = NULL;
8335d6aa 3210 pool->alignment = 2;
c19d1205
ZW
3211
3212 /* Add it to the list. */
3213 list_of_pools = pool;
a737bd4d 3214 }
a737bd4d 3215
c19d1205
ZW
3216 /* New pools, and emptied pools, will have a NULL symbol. */
3217 if (pool->symbol == NULL)
a737bd4d 3218 {
c19d1205
ZW
3219 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3220 (valueT) 0, &zero_address_frag);
3221 pool->id = latest_pool_num ++;
a737bd4d
NC
3222 }
3223
c19d1205
ZW
3224 /* Done. */
3225 return pool;
a737bd4d
NC
3226}
3227
c19d1205 3228/* Add the literal in the global 'inst'
5f4273c7 3229 structure to the relevant literal pool. */
b99bd4ef
NC
3230
3231static int
8335d6aa 3232add_to_lit_pool (unsigned int nbytes)
b99bd4ef 3233{
8335d6aa
JW
3234#define PADDING_SLOT 0x1
3235#define LIT_ENTRY_SIZE_MASK 0xFF
c19d1205 3236 literal_pool * pool;
8335d6aa
JW
3237 unsigned int entry, pool_size = 0;
3238 bfd_boolean padding_slot_p = FALSE;
e56c722b 3239 unsigned imm1 = 0;
8335d6aa
JW
3240 unsigned imm2 = 0;
3241
3242 if (nbytes == 8)
3243 {
3244 imm1 = inst.operands[1].imm;
3245 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3246 : inst.reloc.exp.X_unsigned ? 0
2569ceb0 3247 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
8335d6aa
JW
3248 if (target_big_endian)
3249 {
3250 imm1 = imm2;
3251 imm2 = inst.operands[1].imm;
3252 }
3253 }
b99bd4ef 3254
c19d1205
ZW
3255 pool = find_or_make_literal_pool ();
3256
3257 /* Check if this literal value is already in the pool. */
3258 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3259 {
8335d6aa
JW
3260 if (nbytes == 4)
3261 {
3262 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3263 && (inst.reloc.exp.X_op == O_constant)
3264 && (pool->literals[entry].X_add_number
3265 == inst.reloc.exp.X_add_number)
3266 && (pool->literals[entry].X_md == nbytes)
3267 && (pool->literals[entry].X_unsigned
3268 == inst.reloc.exp.X_unsigned))
3269 break;
3270
3271 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3272 && (inst.reloc.exp.X_op == O_symbol)
3273 && (pool->literals[entry].X_add_number
3274 == inst.reloc.exp.X_add_number)
3275 && (pool->literals[entry].X_add_symbol
3276 == inst.reloc.exp.X_add_symbol)
3277 && (pool->literals[entry].X_op_symbol
3278 == inst.reloc.exp.X_op_symbol)
3279 && (pool->literals[entry].X_md == nbytes))
3280 break;
3281 }
3282 else if ((nbytes == 8)
3283 && !(pool_size & 0x7)
3284 && ((entry + 1) != pool->next_free_entry)
3285 && (pool->literals[entry].X_op == O_constant)
19f2f6a9 3286 && (pool->literals[entry].X_add_number == (offsetT) imm1)
8335d6aa
JW
3287 && (pool->literals[entry].X_unsigned
3288 == inst.reloc.exp.X_unsigned)
3289 && (pool->literals[entry + 1].X_op == O_constant)
19f2f6a9 3290 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
8335d6aa
JW
3291 && (pool->literals[entry + 1].X_unsigned
3292 == inst.reloc.exp.X_unsigned))
c19d1205
ZW
3293 break;
3294
8335d6aa
JW
3295 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3296 if (padding_slot_p && (nbytes == 4))
c19d1205 3297 break;
8335d6aa
JW
3298
3299 pool_size += 4;
b99bd4ef
NC
3300 }
3301
c19d1205
ZW
3302 /* Do we need to create a new entry? */
3303 if (entry == pool->next_free_entry)
3304 {
3305 if (entry >= MAX_LITERAL_POOL_SIZE)
3306 {
3307 inst.error = _("literal pool overflow");
3308 return FAIL;
3309 }
3310
8335d6aa
JW
3311 if (nbytes == 8)
3312 {
3313 /* For 8-byte entries, we align to an 8-byte boundary,
3314 and split it into two 4-byte entries, because on 32-bit
3315 host, 8-byte constants are treated as big num, thus
3316 saved in "generic_bignum" which will be overwritten
3317 by later assignments.
3318
3319 We also need to make sure there is enough space for
3320 the split.
3321
3322 We also check to make sure the literal operand is a
3323 constant number. */
19f2f6a9
JW
3324 if (!(inst.reloc.exp.X_op == O_constant
3325 || inst.reloc.exp.X_op == O_big))
8335d6aa
JW
3326 {
3327 inst.error = _("invalid type for literal pool");
3328 return FAIL;
3329 }
3330 else if (pool_size & 0x7)
3331 {
3332 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3333 {
3334 inst.error = _("literal pool overflow");
3335 return FAIL;
3336 }
3337
3338 pool->literals[entry] = inst.reloc.exp;
a6684f0d 3339 pool->literals[entry].X_op = O_constant;
8335d6aa
JW
3340 pool->literals[entry].X_add_number = 0;
3341 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3342 pool->next_free_entry += 1;
3343 pool_size += 4;
3344 }
3345 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3346 {
3347 inst.error = _("literal pool overflow");
3348 return FAIL;
3349 }
3350
3351 pool->literals[entry] = inst.reloc.exp;
3352 pool->literals[entry].X_op = O_constant;
3353 pool->literals[entry].X_add_number = imm1;
3354 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3355 pool->literals[entry++].X_md = 4;
3356 pool->literals[entry] = inst.reloc.exp;
3357 pool->literals[entry].X_op = O_constant;
3358 pool->literals[entry].X_add_number = imm2;
3359 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3360 pool->literals[entry].X_md = 4;
3361 pool->alignment = 3;
3362 pool->next_free_entry += 1;
3363 }
3364 else
3365 {
3366 pool->literals[entry] = inst.reloc.exp;
3367 pool->literals[entry].X_md = 4;
3368 }
3369
a8040cf2
NC
3370#ifdef OBJ_ELF
3371 /* PR ld/12974: Record the location of the first source line to reference
3372 this entry in the literal pool. If it turns out during linking that the
3373 symbol does not exist we will be able to give an accurate line number for
3374 the (first use of the) missing reference. */
3375 if (debug_type == DEBUG_DWARF2)
3376 dwarf2_where (pool->locs + entry);
3377#endif
c19d1205
ZW
3378 pool->next_free_entry += 1;
3379 }
8335d6aa
JW
3380 else if (padding_slot_p)
3381 {
3382 pool->literals[entry] = inst.reloc.exp;
3383 pool->literals[entry].X_md = nbytes;
3384 }
b99bd4ef 3385
c19d1205 3386 inst.reloc.exp.X_op = O_symbol;
8335d6aa 3387 inst.reloc.exp.X_add_number = pool_size;
c19d1205 3388 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3389
c19d1205 3390 return SUCCESS;
b99bd4ef
NC
3391}
3392
2e6976a8 3393bfd_boolean
2e57ce7b 3394tc_start_label_without_colon (void)
2e6976a8
DG
3395{
3396 bfd_boolean ret = TRUE;
3397
3398 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3399 {
2e57ce7b 3400 const char *label = input_line_pointer;
2e6976a8
DG
3401
3402 while (!is_end_of_line[(int) label[-1]])
3403 --label;
3404
3405 if (*label == '.')
3406 {
3407 as_bad (_("Invalid label '%s'"), label);
3408 ret = FALSE;
3409 }
3410
3411 asmfunc_debug (label);
3412
3413 asmfunc_state = WAITING_ENDASMFUNC;
3414 }
3415
3416 return ret;
3417}
3418
c19d1205 3419/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 3420 a later date assign it a value. That's what these functions do. */
e16bb312 3421
c19d1205
ZW
3422static void
3423symbol_locate (symbolS * symbolP,
3424 const char * name, /* It is copied, the caller can modify. */
3425 segT segment, /* Segment identifier (SEG_<something>). */
3426 valueT valu, /* Symbol value. */
3427 fragS * frag) /* Associated fragment. */
3428{
e57e6ddc 3429 size_t name_length;
c19d1205 3430 char * preserved_copy_of_name;
e16bb312 3431
c19d1205
ZW
3432 name_length = strlen (name) + 1; /* +1 for \0. */
3433 obstack_grow (&notes, name, name_length);
21d799b5 3434 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3435
c19d1205
ZW
3436#ifdef tc_canonicalize_symbol_name
3437 preserved_copy_of_name =
3438 tc_canonicalize_symbol_name (preserved_copy_of_name);
3439#endif
b99bd4ef 3440
c19d1205 3441 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3442
c19d1205
ZW
3443 S_SET_SEGMENT (symbolP, segment);
3444 S_SET_VALUE (symbolP, valu);
3445 symbol_clear_list_pointers (symbolP);
b99bd4ef 3446
c19d1205 3447 symbol_set_frag (symbolP, frag);
b99bd4ef 3448
c19d1205
ZW
3449 /* Link to end of symbol chain. */
3450 {
3451 extern int symbol_table_frozen;
b99bd4ef 3452
c19d1205
ZW
3453 if (symbol_table_frozen)
3454 abort ();
3455 }
b99bd4ef 3456
c19d1205 3457 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3458
c19d1205 3459 obj_symbol_new_hook (symbolP);
b99bd4ef 3460
c19d1205
ZW
3461#ifdef tc_symbol_new_hook
3462 tc_symbol_new_hook (symbolP);
3463#endif
3464
3465#ifdef DEBUG_SYMS
3466 verify_symbol_chain (symbol_rootP, symbol_lastP);
3467#endif /* DEBUG_SYMS */
b99bd4ef
NC
3468}
3469
c19d1205
ZW
3470static void
3471s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3472{
c19d1205
ZW
3473 unsigned int entry;
3474 literal_pool * pool;
3475 char sym_name[20];
b99bd4ef 3476
c19d1205
ZW
3477 pool = find_literal_pool ();
3478 if (pool == NULL
3479 || pool->symbol == NULL
3480 || pool->next_free_entry == 0)
3481 return;
b99bd4ef 3482
c19d1205
ZW
3483 /* Align pool as you have word accesses.
3484 Only make a frag if we have to. */
3485 if (!need_pass_2)
8335d6aa 3486 frag_align (pool->alignment, 0, 0);
b99bd4ef 3487
c19d1205 3488 record_alignment (now_seg, 2);
b99bd4ef 3489
aaca88ef 3490#ifdef OBJ_ELF
47fc6e36
WN
3491 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3492 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
aaca88ef 3493#endif
c19d1205 3494 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3495
c19d1205
ZW
3496 symbol_locate (pool->symbol, sym_name, now_seg,
3497 (valueT) frag_now_fix (), frag_now);
3498 symbol_table_insert (pool->symbol);
b99bd4ef 3499
c19d1205 3500 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3501
c19d1205
ZW
3502#if defined OBJ_COFF || defined OBJ_ELF
3503 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3504#endif
6c43fab6 3505
c19d1205 3506 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3507 {
3508#ifdef OBJ_ELF
3509 if (debug_type == DEBUG_DWARF2)
3510 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3511#endif
3512 /* First output the expression in the instruction to the pool. */
8335d6aa
JW
3513 emit_expr (&(pool->literals[entry]),
3514 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
a8040cf2 3515 }
b99bd4ef 3516
c19d1205
ZW
3517 /* Mark the pool as empty. */
3518 pool->next_free_entry = 0;
3519 pool->symbol = NULL;
b99bd4ef
NC
3520}
3521
c19d1205
ZW
3522#ifdef OBJ_ELF
3523/* Forward declarations for functions below, in the MD interface
3524 section. */
3525static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3526static valueT create_unwind_entry (int);
3527static void start_unwind_section (const segT, int);
3528static void add_unwind_opcode (valueT, int);
3529static void flush_pending_unwind (void);
b99bd4ef 3530
c19d1205 3531/* Directives: Data. */
b99bd4ef 3532
c19d1205
ZW
3533static void
3534s_arm_elf_cons (int nbytes)
3535{
3536 expressionS exp;
b99bd4ef 3537
c19d1205
ZW
3538#ifdef md_flush_pending_output
3539 md_flush_pending_output ();
3540#endif
b99bd4ef 3541
c19d1205 3542 if (is_it_end_of_statement ())
b99bd4ef 3543 {
c19d1205
ZW
3544 demand_empty_rest_of_line ();
3545 return;
b99bd4ef
NC
3546 }
3547
c19d1205
ZW
3548#ifdef md_cons_align
3549 md_cons_align (nbytes);
3550#endif
b99bd4ef 3551
c19d1205
ZW
3552 mapping_state (MAP_DATA);
3553 do
b99bd4ef 3554 {
c19d1205
ZW
3555 int reloc;
3556 char *base = input_line_pointer;
b99bd4ef 3557
c19d1205 3558 expression (& exp);
b99bd4ef 3559
c19d1205
ZW
3560 if (exp.X_op != O_symbol)
3561 emit_expr (&exp, (unsigned int) nbytes);
3562 else
3563 {
3564 char *before_reloc = input_line_pointer;
3565 reloc = parse_reloc (&input_line_pointer);
3566 if (reloc == -1)
3567 {
3568 as_bad (_("unrecognized relocation suffix"));
3569 ignore_rest_of_line ();
3570 return;
3571 }
3572 else if (reloc == BFD_RELOC_UNUSED)
3573 emit_expr (&exp, (unsigned int) nbytes);
3574 else
3575 {
21d799b5 3576 reloc_howto_type *howto = (reloc_howto_type *)
477330fc
RM
3577 bfd_reloc_type_lookup (stdoutput,
3578 (bfd_reloc_code_real_type) reloc);
c19d1205 3579 int size = bfd_get_reloc_size (howto);
b99bd4ef 3580
2fc8bdac
ZW
3581 if (reloc == BFD_RELOC_ARM_PLT32)
3582 {
3583 as_bad (_("(plt) is only valid on branch targets"));
3584 reloc = BFD_RELOC_UNUSED;
3585 size = 0;
3586 }
3587
c19d1205 3588 if (size > nbytes)
992a06ee
AM
3589 as_bad (ngettext ("%s relocations do not fit in %d byte",
3590 "%s relocations do not fit in %d bytes",
3591 nbytes),
c19d1205
ZW
3592 howto->name, nbytes);
3593 else
3594 {
3595 /* We've parsed an expression stopping at O_symbol.
3596 But there may be more expression left now that we
3597 have parsed the relocation marker. Parse it again.
3598 XXX Surely there is a cleaner way to do this. */
3599 char *p = input_line_pointer;
3600 int offset;
325801bd 3601 char *save_buf = XNEWVEC (char, input_line_pointer - base);
e1fa0163 3602
c19d1205
ZW
3603 memcpy (save_buf, base, input_line_pointer - base);
3604 memmove (base + (input_line_pointer - before_reloc),
3605 base, before_reloc - base);
3606
3607 input_line_pointer = base + (input_line_pointer-before_reloc);
3608 expression (&exp);
3609 memcpy (base, save_buf, p - base);
3610
3611 offset = nbytes - size;
4b1a927e
AM
3612 p = frag_more (nbytes);
3613 memset (p, 0, nbytes);
c19d1205 3614 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3615 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
e1fa0163 3616 free (save_buf);
c19d1205
ZW
3617 }
3618 }
3619 }
b99bd4ef 3620 }
c19d1205 3621 while (*input_line_pointer++ == ',');
b99bd4ef 3622
c19d1205
ZW
3623 /* Put terminator back into stream. */
3624 input_line_pointer --;
3625 demand_empty_rest_of_line ();
b99bd4ef
NC
3626}
3627
c921be7d
NC
3628/* Emit an expression containing a 32-bit thumb instruction.
3629 Implementation based on put_thumb32_insn. */
3630
3631static void
3632emit_thumb32_expr (expressionS * exp)
3633{
3634 expressionS exp_high = *exp;
3635
3636 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3637 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3638 exp->X_add_number &= 0xffff;
3639 emit_expr (exp, (unsigned int) THUMB_SIZE);
3640}
3641
3642/* Guess the instruction size based on the opcode. */
3643
3644static int
3645thumb_insn_size (int opcode)
3646{
3647 if ((unsigned int) opcode < 0xe800u)
3648 return 2;
3649 else if ((unsigned int) opcode >= 0xe8000000u)
3650 return 4;
3651 else
3652 return 0;
3653}
3654
3655static bfd_boolean
3656emit_insn (expressionS *exp, int nbytes)
3657{
3658 int size = 0;
3659
3660 if (exp->X_op == O_constant)
3661 {
3662 size = nbytes;
3663
3664 if (size == 0)
3665 size = thumb_insn_size (exp->X_add_number);
3666
3667 if (size != 0)
3668 {
3669 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3670 {
3671 as_bad (_(".inst.n operand too big. "\
3672 "Use .inst.w instead"));
3673 size = 0;
3674 }
3675 else
3676 {
3677 if (now_it.state == AUTOMATIC_IT_BLOCK)
3678 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3679 else
3680 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3681
3682 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3683 emit_thumb32_expr (exp);
3684 else
3685 emit_expr (exp, (unsigned int) size);
3686
3687 it_fsm_post_encode ();
3688 }
3689 }
3690 else
3691 as_bad (_("cannot determine Thumb instruction size. " \
3692 "Use .inst.n/.inst.w instead"));
3693 }
3694 else
3695 as_bad (_("constant expression required"));
3696
3697 return (size != 0);
3698}
3699
3700/* Like s_arm_elf_cons but do not use md_cons_align and
3701 set the mapping state to MAP_ARM/MAP_THUMB. */
3702
3703static void
3704s_arm_elf_inst (int nbytes)
3705{
3706 if (is_it_end_of_statement ())
3707 {
3708 demand_empty_rest_of_line ();
3709 return;
3710 }
3711
3712 /* Calling mapping_state () here will not change ARM/THUMB,
3713 but will ensure not to be in DATA state. */
3714
3715 if (thumb_mode)
3716 mapping_state (MAP_THUMB);
3717 else
3718 {
3719 if (nbytes != 0)
3720 {
3721 as_bad (_("width suffixes are invalid in ARM mode"));
3722 ignore_rest_of_line ();
3723 return;
3724 }
3725
3726 nbytes = 4;
3727
3728 mapping_state (MAP_ARM);
3729 }
3730
3731 do
3732 {
3733 expressionS exp;
3734
3735 expression (& exp);
3736
3737 if (! emit_insn (& exp, nbytes))
3738 {
3739 ignore_rest_of_line ();
3740 return;
3741 }
3742 }
3743 while (*input_line_pointer++ == ',');
3744
3745 /* Put terminator back into stream. */
3746 input_line_pointer --;
3747 demand_empty_rest_of_line ();
3748}
b99bd4ef 3749
c19d1205 3750/* Parse a .rel31 directive. */
b99bd4ef 3751
c19d1205
ZW
3752static void
3753s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3754{
3755 expressionS exp;
3756 char *p;
3757 valueT highbit;
b99bd4ef 3758
c19d1205
ZW
3759 highbit = 0;
3760 if (*input_line_pointer == '1')
3761 highbit = 0x80000000;
3762 else if (*input_line_pointer != '0')
3763 as_bad (_("expected 0 or 1"));
b99bd4ef 3764
c19d1205
ZW
3765 input_line_pointer++;
3766 if (*input_line_pointer != ',')
3767 as_bad (_("missing comma"));
3768 input_line_pointer++;
b99bd4ef 3769
c19d1205
ZW
3770#ifdef md_flush_pending_output
3771 md_flush_pending_output ();
3772#endif
b99bd4ef 3773
c19d1205
ZW
3774#ifdef md_cons_align
3775 md_cons_align (4);
3776#endif
b99bd4ef 3777
c19d1205 3778 mapping_state (MAP_DATA);
b99bd4ef 3779
c19d1205 3780 expression (&exp);
b99bd4ef 3781
c19d1205
ZW
3782 p = frag_more (4);
3783 md_number_to_chars (p, highbit, 4);
3784 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3785 BFD_RELOC_ARM_PREL31);
b99bd4ef 3786
c19d1205 3787 demand_empty_rest_of_line ();
b99bd4ef
NC
3788}
3789
c19d1205 3790/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3791
c19d1205 3792/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3793
c19d1205
ZW
3794static void
3795s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3796{
3797 demand_empty_rest_of_line ();
921e5f0a
PB
3798 if (unwind.proc_start)
3799 {
c921be7d 3800 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3801 return;
3802 }
3803
c19d1205
ZW
3804 /* Mark the start of the function. */
3805 unwind.proc_start = expr_build_dot ();
b99bd4ef 3806
c19d1205
ZW
3807 /* Reset the rest of the unwind info. */
3808 unwind.opcode_count = 0;
3809 unwind.table_entry = NULL;
3810 unwind.personality_routine = NULL;
3811 unwind.personality_index = -1;
3812 unwind.frame_size = 0;
3813 unwind.fp_offset = 0;
fdfde340 3814 unwind.fp_reg = REG_SP;
c19d1205
ZW
3815 unwind.fp_used = 0;
3816 unwind.sp_restored = 0;
3817}
b99bd4ef 3818
b99bd4ef 3819
c19d1205
ZW
3820/* Parse a handlerdata directive. Creates the exception handling table entry
3821 for the function. */
b99bd4ef 3822
c19d1205
ZW
3823static void
3824s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3825{
3826 demand_empty_rest_of_line ();
921e5f0a 3827 if (!unwind.proc_start)
c921be7d 3828 as_bad (MISSING_FNSTART);
921e5f0a 3829
c19d1205 3830 if (unwind.table_entry)
6decc662 3831 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3832
c19d1205
ZW
3833 create_unwind_entry (1);
3834}
a737bd4d 3835
c19d1205 3836/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3837
c19d1205
ZW
3838static void
3839s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3840{
3841 long where;
3842 char *ptr;
3843 valueT val;
940b5ce0 3844 unsigned int marked_pr_dependency;
f02232aa 3845
c19d1205 3846 demand_empty_rest_of_line ();
f02232aa 3847
921e5f0a
PB
3848 if (!unwind.proc_start)
3849 {
c921be7d 3850 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3851 return;
3852 }
3853
c19d1205
ZW
3854 /* Add eh table entry. */
3855 if (unwind.table_entry == NULL)
3856 val = create_unwind_entry (0);
3857 else
3858 val = 0;
f02232aa 3859
c19d1205
ZW
3860 /* Add index table entry. This is two words. */
3861 start_unwind_section (unwind.saved_seg, 1);
3862 frag_align (2, 0, 0);
3863 record_alignment (now_seg, 2);
b99bd4ef 3864
c19d1205 3865 ptr = frag_more (8);
5011093d 3866 memset (ptr, 0, 8);
c19d1205 3867 where = frag_now_fix () - 8;
f02232aa 3868
c19d1205
ZW
3869 /* Self relative offset of the function start. */
3870 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3871 BFD_RELOC_ARM_PREL31);
f02232aa 3872
c19d1205
ZW
3873 /* Indicate dependency on EHABI-defined personality routines to the
3874 linker, if it hasn't been done already. */
940b5ce0
DJ
3875 marked_pr_dependency
3876 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3877 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3878 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3879 {
5f4273c7
NC
3880 static const char *const name[] =
3881 {
3882 "__aeabi_unwind_cpp_pr0",
3883 "__aeabi_unwind_cpp_pr1",
3884 "__aeabi_unwind_cpp_pr2"
3885 };
c19d1205
ZW
3886 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3887 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3888 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3889 |= 1 << unwind.personality_index;
c19d1205 3890 }
f02232aa 3891
c19d1205
ZW
3892 if (val)
3893 /* Inline exception table entry. */
3894 md_number_to_chars (ptr + 4, val, 4);
3895 else
3896 /* Self relative offset of the table entry. */
3897 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3898 BFD_RELOC_ARM_PREL31);
f02232aa 3899
c19d1205
ZW
3900 /* Restore the original section. */
3901 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3902
3903 unwind.proc_start = NULL;
c19d1205 3904}
f02232aa 3905
f02232aa 3906
c19d1205 3907/* Parse an unwind_cantunwind directive. */
b99bd4ef 3908
c19d1205
ZW
3909static void
3910s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3911{
3912 demand_empty_rest_of_line ();
921e5f0a 3913 if (!unwind.proc_start)
c921be7d 3914 as_bad (MISSING_FNSTART);
921e5f0a 3915
c19d1205
ZW
3916 if (unwind.personality_routine || unwind.personality_index != -1)
3917 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3918
c19d1205
ZW
3919 unwind.personality_index = -2;
3920}
b99bd4ef 3921
b99bd4ef 3922
c19d1205 3923/* Parse a personalityindex directive. */
b99bd4ef 3924
c19d1205
ZW
3925static void
3926s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3927{
3928 expressionS exp;
b99bd4ef 3929
921e5f0a 3930 if (!unwind.proc_start)
c921be7d 3931 as_bad (MISSING_FNSTART);
921e5f0a 3932
c19d1205
ZW
3933 if (unwind.personality_routine || unwind.personality_index != -1)
3934 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3935
c19d1205 3936 expression (&exp);
b99bd4ef 3937
c19d1205
ZW
3938 if (exp.X_op != O_constant
3939 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3940 {
c19d1205
ZW
3941 as_bad (_("bad personality routine number"));
3942 ignore_rest_of_line ();
3943 return;
b99bd4ef
NC
3944 }
3945
c19d1205 3946 unwind.personality_index = exp.X_add_number;
b99bd4ef 3947
c19d1205
ZW
3948 demand_empty_rest_of_line ();
3949}
e16bb312 3950
e16bb312 3951
c19d1205 3952/* Parse a personality directive. */
e16bb312 3953
c19d1205
ZW
3954static void
3955s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3956{
3957 char *name, *p, c;
a737bd4d 3958
921e5f0a 3959 if (!unwind.proc_start)
c921be7d 3960 as_bad (MISSING_FNSTART);
921e5f0a 3961
c19d1205
ZW
3962 if (unwind.personality_routine || unwind.personality_index != -1)
3963 as_bad (_("duplicate .personality directive"));
a737bd4d 3964
d02603dc 3965 c = get_symbol_name (& name);
c19d1205 3966 p = input_line_pointer;
d02603dc
NC
3967 if (c == '"')
3968 ++ input_line_pointer;
c19d1205
ZW
3969 unwind.personality_routine = symbol_find_or_make (name);
3970 *p = c;
3971 demand_empty_rest_of_line ();
3972}
e16bb312 3973
e16bb312 3974
c19d1205 3975/* Parse a directive saving core registers. */
e16bb312 3976
c19d1205
ZW
3977static void
3978s_arm_unwind_save_core (void)
e16bb312 3979{
c19d1205
ZW
3980 valueT op;
3981 long range;
3982 int n;
e16bb312 3983
c19d1205
ZW
3984 range = parse_reg_list (&input_line_pointer);
3985 if (range == FAIL)
e16bb312 3986 {
c19d1205
ZW
3987 as_bad (_("expected register list"));
3988 ignore_rest_of_line ();
3989 return;
3990 }
e16bb312 3991
c19d1205 3992 demand_empty_rest_of_line ();
e16bb312 3993
c19d1205
ZW
3994 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3995 into .unwind_save {..., sp...}. We aren't bothered about the value of
3996 ip because it is clobbered by calls. */
3997 if (unwind.sp_restored && unwind.fp_reg == 12
3998 && (range & 0x3000) == 0x1000)
3999 {
4000 unwind.opcode_count--;
4001 unwind.sp_restored = 0;
4002 range = (range | 0x2000) & ~0x1000;
4003 unwind.pending_offset = 0;
4004 }
e16bb312 4005
01ae4198
DJ
4006 /* Pop r4-r15. */
4007 if (range & 0xfff0)
c19d1205 4008 {
01ae4198
DJ
4009 /* See if we can use the short opcodes. These pop a block of up to 8
4010 registers starting with r4, plus maybe r14. */
4011 for (n = 0; n < 8; n++)
4012 {
4013 /* Break at the first non-saved register. */
4014 if ((range & (1 << (n + 4))) == 0)
4015 break;
4016 }
4017 /* See if there are any other bits set. */
4018 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4019 {
4020 /* Use the long form. */
4021 op = 0x8000 | ((range >> 4) & 0xfff);
4022 add_unwind_opcode (op, 2);
4023 }
0dd132b6 4024 else
01ae4198
DJ
4025 {
4026 /* Use the short form. */
4027 if (range & 0x4000)
4028 op = 0xa8; /* Pop r14. */
4029 else
4030 op = 0xa0; /* Do not pop r14. */
4031 op |= (n - 1);
4032 add_unwind_opcode (op, 1);
4033 }
c19d1205 4034 }
0dd132b6 4035
c19d1205
ZW
4036 /* Pop r0-r3. */
4037 if (range & 0xf)
4038 {
4039 op = 0xb100 | (range & 0xf);
4040 add_unwind_opcode (op, 2);
0dd132b6
NC
4041 }
4042
c19d1205
ZW
4043 /* Record the number of bytes pushed. */
4044 for (n = 0; n < 16; n++)
4045 {
4046 if (range & (1 << n))
4047 unwind.frame_size += 4;
4048 }
0dd132b6
NC
4049}
4050
c19d1205
ZW
4051
4052/* Parse a directive saving FPA registers. */
b99bd4ef
NC
4053
4054static void
c19d1205 4055s_arm_unwind_save_fpa (int reg)
b99bd4ef 4056{
c19d1205
ZW
4057 expressionS exp;
4058 int num_regs;
4059 valueT op;
b99bd4ef 4060
c19d1205
ZW
4061 /* Get Number of registers to transfer. */
4062 if (skip_past_comma (&input_line_pointer) != FAIL)
4063 expression (&exp);
4064 else
4065 exp.X_op = O_illegal;
b99bd4ef 4066
c19d1205 4067 if (exp.X_op != O_constant)
b99bd4ef 4068 {
c19d1205
ZW
4069 as_bad (_("expected , <constant>"));
4070 ignore_rest_of_line ();
b99bd4ef
NC
4071 return;
4072 }
4073
c19d1205
ZW
4074 num_regs = exp.X_add_number;
4075
4076 if (num_regs < 1 || num_regs > 4)
b99bd4ef 4077 {
c19d1205
ZW
4078 as_bad (_("number of registers must be in the range [1:4]"));
4079 ignore_rest_of_line ();
b99bd4ef
NC
4080 return;
4081 }
4082
c19d1205 4083 demand_empty_rest_of_line ();
b99bd4ef 4084
c19d1205
ZW
4085 if (reg == 4)
4086 {
4087 /* Short form. */
4088 op = 0xb4 | (num_regs - 1);
4089 add_unwind_opcode (op, 1);
4090 }
b99bd4ef
NC
4091 else
4092 {
c19d1205
ZW
4093 /* Long form. */
4094 op = 0xc800 | (reg << 4) | (num_regs - 1);
4095 add_unwind_opcode (op, 2);
b99bd4ef 4096 }
c19d1205 4097 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
4098}
4099
c19d1205 4100
fa073d69
MS
4101/* Parse a directive saving VFP registers for ARMv6 and above. */
4102
4103static void
4104s_arm_unwind_save_vfp_armv6 (void)
4105{
4106 int count;
4107 unsigned int start;
4108 valueT op;
4109 int num_vfpv3_regs = 0;
4110 int num_regs_below_16;
4111
4112 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
4113 if (count == FAIL)
4114 {
4115 as_bad (_("expected register list"));
4116 ignore_rest_of_line ();
4117 return;
4118 }
4119
4120 demand_empty_rest_of_line ();
4121
4122 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4123 than FSTMX/FLDMX-style ones). */
4124
4125 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4126 if (start >= 16)
4127 num_vfpv3_regs = count;
4128 else if (start + count > 16)
4129 num_vfpv3_regs = start + count - 16;
4130
4131 if (num_vfpv3_regs > 0)
4132 {
4133 int start_offset = start > 16 ? start - 16 : 0;
4134 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4135 add_unwind_opcode (op, 2);
4136 }
4137
4138 /* Generate opcode for registers numbered in the range 0 .. 15. */
4139 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 4140 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
4141 if (num_regs_below_16 > 0)
4142 {
4143 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4144 add_unwind_opcode (op, 2);
4145 }
4146
4147 unwind.frame_size += count * 8;
4148}
4149
4150
4151/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
4152
4153static void
c19d1205 4154s_arm_unwind_save_vfp (void)
b99bd4ef 4155{
c19d1205 4156 int count;
ca3f61f7 4157 unsigned int reg;
c19d1205 4158 valueT op;
b99bd4ef 4159
5287ad62 4160 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 4161 if (count == FAIL)
b99bd4ef 4162 {
c19d1205
ZW
4163 as_bad (_("expected register list"));
4164 ignore_rest_of_line ();
b99bd4ef
NC
4165 return;
4166 }
4167
c19d1205 4168 demand_empty_rest_of_line ();
b99bd4ef 4169
c19d1205 4170 if (reg == 8)
b99bd4ef 4171 {
c19d1205
ZW
4172 /* Short form. */
4173 op = 0xb8 | (count - 1);
4174 add_unwind_opcode (op, 1);
b99bd4ef 4175 }
c19d1205 4176 else
b99bd4ef 4177 {
c19d1205
ZW
4178 /* Long form. */
4179 op = 0xb300 | (reg << 4) | (count - 1);
4180 add_unwind_opcode (op, 2);
b99bd4ef 4181 }
c19d1205
ZW
4182 unwind.frame_size += count * 8 + 4;
4183}
b99bd4ef 4184
b99bd4ef 4185
c19d1205
ZW
4186/* Parse a directive saving iWMMXt data registers. */
4187
4188static void
4189s_arm_unwind_save_mmxwr (void)
4190{
4191 int reg;
4192 int hi_reg;
4193 int i;
4194 unsigned mask = 0;
4195 valueT op;
b99bd4ef 4196
c19d1205
ZW
4197 if (*input_line_pointer == '{')
4198 input_line_pointer++;
b99bd4ef 4199
c19d1205 4200 do
b99bd4ef 4201 {
dcbf9037 4202 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 4203
c19d1205 4204 if (reg == FAIL)
b99bd4ef 4205 {
9b7132d3 4206 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 4207 goto error;
b99bd4ef
NC
4208 }
4209
c19d1205
ZW
4210 if (mask >> reg)
4211 as_tsktsk (_("register list not in ascending order"));
4212 mask |= 1 << reg;
b99bd4ef 4213
c19d1205
ZW
4214 if (*input_line_pointer == '-')
4215 {
4216 input_line_pointer++;
dcbf9037 4217 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
4218 if (hi_reg == FAIL)
4219 {
9b7132d3 4220 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
4221 goto error;
4222 }
4223 else if (reg >= hi_reg)
4224 {
4225 as_bad (_("bad register range"));
4226 goto error;
4227 }
4228 for (; reg < hi_reg; reg++)
4229 mask |= 1 << reg;
4230 }
4231 }
4232 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4233
d996d970 4234 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4235
c19d1205 4236 demand_empty_rest_of_line ();
b99bd4ef 4237
708587a4 4238 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4239 the list. */
4240 flush_pending_unwind ();
b99bd4ef 4241
c19d1205 4242 for (i = 0; i < 16; i++)
b99bd4ef 4243 {
c19d1205
ZW
4244 if (mask & (1 << i))
4245 unwind.frame_size += 8;
b99bd4ef
NC
4246 }
4247
c19d1205
ZW
4248 /* Attempt to combine with a previous opcode. We do this because gcc
4249 likes to output separate unwind directives for a single block of
4250 registers. */
4251 if (unwind.opcode_count > 0)
b99bd4ef 4252 {
c19d1205
ZW
4253 i = unwind.opcodes[unwind.opcode_count - 1];
4254 if ((i & 0xf8) == 0xc0)
4255 {
4256 i &= 7;
4257 /* Only merge if the blocks are contiguous. */
4258 if (i < 6)
4259 {
4260 if ((mask & 0xfe00) == (1 << 9))
4261 {
4262 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4263 unwind.opcode_count--;
4264 }
4265 }
4266 else if (i == 6 && unwind.opcode_count >= 2)
4267 {
4268 i = unwind.opcodes[unwind.opcode_count - 2];
4269 reg = i >> 4;
4270 i &= 0xf;
b99bd4ef 4271
c19d1205
ZW
4272 op = 0xffff << (reg - 1);
4273 if (reg > 0
87a1fd79 4274 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
4275 {
4276 op = (1 << (reg + i + 1)) - 1;
4277 op &= ~((1 << reg) - 1);
4278 mask |= op;
4279 unwind.opcode_count -= 2;
4280 }
4281 }
4282 }
b99bd4ef
NC
4283 }
4284
c19d1205
ZW
4285 hi_reg = 15;
4286 /* We want to generate opcodes in the order the registers have been
4287 saved, ie. descending order. */
4288 for (reg = 15; reg >= -1; reg--)
b99bd4ef 4289 {
c19d1205
ZW
4290 /* Save registers in blocks. */
4291 if (reg < 0
4292 || !(mask & (1 << reg)))
4293 {
4294 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 4295 preceding block. */
c19d1205
ZW
4296 if (reg != hi_reg)
4297 {
4298 if (reg == 9)
4299 {
4300 /* Short form. */
4301 op = 0xc0 | (hi_reg - 10);
4302 add_unwind_opcode (op, 1);
4303 }
4304 else
4305 {
4306 /* Long form. */
4307 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4308 add_unwind_opcode (op, 2);
4309 }
4310 }
4311 hi_reg = reg - 1;
4312 }
b99bd4ef
NC
4313 }
4314
c19d1205
ZW
4315 return;
4316error:
4317 ignore_rest_of_line ();
b99bd4ef
NC
4318}
4319
4320static void
c19d1205 4321s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4322{
c19d1205
ZW
4323 int reg;
4324 int hi_reg;
4325 unsigned mask = 0;
4326 valueT op;
b99bd4ef 4327
c19d1205
ZW
4328 if (*input_line_pointer == '{')
4329 input_line_pointer++;
b99bd4ef 4330
477330fc
RM
4331 skip_whitespace (input_line_pointer);
4332
c19d1205 4333 do
b99bd4ef 4334 {
dcbf9037 4335 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4336
c19d1205
ZW
4337 if (reg == FAIL)
4338 {
9b7132d3 4339 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4340 goto error;
4341 }
b99bd4ef 4342
c19d1205
ZW
4343 reg -= 8;
4344 if (mask >> reg)
4345 as_tsktsk (_("register list not in ascending order"));
4346 mask |= 1 << reg;
b99bd4ef 4347
c19d1205
ZW
4348 if (*input_line_pointer == '-')
4349 {
4350 input_line_pointer++;
dcbf9037 4351 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4352 if (hi_reg == FAIL)
4353 {
9b7132d3 4354 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4355 goto error;
4356 }
4357 else if (reg >= hi_reg)
4358 {
4359 as_bad (_("bad register range"));
4360 goto error;
4361 }
4362 for (; reg < hi_reg; reg++)
4363 mask |= 1 << reg;
4364 }
b99bd4ef 4365 }
c19d1205 4366 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4367
d996d970 4368 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4369
c19d1205
ZW
4370 demand_empty_rest_of_line ();
4371
708587a4 4372 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4373 the list. */
4374 flush_pending_unwind ();
b99bd4ef 4375
c19d1205 4376 for (reg = 0; reg < 16; reg++)
b99bd4ef 4377 {
c19d1205
ZW
4378 if (mask & (1 << reg))
4379 unwind.frame_size += 4;
b99bd4ef 4380 }
c19d1205
ZW
4381 op = 0xc700 | mask;
4382 add_unwind_opcode (op, 2);
4383 return;
4384error:
4385 ignore_rest_of_line ();
b99bd4ef
NC
4386}
4387
c19d1205 4388
fa073d69
MS
4389/* Parse an unwind_save directive.
4390 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4391
b99bd4ef 4392static void
fa073d69 4393s_arm_unwind_save (int arch_v6)
b99bd4ef 4394{
c19d1205
ZW
4395 char *peek;
4396 struct reg_entry *reg;
4397 bfd_boolean had_brace = FALSE;
b99bd4ef 4398
921e5f0a 4399 if (!unwind.proc_start)
c921be7d 4400 as_bad (MISSING_FNSTART);
921e5f0a 4401
c19d1205
ZW
4402 /* Figure out what sort of save we have. */
4403 peek = input_line_pointer;
b99bd4ef 4404
c19d1205 4405 if (*peek == '{')
b99bd4ef 4406 {
c19d1205
ZW
4407 had_brace = TRUE;
4408 peek++;
b99bd4ef
NC
4409 }
4410
c19d1205 4411 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4412
c19d1205 4413 if (!reg)
b99bd4ef 4414 {
c19d1205
ZW
4415 as_bad (_("register expected"));
4416 ignore_rest_of_line ();
b99bd4ef
NC
4417 return;
4418 }
4419
c19d1205 4420 switch (reg->type)
b99bd4ef 4421 {
c19d1205
ZW
4422 case REG_TYPE_FN:
4423 if (had_brace)
4424 {
4425 as_bad (_("FPA .unwind_save does not take a register list"));
4426 ignore_rest_of_line ();
4427 return;
4428 }
93ac2687 4429 input_line_pointer = peek;
c19d1205 4430 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4431 return;
c19d1205 4432
1f5afe1c
NC
4433 case REG_TYPE_RN:
4434 s_arm_unwind_save_core ();
4435 return;
4436
fa073d69
MS
4437 case REG_TYPE_VFD:
4438 if (arch_v6)
477330fc 4439 s_arm_unwind_save_vfp_armv6 ();
fa073d69 4440 else
477330fc 4441 s_arm_unwind_save_vfp ();
fa073d69 4442 return;
1f5afe1c
NC
4443
4444 case REG_TYPE_MMXWR:
4445 s_arm_unwind_save_mmxwr ();
4446 return;
4447
4448 case REG_TYPE_MMXWCG:
4449 s_arm_unwind_save_mmxwcg ();
4450 return;
c19d1205
ZW
4451
4452 default:
4453 as_bad (_(".unwind_save does not support this kind of register"));
4454 ignore_rest_of_line ();
b99bd4ef 4455 }
c19d1205 4456}
b99bd4ef 4457
b99bd4ef 4458
c19d1205
ZW
4459/* Parse an unwind_movsp directive. */
4460
4461static void
4462s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4463{
4464 int reg;
4465 valueT op;
4fa3602b 4466 int offset;
c19d1205 4467
921e5f0a 4468 if (!unwind.proc_start)
c921be7d 4469 as_bad (MISSING_FNSTART);
921e5f0a 4470
dcbf9037 4471 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4472 if (reg == FAIL)
b99bd4ef 4473 {
9b7132d3 4474 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4475 ignore_rest_of_line ();
b99bd4ef
NC
4476 return;
4477 }
4fa3602b
PB
4478
4479 /* Optional constant. */
4480 if (skip_past_comma (&input_line_pointer) != FAIL)
4481 {
4482 if (immediate_for_directive (&offset) == FAIL)
4483 return;
4484 }
4485 else
4486 offset = 0;
4487
c19d1205 4488 demand_empty_rest_of_line ();
b99bd4ef 4489
c19d1205 4490 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4491 {
c19d1205 4492 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4493 return;
4494 }
4495
c19d1205
ZW
4496 if (unwind.fp_reg != REG_SP)
4497 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4498
c19d1205
ZW
4499 /* Generate opcode to restore the value. */
4500 op = 0x90 | reg;
4501 add_unwind_opcode (op, 1);
4502
4503 /* Record the information for later. */
4504 unwind.fp_reg = reg;
4fa3602b 4505 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4506 unwind.sp_restored = 1;
b05fe5cf
ZW
4507}
4508
c19d1205
ZW
4509/* Parse an unwind_pad directive. */
4510
b05fe5cf 4511static void
c19d1205 4512s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4513{
c19d1205 4514 int offset;
b05fe5cf 4515
921e5f0a 4516 if (!unwind.proc_start)
c921be7d 4517 as_bad (MISSING_FNSTART);
921e5f0a 4518
c19d1205
ZW
4519 if (immediate_for_directive (&offset) == FAIL)
4520 return;
b99bd4ef 4521
c19d1205
ZW
4522 if (offset & 3)
4523 {
4524 as_bad (_("stack increment must be multiple of 4"));
4525 ignore_rest_of_line ();
4526 return;
4527 }
b99bd4ef 4528
c19d1205
ZW
4529 /* Don't generate any opcodes, just record the details for later. */
4530 unwind.frame_size += offset;
4531 unwind.pending_offset += offset;
4532
4533 demand_empty_rest_of_line ();
4534}
4535
4536/* Parse an unwind_setfp directive. */
4537
4538static void
4539s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4540{
c19d1205
ZW
4541 int sp_reg;
4542 int fp_reg;
4543 int offset;
4544
921e5f0a 4545 if (!unwind.proc_start)
c921be7d 4546 as_bad (MISSING_FNSTART);
921e5f0a 4547
dcbf9037 4548 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4549 if (skip_past_comma (&input_line_pointer) == FAIL)
4550 sp_reg = FAIL;
4551 else
dcbf9037 4552 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4553
c19d1205
ZW
4554 if (fp_reg == FAIL || sp_reg == FAIL)
4555 {
4556 as_bad (_("expected <reg>, <reg>"));
4557 ignore_rest_of_line ();
4558 return;
4559 }
b99bd4ef 4560
c19d1205
ZW
4561 /* Optional constant. */
4562 if (skip_past_comma (&input_line_pointer) != FAIL)
4563 {
4564 if (immediate_for_directive (&offset) == FAIL)
4565 return;
4566 }
4567 else
4568 offset = 0;
a737bd4d 4569
c19d1205 4570 demand_empty_rest_of_line ();
a737bd4d 4571
fdfde340 4572 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4573 {
c19d1205
ZW
4574 as_bad (_("register must be either sp or set by a previous"
4575 "unwind_movsp directive"));
4576 return;
a737bd4d
NC
4577 }
4578
c19d1205
ZW
4579 /* Don't generate any opcodes, just record the information for later. */
4580 unwind.fp_reg = fp_reg;
4581 unwind.fp_used = 1;
fdfde340 4582 if (sp_reg == REG_SP)
c19d1205
ZW
4583 unwind.fp_offset = unwind.frame_size - offset;
4584 else
4585 unwind.fp_offset -= offset;
a737bd4d
NC
4586}
4587
c19d1205
ZW
4588/* Parse an unwind_raw directive. */
4589
4590static void
4591s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4592{
c19d1205 4593 expressionS exp;
708587a4 4594 /* This is an arbitrary limit. */
c19d1205
ZW
4595 unsigned char op[16];
4596 int count;
a737bd4d 4597
921e5f0a 4598 if (!unwind.proc_start)
c921be7d 4599 as_bad (MISSING_FNSTART);
921e5f0a 4600
c19d1205
ZW
4601 expression (&exp);
4602 if (exp.X_op == O_constant
4603 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4604 {
c19d1205
ZW
4605 unwind.frame_size += exp.X_add_number;
4606 expression (&exp);
4607 }
4608 else
4609 exp.X_op = O_illegal;
a737bd4d 4610
c19d1205
ZW
4611 if (exp.X_op != O_constant)
4612 {
4613 as_bad (_("expected <offset>, <opcode>"));
4614 ignore_rest_of_line ();
4615 return;
4616 }
a737bd4d 4617
c19d1205 4618 count = 0;
a737bd4d 4619
c19d1205
ZW
4620 /* Parse the opcode. */
4621 for (;;)
4622 {
4623 if (count >= 16)
4624 {
4625 as_bad (_("unwind opcode too long"));
4626 ignore_rest_of_line ();
a737bd4d 4627 }
c19d1205 4628 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4629 {
c19d1205
ZW
4630 as_bad (_("invalid unwind opcode"));
4631 ignore_rest_of_line ();
4632 return;
a737bd4d 4633 }
c19d1205 4634 op[count++] = exp.X_add_number;
a737bd4d 4635
c19d1205
ZW
4636 /* Parse the next byte. */
4637 if (skip_past_comma (&input_line_pointer) == FAIL)
4638 break;
a737bd4d 4639
c19d1205
ZW
4640 expression (&exp);
4641 }
b99bd4ef 4642
c19d1205
ZW
4643 /* Add the opcode bytes in reverse order. */
4644 while (count--)
4645 add_unwind_opcode (op[count], 1);
b99bd4ef 4646
c19d1205 4647 demand_empty_rest_of_line ();
b99bd4ef 4648}
ee065d83
PB
4649
4650
4651/* Parse a .eabi_attribute directive. */
4652
4653static void
4654s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4655{
0420f52b 4656 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
ee3c0378
AS
4657
4658 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4659 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4660}
4661
0855e32b
NS
4662/* Emit a tls fix for the symbol. */
4663
4664static void
4665s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4666{
4667 char *p;
4668 expressionS exp;
4669#ifdef md_flush_pending_output
4670 md_flush_pending_output ();
4671#endif
4672
4673#ifdef md_cons_align
4674 md_cons_align (4);
4675#endif
4676
4677 /* Since we're just labelling the code, there's no need to define a
4678 mapping symbol. */
4679 expression (&exp);
4680 p = obstack_next_free (&frchain_now->frch_obstack);
4681 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4682 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4683 : BFD_RELOC_ARM_TLS_DESCSEQ);
4684}
cdf9ccec 4685#endif /* OBJ_ELF */
0855e32b 4686
ee065d83 4687static void s_arm_arch (int);
7a1d4c38 4688static void s_arm_object_arch (int);
ee065d83
PB
4689static void s_arm_cpu (int);
4690static void s_arm_fpu (int);
69133863 4691static void s_arm_arch_extension (int);
b99bd4ef 4692
f0927246
NC
4693#ifdef TE_PE
4694
4695static void
5f4273c7 4696pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4697{
4698 expressionS exp;
4699
4700 do
4701 {
4702 expression (&exp);
4703 if (exp.X_op == O_symbol)
4704 exp.X_op = O_secrel;
4705
4706 emit_expr (&exp, 4);
4707 }
4708 while (*input_line_pointer++ == ',');
4709
4710 input_line_pointer--;
4711 demand_empty_rest_of_line ();
4712}
4713#endif /* TE_PE */
4714
c19d1205
ZW
4715/* This table describes all the machine specific pseudo-ops the assembler
4716 has to support. The fields are:
4717 pseudo-op name without dot
4718 function to call to execute this pseudo-op
4719 Integer arg to pass to the function. */
b99bd4ef 4720
c19d1205 4721const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4722{
c19d1205
ZW
4723 /* Never called because '.req' does not start a line. */
4724 { "req", s_req, 0 },
dcbf9037
JB
4725 /* Following two are likewise never called. */
4726 { "dn", s_dn, 0 },
4727 { "qn", s_qn, 0 },
c19d1205
ZW
4728 { "unreq", s_unreq, 0 },
4729 { "bss", s_bss, 0 },
db2ed2e0 4730 { "align", s_align_ptwo, 2 },
c19d1205
ZW
4731 { "arm", s_arm, 0 },
4732 { "thumb", s_thumb, 0 },
4733 { "code", s_code, 0 },
4734 { "force_thumb", s_force_thumb, 0 },
4735 { "thumb_func", s_thumb_func, 0 },
4736 { "thumb_set", s_thumb_set, 0 },
4737 { "even", s_even, 0 },
4738 { "ltorg", s_ltorg, 0 },
4739 { "pool", s_ltorg, 0 },
4740 { "syntax", s_syntax, 0 },
8463be01
PB
4741 { "cpu", s_arm_cpu, 0 },
4742 { "arch", s_arm_arch, 0 },
7a1d4c38 4743 { "object_arch", s_arm_object_arch, 0 },
8463be01 4744 { "fpu", s_arm_fpu, 0 },
69133863 4745 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4746#ifdef OBJ_ELF
c921be7d
NC
4747 { "word", s_arm_elf_cons, 4 },
4748 { "long", s_arm_elf_cons, 4 },
4749 { "inst.n", s_arm_elf_inst, 2 },
4750 { "inst.w", s_arm_elf_inst, 4 },
4751 { "inst", s_arm_elf_inst, 0 },
4752 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4753 { "fnstart", s_arm_unwind_fnstart, 0 },
4754 { "fnend", s_arm_unwind_fnend, 0 },
4755 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4756 { "personality", s_arm_unwind_personality, 0 },
4757 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4758 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4759 { "save", s_arm_unwind_save, 0 },
fa073d69 4760 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4761 { "movsp", s_arm_unwind_movsp, 0 },
4762 { "pad", s_arm_unwind_pad, 0 },
4763 { "setfp", s_arm_unwind_setfp, 0 },
4764 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4765 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4766 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4767#else
4768 { "word", cons, 4},
f0927246
NC
4769
4770 /* These are used for dwarf. */
4771 {"2byte", cons, 2},
4772 {"4byte", cons, 4},
4773 {"8byte", cons, 8},
4774 /* These are used for dwarf2. */
68d20676 4775 { "file", dwarf2_directive_file, 0 },
f0927246
NC
4776 { "loc", dwarf2_directive_loc, 0 },
4777 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4778#endif
4779 { "extend", float_cons, 'x' },
4780 { "ldouble", float_cons, 'x' },
4781 { "packed", float_cons, 'p' },
f0927246
NC
4782#ifdef TE_PE
4783 {"secrel32", pe_directive_secrel, 0},
4784#endif
2e6976a8
DG
4785
4786 /* These are for compatibility with CodeComposer Studio. */
4787 {"ref", s_ccs_ref, 0},
4788 {"def", s_ccs_def, 0},
4789 {"asmfunc", s_ccs_asmfunc, 0},
4790 {"endasmfunc", s_ccs_endasmfunc, 0},
4791
c19d1205
ZW
4792 { 0, 0, 0 }
4793};
4794\f
4795/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4796
c19d1205
ZW
4797/* Generic immediate-value read function for use in insn parsing.
4798 STR points to the beginning of the immediate (the leading #);
4799 VAL receives the value; if the value is outside [MIN, MAX]
4800 issue an error. PREFIX_OPT is true if the immediate prefix is
4801 optional. */
b99bd4ef 4802
c19d1205
ZW
4803static int
4804parse_immediate (char **str, int *val, int min, int max,
4805 bfd_boolean prefix_opt)
4806{
4807 expressionS exp;
0198d5e6 4808
c19d1205
ZW
4809 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4810 if (exp.X_op != O_constant)
b99bd4ef 4811 {
c19d1205
ZW
4812 inst.error = _("constant expression required");
4813 return FAIL;
4814 }
b99bd4ef 4815
c19d1205
ZW
4816 if (exp.X_add_number < min || exp.X_add_number > max)
4817 {
4818 inst.error = _("immediate value out of range");
4819 return FAIL;
4820 }
b99bd4ef 4821
c19d1205
ZW
4822 *val = exp.X_add_number;
4823 return SUCCESS;
4824}
b99bd4ef 4825
5287ad62 4826/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4827 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4828 instructions. Puts the result directly in inst.operands[i]. */
4829
4830static int
8335d6aa
JW
4831parse_big_immediate (char **str, int i, expressionS *in_exp,
4832 bfd_boolean allow_symbol_p)
5287ad62
JB
4833{
4834 expressionS exp;
8335d6aa 4835 expressionS *exp_p = in_exp ? in_exp : &exp;
5287ad62
JB
4836 char *ptr = *str;
4837
8335d6aa 4838 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5287ad62 4839
8335d6aa 4840 if (exp_p->X_op == O_constant)
036dc3f7 4841 {
8335d6aa 4842 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
036dc3f7
PB
4843 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4844 O_constant. We have to be careful not to break compilation for
4845 32-bit X_add_number, though. */
8335d6aa 4846 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7 4847 {
8335d6aa
JW
4848 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
4849 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
4850 & 0xffffffff);
036dc3f7
PB
4851 inst.operands[i].regisimm = 1;
4852 }
4853 }
8335d6aa
JW
4854 else if (exp_p->X_op == O_big
4855 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5287ad62
JB
4856 {
4857 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 4858
5287ad62 4859 /* Bignums have their least significant bits in
477330fc
RM
4860 generic_bignum[0]. Make sure we put 32 bits in imm and
4861 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4862 gas_assert (parts != 0);
95b75c01
NC
4863
4864 /* Make sure that the number is not too big.
4865 PR 11972: Bignums can now be sign-extended to the
4866 size of a .octa so check that the out of range bits
4867 are all zero or all one. */
8335d6aa 4868 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
95b75c01
NC
4869 {
4870 LITTLENUM_TYPE m = -1;
4871
4872 if (generic_bignum[parts * 2] != 0
4873 && generic_bignum[parts * 2] != m)
4874 return FAIL;
4875
8335d6aa 4876 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
95b75c01
NC
4877 if (generic_bignum[j] != generic_bignum[j-1])
4878 return FAIL;
4879 }
4880
5287ad62
JB
4881 inst.operands[i].imm = 0;
4882 for (j = 0; j < parts; j++, idx++)
477330fc
RM
4883 inst.operands[i].imm |= generic_bignum[idx]
4884 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
4885 inst.operands[i].reg = 0;
4886 for (j = 0; j < parts; j++, idx++)
477330fc
RM
4887 inst.operands[i].reg |= generic_bignum[idx]
4888 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
4889 inst.operands[i].regisimm = 1;
4890 }
8335d6aa 4891 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5287ad62 4892 return FAIL;
5f4273c7 4893
5287ad62
JB
4894 *str = ptr;
4895
4896 return SUCCESS;
4897}
4898
c19d1205
ZW
4899/* Returns the pseudo-register number of an FPA immediate constant,
4900 or FAIL if there isn't a valid constant here. */
b99bd4ef 4901
c19d1205
ZW
4902static int
4903parse_fpa_immediate (char ** str)
4904{
4905 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4906 char * save_in;
4907 expressionS exp;
4908 int i;
4909 int j;
b99bd4ef 4910
c19d1205
ZW
4911 /* First try and match exact strings, this is to guarantee
4912 that some formats will work even for cross assembly. */
b99bd4ef 4913
c19d1205
ZW
4914 for (i = 0; fp_const[i]; i++)
4915 {
4916 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4917 {
c19d1205 4918 char *start = *str;
b99bd4ef 4919
c19d1205
ZW
4920 *str += strlen (fp_const[i]);
4921 if (is_end_of_line[(unsigned char) **str])
4922 return i + 8;
4923 *str = start;
4924 }
4925 }
b99bd4ef 4926
c19d1205
ZW
4927 /* Just because we didn't get a match doesn't mean that the constant
4928 isn't valid, just that it is in a format that we don't
4929 automatically recognize. Try parsing it with the standard
4930 expression routines. */
b99bd4ef 4931
c19d1205 4932 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4933
c19d1205
ZW
4934 /* Look for a raw floating point number. */
4935 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4936 && is_end_of_line[(unsigned char) *save_in])
4937 {
4938 for (i = 0; i < NUM_FLOAT_VALS; i++)
4939 {
4940 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4941 {
c19d1205
ZW
4942 if (words[j] != fp_values[i][j])
4943 break;
b99bd4ef
NC
4944 }
4945
c19d1205 4946 if (j == MAX_LITTLENUMS)
b99bd4ef 4947 {
c19d1205
ZW
4948 *str = save_in;
4949 return i + 8;
b99bd4ef
NC
4950 }
4951 }
4952 }
b99bd4ef 4953
c19d1205
ZW
4954 /* Try and parse a more complex expression, this will probably fail
4955 unless the code uses a floating point prefix (eg "0f"). */
4956 save_in = input_line_pointer;
4957 input_line_pointer = *str;
4958 if (expression (&exp) == absolute_section
4959 && exp.X_op == O_big
4960 && exp.X_add_number < 0)
4961 {
4962 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4963 Ditto for 15. */
ba592044
AM
4964#define X_PRECISION 5
4965#define E_PRECISION 15L
4966 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
c19d1205
ZW
4967 {
4968 for (i = 0; i < NUM_FLOAT_VALS; i++)
4969 {
4970 for (j = 0; j < MAX_LITTLENUMS; j++)
4971 {
4972 if (words[j] != fp_values[i][j])
4973 break;
4974 }
b99bd4ef 4975
c19d1205
ZW
4976 if (j == MAX_LITTLENUMS)
4977 {
4978 *str = input_line_pointer;
4979 input_line_pointer = save_in;
4980 return i + 8;
4981 }
4982 }
4983 }
b99bd4ef
NC
4984 }
4985
c19d1205
ZW
4986 *str = input_line_pointer;
4987 input_line_pointer = save_in;
4988 inst.error = _("invalid FPA immediate expression");
4989 return FAIL;
b99bd4ef
NC
4990}
4991
136da414
JB
4992/* Returns 1 if a number has "quarter-precision" float format
4993 0baBbbbbbc defgh000 00000000 00000000. */
4994
4995static int
4996is_quarter_float (unsigned imm)
4997{
4998 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4999 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5000}
5001
aacf0b33
KT
5002
5003/* Detect the presence of a floating point or integer zero constant,
5004 i.e. #0.0 or #0. */
5005
5006static bfd_boolean
5007parse_ifimm_zero (char **in)
5008{
5009 int error_code;
5010
5011 if (!is_immediate_prefix (**in))
3c6452ae
TP
5012 {
5013 /* In unified syntax, all prefixes are optional. */
5014 if (!unified_syntax)
5015 return FALSE;
5016 }
5017 else
5018 ++*in;
0900a05b
JW
5019
5020 /* Accept #0x0 as a synonym for #0. */
5021 if (strncmp (*in, "0x", 2) == 0)
5022 {
5023 int val;
5024 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5025 return FALSE;
5026 return TRUE;
5027 }
5028
aacf0b33
KT
5029 error_code = atof_generic (in, ".", EXP_CHARS,
5030 &generic_floating_point_number);
5031
5032 if (!error_code
5033 && generic_floating_point_number.sign == '+'
5034 && (generic_floating_point_number.low
5035 > generic_floating_point_number.leader))
5036 return TRUE;
5037
5038 return FALSE;
5039}
5040
136da414
JB
5041/* Parse an 8-bit "quarter-precision" floating point number of the form:
5042 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
5043 The zero and minus-zero cases need special handling, since they can't be
5044 encoded in the "quarter-precision" float format, but can nonetheless be
5045 loaded as integer constants. */
136da414
JB
5046
5047static unsigned
5048parse_qfloat_immediate (char **ccp, int *immed)
5049{
5050 char *str = *ccp;
c96612cc 5051 char *fpnum;
136da414 5052 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 5053 int found_fpchar = 0;
5f4273c7 5054
136da414 5055 skip_past_char (&str, '#');
5f4273c7 5056
c96612cc
JB
5057 /* We must not accidentally parse an integer as a floating-point number. Make
5058 sure that the value we parse is not an integer by checking for special
5059 characters '.' or 'e'.
5060 FIXME: This is a horrible hack, but doing better is tricky because type
5061 information isn't in a very usable state at parse time. */
5062 fpnum = str;
5063 skip_whitespace (fpnum);
5064
5065 if (strncmp (fpnum, "0x", 2) == 0)
5066 return FAIL;
5067 else
5068 {
5069 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
477330fc
RM
5070 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5071 {
5072 found_fpchar = 1;
5073 break;
5074 }
c96612cc
JB
5075
5076 if (!found_fpchar)
477330fc 5077 return FAIL;
c96612cc 5078 }
5f4273c7 5079
136da414
JB
5080 if ((str = atof_ieee (str, 's', words)) != NULL)
5081 {
5082 unsigned fpword = 0;
5083 int i;
5f4273c7 5084
136da414
JB
5085 /* Our FP word must be 32 bits (single-precision FP). */
5086 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
477330fc
RM
5087 {
5088 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5089 fpword |= words[i];
5090 }
5f4273c7 5091
c96612cc 5092 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
477330fc 5093 *immed = fpword;
136da414 5094 else
477330fc 5095 return FAIL;
136da414
JB
5096
5097 *ccp = str;
5f4273c7 5098
136da414
JB
5099 return SUCCESS;
5100 }
5f4273c7 5101
136da414
JB
5102 return FAIL;
5103}
5104
c19d1205
ZW
5105/* Shift operands. */
5106enum shift_kind
b99bd4ef 5107{
c19d1205
ZW
5108 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
5109};
b99bd4ef 5110
c19d1205
ZW
5111struct asm_shift_name
5112{
5113 const char *name;
5114 enum shift_kind kind;
5115};
b99bd4ef 5116
c19d1205
ZW
5117/* Third argument to parse_shift. */
5118enum parse_shift_mode
5119{
5120 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5121 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5122 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5123 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5124 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5125};
b99bd4ef 5126
c19d1205
ZW
5127/* Parse a <shift> specifier on an ARM data processing instruction.
5128 This has three forms:
b99bd4ef 5129
c19d1205
ZW
5130 (LSL|LSR|ASL|ASR|ROR) Rs
5131 (LSL|LSR|ASL|ASR|ROR) #imm
5132 RRX
b99bd4ef 5133
c19d1205
ZW
5134 Note that ASL is assimilated to LSL in the instruction encoding, and
5135 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 5136
c19d1205
ZW
5137static int
5138parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 5139{
c19d1205
ZW
5140 const struct asm_shift_name *shift_name;
5141 enum shift_kind shift;
5142 char *s = *str;
5143 char *p = s;
5144 int reg;
b99bd4ef 5145
c19d1205
ZW
5146 for (p = *str; ISALPHA (*p); p++)
5147 ;
b99bd4ef 5148
c19d1205 5149 if (p == *str)
b99bd4ef 5150 {
c19d1205
ZW
5151 inst.error = _("shift expression expected");
5152 return FAIL;
b99bd4ef
NC
5153 }
5154
21d799b5 5155 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
477330fc 5156 p - *str);
c19d1205
ZW
5157
5158 if (shift_name == NULL)
b99bd4ef 5159 {
c19d1205
ZW
5160 inst.error = _("shift expression expected");
5161 return FAIL;
b99bd4ef
NC
5162 }
5163
c19d1205 5164 shift = shift_name->kind;
b99bd4ef 5165
c19d1205
ZW
5166 switch (mode)
5167 {
5168 case NO_SHIFT_RESTRICT:
5169 case SHIFT_IMMEDIATE: break;
b99bd4ef 5170
c19d1205
ZW
5171 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5172 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5173 {
5174 inst.error = _("'LSL' or 'ASR' required");
5175 return FAIL;
5176 }
5177 break;
b99bd4ef 5178
c19d1205
ZW
5179 case SHIFT_LSL_IMMEDIATE:
5180 if (shift != SHIFT_LSL)
5181 {
5182 inst.error = _("'LSL' required");
5183 return FAIL;
5184 }
5185 break;
b99bd4ef 5186
c19d1205
ZW
5187 case SHIFT_ASR_IMMEDIATE:
5188 if (shift != SHIFT_ASR)
5189 {
5190 inst.error = _("'ASR' required");
5191 return FAIL;
5192 }
5193 break;
b99bd4ef 5194
c19d1205
ZW
5195 default: abort ();
5196 }
b99bd4ef 5197
c19d1205
ZW
5198 if (shift != SHIFT_RRX)
5199 {
5200 /* Whitespace can appear here if the next thing is a bare digit. */
5201 skip_whitespace (p);
b99bd4ef 5202
c19d1205 5203 if (mode == NO_SHIFT_RESTRICT
dcbf9037 5204 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5205 {
5206 inst.operands[i].imm = reg;
5207 inst.operands[i].immisreg = 1;
5208 }
5209 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5210 return FAIL;
5211 }
5212 inst.operands[i].shift_kind = shift;
5213 inst.operands[i].shifted = 1;
5214 *str = p;
5215 return SUCCESS;
b99bd4ef
NC
5216}
5217
c19d1205 5218/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 5219
c19d1205
ZW
5220 #<immediate>
5221 #<immediate>, <rotate>
5222 <Rm>
5223 <Rm>, <shift>
b99bd4ef 5224
c19d1205
ZW
5225 where <shift> is defined by parse_shift above, and <rotate> is a
5226 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 5227 is deferred to md_apply_fix. */
b99bd4ef 5228
c19d1205
ZW
5229static int
5230parse_shifter_operand (char **str, int i)
5231{
5232 int value;
91d6fa6a 5233 expressionS exp;
b99bd4ef 5234
dcbf9037 5235 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5236 {
5237 inst.operands[i].reg = value;
5238 inst.operands[i].isreg = 1;
b99bd4ef 5239
c19d1205
ZW
5240 /* parse_shift will override this if appropriate */
5241 inst.reloc.exp.X_op = O_constant;
5242 inst.reloc.exp.X_add_number = 0;
b99bd4ef 5243
c19d1205
ZW
5244 if (skip_past_comma (str) == FAIL)
5245 return SUCCESS;
b99bd4ef 5246
c19d1205
ZW
5247 /* Shift operation on register. */
5248 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
5249 }
5250
c19d1205
ZW
5251 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
5252 return FAIL;
b99bd4ef 5253
c19d1205 5254 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 5255 {
c19d1205 5256 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 5257 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 5258 return FAIL;
b99bd4ef 5259
91d6fa6a 5260 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
c19d1205
ZW
5261 {
5262 inst.error = _("constant expression expected");
5263 return FAIL;
5264 }
b99bd4ef 5265
91d6fa6a 5266 value = exp.X_add_number;
c19d1205
ZW
5267 if (value < 0 || value > 30 || value % 2 != 0)
5268 {
5269 inst.error = _("invalid rotation");
5270 return FAIL;
5271 }
5272 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
5273 {
5274 inst.error = _("invalid constant");
5275 return FAIL;
5276 }
09d92015 5277
a415b1cd
JB
5278 /* Encode as specified. */
5279 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
5280 return SUCCESS;
09d92015
MM
5281 }
5282
c19d1205
ZW
5283 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
5284 inst.reloc.pc_rel = 0;
5285 return SUCCESS;
09d92015
MM
5286}
5287
4962c51a
MS
5288/* Group relocation information. Each entry in the table contains the
5289 textual name of the relocation as may appear in assembler source
5290 and must end with a colon.
5291 Along with this textual name are the relocation codes to be used if
5292 the corresponding instruction is an ALU instruction (ADD or SUB only),
5293 an LDR, an LDRS, or an LDC. */
5294
5295struct group_reloc_table_entry
5296{
5297 const char *name;
5298 int alu_code;
5299 int ldr_code;
5300 int ldrs_code;
5301 int ldc_code;
5302};
5303
5304typedef enum
5305{
5306 /* Varieties of non-ALU group relocation. */
5307
5308 GROUP_LDR,
5309 GROUP_LDRS,
5310 GROUP_LDC
5311} group_reloc_type;
5312
5313static struct group_reloc_table_entry group_reloc_table[] =
5314 { /* Program counter relative: */
5315 { "pc_g0_nc",
5316 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5317 0, /* LDR */
5318 0, /* LDRS */
5319 0 }, /* LDC */
5320 { "pc_g0",
5321 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5322 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5323 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5324 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5325 { "pc_g1_nc",
5326 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5327 0, /* LDR */
5328 0, /* LDRS */
5329 0 }, /* LDC */
5330 { "pc_g1",
5331 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5332 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5333 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5334 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5335 { "pc_g2",
5336 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5337 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5338 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5339 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5340 /* Section base relative */
5341 { "sb_g0_nc",
5342 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5343 0, /* LDR */
5344 0, /* LDRS */
5345 0 }, /* LDC */
5346 { "sb_g0",
5347 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5348 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5349 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5350 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5351 { "sb_g1_nc",
5352 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5353 0, /* LDR */
5354 0, /* LDRS */
5355 0 }, /* LDC */
5356 { "sb_g1",
5357 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5358 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5359 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5360 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5361 { "sb_g2",
5362 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5363 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5364 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
72d98d16
MG
5365 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5366 /* Absolute thumb alu relocations. */
5367 { "lower0_7",
5368 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5369 0, /* LDR. */
5370 0, /* LDRS. */
5371 0 }, /* LDC. */
5372 { "lower8_15",
5373 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5374 0, /* LDR. */
5375 0, /* LDRS. */
5376 0 }, /* LDC. */
5377 { "upper0_7",
5378 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5379 0, /* LDR. */
5380 0, /* LDRS. */
5381 0 }, /* LDC. */
5382 { "upper8_15",
5383 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5384 0, /* LDR. */
5385 0, /* LDRS. */
5386 0 } }; /* LDC. */
4962c51a
MS
5387
5388/* Given the address of a pointer pointing to the textual name of a group
5389 relocation as may appear in assembler source, attempt to find its details
5390 in group_reloc_table. The pointer will be updated to the character after
5391 the trailing colon. On failure, FAIL will be returned; SUCCESS
5392 otherwise. On success, *entry will be updated to point at the relevant
5393 group_reloc_table entry. */
5394
5395static int
5396find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5397{
5398 unsigned int i;
5399 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5400 {
5401 int length = strlen (group_reloc_table[i].name);
5402
5f4273c7
NC
5403 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5404 && (*str)[length] == ':')
477330fc
RM
5405 {
5406 *out = &group_reloc_table[i];
5407 *str += (length + 1);
5408 return SUCCESS;
5409 }
4962c51a
MS
5410 }
5411
5412 return FAIL;
5413}
5414
5415/* Parse a <shifter_operand> for an ARM data processing instruction
5416 (as for parse_shifter_operand) where group relocations are allowed:
5417
5418 #<immediate>
5419 #<immediate>, <rotate>
5420 #:<group_reloc>:<expression>
5421 <Rm>
5422 <Rm>, <shift>
5423
5424 where <group_reloc> is one of the strings defined in group_reloc_table.
5425 The hashes are optional.
5426
5427 Everything else is as for parse_shifter_operand. */
5428
5429static parse_operand_result
5430parse_shifter_operand_group_reloc (char **str, int i)
5431{
5432 /* Determine if we have the sequence of characters #: or just :
5433 coming next. If we do, then we check for a group relocation.
5434 If we don't, punt the whole lot to parse_shifter_operand. */
5435
5436 if (((*str)[0] == '#' && (*str)[1] == ':')
5437 || (*str)[0] == ':')
5438 {
5439 struct group_reloc_table_entry *entry;
5440
5441 if ((*str)[0] == '#')
477330fc 5442 (*str) += 2;
4962c51a 5443 else
477330fc 5444 (*str)++;
4962c51a
MS
5445
5446 /* Try to parse a group relocation. Anything else is an error. */
5447 if (find_group_reloc_table_entry (str, &entry) == FAIL)
477330fc
RM
5448 {
5449 inst.error = _("unknown group relocation");
5450 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5451 }
4962c51a
MS
5452
5453 /* We now have the group relocation table entry corresponding to
477330fc 5454 the name in the assembler source. Next, we parse the expression. */
4962c51a 5455 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
477330fc 5456 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4962c51a
MS
5457
5458 /* Record the relocation type (always the ALU variant here). */
21d799b5 5459 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 5460 gas_assert (inst.reloc.type != 0);
4962c51a
MS
5461
5462 return PARSE_OPERAND_SUCCESS;
5463 }
5464 else
5465 return parse_shifter_operand (str, i) == SUCCESS
477330fc 5466 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4962c51a
MS
5467
5468 /* Never reached. */
5469}
5470
8e560766
MGD
5471/* Parse a Neon alignment expression. Information is written to
5472 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5473
8e560766
MGD
5474 align .imm = align << 8, .immisalign=1, .preind=0 */
5475static parse_operand_result
5476parse_neon_alignment (char **str, int i)
5477{
5478 char *p = *str;
5479 expressionS exp;
5480
5481 my_get_expression (&exp, &p, GE_NO_PREFIX);
5482
5483 if (exp.X_op != O_constant)
5484 {
5485 inst.error = _("alignment must be constant");
5486 return PARSE_OPERAND_FAIL;
5487 }
5488
5489 inst.operands[i].imm = exp.X_add_number << 8;
5490 inst.operands[i].immisalign = 1;
5491 /* Alignments are not pre-indexes. */
5492 inst.operands[i].preind = 0;
5493
5494 *str = p;
5495 return PARSE_OPERAND_SUCCESS;
5496}
5497
c19d1205
ZW
5498/* Parse all forms of an ARM address expression. Information is written
5499 to inst.operands[i] and/or inst.reloc.
09d92015 5500
c19d1205 5501 Preindexed addressing (.preind=1):
09d92015 5502
c19d1205
ZW
5503 [Rn, #offset] .reg=Rn .reloc.exp=offset
5504 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5505 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5506 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5507
c19d1205 5508 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5509
c19d1205 5510 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5511
c19d1205
ZW
5512 [Rn], #offset .reg=Rn .reloc.exp=offset
5513 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5514 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5515 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5516
c19d1205 5517 Unindexed addressing (.preind=0, .postind=0):
09d92015 5518
c19d1205 5519 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5520
c19d1205 5521 Other:
09d92015 5522
c19d1205
ZW
5523 [Rn]{!} shorthand for [Rn,#0]{!}
5524 =immediate .isreg=0 .reloc.exp=immediate
5525 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 5526
c19d1205
ZW
5527 It is the caller's responsibility to check for addressing modes not
5528 supported by the instruction, and to set inst.reloc.type. */
5529
4962c51a
MS
5530static parse_operand_result
5531parse_address_main (char **str, int i, int group_relocations,
477330fc 5532 group_reloc_type group_type)
09d92015 5533{
c19d1205
ZW
5534 char *p = *str;
5535 int reg;
09d92015 5536
c19d1205 5537 if (skip_past_char (&p, '[') == FAIL)
09d92015 5538 {
c19d1205
ZW
5539 if (skip_past_char (&p, '=') == FAIL)
5540 {
974da60d 5541 /* Bare address - translate to PC-relative offset. */
c19d1205
ZW
5542 inst.reloc.pc_rel = 1;
5543 inst.operands[i].reg = REG_PC;
5544 inst.operands[i].isreg = 1;
5545 inst.operands[i].preind = 1;
09d92015 5546
8335d6aa
JW
5547 if (my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX_BIG))
5548 return PARSE_OPERAND_FAIL;
5549 }
5550 else if (parse_big_immediate (&p, i, &inst.reloc.exp,
5551 /*allow_symbol_p=*/TRUE))
4962c51a 5552 return PARSE_OPERAND_FAIL;
09d92015 5553
c19d1205 5554 *str = p;
4962c51a 5555 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5556 }
5557
8ab8155f
NC
5558 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5559 skip_whitespace (p);
5560
dcbf9037 5561 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5562 {
c19d1205 5563 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5564 return PARSE_OPERAND_FAIL;
09d92015 5565 }
c19d1205
ZW
5566 inst.operands[i].reg = reg;
5567 inst.operands[i].isreg = 1;
09d92015 5568
c19d1205 5569 if (skip_past_comma (&p) == SUCCESS)
09d92015 5570 {
c19d1205 5571 inst.operands[i].preind = 1;
09d92015 5572
c19d1205
ZW
5573 if (*p == '+') p++;
5574 else if (*p == '-') p++, inst.operands[i].negative = 1;
5575
dcbf9037 5576 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5577 {
c19d1205
ZW
5578 inst.operands[i].imm = reg;
5579 inst.operands[i].immisreg = 1;
5580
5581 if (skip_past_comma (&p) == SUCCESS)
5582 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5583 return PARSE_OPERAND_FAIL;
c19d1205 5584 }
5287ad62 5585 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5586 {
5587 /* FIXME: '@' should be used here, but it's filtered out by generic
5588 code before we get to see it here. This may be subject to
5589 change. */
5590 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5591
8e560766
MGD
5592 if (result != PARSE_OPERAND_SUCCESS)
5593 return result;
5594 }
c19d1205
ZW
5595 else
5596 {
5597 if (inst.operands[i].negative)
5598 {
5599 inst.operands[i].negative = 0;
5600 p--;
5601 }
4962c51a 5602
5f4273c7
NC
5603 if (group_relocations
5604 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5605 {
5606 struct group_reloc_table_entry *entry;
5607
477330fc
RM
5608 /* Skip over the #: or : sequence. */
5609 if (*p == '#')
5610 p += 2;
5611 else
5612 p++;
4962c51a
MS
5613
5614 /* Try to parse a group relocation. Anything else is an
477330fc 5615 error. */
4962c51a
MS
5616 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5617 {
5618 inst.error = _("unknown group relocation");
5619 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5620 }
5621
5622 /* We now have the group relocation table entry corresponding to
5623 the name in the assembler source. Next, we parse the
477330fc 5624 expression. */
4962c51a
MS
5625 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5626 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5627
5628 /* Record the relocation type. */
477330fc
RM
5629 switch (group_type)
5630 {
5631 case GROUP_LDR:
5632 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5633 break;
4962c51a 5634
477330fc
RM
5635 case GROUP_LDRS:
5636 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5637 break;
4962c51a 5638
477330fc
RM
5639 case GROUP_LDC:
5640 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5641 break;
4962c51a 5642
477330fc
RM
5643 default:
5644 gas_assert (0);
5645 }
4962c51a 5646
477330fc 5647 if (inst.reloc.type == 0)
4962c51a
MS
5648 {
5649 inst.error = _("this group relocation is not allowed on this instruction");
5650 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5651 }
477330fc
RM
5652 }
5653 else
26d97720
NS
5654 {
5655 char *q = p;
0198d5e6 5656
26d97720
NS
5657 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5658 return PARSE_OPERAND_FAIL;
5659 /* If the offset is 0, find out if it's a +0 or -0. */
5660 if (inst.reloc.exp.X_op == O_constant
5661 && inst.reloc.exp.X_add_number == 0)
5662 {
5663 skip_whitespace (q);
5664 if (*q == '#')
5665 {
5666 q++;
5667 skip_whitespace (q);
5668 }
5669 if (*q == '-')
5670 inst.operands[i].negative = 1;
5671 }
5672 }
09d92015
MM
5673 }
5674 }
8e560766
MGD
5675 else if (skip_past_char (&p, ':') == SUCCESS)
5676 {
5677 /* FIXME: '@' should be used here, but it's filtered out by generic code
5678 before we get to see it here. This may be subject to change. */
5679 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5680
8e560766
MGD
5681 if (result != PARSE_OPERAND_SUCCESS)
5682 return result;
5683 }
09d92015 5684
c19d1205 5685 if (skip_past_char (&p, ']') == FAIL)
09d92015 5686 {
c19d1205 5687 inst.error = _("']' expected");
4962c51a 5688 return PARSE_OPERAND_FAIL;
09d92015
MM
5689 }
5690
c19d1205
ZW
5691 if (skip_past_char (&p, '!') == SUCCESS)
5692 inst.operands[i].writeback = 1;
09d92015 5693
c19d1205 5694 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5695 {
c19d1205
ZW
5696 if (skip_past_char (&p, '{') == SUCCESS)
5697 {
5698 /* [Rn], {expr} - unindexed, with option */
5699 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5700 0, 255, TRUE) == FAIL)
4962c51a 5701 return PARSE_OPERAND_FAIL;
09d92015 5702
c19d1205
ZW
5703 if (skip_past_char (&p, '}') == FAIL)
5704 {
5705 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5706 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5707 }
5708 if (inst.operands[i].preind)
5709 {
5710 inst.error = _("cannot combine index with option");
4962c51a 5711 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5712 }
5713 *str = p;
4962c51a 5714 return PARSE_OPERAND_SUCCESS;
09d92015 5715 }
c19d1205
ZW
5716 else
5717 {
5718 inst.operands[i].postind = 1;
5719 inst.operands[i].writeback = 1;
09d92015 5720
c19d1205
ZW
5721 if (inst.operands[i].preind)
5722 {
5723 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5724 return PARSE_OPERAND_FAIL;
c19d1205 5725 }
09d92015 5726
c19d1205
ZW
5727 if (*p == '+') p++;
5728 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5729
dcbf9037 5730 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5731 {
477330fc
RM
5732 /* We might be using the immediate for alignment already. If we
5733 are, OR the register number into the low-order bits. */
5734 if (inst.operands[i].immisalign)
5735 inst.operands[i].imm |= reg;
5736 else
5737 inst.operands[i].imm = reg;
c19d1205 5738 inst.operands[i].immisreg = 1;
a737bd4d 5739
c19d1205
ZW
5740 if (skip_past_comma (&p) == SUCCESS)
5741 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5742 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5743 }
5744 else
5745 {
26d97720 5746 char *q = p;
0198d5e6 5747
c19d1205
ZW
5748 if (inst.operands[i].negative)
5749 {
5750 inst.operands[i].negative = 0;
5751 p--;
5752 }
5753 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5754 return PARSE_OPERAND_FAIL;
26d97720
NS
5755 /* If the offset is 0, find out if it's a +0 or -0. */
5756 if (inst.reloc.exp.X_op == O_constant
5757 && inst.reloc.exp.X_add_number == 0)
5758 {
5759 skip_whitespace (q);
5760 if (*q == '#')
5761 {
5762 q++;
5763 skip_whitespace (q);
5764 }
5765 if (*q == '-')
5766 inst.operands[i].negative = 1;
5767 }
c19d1205
ZW
5768 }
5769 }
a737bd4d
NC
5770 }
5771
c19d1205
ZW
5772 /* If at this point neither .preind nor .postind is set, we have a
5773 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5774 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5775 {
5776 inst.operands[i].preind = 1;
5777 inst.reloc.exp.X_op = O_constant;
5778 inst.reloc.exp.X_add_number = 0;
5779 }
5780 *str = p;
4962c51a
MS
5781 return PARSE_OPERAND_SUCCESS;
5782}
5783
5784static int
5785parse_address (char **str, int i)
5786{
21d799b5 5787 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
477330fc 5788 ? SUCCESS : FAIL;
4962c51a
MS
5789}
5790
5791static parse_operand_result
5792parse_address_group_reloc (char **str, int i, group_reloc_type type)
5793{
5794 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5795}
5796
b6895b4f
PB
5797/* Parse an operand for a MOVW or MOVT instruction. */
5798static int
5799parse_half (char **str)
5800{
5801 char * p;
5f4273c7 5802
b6895b4f
PB
5803 p = *str;
5804 skip_past_char (&p, '#');
5f4273c7 5805 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5806 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5807 else if (strncasecmp (p, ":upper16:", 9) == 0)
5808 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5809
5810 if (inst.reloc.type != BFD_RELOC_UNUSED)
5811 {
5812 p += 9;
5f4273c7 5813 skip_whitespace (p);
b6895b4f
PB
5814 }
5815
5816 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5817 return FAIL;
5818
5819 if (inst.reloc.type == BFD_RELOC_UNUSED)
5820 {
5821 if (inst.reloc.exp.X_op != O_constant)
5822 {
5823 inst.error = _("constant expression expected");
5824 return FAIL;
5825 }
5826 if (inst.reloc.exp.X_add_number < 0
5827 || inst.reloc.exp.X_add_number > 0xffff)
5828 {
5829 inst.error = _("immediate value out of range");
5830 return FAIL;
5831 }
5832 }
5833 *str = p;
5834 return SUCCESS;
5835}
5836
c19d1205 5837/* Miscellaneous. */
a737bd4d 5838
c19d1205
ZW
5839/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5840 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5841static int
d2cd1205 5842parse_psr (char **str, bfd_boolean lhs)
09d92015 5843{
c19d1205
ZW
5844 char *p;
5845 unsigned long psr_field;
62b3e311
PB
5846 const struct asm_psr *psr;
5847 char *start;
d2cd1205 5848 bfd_boolean is_apsr = FALSE;
ac7f631b 5849 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 5850
a4482bb6
NC
5851 /* PR gas/12698: If the user has specified -march=all then m_profile will
5852 be TRUE, but we want to ignore it in this case as we are building for any
5853 CPU type, including non-m variants. */
823d2571 5854 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
a4482bb6
NC
5855 m_profile = FALSE;
5856
c19d1205
ZW
5857 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5858 feature for ease of use and backwards compatibility. */
5859 p = *str;
62b3e311 5860 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
5861 {
5862 if (m_profile)
5863 goto unsupported_psr;
fa94de6b 5864
d2cd1205
JB
5865 psr_field = SPSR_BIT;
5866 }
5867 else if (strncasecmp (p, "CPSR", 4) == 0)
5868 {
5869 if (m_profile)
5870 goto unsupported_psr;
5871
5872 psr_field = 0;
5873 }
5874 else if (strncasecmp (p, "APSR", 4) == 0)
5875 {
5876 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5877 and ARMv7-R architecture CPUs. */
5878 is_apsr = TRUE;
5879 psr_field = 0;
5880 }
5881 else if (m_profile)
62b3e311
PB
5882 {
5883 start = p;
5884 do
5885 p++;
5886 while (ISALNUM (*p) || *p == '_');
5887
d2cd1205
JB
5888 if (strncasecmp (start, "iapsr", 5) == 0
5889 || strncasecmp (start, "eapsr", 5) == 0
5890 || strncasecmp (start, "xpsr", 4) == 0
5891 || strncasecmp (start, "psr", 3) == 0)
5892 p = start + strcspn (start, "rR") + 1;
5893
21d799b5 5894 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
477330fc 5895 p - start);
d2cd1205 5896
62b3e311
PB
5897 if (!psr)
5898 return FAIL;
09d92015 5899
d2cd1205
JB
5900 /* If APSR is being written, a bitfield may be specified. Note that
5901 APSR itself is handled above. */
5902 if (psr->field <= 3)
5903 {
5904 psr_field = psr->field;
5905 is_apsr = TRUE;
5906 goto check_suffix;
5907 }
5908
62b3e311 5909 *str = p;
d2cd1205
JB
5910 /* M-profile MSR instructions have the mask field set to "10", except
5911 *PSR variants which modify APSR, which may use a different mask (and
5912 have been handled already). Do that by setting the PSR_f field
5913 here. */
5914 return psr->field | (lhs ? PSR_f : 0);
62b3e311 5915 }
d2cd1205
JB
5916 else
5917 goto unsupported_psr;
09d92015 5918
62b3e311 5919 p += 4;
d2cd1205 5920check_suffix:
c19d1205
ZW
5921 if (*p == '_')
5922 {
5923 /* A suffix follows. */
c19d1205
ZW
5924 p++;
5925 start = p;
a737bd4d 5926
c19d1205
ZW
5927 do
5928 p++;
5929 while (ISALNUM (*p) || *p == '_');
a737bd4d 5930
d2cd1205
JB
5931 if (is_apsr)
5932 {
5933 /* APSR uses a notation for bits, rather than fields. */
5934 unsigned int nzcvq_bits = 0;
5935 unsigned int g_bit = 0;
5936 char *bit;
fa94de6b 5937
d2cd1205
JB
5938 for (bit = start; bit != p; bit++)
5939 {
5940 switch (TOLOWER (*bit))
477330fc 5941 {
d2cd1205
JB
5942 case 'n':
5943 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5944 break;
5945
5946 case 'z':
5947 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5948 break;
5949
5950 case 'c':
5951 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5952 break;
5953
5954 case 'v':
5955 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5956 break;
fa94de6b 5957
d2cd1205
JB
5958 case 'q':
5959 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5960 break;
fa94de6b 5961
d2cd1205
JB
5962 case 'g':
5963 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5964 break;
fa94de6b 5965
d2cd1205
JB
5966 default:
5967 inst.error = _("unexpected bit specified after APSR");
5968 return FAIL;
5969 }
5970 }
fa94de6b 5971
d2cd1205
JB
5972 if (nzcvq_bits == 0x1f)
5973 psr_field |= PSR_f;
fa94de6b 5974
d2cd1205
JB
5975 if (g_bit == 0x1)
5976 {
5977 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
477330fc 5978 {
d2cd1205
JB
5979 inst.error = _("selected processor does not "
5980 "support DSP extension");
5981 return FAIL;
5982 }
5983
5984 psr_field |= PSR_s;
5985 }
fa94de6b 5986
d2cd1205
JB
5987 if ((nzcvq_bits & 0x20) != 0
5988 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5989 || (g_bit & 0x2) != 0)
5990 {
5991 inst.error = _("bad bitmask specified after APSR");
5992 return FAIL;
5993 }
5994 }
5995 else
477330fc 5996 {
d2cd1205 5997 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
477330fc 5998 p - start);
d2cd1205 5999 if (!psr)
477330fc 6000 goto error;
a737bd4d 6001
d2cd1205
JB
6002 psr_field |= psr->field;
6003 }
a737bd4d 6004 }
c19d1205 6005 else
a737bd4d 6006 {
c19d1205
ZW
6007 if (ISALNUM (*p))
6008 goto error; /* Garbage after "[CS]PSR". */
6009
d2cd1205 6010 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
477330fc 6011 is deprecated, but allow it anyway. */
d2cd1205
JB
6012 if (is_apsr && lhs)
6013 {
6014 psr_field |= PSR_f;
6015 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6016 "deprecated"));
6017 }
6018 else if (!m_profile)
6019 /* These bits are never right for M-profile devices: don't set them
6020 (only code paths which read/write APSR reach here). */
6021 psr_field |= (PSR_c | PSR_f);
a737bd4d 6022 }
c19d1205
ZW
6023 *str = p;
6024 return psr_field;
a737bd4d 6025
d2cd1205
JB
6026 unsupported_psr:
6027 inst.error = _("selected processor does not support requested special "
6028 "purpose register");
6029 return FAIL;
6030
c19d1205
ZW
6031 error:
6032 inst.error = _("flag for {c}psr instruction expected");
6033 return FAIL;
a737bd4d
NC
6034}
6035
c19d1205
ZW
6036/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6037 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 6038
c19d1205
ZW
6039static int
6040parse_cps_flags (char **str)
a737bd4d 6041{
c19d1205
ZW
6042 int val = 0;
6043 int saw_a_flag = 0;
6044 char *s = *str;
a737bd4d 6045
c19d1205
ZW
6046 for (;;)
6047 switch (*s++)
6048 {
6049 case '\0': case ',':
6050 goto done;
a737bd4d 6051
c19d1205
ZW
6052 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6053 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6054 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 6055
c19d1205
ZW
6056 default:
6057 inst.error = _("unrecognized CPS flag");
6058 return FAIL;
6059 }
a737bd4d 6060
c19d1205
ZW
6061 done:
6062 if (saw_a_flag == 0)
a737bd4d 6063 {
c19d1205
ZW
6064 inst.error = _("missing CPS flags");
6065 return FAIL;
a737bd4d 6066 }
a737bd4d 6067
c19d1205
ZW
6068 *str = s - 1;
6069 return val;
a737bd4d
NC
6070}
6071
c19d1205
ZW
6072/* Parse an endian specifier ("BE" or "LE", case insensitive);
6073 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
6074
6075static int
c19d1205 6076parse_endian_specifier (char **str)
a737bd4d 6077{
c19d1205
ZW
6078 int little_endian;
6079 char *s = *str;
a737bd4d 6080
c19d1205
ZW
6081 if (strncasecmp (s, "BE", 2))
6082 little_endian = 0;
6083 else if (strncasecmp (s, "LE", 2))
6084 little_endian = 1;
6085 else
a737bd4d 6086 {
c19d1205 6087 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6088 return FAIL;
6089 }
6090
c19d1205 6091 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 6092 {
c19d1205 6093 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6094 return FAIL;
6095 }
6096
c19d1205
ZW
6097 *str = s + 2;
6098 return little_endian;
6099}
a737bd4d 6100
c19d1205
ZW
6101/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6102 value suitable for poking into the rotate field of an sxt or sxta
6103 instruction, or FAIL on error. */
6104
6105static int
6106parse_ror (char **str)
6107{
6108 int rot;
6109 char *s = *str;
6110
6111 if (strncasecmp (s, "ROR", 3) == 0)
6112 s += 3;
6113 else
a737bd4d 6114 {
c19d1205 6115 inst.error = _("missing rotation field after comma");
a737bd4d
NC
6116 return FAIL;
6117 }
c19d1205
ZW
6118
6119 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6120 return FAIL;
6121
6122 switch (rot)
a737bd4d 6123 {
c19d1205
ZW
6124 case 0: *str = s; return 0x0;
6125 case 8: *str = s; return 0x1;
6126 case 16: *str = s; return 0x2;
6127 case 24: *str = s; return 0x3;
6128
6129 default:
6130 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
6131 return FAIL;
6132 }
c19d1205 6133}
a737bd4d 6134
c19d1205
ZW
6135/* Parse a conditional code (from conds[] below). The value returned is in the
6136 range 0 .. 14, or FAIL. */
6137static int
6138parse_cond (char **str)
6139{
c462b453 6140 char *q;
c19d1205 6141 const struct asm_cond *c;
c462b453
PB
6142 int n;
6143 /* Condition codes are always 2 characters, so matching up to
6144 3 characters is sufficient. */
6145 char cond[3];
a737bd4d 6146
c462b453
PB
6147 q = *str;
6148 n = 0;
6149 while (ISALPHA (*q) && n < 3)
6150 {
e07e6e58 6151 cond[n] = TOLOWER (*q);
c462b453
PB
6152 q++;
6153 n++;
6154 }
a737bd4d 6155
21d799b5 6156 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 6157 if (!c)
a737bd4d 6158 {
c19d1205 6159 inst.error = _("condition required");
a737bd4d
NC
6160 return FAIL;
6161 }
6162
c19d1205
ZW
6163 *str = q;
6164 return c->value;
6165}
6166
643afb90
MW
6167/* Record a use of the given feature. */
6168static void
6169record_feature_use (const arm_feature_set *feature)
6170{
6171 if (thumb_mode)
6172 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
6173 else
6174 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
6175}
6176
4d354d8b
TP
6177/* If the given feature is currently allowed, mark it as used and return TRUE.
6178 Return FALSE otherwise. */
e797f7e0
MGD
6179static bfd_boolean
6180mark_feature_used (const arm_feature_set *feature)
6181{
4d354d8b 6182 /* Ensure the option is currently allowed. */
e797f7e0
MGD
6183 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
6184 return FALSE;
6185
4d354d8b 6186 /* Add the appropriate architecture feature for the barrier option used. */
643afb90 6187 record_feature_use (feature);
e797f7e0
MGD
6188
6189 return TRUE;
6190}
6191
62b3e311
PB
6192/* Parse an option for a barrier instruction. Returns the encoding for the
6193 option, or FAIL. */
6194static int
6195parse_barrier (char **str)
6196{
6197 char *p, *q;
6198 const struct asm_barrier_opt *o;
6199
6200 p = q = *str;
6201 while (ISALPHA (*q))
6202 q++;
6203
21d799b5 6204 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
477330fc 6205 q - p);
62b3e311
PB
6206 if (!o)
6207 return FAIL;
6208
e797f7e0
MGD
6209 if (!mark_feature_used (&o->arch))
6210 return FAIL;
6211
62b3e311
PB
6212 *str = q;
6213 return o->value;
6214}
6215
92e90b6e
PB
6216/* Parse the operands of a table branch instruction. Similar to a memory
6217 operand. */
6218static int
6219parse_tb (char **str)
6220{
6221 char * p = *str;
6222 int reg;
6223
6224 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
6225 {
6226 inst.error = _("'[' expected");
6227 return FAIL;
6228 }
92e90b6e 6229
dcbf9037 6230 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6231 {
6232 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6233 return FAIL;
6234 }
6235 inst.operands[0].reg = reg;
6236
6237 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
6238 {
6239 inst.error = _("',' expected");
6240 return FAIL;
6241 }
5f4273c7 6242
dcbf9037 6243 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6244 {
6245 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6246 return FAIL;
6247 }
6248 inst.operands[0].imm = reg;
6249
6250 if (skip_past_comma (&p) == SUCCESS)
6251 {
6252 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6253 return FAIL;
6254 if (inst.reloc.exp.X_add_number != 1)
6255 {
6256 inst.error = _("invalid shift");
6257 return FAIL;
6258 }
6259 inst.operands[0].shifted = 1;
6260 }
6261
6262 if (skip_past_char (&p, ']') == FAIL)
6263 {
6264 inst.error = _("']' expected");
6265 return FAIL;
6266 }
6267 *str = p;
6268 return SUCCESS;
6269}
6270
5287ad62
JB
6271/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6272 information on the types the operands can take and how they are encoded.
037e8744
JB
6273 Up to four operands may be read; this function handles setting the
6274 ".present" field for each read operand itself.
5287ad62
JB
6275 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6276 else returns FAIL. */
6277
6278static int
6279parse_neon_mov (char **str, int *which_operand)
6280{
6281 int i = *which_operand, val;
6282 enum arm_reg_type rtype;
6283 char *ptr = *str;
dcbf9037 6284 struct neon_type_el optype;
5f4273c7 6285
dcbf9037 6286 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
6287 {
6288 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6289 inst.operands[i].reg = val;
6290 inst.operands[i].isscalar = 1;
dcbf9037 6291 inst.operands[i].vectype = optype;
5287ad62
JB
6292 inst.operands[i++].present = 1;
6293
6294 if (skip_past_comma (&ptr) == FAIL)
477330fc 6295 goto wanted_comma;
5f4273c7 6296
dcbf9037 6297 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
477330fc 6298 goto wanted_arm;
5f4273c7 6299
5287ad62
JB
6300 inst.operands[i].reg = val;
6301 inst.operands[i].isreg = 1;
6302 inst.operands[i].present = 1;
6303 }
037e8744 6304 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
477330fc 6305 != FAIL)
5287ad62
JB
6306 {
6307 /* Cases 0, 1, 2, 3, 5 (D only). */
6308 if (skip_past_comma (&ptr) == FAIL)
477330fc 6309 goto wanted_comma;
5f4273c7 6310
5287ad62
JB
6311 inst.operands[i].reg = val;
6312 inst.operands[i].isreg = 1;
6313 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
6314 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6315 inst.operands[i].isvec = 1;
dcbf9037 6316 inst.operands[i].vectype = optype;
5287ad62
JB
6317 inst.operands[i++].present = 1;
6318
dcbf9037 6319 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6320 {
6321 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6322 Case 13: VMOV <Sd>, <Rm> */
6323 inst.operands[i].reg = val;
6324 inst.operands[i].isreg = 1;
6325 inst.operands[i].present = 1;
6326
6327 if (rtype == REG_TYPE_NQ)
6328 {
6329 first_error (_("can't use Neon quad register here"));
6330 return FAIL;
6331 }
6332 else if (rtype != REG_TYPE_VFS)
6333 {
6334 i++;
6335 if (skip_past_comma (&ptr) == FAIL)
6336 goto wanted_comma;
6337 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6338 goto wanted_arm;
6339 inst.operands[i].reg = val;
6340 inst.operands[i].isreg = 1;
6341 inst.operands[i].present = 1;
6342 }
6343 }
037e8744 6344 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
477330fc
RM
6345 &optype)) != FAIL)
6346 {
6347 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6348 Case 1: VMOV<c><q> <Dd>, <Dm>
6349 Case 8: VMOV.F32 <Sd>, <Sm>
6350 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6351
6352 inst.operands[i].reg = val;
6353 inst.operands[i].isreg = 1;
6354 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6355 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6356 inst.operands[i].isvec = 1;
6357 inst.operands[i].vectype = optype;
6358 inst.operands[i].present = 1;
6359
6360 if (skip_past_comma (&ptr) == SUCCESS)
6361 {
6362 /* Case 15. */
6363 i++;
6364
6365 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6366 goto wanted_arm;
6367
6368 inst.operands[i].reg = val;
6369 inst.operands[i].isreg = 1;
6370 inst.operands[i++].present = 1;
6371
6372 if (skip_past_comma (&ptr) == FAIL)
6373 goto wanted_comma;
6374
6375 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6376 goto wanted_arm;
6377
6378 inst.operands[i].reg = val;
6379 inst.operands[i].isreg = 1;
6380 inst.operands[i].present = 1;
6381 }
6382 }
4641781c 6383 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
477330fc
RM
6384 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6385 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6386 Case 10: VMOV.F32 <Sd>, #<imm>
6387 Case 11: VMOV.F64 <Dd>, #<imm> */
6388 inst.operands[i].immisfloat = 1;
8335d6aa
JW
6389 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6390 == SUCCESS)
477330fc
RM
6391 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6392 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6393 ;
5287ad62 6394 else
477330fc
RM
6395 {
6396 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6397 return FAIL;
6398 }
5287ad62 6399 }
dcbf9037 6400 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
6401 {
6402 /* Cases 6, 7. */
6403 inst.operands[i].reg = val;
6404 inst.operands[i].isreg = 1;
6405 inst.operands[i++].present = 1;
5f4273c7 6406
5287ad62 6407 if (skip_past_comma (&ptr) == FAIL)
477330fc 6408 goto wanted_comma;
5f4273c7 6409
dcbf9037 6410 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
477330fc
RM
6411 {
6412 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6413 inst.operands[i].reg = val;
6414 inst.operands[i].isscalar = 1;
6415 inst.operands[i].present = 1;
6416 inst.operands[i].vectype = optype;
6417 }
dcbf9037 6418 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6419 {
6420 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6421 inst.operands[i].reg = val;
6422 inst.operands[i].isreg = 1;
6423 inst.operands[i++].present = 1;
6424
6425 if (skip_past_comma (&ptr) == FAIL)
6426 goto wanted_comma;
6427
6428 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6429 == FAIL)
6430 {
6431 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6432 return FAIL;
6433 }
6434
6435 inst.operands[i].reg = val;
6436 inst.operands[i].isreg = 1;
6437 inst.operands[i].isvec = 1;
6438 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6439 inst.operands[i].vectype = optype;
6440 inst.operands[i].present = 1;
6441
6442 if (rtype == REG_TYPE_VFS)
6443 {
6444 /* Case 14. */
6445 i++;
6446 if (skip_past_comma (&ptr) == FAIL)
6447 goto wanted_comma;
6448 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6449 &optype)) == FAIL)
6450 {
6451 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6452 return FAIL;
6453 }
6454 inst.operands[i].reg = val;
6455 inst.operands[i].isreg = 1;
6456 inst.operands[i].isvec = 1;
6457 inst.operands[i].issingle = 1;
6458 inst.operands[i].vectype = optype;
6459 inst.operands[i].present = 1;
6460 }
6461 }
037e8744 6462 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
477330fc
RM
6463 != FAIL)
6464 {
6465 /* Case 13. */
6466 inst.operands[i].reg = val;
6467 inst.operands[i].isreg = 1;
6468 inst.operands[i].isvec = 1;
6469 inst.operands[i].issingle = 1;
6470 inst.operands[i].vectype = optype;
6471 inst.operands[i].present = 1;
6472 }
5287ad62
JB
6473 }
6474 else
6475 {
dcbf9037 6476 first_error (_("parse error"));
5287ad62
JB
6477 return FAIL;
6478 }
6479
6480 /* Successfully parsed the operands. Update args. */
6481 *which_operand = i;
6482 *str = ptr;
6483 return SUCCESS;
6484
5f4273c7 6485 wanted_comma:
dcbf9037 6486 first_error (_("expected comma"));
5287ad62 6487 return FAIL;
5f4273c7
NC
6488
6489 wanted_arm:
dcbf9037 6490 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6491 return FAIL;
5287ad62
JB
6492}
6493
5be8be5d
DG
6494/* Use this macro when the operand constraints are different
6495 for ARM and THUMB (e.g. ldrd). */
6496#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6497 ((arm_operand) | ((thumb_operand) << 16))
6498
c19d1205
ZW
6499/* Matcher codes for parse_operands. */
6500enum operand_parse_code
6501{
6502 OP_stop, /* end of line */
6503
6504 OP_RR, /* ARM register */
6505 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6506 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6507 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6508 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6509 optional trailing ! */
c19d1205
ZW
6510 OP_RRw, /* ARM register, not r15, optional trailing ! */
6511 OP_RCP, /* Coprocessor number */
6512 OP_RCN, /* Coprocessor register */
6513 OP_RF, /* FPA register */
6514 OP_RVS, /* VFP single precision register */
5287ad62
JB
6515 OP_RVD, /* VFP double precision register (0..15) */
6516 OP_RND, /* Neon double precision register (0..31) */
6517 OP_RNQ, /* Neon quad precision register */
037e8744 6518 OP_RVSD, /* VFP single or double precision register */
dec41383 6519 OP_RNSD, /* Neon single or double precision register */
5287ad62 6520 OP_RNDQ, /* Neon double or quad precision register */
037e8744 6521 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6522 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6523 OP_RVC, /* VFP control register */
6524 OP_RMF, /* Maverick F register */
6525 OP_RMD, /* Maverick D register */
6526 OP_RMFX, /* Maverick FX register */
6527 OP_RMDX, /* Maverick DX register */
6528 OP_RMAX, /* Maverick AX register */
6529 OP_RMDS, /* Maverick DSPSC register */
6530 OP_RIWR, /* iWMMXt wR register */
6531 OP_RIWC, /* iWMMXt wC register */
6532 OP_RIWG, /* iWMMXt wCG register */
6533 OP_RXA, /* XScale accumulator register */
6534
6535 OP_REGLST, /* ARM register list */
6536 OP_VRSLST, /* VFP single-precision register list */
6537 OP_VRDLST, /* VFP double-precision register list */
037e8744 6538 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6539 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6540 OP_NSTRLST, /* Neon element/structure list */
6541
5287ad62 6542 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6543 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
aacf0b33 6544 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
5287ad62 6545 OP_RR_RNSC, /* ARM reg or Neon scalar. */
dec41383 6546 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
037e8744 6547 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
6548 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6549 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6550 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6551 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 6552 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6553 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
6554
6555 OP_I0, /* immediate zero */
c19d1205
ZW
6556 OP_I7, /* immediate value 0 .. 7 */
6557 OP_I15, /* 0 .. 15 */
6558 OP_I16, /* 1 .. 16 */
5287ad62 6559 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6560 OP_I31, /* 0 .. 31 */
6561 OP_I31w, /* 0 .. 31, optional trailing ! */
6562 OP_I32, /* 1 .. 32 */
5287ad62
JB
6563 OP_I32z, /* 0 .. 32 */
6564 OP_I63, /* 0 .. 63 */
c19d1205 6565 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6566 OP_I64, /* 1 .. 64 */
6567 OP_I64z, /* 0 .. 64 */
c19d1205 6568 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6569
6570 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6571 OP_I7b, /* 0 .. 7 */
6572 OP_I15b, /* 0 .. 15 */
6573 OP_I31b, /* 0 .. 31 */
6574
6575 OP_SH, /* shifter operand */
4962c51a 6576 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6577 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
6578 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6579 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6580 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6581 OP_EXP, /* arbitrary expression */
6582 OP_EXPi, /* same, with optional immediate prefix */
6583 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 6584 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c28eeff2
SN
6585 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6586 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
c19d1205
ZW
6587
6588 OP_CPSF, /* CPS flags */
6589 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
6590 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6591 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 6592 OP_COND, /* conditional code */
92e90b6e 6593 OP_TB, /* Table branch. */
c19d1205 6594
037e8744
JB
6595 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6596
c19d1205 6597 OP_RRnpc_I0, /* ARM register or literal 0 */
33eaf5de 6598 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
c19d1205
ZW
6599 OP_RR_EXi, /* ARM register or expression with imm prefix */
6600 OP_RF_IF, /* FPA register or immediate */
6601 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 6602 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
6603
6604 /* Optional operands. */
6605 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6606 OP_oI31b, /* 0 .. 31 */
5287ad62 6607 OP_oI32b, /* 1 .. 32 */
5f1af56b 6608 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
6609 OP_oIffffb, /* 0 .. 65535 */
6610 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6611
6612 OP_oRR, /* ARM register */
6613 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 6614 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 6615 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
6616 OP_oRND, /* Optional Neon double precision register */
6617 OP_oRNQ, /* Optional Neon quad precision register */
6618 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 6619 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
6620 OP_oSHll, /* LSL immediate */
6621 OP_oSHar, /* ASR immediate */
6622 OP_oSHllar, /* LSL or ASR immediate */
6623 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 6624 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 6625
5be8be5d
DG
6626 /* Some pre-defined mixed (ARM/THUMB) operands. */
6627 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6628 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6629 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6630
c19d1205
ZW
6631 OP_FIRST_OPTIONAL = OP_oI7b
6632};
a737bd4d 6633
c19d1205
ZW
6634/* Generic instruction operand parser. This does no encoding and no
6635 semantic validation; it merely squirrels values away in the inst
6636 structure. Returns SUCCESS or FAIL depending on whether the
6637 specified grammar matched. */
6638static int
5be8be5d 6639parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 6640{
5be8be5d 6641 unsigned const int *upat = pattern;
c19d1205
ZW
6642 char *backtrack_pos = 0;
6643 const char *backtrack_error = 0;
99aad254 6644 int i, val = 0, backtrack_index = 0;
5287ad62 6645 enum arm_reg_type rtype;
4962c51a 6646 parse_operand_result result;
5be8be5d 6647 unsigned int op_parse_code;
c19d1205 6648
e07e6e58
NC
6649#define po_char_or_fail(chr) \
6650 do \
6651 { \
6652 if (skip_past_char (&str, chr) == FAIL) \
477330fc 6653 goto bad_args; \
e07e6e58
NC
6654 } \
6655 while (0)
c19d1205 6656
e07e6e58
NC
6657#define po_reg_or_fail(regtype) \
6658 do \
dcbf9037 6659 { \
e07e6e58 6660 val = arm_typed_reg_parse (& str, regtype, & rtype, \
477330fc 6661 & inst.operands[i].vectype); \
e07e6e58 6662 if (val == FAIL) \
477330fc
RM
6663 { \
6664 first_error (_(reg_expected_msgs[regtype])); \
6665 goto failure; \
6666 } \
e07e6e58
NC
6667 inst.operands[i].reg = val; \
6668 inst.operands[i].isreg = 1; \
6669 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6670 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6671 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc
RM
6672 || rtype == REG_TYPE_VFD \
6673 || rtype == REG_TYPE_NQ); \
dcbf9037 6674 } \
e07e6e58
NC
6675 while (0)
6676
6677#define po_reg_or_goto(regtype, label) \
6678 do \
6679 { \
6680 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6681 & inst.operands[i].vectype); \
6682 if (val == FAIL) \
6683 goto label; \
dcbf9037 6684 \
e07e6e58
NC
6685 inst.operands[i].reg = val; \
6686 inst.operands[i].isreg = 1; \
6687 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6688 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6689 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc 6690 || rtype == REG_TYPE_VFD \
e07e6e58
NC
6691 || rtype == REG_TYPE_NQ); \
6692 } \
6693 while (0)
6694
6695#define po_imm_or_fail(min, max, popt) \
6696 do \
6697 { \
6698 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6699 goto failure; \
6700 inst.operands[i].imm = val; \
6701 } \
6702 while (0)
6703
6704#define po_scalar_or_goto(elsz, label) \
6705 do \
6706 { \
6707 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6708 if (val == FAIL) \
6709 goto label; \
6710 inst.operands[i].reg = val; \
6711 inst.operands[i].isscalar = 1; \
6712 } \
6713 while (0)
6714
6715#define po_misc_or_fail(expr) \
6716 do \
6717 { \
6718 if (expr) \
6719 goto failure; \
6720 } \
6721 while (0)
6722
6723#define po_misc_or_fail_no_backtrack(expr) \
6724 do \
6725 { \
6726 result = expr; \
6727 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6728 backtrack_pos = 0; \
6729 if (result != PARSE_OPERAND_SUCCESS) \
6730 goto failure; \
6731 } \
6732 while (0)
4962c51a 6733
52e7f43d
RE
6734#define po_barrier_or_imm(str) \
6735 do \
6736 { \
6737 val = parse_barrier (&str); \
ccb84d65
JB
6738 if (val == FAIL && ! ISALPHA (*str)) \
6739 goto immediate; \
6740 if (val == FAIL \
6741 /* ISB can only take SY as an option. */ \
6742 || ((inst.instruction & 0xf0) == 0x60 \
6743 && val != 0xf)) \
52e7f43d 6744 { \
ccb84d65
JB
6745 inst.error = _("invalid barrier type"); \
6746 backtrack_pos = 0; \
6747 goto failure; \
52e7f43d
RE
6748 } \
6749 } \
6750 while (0)
6751
c19d1205
ZW
6752 skip_whitespace (str);
6753
6754 for (i = 0; upat[i] != OP_stop; i++)
6755 {
5be8be5d
DG
6756 op_parse_code = upat[i];
6757 if (op_parse_code >= 1<<16)
6758 op_parse_code = thumb ? (op_parse_code >> 16)
6759 : (op_parse_code & ((1<<16)-1));
6760
6761 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
6762 {
6763 /* Remember where we are in case we need to backtrack. */
9c2799c2 6764 gas_assert (!backtrack_pos);
c19d1205
ZW
6765 backtrack_pos = str;
6766 backtrack_error = inst.error;
6767 backtrack_index = i;
6768 }
6769
b6702015 6770 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
6771 po_char_or_fail (',');
6772
5be8be5d 6773 switch (op_parse_code)
c19d1205
ZW
6774 {
6775 /* Registers */
6776 case OP_oRRnpc:
5be8be5d 6777 case OP_oRRnpcsp:
c19d1205 6778 case OP_RRnpc:
5be8be5d 6779 case OP_RRnpcsp:
c19d1205
ZW
6780 case OP_oRR:
6781 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6782 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6783 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6784 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6785 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6786 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
477330fc 6787 case OP_oRND:
5287ad62 6788 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6789 case OP_RVC:
6790 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6791 break;
6792 /* Also accept generic coprocessor regs for unknown registers. */
6793 coproc_reg:
6794 po_reg_or_fail (REG_TYPE_CN);
6795 break;
c19d1205
ZW
6796 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6797 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6798 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6799 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6800 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6801 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6802 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6803 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6804 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6805 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
477330fc 6806 case OP_oRNQ:
5287ad62 6807 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
dec41383 6808 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
477330fc 6809 case OP_oRNDQ:
5287ad62 6810 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
477330fc
RM
6811 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6812 case OP_oRNSDQ:
6813 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6814
6815 /* Neon scalar. Using an element size of 8 means that some invalid
6816 scalars are accepted here, so deal with those in later code. */
6817 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6818
6819 case OP_RNDQ_I0:
6820 {
6821 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6822 break;
6823 try_imm0:
6824 po_imm_or_fail (0, 0, TRUE);
6825 }
6826 break;
6827
6828 case OP_RVSD_I0:
6829 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6830 break;
6831
aacf0b33
KT
6832 case OP_RSVD_FI0:
6833 {
6834 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
6835 break;
6836 try_ifimm0:
6837 if (parse_ifimm_zero (&str))
6838 inst.operands[i].imm = 0;
6839 else
6840 {
6841 inst.error
6842 = _("only floating point zero is allowed as immediate value");
6843 goto failure;
6844 }
6845 }
6846 break;
6847
477330fc
RM
6848 case OP_RR_RNSC:
6849 {
6850 po_scalar_or_goto (8, try_rr);
6851 break;
6852 try_rr:
6853 po_reg_or_fail (REG_TYPE_RN);
6854 }
6855 break;
6856
6857 case OP_RNSDQ_RNSC:
6858 {
6859 po_scalar_or_goto (8, try_nsdq);
6860 break;
6861 try_nsdq:
6862 po_reg_or_fail (REG_TYPE_NSDQ);
6863 }
6864 break;
6865
dec41383
JW
6866 case OP_RNSD_RNSC:
6867 {
6868 po_scalar_or_goto (8, try_s_scalar);
6869 break;
6870 try_s_scalar:
6871 po_scalar_or_goto (4, try_nsd);
6872 break;
6873 try_nsd:
6874 po_reg_or_fail (REG_TYPE_NSD);
6875 }
6876 break;
6877
477330fc
RM
6878 case OP_RNDQ_RNSC:
6879 {
6880 po_scalar_or_goto (8, try_ndq);
6881 break;
6882 try_ndq:
6883 po_reg_or_fail (REG_TYPE_NDQ);
6884 }
6885 break;
6886
6887 case OP_RND_RNSC:
6888 {
6889 po_scalar_or_goto (8, try_vfd);
6890 break;
6891 try_vfd:
6892 po_reg_or_fail (REG_TYPE_VFD);
6893 }
6894 break;
6895
6896 case OP_VMOV:
6897 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6898 not careful then bad things might happen. */
6899 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6900 break;
6901
6902 case OP_RNDQ_Ibig:
6903 {
6904 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6905 break;
6906 try_immbig:
6907 /* There's a possibility of getting a 64-bit immediate here, so
6908 we need special handling. */
8335d6aa
JW
6909 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
6910 == FAIL)
477330fc
RM
6911 {
6912 inst.error = _("immediate value is out of range");
6913 goto failure;
6914 }
6915 }
6916 break;
6917
6918 case OP_RNDQ_I63b:
6919 {
6920 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6921 break;
6922 try_shimm:
6923 po_imm_or_fail (0, 63, TRUE);
6924 }
6925 break;
c19d1205
ZW
6926
6927 case OP_RRnpcb:
6928 po_char_or_fail ('[');
6929 po_reg_or_fail (REG_TYPE_RN);
6930 po_char_or_fail (']');
6931 break;
a737bd4d 6932
55881a11 6933 case OP_RRnpctw:
c19d1205 6934 case OP_RRw:
b6702015 6935 case OP_oRRw:
c19d1205
ZW
6936 po_reg_or_fail (REG_TYPE_RN);
6937 if (skip_past_char (&str, '!') == SUCCESS)
6938 inst.operands[i].writeback = 1;
6939 break;
6940
6941 /* Immediates */
6942 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6943 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6944 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
477330fc 6945 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6946 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6947 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
477330fc 6948 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6949 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
477330fc
RM
6950 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6951 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6952 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6953 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6954
6955 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6956 case OP_oI7b:
6957 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6958 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6959 case OP_oI31b:
6960 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
477330fc
RM
6961 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6962 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
6963 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6964
6965 /* Immediate variants */
6966 case OP_oI255c:
6967 po_char_or_fail ('{');
6968 po_imm_or_fail (0, 255, TRUE);
6969 po_char_or_fail ('}');
6970 break;
6971
6972 case OP_I31w:
6973 /* The expression parser chokes on a trailing !, so we have
6974 to find it first and zap it. */
6975 {
6976 char *s = str;
6977 while (*s && *s != ',')
6978 s++;
6979 if (s[-1] == '!')
6980 {
6981 s[-1] = '\0';
6982 inst.operands[i].writeback = 1;
6983 }
6984 po_imm_or_fail (0, 31, TRUE);
6985 if (str == s - 1)
6986 str = s;
6987 }
6988 break;
6989
6990 /* Expressions */
6991 case OP_EXPi: EXPi:
6992 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6993 GE_OPT_PREFIX));
6994 break;
6995
6996 case OP_EXP:
6997 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6998 GE_NO_PREFIX));
6999 break;
7000
7001 case OP_EXPr: EXPr:
7002 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
7003 GE_NO_PREFIX));
7004 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 7005 {
c19d1205
ZW
7006 val = parse_reloc (&str);
7007 if (val == -1)
7008 {
7009 inst.error = _("unrecognized relocation suffix");
7010 goto failure;
7011 }
7012 else if (val != BFD_RELOC_UNUSED)
7013 {
7014 inst.operands[i].imm = val;
7015 inst.operands[i].hasreloc = 1;
7016 }
a737bd4d 7017 }
c19d1205 7018 break;
a737bd4d 7019
b6895b4f
PB
7020 /* Operand for MOVW or MOVT. */
7021 case OP_HALF:
7022 po_misc_or_fail (parse_half (&str));
7023 break;
7024
e07e6e58 7025 /* Register or expression. */
c19d1205
ZW
7026 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7027 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 7028
e07e6e58 7029 /* Register or immediate. */
c19d1205
ZW
7030 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7031 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 7032
c19d1205
ZW
7033 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7034 IF:
7035 if (!is_immediate_prefix (*str))
7036 goto bad_args;
7037 str++;
7038 val = parse_fpa_immediate (&str);
7039 if (val == FAIL)
7040 goto failure;
7041 /* FPA immediates are encoded as registers 8-15.
7042 parse_fpa_immediate has already applied the offset. */
7043 inst.operands[i].reg = val;
7044 inst.operands[i].isreg = 1;
7045 break;
09d92015 7046
2d447fca
JM
7047 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7048 I32z: po_imm_or_fail (0, 32, FALSE); break;
7049
e07e6e58 7050 /* Two kinds of register. */
c19d1205
ZW
7051 case OP_RIWR_RIWC:
7052 {
7053 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
7054 if (!rege
7055 || (rege->type != REG_TYPE_MMXWR
7056 && rege->type != REG_TYPE_MMXWC
7057 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
7058 {
7059 inst.error = _("iWMMXt data or control register expected");
7060 goto failure;
7061 }
7062 inst.operands[i].reg = rege->number;
7063 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7064 }
7065 break;
09d92015 7066
41adaa5c
JM
7067 case OP_RIWC_RIWG:
7068 {
7069 struct reg_entry *rege = arm_reg_parse_multi (&str);
7070 if (!rege
7071 || (rege->type != REG_TYPE_MMXWC
7072 && rege->type != REG_TYPE_MMXWCG))
7073 {
7074 inst.error = _("iWMMXt control register expected");
7075 goto failure;
7076 }
7077 inst.operands[i].reg = rege->number;
7078 inst.operands[i].isreg = 1;
7079 }
7080 break;
7081
c19d1205
ZW
7082 /* Misc */
7083 case OP_CPSF: val = parse_cps_flags (&str); break;
7084 case OP_ENDI: val = parse_endian_specifier (&str); break;
7085 case OP_oROR: val = parse_ror (&str); break;
c19d1205 7086 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
7087 case OP_oBARRIER_I15:
7088 po_barrier_or_imm (str); break;
7089 immediate:
7090 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
477330fc 7091 goto failure;
52e7f43d 7092 break;
c19d1205 7093
fa94de6b 7094 case OP_wPSR:
d2cd1205 7095 case OP_rPSR:
90ec0d68
MGD
7096 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7097 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7098 {
7099 inst.error = _("Banked registers are not available with this "
7100 "architecture.");
7101 goto failure;
7102 }
7103 break;
d2cd1205
JB
7104 try_psr:
7105 val = parse_psr (&str, op_parse_code == OP_wPSR);
7106 break;
037e8744 7107
477330fc
RM
7108 case OP_APSR_RR:
7109 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7110 break;
7111 try_apsr:
7112 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7113 instruction). */
7114 if (strncasecmp (str, "APSR_", 5) == 0)
7115 {
7116 unsigned found = 0;
7117 str += 5;
7118 while (found < 15)
7119 switch (*str++)
7120 {
7121 case 'c': found = (found & 1) ? 16 : found | 1; break;
7122 case 'n': found = (found & 2) ? 16 : found | 2; break;
7123 case 'z': found = (found & 4) ? 16 : found | 4; break;
7124 case 'v': found = (found & 8) ? 16 : found | 8; break;
7125 default: found = 16;
7126 }
7127 if (found != 15)
7128 goto failure;
7129 inst.operands[i].isvec = 1;
f7c21dc7
NC
7130 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7131 inst.operands[i].reg = REG_PC;
477330fc
RM
7132 }
7133 else
7134 goto failure;
7135 break;
037e8744 7136
92e90b6e
PB
7137 case OP_TB:
7138 po_misc_or_fail (parse_tb (&str));
7139 break;
7140
e07e6e58 7141 /* Register lists. */
c19d1205
ZW
7142 case OP_REGLST:
7143 val = parse_reg_list (&str);
7144 if (*str == '^')
7145 {
5e0d7f77 7146 inst.operands[i].writeback = 1;
c19d1205
ZW
7147 str++;
7148 }
7149 break;
09d92015 7150
c19d1205 7151 case OP_VRSLST:
5287ad62 7152 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 7153 break;
09d92015 7154
c19d1205 7155 case OP_VRDLST:
5287ad62 7156 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 7157 break;
a737bd4d 7158
477330fc
RM
7159 case OP_VRSDLST:
7160 /* Allow Q registers too. */
7161 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7162 REGLIST_NEON_D);
7163 if (val == FAIL)
7164 {
7165 inst.error = NULL;
7166 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7167 REGLIST_VFP_S);
7168 inst.operands[i].issingle = 1;
7169 }
7170 break;
7171
7172 case OP_NRDLST:
7173 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7174 REGLIST_NEON_D);
7175 break;
5287ad62
JB
7176
7177 case OP_NSTRLST:
477330fc
RM
7178 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7179 &inst.operands[i].vectype);
7180 break;
5287ad62 7181
c19d1205
ZW
7182 /* Addressing modes */
7183 case OP_ADDR:
7184 po_misc_or_fail (parse_address (&str, i));
7185 break;
09d92015 7186
4962c51a
MS
7187 case OP_ADDRGLDR:
7188 po_misc_or_fail_no_backtrack (
477330fc 7189 parse_address_group_reloc (&str, i, GROUP_LDR));
4962c51a
MS
7190 break;
7191
7192 case OP_ADDRGLDRS:
7193 po_misc_or_fail_no_backtrack (
477330fc 7194 parse_address_group_reloc (&str, i, GROUP_LDRS));
4962c51a
MS
7195 break;
7196
7197 case OP_ADDRGLDC:
7198 po_misc_or_fail_no_backtrack (
477330fc 7199 parse_address_group_reloc (&str, i, GROUP_LDC));
4962c51a
MS
7200 break;
7201
c19d1205
ZW
7202 case OP_SH:
7203 po_misc_or_fail (parse_shifter_operand (&str, i));
7204 break;
09d92015 7205
4962c51a
MS
7206 case OP_SHG:
7207 po_misc_or_fail_no_backtrack (
477330fc 7208 parse_shifter_operand_group_reloc (&str, i));
4962c51a
MS
7209 break;
7210
c19d1205
ZW
7211 case OP_oSHll:
7212 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7213 break;
09d92015 7214
c19d1205
ZW
7215 case OP_oSHar:
7216 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7217 break;
09d92015 7218
c19d1205
ZW
7219 case OP_oSHllar:
7220 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7221 break;
09d92015 7222
c19d1205 7223 default:
5be8be5d 7224 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 7225 }
09d92015 7226
c19d1205
ZW
7227 /* Various value-based sanity checks and shared operations. We
7228 do not signal immediate failures for the register constraints;
7229 this allows a syntax error to take precedence. */
5be8be5d 7230 switch (op_parse_code)
c19d1205
ZW
7231 {
7232 case OP_oRRnpc:
7233 case OP_RRnpc:
7234 case OP_RRnpcb:
7235 case OP_RRw:
b6702015 7236 case OP_oRRw:
c19d1205
ZW
7237 case OP_RRnpc_I0:
7238 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7239 inst.error = BAD_PC;
7240 break;
09d92015 7241
5be8be5d
DG
7242 case OP_oRRnpcsp:
7243 case OP_RRnpcsp:
7244 if (inst.operands[i].isreg)
7245 {
7246 if (inst.operands[i].reg == REG_PC)
7247 inst.error = BAD_PC;
5c8ed6a4
JW
7248 else if (inst.operands[i].reg == REG_SP
7249 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7250 relaxed since ARMv8-A. */
7251 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7252 {
7253 gas_assert (thumb);
7254 inst.error = BAD_SP;
7255 }
5be8be5d
DG
7256 }
7257 break;
7258
55881a11 7259 case OP_RRnpctw:
fa94de6b
RM
7260 if (inst.operands[i].isreg
7261 && inst.operands[i].reg == REG_PC
55881a11
MGD
7262 && (inst.operands[i].writeback || thumb))
7263 inst.error = BAD_PC;
7264 break;
7265
c19d1205
ZW
7266 case OP_CPSF:
7267 case OP_ENDI:
7268 case OP_oROR:
d2cd1205
JB
7269 case OP_wPSR:
7270 case OP_rPSR:
c19d1205 7271 case OP_COND:
52e7f43d 7272 case OP_oBARRIER_I15:
c19d1205
ZW
7273 case OP_REGLST:
7274 case OP_VRSLST:
7275 case OP_VRDLST:
477330fc
RM
7276 case OP_VRSDLST:
7277 case OP_NRDLST:
7278 case OP_NSTRLST:
c19d1205
ZW
7279 if (val == FAIL)
7280 goto failure;
7281 inst.operands[i].imm = val;
7282 break;
a737bd4d 7283
c19d1205
ZW
7284 default:
7285 break;
7286 }
09d92015 7287
c19d1205
ZW
7288 /* If we get here, this operand was successfully parsed. */
7289 inst.operands[i].present = 1;
7290 continue;
09d92015 7291
c19d1205 7292 bad_args:
09d92015 7293 inst.error = BAD_ARGS;
c19d1205
ZW
7294
7295 failure:
7296 if (!backtrack_pos)
d252fdde
PB
7297 {
7298 /* The parse routine should already have set inst.error, but set a
5f4273c7 7299 default here just in case. */
d252fdde
PB
7300 if (!inst.error)
7301 inst.error = _("syntax error");
7302 return FAIL;
7303 }
c19d1205
ZW
7304
7305 /* Do not backtrack over a trailing optional argument that
7306 absorbed some text. We will only fail again, with the
7307 'garbage following instruction' error message, which is
7308 probably less helpful than the current one. */
7309 if (backtrack_index == i && backtrack_pos != str
7310 && upat[i+1] == OP_stop)
d252fdde
PB
7311 {
7312 if (!inst.error)
7313 inst.error = _("syntax error");
7314 return FAIL;
7315 }
c19d1205
ZW
7316
7317 /* Try again, skipping the optional argument at backtrack_pos. */
7318 str = backtrack_pos;
7319 inst.error = backtrack_error;
7320 inst.operands[backtrack_index].present = 0;
7321 i = backtrack_index;
7322 backtrack_pos = 0;
09d92015 7323 }
09d92015 7324
c19d1205
ZW
7325 /* Check that we have parsed all the arguments. */
7326 if (*str != '\0' && !inst.error)
7327 inst.error = _("garbage following instruction");
09d92015 7328
c19d1205 7329 return inst.error ? FAIL : SUCCESS;
09d92015
MM
7330}
7331
c19d1205
ZW
7332#undef po_char_or_fail
7333#undef po_reg_or_fail
7334#undef po_reg_or_goto
7335#undef po_imm_or_fail
5287ad62 7336#undef po_scalar_or_fail
52e7f43d 7337#undef po_barrier_or_imm
e07e6e58 7338
c19d1205 7339/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
7340#define constraint(expr, err) \
7341 do \
c19d1205 7342 { \
e07e6e58
NC
7343 if (expr) \
7344 { \
7345 inst.error = err; \
7346 return; \
7347 } \
c19d1205 7348 } \
e07e6e58 7349 while (0)
c19d1205 7350
fdfde340
JM
7351/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7352 instructions are unpredictable if these registers are used. This
5c8ed6a4
JW
7353 is the BadReg predicate in ARM's Thumb-2 documentation.
7354
7355 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7356 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7357#define reject_bad_reg(reg) \
7358 do \
7359 if (reg == REG_PC) \
7360 { \
7361 inst.error = BAD_PC; \
7362 return; \
7363 } \
7364 else if (reg == REG_SP \
7365 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7366 { \
7367 inst.error = BAD_SP; \
7368 return; \
7369 } \
fdfde340
JM
7370 while (0)
7371
94206790
MM
7372/* If REG is R13 (the stack pointer), warn that its use is
7373 deprecated. */
7374#define warn_deprecated_sp(reg) \
7375 do \
7376 if (warn_on_deprecated && reg == REG_SP) \
5c3696f8 7377 as_tsktsk (_("use of r13 is deprecated")); \
94206790
MM
7378 while (0)
7379
c19d1205
ZW
7380/* Functions for operand encoding. ARM, then Thumb. */
7381
d840c081 7382#define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
c19d1205 7383
9db2f6b4
RL
7384/* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7385
7386 The only binary encoding difference is the Coprocessor number. Coprocessor
7387 9 is used for half-precision calculations or conversions. The format of the
2b0f3761 7388 instruction is the same as the equivalent Coprocessor 10 instruction that
9db2f6b4
RL
7389 exists for Single-Precision operation. */
7390
7391static void
7392do_scalar_fp16_v82_encode (void)
7393{
7394 if (inst.cond != COND_ALWAYS)
7395 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7396 " the behaviour is UNPREDICTABLE"));
7397 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7398 _(BAD_FP16));
7399
7400 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7401 mark_feature_used (&arm_ext_fp16);
7402}
7403
c19d1205
ZW
7404/* If VAL can be encoded in the immediate field of an ARM instruction,
7405 return the encoded form. Otherwise, return FAIL. */
7406
7407static unsigned int
7408encode_arm_immediate (unsigned int val)
09d92015 7409{
c19d1205
ZW
7410 unsigned int a, i;
7411
4f1d6205
L
7412 if (val <= 0xff)
7413 return val;
7414
7415 for (i = 2; i < 32; i += 2)
c19d1205
ZW
7416 if ((a = rotate_left (val, i)) <= 0xff)
7417 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
7418
7419 return FAIL;
09d92015
MM
7420}
7421
c19d1205
ZW
7422/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
7423 return the encoded form. Otherwise, return FAIL. */
7424static unsigned int
7425encode_thumb32_immediate (unsigned int val)
09d92015 7426{
c19d1205 7427 unsigned int a, i;
09d92015 7428
9c3c69f2 7429 if (val <= 0xff)
c19d1205 7430 return val;
a737bd4d 7431
9c3c69f2 7432 for (i = 1; i <= 24; i++)
09d92015 7433 {
9c3c69f2
PB
7434 a = val >> i;
7435 if ((val & ~(0xff << i)) == 0)
7436 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 7437 }
a737bd4d 7438
c19d1205
ZW
7439 a = val & 0xff;
7440 if (val == ((a << 16) | a))
7441 return 0x100 | a;
7442 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
7443 return 0x300 | a;
09d92015 7444
c19d1205
ZW
7445 a = val & 0xff00;
7446 if (val == ((a << 16) | a))
7447 return 0x200 | (a >> 8);
a737bd4d 7448
c19d1205 7449 return FAIL;
09d92015 7450}
5287ad62 7451/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
7452
7453static void
5287ad62
JB
7454encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
7455{
7456 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
7457 && reg > 15)
7458 {
b1cc4aeb 7459 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
7460 {
7461 if (thumb_mode)
7462 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
7463 fpu_vfp_ext_d32);
7464 else
7465 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
7466 fpu_vfp_ext_d32);
7467 }
5287ad62 7468 else
477330fc
RM
7469 {
7470 first_error (_("D register out of range for selected VFP version"));
7471 return;
7472 }
5287ad62
JB
7473 }
7474
c19d1205 7475 switch (pos)
09d92015 7476 {
c19d1205
ZW
7477 case VFP_REG_Sd:
7478 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7479 break;
7480
7481 case VFP_REG_Sn:
7482 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7483 break;
7484
7485 case VFP_REG_Sm:
7486 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7487 break;
7488
5287ad62
JB
7489 case VFP_REG_Dd:
7490 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7491 break;
5f4273c7 7492
5287ad62
JB
7493 case VFP_REG_Dn:
7494 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7495 break;
5f4273c7 7496
5287ad62
JB
7497 case VFP_REG_Dm:
7498 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7499 break;
7500
c19d1205
ZW
7501 default:
7502 abort ();
09d92015 7503 }
09d92015
MM
7504}
7505
c19d1205 7506/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 7507 if any, is handled by md_apply_fix. */
09d92015 7508static void
c19d1205 7509encode_arm_shift (int i)
09d92015 7510{
008a97ef
RL
7511 /* register-shifted register. */
7512 if (inst.operands[i].immisreg)
7513 {
bf355b69
MR
7514 int op_index;
7515 for (op_index = 0; op_index <= i; ++op_index)
008a97ef 7516 {
5689c942
RL
7517 /* Check the operand only when it's presented. In pre-UAL syntax,
7518 if the destination register is the same as the first operand, two
7519 register form of the instruction can be used. */
bf355b69
MR
7520 if (inst.operands[op_index].present && inst.operands[op_index].isreg
7521 && inst.operands[op_index].reg == REG_PC)
008a97ef
RL
7522 as_warn (UNPRED_REG ("r15"));
7523 }
7524
7525 if (inst.operands[i].imm == REG_PC)
7526 as_warn (UNPRED_REG ("r15"));
7527 }
7528
c19d1205
ZW
7529 if (inst.operands[i].shift_kind == SHIFT_RRX)
7530 inst.instruction |= SHIFT_ROR << 5;
7531 else
09d92015 7532 {
c19d1205
ZW
7533 inst.instruction |= inst.operands[i].shift_kind << 5;
7534 if (inst.operands[i].immisreg)
7535 {
7536 inst.instruction |= SHIFT_BY_REG;
7537 inst.instruction |= inst.operands[i].imm << 8;
7538 }
7539 else
7540 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 7541 }
c19d1205 7542}
09d92015 7543
c19d1205
ZW
7544static void
7545encode_arm_shifter_operand (int i)
7546{
7547 if (inst.operands[i].isreg)
09d92015 7548 {
c19d1205
ZW
7549 inst.instruction |= inst.operands[i].reg;
7550 encode_arm_shift (i);
09d92015 7551 }
c19d1205 7552 else
a415b1cd
JB
7553 {
7554 inst.instruction |= INST_IMMEDIATE;
7555 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7556 inst.instruction |= inst.operands[i].imm;
7557 }
09d92015
MM
7558}
7559
c19d1205 7560/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 7561static void
c19d1205 7562encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 7563{
2b2f5df9
NC
7564 /* PR 14260:
7565 Generate an error if the operand is not a register. */
7566 constraint (!inst.operands[i].isreg,
7567 _("Instruction does not support =N addresses"));
7568
c19d1205 7569 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7570
c19d1205 7571 if (inst.operands[i].preind)
09d92015 7572 {
c19d1205
ZW
7573 if (is_t)
7574 {
7575 inst.error = _("instruction does not accept preindexed addressing");
7576 return;
7577 }
7578 inst.instruction |= PRE_INDEX;
7579 if (inst.operands[i].writeback)
7580 inst.instruction |= WRITE_BACK;
09d92015 7581
c19d1205
ZW
7582 }
7583 else if (inst.operands[i].postind)
7584 {
9c2799c2 7585 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
7586 if (is_t)
7587 inst.instruction |= WRITE_BACK;
7588 }
7589 else /* unindexed - only for coprocessor */
09d92015 7590 {
c19d1205 7591 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
7592 return;
7593 }
7594
c19d1205
ZW
7595 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7596 && (((inst.instruction & 0x000f0000) >> 16)
7597 == ((inst.instruction & 0x0000f000) >> 12)))
7598 as_warn ((inst.instruction & LOAD_BIT)
7599 ? _("destination register same as write-back base")
7600 : _("source register same as write-back base"));
09d92015
MM
7601}
7602
c19d1205
ZW
7603/* inst.operands[i] was set up by parse_address. Encode it into an
7604 ARM-format mode 2 load or store instruction. If is_t is true,
7605 reject forms that cannot be used with a T instruction (i.e. not
7606 post-indexed). */
a737bd4d 7607static void
c19d1205 7608encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 7609{
5be8be5d
DG
7610 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7611
c19d1205 7612 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7613
c19d1205 7614 if (inst.operands[i].immisreg)
09d92015 7615 {
5be8be5d
DG
7616 constraint ((inst.operands[i].imm == REG_PC
7617 || (is_pc && inst.operands[i].writeback)),
7618 BAD_PC_ADDRESSING);
c19d1205
ZW
7619 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7620 inst.instruction |= inst.operands[i].imm;
7621 if (!inst.operands[i].negative)
7622 inst.instruction |= INDEX_UP;
7623 if (inst.operands[i].shifted)
7624 {
7625 if (inst.operands[i].shift_kind == SHIFT_RRX)
7626 inst.instruction |= SHIFT_ROR << 5;
7627 else
7628 {
7629 inst.instruction |= inst.operands[i].shift_kind << 5;
7630 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7631 }
7632 }
09d92015 7633 }
c19d1205 7634 else /* immediate offset in inst.reloc */
09d92015 7635 {
5be8be5d
DG
7636 if (is_pc && !inst.reloc.pc_rel)
7637 {
7638 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
7639
7640 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7641 cannot use PC in addressing.
7642 PC cannot be used in writeback addressing, either. */
7643 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 7644 BAD_PC_ADDRESSING);
23a10334 7645
dc5ec521 7646 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
7647 if (warn_on_deprecated
7648 && !is_load
7649 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
5c3696f8 7650 as_tsktsk (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
7651 }
7652
c19d1205 7653 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7654 {
7655 /* Prefer + for zero encoded value. */
7656 if (!inst.operands[i].negative)
7657 inst.instruction |= INDEX_UP;
7658 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7659 }
09d92015 7660 }
09d92015
MM
7661}
7662
c19d1205
ZW
7663/* inst.operands[i] was set up by parse_address. Encode it into an
7664 ARM-format mode 3 load or store instruction. Reject forms that
7665 cannot be used with such instructions. If is_t is true, reject
7666 forms that cannot be used with a T instruction (i.e. not
7667 post-indexed). */
7668static void
7669encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 7670{
c19d1205 7671 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 7672 {
c19d1205
ZW
7673 inst.error = _("instruction does not accept scaled register index");
7674 return;
09d92015 7675 }
a737bd4d 7676
c19d1205 7677 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7678
c19d1205
ZW
7679 if (inst.operands[i].immisreg)
7680 {
5be8be5d 7681 constraint ((inst.operands[i].imm == REG_PC
eb9f3f00 7682 || (is_t && inst.operands[i].reg == REG_PC)),
5be8be5d 7683 BAD_PC_ADDRESSING);
eb9f3f00
JB
7684 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
7685 BAD_PC_WRITEBACK);
c19d1205
ZW
7686 inst.instruction |= inst.operands[i].imm;
7687 if (!inst.operands[i].negative)
7688 inst.instruction |= INDEX_UP;
7689 }
7690 else /* immediate offset in inst.reloc */
7691 {
5be8be5d
DG
7692 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7693 && inst.operands[i].writeback),
7694 BAD_PC_WRITEBACK);
c19d1205
ZW
7695 inst.instruction |= HWOFFSET_IMM;
7696 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7697 {
7698 /* Prefer + for zero encoded value. */
7699 if (!inst.operands[i].negative)
7700 inst.instruction |= INDEX_UP;
7701
7702 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7703 }
c19d1205 7704 }
a737bd4d
NC
7705}
7706
8335d6aa
JW
7707/* Write immediate bits [7:0] to the following locations:
7708
7709 |28/24|23 19|18 16|15 4|3 0|
7710 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
7711
7712 This function is used by VMOV/VMVN/VORR/VBIC. */
7713
7714static void
7715neon_write_immbits (unsigned immbits)
7716{
7717 inst.instruction |= immbits & 0xf;
7718 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
7719 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
7720}
7721
7722/* Invert low-order SIZE bits of XHI:XLO. */
7723
7724static void
7725neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
7726{
7727 unsigned immlo = xlo ? *xlo : 0;
7728 unsigned immhi = xhi ? *xhi : 0;
7729
7730 switch (size)
7731 {
7732 case 8:
7733 immlo = (~immlo) & 0xff;
7734 break;
7735
7736 case 16:
7737 immlo = (~immlo) & 0xffff;
7738 break;
7739
7740 case 64:
7741 immhi = (~immhi) & 0xffffffff;
7742 /* fall through. */
7743
7744 case 32:
7745 immlo = (~immlo) & 0xffffffff;
7746 break;
7747
7748 default:
7749 abort ();
7750 }
7751
7752 if (xlo)
7753 *xlo = immlo;
7754
7755 if (xhi)
7756 *xhi = immhi;
7757}
7758
7759/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
7760 A, B, C, D. */
09d92015 7761
c19d1205 7762static int
8335d6aa 7763neon_bits_same_in_bytes (unsigned imm)
09d92015 7764{
8335d6aa
JW
7765 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
7766 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
7767 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
7768 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
7769}
a737bd4d 7770
8335d6aa 7771/* For immediate of above form, return 0bABCD. */
09d92015 7772
8335d6aa
JW
7773static unsigned
7774neon_squash_bits (unsigned imm)
7775{
7776 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
7777 | ((imm & 0x01000000) >> 21);
7778}
7779
7780/* Compress quarter-float representation to 0b...000 abcdefgh. */
7781
7782static unsigned
7783neon_qfloat_bits (unsigned imm)
7784{
7785 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
7786}
7787
7788/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
7789 the instruction. *OP is passed as the initial value of the op field, and
7790 may be set to a different value depending on the constant (i.e.
7791 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
7792 MVN). If the immediate looks like a repeated pattern then also
7793 try smaller element sizes. */
7794
7795static int
7796neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
7797 unsigned *immbits, int *op, int size,
7798 enum neon_el_type type)
7799{
7800 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
7801 float. */
7802 if (type == NT_float && !float_p)
7803 return FAIL;
7804
7805 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
09d92015 7806 {
8335d6aa
JW
7807 if (size != 32 || *op == 1)
7808 return FAIL;
7809 *immbits = neon_qfloat_bits (immlo);
7810 return 0xf;
7811 }
7812
7813 if (size == 64)
7814 {
7815 if (neon_bits_same_in_bytes (immhi)
7816 && neon_bits_same_in_bytes (immlo))
c19d1205 7817 {
8335d6aa
JW
7818 if (*op == 1)
7819 return FAIL;
7820 *immbits = (neon_squash_bits (immhi) << 4)
7821 | neon_squash_bits (immlo);
7822 *op = 1;
7823 return 0xe;
c19d1205 7824 }
a737bd4d 7825
8335d6aa
JW
7826 if (immhi != immlo)
7827 return FAIL;
7828 }
a737bd4d 7829
8335d6aa 7830 if (size >= 32)
09d92015 7831 {
8335d6aa 7832 if (immlo == (immlo & 0x000000ff))
c19d1205 7833 {
8335d6aa
JW
7834 *immbits = immlo;
7835 return 0x0;
c19d1205 7836 }
8335d6aa 7837 else if (immlo == (immlo & 0x0000ff00))
c19d1205 7838 {
8335d6aa
JW
7839 *immbits = immlo >> 8;
7840 return 0x2;
c19d1205 7841 }
8335d6aa
JW
7842 else if (immlo == (immlo & 0x00ff0000))
7843 {
7844 *immbits = immlo >> 16;
7845 return 0x4;
7846 }
7847 else if (immlo == (immlo & 0xff000000))
7848 {
7849 *immbits = immlo >> 24;
7850 return 0x6;
7851 }
7852 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
7853 {
7854 *immbits = (immlo >> 8) & 0xff;
7855 return 0xc;
7856 }
7857 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
7858 {
7859 *immbits = (immlo >> 16) & 0xff;
7860 return 0xd;
7861 }
7862
7863 if ((immlo & 0xffff) != (immlo >> 16))
7864 return FAIL;
7865 immlo &= 0xffff;
09d92015 7866 }
a737bd4d 7867
8335d6aa 7868 if (size >= 16)
4962c51a 7869 {
8335d6aa
JW
7870 if (immlo == (immlo & 0x000000ff))
7871 {
7872 *immbits = immlo;
7873 return 0x8;
7874 }
7875 else if (immlo == (immlo & 0x0000ff00))
7876 {
7877 *immbits = immlo >> 8;
7878 return 0xa;
7879 }
7880
7881 if ((immlo & 0xff) != (immlo >> 8))
7882 return FAIL;
7883 immlo &= 0xff;
4962c51a
MS
7884 }
7885
8335d6aa
JW
7886 if (immlo == (immlo & 0x000000ff))
7887 {
7888 /* Don't allow MVN with 8-bit immediate. */
7889 if (*op == 1)
7890 return FAIL;
7891 *immbits = immlo;
7892 return 0xe;
7893 }
26d97720 7894
8335d6aa 7895 return FAIL;
c19d1205 7896}
a737bd4d 7897
5fc177c8 7898#if defined BFD_HOST_64_BIT
ba592044
AM
7899/* Returns TRUE if double precision value V may be cast
7900 to single precision without loss of accuracy. */
7901
7902static bfd_boolean
5fc177c8 7903is_double_a_single (bfd_int64_t v)
ba592044 7904{
5fc177c8 7905 int exp = (int)((v >> 52) & 0x7FF);
8fe3f3d6 7906 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
7907
7908 return (exp == 0 || exp == 0x7FF
7909 || (exp >= 1023 - 126 && exp <= 1023 + 127))
7910 && (mantissa & 0x1FFFFFFFl) == 0;
7911}
7912
3739860c 7913/* Returns a double precision value casted to single precision
ba592044
AM
7914 (ignoring the least significant bits in exponent and mantissa). */
7915
7916static int
5fc177c8 7917double_to_single (bfd_int64_t v)
ba592044
AM
7918{
7919 int sign = (int) ((v >> 63) & 1l);
5fc177c8 7920 int exp = (int) ((v >> 52) & 0x7FF);
8fe3f3d6 7921 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
7922
7923 if (exp == 0x7FF)
7924 exp = 0xFF;
7925 else
7926 {
7927 exp = exp - 1023 + 127;
7928 if (exp >= 0xFF)
7929 {
7930 /* Infinity. */
7931 exp = 0x7F;
7932 mantissa = 0;
7933 }
7934 else if (exp < 0)
7935 {
7936 /* No denormalized numbers. */
7937 exp = 0;
7938 mantissa = 0;
7939 }
7940 }
7941 mantissa >>= 29;
7942 return (sign << 31) | (exp << 23) | mantissa;
7943}
5fc177c8 7944#endif /* BFD_HOST_64_BIT */
ba592044 7945
8335d6aa
JW
7946enum lit_type
7947{
7948 CONST_THUMB,
7949 CONST_ARM,
7950 CONST_VEC
7951};
7952
ba592044
AM
7953static void do_vfp_nsyn_opcode (const char *);
7954
c19d1205
ZW
7955/* inst.reloc.exp describes an "=expr" load pseudo-operation.
7956 Determine whether it can be performed with a move instruction; if
7957 it can, convert inst.instruction to that move instruction and
c921be7d
NC
7958 return TRUE; if it can't, convert inst.instruction to a literal-pool
7959 load and return FALSE. If this is not a valid thing to do in the
7960 current context, set inst.error and return TRUE.
a737bd4d 7961
c19d1205
ZW
7962 inst.operands[i] describes the destination register. */
7963
c921be7d 7964static bfd_boolean
8335d6aa 7965move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
c19d1205 7966{
53365c0d 7967 unsigned long tbit;
8335d6aa
JW
7968 bfd_boolean thumb_p = (t == CONST_THUMB);
7969 bfd_boolean arm_p = (t == CONST_ARM);
53365c0d
PB
7970
7971 if (thumb_p)
7972 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7973 else
7974 tbit = LOAD_BIT;
7975
7976 if ((inst.instruction & tbit) == 0)
09d92015 7977 {
c19d1205 7978 inst.error = _("invalid pseudo operation");
c921be7d 7979 return TRUE;
09d92015 7980 }
ba592044 7981
8335d6aa
JW
7982 if (inst.reloc.exp.X_op != O_constant
7983 && inst.reloc.exp.X_op != O_symbol
7984 && inst.reloc.exp.X_op != O_big)
09d92015
MM
7985 {
7986 inst.error = _("constant expression expected");
c921be7d 7987 return TRUE;
09d92015 7988 }
ba592044
AM
7989
7990 if (inst.reloc.exp.X_op == O_constant
7991 || inst.reloc.exp.X_op == O_big)
8335d6aa 7992 {
5fc177c8
NC
7993#if defined BFD_HOST_64_BIT
7994 bfd_int64_t v;
7995#else
ba592044 7996 offsetT v;
5fc177c8 7997#endif
ba592044 7998 if (inst.reloc.exp.X_op == O_big)
8335d6aa 7999 {
ba592044
AM
8000 LITTLENUM_TYPE w[X_PRECISION];
8001 LITTLENUM_TYPE * l;
8002
8003 if (inst.reloc.exp.X_add_number == -1)
8335d6aa 8004 {
ba592044
AM
8005 gen_to_words (w, X_PRECISION, E_PRECISION);
8006 l = w;
8007 /* FIXME: Should we check words w[2..5] ? */
8335d6aa 8008 }
ba592044
AM
8009 else
8010 l = generic_bignum;
3739860c 8011
5fc177c8
NC
8012#if defined BFD_HOST_64_BIT
8013 v =
8014 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8015 << LITTLENUM_NUMBER_OF_BITS)
8016 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8017 << LITTLENUM_NUMBER_OF_BITS)
8018 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8019 << LITTLENUM_NUMBER_OF_BITS)
8020 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8021#else
ba592044
AM
8022 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8023 | (l[0] & LITTLENUM_MASK);
5fc177c8 8024#endif
8335d6aa 8025 }
ba592044
AM
8026 else
8027 v = inst.reloc.exp.X_add_number;
8028
8029 if (!inst.operands[i].issingle)
8335d6aa 8030 {
12569877 8031 if (thumb_p)
8335d6aa 8032 {
53445554
TP
8033 /* LDR should not use lead in a flag-setting instruction being
8034 chosen so we do not check whether movs can be used. */
12569877 8035
53445554 8036 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
ff8646ee 8037 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
53445554
TP
8038 && inst.operands[i].reg != 13
8039 && inst.operands[i].reg != 15)
12569877 8040 {
fc289b0a
TP
8041 /* Check if on thumb2 it can be done with a mov.w, mvn or
8042 movw instruction. */
12569877
AM
8043 unsigned int newimm;
8044 bfd_boolean isNegated;
8045
8046 newimm = encode_thumb32_immediate (v);
8047 if (newimm != (unsigned int) FAIL)
8048 isNegated = FALSE;
8049 else
8050 {
582cfe03 8051 newimm = encode_thumb32_immediate (~v);
12569877
AM
8052 if (newimm != (unsigned int) FAIL)
8053 isNegated = TRUE;
8054 }
8055
fc289b0a
TP
8056 /* The number can be loaded with a mov.w or mvn
8057 instruction. */
ff8646ee
TP
8058 if (newimm != (unsigned int) FAIL
8059 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
12569877 8060 {
fc289b0a 8061 inst.instruction = (0xf04f0000 /* MOV.W. */
582cfe03 8062 | (inst.operands[i].reg << 8));
fc289b0a 8063 /* Change to MOVN. */
582cfe03 8064 inst.instruction |= (isNegated ? 0x200000 : 0);
12569877
AM
8065 inst.instruction |= (newimm & 0x800) << 15;
8066 inst.instruction |= (newimm & 0x700) << 4;
8067 inst.instruction |= (newimm & 0x0ff);
8068 return TRUE;
8069 }
fc289b0a 8070 /* The number can be loaded with a movw instruction. */
ff8646ee
TP
8071 else if ((v & ~0xFFFF) == 0
8072 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
3739860c 8073 {
582cfe03 8074 int imm = v & 0xFFFF;
12569877 8075
582cfe03 8076 inst.instruction = 0xf2400000; /* MOVW. */
12569877
AM
8077 inst.instruction |= (inst.operands[i].reg << 8);
8078 inst.instruction |= (imm & 0xf000) << 4;
8079 inst.instruction |= (imm & 0x0800) << 15;
8080 inst.instruction |= (imm & 0x0700) << 4;
8081 inst.instruction |= (imm & 0x00ff);
8082 return TRUE;
8083 }
8084 }
8335d6aa 8085 }
12569877 8086 else if (arm_p)
ba592044
AM
8087 {
8088 int value = encode_arm_immediate (v);
12569877 8089
ba592044
AM
8090 if (value != FAIL)
8091 {
8092 /* This can be done with a mov instruction. */
8093 inst.instruction &= LITERAL_MASK;
8094 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8095 inst.instruction |= value & 0xfff;
8096 return TRUE;
8097 }
8335d6aa 8098
ba592044
AM
8099 value = encode_arm_immediate (~ v);
8100 if (value != FAIL)
8101 {
8102 /* This can be done with a mvn instruction. */
8103 inst.instruction &= LITERAL_MASK;
8104 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8105 inst.instruction |= value & 0xfff;
8106 return TRUE;
8107 }
8108 }
934c2632 8109 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8335d6aa 8110 {
ba592044
AM
8111 int op = 0;
8112 unsigned immbits = 0;
8113 unsigned immlo = inst.operands[1].imm;
8114 unsigned immhi = inst.operands[1].regisimm
8115 ? inst.operands[1].reg
8116 : inst.reloc.exp.X_unsigned
8117 ? 0
8118 : ((bfd_int64_t)((int) immlo)) >> 32;
8119 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8120 &op, 64, NT_invtype);
8121
8122 if (cmode == FAIL)
8123 {
8124 neon_invert_size (&immlo, &immhi, 64);
8125 op = !op;
8126 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8127 &op, 64, NT_invtype);
8128 }
8129
8130 if (cmode != FAIL)
8131 {
8132 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8133 | (1 << 23)
8134 | (cmode << 8)
8135 | (op << 5)
8136 | (1 << 4);
8137
8138 /* Fill other bits in vmov encoding for both thumb and arm. */
8139 if (thumb_mode)
eff0bc54 8140 inst.instruction |= (0x7U << 29) | (0xF << 24);
ba592044 8141 else
eff0bc54 8142 inst.instruction |= (0xFU << 28) | (0x1 << 25);
ba592044
AM
8143 neon_write_immbits (immbits);
8144 return TRUE;
8145 }
8335d6aa
JW
8146 }
8147 }
8335d6aa 8148
ba592044
AM
8149 if (t == CONST_VEC)
8150 {
8151 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8152 if (inst.operands[i].issingle
8153 && is_quarter_float (inst.operands[1].imm)
8154 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8335d6aa 8155 {
ba592044
AM
8156 inst.operands[1].imm =
8157 neon_qfloat_bits (v);
8158 do_vfp_nsyn_opcode ("fconsts");
8159 return TRUE;
8335d6aa 8160 }
5fc177c8
NC
8161
8162 /* If our host does not support a 64-bit type then we cannot perform
8163 the following optimization. This mean that there will be a
8164 discrepancy between the output produced by an assembler built for
8165 a 32-bit-only host and the output produced from a 64-bit host, but
8166 this cannot be helped. */
8167#if defined BFD_HOST_64_BIT
ba592044
AM
8168 else if (!inst.operands[1].issingle
8169 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8335d6aa 8170 {
ba592044
AM
8171 if (is_double_a_single (v)
8172 && is_quarter_float (double_to_single (v)))
8173 {
8174 inst.operands[1].imm =
8175 neon_qfloat_bits (double_to_single (v));
8176 do_vfp_nsyn_opcode ("fconstd");
8177 return TRUE;
8178 }
8335d6aa 8179 }
5fc177c8 8180#endif
8335d6aa
JW
8181 }
8182 }
8183
8184 if (add_to_lit_pool ((!inst.operands[i].isvec
8185 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8186 return TRUE;
8187
8188 inst.operands[1].reg = REG_PC;
8189 inst.operands[1].isreg = 1;
8190 inst.operands[1].preind = 1;
8191 inst.reloc.pc_rel = 1;
8192 inst.reloc.type = (thumb_p
8193 ? BFD_RELOC_ARM_THUMB_OFFSET
8194 : (mode_3
8195 ? BFD_RELOC_ARM_HWLITERAL
8196 : BFD_RELOC_ARM_LITERAL));
8197 return FALSE;
8198}
8199
8200/* inst.operands[i] was set up by parse_address. Encode it into an
8201 ARM-format instruction. Reject all forms which cannot be encoded
8202 into a coprocessor load/store instruction. If wb_ok is false,
8203 reject use of writeback; if unind_ok is false, reject use of
8204 unindexed addressing. If reloc_override is not 0, use it instead
8205 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8206 (in which case it is preserved). */
8207
8208static int
8209encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8210{
8211 if (!inst.operands[i].isreg)
8212 {
99b2a2dd
NC
8213 /* PR 18256 */
8214 if (! inst.operands[0].isvec)
8215 {
8216 inst.error = _("invalid co-processor operand");
8217 return FAIL;
8218 }
8335d6aa
JW
8219 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8220 return SUCCESS;
8221 }
8222
8223 inst.instruction |= inst.operands[i].reg << 16;
8224
8225 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8226
8227 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8228 {
8229 gas_assert (!inst.operands[i].writeback);
8230 if (!unind_ok)
8231 {
8232 inst.error = _("instruction does not support unindexed addressing");
8233 return FAIL;
8234 }
8235 inst.instruction |= inst.operands[i].imm;
8236 inst.instruction |= INDEX_UP;
8237 return SUCCESS;
8238 }
8239
8240 if (inst.operands[i].preind)
8241 inst.instruction |= PRE_INDEX;
8242
8243 if (inst.operands[i].writeback)
09d92015 8244 {
8335d6aa 8245 if (inst.operands[i].reg == REG_PC)
c19d1205 8246 {
8335d6aa
JW
8247 inst.error = _("pc may not be used with write-back");
8248 return FAIL;
c19d1205 8249 }
8335d6aa 8250 if (!wb_ok)
c19d1205 8251 {
8335d6aa
JW
8252 inst.error = _("instruction does not support writeback");
8253 return FAIL;
c19d1205 8254 }
8335d6aa 8255 inst.instruction |= WRITE_BACK;
09d92015
MM
8256 }
8257
8335d6aa
JW
8258 if (reloc_override)
8259 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
8260 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
8261 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
8262 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
c19d1205 8263 {
8335d6aa
JW
8264 if (thumb_mode)
8265 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8266 else
8267 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
c19d1205 8268 }
8335d6aa
JW
8269
8270 /* Prefer + for zero encoded value. */
8271 if (!inst.operands[i].negative)
8272 inst.instruction |= INDEX_UP;
8273
8274 return SUCCESS;
09d92015
MM
8275}
8276
5f4273c7 8277/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
8278 First some generics; their names are taken from the conventional
8279 bit positions for register arguments in ARM format instructions. */
09d92015 8280
a737bd4d 8281static void
c19d1205 8282do_noargs (void)
09d92015 8283{
c19d1205 8284}
a737bd4d 8285
c19d1205
ZW
8286static void
8287do_rd (void)
8288{
8289 inst.instruction |= inst.operands[0].reg << 12;
8290}
a737bd4d 8291
16a1fa25
TP
8292static void
8293do_rn (void)
8294{
8295 inst.instruction |= inst.operands[0].reg << 16;
8296}
8297
c19d1205
ZW
8298static void
8299do_rd_rm (void)
8300{
8301 inst.instruction |= inst.operands[0].reg << 12;
8302 inst.instruction |= inst.operands[1].reg;
8303}
09d92015 8304
9eb6c0f1
MGD
8305static void
8306do_rm_rn (void)
8307{
8308 inst.instruction |= inst.operands[0].reg;
8309 inst.instruction |= inst.operands[1].reg << 16;
8310}
8311
c19d1205
ZW
8312static void
8313do_rd_rn (void)
8314{
8315 inst.instruction |= inst.operands[0].reg << 12;
8316 inst.instruction |= inst.operands[1].reg << 16;
8317}
a737bd4d 8318
c19d1205
ZW
8319static void
8320do_rn_rd (void)
8321{
8322 inst.instruction |= inst.operands[0].reg << 16;
8323 inst.instruction |= inst.operands[1].reg << 12;
8324}
09d92015 8325
4ed7ed8d
TP
8326static void
8327do_tt (void)
8328{
8329 inst.instruction |= inst.operands[0].reg << 8;
8330 inst.instruction |= inst.operands[1].reg << 16;
8331}
8332
59d09be6
MGD
8333static bfd_boolean
8334check_obsolete (const arm_feature_set *feature, const char *msg)
8335{
8336 if (ARM_CPU_IS_ANY (cpu_variant))
8337 {
5c3696f8 8338 as_tsktsk ("%s", msg);
59d09be6
MGD
8339 return TRUE;
8340 }
8341 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8342 {
8343 as_bad ("%s", msg);
8344 return TRUE;
8345 }
8346
8347 return FALSE;
8348}
8349
c19d1205
ZW
8350static void
8351do_rd_rm_rn (void)
8352{
9a64e435 8353 unsigned Rn = inst.operands[2].reg;
708587a4 8354 /* Enforce restrictions on SWP instruction. */
9a64e435 8355 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
8356 {
8357 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8358 _("Rn must not overlap other operands"));
8359
59d09be6
MGD
8360 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8361 */
8362 if (!check_obsolete (&arm_ext_v8,
8363 _("swp{b} use is obsoleted for ARMv8 and later"))
8364 && warn_on_deprecated
8365 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
5c3696f8 8366 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 8367 }
59d09be6 8368
c19d1205
ZW
8369 inst.instruction |= inst.operands[0].reg << 12;
8370 inst.instruction |= inst.operands[1].reg;
9a64e435 8371 inst.instruction |= Rn << 16;
c19d1205 8372}
09d92015 8373
c19d1205
ZW
8374static void
8375do_rd_rn_rm (void)
8376{
8377 inst.instruction |= inst.operands[0].reg << 12;
8378 inst.instruction |= inst.operands[1].reg << 16;
8379 inst.instruction |= inst.operands[2].reg;
8380}
a737bd4d 8381
c19d1205
ZW
8382static void
8383do_rm_rd_rn (void)
8384{
5be8be5d
DG
8385 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8386 constraint (((inst.reloc.exp.X_op != O_constant
8387 && inst.reloc.exp.X_op != O_illegal)
8388 || inst.reloc.exp.X_add_number != 0),
8389 BAD_ADDR_MODE);
c19d1205
ZW
8390 inst.instruction |= inst.operands[0].reg;
8391 inst.instruction |= inst.operands[1].reg << 12;
8392 inst.instruction |= inst.operands[2].reg << 16;
8393}
09d92015 8394
c19d1205
ZW
8395static void
8396do_imm0 (void)
8397{
8398 inst.instruction |= inst.operands[0].imm;
8399}
09d92015 8400
c19d1205
ZW
8401static void
8402do_rd_cpaddr (void)
8403{
8404 inst.instruction |= inst.operands[0].reg << 12;
8405 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 8406}
a737bd4d 8407
c19d1205
ZW
8408/* ARM instructions, in alphabetical order by function name (except
8409 that wrapper functions appear immediately after the function they
8410 wrap). */
09d92015 8411
c19d1205
ZW
8412/* This is a pseudo-op of the form "adr rd, label" to be converted
8413 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
8414
8415static void
c19d1205 8416do_adr (void)
09d92015 8417{
c19d1205 8418 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 8419
c19d1205
ZW
8420 /* Frag hacking will turn this into a sub instruction if the offset turns
8421 out to be negative. */
8422 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 8423 inst.reloc.pc_rel = 1;
2fc8bdac 8424 inst.reloc.exp.X_add_number -= 8;
52a86f84 8425
fc6141f0
NC
8426 if (support_interwork
8427 && inst.reloc.exp.X_op == O_symbol
52a86f84
NC
8428 && inst.reloc.exp.X_add_symbol != NULL
8429 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8430 && THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
fc6141f0 8431 inst.reloc.exp.X_add_number |= 1;
c19d1205 8432}
b99bd4ef 8433
c19d1205
ZW
8434/* This is a pseudo-op of the form "adrl rd, label" to be converted
8435 into a relative address of the form:
8436 add rd, pc, #low(label-.-8)"
8437 add rd, rd, #high(label-.-8)" */
b99bd4ef 8438
c19d1205
ZW
8439static void
8440do_adrl (void)
8441{
8442 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 8443
c19d1205
ZW
8444 /* Frag hacking will turn this into a sub instruction if the offset turns
8445 out to be negative. */
8446 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
8447 inst.reloc.pc_rel = 1;
8448 inst.size = INSN_SIZE * 2;
2fc8bdac 8449 inst.reloc.exp.X_add_number -= 8;
52a86f84 8450
fc6141f0
NC
8451 if (support_interwork
8452 && inst.reloc.exp.X_op == O_symbol
52a86f84
NC
8453 && inst.reloc.exp.X_add_symbol != NULL
8454 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8455 && THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
fc6141f0 8456 inst.reloc.exp.X_add_number |= 1;
b99bd4ef
NC
8457}
8458
b99bd4ef 8459static void
c19d1205 8460do_arit (void)
b99bd4ef 8461{
a9f02af8
MG
8462 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
8463 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
8464 THUMB1_RELOC_ONLY);
c19d1205
ZW
8465 if (!inst.operands[1].present)
8466 inst.operands[1].reg = inst.operands[0].reg;
8467 inst.instruction |= inst.operands[0].reg << 12;
8468 inst.instruction |= inst.operands[1].reg << 16;
8469 encode_arm_shifter_operand (2);
8470}
b99bd4ef 8471
62b3e311
PB
8472static void
8473do_barrier (void)
8474{
8475 if (inst.operands[0].present)
ccb84d65 8476 inst.instruction |= inst.operands[0].imm;
62b3e311
PB
8477 else
8478 inst.instruction |= 0xf;
8479}
8480
c19d1205
ZW
8481static void
8482do_bfc (void)
8483{
8484 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8485 constraint (msb > 32, _("bit-field extends past end of register"));
8486 /* The instruction encoding stores the LSB and MSB,
8487 not the LSB and width. */
8488 inst.instruction |= inst.operands[0].reg << 12;
8489 inst.instruction |= inst.operands[1].imm << 7;
8490 inst.instruction |= (msb - 1) << 16;
8491}
b99bd4ef 8492
c19d1205
ZW
8493static void
8494do_bfi (void)
8495{
8496 unsigned int msb;
b99bd4ef 8497
c19d1205
ZW
8498 /* #0 in second position is alternative syntax for bfc, which is
8499 the same instruction but with REG_PC in the Rm field. */
8500 if (!inst.operands[1].isreg)
8501 inst.operands[1].reg = REG_PC;
b99bd4ef 8502
c19d1205
ZW
8503 msb = inst.operands[2].imm + inst.operands[3].imm;
8504 constraint (msb > 32, _("bit-field extends past end of register"));
8505 /* The instruction encoding stores the LSB and MSB,
8506 not the LSB and width. */
8507 inst.instruction |= inst.operands[0].reg << 12;
8508 inst.instruction |= inst.operands[1].reg;
8509 inst.instruction |= inst.operands[2].imm << 7;
8510 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
8511}
8512
b99bd4ef 8513static void
c19d1205 8514do_bfx (void)
b99bd4ef 8515{
c19d1205
ZW
8516 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8517 _("bit-field extends past end of register"));
8518 inst.instruction |= inst.operands[0].reg << 12;
8519 inst.instruction |= inst.operands[1].reg;
8520 inst.instruction |= inst.operands[2].imm << 7;
8521 inst.instruction |= (inst.operands[3].imm - 1) << 16;
8522}
09d92015 8523
c19d1205
ZW
8524/* ARM V5 breakpoint instruction (argument parse)
8525 BKPT <16 bit unsigned immediate>
8526 Instruction is not conditional.
8527 The bit pattern given in insns[] has the COND_ALWAYS condition,
8528 and it is an error if the caller tried to override that. */
b99bd4ef 8529
c19d1205
ZW
8530static void
8531do_bkpt (void)
8532{
8533 /* Top 12 of 16 bits to bits 19:8. */
8534 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 8535
c19d1205
ZW
8536 /* Bottom 4 of 16 bits to bits 3:0. */
8537 inst.instruction |= inst.operands[0].imm & 0xf;
8538}
09d92015 8539
c19d1205
ZW
8540static void
8541encode_branch (int default_reloc)
8542{
8543 if (inst.operands[0].hasreloc)
8544 {
0855e32b
NS
8545 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
8546 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
8547 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
8548 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
8549 ? BFD_RELOC_ARM_PLT32
8550 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 8551 }
b99bd4ef 8552 else
9ae92b05 8553 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
2fc8bdac 8554 inst.reloc.pc_rel = 1;
b99bd4ef
NC
8555}
8556
b99bd4ef 8557static void
c19d1205 8558do_branch (void)
b99bd4ef 8559{
39b41c9c
PB
8560#ifdef OBJ_ELF
8561 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8562 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8563 else
8564#endif
8565 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8566}
8567
8568static void
8569do_bl (void)
8570{
8571#ifdef OBJ_ELF
8572 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8573 {
8574 if (inst.cond == COND_ALWAYS)
8575 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
8576 else
8577 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8578 }
8579 else
8580#endif
8581 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 8582}
b99bd4ef 8583
c19d1205
ZW
8584/* ARM V5 branch-link-exchange instruction (argument parse)
8585 BLX <target_addr> ie BLX(1)
8586 BLX{<condition>} <Rm> ie BLX(2)
8587 Unfortunately, there are two different opcodes for this mnemonic.
8588 So, the insns[].value is not used, and the code here zaps values
8589 into inst.instruction.
8590 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 8591
c19d1205
ZW
8592static void
8593do_blx (void)
8594{
8595 if (inst.operands[0].isreg)
b99bd4ef 8596 {
c19d1205
ZW
8597 /* Arg is a register; the opcode provided by insns[] is correct.
8598 It is not illegal to do "blx pc", just useless. */
8599 if (inst.operands[0].reg == REG_PC)
8600 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 8601
c19d1205
ZW
8602 inst.instruction |= inst.operands[0].reg;
8603 }
8604 else
b99bd4ef 8605 {
c19d1205 8606 /* Arg is an address; this instruction cannot be executed
267bf995
RR
8607 conditionally, and the opcode must be adjusted.
8608 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
8609 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 8610 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 8611 inst.instruction = 0xfa000000;
267bf995 8612 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 8613 }
c19d1205
ZW
8614}
8615
8616static void
8617do_bx (void)
8618{
845b51d6
PB
8619 bfd_boolean want_reloc;
8620
c19d1205
ZW
8621 if (inst.operands[0].reg == REG_PC)
8622 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 8623
c19d1205 8624 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
8625 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
8626 it is for ARMv4t or earlier. */
8627 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
4d354d8b
TP
8628 if (!ARM_FEATURE_ZERO (selected_object_arch)
8629 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
845b51d6
PB
8630 want_reloc = TRUE;
8631
5ad34203 8632#ifdef OBJ_ELF
845b51d6 8633 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 8634#endif
584206db 8635 want_reloc = FALSE;
845b51d6
PB
8636
8637 if (want_reloc)
8638 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
8639}
8640
c19d1205
ZW
8641
8642/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
8643
8644static void
c19d1205 8645do_bxj (void)
a737bd4d 8646{
c19d1205
ZW
8647 if (inst.operands[0].reg == REG_PC)
8648 as_tsktsk (_("use of r15 in bxj is not really useful"));
8649
8650 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
8651}
8652
c19d1205
ZW
8653/* Co-processor data operation:
8654 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
8655 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
8656static void
8657do_cdp (void)
8658{
8659 inst.instruction |= inst.operands[0].reg << 8;
8660 inst.instruction |= inst.operands[1].imm << 20;
8661 inst.instruction |= inst.operands[2].reg << 12;
8662 inst.instruction |= inst.operands[3].reg << 16;
8663 inst.instruction |= inst.operands[4].reg;
8664 inst.instruction |= inst.operands[5].imm << 5;
8665}
a737bd4d
NC
8666
8667static void
c19d1205 8668do_cmp (void)
a737bd4d 8669{
c19d1205
ZW
8670 inst.instruction |= inst.operands[0].reg << 16;
8671 encode_arm_shifter_operand (1);
a737bd4d
NC
8672}
8673
c19d1205
ZW
8674/* Transfer between coprocessor and ARM registers.
8675 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
8676 MRC2
8677 MCR{cond}
8678 MCR2
8679
8680 No special properties. */
09d92015 8681
dcbd0d71
MGD
8682struct deprecated_coproc_regs_s
8683{
8684 unsigned cp;
8685 int opc1;
8686 unsigned crn;
8687 unsigned crm;
8688 int opc2;
8689 arm_feature_set deprecated;
8690 arm_feature_set obsoleted;
8691 const char *dep_msg;
8692 const char *obs_msg;
8693};
8694
8695#define DEPR_ACCESS_V8 \
8696 N_("This coprocessor register access is deprecated in ARMv8")
8697
8698/* Table of all deprecated coprocessor registers. */
8699static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
8700{
8701 {15, 0, 7, 10, 5, /* CP15DMB. */
823d2571 8702 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8703 DEPR_ACCESS_V8, NULL},
8704 {15, 0, 7, 10, 4, /* CP15DSB. */
823d2571 8705 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8706 DEPR_ACCESS_V8, NULL},
8707 {15, 0, 7, 5, 4, /* CP15ISB. */
823d2571 8708 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8709 DEPR_ACCESS_V8, NULL},
8710 {14, 6, 1, 0, 0, /* TEEHBR. */
823d2571 8711 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8712 DEPR_ACCESS_V8, NULL},
8713 {14, 6, 0, 0, 0, /* TEECR. */
823d2571 8714 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8715 DEPR_ACCESS_V8, NULL},
8716};
8717
8718#undef DEPR_ACCESS_V8
8719
8720static const size_t deprecated_coproc_reg_count =
8721 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
8722
09d92015 8723static void
c19d1205 8724do_co_reg (void)
09d92015 8725{
fdfde340 8726 unsigned Rd;
dcbd0d71 8727 size_t i;
fdfde340
JM
8728
8729 Rd = inst.operands[2].reg;
8730 if (thumb_mode)
8731 {
8732 if (inst.instruction == 0xee000010
8733 || inst.instruction == 0xfe000010)
8734 /* MCR, MCR2 */
8735 reject_bad_reg (Rd);
5c8ed6a4 8736 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
fdfde340
JM
8737 /* MRC, MRC2 */
8738 constraint (Rd == REG_SP, BAD_SP);
8739 }
8740 else
8741 {
8742 /* MCR */
8743 if (inst.instruction == 0xe000010)
8744 constraint (Rd == REG_PC, BAD_PC);
8745 }
8746
dcbd0d71
MGD
8747 for (i = 0; i < deprecated_coproc_reg_count; ++i)
8748 {
8749 const struct deprecated_coproc_regs_s *r =
8750 deprecated_coproc_regs + i;
8751
8752 if (inst.operands[0].reg == r->cp
8753 && inst.operands[1].imm == r->opc1
8754 && inst.operands[3].reg == r->crn
8755 && inst.operands[4].reg == r->crm
8756 && inst.operands[5].imm == r->opc2)
8757 {
b10bf8c5 8758 if (! ARM_CPU_IS_ANY (cpu_variant)
477330fc 8759 && warn_on_deprecated
dcbd0d71 8760 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
5c3696f8 8761 as_tsktsk ("%s", r->dep_msg);
dcbd0d71
MGD
8762 }
8763 }
fdfde340 8764
c19d1205
ZW
8765 inst.instruction |= inst.operands[0].reg << 8;
8766 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 8767 inst.instruction |= Rd << 12;
c19d1205
ZW
8768 inst.instruction |= inst.operands[3].reg << 16;
8769 inst.instruction |= inst.operands[4].reg;
8770 inst.instruction |= inst.operands[5].imm << 5;
8771}
09d92015 8772
c19d1205
ZW
8773/* Transfer between coprocessor register and pair of ARM registers.
8774 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
8775 MCRR2
8776 MRRC{cond}
8777 MRRC2
b99bd4ef 8778
c19d1205 8779 Two XScale instructions are special cases of these:
09d92015 8780
c19d1205
ZW
8781 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
8782 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 8783
5f4273c7 8784 Result unpredictable if Rd or Rn is R15. */
a737bd4d 8785
c19d1205
ZW
8786static void
8787do_co_reg2c (void)
8788{
fdfde340
JM
8789 unsigned Rd, Rn;
8790
8791 Rd = inst.operands[2].reg;
8792 Rn = inst.operands[3].reg;
8793
8794 if (thumb_mode)
8795 {
8796 reject_bad_reg (Rd);
8797 reject_bad_reg (Rn);
8798 }
8799 else
8800 {
8801 constraint (Rd == REG_PC, BAD_PC);
8802 constraint (Rn == REG_PC, BAD_PC);
8803 }
8804
873f10f0
TC
8805 /* Only check the MRRC{2} variants. */
8806 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
8807 {
8808 /* If Rd == Rn, error that the operation is
8809 unpredictable (example MRRC p3,#1,r1,r1,c4). */
8810 constraint (Rd == Rn, BAD_OVERLAP);
8811 }
8812
c19d1205
ZW
8813 inst.instruction |= inst.operands[0].reg << 8;
8814 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
8815 inst.instruction |= Rd << 12;
8816 inst.instruction |= Rn << 16;
c19d1205 8817 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
8818}
8819
c19d1205
ZW
8820static void
8821do_cpsi (void)
8822{
8823 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
8824 if (inst.operands[1].present)
8825 {
8826 inst.instruction |= CPSI_MMOD;
8827 inst.instruction |= inst.operands[1].imm;
8828 }
c19d1205 8829}
b99bd4ef 8830
62b3e311
PB
8831static void
8832do_dbg (void)
8833{
8834 inst.instruction |= inst.operands[0].imm;
8835}
8836
eea54501
MGD
8837static void
8838do_div (void)
8839{
8840 unsigned Rd, Rn, Rm;
8841
8842 Rd = inst.operands[0].reg;
8843 Rn = (inst.operands[1].present
8844 ? inst.operands[1].reg : Rd);
8845 Rm = inst.operands[2].reg;
8846
8847 constraint ((Rd == REG_PC), BAD_PC);
8848 constraint ((Rn == REG_PC), BAD_PC);
8849 constraint ((Rm == REG_PC), BAD_PC);
8850
8851 inst.instruction |= Rd << 16;
8852 inst.instruction |= Rn << 0;
8853 inst.instruction |= Rm << 8;
8854}
8855
b99bd4ef 8856static void
c19d1205 8857do_it (void)
b99bd4ef 8858{
c19d1205 8859 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
8860 process it to do the validation as if in
8861 thumb mode, just in case the code gets
8862 assembled for thumb using the unified syntax. */
8863
c19d1205 8864 inst.size = 0;
e07e6e58
NC
8865 if (unified_syntax)
8866 {
8867 set_it_insn_type (IT_INSN);
8868 now_it.mask = (inst.instruction & 0xf) | 0x10;
8869 now_it.cc = inst.operands[0].imm;
8870 }
09d92015 8871}
b99bd4ef 8872
6530b175
NC
8873/* If there is only one register in the register list,
8874 then return its register number. Otherwise return -1. */
8875static int
8876only_one_reg_in_list (int range)
8877{
8878 int i = ffs (range) - 1;
8879 return (i > 15 || range != (1 << i)) ? -1 : i;
8880}
8881
09d92015 8882static void
6530b175 8883encode_ldmstm(int from_push_pop_mnem)
ea6ef066 8884{
c19d1205
ZW
8885 int base_reg = inst.operands[0].reg;
8886 int range = inst.operands[1].imm;
6530b175 8887 int one_reg;
ea6ef066 8888
c19d1205
ZW
8889 inst.instruction |= base_reg << 16;
8890 inst.instruction |= range;
ea6ef066 8891
c19d1205
ZW
8892 if (inst.operands[1].writeback)
8893 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 8894
c19d1205 8895 if (inst.operands[0].writeback)
ea6ef066 8896 {
c19d1205
ZW
8897 inst.instruction |= WRITE_BACK;
8898 /* Check for unpredictable uses of writeback. */
8899 if (inst.instruction & LOAD_BIT)
09d92015 8900 {
c19d1205
ZW
8901 /* Not allowed in LDM type 2. */
8902 if ((inst.instruction & LDM_TYPE_2_OR_3)
8903 && ((range & (1 << REG_PC)) == 0))
8904 as_warn (_("writeback of base register is UNPREDICTABLE"));
8905 /* Only allowed if base reg not in list for other types. */
8906 else if (range & (1 << base_reg))
8907 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
8908 }
8909 else /* STM. */
8910 {
8911 /* Not allowed for type 2. */
8912 if (inst.instruction & LDM_TYPE_2_OR_3)
8913 as_warn (_("writeback of base register is UNPREDICTABLE"));
8914 /* Only allowed if base reg not in list, or first in list. */
8915 else if ((range & (1 << base_reg))
8916 && (range & ((1 << base_reg) - 1)))
8917 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 8918 }
ea6ef066 8919 }
6530b175
NC
8920
8921 /* If PUSH/POP has only one register, then use the A2 encoding. */
8922 one_reg = only_one_reg_in_list (range);
8923 if (from_push_pop_mnem && one_reg >= 0)
8924 {
8925 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
8926
4f588891
NC
8927 if (is_push && one_reg == 13 /* SP */)
8928 /* PR 22483: The A2 encoding cannot be used when
8929 pushing the stack pointer as this is UNPREDICTABLE. */
8930 return;
8931
6530b175
NC
8932 inst.instruction &= A_COND_MASK;
8933 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
8934 inst.instruction |= one_reg << 12;
8935 }
8936}
8937
8938static void
8939do_ldmstm (void)
8940{
8941 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
8942}
8943
c19d1205
ZW
8944/* ARMv5TE load-consecutive (argument parse)
8945 Mode is like LDRH.
8946
8947 LDRccD R, mode
8948 STRccD R, mode. */
8949
a737bd4d 8950static void
c19d1205 8951do_ldrd (void)
a737bd4d 8952{
c19d1205 8953 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 8954 _("first transfer register must be even"));
c19d1205
ZW
8955 constraint (inst.operands[1].present
8956 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 8957 _("can only transfer two consecutive registers"));
c19d1205
ZW
8958 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8959 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 8960
c19d1205
ZW
8961 if (!inst.operands[1].present)
8962 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 8963
c56791bb
RE
8964 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8965 register and the first register written; we have to diagnose
8966 overlap between the base and the second register written here. */
ea6ef066 8967
c56791bb
RE
8968 if (inst.operands[2].reg == inst.operands[1].reg
8969 && (inst.operands[2].writeback || inst.operands[2].postind))
8970 as_warn (_("base register written back, and overlaps "
8971 "second transfer register"));
b05fe5cf 8972
c56791bb
RE
8973 if (!(inst.instruction & V4_STR_BIT))
8974 {
c19d1205 8975 /* For an index-register load, the index register must not overlap the
c56791bb
RE
8976 destination (even if not write-back). */
8977 if (inst.operands[2].immisreg
8978 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8979 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8980 as_warn (_("index register overlaps transfer register"));
b05fe5cf 8981 }
c19d1205
ZW
8982 inst.instruction |= inst.operands[0].reg << 12;
8983 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
8984}
8985
8986static void
c19d1205 8987do_ldrex (void)
b05fe5cf 8988{
c19d1205
ZW
8989 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8990 || inst.operands[1].postind || inst.operands[1].writeback
8991 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
8992 || inst.operands[1].negative
8993 /* This can arise if the programmer has written
8994 strex rN, rM, foo
8995 or if they have mistakenly used a register name as the last
8996 operand, eg:
8997 strex rN, rM, rX
8998 It is very difficult to distinguish between these two cases
8999 because "rX" might actually be a label. ie the register
9000 name has been occluded by a symbol of the same name. So we
9001 just generate a general 'bad addressing mode' type error
9002 message and leave it up to the programmer to discover the
9003 true cause and fix their mistake. */
9004 || (inst.operands[1].reg == REG_PC),
9005 BAD_ADDR_MODE);
b05fe5cf 9006
c19d1205
ZW
9007 constraint (inst.reloc.exp.X_op != O_constant
9008 || inst.reloc.exp.X_add_number != 0,
9009 _("offset must be zero in ARM encoding"));
b05fe5cf 9010
5be8be5d
DG
9011 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9012
c19d1205
ZW
9013 inst.instruction |= inst.operands[0].reg << 12;
9014 inst.instruction |= inst.operands[1].reg << 16;
9015 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
9016}
9017
9018static void
c19d1205 9019do_ldrexd (void)
b05fe5cf 9020{
c19d1205
ZW
9021 constraint (inst.operands[0].reg % 2 != 0,
9022 _("even register required"));
9023 constraint (inst.operands[1].present
9024 && inst.operands[1].reg != inst.operands[0].reg + 1,
9025 _("can only load two consecutive registers"));
9026 /* If op 1 were present and equal to PC, this function wouldn't
9027 have been called in the first place. */
9028 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 9029
c19d1205
ZW
9030 inst.instruction |= inst.operands[0].reg << 12;
9031 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
9032}
9033
1be5fd2e
NC
9034/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9035 which is not a multiple of four is UNPREDICTABLE. */
9036static void
9037check_ldr_r15_aligned (void)
9038{
9039 constraint (!(inst.operands[1].immisreg)
9040 && (inst.operands[0].reg == REG_PC
9041 && inst.operands[1].reg == REG_PC
9042 && (inst.reloc.exp.X_add_number & 0x3)),
de194d85 9043 _("ldr to register 15 must be 4-byte aligned"));
1be5fd2e
NC
9044}
9045
b05fe5cf 9046static void
c19d1205 9047do_ldst (void)
b05fe5cf 9048{
c19d1205
ZW
9049 inst.instruction |= inst.operands[0].reg << 12;
9050 if (!inst.operands[1].isreg)
8335d6aa 9051 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
b05fe5cf 9052 return;
c19d1205 9053 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 9054 check_ldr_r15_aligned ();
b05fe5cf
ZW
9055}
9056
9057static void
c19d1205 9058do_ldstt (void)
b05fe5cf 9059{
c19d1205
ZW
9060 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9061 reject [Rn,...]. */
9062 if (inst.operands[1].preind)
b05fe5cf 9063 {
bd3ba5d1
NC
9064 constraint (inst.reloc.exp.X_op != O_constant
9065 || inst.reloc.exp.X_add_number != 0,
c19d1205 9066 _("this instruction requires a post-indexed address"));
b05fe5cf 9067
c19d1205
ZW
9068 inst.operands[1].preind = 0;
9069 inst.operands[1].postind = 1;
9070 inst.operands[1].writeback = 1;
b05fe5cf 9071 }
c19d1205
ZW
9072 inst.instruction |= inst.operands[0].reg << 12;
9073 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9074}
b05fe5cf 9075
c19d1205 9076/* Halfword and signed-byte load/store operations. */
b05fe5cf 9077
c19d1205
ZW
9078static void
9079do_ldstv4 (void)
9080{
ff4a8d2b 9081 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
9082 inst.instruction |= inst.operands[0].reg << 12;
9083 if (!inst.operands[1].isreg)
8335d6aa 9084 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
b05fe5cf 9085 return;
c19d1205 9086 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
9087}
9088
9089static void
c19d1205 9090do_ldsttv4 (void)
b05fe5cf 9091{
c19d1205
ZW
9092 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9093 reject [Rn,...]. */
9094 if (inst.operands[1].preind)
b05fe5cf 9095 {
bd3ba5d1
NC
9096 constraint (inst.reloc.exp.X_op != O_constant
9097 || inst.reloc.exp.X_add_number != 0,
c19d1205 9098 _("this instruction requires a post-indexed address"));
b05fe5cf 9099
c19d1205
ZW
9100 inst.operands[1].preind = 0;
9101 inst.operands[1].postind = 1;
9102 inst.operands[1].writeback = 1;
b05fe5cf 9103 }
c19d1205
ZW
9104 inst.instruction |= inst.operands[0].reg << 12;
9105 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9106}
b05fe5cf 9107
c19d1205
ZW
9108/* Co-processor register load/store.
9109 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9110static void
9111do_lstc (void)
9112{
9113 inst.instruction |= inst.operands[0].reg << 8;
9114 inst.instruction |= inst.operands[1].reg << 12;
9115 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
9116}
9117
b05fe5cf 9118static void
c19d1205 9119do_mlas (void)
b05fe5cf 9120{
8fb9d7b9 9121 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 9122 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 9123 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 9124 && !(inst.instruction & 0x00400000))
8fb9d7b9 9125 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 9126
c19d1205
ZW
9127 inst.instruction |= inst.operands[0].reg << 16;
9128 inst.instruction |= inst.operands[1].reg;
9129 inst.instruction |= inst.operands[2].reg << 8;
9130 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 9131}
b05fe5cf 9132
c19d1205
ZW
9133static void
9134do_mov (void)
9135{
a9f02af8
MG
9136 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9137 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9138 THUMB1_RELOC_ONLY);
c19d1205
ZW
9139 inst.instruction |= inst.operands[0].reg << 12;
9140 encode_arm_shifter_operand (1);
9141}
b05fe5cf 9142
c19d1205
ZW
9143/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9144static void
9145do_mov16 (void)
9146{
b6895b4f
PB
9147 bfd_vma imm;
9148 bfd_boolean top;
9149
9150 top = (inst.instruction & 0x00400000) != 0;
9151 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
33eaf5de 9152 _(":lower16: not allowed in this instruction"));
b6895b4f 9153 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
33eaf5de 9154 _(":upper16: not allowed in this instruction"));
c19d1205 9155 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
9156 if (inst.reloc.type == BFD_RELOC_UNUSED)
9157 {
9158 imm = inst.reloc.exp.X_add_number;
9159 /* The value is in two pieces: 0:11, 16:19. */
9160 inst.instruction |= (imm & 0x00000fff);
9161 inst.instruction |= (imm & 0x0000f000) << 4;
9162 }
b05fe5cf 9163}
b99bd4ef 9164
037e8744
JB
9165static int
9166do_vfp_nsyn_mrs (void)
9167{
9168 if (inst.operands[0].isvec)
9169 {
9170 if (inst.operands[1].reg != 1)
477330fc 9171 first_error (_("operand 1 must be FPSCR"));
037e8744
JB
9172 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9173 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9174 do_vfp_nsyn_opcode ("fmstat");
9175 }
9176 else if (inst.operands[1].isvec)
9177 do_vfp_nsyn_opcode ("fmrx");
9178 else
9179 return FAIL;
5f4273c7 9180
037e8744
JB
9181 return SUCCESS;
9182}
9183
9184static int
9185do_vfp_nsyn_msr (void)
9186{
9187 if (inst.operands[0].isvec)
9188 do_vfp_nsyn_opcode ("fmxr");
9189 else
9190 return FAIL;
9191
9192 return SUCCESS;
9193}
9194
f7c21dc7
NC
9195static void
9196do_vmrs (void)
9197{
9198 unsigned Rt = inst.operands[0].reg;
fa94de6b 9199
16d02dc9 9200 if (thumb_mode && Rt == REG_SP)
f7c21dc7
NC
9201 {
9202 inst.error = BAD_SP;
9203 return;
9204 }
9205
40c7d507
RR
9206 /* MVFR2 is only valid at ARMv8-A. */
9207 if (inst.operands[1].reg == 5)
9208 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9209 _(BAD_FPU));
9210
f7c21dc7 9211 /* APSR_ sets isvec. All other refs to PC are illegal. */
16d02dc9 9212 if (!inst.operands[0].isvec && Rt == REG_PC)
f7c21dc7
NC
9213 {
9214 inst.error = BAD_PC;
9215 return;
9216 }
9217
16d02dc9
JB
9218 /* If we get through parsing the register name, we just insert the number
9219 generated into the instruction without further validation. */
9220 inst.instruction |= (inst.operands[1].reg << 16);
f7c21dc7
NC
9221 inst.instruction |= (Rt << 12);
9222}
9223
9224static void
9225do_vmsr (void)
9226{
9227 unsigned Rt = inst.operands[1].reg;
fa94de6b 9228
f7c21dc7
NC
9229 if (thumb_mode)
9230 reject_bad_reg (Rt);
9231 else if (Rt == REG_PC)
9232 {
9233 inst.error = BAD_PC;
9234 return;
9235 }
9236
40c7d507
RR
9237 /* MVFR2 is only valid for ARMv8-A. */
9238 if (inst.operands[0].reg == 5)
9239 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9240 _(BAD_FPU));
9241
16d02dc9
JB
9242 /* If we get through parsing the register name, we just insert the number
9243 generated into the instruction without further validation. */
9244 inst.instruction |= (inst.operands[0].reg << 16);
f7c21dc7
NC
9245 inst.instruction |= (Rt << 12);
9246}
9247
b99bd4ef 9248static void
c19d1205 9249do_mrs (void)
b99bd4ef 9250{
90ec0d68
MGD
9251 unsigned br;
9252
037e8744
JB
9253 if (do_vfp_nsyn_mrs () == SUCCESS)
9254 return;
9255
ff4a8d2b 9256 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 9257 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
9258
9259 if (inst.operands[1].isreg)
9260 {
9261 br = inst.operands[1].reg;
806ab1c0 9262 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
90ec0d68
MGD
9263 as_bad (_("bad register for mrs"));
9264 }
9265 else
9266 {
9267 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9268 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9269 != (PSR_c|PSR_f),
d2cd1205 9270 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
9271 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9272 }
9273
9274 inst.instruction |= br;
c19d1205 9275}
b99bd4ef 9276
c19d1205
ZW
9277/* Two possible forms:
9278 "{C|S}PSR_<field>, Rm",
9279 "{C|S}PSR_f, #expression". */
b99bd4ef 9280
c19d1205
ZW
9281static void
9282do_msr (void)
9283{
037e8744
JB
9284 if (do_vfp_nsyn_msr () == SUCCESS)
9285 return;
9286
c19d1205
ZW
9287 inst.instruction |= inst.operands[0].imm;
9288 if (inst.operands[1].isreg)
9289 inst.instruction |= inst.operands[1].reg;
9290 else
b99bd4ef 9291 {
c19d1205
ZW
9292 inst.instruction |= INST_IMMEDIATE;
9293 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
9294 inst.reloc.pc_rel = 0;
b99bd4ef 9295 }
b99bd4ef
NC
9296}
9297
c19d1205
ZW
9298static void
9299do_mul (void)
a737bd4d 9300{
ff4a8d2b
NC
9301 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9302
c19d1205
ZW
9303 if (!inst.operands[2].present)
9304 inst.operands[2].reg = inst.operands[0].reg;
9305 inst.instruction |= inst.operands[0].reg << 16;
9306 inst.instruction |= inst.operands[1].reg;
9307 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 9308
8fb9d7b9
MS
9309 if (inst.operands[0].reg == inst.operands[1].reg
9310 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9311 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
9312}
9313
c19d1205
ZW
9314/* Long Multiply Parser
9315 UMULL RdLo, RdHi, Rm, Rs
9316 SMULL RdLo, RdHi, Rm, Rs
9317 UMLAL RdLo, RdHi, Rm, Rs
9318 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
9319
9320static void
c19d1205 9321do_mull (void)
b99bd4ef 9322{
c19d1205
ZW
9323 inst.instruction |= inst.operands[0].reg << 12;
9324 inst.instruction |= inst.operands[1].reg << 16;
9325 inst.instruction |= inst.operands[2].reg;
9326 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 9327
682b27ad
PB
9328 /* rdhi and rdlo must be different. */
9329 if (inst.operands[0].reg == inst.operands[1].reg)
9330 as_tsktsk (_("rdhi and rdlo must be different"));
9331
9332 /* rdhi, rdlo and rm must all be different before armv6. */
9333 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 9334 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 9335 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
9336 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9337}
b99bd4ef 9338
c19d1205
ZW
9339static void
9340do_nop (void)
9341{
e7495e45
NS
9342 if (inst.operands[0].present
9343 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
9344 {
9345 /* Architectural NOP hints are CPSR sets with no bits selected. */
9346 inst.instruction &= 0xf0000000;
e7495e45
NS
9347 inst.instruction |= 0x0320f000;
9348 if (inst.operands[0].present)
9349 inst.instruction |= inst.operands[0].imm;
c19d1205 9350 }
b99bd4ef
NC
9351}
9352
c19d1205
ZW
9353/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9354 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9355 Condition defaults to COND_ALWAYS.
9356 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
9357
9358static void
c19d1205 9359do_pkhbt (void)
b99bd4ef 9360{
c19d1205
ZW
9361 inst.instruction |= inst.operands[0].reg << 12;
9362 inst.instruction |= inst.operands[1].reg << 16;
9363 inst.instruction |= inst.operands[2].reg;
9364 if (inst.operands[3].present)
9365 encode_arm_shift (3);
9366}
b99bd4ef 9367
c19d1205 9368/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 9369
c19d1205
ZW
9370static void
9371do_pkhtb (void)
9372{
9373 if (!inst.operands[3].present)
b99bd4ef 9374 {
c19d1205
ZW
9375 /* If the shift specifier is omitted, turn the instruction
9376 into pkhbt rd, rm, rn. */
9377 inst.instruction &= 0xfff00010;
9378 inst.instruction |= inst.operands[0].reg << 12;
9379 inst.instruction |= inst.operands[1].reg;
9380 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9381 }
9382 else
9383 {
c19d1205
ZW
9384 inst.instruction |= inst.operands[0].reg << 12;
9385 inst.instruction |= inst.operands[1].reg << 16;
9386 inst.instruction |= inst.operands[2].reg;
9387 encode_arm_shift (3);
b99bd4ef
NC
9388 }
9389}
9390
c19d1205 9391/* ARMv5TE: Preload-Cache
60e5ef9f 9392 MP Extensions: Preload for write
c19d1205 9393
60e5ef9f 9394 PLD(W) <addr_mode>
c19d1205
ZW
9395
9396 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
9397
9398static void
c19d1205 9399do_pld (void)
b99bd4ef 9400{
c19d1205
ZW
9401 constraint (!inst.operands[0].isreg,
9402 _("'[' expected after PLD mnemonic"));
9403 constraint (inst.operands[0].postind,
9404 _("post-indexed expression used in preload instruction"));
9405 constraint (inst.operands[0].writeback,
9406 _("writeback used in preload instruction"));
9407 constraint (!inst.operands[0].preind,
9408 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
9409 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9410}
b99bd4ef 9411
62b3e311
PB
9412/* ARMv7: PLI <addr_mode> */
9413static void
9414do_pli (void)
9415{
9416 constraint (!inst.operands[0].isreg,
9417 _("'[' expected after PLI mnemonic"));
9418 constraint (inst.operands[0].postind,
9419 _("post-indexed expression used in preload instruction"));
9420 constraint (inst.operands[0].writeback,
9421 _("writeback used in preload instruction"));
9422 constraint (!inst.operands[0].preind,
9423 _("unindexed addressing used in preload instruction"));
9424 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9425 inst.instruction &= ~PRE_INDEX;
9426}
9427
c19d1205
ZW
9428static void
9429do_push_pop (void)
9430{
5e0d7f77
MP
9431 constraint (inst.operands[0].writeback,
9432 _("push/pop do not support {reglist}^"));
c19d1205
ZW
9433 inst.operands[1] = inst.operands[0];
9434 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
9435 inst.operands[0].isreg = 1;
9436 inst.operands[0].writeback = 1;
9437 inst.operands[0].reg = REG_SP;
6530b175 9438 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 9439}
b99bd4ef 9440
c19d1205
ZW
9441/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
9442 word at the specified address and the following word
9443 respectively.
9444 Unconditionally executed.
9445 Error if Rn is R15. */
b99bd4ef 9446
c19d1205
ZW
9447static void
9448do_rfe (void)
9449{
9450 inst.instruction |= inst.operands[0].reg << 16;
9451 if (inst.operands[0].writeback)
9452 inst.instruction |= WRITE_BACK;
9453}
b99bd4ef 9454
c19d1205 9455/* ARM V6 ssat (argument parse). */
b99bd4ef 9456
c19d1205
ZW
9457static void
9458do_ssat (void)
9459{
9460 inst.instruction |= inst.operands[0].reg << 12;
9461 inst.instruction |= (inst.operands[1].imm - 1) << 16;
9462 inst.instruction |= inst.operands[2].reg;
b99bd4ef 9463
c19d1205
ZW
9464 if (inst.operands[3].present)
9465 encode_arm_shift (3);
b99bd4ef
NC
9466}
9467
c19d1205 9468/* ARM V6 usat (argument parse). */
b99bd4ef
NC
9469
9470static void
c19d1205 9471do_usat (void)
b99bd4ef 9472{
c19d1205
ZW
9473 inst.instruction |= inst.operands[0].reg << 12;
9474 inst.instruction |= inst.operands[1].imm << 16;
9475 inst.instruction |= inst.operands[2].reg;
b99bd4ef 9476
c19d1205
ZW
9477 if (inst.operands[3].present)
9478 encode_arm_shift (3);
b99bd4ef
NC
9479}
9480
c19d1205 9481/* ARM V6 ssat16 (argument parse). */
09d92015
MM
9482
9483static void
c19d1205 9484do_ssat16 (void)
09d92015 9485{
c19d1205
ZW
9486 inst.instruction |= inst.operands[0].reg << 12;
9487 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
9488 inst.instruction |= inst.operands[2].reg;
09d92015
MM
9489}
9490
c19d1205
ZW
9491static void
9492do_usat16 (void)
a737bd4d 9493{
c19d1205
ZW
9494 inst.instruction |= inst.operands[0].reg << 12;
9495 inst.instruction |= inst.operands[1].imm << 16;
9496 inst.instruction |= inst.operands[2].reg;
9497}
a737bd4d 9498
c19d1205
ZW
9499/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
9500 preserving the other bits.
a737bd4d 9501
c19d1205
ZW
9502 setend <endian_specifier>, where <endian_specifier> is either
9503 BE or LE. */
a737bd4d 9504
c19d1205
ZW
9505static void
9506do_setend (void)
9507{
12e37cbc
MGD
9508 if (warn_on_deprecated
9509 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 9510 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 9511
c19d1205
ZW
9512 if (inst.operands[0].imm)
9513 inst.instruction |= 0x200;
a737bd4d
NC
9514}
9515
9516static void
c19d1205 9517do_shift (void)
a737bd4d 9518{
c19d1205
ZW
9519 unsigned int Rm = (inst.operands[1].present
9520 ? inst.operands[1].reg
9521 : inst.operands[0].reg);
a737bd4d 9522
c19d1205
ZW
9523 inst.instruction |= inst.operands[0].reg << 12;
9524 inst.instruction |= Rm;
9525 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 9526 {
c19d1205
ZW
9527 inst.instruction |= inst.operands[2].reg << 8;
9528 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
9529 /* PR 12854: Error on extraneous shifts. */
9530 constraint (inst.operands[2].shifted,
9531 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
9532 }
9533 else
c19d1205 9534 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
9535}
9536
09d92015 9537static void
3eb17e6b 9538do_smc (void)
09d92015 9539{
3eb17e6b 9540 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 9541 inst.reloc.pc_rel = 0;
09d92015
MM
9542}
9543
90ec0d68
MGD
9544static void
9545do_hvc (void)
9546{
9547 inst.reloc.type = BFD_RELOC_ARM_HVC;
9548 inst.reloc.pc_rel = 0;
9549}
9550
09d92015 9551static void
c19d1205 9552do_swi (void)
09d92015 9553{
c19d1205
ZW
9554 inst.reloc.type = BFD_RELOC_ARM_SWI;
9555 inst.reloc.pc_rel = 0;
09d92015
MM
9556}
9557
ddfded2f
MW
9558static void
9559do_setpan (void)
9560{
9561 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9562 _("selected processor does not support SETPAN instruction"));
9563
9564 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
9565}
9566
9567static void
9568do_t_setpan (void)
9569{
9570 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9571 _("selected processor does not support SETPAN instruction"));
9572
9573 inst.instruction |= (inst.operands[0].imm << 3);
9574}
9575
c19d1205
ZW
9576/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
9577 SMLAxy{cond} Rd,Rm,Rs,Rn
9578 SMLAWy{cond} Rd,Rm,Rs,Rn
9579 Error if any register is R15. */
e16bb312 9580
c19d1205
ZW
9581static void
9582do_smla (void)
e16bb312 9583{
c19d1205
ZW
9584 inst.instruction |= inst.operands[0].reg << 16;
9585 inst.instruction |= inst.operands[1].reg;
9586 inst.instruction |= inst.operands[2].reg << 8;
9587 inst.instruction |= inst.operands[3].reg << 12;
9588}
a737bd4d 9589
c19d1205
ZW
9590/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
9591 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
9592 Error if any register is R15.
9593 Warning if Rdlo == Rdhi. */
a737bd4d 9594
c19d1205
ZW
9595static void
9596do_smlal (void)
9597{
9598 inst.instruction |= inst.operands[0].reg << 12;
9599 inst.instruction |= inst.operands[1].reg << 16;
9600 inst.instruction |= inst.operands[2].reg;
9601 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 9602
c19d1205
ZW
9603 if (inst.operands[0].reg == inst.operands[1].reg)
9604 as_tsktsk (_("rdhi and rdlo must be different"));
9605}
a737bd4d 9606
c19d1205
ZW
9607/* ARM V5E (El Segundo) signed-multiply (argument parse)
9608 SMULxy{cond} Rd,Rm,Rs
9609 Error if any register is R15. */
a737bd4d 9610
c19d1205
ZW
9611static void
9612do_smul (void)
9613{
9614 inst.instruction |= inst.operands[0].reg << 16;
9615 inst.instruction |= inst.operands[1].reg;
9616 inst.instruction |= inst.operands[2].reg << 8;
9617}
a737bd4d 9618
b6702015
PB
9619/* ARM V6 srs (argument parse). The variable fields in the encoding are
9620 the same for both ARM and Thumb-2. */
a737bd4d 9621
c19d1205
ZW
9622static void
9623do_srs (void)
9624{
b6702015
PB
9625 int reg;
9626
9627 if (inst.operands[0].present)
9628 {
9629 reg = inst.operands[0].reg;
fdfde340 9630 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
9631 }
9632 else
fdfde340 9633 reg = REG_SP;
b6702015
PB
9634
9635 inst.instruction |= reg << 16;
9636 inst.instruction |= inst.operands[1].imm;
9637 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
9638 inst.instruction |= WRITE_BACK;
9639}
a737bd4d 9640
c19d1205 9641/* ARM V6 strex (argument parse). */
a737bd4d 9642
c19d1205
ZW
9643static void
9644do_strex (void)
9645{
9646 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9647 || inst.operands[2].postind || inst.operands[2].writeback
9648 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
9649 || inst.operands[2].negative
9650 /* See comment in do_ldrex(). */
9651 || (inst.operands[2].reg == REG_PC),
9652 BAD_ADDR_MODE);
a737bd4d 9653
c19d1205
ZW
9654 constraint (inst.operands[0].reg == inst.operands[1].reg
9655 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 9656
c19d1205
ZW
9657 constraint (inst.reloc.exp.X_op != O_constant
9658 || inst.reloc.exp.X_add_number != 0,
9659 _("offset must be zero in ARM encoding"));
a737bd4d 9660
c19d1205
ZW
9661 inst.instruction |= inst.operands[0].reg << 12;
9662 inst.instruction |= inst.operands[1].reg;
9663 inst.instruction |= inst.operands[2].reg << 16;
9664 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
9665}
9666
877807f8
NC
9667static void
9668do_t_strexbh (void)
9669{
9670 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9671 || inst.operands[2].postind || inst.operands[2].writeback
9672 || inst.operands[2].immisreg || inst.operands[2].shifted
9673 || inst.operands[2].negative,
9674 BAD_ADDR_MODE);
9675
9676 constraint (inst.operands[0].reg == inst.operands[1].reg
9677 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9678
9679 do_rm_rd_rn ();
9680}
9681
e16bb312 9682static void
c19d1205 9683do_strexd (void)
e16bb312 9684{
c19d1205
ZW
9685 constraint (inst.operands[1].reg % 2 != 0,
9686 _("even register required"));
9687 constraint (inst.operands[2].present
9688 && inst.operands[2].reg != inst.operands[1].reg + 1,
9689 _("can only store two consecutive registers"));
9690 /* If op 2 were present and equal to PC, this function wouldn't
9691 have been called in the first place. */
9692 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 9693
c19d1205
ZW
9694 constraint (inst.operands[0].reg == inst.operands[1].reg
9695 || inst.operands[0].reg == inst.operands[1].reg + 1
9696 || inst.operands[0].reg == inst.operands[3].reg,
9697 BAD_OVERLAP);
e16bb312 9698
c19d1205
ZW
9699 inst.instruction |= inst.operands[0].reg << 12;
9700 inst.instruction |= inst.operands[1].reg;
9701 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
9702}
9703
9eb6c0f1
MGD
9704/* ARM V8 STRL. */
9705static void
4b8c8c02 9706do_stlex (void)
9eb6c0f1
MGD
9707{
9708 constraint (inst.operands[0].reg == inst.operands[1].reg
9709 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9710
9711 do_rd_rm_rn ();
9712}
9713
9714static void
4b8c8c02 9715do_t_stlex (void)
9eb6c0f1
MGD
9716{
9717 constraint (inst.operands[0].reg == inst.operands[1].reg
9718 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9719
9720 do_rm_rd_rn ();
9721}
9722
c19d1205
ZW
9723/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
9724 extends it to 32-bits, and adds the result to a value in another
9725 register. You can specify a rotation by 0, 8, 16, or 24 bits
9726 before extracting the 16-bit value.
9727 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
9728 Condition defaults to COND_ALWAYS.
9729 Error if any register uses R15. */
9730
e16bb312 9731static void
c19d1205 9732do_sxtah (void)
e16bb312 9733{
c19d1205
ZW
9734 inst.instruction |= inst.operands[0].reg << 12;
9735 inst.instruction |= inst.operands[1].reg << 16;
9736 inst.instruction |= inst.operands[2].reg;
9737 inst.instruction |= inst.operands[3].imm << 10;
9738}
e16bb312 9739
c19d1205 9740/* ARM V6 SXTH.
e16bb312 9741
c19d1205
ZW
9742 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
9743 Condition defaults to COND_ALWAYS.
9744 Error if any register uses R15. */
e16bb312
NC
9745
9746static void
c19d1205 9747do_sxth (void)
e16bb312 9748{
c19d1205
ZW
9749 inst.instruction |= inst.operands[0].reg << 12;
9750 inst.instruction |= inst.operands[1].reg;
9751 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 9752}
c19d1205
ZW
9753\f
9754/* VFP instructions. In a logical order: SP variant first, monad
9755 before dyad, arithmetic then move then load/store. */
e16bb312
NC
9756
9757static void
c19d1205 9758do_vfp_sp_monadic (void)
e16bb312 9759{
5287ad62
JB
9760 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9761 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
9762}
9763
9764static void
c19d1205 9765do_vfp_sp_dyadic (void)
e16bb312 9766{
5287ad62
JB
9767 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9768 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9769 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
9770}
9771
9772static void
c19d1205 9773do_vfp_sp_compare_z (void)
e16bb312 9774{
5287ad62 9775 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
9776}
9777
9778static void
c19d1205 9779do_vfp_dp_sp_cvt (void)
e16bb312 9780{
5287ad62
JB
9781 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9782 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
9783}
9784
9785static void
c19d1205 9786do_vfp_sp_dp_cvt (void)
e16bb312 9787{
5287ad62
JB
9788 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9789 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
9790}
9791
9792static void
c19d1205 9793do_vfp_reg_from_sp (void)
e16bb312 9794{
c19d1205 9795 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 9796 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
9797}
9798
9799static void
c19d1205 9800do_vfp_reg2_from_sp2 (void)
e16bb312 9801{
c19d1205
ZW
9802 constraint (inst.operands[2].imm != 2,
9803 _("only two consecutive VFP SP registers allowed here"));
9804 inst.instruction |= inst.operands[0].reg << 12;
9805 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 9806 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
9807}
9808
9809static void
c19d1205 9810do_vfp_sp_from_reg (void)
e16bb312 9811{
5287ad62 9812 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 9813 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
9814}
9815
9816static void
c19d1205 9817do_vfp_sp2_from_reg2 (void)
e16bb312 9818{
c19d1205
ZW
9819 constraint (inst.operands[0].imm != 2,
9820 _("only two consecutive VFP SP registers allowed here"));
5287ad62 9821 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
9822 inst.instruction |= inst.operands[1].reg << 12;
9823 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
9824}
9825
9826static void
c19d1205 9827do_vfp_sp_ldst (void)
e16bb312 9828{
5287ad62 9829 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 9830 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
9831}
9832
9833static void
c19d1205 9834do_vfp_dp_ldst (void)
e16bb312 9835{
5287ad62 9836 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 9837 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
9838}
9839
c19d1205 9840
e16bb312 9841static void
c19d1205 9842vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 9843{
c19d1205
ZW
9844 if (inst.operands[0].writeback)
9845 inst.instruction |= WRITE_BACK;
9846 else
9847 constraint (ldstm_type != VFP_LDSTMIA,
9848 _("this addressing mode requires base-register writeback"));
9849 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 9850 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 9851 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
9852}
9853
9854static void
c19d1205 9855vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 9856{
c19d1205 9857 int count;
e16bb312 9858
c19d1205
ZW
9859 if (inst.operands[0].writeback)
9860 inst.instruction |= WRITE_BACK;
9861 else
9862 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
9863 _("this addressing mode requires base-register writeback"));
e16bb312 9864
c19d1205 9865 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 9866 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 9867
c19d1205
ZW
9868 count = inst.operands[1].imm << 1;
9869 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
9870 count += 1;
e16bb312 9871
c19d1205 9872 inst.instruction |= count;
e16bb312
NC
9873}
9874
9875static void
c19d1205 9876do_vfp_sp_ldstmia (void)
e16bb312 9877{
c19d1205 9878 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
9879}
9880
9881static void
c19d1205 9882do_vfp_sp_ldstmdb (void)
e16bb312 9883{
c19d1205 9884 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
9885}
9886
9887static void
c19d1205 9888do_vfp_dp_ldstmia (void)
e16bb312 9889{
c19d1205 9890 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
9891}
9892
9893static void
c19d1205 9894do_vfp_dp_ldstmdb (void)
e16bb312 9895{
c19d1205 9896 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
9897}
9898
9899static void
c19d1205 9900do_vfp_xp_ldstmia (void)
e16bb312 9901{
c19d1205
ZW
9902 vfp_dp_ldstm (VFP_LDSTMIAX);
9903}
e16bb312 9904
c19d1205
ZW
9905static void
9906do_vfp_xp_ldstmdb (void)
9907{
9908 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 9909}
5287ad62
JB
9910
9911static void
9912do_vfp_dp_rd_rm (void)
9913{
9914 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9915 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9916}
9917
9918static void
9919do_vfp_dp_rn_rd (void)
9920{
9921 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
9922 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9923}
9924
9925static void
9926do_vfp_dp_rd_rn (void)
9927{
9928 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9929 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9930}
9931
9932static void
9933do_vfp_dp_rd_rn_rm (void)
9934{
9935 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9936 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9937 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
9938}
9939
9940static void
9941do_vfp_dp_rd (void)
9942{
9943 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9944}
9945
9946static void
9947do_vfp_dp_rm_rd_rn (void)
9948{
9949 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
9950 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9951 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
9952}
9953
9954/* VFPv3 instructions. */
9955static void
9956do_vfp_sp_const (void)
9957{
9958 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
9959 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9960 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
9961}
9962
9963static void
9964do_vfp_dp_const (void)
9965{
9966 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
9967 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9968 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
9969}
9970
9971static void
9972vfp_conv (int srcsize)
9973{
5f1af56b
MGD
9974 int immbits = srcsize - inst.operands[1].imm;
9975
fa94de6b
RM
9976 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
9977 {
5f1af56b 9978 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
477330fc 9979 i.e. immbits must be in range 0 - 16. */
5f1af56b
MGD
9980 inst.error = _("immediate value out of range, expected range [0, 16]");
9981 return;
9982 }
fa94de6b 9983 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
9984 {
9985 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
477330fc 9986 i.e. immbits must be in range 0 - 31. */
5f1af56b
MGD
9987 inst.error = _("immediate value out of range, expected range [1, 32]");
9988 return;
9989 }
9990
5287ad62
JB
9991 inst.instruction |= (immbits & 1) << 5;
9992 inst.instruction |= (immbits >> 1);
9993}
9994
9995static void
9996do_vfp_sp_conv_16 (void)
9997{
9998 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9999 vfp_conv (16);
10000}
10001
10002static void
10003do_vfp_dp_conv_16 (void)
10004{
10005 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10006 vfp_conv (16);
10007}
10008
10009static void
10010do_vfp_sp_conv_32 (void)
10011{
10012 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10013 vfp_conv (32);
10014}
10015
10016static void
10017do_vfp_dp_conv_32 (void)
10018{
10019 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10020 vfp_conv (32);
10021}
c19d1205
ZW
10022\f
10023/* FPA instructions. Also in a logical order. */
e16bb312 10024
c19d1205
ZW
10025static void
10026do_fpa_cmp (void)
10027{
10028 inst.instruction |= inst.operands[0].reg << 16;
10029 inst.instruction |= inst.operands[1].reg;
10030}
b99bd4ef
NC
10031
10032static void
c19d1205 10033do_fpa_ldmstm (void)
b99bd4ef 10034{
c19d1205
ZW
10035 inst.instruction |= inst.operands[0].reg << 12;
10036 switch (inst.operands[1].imm)
10037 {
10038 case 1: inst.instruction |= CP_T_X; break;
10039 case 2: inst.instruction |= CP_T_Y; break;
10040 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10041 case 4: break;
10042 default: abort ();
10043 }
b99bd4ef 10044
c19d1205
ZW
10045 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10046 {
10047 /* The instruction specified "ea" or "fd", so we can only accept
10048 [Rn]{!}. The instruction does not really support stacking or
10049 unstacking, so we have to emulate these by setting appropriate
10050 bits and offsets. */
10051 constraint (inst.reloc.exp.X_op != O_constant
10052 || inst.reloc.exp.X_add_number != 0,
10053 _("this instruction does not support indexing"));
b99bd4ef 10054
c19d1205
ZW
10055 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10056 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 10057
c19d1205
ZW
10058 if (!(inst.instruction & INDEX_UP))
10059 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 10060
c19d1205
ZW
10061 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10062 {
10063 inst.operands[2].preind = 0;
10064 inst.operands[2].postind = 1;
10065 }
10066 }
b99bd4ef 10067
c19d1205 10068 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 10069}
c19d1205
ZW
10070\f
10071/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 10072
c19d1205
ZW
10073static void
10074do_iwmmxt_tandorc (void)
10075{
10076 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10077}
b99bd4ef 10078
c19d1205
ZW
10079static void
10080do_iwmmxt_textrc (void)
10081{
10082 inst.instruction |= inst.operands[0].reg << 12;
10083 inst.instruction |= inst.operands[1].imm;
10084}
b99bd4ef
NC
10085
10086static void
c19d1205 10087do_iwmmxt_textrm (void)
b99bd4ef 10088{
c19d1205
ZW
10089 inst.instruction |= inst.operands[0].reg << 12;
10090 inst.instruction |= inst.operands[1].reg << 16;
10091 inst.instruction |= inst.operands[2].imm;
10092}
b99bd4ef 10093
c19d1205
ZW
10094static void
10095do_iwmmxt_tinsr (void)
10096{
10097 inst.instruction |= inst.operands[0].reg << 16;
10098 inst.instruction |= inst.operands[1].reg << 12;
10099 inst.instruction |= inst.operands[2].imm;
10100}
b99bd4ef 10101
c19d1205
ZW
10102static void
10103do_iwmmxt_tmia (void)
10104{
10105 inst.instruction |= inst.operands[0].reg << 5;
10106 inst.instruction |= inst.operands[1].reg;
10107 inst.instruction |= inst.operands[2].reg << 12;
10108}
b99bd4ef 10109
c19d1205
ZW
10110static void
10111do_iwmmxt_waligni (void)
10112{
10113 inst.instruction |= inst.operands[0].reg << 12;
10114 inst.instruction |= inst.operands[1].reg << 16;
10115 inst.instruction |= inst.operands[2].reg;
10116 inst.instruction |= inst.operands[3].imm << 20;
10117}
b99bd4ef 10118
2d447fca
JM
10119static void
10120do_iwmmxt_wmerge (void)
10121{
10122 inst.instruction |= inst.operands[0].reg << 12;
10123 inst.instruction |= inst.operands[1].reg << 16;
10124 inst.instruction |= inst.operands[2].reg;
10125 inst.instruction |= inst.operands[3].imm << 21;
10126}
10127
c19d1205
ZW
10128static void
10129do_iwmmxt_wmov (void)
10130{
10131 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10132 inst.instruction |= inst.operands[0].reg << 12;
10133 inst.instruction |= inst.operands[1].reg << 16;
10134 inst.instruction |= inst.operands[1].reg;
10135}
b99bd4ef 10136
c19d1205
ZW
10137static void
10138do_iwmmxt_wldstbh (void)
10139{
8f06b2d8 10140 int reloc;
c19d1205 10141 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
10142 if (thumb_mode)
10143 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10144 else
10145 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10146 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
10147}
10148
c19d1205
ZW
10149static void
10150do_iwmmxt_wldstw (void)
10151{
10152 /* RIWR_RIWC clears .isreg for a control register. */
10153 if (!inst.operands[0].isreg)
10154 {
10155 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10156 inst.instruction |= 0xf0000000;
10157 }
b99bd4ef 10158
c19d1205
ZW
10159 inst.instruction |= inst.operands[0].reg << 12;
10160 encode_arm_cp_address (1, TRUE, TRUE, 0);
10161}
b99bd4ef
NC
10162
10163static void
c19d1205 10164do_iwmmxt_wldstd (void)
b99bd4ef 10165{
c19d1205 10166 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
10167 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10168 && inst.operands[1].immisreg)
10169 {
10170 inst.instruction &= ~0x1a000ff;
eff0bc54 10171 inst.instruction |= (0xfU << 28);
2d447fca
JM
10172 if (inst.operands[1].preind)
10173 inst.instruction |= PRE_INDEX;
10174 if (!inst.operands[1].negative)
10175 inst.instruction |= INDEX_UP;
10176 if (inst.operands[1].writeback)
10177 inst.instruction |= WRITE_BACK;
10178 inst.instruction |= inst.operands[1].reg << 16;
10179 inst.instruction |= inst.reloc.exp.X_add_number << 4;
10180 inst.instruction |= inst.operands[1].imm;
10181 }
10182 else
10183 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 10184}
b99bd4ef 10185
c19d1205
ZW
10186static void
10187do_iwmmxt_wshufh (void)
10188{
10189 inst.instruction |= inst.operands[0].reg << 12;
10190 inst.instruction |= inst.operands[1].reg << 16;
10191 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10192 inst.instruction |= (inst.operands[2].imm & 0x0f);
10193}
b99bd4ef 10194
c19d1205
ZW
10195static void
10196do_iwmmxt_wzero (void)
10197{
10198 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10199 inst.instruction |= inst.operands[0].reg;
10200 inst.instruction |= inst.operands[0].reg << 12;
10201 inst.instruction |= inst.operands[0].reg << 16;
10202}
2d447fca
JM
10203
10204static void
10205do_iwmmxt_wrwrwr_or_imm5 (void)
10206{
10207 if (inst.operands[2].isreg)
10208 do_rd_rn_rm ();
10209 else {
10210 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10211 _("immediate operand requires iWMMXt2"));
10212 do_rd_rn ();
10213 if (inst.operands[2].imm == 0)
10214 {
10215 switch ((inst.instruction >> 20) & 0xf)
10216 {
10217 case 4:
10218 case 5:
10219 case 6:
5f4273c7 10220 case 7:
2d447fca
JM
10221 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10222 inst.operands[2].imm = 16;
10223 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10224 break;
10225 case 8:
10226 case 9:
10227 case 10:
10228 case 11:
10229 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10230 inst.operands[2].imm = 32;
10231 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10232 break;
10233 case 12:
10234 case 13:
10235 case 14:
10236 case 15:
10237 {
10238 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10239 unsigned long wrn;
10240 wrn = (inst.instruction >> 16) & 0xf;
10241 inst.instruction &= 0xff0fff0f;
10242 inst.instruction |= wrn;
10243 /* Bail out here; the instruction is now assembled. */
10244 return;
10245 }
10246 }
10247 }
10248 /* Map 32 -> 0, etc. */
10249 inst.operands[2].imm &= 0x1f;
eff0bc54 10250 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
2d447fca
JM
10251 }
10252}
c19d1205
ZW
10253\f
10254/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10255 operations first, then control, shift, and load/store. */
b99bd4ef 10256
c19d1205 10257/* Insns like "foo X,Y,Z". */
b99bd4ef 10258
c19d1205
ZW
10259static void
10260do_mav_triple (void)
10261{
10262 inst.instruction |= inst.operands[0].reg << 16;
10263 inst.instruction |= inst.operands[1].reg;
10264 inst.instruction |= inst.operands[2].reg << 12;
10265}
b99bd4ef 10266
c19d1205
ZW
10267/* Insns like "foo W,X,Y,Z".
10268 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 10269
c19d1205
ZW
10270static void
10271do_mav_quad (void)
10272{
10273 inst.instruction |= inst.operands[0].reg << 5;
10274 inst.instruction |= inst.operands[1].reg << 12;
10275 inst.instruction |= inst.operands[2].reg << 16;
10276 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
10277}
10278
c19d1205
ZW
10279/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10280static void
10281do_mav_dspsc (void)
a737bd4d 10282{
c19d1205
ZW
10283 inst.instruction |= inst.operands[1].reg << 12;
10284}
a737bd4d 10285
c19d1205
ZW
10286/* Maverick shift immediate instructions.
10287 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10288 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 10289
c19d1205
ZW
10290static void
10291do_mav_shift (void)
10292{
10293 int imm = inst.operands[2].imm;
a737bd4d 10294
c19d1205
ZW
10295 inst.instruction |= inst.operands[0].reg << 12;
10296 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 10297
c19d1205
ZW
10298 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10299 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10300 Bit 4 should be 0. */
10301 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 10302
c19d1205
ZW
10303 inst.instruction |= imm;
10304}
10305\f
10306/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 10307
c19d1205
ZW
10308/* Xscale multiply-accumulate (argument parse)
10309 MIAcc acc0,Rm,Rs
10310 MIAPHcc acc0,Rm,Rs
10311 MIAxycc acc0,Rm,Rs. */
a737bd4d 10312
c19d1205
ZW
10313static void
10314do_xsc_mia (void)
10315{
10316 inst.instruction |= inst.operands[1].reg;
10317 inst.instruction |= inst.operands[2].reg << 12;
10318}
a737bd4d 10319
c19d1205 10320/* Xscale move-accumulator-register (argument parse)
a737bd4d 10321
c19d1205 10322 MARcc acc0,RdLo,RdHi. */
b99bd4ef 10323
c19d1205
ZW
10324static void
10325do_xsc_mar (void)
10326{
10327 inst.instruction |= inst.operands[1].reg << 12;
10328 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10329}
10330
c19d1205 10331/* Xscale move-register-accumulator (argument parse)
b99bd4ef 10332
c19d1205 10333 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
10334
10335static void
c19d1205 10336do_xsc_mra (void)
b99bd4ef 10337{
c19d1205
ZW
10338 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10339 inst.instruction |= inst.operands[0].reg << 12;
10340 inst.instruction |= inst.operands[1].reg << 16;
10341}
10342\f
10343/* Encoding functions relevant only to Thumb. */
b99bd4ef 10344
c19d1205
ZW
10345/* inst.operands[i] is a shifted-register operand; encode
10346 it into inst.instruction in the format used by Thumb32. */
10347
10348static void
10349encode_thumb32_shifted_operand (int i)
10350{
10351 unsigned int value = inst.reloc.exp.X_add_number;
10352 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 10353
9c3c69f2
PB
10354 constraint (inst.operands[i].immisreg,
10355 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
10356 inst.instruction |= inst.operands[i].reg;
10357 if (shift == SHIFT_RRX)
10358 inst.instruction |= SHIFT_ROR << 4;
10359 else
b99bd4ef 10360 {
c19d1205
ZW
10361 constraint (inst.reloc.exp.X_op != O_constant,
10362 _("expression too complex"));
10363
10364 constraint (value > 32
10365 || (value == 32 && (shift == SHIFT_LSL
10366 || shift == SHIFT_ROR)),
10367 _("shift expression is too large"));
10368
10369 if (value == 0)
10370 shift = SHIFT_LSL;
10371 else if (value == 32)
10372 value = 0;
10373
10374 inst.instruction |= shift << 4;
10375 inst.instruction |= (value & 0x1c) << 10;
10376 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 10377 }
c19d1205 10378}
b99bd4ef 10379
b99bd4ef 10380
c19d1205
ZW
10381/* inst.operands[i] was set up by parse_address. Encode it into a
10382 Thumb32 format load or store instruction. Reject forms that cannot
10383 be used with such instructions. If is_t is true, reject forms that
10384 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
10385 that cannot be used with a D instruction. If it is a store insn,
10386 reject PC in Rn. */
b99bd4ef 10387
c19d1205
ZW
10388static void
10389encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10390{
5be8be5d 10391 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
10392
10393 constraint (!inst.operands[i].isreg,
53365c0d 10394 _("Instruction does not support =N addresses"));
b99bd4ef 10395
c19d1205
ZW
10396 inst.instruction |= inst.operands[i].reg << 16;
10397 if (inst.operands[i].immisreg)
b99bd4ef 10398 {
5be8be5d 10399 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
10400 constraint (is_t || is_d, _("cannot use register index with this instruction"));
10401 constraint (inst.operands[i].negative,
10402 _("Thumb does not support negative register indexing"));
10403 constraint (inst.operands[i].postind,
10404 _("Thumb does not support register post-indexing"));
10405 constraint (inst.operands[i].writeback,
10406 _("Thumb does not support register indexing with writeback"));
10407 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
10408 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 10409
f40d1643 10410 inst.instruction |= inst.operands[i].imm;
c19d1205 10411 if (inst.operands[i].shifted)
b99bd4ef 10412 {
c19d1205
ZW
10413 constraint (inst.reloc.exp.X_op != O_constant,
10414 _("expression too complex"));
9c3c69f2
PB
10415 constraint (inst.reloc.exp.X_add_number < 0
10416 || inst.reloc.exp.X_add_number > 3,
c19d1205 10417 _("shift out of range"));
9c3c69f2 10418 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
10419 }
10420 inst.reloc.type = BFD_RELOC_UNUSED;
10421 }
10422 else if (inst.operands[i].preind)
10423 {
5be8be5d 10424 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 10425 constraint (is_t && inst.operands[i].writeback,
c19d1205 10426 _("cannot use writeback with this instruction"));
4755303e
WN
10427 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
10428 BAD_PC_ADDRESSING);
c19d1205
ZW
10429
10430 if (is_d)
10431 {
10432 inst.instruction |= 0x01000000;
10433 if (inst.operands[i].writeback)
10434 inst.instruction |= 0x00200000;
b99bd4ef 10435 }
c19d1205 10436 else
b99bd4ef 10437 {
c19d1205
ZW
10438 inst.instruction |= 0x00000c00;
10439 if (inst.operands[i].writeback)
10440 inst.instruction |= 0x00000100;
b99bd4ef 10441 }
c19d1205 10442 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 10443 }
c19d1205 10444 else if (inst.operands[i].postind)
b99bd4ef 10445 {
9c2799c2 10446 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
10447 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
10448 constraint (is_t, _("cannot use post-indexing with this instruction"));
10449
10450 if (is_d)
10451 inst.instruction |= 0x00200000;
10452 else
10453 inst.instruction |= 0x00000900;
10454 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10455 }
10456 else /* unindexed - only for coprocessor */
10457 inst.error = _("instruction does not accept unindexed addressing");
10458}
10459
10460/* Table of Thumb instructions which exist in both 16- and 32-bit
10461 encodings (the latter only in post-V6T2 cores). The index is the
10462 value used in the insns table below. When there is more than one
10463 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
10464 holds variant (1).
10465 Also contains several pseudo-instructions used during relaxation. */
c19d1205 10466#define T16_32_TAB \
21d799b5
NC
10467 X(_adc, 4140, eb400000), \
10468 X(_adcs, 4140, eb500000), \
10469 X(_add, 1c00, eb000000), \
10470 X(_adds, 1c00, eb100000), \
10471 X(_addi, 0000, f1000000), \
10472 X(_addis, 0000, f1100000), \
10473 X(_add_pc,000f, f20f0000), \
10474 X(_add_sp,000d, f10d0000), \
10475 X(_adr, 000f, f20f0000), \
10476 X(_and, 4000, ea000000), \
10477 X(_ands, 4000, ea100000), \
10478 X(_asr, 1000, fa40f000), \
10479 X(_asrs, 1000, fa50f000), \
10480 X(_b, e000, f000b000), \
10481 X(_bcond, d000, f0008000), \
10482 X(_bic, 4380, ea200000), \
10483 X(_bics, 4380, ea300000), \
10484 X(_cmn, 42c0, eb100f00), \
10485 X(_cmp, 2800, ebb00f00), \
10486 X(_cpsie, b660, f3af8400), \
10487 X(_cpsid, b670, f3af8600), \
10488 X(_cpy, 4600, ea4f0000), \
10489 X(_dec_sp,80dd, f1ad0d00), \
10490 X(_eor, 4040, ea800000), \
10491 X(_eors, 4040, ea900000), \
10492 X(_inc_sp,00dd, f10d0d00), \
10493 X(_ldmia, c800, e8900000), \
10494 X(_ldr, 6800, f8500000), \
10495 X(_ldrb, 7800, f8100000), \
10496 X(_ldrh, 8800, f8300000), \
10497 X(_ldrsb, 5600, f9100000), \
10498 X(_ldrsh, 5e00, f9300000), \
10499 X(_ldr_pc,4800, f85f0000), \
10500 X(_ldr_pc2,4800, f85f0000), \
10501 X(_ldr_sp,9800, f85d0000), \
10502 X(_lsl, 0000, fa00f000), \
10503 X(_lsls, 0000, fa10f000), \
10504 X(_lsr, 0800, fa20f000), \
10505 X(_lsrs, 0800, fa30f000), \
10506 X(_mov, 2000, ea4f0000), \
10507 X(_movs, 2000, ea5f0000), \
10508 X(_mul, 4340, fb00f000), \
10509 X(_muls, 4340, ffffffff), /* no 32b muls */ \
10510 X(_mvn, 43c0, ea6f0000), \
10511 X(_mvns, 43c0, ea7f0000), \
10512 X(_neg, 4240, f1c00000), /* rsb #0 */ \
10513 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
10514 X(_orr, 4300, ea400000), \
10515 X(_orrs, 4300, ea500000), \
10516 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
10517 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
10518 X(_rev, ba00, fa90f080), \
10519 X(_rev16, ba40, fa90f090), \
10520 X(_revsh, bac0, fa90f0b0), \
10521 X(_ror, 41c0, fa60f000), \
10522 X(_rors, 41c0, fa70f000), \
10523 X(_sbc, 4180, eb600000), \
10524 X(_sbcs, 4180, eb700000), \
10525 X(_stmia, c000, e8800000), \
10526 X(_str, 6000, f8400000), \
10527 X(_strb, 7000, f8000000), \
10528 X(_strh, 8000, f8200000), \
10529 X(_str_sp,9000, f84d0000), \
10530 X(_sub, 1e00, eba00000), \
10531 X(_subs, 1e00, ebb00000), \
10532 X(_subi, 8000, f1a00000), \
10533 X(_subis, 8000, f1b00000), \
10534 X(_sxtb, b240, fa4ff080), \
10535 X(_sxth, b200, fa0ff080), \
10536 X(_tst, 4200, ea100f00), \
10537 X(_uxtb, b2c0, fa5ff080), \
10538 X(_uxth, b280, fa1ff080), \
10539 X(_nop, bf00, f3af8000), \
10540 X(_yield, bf10, f3af8001), \
10541 X(_wfe, bf20, f3af8002), \
10542 X(_wfi, bf30, f3af8003), \
53c4b28b 10543 X(_sev, bf40, f3af8004), \
74db7efb
NC
10544 X(_sevl, bf50, f3af8005), \
10545 X(_udf, de00, f7f0a000)
c19d1205
ZW
10546
10547/* To catch errors in encoding functions, the codes are all offset by
10548 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
10549 as 16-bit instructions. */
21d799b5 10550#define X(a,b,c) T_MNEM##a
c19d1205
ZW
10551enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
10552#undef X
10553
10554#define X(a,b,c) 0x##b
10555static const unsigned short thumb_op16[] = { T16_32_TAB };
10556#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
10557#undef X
10558
10559#define X(a,b,c) 0x##c
10560static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
10561#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
10562#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
10563#undef X
10564#undef T16_32_TAB
10565
10566/* Thumb instruction encoders, in alphabetical order. */
10567
92e90b6e 10568/* ADDW or SUBW. */
c921be7d 10569
92e90b6e
PB
10570static void
10571do_t_add_sub_w (void)
10572{
10573 int Rd, Rn;
10574
10575 Rd = inst.operands[0].reg;
10576 Rn = inst.operands[1].reg;
10577
539d4391
NC
10578 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
10579 is the SP-{plus,minus}-immediate form of the instruction. */
10580 if (Rn == REG_SP)
10581 constraint (Rd == REG_PC, BAD_PC);
10582 else
10583 reject_bad_reg (Rd);
fdfde340 10584
92e90b6e
PB
10585 inst.instruction |= (Rn << 16) | (Rd << 8);
10586 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10587}
10588
c19d1205 10589/* Parse an add or subtract instruction. We get here with inst.instruction
33eaf5de 10590 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
c19d1205
ZW
10591
10592static void
10593do_t_add_sub (void)
10594{
10595 int Rd, Rs, Rn;
10596
10597 Rd = inst.operands[0].reg;
10598 Rs = (inst.operands[1].present
10599 ? inst.operands[1].reg /* Rd, Rs, foo */
10600 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10601
e07e6e58
NC
10602 if (Rd == REG_PC)
10603 set_it_insn_type_last ();
10604
c19d1205
ZW
10605 if (unified_syntax)
10606 {
0110f2b8
PB
10607 bfd_boolean flags;
10608 bfd_boolean narrow;
10609 int opcode;
10610
10611 flags = (inst.instruction == T_MNEM_adds
10612 || inst.instruction == T_MNEM_subs);
10613 if (flags)
e07e6e58 10614 narrow = !in_it_block ();
0110f2b8 10615 else
e07e6e58 10616 narrow = in_it_block ();
c19d1205 10617 if (!inst.operands[2].isreg)
b99bd4ef 10618 {
16805f35
PB
10619 int add;
10620
5c8ed6a4
JW
10621 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10622 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340 10623
16805f35
PB
10624 add = (inst.instruction == T_MNEM_add
10625 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
10626 opcode = 0;
10627 if (inst.size_req != 4)
10628 {
0110f2b8 10629 /* Attempt to use a narrow opcode, with relaxation if
477330fc 10630 appropriate. */
0110f2b8
PB
10631 if (Rd == REG_SP && Rs == REG_SP && !flags)
10632 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
10633 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
10634 opcode = T_MNEM_add_sp;
10635 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
10636 opcode = T_MNEM_add_pc;
10637 else if (Rd <= 7 && Rs <= 7 && narrow)
10638 {
10639 if (flags)
10640 opcode = add ? T_MNEM_addis : T_MNEM_subis;
10641 else
10642 opcode = add ? T_MNEM_addi : T_MNEM_subi;
10643 }
10644 if (opcode)
10645 {
10646 inst.instruction = THUMB_OP16(opcode);
10647 inst.instruction |= (Rd << 4) | Rs;
72d98d16
MG
10648 if (inst.reloc.type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10649 || inst.reloc.type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
a9f02af8
MG
10650 {
10651 if (inst.size_req == 2)
10652 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10653 else
10654 inst.relax = opcode;
10655 }
0110f2b8
PB
10656 }
10657 else
10658 constraint (inst.size_req == 2, BAD_HIREG);
10659 }
10660 if (inst.size_req == 4
10661 || (inst.size_req != 2 && !opcode))
10662 {
a9f02af8
MG
10663 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10664 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
10665 THUMB1_RELOC_ONLY);
efd81785
PB
10666 if (Rd == REG_PC)
10667 {
fdfde340 10668 constraint (add, BAD_PC);
efd81785
PB
10669 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
10670 _("only SUBS PC, LR, #const allowed"));
10671 constraint (inst.reloc.exp.X_op != O_constant,
10672 _("expression too complex"));
10673 constraint (inst.reloc.exp.X_add_number < 0
10674 || inst.reloc.exp.X_add_number > 0xff,
10675 _("immediate value out of range"));
10676 inst.instruction = T2_SUBS_PC_LR
10677 | inst.reloc.exp.X_add_number;
10678 inst.reloc.type = BFD_RELOC_UNUSED;
10679 return;
10680 }
10681 else if (Rs == REG_PC)
16805f35
PB
10682 {
10683 /* Always use addw/subw. */
10684 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
10685 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10686 }
10687 else
10688 {
10689 inst.instruction = THUMB_OP32 (inst.instruction);
10690 inst.instruction = (inst.instruction & 0xe1ffffff)
10691 | 0x10000000;
10692 if (flags)
10693 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10694 else
10695 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
10696 }
dc4503c6
PB
10697 inst.instruction |= Rd << 8;
10698 inst.instruction |= Rs << 16;
0110f2b8 10699 }
b99bd4ef 10700 }
c19d1205
ZW
10701 else
10702 {
5f4cb198
NC
10703 unsigned int value = inst.reloc.exp.X_add_number;
10704 unsigned int shift = inst.operands[2].shift_kind;
10705
c19d1205
ZW
10706 Rn = inst.operands[2].reg;
10707 /* See if we can do this with a 16-bit instruction. */
10708 if (!inst.operands[2].shifted && inst.size_req != 4)
10709 {
e27ec89e
PB
10710 if (Rd > 7 || Rs > 7 || Rn > 7)
10711 narrow = FALSE;
10712
10713 if (narrow)
c19d1205 10714 {
e27ec89e
PB
10715 inst.instruction = ((inst.instruction == T_MNEM_adds
10716 || inst.instruction == T_MNEM_add)
c19d1205
ZW
10717 ? T_OPCODE_ADD_R3
10718 : T_OPCODE_SUB_R3);
10719 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10720 return;
10721 }
b99bd4ef 10722
7e806470 10723 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 10724 {
7e806470
PB
10725 /* Thumb-1 cores (except v6-M) require at least one high
10726 register in a narrow non flag setting add. */
10727 if (Rd > 7 || Rn > 7
10728 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
10729 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 10730 {
7e806470
PB
10731 if (Rd == Rn)
10732 {
10733 Rn = Rs;
10734 Rs = Rd;
10735 }
c19d1205
ZW
10736 inst.instruction = T_OPCODE_ADD_HI;
10737 inst.instruction |= (Rd & 8) << 4;
10738 inst.instruction |= (Rd & 7);
10739 inst.instruction |= Rn << 3;
10740 return;
10741 }
c19d1205
ZW
10742 }
10743 }
c921be7d 10744
fdfde340 10745 constraint (Rd == REG_PC, BAD_PC);
5c8ed6a4
JW
10746 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10747 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340
JM
10748 constraint (Rs == REG_PC, BAD_PC);
10749 reject_bad_reg (Rn);
10750
c19d1205
ZW
10751 /* If we get here, it can't be done in 16 bits. */
10752 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
10753 _("shift must be constant"));
10754 inst.instruction = THUMB_OP32 (inst.instruction);
10755 inst.instruction |= Rd << 8;
10756 inst.instruction |= Rs << 16;
5f4cb198
NC
10757 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
10758 _("shift value over 3 not allowed in thumb mode"));
10759 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
10760 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
10761 encode_thumb32_shifted_operand (2);
10762 }
10763 }
10764 else
10765 {
10766 constraint (inst.instruction == T_MNEM_adds
10767 || inst.instruction == T_MNEM_subs,
10768 BAD_THUMB32);
b99bd4ef 10769
c19d1205 10770 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 10771 {
c19d1205
ZW
10772 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
10773 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
10774 BAD_HIREG);
10775
10776 inst.instruction = (inst.instruction == T_MNEM_add
10777 ? 0x0000 : 0x8000);
10778 inst.instruction |= (Rd << 4) | Rs;
10779 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
10780 return;
10781 }
10782
c19d1205
ZW
10783 Rn = inst.operands[2].reg;
10784 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 10785
c19d1205
ZW
10786 /* We now have Rd, Rs, and Rn set to registers. */
10787 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 10788 {
c19d1205
ZW
10789 /* Can't do this for SUB. */
10790 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
10791 inst.instruction = T_OPCODE_ADD_HI;
10792 inst.instruction |= (Rd & 8) << 4;
10793 inst.instruction |= (Rd & 7);
10794 if (Rs == Rd)
10795 inst.instruction |= Rn << 3;
10796 else if (Rn == Rd)
10797 inst.instruction |= Rs << 3;
10798 else
10799 constraint (1, _("dest must overlap one source register"));
10800 }
10801 else
10802 {
10803 inst.instruction = (inst.instruction == T_MNEM_add
10804 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
10805 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 10806 }
b99bd4ef 10807 }
b99bd4ef
NC
10808}
10809
c19d1205
ZW
10810static void
10811do_t_adr (void)
10812{
fdfde340
JM
10813 unsigned Rd;
10814
10815 Rd = inst.operands[0].reg;
10816 reject_bad_reg (Rd);
10817
10818 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
10819 {
10820 /* Defer to section relaxation. */
10821 inst.relax = inst.instruction;
10822 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 10823 inst.instruction |= Rd << 4;
0110f2b8
PB
10824 }
10825 else if (unified_syntax && inst.size_req != 2)
e9f89963 10826 {
0110f2b8 10827 /* Generate a 32-bit opcode. */
e9f89963 10828 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10829 inst.instruction |= Rd << 8;
e9f89963
PB
10830 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
10831 inst.reloc.pc_rel = 1;
10832 }
10833 else
10834 {
0110f2b8 10835 /* Generate a 16-bit opcode. */
e9f89963
PB
10836 inst.instruction = THUMB_OP16 (inst.instruction);
10837 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10838 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
10839 inst.reloc.pc_rel = 1;
fdfde340 10840 inst.instruction |= Rd << 4;
e9f89963 10841 }
52a86f84
NC
10842
10843 if (inst.reloc.exp.X_op == O_symbol
10844 && inst.reloc.exp.X_add_symbol != NULL
10845 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10846 && THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10847 inst.reloc.exp.X_add_number += 1;
c19d1205 10848}
b99bd4ef 10849
c19d1205
ZW
10850/* Arithmetic instructions for which there is just one 16-bit
10851 instruction encoding, and it allows only two low registers.
10852 For maximal compatibility with ARM syntax, we allow three register
10853 operands even when Thumb-32 instructions are not available, as long
10854 as the first two are identical. For instance, both "sbc r0,r1" and
10855 "sbc r0,r0,r1" are allowed. */
b99bd4ef 10856static void
c19d1205 10857do_t_arit3 (void)
b99bd4ef 10858{
c19d1205 10859 int Rd, Rs, Rn;
b99bd4ef 10860
c19d1205
ZW
10861 Rd = inst.operands[0].reg;
10862 Rs = (inst.operands[1].present
10863 ? inst.operands[1].reg /* Rd, Rs, foo */
10864 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10865 Rn = inst.operands[2].reg;
b99bd4ef 10866
fdfde340
JM
10867 reject_bad_reg (Rd);
10868 reject_bad_reg (Rs);
10869 if (inst.operands[2].isreg)
10870 reject_bad_reg (Rn);
10871
c19d1205 10872 if (unified_syntax)
b99bd4ef 10873 {
c19d1205
ZW
10874 if (!inst.operands[2].isreg)
10875 {
10876 /* For an immediate, we always generate a 32-bit opcode;
10877 section relaxation will shrink it later if possible. */
10878 inst.instruction = THUMB_OP32 (inst.instruction);
10879 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10880 inst.instruction |= Rd << 8;
10881 inst.instruction |= Rs << 16;
10882 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10883 }
10884 else
10885 {
e27ec89e
PB
10886 bfd_boolean narrow;
10887
c19d1205 10888 /* See if we can do this with a 16-bit instruction. */
e27ec89e 10889 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10890 narrow = !in_it_block ();
e27ec89e 10891 else
e07e6e58 10892 narrow = in_it_block ();
e27ec89e
PB
10893
10894 if (Rd > 7 || Rn > 7 || Rs > 7)
10895 narrow = FALSE;
10896 if (inst.operands[2].shifted)
10897 narrow = FALSE;
10898 if (inst.size_req == 4)
10899 narrow = FALSE;
10900
10901 if (narrow
c19d1205
ZW
10902 && Rd == Rs)
10903 {
10904 inst.instruction = THUMB_OP16 (inst.instruction);
10905 inst.instruction |= Rd;
10906 inst.instruction |= Rn << 3;
10907 return;
10908 }
b99bd4ef 10909
c19d1205
ZW
10910 /* If we get here, it can't be done in 16 bits. */
10911 constraint (inst.operands[2].shifted
10912 && inst.operands[2].immisreg,
10913 _("shift must be constant"));
10914 inst.instruction = THUMB_OP32 (inst.instruction);
10915 inst.instruction |= Rd << 8;
10916 inst.instruction |= Rs << 16;
10917 encode_thumb32_shifted_operand (2);
10918 }
a737bd4d 10919 }
c19d1205 10920 else
b99bd4ef 10921 {
c19d1205
ZW
10922 /* On its face this is a lie - the instruction does set the
10923 flags. However, the only supported mnemonic in this mode
10924 says it doesn't. */
10925 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 10926
c19d1205
ZW
10927 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10928 _("unshifted register required"));
10929 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10930 constraint (Rd != Rs,
10931 _("dest and source1 must be the same register"));
a737bd4d 10932
c19d1205
ZW
10933 inst.instruction = THUMB_OP16 (inst.instruction);
10934 inst.instruction |= Rd;
10935 inst.instruction |= Rn << 3;
b99bd4ef 10936 }
a737bd4d 10937}
b99bd4ef 10938
c19d1205
ZW
10939/* Similarly, but for instructions where the arithmetic operation is
10940 commutative, so we can allow either of them to be different from
10941 the destination operand in a 16-bit instruction. For instance, all
10942 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
10943 accepted. */
10944static void
10945do_t_arit3c (void)
a737bd4d 10946{
c19d1205 10947 int Rd, Rs, Rn;
b99bd4ef 10948
c19d1205
ZW
10949 Rd = inst.operands[0].reg;
10950 Rs = (inst.operands[1].present
10951 ? inst.operands[1].reg /* Rd, Rs, foo */
10952 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10953 Rn = inst.operands[2].reg;
c921be7d 10954
fdfde340
JM
10955 reject_bad_reg (Rd);
10956 reject_bad_reg (Rs);
10957 if (inst.operands[2].isreg)
10958 reject_bad_reg (Rn);
a737bd4d 10959
c19d1205 10960 if (unified_syntax)
a737bd4d 10961 {
c19d1205 10962 if (!inst.operands[2].isreg)
b99bd4ef 10963 {
c19d1205
ZW
10964 /* For an immediate, we always generate a 32-bit opcode;
10965 section relaxation will shrink it later if possible. */
10966 inst.instruction = THUMB_OP32 (inst.instruction);
10967 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10968 inst.instruction |= Rd << 8;
10969 inst.instruction |= Rs << 16;
10970 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 10971 }
c19d1205 10972 else
a737bd4d 10973 {
e27ec89e
PB
10974 bfd_boolean narrow;
10975
c19d1205 10976 /* See if we can do this with a 16-bit instruction. */
e27ec89e 10977 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10978 narrow = !in_it_block ();
e27ec89e 10979 else
e07e6e58 10980 narrow = in_it_block ();
e27ec89e
PB
10981
10982 if (Rd > 7 || Rn > 7 || Rs > 7)
10983 narrow = FALSE;
10984 if (inst.operands[2].shifted)
10985 narrow = FALSE;
10986 if (inst.size_req == 4)
10987 narrow = FALSE;
10988
10989 if (narrow)
a737bd4d 10990 {
c19d1205 10991 if (Rd == Rs)
a737bd4d 10992 {
c19d1205
ZW
10993 inst.instruction = THUMB_OP16 (inst.instruction);
10994 inst.instruction |= Rd;
10995 inst.instruction |= Rn << 3;
10996 return;
a737bd4d 10997 }
c19d1205 10998 if (Rd == Rn)
a737bd4d 10999 {
c19d1205
ZW
11000 inst.instruction = THUMB_OP16 (inst.instruction);
11001 inst.instruction |= Rd;
11002 inst.instruction |= Rs << 3;
11003 return;
a737bd4d
NC
11004 }
11005 }
c19d1205
ZW
11006
11007 /* If we get here, it can't be done in 16 bits. */
11008 constraint (inst.operands[2].shifted
11009 && inst.operands[2].immisreg,
11010 _("shift must be constant"));
11011 inst.instruction = THUMB_OP32 (inst.instruction);
11012 inst.instruction |= Rd << 8;
11013 inst.instruction |= Rs << 16;
11014 encode_thumb32_shifted_operand (2);
a737bd4d 11015 }
b99bd4ef 11016 }
c19d1205
ZW
11017 else
11018 {
11019 /* On its face this is a lie - the instruction does set the
11020 flags. However, the only supported mnemonic in this mode
11021 says it doesn't. */
11022 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11023
c19d1205
ZW
11024 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11025 _("unshifted register required"));
11026 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11027
11028 inst.instruction = THUMB_OP16 (inst.instruction);
11029 inst.instruction |= Rd;
11030
11031 if (Rd == Rs)
11032 inst.instruction |= Rn << 3;
11033 else if (Rd == Rn)
11034 inst.instruction |= Rs << 3;
11035 else
11036 constraint (1, _("dest must overlap one source register"));
11037 }
a737bd4d
NC
11038}
11039
c19d1205
ZW
11040static void
11041do_t_bfc (void)
a737bd4d 11042{
fdfde340 11043 unsigned Rd;
c19d1205
ZW
11044 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11045 constraint (msb > 32, _("bit-field extends past end of register"));
11046 /* The instruction encoding stores the LSB and MSB,
11047 not the LSB and width. */
fdfde340
JM
11048 Rd = inst.operands[0].reg;
11049 reject_bad_reg (Rd);
11050 inst.instruction |= Rd << 8;
c19d1205
ZW
11051 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11052 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11053 inst.instruction |= msb - 1;
b99bd4ef
NC
11054}
11055
c19d1205
ZW
11056static void
11057do_t_bfi (void)
b99bd4ef 11058{
fdfde340 11059 int Rd, Rn;
c19d1205 11060 unsigned int msb;
b99bd4ef 11061
fdfde340
JM
11062 Rd = inst.operands[0].reg;
11063 reject_bad_reg (Rd);
11064
c19d1205
ZW
11065 /* #0 in second position is alternative syntax for bfc, which is
11066 the same instruction but with REG_PC in the Rm field. */
11067 if (!inst.operands[1].isreg)
fdfde340
JM
11068 Rn = REG_PC;
11069 else
11070 {
11071 Rn = inst.operands[1].reg;
11072 reject_bad_reg (Rn);
11073 }
b99bd4ef 11074
c19d1205
ZW
11075 msb = inst.operands[2].imm + inst.operands[3].imm;
11076 constraint (msb > 32, _("bit-field extends past end of register"));
11077 /* The instruction encoding stores the LSB and MSB,
11078 not the LSB and width. */
fdfde340
JM
11079 inst.instruction |= Rd << 8;
11080 inst.instruction |= Rn << 16;
c19d1205
ZW
11081 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11082 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11083 inst.instruction |= msb - 1;
b99bd4ef
NC
11084}
11085
c19d1205
ZW
11086static void
11087do_t_bfx (void)
b99bd4ef 11088{
fdfde340
JM
11089 unsigned Rd, Rn;
11090
11091 Rd = inst.operands[0].reg;
11092 Rn = inst.operands[1].reg;
11093
11094 reject_bad_reg (Rd);
11095 reject_bad_reg (Rn);
11096
c19d1205
ZW
11097 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11098 _("bit-field extends past end of register"));
fdfde340
JM
11099 inst.instruction |= Rd << 8;
11100 inst.instruction |= Rn << 16;
c19d1205
ZW
11101 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11102 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11103 inst.instruction |= inst.operands[3].imm - 1;
11104}
b99bd4ef 11105
c19d1205
ZW
11106/* ARM V5 Thumb BLX (argument parse)
11107 BLX <target_addr> which is BLX(1)
11108 BLX <Rm> which is BLX(2)
11109 Unfortunately, there are two different opcodes for this mnemonic.
11110 So, the insns[].value is not used, and the code here zaps values
11111 into inst.instruction.
b99bd4ef 11112
c19d1205
ZW
11113 ??? How to take advantage of the additional two bits of displacement
11114 available in Thumb32 mode? Need new relocation? */
b99bd4ef 11115
c19d1205
ZW
11116static void
11117do_t_blx (void)
11118{
e07e6e58
NC
11119 set_it_insn_type_last ();
11120
c19d1205 11121 if (inst.operands[0].isreg)
fdfde340
JM
11122 {
11123 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11124 /* We have a register, so this is BLX(2). */
11125 inst.instruction |= inst.operands[0].reg << 3;
11126 }
b99bd4ef
NC
11127 else
11128 {
c19d1205 11129 /* No register. This must be BLX(1). */
2fc8bdac 11130 inst.instruction = 0xf000e800;
0855e32b 11131 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
11132 }
11133}
11134
c19d1205
ZW
11135static void
11136do_t_branch (void)
b99bd4ef 11137{
0110f2b8 11138 int opcode;
dfa9f0d5 11139 int cond;
2fe88214 11140 bfd_reloc_code_real_type reloc;
dfa9f0d5 11141
e07e6e58
NC
11142 cond = inst.cond;
11143 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
11144
11145 if (in_it_block ())
dfa9f0d5
PB
11146 {
11147 /* Conditional branches inside IT blocks are encoded as unconditional
477330fc 11148 branches. */
dfa9f0d5 11149 cond = COND_ALWAYS;
dfa9f0d5
PB
11150 }
11151 else
11152 cond = inst.cond;
11153
11154 if (cond != COND_ALWAYS)
0110f2b8
PB
11155 opcode = T_MNEM_bcond;
11156 else
11157 opcode = inst.instruction;
11158
12d6b0b7
RS
11159 if (unified_syntax
11160 && (inst.size_req == 4
10960bfb
PB
11161 || (inst.size_req != 2
11162 && (inst.operands[0].hasreloc
11163 || inst.reloc.exp.X_op == O_constant))))
c19d1205 11164 {
0110f2b8 11165 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 11166 if (cond == COND_ALWAYS)
9ae92b05 11167 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
11168 else
11169 {
ff8646ee
TP
11170 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11171 _("selected architecture does not support "
11172 "wide conditional branch instruction"));
11173
9c2799c2 11174 gas_assert (cond != 0xF);
dfa9f0d5 11175 inst.instruction |= cond << 22;
9ae92b05 11176 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
11177 }
11178 }
b99bd4ef
NC
11179 else
11180 {
0110f2b8 11181 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 11182 if (cond == COND_ALWAYS)
9ae92b05 11183 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 11184 else
b99bd4ef 11185 {
dfa9f0d5 11186 inst.instruction |= cond << 8;
9ae92b05 11187 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 11188 }
0110f2b8
PB
11189 /* Allow section relaxation. */
11190 if (unified_syntax && inst.size_req != 2)
11191 inst.relax = opcode;
b99bd4ef 11192 }
9ae92b05 11193 inst.reloc.type = reloc;
c19d1205 11194 inst.reloc.pc_rel = 1;
b99bd4ef
NC
11195}
11196
8884b720 11197/* Actually do the work for Thumb state bkpt and hlt. The only difference
bacebabc 11198 between the two is the maximum immediate allowed - which is passed in
8884b720 11199 RANGE. */
b99bd4ef 11200static void
8884b720 11201do_t_bkpt_hlt1 (int range)
b99bd4ef 11202{
dfa9f0d5
PB
11203 constraint (inst.cond != COND_ALWAYS,
11204 _("instruction is always unconditional"));
c19d1205 11205 if (inst.operands[0].present)
b99bd4ef 11206 {
8884b720 11207 constraint (inst.operands[0].imm > range,
c19d1205
ZW
11208 _("immediate value out of range"));
11209 inst.instruction |= inst.operands[0].imm;
b99bd4ef 11210 }
8884b720
MGD
11211
11212 set_it_insn_type (NEUTRAL_IT_INSN);
11213}
11214
11215static void
11216do_t_hlt (void)
11217{
11218 do_t_bkpt_hlt1 (63);
11219}
11220
11221static void
11222do_t_bkpt (void)
11223{
11224 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
11225}
11226
11227static void
c19d1205 11228do_t_branch23 (void)
b99bd4ef 11229{
e07e6e58 11230 set_it_insn_type_last ();
0855e32b 11231 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 11232
0855e32b
NS
11233 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11234 this file. We used to simply ignore the PLT reloc type here --
11235 the branch encoding is now needed to deal with TLSCALL relocs.
11236 So if we see a PLT reloc now, put it back to how it used to be to
11237 keep the preexisting behaviour. */
11238 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
11239 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 11240
4343666d 11241#if defined(OBJ_COFF)
c19d1205
ZW
11242 /* If the destination of the branch is a defined symbol which does not have
11243 the THUMB_FUNC attribute, then we must be calling a function which has
11244 the (interfacearm) attribute. We look for the Thumb entry point to that
11245 function and change the branch to refer to that function instead. */
11246 if ( inst.reloc.exp.X_op == O_symbol
11247 && inst.reloc.exp.X_add_symbol != NULL
11248 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
11249 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
11250 inst.reloc.exp.X_add_symbol =
11251 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 11252#endif
90e4755a
RE
11253}
11254
11255static void
c19d1205 11256do_t_bx (void)
90e4755a 11257{
e07e6e58 11258 set_it_insn_type_last ();
c19d1205
ZW
11259 inst.instruction |= inst.operands[0].reg << 3;
11260 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11261 should cause the alignment to be checked once it is known. This is
11262 because BX PC only works if the instruction is word aligned. */
11263}
90e4755a 11264
c19d1205
ZW
11265static void
11266do_t_bxj (void)
11267{
fdfde340 11268 int Rm;
90e4755a 11269
e07e6e58 11270 set_it_insn_type_last ();
fdfde340
JM
11271 Rm = inst.operands[0].reg;
11272 reject_bad_reg (Rm);
11273 inst.instruction |= Rm << 16;
90e4755a
RE
11274}
11275
11276static void
c19d1205 11277do_t_clz (void)
90e4755a 11278{
fdfde340
JM
11279 unsigned Rd;
11280 unsigned Rm;
11281
11282 Rd = inst.operands[0].reg;
11283 Rm = inst.operands[1].reg;
11284
11285 reject_bad_reg (Rd);
11286 reject_bad_reg (Rm);
11287
11288 inst.instruction |= Rd << 8;
11289 inst.instruction |= Rm << 16;
11290 inst.instruction |= Rm;
c19d1205 11291}
90e4755a 11292
91d8b670
JG
11293static void
11294do_t_csdb (void)
11295{
11296 set_it_insn_type (OUTSIDE_IT_INSN);
11297}
11298
dfa9f0d5
PB
11299static void
11300do_t_cps (void)
11301{
e07e6e58 11302 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
11303 inst.instruction |= inst.operands[0].imm;
11304}
11305
c19d1205
ZW
11306static void
11307do_t_cpsi (void)
11308{
e07e6e58 11309 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 11310 if (unified_syntax
62b3e311
PB
11311 && (inst.operands[1].present || inst.size_req == 4)
11312 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 11313 {
c19d1205
ZW
11314 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11315 inst.instruction = 0xf3af8000;
11316 inst.instruction |= imod << 9;
11317 inst.instruction |= inst.operands[0].imm << 5;
11318 if (inst.operands[1].present)
11319 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 11320 }
c19d1205 11321 else
90e4755a 11322 {
62b3e311
PB
11323 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11324 && (inst.operands[0].imm & 4),
11325 _("selected processor does not support 'A' form "
11326 "of this instruction"));
11327 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
11328 _("Thumb does not support the 2-argument "
11329 "form of this instruction"));
11330 inst.instruction |= inst.operands[0].imm;
90e4755a 11331 }
90e4755a
RE
11332}
11333
c19d1205
ZW
11334/* THUMB CPY instruction (argument parse). */
11335
90e4755a 11336static void
c19d1205 11337do_t_cpy (void)
90e4755a 11338{
c19d1205 11339 if (inst.size_req == 4)
90e4755a 11340 {
c19d1205
ZW
11341 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11342 inst.instruction |= inst.operands[0].reg << 8;
11343 inst.instruction |= inst.operands[1].reg;
90e4755a 11344 }
c19d1205 11345 else
90e4755a 11346 {
c19d1205
ZW
11347 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11348 inst.instruction |= (inst.operands[0].reg & 0x7);
11349 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 11350 }
90e4755a
RE
11351}
11352
90e4755a 11353static void
25fe350b 11354do_t_cbz (void)
90e4755a 11355{
e07e6e58 11356 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11357 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11358 inst.instruction |= inst.operands[0].reg;
11359 inst.reloc.pc_rel = 1;
11360 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
11361}
90e4755a 11362
62b3e311
PB
11363static void
11364do_t_dbg (void)
11365{
11366 inst.instruction |= inst.operands[0].imm;
11367}
11368
11369static void
11370do_t_div (void)
11371{
fdfde340
JM
11372 unsigned Rd, Rn, Rm;
11373
11374 Rd = inst.operands[0].reg;
11375 Rn = (inst.operands[1].present
11376 ? inst.operands[1].reg : Rd);
11377 Rm = inst.operands[2].reg;
11378
11379 reject_bad_reg (Rd);
11380 reject_bad_reg (Rn);
11381 reject_bad_reg (Rm);
11382
11383 inst.instruction |= Rd << 8;
11384 inst.instruction |= Rn << 16;
11385 inst.instruction |= Rm;
62b3e311
PB
11386}
11387
c19d1205
ZW
11388static void
11389do_t_hint (void)
11390{
11391 if (unified_syntax && inst.size_req == 4)
11392 inst.instruction = THUMB_OP32 (inst.instruction);
11393 else
11394 inst.instruction = THUMB_OP16 (inst.instruction);
11395}
90e4755a 11396
c19d1205
ZW
11397static void
11398do_t_it (void)
11399{
11400 unsigned int cond = inst.operands[0].imm;
e27ec89e 11401
e07e6e58
NC
11402 set_it_insn_type (IT_INSN);
11403 now_it.mask = (inst.instruction & 0xf) | 0x10;
11404 now_it.cc = cond;
5a01bb1d 11405 now_it.warn_deprecated = FALSE;
e27ec89e
PB
11406
11407 /* If the condition is a negative condition, invert the mask. */
c19d1205 11408 if ((cond & 0x1) == 0x0)
90e4755a 11409 {
c19d1205 11410 unsigned int mask = inst.instruction & 0x000f;
90e4755a 11411
c19d1205 11412 if ((mask & 0x7) == 0)
5a01bb1d
MGD
11413 {
11414 /* No conversion needed. */
11415 now_it.block_length = 1;
11416 }
c19d1205 11417 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
11418 {
11419 mask ^= 0x8;
11420 now_it.block_length = 2;
11421 }
e27ec89e 11422 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
11423 {
11424 mask ^= 0xC;
11425 now_it.block_length = 3;
11426 }
c19d1205 11427 else
5a01bb1d
MGD
11428 {
11429 mask ^= 0xE;
11430 now_it.block_length = 4;
11431 }
90e4755a 11432
e27ec89e
PB
11433 inst.instruction &= 0xfff0;
11434 inst.instruction |= mask;
c19d1205 11435 }
90e4755a 11436
c19d1205
ZW
11437 inst.instruction |= cond << 4;
11438}
90e4755a 11439
3c707909
PB
11440/* Helper function used for both push/pop and ldm/stm. */
11441static void
11442encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
11443{
11444 bfd_boolean load;
11445
11446 load = (inst.instruction & (1 << 20)) != 0;
11447
11448 if (mask & (1 << 13))
11449 inst.error = _("SP not allowed in register list");
1e5b0379
NC
11450
11451 if ((mask & (1 << base)) != 0
11452 && writeback)
11453 inst.error = _("having the base register in the register list when "
11454 "using write back is UNPREDICTABLE");
11455
3c707909
PB
11456 if (load)
11457 {
e07e6e58 11458 if (mask & (1 << 15))
477330fc
RM
11459 {
11460 if (mask & (1 << 14))
11461 inst.error = _("LR and PC should not both be in register list");
11462 else
11463 set_it_insn_type_last ();
11464 }
3c707909
PB
11465 }
11466 else
11467 {
11468 if (mask & (1 << 15))
11469 inst.error = _("PC not allowed in register list");
3c707909
PB
11470 }
11471
11472 if ((mask & (mask - 1)) == 0)
11473 {
11474 /* Single register transfers implemented as str/ldr. */
11475 if (writeback)
11476 {
11477 if (inst.instruction & (1 << 23))
11478 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
11479 else
11480 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
11481 }
11482 else
11483 {
11484 if (inst.instruction & (1 << 23))
11485 inst.instruction = 0x00800000; /* ia -> [base] */
11486 else
11487 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
11488 }
11489
11490 inst.instruction |= 0xf8400000;
11491 if (load)
11492 inst.instruction |= 0x00100000;
11493
5f4273c7 11494 mask = ffs (mask) - 1;
3c707909
PB
11495 mask <<= 12;
11496 }
11497 else if (writeback)
11498 inst.instruction |= WRITE_BACK;
11499
11500 inst.instruction |= mask;
11501 inst.instruction |= base << 16;
11502}
11503
c19d1205
ZW
11504static void
11505do_t_ldmstm (void)
11506{
11507 /* This really doesn't seem worth it. */
11508 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11509 _("expression too complex"));
11510 constraint (inst.operands[1].writeback,
11511 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 11512
c19d1205
ZW
11513 if (unified_syntax)
11514 {
3c707909
PB
11515 bfd_boolean narrow;
11516 unsigned mask;
11517
11518 narrow = FALSE;
c19d1205
ZW
11519 /* See if we can use a 16-bit instruction. */
11520 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
11521 && inst.size_req != 4
3c707909 11522 && !(inst.operands[1].imm & ~0xff))
90e4755a 11523 {
3c707909 11524 mask = 1 << inst.operands[0].reg;
90e4755a 11525
eab4f823 11526 if (inst.operands[0].reg <= 7)
90e4755a 11527 {
3c707909 11528 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
11529 ? inst.operands[0].writeback
11530 : (inst.operands[0].writeback
11531 == !(inst.operands[1].imm & mask)))
477330fc 11532 {
eab4f823
MGD
11533 if (inst.instruction == T_MNEM_stmia
11534 && (inst.operands[1].imm & mask)
11535 && (inst.operands[1].imm & (mask - 1)))
11536 as_warn (_("value stored for r%d is UNKNOWN"),
11537 inst.operands[0].reg);
3c707909 11538
eab4f823
MGD
11539 inst.instruction = THUMB_OP16 (inst.instruction);
11540 inst.instruction |= inst.operands[0].reg << 8;
11541 inst.instruction |= inst.operands[1].imm;
11542 narrow = TRUE;
11543 }
11544 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11545 {
11546 /* This means 1 register in reg list one of 3 situations:
11547 1. Instruction is stmia, but without writeback.
11548 2. lmdia without writeback, but with Rn not in
477330fc 11549 reglist.
eab4f823
MGD
11550 3. ldmia with writeback, but with Rn in reglist.
11551 Case 3 is UNPREDICTABLE behaviour, so we handle
11552 case 1 and 2 which can be converted into a 16-bit
11553 str or ldr. The SP cases are handled below. */
11554 unsigned long opcode;
11555 /* First, record an error for Case 3. */
11556 if (inst.operands[1].imm & mask
11557 && inst.operands[0].writeback)
fa94de6b 11558 inst.error =
eab4f823
MGD
11559 _("having the base register in the register list when "
11560 "using write back is UNPREDICTABLE");
fa94de6b
RM
11561
11562 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
11563 : T_MNEM_ldr);
11564 inst.instruction = THUMB_OP16 (opcode);
11565 inst.instruction |= inst.operands[0].reg << 3;
11566 inst.instruction |= (ffs (inst.operands[1].imm)-1);
11567 narrow = TRUE;
11568 }
90e4755a 11569 }
eab4f823 11570 else if (inst.operands[0] .reg == REG_SP)
90e4755a 11571 {
eab4f823
MGD
11572 if (inst.operands[0].writeback)
11573 {
fa94de6b 11574 inst.instruction =
eab4f823 11575 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 11576 ? T_MNEM_push : T_MNEM_pop);
eab4f823 11577 inst.instruction |= inst.operands[1].imm;
477330fc 11578 narrow = TRUE;
eab4f823
MGD
11579 }
11580 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11581 {
fa94de6b 11582 inst.instruction =
eab4f823 11583 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 11584 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
eab4f823 11585 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
477330fc 11586 narrow = TRUE;
eab4f823 11587 }
90e4755a 11588 }
3c707909
PB
11589 }
11590
11591 if (!narrow)
11592 {
c19d1205
ZW
11593 if (inst.instruction < 0xffff)
11594 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 11595
5f4273c7
NC
11596 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
11597 inst.operands[0].writeback);
90e4755a
RE
11598 }
11599 }
c19d1205 11600 else
90e4755a 11601 {
c19d1205
ZW
11602 constraint (inst.operands[0].reg > 7
11603 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
11604 constraint (inst.instruction != T_MNEM_ldmia
11605 && inst.instruction != T_MNEM_stmia,
11606 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 11607 if (inst.instruction == T_MNEM_stmia)
f03698e6 11608 {
c19d1205
ZW
11609 if (!inst.operands[0].writeback)
11610 as_warn (_("this instruction will write back the base register"));
11611 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
11612 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 11613 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 11614 inst.operands[0].reg);
f03698e6 11615 }
c19d1205 11616 else
90e4755a 11617 {
c19d1205
ZW
11618 if (!inst.operands[0].writeback
11619 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
11620 as_warn (_("this instruction will write back the base register"));
11621 else if (inst.operands[0].writeback
11622 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
11623 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
11624 }
11625
c19d1205
ZW
11626 inst.instruction = THUMB_OP16 (inst.instruction);
11627 inst.instruction |= inst.operands[0].reg << 8;
11628 inst.instruction |= inst.operands[1].imm;
11629 }
11630}
e28cd48c 11631
c19d1205
ZW
11632static void
11633do_t_ldrex (void)
11634{
11635 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
11636 || inst.operands[1].postind || inst.operands[1].writeback
11637 || inst.operands[1].immisreg || inst.operands[1].shifted
11638 || inst.operands[1].negative,
01cfc07f 11639 BAD_ADDR_MODE);
e28cd48c 11640
5be8be5d
DG
11641 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
11642
c19d1205
ZW
11643 inst.instruction |= inst.operands[0].reg << 12;
11644 inst.instruction |= inst.operands[1].reg << 16;
11645 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11646}
e28cd48c 11647
c19d1205
ZW
11648static void
11649do_t_ldrexd (void)
11650{
11651 if (!inst.operands[1].present)
1cac9012 11652 {
c19d1205
ZW
11653 constraint (inst.operands[0].reg == REG_LR,
11654 _("r14 not allowed as first register "
11655 "when second register is omitted"));
11656 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 11657 }
c19d1205
ZW
11658 constraint (inst.operands[0].reg == inst.operands[1].reg,
11659 BAD_OVERLAP);
b99bd4ef 11660
c19d1205
ZW
11661 inst.instruction |= inst.operands[0].reg << 12;
11662 inst.instruction |= inst.operands[1].reg << 8;
11663 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
11664}
11665
11666static void
c19d1205 11667do_t_ldst (void)
b99bd4ef 11668{
0110f2b8
PB
11669 unsigned long opcode;
11670 int Rn;
11671
e07e6e58
NC
11672 if (inst.operands[0].isreg
11673 && !inst.operands[0].preind
11674 && inst.operands[0].reg == REG_PC)
11675 set_it_insn_type_last ();
11676
0110f2b8 11677 opcode = inst.instruction;
c19d1205 11678 if (unified_syntax)
b99bd4ef 11679 {
53365c0d
PB
11680 if (!inst.operands[1].isreg)
11681 {
11682 if (opcode <= 0xffff)
11683 inst.instruction = THUMB_OP32 (opcode);
8335d6aa 11684 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
53365c0d
PB
11685 return;
11686 }
0110f2b8
PB
11687 if (inst.operands[1].isreg
11688 && !inst.operands[1].writeback
c19d1205
ZW
11689 && !inst.operands[1].shifted && !inst.operands[1].postind
11690 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
11691 && opcode <= 0xffff
11692 && inst.size_req != 4)
c19d1205 11693 {
0110f2b8
PB
11694 /* Insn may have a 16-bit form. */
11695 Rn = inst.operands[1].reg;
11696 if (inst.operands[1].immisreg)
11697 {
11698 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 11699 /* [Rn, Rik] */
0110f2b8
PB
11700 if (Rn <= 7 && inst.operands[1].imm <= 7)
11701 goto op16;
5be8be5d
DG
11702 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
11703 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
11704 }
11705 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
11706 && opcode != T_MNEM_ldrsb)
11707 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
11708 || (Rn == REG_SP && opcode == T_MNEM_str))
11709 {
11710 /* [Rn, #const] */
11711 if (Rn > 7)
11712 {
11713 if (Rn == REG_PC)
11714 {
11715 if (inst.reloc.pc_rel)
11716 opcode = T_MNEM_ldr_pc2;
11717 else
11718 opcode = T_MNEM_ldr_pc;
11719 }
11720 else
11721 {
11722 if (opcode == T_MNEM_ldr)
11723 opcode = T_MNEM_ldr_sp;
11724 else
11725 opcode = T_MNEM_str_sp;
11726 }
11727 inst.instruction = inst.operands[0].reg << 8;
11728 }
11729 else
11730 {
11731 inst.instruction = inst.operands[0].reg;
11732 inst.instruction |= inst.operands[1].reg << 3;
11733 }
11734 inst.instruction |= THUMB_OP16 (opcode);
11735 if (inst.size_req == 2)
11736 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11737 else
11738 inst.relax = opcode;
11739 return;
11740 }
c19d1205 11741 }
0110f2b8 11742 /* Definitely a 32-bit variant. */
5be8be5d 11743
8d67f500
NC
11744 /* Warning for Erratum 752419. */
11745 if (opcode == T_MNEM_ldr
11746 && inst.operands[0].reg == REG_SP
11747 && inst.operands[1].writeback == 1
11748 && !inst.operands[1].immisreg)
11749 {
11750 if (no_cpu_selected ()
11751 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
477330fc
RM
11752 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
11753 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
8d67f500
NC
11754 as_warn (_("This instruction may be unpredictable "
11755 "if executed on M-profile cores "
11756 "with interrupts enabled."));
11757 }
11758
5be8be5d 11759 /* Do some validations regarding addressing modes. */
1be5fd2e 11760 if (inst.operands[1].immisreg)
5be8be5d
DG
11761 reject_bad_reg (inst.operands[1].imm);
11762
1be5fd2e
NC
11763 constraint (inst.operands[1].writeback == 1
11764 && inst.operands[0].reg == inst.operands[1].reg,
11765 BAD_OVERLAP);
11766
0110f2b8 11767 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
11768 inst.instruction |= inst.operands[0].reg << 12;
11769 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 11770 check_ldr_r15_aligned ();
b99bd4ef
NC
11771 return;
11772 }
11773
c19d1205
ZW
11774 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11775
11776 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 11777 {
c19d1205
ZW
11778 /* Only [Rn,Rm] is acceptable. */
11779 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
11780 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
11781 || inst.operands[1].postind || inst.operands[1].shifted
11782 || inst.operands[1].negative,
11783 _("Thumb does not support this addressing mode"));
11784 inst.instruction = THUMB_OP16 (inst.instruction);
11785 goto op16;
b99bd4ef 11786 }
5f4273c7 11787
c19d1205
ZW
11788 inst.instruction = THUMB_OP16 (inst.instruction);
11789 if (!inst.operands[1].isreg)
8335d6aa 11790 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
c19d1205 11791 return;
b99bd4ef 11792
c19d1205
ZW
11793 constraint (!inst.operands[1].preind
11794 || inst.operands[1].shifted
11795 || inst.operands[1].writeback,
11796 _("Thumb does not support this addressing mode"));
11797 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 11798 {
c19d1205
ZW
11799 constraint (inst.instruction & 0x0600,
11800 _("byte or halfword not valid for base register"));
11801 constraint (inst.operands[1].reg == REG_PC
11802 && !(inst.instruction & THUMB_LOAD_BIT),
11803 _("r15 based store not allowed"));
11804 constraint (inst.operands[1].immisreg,
11805 _("invalid base register for register offset"));
b99bd4ef 11806
c19d1205
ZW
11807 if (inst.operands[1].reg == REG_PC)
11808 inst.instruction = T_OPCODE_LDR_PC;
11809 else if (inst.instruction & THUMB_LOAD_BIT)
11810 inst.instruction = T_OPCODE_LDR_SP;
11811 else
11812 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 11813
c19d1205
ZW
11814 inst.instruction |= inst.operands[0].reg << 8;
11815 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11816 return;
11817 }
90e4755a 11818
c19d1205
ZW
11819 constraint (inst.operands[1].reg > 7, BAD_HIREG);
11820 if (!inst.operands[1].immisreg)
11821 {
11822 /* Immediate offset. */
11823 inst.instruction |= inst.operands[0].reg;
11824 inst.instruction |= inst.operands[1].reg << 3;
11825 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11826 return;
11827 }
90e4755a 11828
c19d1205
ZW
11829 /* Register offset. */
11830 constraint (inst.operands[1].imm > 7, BAD_HIREG);
11831 constraint (inst.operands[1].negative,
11832 _("Thumb does not support this addressing mode"));
90e4755a 11833
c19d1205
ZW
11834 op16:
11835 switch (inst.instruction)
11836 {
11837 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
11838 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
11839 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
11840 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
11841 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
11842 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
11843 case 0x5600 /* ldrsb */:
11844 case 0x5e00 /* ldrsh */: break;
11845 default: abort ();
11846 }
90e4755a 11847
c19d1205
ZW
11848 inst.instruction |= inst.operands[0].reg;
11849 inst.instruction |= inst.operands[1].reg << 3;
11850 inst.instruction |= inst.operands[1].imm << 6;
11851}
90e4755a 11852
c19d1205
ZW
11853static void
11854do_t_ldstd (void)
11855{
11856 if (!inst.operands[1].present)
b99bd4ef 11857 {
c19d1205
ZW
11858 inst.operands[1].reg = inst.operands[0].reg + 1;
11859 constraint (inst.operands[0].reg == REG_LR,
11860 _("r14 not allowed here"));
bd340a04 11861 constraint (inst.operands[0].reg == REG_R12,
477330fc 11862 _("r12 not allowed here"));
b99bd4ef 11863 }
bd340a04
MGD
11864
11865 if (inst.operands[2].writeback
11866 && (inst.operands[0].reg == inst.operands[2].reg
11867 || inst.operands[1].reg == inst.operands[2].reg))
11868 as_warn (_("base register written back, and overlaps "
477330fc 11869 "one of transfer registers"));
bd340a04 11870
c19d1205
ZW
11871 inst.instruction |= inst.operands[0].reg << 12;
11872 inst.instruction |= inst.operands[1].reg << 8;
11873 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
11874}
11875
c19d1205
ZW
11876static void
11877do_t_ldstt (void)
11878{
11879 inst.instruction |= inst.operands[0].reg << 12;
11880 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
11881}
a737bd4d 11882
b99bd4ef 11883static void
c19d1205 11884do_t_mla (void)
b99bd4ef 11885{
fdfde340 11886 unsigned Rd, Rn, Rm, Ra;
c921be7d 11887
fdfde340
JM
11888 Rd = inst.operands[0].reg;
11889 Rn = inst.operands[1].reg;
11890 Rm = inst.operands[2].reg;
11891 Ra = inst.operands[3].reg;
11892
11893 reject_bad_reg (Rd);
11894 reject_bad_reg (Rn);
11895 reject_bad_reg (Rm);
11896 reject_bad_reg (Ra);
11897
11898 inst.instruction |= Rd << 8;
11899 inst.instruction |= Rn << 16;
11900 inst.instruction |= Rm;
11901 inst.instruction |= Ra << 12;
c19d1205 11902}
b99bd4ef 11903
c19d1205
ZW
11904static void
11905do_t_mlal (void)
11906{
fdfde340
JM
11907 unsigned RdLo, RdHi, Rn, Rm;
11908
11909 RdLo = inst.operands[0].reg;
11910 RdHi = inst.operands[1].reg;
11911 Rn = inst.operands[2].reg;
11912 Rm = inst.operands[3].reg;
11913
11914 reject_bad_reg (RdLo);
11915 reject_bad_reg (RdHi);
11916 reject_bad_reg (Rn);
11917 reject_bad_reg (Rm);
11918
11919 inst.instruction |= RdLo << 12;
11920 inst.instruction |= RdHi << 8;
11921 inst.instruction |= Rn << 16;
11922 inst.instruction |= Rm;
c19d1205 11923}
b99bd4ef 11924
c19d1205
ZW
11925static void
11926do_t_mov_cmp (void)
11927{
fdfde340
JM
11928 unsigned Rn, Rm;
11929
11930 Rn = inst.operands[0].reg;
11931 Rm = inst.operands[1].reg;
11932
e07e6e58
NC
11933 if (Rn == REG_PC)
11934 set_it_insn_type_last ();
11935
c19d1205 11936 if (unified_syntax)
b99bd4ef 11937 {
c19d1205
ZW
11938 int r0off = (inst.instruction == T_MNEM_mov
11939 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 11940 unsigned long opcode;
3d388997
PB
11941 bfd_boolean narrow;
11942 bfd_boolean low_regs;
11943
fdfde340 11944 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 11945 opcode = inst.instruction;
e07e6e58 11946 if (in_it_block ())
0110f2b8 11947 narrow = opcode != T_MNEM_movs;
3d388997 11948 else
0110f2b8 11949 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
11950 if (inst.size_req == 4
11951 || inst.operands[1].shifted)
11952 narrow = FALSE;
11953
efd81785
PB
11954 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
11955 if (opcode == T_MNEM_movs && inst.operands[1].isreg
11956 && !inst.operands[1].shifted
fdfde340
JM
11957 && Rn == REG_PC
11958 && Rm == REG_LR)
efd81785
PB
11959 {
11960 inst.instruction = T2_SUBS_PC_LR;
11961 return;
11962 }
11963
fdfde340
JM
11964 if (opcode == T_MNEM_cmp)
11965 {
11966 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
11967 if (narrow)
11968 {
11969 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
11970 but valid. */
11971 warn_deprecated_sp (Rm);
11972 /* R15 was documented as a valid choice for Rm in ARMv6,
11973 but as UNPREDICTABLE in ARMv7. ARM's proprietary
11974 tools reject R15, so we do too. */
11975 constraint (Rm == REG_PC, BAD_PC);
11976 }
11977 else
11978 reject_bad_reg (Rm);
fdfde340
JM
11979 }
11980 else if (opcode == T_MNEM_mov
11981 || opcode == T_MNEM_movs)
11982 {
11983 if (inst.operands[1].isreg)
11984 {
11985 if (opcode == T_MNEM_movs)
11986 {
11987 reject_bad_reg (Rn);
11988 reject_bad_reg (Rm);
11989 }
76fa04a4
MGD
11990 else if (narrow)
11991 {
11992 /* This is mov.n. */
11993 if ((Rn == REG_SP || Rn == REG_PC)
11994 && (Rm == REG_SP || Rm == REG_PC))
11995 {
5c3696f8 11996 as_tsktsk (_("Use of r%u as a source register is "
76fa04a4
MGD
11997 "deprecated when r%u is the destination "
11998 "register."), Rm, Rn);
11999 }
12000 }
12001 else
12002 {
12003 /* This is mov.w. */
12004 constraint (Rn == REG_PC, BAD_PC);
12005 constraint (Rm == REG_PC, BAD_PC);
5c8ed6a4
JW
12006 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12007 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
76fa04a4 12008 }
fdfde340
JM
12009 }
12010 else
12011 reject_bad_reg (Rn);
12012 }
12013
c19d1205
ZW
12014 if (!inst.operands[1].isreg)
12015 {
0110f2b8 12016 /* Immediate operand. */
e07e6e58 12017 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
12018 narrow = 0;
12019 if (low_regs && narrow)
12020 {
12021 inst.instruction = THUMB_OP16 (opcode);
fdfde340 12022 inst.instruction |= Rn << 8;
a9f02af8
MG
12023 if (inst.reloc.type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12024 || inst.reloc.type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
72d98d16 12025 {
a9f02af8 12026 if (inst.size_req == 2)
72d98d16 12027 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
a9f02af8
MG
12028 else
12029 inst.relax = opcode;
72d98d16 12030 }
0110f2b8
PB
12031 }
12032 else
12033 {
a9f02af8
MG
12034 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12035 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
12036 THUMB1_RELOC_ONLY);
12037
0110f2b8
PB
12038 inst.instruction = THUMB_OP32 (inst.instruction);
12039 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12040 inst.instruction |= Rn << r0off;
0110f2b8
PB
12041 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12042 }
c19d1205 12043 }
728ca7c9
PB
12044 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12045 && (inst.instruction == T_MNEM_mov
12046 || inst.instruction == T_MNEM_movs))
12047 {
12048 /* Register shifts are encoded as separate shift instructions. */
12049 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12050
e07e6e58 12051 if (in_it_block ())
728ca7c9
PB
12052 narrow = !flags;
12053 else
12054 narrow = flags;
12055
12056 if (inst.size_req == 4)
12057 narrow = FALSE;
12058
12059 if (!low_regs || inst.operands[1].imm > 7)
12060 narrow = FALSE;
12061
fdfde340 12062 if (Rn != Rm)
728ca7c9
PB
12063 narrow = FALSE;
12064
12065 switch (inst.operands[1].shift_kind)
12066 {
12067 case SHIFT_LSL:
12068 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12069 break;
12070 case SHIFT_ASR:
12071 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12072 break;
12073 case SHIFT_LSR:
12074 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12075 break;
12076 case SHIFT_ROR:
12077 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12078 break;
12079 default:
5f4273c7 12080 abort ();
728ca7c9
PB
12081 }
12082
12083 inst.instruction = opcode;
12084 if (narrow)
12085 {
fdfde340 12086 inst.instruction |= Rn;
728ca7c9
PB
12087 inst.instruction |= inst.operands[1].imm << 3;
12088 }
12089 else
12090 {
12091 if (flags)
12092 inst.instruction |= CONDS_BIT;
12093
fdfde340
JM
12094 inst.instruction |= Rn << 8;
12095 inst.instruction |= Rm << 16;
728ca7c9
PB
12096 inst.instruction |= inst.operands[1].imm;
12097 }
12098 }
3d388997 12099 else if (!narrow)
c19d1205 12100 {
728ca7c9
PB
12101 /* Some mov with immediate shift have narrow variants.
12102 Register shifts are handled above. */
12103 if (low_regs && inst.operands[1].shifted
12104 && (inst.instruction == T_MNEM_mov
12105 || inst.instruction == T_MNEM_movs))
12106 {
e07e6e58 12107 if (in_it_block ())
728ca7c9
PB
12108 narrow = (inst.instruction == T_MNEM_mov);
12109 else
12110 narrow = (inst.instruction == T_MNEM_movs);
12111 }
12112
12113 if (narrow)
12114 {
12115 switch (inst.operands[1].shift_kind)
12116 {
12117 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12118 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12119 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12120 default: narrow = FALSE; break;
12121 }
12122 }
12123
12124 if (narrow)
12125 {
fdfde340
JM
12126 inst.instruction |= Rn;
12127 inst.instruction |= Rm << 3;
728ca7c9
PB
12128 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12129 }
12130 else
12131 {
12132 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12133 inst.instruction |= Rn << r0off;
728ca7c9
PB
12134 encode_thumb32_shifted_operand (1);
12135 }
c19d1205
ZW
12136 }
12137 else
12138 switch (inst.instruction)
12139 {
12140 case T_MNEM_mov:
837b3435 12141 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
12142 results. Don't allow this. */
12143 if (low_regs)
12144 {
12145 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12146 "MOV Rd, Rs with two low registers is not "
12147 "permitted on this architecture");
fa94de6b 12148 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
12149 arm_ext_v6);
12150 }
12151
c19d1205 12152 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
12153 inst.instruction |= (Rn & 0x8) << 4;
12154 inst.instruction |= (Rn & 0x7);
12155 inst.instruction |= Rm << 3;
c19d1205 12156 break;
b99bd4ef 12157
c19d1205
ZW
12158 case T_MNEM_movs:
12159 /* We know we have low registers at this point.
941a8a52
MGD
12160 Generate LSLS Rd, Rs, #0. */
12161 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
12162 inst.instruction |= Rn;
12163 inst.instruction |= Rm << 3;
c19d1205
ZW
12164 break;
12165
12166 case T_MNEM_cmp:
3d388997 12167 if (low_regs)
c19d1205
ZW
12168 {
12169 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
12170 inst.instruction |= Rn;
12171 inst.instruction |= Rm << 3;
c19d1205
ZW
12172 }
12173 else
12174 {
12175 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
12176 inst.instruction |= (Rn & 0x8) << 4;
12177 inst.instruction |= (Rn & 0x7);
12178 inst.instruction |= Rm << 3;
c19d1205
ZW
12179 }
12180 break;
12181 }
b99bd4ef
NC
12182 return;
12183 }
12184
c19d1205 12185 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
12186
12187 /* PR 10443: Do not silently ignore shifted operands. */
12188 constraint (inst.operands[1].shifted,
12189 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12190
c19d1205 12191 if (inst.operands[1].isreg)
b99bd4ef 12192 {
fdfde340 12193 if (Rn < 8 && Rm < 8)
b99bd4ef 12194 {
c19d1205
ZW
12195 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12196 since a MOV instruction produces unpredictable results. */
12197 if (inst.instruction == T_OPCODE_MOV_I8)
12198 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 12199 else
c19d1205 12200 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 12201
fdfde340
JM
12202 inst.instruction |= Rn;
12203 inst.instruction |= Rm << 3;
b99bd4ef
NC
12204 }
12205 else
12206 {
c19d1205
ZW
12207 if (inst.instruction == T_OPCODE_MOV_I8)
12208 inst.instruction = T_OPCODE_MOV_HR;
12209 else
12210 inst.instruction = T_OPCODE_CMP_HR;
12211 do_t_cpy ();
b99bd4ef
NC
12212 }
12213 }
c19d1205 12214 else
b99bd4ef 12215 {
fdfde340 12216 constraint (Rn > 7,
c19d1205 12217 _("only lo regs allowed with immediate"));
fdfde340 12218 inst.instruction |= Rn << 8;
c19d1205
ZW
12219 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
12220 }
12221}
b99bd4ef 12222
c19d1205
ZW
12223static void
12224do_t_mov16 (void)
12225{
fdfde340 12226 unsigned Rd;
b6895b4f
PB
12227 bfd_vma imm;
12228 bfd_boolean top;
12229
12230 top = (inst.instruction & 0x00800000) != 0;
12231 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
12232 {
33eaf5de 12233 constraint (top, _(":lower16: not allowed in this instruction"));
b6895b4f
PB
12234 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
12235 }
12236 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
12237 {
33eaf5de 12238 constraint (!top, _(":upper16: not allowed in this instruction"));
b6895b4f
PB
12239 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
12240 }
12241
fdfde340
JM
12242 Rd = inst.operands[0].reg;
12243 reject_bad_reg (Rd);
12244
12245 inst.instruction |= Rd << 8;
b6895b4f
PB
12246 if (inst.reloc.type == BFD_RELOC_UNUSED)
12247 {
12248 imm = inst.reloc.exp.X_add_number;
12249 inst.instruction |= (imm & 0xf000) << 4;
12250 inst.instruction |= (imm & 0x0800) << 15;
12251 inst.instruction |= (imm & 0x0700) << 4;
12252 inst.instruction |= (imm & 0x00ff);
12253 }
c19d1205 12254}
b99bd4ef 12255
c19d1205
ZW
12256static void
12257do_t_mvn_tst (void)
12258{
fdfde340 12259 unsigned Rn, Rm;
c921be7d 12260
fdfde340
JM
12261 Rn = inst.operands[0].reg;
12262 Rm = inst.operands[1].reg;
12263
12264 if (inst.instruction == T_MNEM_cmp
12265 || inst.instruction == T_MNEM_cmn)
12266 constraint (Rn == REG_PC, BAD_PC);
12267 else
12268 reject_bad_reg (Rn);
12269 reject_bad_reg (Rm);
12270
c19d1205
ZW
12271 if (unified_syntax)
12272 {
12273 int r0off = (inst.instruction == T_MNEM_mvn
12274 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
12275 bfd_boolean narrow;
12276
12277 if (inst.size_req == 4
12278 || inst.instruction > 0xffff
12279 || inst.operands[1].shifted
fdfde340 12280 || Rn > 7 || Rm > 7)
3d388997 12281 narrow = FALSE;
fe8b4cc3
KT
12282 else if (inst.instruction == T_MNEM_cmn
12283 || inst.instruction == T_MNEM_tst)
3d388997
PB
12284 narrow = TRUE;
12285 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 12286 narrow = !in_it_block ();
3d388997 12287 else
e07e6e58 12288 narrow = in_it_block ();
3d388997 12289
c19d1205 12290 if (!inst.operands[1].isreg)
b99bd4ef 12291 {
c19d1205
ZW
12292 /* For an immediate, we always generate a 32-bit opcode;
12293 section relaxation will shrink it later if possible. */
12294 if (inst.instruction < 0xffff)
12295 inst.instruction = THUMB_OP32 (inst.instruction);
12296 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12297 inst.instruction |= Rn << r0off;
c19d1205 12298 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 12299 }
c19d1205 12300 else
b99bd4ef 12301 {
c19d1205 12302 /* See if we can do this with a 16-bit instruction. */
3d388997 12303 if (narrow)
b99bd4ef 12304 {
c19d1205 12305 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12306 inst.instruction |= Rn;
12307 inst.instruction |= Rm << 3;
b99bd4ef 12308 }
c19d1205 12309 else
b99bd4ef 12310 {
c19d1205
ZW
12311 constraint (inst.operands[1].shifted
12312 && inst.operands[1].immisreg,
12313 _("shift must be constant"));
12314 if (inst.instruction < 0xffff)
12315 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12316 inst.instruction |= Rn << r0off;
c19d1205 12317 encode_thumb32_shifted_operand (1);
b99bd4ef 12318 }
b99bd4ef
NC
12319 }
12320 }
12321 else
12322 {
c19d1205
ZW
12323 constraint (inst.instruction > 0xffff
12324 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12325 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12326 _("unshifted register required"));
fdfde340 12327 constraint (Rn > 7 || Rm > 7,
c19d1205 12328 BAD_HIREG);
b99bd4ef 12329
c19d1205 12330 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12331 inst.instruction |= Rn;
12332 inst.instruction |= Rm << 3;
b99bd4ef 12333 }
b99bd4ef
NC
12334}
12335
b05fe5cf 12336static void
c19d1205 12337do_t_mrs (void)
b05fe5cf 12338{
fdfde340 12339 unsigned Rd;
037e8744
JB
12340
12341 if (do_vfp_nsyn_mrs () == SUCCESS)
12342 return;
12343
90ec0d68
MGD
12344 Rd = inst.operands[0].reg;
12345 reject_bad_reg (Rd);
12346 inst.instruction |= Rd << 8;
12347
12348 if (inst.operands[1].isreg)
62b3e311 12349 {
90ec0d68
MGD
12350 unsigned br = inst.operands[1].reg;
12351 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12352 as_bad (_("bad register for mrs"));
12353
12354 inst.instruction |= br & (0xf << 16);
12355 inst.instruction |= (br & 0x300) >> 4;
12356 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
12357 }
12358 else
12359 {
90ec0d68 12360 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 12361
d2cd1205 12362 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
12363 {
12364 /* PR gas/12698: The constraint is only applied for m_profile.
12365 If the user has specified -march=all, we want to ignore it as
12366 we are building for any CPU type, including non-m variants. */
823d2571
TG
12367 bfd_boolean m_profile =
12368 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf
NC
12369 constraint ((flags != 0) && m_profile, _("selected processor does "
12370 "not support requested special purpose register"));
12371 }
90ec0d68 12372 else
d2cd1205
JB
12373 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12374 devices). */
12375 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
12376 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 12377
90ec0d68
MGD
12378 inst.instruction |= (flags & SPSR_BIT) >> 2;
12379 inst.instruction |= inst.operands[1].imm & 0xff;
12380 inst.instruction |= 0xf0000;
12381 }
c19d1205 12382}
b05fe5cf 12383
c19d1205
ZW
12384static void
12385do_t_msr (void)
12386{
62b3e311 12387 int flags;
fdfde340 12388 unsigned Rn;
62b3e311 12389
037e8744
JB
12390 if (do_vfp_nsyn_msr () == SUCCESS)
12391 return;
12392
c19d1205
ZW
12393 constraint (!inst.operands[1].isreg,
12394 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
12395
12396 if (inst.operands[0].isreg)
12397 flags = (int)(inst.operands[0].reg);
12398 else
12399 flags = inst.operands[0].imm;
12400
d2cd1205 12401 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 12402 {
d2cd1205
JB
12403 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12404
1a43faaf 12405 /* PR gas/12698: The constraint is only applied for m_profile.
477330fc
RM
12406 If the user has specified -march=all, we want to ignore it as
12407 we are building for any CPU type, including non-m variants. */
823d2571
TG
12408 bfd_boolean m_profile =
12409 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf 12410 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
477330fc
RM
12411 && (bits & ~(PSR_s | PSR_f)) != 0)
12412 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12413 && bits != PSR_f)) && m_profile,
12414 _("selected processor does not support requested special "
12415 "purpose register"));
62b3e311
PB
12416 }
12417 else
d2cd1205
JB
12418 constraint ((flags & 0xff) != 0, _("selected processor does not support "
12419 "requested special purpose register"));
c921be7d 12420
fdfde340
JM
12421 Rn = inst.operands[1].reg;
12422 reject_bad_reg (Rn);
12423
62b3e311 12424 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
12425 inst.instruction |= (flags & 0xf0000) >> 8;
12426 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 12427 inst.instruction |= (flags & 0xff);
fdfde340 12428 inst.instruction |= Rn << 16;
c19d1205 12429}
b05fe5cf 12430
c19d1205
ZW
12431static void
12432do_t_mul (void)
12433{
17828f45 12434 bfd_boolean narrow;
fdfde340 12435 unsigned Rd, Rn, Rm;
17828f45 12436
c19d1205
ZW
12437 if (!inst.operands[2].present)
12438 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 12439
fdfde340
JM
12440 Rd = inst.operands[0].reg;
12441 Rn = inst.operands[1].reg;
12442 Rm = inst.operands[2].reg;
12443
17828f45 12444 if (unified_syntax)
b05fe5cf 12445 {
17828f45 12446 if (inst.size_req == 4
fdfde340
JM
12447 || (Rd != Rn
12448 && Rd != Rm)
12449 || Rn > 7
12450 || Rm > 7)
17828f45
JM
12451 narrow = FALSE;
12452 else if (inst.instruction == T_MNEM_muls)
e07e6e58 12453 narrow = !in_it_block ();
17828f45 12454 else
e07e6e58 12455 narrow = in_it_block ();
b05fe5cf 12456 }
c19d1205 12457 else
b05fe5cf 12458 {
17828f45 12459 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 12460 constraint (Rn > 7 || Rm > 7,
c19d1205 12461 BAD_HIREG);
17828f45
JM
12462 narrow = TRUE;
12463 }
b05fe5cf 12464
17828f45
JM
12465 if (narrow)
12466 {
12467 /* 16-bit MULS/Conditional MUL. */
c19d1205 12468 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 12469 inst.instruction |= Rd;
b05fe5cf 12470
fdfde340
JM
12471 if (Rd == Rn)
12472 inst.instruction |= Rm << 3;
12473 else if (Rd == Rm)
12474 inst.instruction |= Rn << 3;
c19d1205
ZW
12475 else
12476 constraint (1, _("dest must overlap one source register"));
12477 }
17828f45
JM
12478 else
12479 {
e07e6e58
NC
12480 constraint (inst.instruction != T_MNEM_mul,
12481 _("Thumb-2 MUL must not set flags"));
17828f45
JM
12482 /* 32-bit MUL. */
12483 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
12484 inst.instruction |= Rd << 8;
12485 inst.instruction |= Rn << 16;
12486 inst.instruction |= Rm << 0;
12487
12488 reject_bad_reg (Rd);
12489 reject_bad_reg (Rn);
12490 reject_bad_reg (Rm);
17828f45 12491 }
c19d1205 12492}
b05fe5cf 12493
c19d1205
ZW
12494static void
12495do_t_mull (void)
12496{
fdfde340 12497 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 12498
fdfde340
JM
12499 RdLo = inst.operands[0].reg;
12500 RdHi = inst.operands[1].reg;
12501 Rn = inst.operands[2].reg;
12502 Rm = inst.operands[3].reg;
12503
12504 reject_bad_reg (RdLo);
12505 reject_bad_reg (RdHi);
12506 reject_bad_reg (Rn);
12507 reject_bad_reg (Rm);
12508
12509 inst.instruction |= RdLo << 12;
12510 inst.instruction |= RdHi << 8;
12511 inst.instruction |= Rn << 16;
12512 inst.instruction |= Rm;
12513
12514 if (RdLo == RdHi)
c19d1205
ZW
12515 as_tsktsk (_("rdhi and rdlo must be different"));
12516}
b05fe5cf 12517
c19d1205
ZW
12518static void
12519do_t_nop (void)
12520{
e07e6e58
NC
12521 set_it_insn_type (NEUTRAL_IT_INSN);
12522
c19d1205
ZW
12523 if (unified_syntax)
12524 {
12525 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 12526 {
c19d1205
ZW
12527 inst.instruction = THUMB_OP32 (inst.instruction);
12528 inst.instruction |= inst.operands[0].imm;
12529 }
12530 else
12531 {
bc2d1808
NC
12532 /* PR9722: Check for Thumb2 availability before
12533 generating a thumb2 nop instruction. */
afa62d5e 12534 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
12535 {
12536 inst.instruction = THUMB_OP16 (inst.instruction);
12537 inst.instruction |= inst.operands[0].imm << 4;
12538 }
12539 else
12540 inst.instruction = 0x46c0;
c19d1205
ZW
12541 }
12542 }
12543 else
12544 {
12545 constraint (inst.operands[0].present,
12546 _("Thumb does not support NOP with hints"));
12547 inst.instruction = 0x46c0;
12548 }
12549}
b05fe5cf 12550
c19d1205
ZW
12551static void
12552do_t_neg (void)
12553{
12554 if (unified_syntax)
12555 {
3d388997
PB
12556 bfd_boolean narrow;
12557
12558 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 12559 narrow = !in_it_block ();
3d388997 12560 else
e07e6e58 12561 narrow = in_it_block ();
3d388997
PB
12562 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12563 narrow = FALSE;
12564 if (inst.size_req == 4)
12565 narrow = FALSE;
12566
12567 if (!narrow)
c19d1205
ZW
12568 {
12569 inst.instruction = THUMB_OP32 (inst.instruction);
12570 inst.instruction |= inst.operands[0].reg << 8;
12571 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
12572 }
12573 else
12574 {
c19d1205
ZW
12575 inst.instruction = THUMB_OP16 (inst.instruction);
12576 inst.instruction |= inst.operands[0].reg;
12577 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
12578 }
12579 }
12580 else
12581 {
c19d1205
ZW
12582 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
12583 BAD_HIREG);
12584 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12585
12586 inst.instruction = THUMB_OP16 (inst.instruction);
12587 inst.instruction |= inst.operands[0].reg;
12588 inst.instruction |= inst.operands[1].reg << 3;
12589 }
12590}
12591
1c444d06
JM
12592static void
12593do_t_orn (void)
12594{
12595 unsigned Rd, Rn;
12596
12597 Rd = inst.operands[0].reg;
12598 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
12599
fdfde340
JM
12600 reject_bad_reg (Rd);
12601 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
12602 reject_bad_reg (Rn);
12603
1c444d06
JM
12604 inst.instruction |= Rd << 8;
12605 inst.instruction |= Rn << 16;
12606
12607 if (!inst.operands[2].isreg)
12608 {
12609 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12610 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12611 }
12612 else
12613 {
12614 unsigned Rm;
12615
12616 Rm = inst.operands[2].reg;
fdfde340 12617 reject_bad_reg (Rm);
1c444d06
JM
12618
12619 constraint (inst.operands[2].shifted
12620 && inst.operands[2].immisreg,
12621 _("shift must be constant"));
12622 encode_thumb32_shifted_operand (2);
12623 }
12624}
12625
c19d1205
ZW
12626static void
12627do_t_pkhbt (void)
12628{
fdfde340
JM
12629 unsigned Rd, Rn, Rm;
12630
12631 Rd = inst.operands[0].reg;
12632 Rn = inst.operands[1].reg;
12633 Rm = inst.operands[2].reg;
12634
12635 reject_bad_reg (Rd);
12636 reject_bad_reg (Rn);
12637 reject_bad_reg (Rm);
12638
12639 inst.instruction |= Rd << 8;
12640 inst.instruction |= Rn << 16;
12641 inst.instruction |= Rm;
c19d1205
ZW
12642 if (inst.operands[3].present)
12643 {
12644 unsigned int val = inst.reloc.exp.X_add_number;
12645 constraint (inst.reloc.exp.X_op != O_constant,
12646 _("expression too complex"));
12647 inst.instruction |= (val & 0x1c) << 10;
12648 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 12649 }
c19d1205 12650}
b05fe5cf 12651
c19d1205
ZW
12652static void
12653do_t_pkhtb (void)
12654{
12655 if (!inst.operands[3].present)
1ef52f49
NC
12656 {
12657 unsigned Rtmp;
12658
12659 inst.instruction &= ~0x00000020;
12660
12661 /* PR 10168. Swap the Rm and Rn registers. */
12662 Rtmp = inst.operands[1].reg;
12663 inst.operands[1].reg = inst.operands[2].reg;
12664 inst.operands[2].reg = Rtmp;
12665 }
c19d1205 12666 do_t_pkhbt ();
b05fe5cf
ZW
12667}
12668
c19d1205
ZW
12669static void
12670do_t_pld (void)
12671{
fdfde340
JM
12672 if (inst.operands[0].immisreg)
12673 reject_bad_reg (inst.operands[0].imm);
12674
c19d1205
ZW
12675 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
12676}
b05fe5cf 12677
c19d1205
ZW
12678static void
12679do_t_push_pop (void)
b99bd4ef 12680{
e9f89963 12681 unsigned mask;
5f4273c7 12682
c19d1205
ZW
12683 constraint (inst.operands[0].writeback,
12684 _("push/pop do not support {reglist}^"));
12685 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
12686 _("expression too complex"));
b99bd4ef 12687
e9f89963 12688 mask = inst.operands[0].imm;
d3bfe16e 12689 if (inst.size_req != 4 && (mask & ~0xff) == 0)
3c707909 12690 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
d3bfe16e 12691 else if (inst.size_req != 4
c6025a80 12692 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
d3bfe16e 12693 ? REG_LR : REG_PC)))
b99bd4ef 12694 {
c19d1205
ZW
12695 inst.instruction = THUMB_OP16 (inst.instruction);
12696 inst.instruction |= THUMB_PP_PC_LR;
3c707909 12697 inst.instruction |= mask & 0xff;
c19d1205
ZW
12698 }
12699 else if (unified_syntax)
12700 {
3c707909 12701 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 12702 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
12703 }
12704 else
12705 {
12706 inst.error = _("invalid register list to push/pop instruction");
12707 return;
12708 }
c19d1205 12709}
b99bd4ef 12710
c19d1205
ZW
12711static void
12712do_t_rbit (void)
12713{
fdfde340
JM
12714 unsigned Rd, Rm;
12715
12716 Rd = inst.operands[0].reg;
12717 Rm = inst.operands[1].reg;
12718
12719 reject_bad_reg (Rd);
12720 reject_bad_reg (Rm);
12721
12722 inst.instruction |= Rd << 8;
12723 inst.instruction |= Rm << 16;
12724 inst.instruction |= Rm;
c19d1205 12725}
b99bd4ef 12726
c19d1205
ZW
12727static void
12728do_t_rev (void)
12729{
fdfde340
JM
12730 unsigned Rd, Rm;
12731
12732 Rd = inst.operands[0].reg;
12733 Rm = inst.operands[1].reg;
12734
12735 reject_bad_reg (Rd);
12736 reject_bad_reg (Rm);
12737
12738 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
12739 && inst.size_req != 4)
12740 {
12741 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12742 inst.instruction |= Rd;
12743 inst.instruction |= Rm << 3;
c19d1205
ZW
12744 }
12745 else if (unified_syntax)
12746 {
12747 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
12748 inst.instruction |= Rd << 8;
12749 inst.instruction |= Rm << 16;
12750 inst.instruction |= Rm;
c19d1205
ZW
12751 }
12752 else
12753 inst.error = BAD_HIREG;
12754}
b99bd4ef 12755
1c444d06
JM
12756static void
12757do_t_rrx (void)
12758{
12759 unsigned Rd, Rm;
12760
12761 Rd = inst.operands[0].reg;
12762 Rm = inst.operands[1].reg;
12763
fdfde340
JM
12764 reject_bad_reg (Rd);
12765 reject_bad_reg (Rm);
c921be7d 12766
1c444d06
JM
12767 inst.instruction |= Rd << 8;
12768 inst.instruction |= Rm;
12769}
12770
c19d1205
ZW
12771static void
12772do_t_rsb (void)
12773{
fdfde340 12774 unsigned Rd, Rs;
b99bd4ef 12775
c19d1205
ZW
12776 Rd = inst.operands[0].reg;
12777 Rs = (inst.operands[1].present
12778 ? inst.operands[1].reg /* Rd, Rs, foo */
12779 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 12780
fdfde340
JM
12781 reject_bad_reg (Rd);
12782 reject_bad_reg (Rs);
12783 if (inst.operands[2].isreg)
12784 reject_bad_reg (inst.operands[2].reg);
12785
c19d1205
ZW
12786 inst.instruction |= Rd << 8;
12787 inst.instruction |= Rs << 16;
12788 if (!inst.operands[2].isreg)
12789 {
026d3abb
PB
12790 bfd_boolean narrow;
12791
12792 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 12793 narrow = !in_it_block ();
026d3abb 12794 else
e07e6e58 12795 narrow = in_it_block ();
026d3abb
PB
12796
12797 if (Rd > 7 || Rs > 7)
12798 narrow = FALSE;
12799
12800 if (inst.size_req == 4 || !unified_syntax)
12801 narrow = FALSE;
12802
12803 if (inst.reloc.exp.X_op != O_constant
12804 || inst.reloc.exp.X_add_number != 0)
12805 narrow = FALSE;
12806
12807 /* Turn rsb #0 into 16-bit neg. We should probably do this via
477330fc 12808 relaxation, but it doesn't seem worth the hassle. */
026d3abb
PB
12809 if (narrow)
12810 {
12811 inst.reloc.type = BFD_RELOC_UNUSED;
12812 inst.instruction = THUMB_OP16 (T_MNEM_negs);
12813 inst.instruction |= Rs << 3;
12814 inst.instruction |= Rd;
12815 }
12816 else
12817 {
12818 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12819 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12820 }
c19d1205
ZW
12821 }
12822 else
12823 encode_thumb32_shifted_operand (2);
12824}
b99bd4ef 12825
c19d1205
ZW
12826static void
12827do_t_setend (void)
12828{
12e37cbc
MGD
12829 if (warn_on_deprecated
12830 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 12831 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 12832
e07e6e58 12833 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
12834 if (inst.operands[0].imm)
12835 inst.instruction |= 0x8;
12836}
b99bd4ef 12837
c19d1205
ZW
12838static void
12839do_t_shift (void)
12840{
12841 if (!inst.operands[1].present)
12842 inst.operands[1].reg = inst.operands[0].reg;
12843
12844 if (unified_syntax)
12845 {
3d388997
PB
12846 bfd_boolean narrow;
12847 int shift_kind;
12848
12849 switch (inst.instruction)
12850 {
12851 case T_MNEM_asr:
12852 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
12853 case T_MNEM_lsl:
12854 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
12855 case T_MNEM_lsr:
12856 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
12857 case T_MNEM_ror:
12858 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
12859 default: abort ();
12860 }
12861
12862 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 12863 narrow = !in_it_block ();
3d388997 12864 else
e07e6e58 12865 narrow = in_it_block ();
3d388997
PB
12866 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12867 narrow = FALSE;
12868 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
12869 narrow = FALSE;
12870 if (inst.operands[2].isreg
12871 && (inst.operands[1].reg != inst.operands[0].reg
12872 || inst.operands[2].reg > 7))
12873 narrow = FALSE;
12874 if (inst.size_req == 4)
12875 narrow = FALSE;
12876
fdfde340
JM
12877 reject_bad_reg (inst.operands[0].reg);
12878 reject_bad_reg (inst.operands[1].reg);
c921be7d 12879
3d388997 12880 if (!narrow)
c19d1205
ZW
12881 {
12882 if (inst.operands[2].isreg)
b99bd4ef 12883 {
fdfde340 12884 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
12885 inst.instruction = THUMB_OP32 (inst.instruction);
12886 inst.instruction |= inst.operands[0].reg << 8;
12887 inst.instruction |= inst.operands[1].reg << 16;
12888 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
12889
12890 /* PR 12854: Error on extraneous shifts. */
12891 constraint (inst.operands[2].shifted,
12892 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
12893 }
12894 else
12895 {
12896 inst.operands[1].shifted = 1;
3d388997 12897 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
12898 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
12899 ? T_MNEM_movs : T_MNEM_mov);
12900 inst.instruction |= inst.operands[0].reg << 8;
12901 encode_thumb32_shifted_operand (1);
12902 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
12903 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
12904 }
12905 }
12906 else
12907 {
c19d1205 12908 if (inst.operands[2].isreg)
b99bd4ef 12909 {
3d388997 12910 switch (shift_kind)
b99bd4ef 12911 {
3d388997
PB
12912 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
12913 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
12914 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
12915 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 12916 default: abort ();
b99bd4ef 12917 }
5f4273c7 12918
c19d1205
ZW
12919 inst.instruction |= inst.operands[0].reg;
12920 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
12921
12922 /* PR 12854: Error on extraneous shifts. */
12923 constraint (inst.operands[2].shifted,
12924 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
12925 }
12926 else
12927 {
3d388997 12928 switch (shift_kind)
b99bd4ef 12929 {
3d388997
PB
12930 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12931 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12932 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 12933 default: abort ();
b99bd4ef 12934 }
c19d1205
ZW
12935 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12936 inst.instruction |= inst.operands[0].reg;
12937 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
12938 }
12939 }
c19d1205
ZW
12940 }
12941 else
12942 {
12943 constraint (inst.operands[0].reg > 7
12944 || inst.operands[1].reg > 7, BAD_HIREG);
12945 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 12946
c19d1205
ZW
12947 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
12948 {
12949 constraint (inst.operands[2].reg > 7, BAD_HIREG);
12950 constraint (inst.operands[0].reg != inst.operands[1].reg,
12951 _("source1 and dest must be same register"));
b99bd4ef 12952
c19d1205
ZW
12953 switch (inst.instruction)
12954 {
12955 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
12956 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
12957 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
12958 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
12959 default: abort ();
12960 }
5f4273c7 12961
c19d1205
ZW
12962 inst.instruction |= inst.operands[0].reg;
12963 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
12964
12965 /* PR 12854: Error on extraneous shifts. */
12966 constraint (inst.operands[2].shifted,
12967 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
12968 }
12969 else
b99bd4ef 12970 {
c19d1205
ZW
12971 switch (inst.instruction)
12972 {
12973 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
12974 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
12975 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
12976 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
12977 default: abort ();
12978 }
12979 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12980 inst.instruction |= inst.operands[0].reg;
12981 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
12982 }
12983 }
b99bd4ef
NC
12984}
12985
12986static void
c19d1205 12987do_t_simd (void)
b99bd4ef 12988{
fdfde340
JM
12989 unsigned Rd, Rn, Rm;
12990
12991 Rd = inst.operands[0].reg;
12992 Rn = inst.operands[1].reg;
12993 Rm = inst.operands[2].reg;
12994
12995 reject_bad_reg (Rd);
12996 reject_bad_reg (Rn);
12997 reject_bad_reg (Rm);
12998
12999 inst.instruction |= Rd << 8;
13000 inst.instruction |= Rn << 16;
13001 inst.instruction |= Rm;
c19d1205 13002}
b99bd4ef 13003
03ee1b7f
NC
13004static void
13005do_t_simd2 (void)
13006{
13007 unsigned Rd, Rn, Rm;
13008
13009 Rd = inst.operands[0].reg;
13010 Rm = inst.operands[1].reg;
13011 Rn = inst.operands[2].reg;
13012
13013 reject_bad_reg (Rd);
13014 reject_bad_reg (Rn);
13015 reject_bad_reg (Rm);
13016
13017 inst.instruction |= Rd << 8;
13018 inst.instruction |= Rn << 16;
13019 inst.instruction |= Rm;
13020}
13021
c19d1205 13022static void
3eb17e6b 13023do_t_smc (void)
c19d1205
ZW
13024{
13025 unsigned int value = inst.reloc.exp.X_add_number;
f4c65163
MGD
13026 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13027 _("SMC is not permitted on this architecture"));
c19d1205
ZW
13028 constraint (inst.reloc.exp.X_op != O_constant,
13029 _("expression too complex"));
13030 inst.reloc.type = BFD_RELOC_UNUSED;
13031 inst.instruction |= (value & 0xf000) >> 12;
13032 inst.instruction |= (value & 0x0ff0);
13033 inst.instruction |= (value & 0x000f) << 16;
24382199
NC
13034 /* PR gas/15623: SMC instructions must be last in an IT block. */
13035 set_it_insn_type_last ();
c19d1205 13036}
b99bd4ef 13037
90ec0d68
MGD
13038static void
13039do_t_hvc (void)
13040{
13041 unsigned int value = inst.reloc.exp.X_add_number;
13042
13043 inst.reloc.type = BFD_RELOC_UNUSED;
13044 inst.instruction |= (value & 0x0fff);
13045 inst.instruction |= (value & 0xf000) << 4;
13046}
13047
c19d1205 13048static void
3a21c15a 13049do_t_ssat_usat (int bias)
c19d1205 13050{
fdfde340
JM
13051 unsigned Rd, Rn;
13052
13053 Rd = inst.operands[0].reg;
13054 Rn = inst.operands[2].reg;
13055
13056 reject_bad_reg (Rd);
13057 reject_bad_reg (Rn);
13058
13059 inst.instruction |= Rd << 8;
3a21c15a 13060 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 13061 inst.instruction |= Rn << 16;
b99bd4ef 13062
c19d1205 13063 if (inst.operands[3].present)
b99bd4ef 13064 {
3a21c15a
NC
13065 offsetT shift_amount = inst.reloc.exp.X_add_number;
13066
13067 inst.reloc.type = BFD_RELOC_UNUSED;
13068
c19d1205
ZW
13069 constraint (inst.reloc.exp.X_op != O_constant,
13070 _("expression too complex"));
b99bd4ef 13071
3a21c15a 13072 if (shift_amount != 0)
6189168b 13073 {
3a21c15a
NC
13074 constraint (shift_amount > 31,
13075 _("shift expression is too large"));
13076
c19d1205 13077 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
13078 inst.instruction |= 0x00200000; /* sh bit. */
13079
13080 inst.instruction |= (shift_amount & 0x1c) << 10;
13081 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
13082 }
13083 }
b99bd4ef 13084}
c921be7d 13085
3a21c15a
NC
13086static void
13087do_t_ssat (void)
13088{
13089 do_t_ssat_usat (1);
13090}
b99bd4ef 13091
0dd132b6 13092static void
c19d1205 13093do_t_ssat16 (void)
0dd132b6 13094{
fdfde340
JM
13095 unsigned Rd, Rn;
13096
13097 Rd = inst.operands[0].reg;
13098 Rn = inst.operands[2].reg;
13099
13100 reject_bad_reg (Rd);
13101 reject_bad_reg (Rn);
13102
13103 inst.instruction |= Rd << 8;
c19d1205 13104 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 13105 inst.instruction |= Rn << 16;
c19d1205 13106}
0dd132b6 13107
c19d1205
ZW
13108static void
13109do_t_strex (void)
13110{
13111 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13112 || inst.operands[2].postind || inst.operands[2].writeback
13113 || inst.operands[2].immisreg || inst.operands[2].shifted
13114 || inst.operands[2].negative,
01cfc07f 13115 BAD_ADDR_MODE);
0dd132b6 13116
5be8be5d
DG
13117 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13118
c19d1205
ZW
13119 inst.instruction |= inst.operands[0].reg << 8;
13120 inst.instruction |= inst.operands[1].reg << 12;
13121 inst.instruction |= inst.operands[2].reg << 16;
13122 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
13123}
13124
b99bd4ef 13125static void
c19d1205 13126do_t_strexd (void)
b99bd4ef 13127{
c19d1205
ZW
13128 if (!inst.operands[2].present)
13129 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 13130
c19d1205
ZW
13131 constraint (inst.operands[0].reg == inst.operands[1].reg
13132 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 13133 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 13134 BAD_OVERLAP);
b99bd4ef 13135
c19d1205
ZW
13136 inst.instruction |= inst.operands[0].reg;
13137 inst.instruction |= inst.operands[1].reg << 12;
13138 inst.instruction |= inst.operands[2].reg << 8;
13139 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
13140}
13141
13142static void
c19d1205 13143do_t_sxtah (void)
b99bd4ef 13144{
fdfde340
JM
13145 unsigned Rd, Rn, Rm;
13146
13147 Rd = inst.operands[0].reg;
13148 Rn = inst.operands[1].reg;
13149 Rm = inst.operands[2].reg;
13150
13151 reject_bad_reg (Rd);
13152 reject_bad_reg (Rn);
13153 reject_bad_reg (Rm);
13154
13155 inst.instruction |= Rd << 8;
13156 inst.instruction |= Rn << 16;
13157 inst.instruction |= Rm;
c19d1205
ZW
13158 inst.instruction |= inst.operands[3].imm << 4;
13159}
b99bd4ef 13160
c19d1205
ZW
13161static void
13162do_t_sxth (void)
13163{
fdfde340
JM
13164 unsigned Rd, Rm;
13165
13166 Rd = inst.operands[0].reg;
13167 Rm = inst.operands[1].reg;
13168
13169 reject_bad_reg (Rd);
13170 reject_bad_reg (Rm);
c921be7d
NC
13171
13172 if (inst.instruction <= 0xffff
13173 && inst.size_req != 4
fdfde340 13174 && Rd <= 7 && Rm <= 7
c19d1205 13175 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 13176 {
c19d1205 13177 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13178 inst.instruction |= Rd;
13179 inst.instruction |= Rm << 3;
b99bd4ef 13180 }
c19d1205 13181 else if (unified_syntax)
b99bd4ef 13182 {
c19d1205
ZW
13183 if (inst.instruction <= 0xffff)
13184 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13185 inst.instruction |= Rd << 8;
13186 inst.instruction |= Rm;
c19d1205 13187 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 13188 }
c19d1205 13189 else
b99bd4ef 13190 {
c19d1205
ZW
13191 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13192 _("Thumb encoding does not support rotation"));
13193 constraint (1, BAD_HIREG);
b99bd4ef 13194 }
c19d1205 13195}
b99bd4ef 13196
c19d1205
ZW
13197static void
13198do_t_swi (void)
13199{
13200 inst.reloc.type = BFD_RELOC_ARM_SWI;
13201}
b99bd4ef 13202
92e90b6e
PB
13203static void
13204do_t_tb (void)
13205{
fdfde340 13206 unsigned Rn, Rm;
92e90b6e
PB
13207 int half;
13208
13209 half = (inst.instruction & 0x10) != 0;
e07e6e58 13210 set_it_insn_type_last ();
dfa9f0d5
PB
13211 constraint (inst.operands[0].immisreg,
13212 _("instruction requires register index"));
fdfde340
JM
13213
13214 Rn = inst.operands[0].reg;
13215 Rm = inst.operands[0].imm;
c921be7d 13216
5c8ed6a4
JW
13217 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13218 constraint (Rn == REG_SP, BAD_SP);
fdfde340
JM
13219 reject_bad_reg (Rm);
13220
92e90b6e
PB
13221 constraint (!half && inst.operands[0].shifted,
13222 _("instruction does not allow shifted index"));
fdfde340 13223 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
13224}
13225
74db7efb
NC
13226static void
13227do_t_udf (void)
13228{
13229 if (!inst.operands[0].present)
13230 inst.operands[0].imm = 0;
13231
13232 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13233 {
13234 constraint (inst.size_req == 2,
13235 _("immediate value out of range"));
13236 inst.instruction = THUMB_OP32 (inst.instruction);
13237 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13238 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13239 }
13240 else
13241 {
13242 inst.instruction = THUMB_OP16 (inst.instruction);
13243 inst.instruction |= inst.operands[0].imm;
13244 }
13245
13246 set_it_insn_type (NEUTRAL_IT_INSN);
13247}
13248
13249
c19d1205
ZW
13250static void
13251do_t_usat (void)
13252{
3a21c15a 13253 do_t_ssat_usat (0);
b99bd4ef
NC
13254}
13255
13256static void
c19d1205 13257do_t_usat16 (void)
b99bd4ef 13258{
fdfde340
JM
13259 unsigned Rd, Rn;
13260
13261 Rd = inst.operands[0].reg;
13262 Rn = inst.operands[2].reg;
13263
13264 reject_bad_reg (Rd);
13265 reject_bad_reg (Rn);
13266
13267 inst.instruction |= Rd << 8;
c19d1205 13268 inst.instruction |= inst.operands[1].imm;
fdfde340 13269 inst.instruction |= Rn << 16;
b99bd4ef 13270}
c19d1205 13271
5287ad62 13272/* Neon instruction encoder helpers. */
5f4273c7 13273
5287ad62 13274/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 13275
5287ad62
JB
13276/* An "invalid" code for the following tables. */
13277#define N_INV -1u
13278
13279struct neon_tab_entry
b99bd4ef 13280{
5287ad62
JB
13281 unsigned integer;
13282 unsigned float_or_poly;
13283 unsigned scalar_or_imm;
13284};
5f4273c7 13285
5287ad62
JB
13286/* Map overloaded Neon opcodes to their respective encodings. */
13287#define NEON_ENC_TAB \
13288 X(vabd, 0x0000700, 0x1200d00, N_INV), \
13289 X(vmax, 0x0000600, 0x0000f00, N_INV), \
13290 X(vmin, 0x0000610, 0x0200f00, N_INV), \
13291 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
13292 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
13293 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
13294 X(vadd, 0x0000800, 0x0000d00, N_INV), \
13295 X(vsub, 0x1000800, 0x0200d00, N_INV), \
13296 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
13297 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
13298 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
13299 /* Register variants of the following two instructions are encoded as
e07e6e58 13300 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
13301 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
13302 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
13303 X(vfma, N_INV, 0x0000c10, N_INV), \
13304 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
13305 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
13306 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
13307 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
13308 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
13309 X(vmlal, 0x0800800, N_INV, 0x0800240), \
13310 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
13311 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
13312 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
13313 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
13314 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
13315 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
d6b4b13e
MW
13316 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
13317 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
5287ad62
JB
13318 X(vshl, 0x0000400, N_INV, 0x0800510), \
13319 X(vqshl, 0x0000410, N_INV, 0x0800710), \
13320 X(vand, 0x0000110, N_INV, 0x0800030), \
13321 X(vbic, 0x0100110, N_INV, 0x0800030), \
13322 X(veor, 0x1000110, N_INV, N_INV), \
13323 X(vorn, 0x0300110, N_INV, 0x0800010), \
13324 X(vorr, 0x0200110, N_INV, 0x0800010), \
13325 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
13326 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
13327 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
13328 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
13329 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
13330 X(vst1, 0x0000000, 0x0800000, N_INV), \
13331 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
13332 X(vst2, 0x0000100, 0x0800100, N_INV), \
13333 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
13334 X(vst3, 0x0000200, 0x0800200, N_INV), \
13335 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
13336 X(vst4, 0x0000300, 0x0800300, N_INV), \
13337 X(vmovn, 0x1b20200, N_INV, N_INV), \
13338 X(vtrn, 0x1b20080, N_INV, N_INV), \
13339 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
13340 X(vqmovun, 0x1b20240, N_INV, N_INV), \
13341 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
13342 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
13343 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
13344 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
13345 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
13346 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
13347 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
13348 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
13349 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
13350 X(vseleq, 0xe000a00, N_INV, N_INV), \
13351 X(vselvs, 0xe100a00, N_INV, N_INV), \
13352 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
13353 X(vselgt, 0xe300a00, N_INV, N_INV), \
13354 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
7e8e6784 13355 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
30bdf752
MGD
13356 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
13357 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
91ff7894 13358 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
48adcd8e 13359 X(aes, 0x3b00300, N_INV, N_INV), \
3c9017d2
MGD
13360 X(sha3op, 0x2000c00, N_INV, N_INV), \
13361 X(sha1h, 0x3b902c0, N_INV, N_INV), \
13362 X(sha2op, 0x3ba0380, N_INV, N_INV)
5287ad62
JB
13363
13364enum neon_opc
13365{
13366#define X(OPC,I,F,S) N_MNEM_##OPC
13367NEON_ENC_TAB
13368#undef X
13369};
b99bd4ef 13370
5287ad62
JB
13371static const struct neon_tab_entry neon_enc_tab[] =
13372{
13373#define X(OPC,I,F,S) { (I), (F), (S) }
13374NEON_ENC_TAB
13375#undef X
13376};
b99bd4ef 13377
88714cb8
DG
13378/* Do not use these macros; instead, use NEON_ENCODE defined below. */
13379#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13380#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13381#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13382#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13383#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13384#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13385#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13386#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13387#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13388#define NEON_ENC_SINGLE_(X) \
037e8744 13389 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 13390#define NEON_ENC_DOUBLE_(X) \
037e8744 13391 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
13392#define NEON_ENC_FPV8_(X) \
13393 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 13394
88714cb8
DG
13395#define NEON_ENCODE(type, inst) \
13396 do \
13397 { \
13398 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
13399 inst.is_neon = 1; \
13400 } \
13401 while (0)
13402
13403#define check_neon_suffixes \
13404 do \
13405 { \
13406 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
13407 { \
13408 as_bad (_("invalid neon suffix for non neon instruction")); \
13409 return; \
13410 } \
13411 } \
13412 while (0)
13413
037e8744
JB
13414/* Define shapes for instruction operands. The following mnemonic characters
13415 are used in this table:
5287ad62 13416
037e8744 13417 F - VFP S<n> register
5287ad62
JB
13418 D - Neon D<n> register
13419 Q - Neon Q<n> register
13420 I - Immediate
13421 S - Scalar
13422 R - ARM register
13423 L - D<n> register list
5f4273c7 13424
037e8744
JB
13425 This table is used to generate various data:
13426 - enumerations of the form NS_DDR to be used as arguments to
13427 neon_select_shape.
13428 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 13429 - a table used to drive neon_select_shape. */
b99bd4ef 13430
037e8744
JB
13431#define NEON_SHAPE_DEF \
13432 X(3, (D, D, D), DOUBLE), \
13433 X(3, (Q, Q, Q), QUAD), \
13434 X(3, (D, D, I), DOUBLE), \
13435 X(3, (Q, Q, I), QUAD), \
13436 X(3, (D, D, S), DOUBLE), \
13437 X(3, (Q, Q, S), QUAD), \
13438 X(2, (D, D), DOUBLE), \
13439 X(2, (Q, Q), QUAD), \
13440 X(2, (D, S), DOUBLE), \
13441 X(2, (Q, S), QUAD), \
13442 X(2, (D, R), DOUBLE), \
13443 X(2, (Q, R), QUAD), \
13444 X(2, (D, I), DOUBLE), \
13445 X(2, (Q, I), QUAD), \
13446 X(3, (D, L, D), DOUBLE), \
13447 X(2, (D, Q), MIXED), \
13448 X(2, (Q, D), MIXED), \
13449 X(3, (D, Q, I), MIXED), \
13450 X(3, (Q, D, I), MIXED), \
13451 X(3, (Q, D, D), MIXED), \
13452 X(3, (D, Q, Q), MIXED), \
13453 X(3, (Q, Q, D), MIXED), \
13454 X(3, (Q, D, S), MIXED), \
13455 X(3, (D, Q, S), MIXED), \
13456 X(4, (D, D, D, I), DOUBLE), \
13457 X(4, (Q, Q, Q, I), QUAD), \
c28eeff2
SN
13458 X(4, (D, D, S, I), DOUBLE), \
13459 X(4, (Q, Q, S, I), QUAD), \
037e8744
JB
13460 X(2, (F, F), SINGLE), \
13461 X(3, (F, F, F), SINGLE), \
13462 X(2, (F, I), SINGLE), \
13463 X(2, (F, D), MIXED), \
13464 X(2, (D, F), MIXED), \
13465 X(3, (F, F, I), MIXED), \
13466 X(4, (R, R, F, F), SINGLE), \
13467 X(4, (F, F, R, R), SINGLE), \
13468 X(3, (D, R, R), DOUBLE), \
13469 X(3, (R, R, D), DOUBLE), \
13470 X(2, (S, R), SINGLE), \
13471 X(2, (R, S), SINGLE), \
13472 X(2, (F, R), SINGLE), \
d54af2d0
RL
13473 X(2, (R, F), SINGLE), \
13474/* Half float shape supported so far. */\
13475 X (2, (H, D), MIXED), \
13476 X (2, (D, H), MIXED), \
13477 X (2, (H, F), MIXED), \
13478 X (2, (F, H), MIXED), \
13479 X (2, (H, H), HALF), \
13480 X (2, (H, R), HALF), \
13481 X (2, (R, H), HALF), \
13482 X (2, (H, I), HALF), \
13483 X (3, (H, H, H), HALF), \
13484 X (3, (H, F, I), MIXED), \
dec41383
JW
13485 X (3, (F, H, I), MIXED), \
13486 X (3, (D, H, H), MIXED), \
13487 X (3, (D, H, S), MIXED)
037e8744
JB
13488
13489#define S2(A,B) NS_##A##B
13490#define S3(A,B,C) NS_##A##B##C
13491#define S4(A,B,C,D) NS_##A##B##C##D
13492
13493#define X(N, L, C) S##N L
13494
5287ad62
JB
13495enum neon_shape
13496{
037e8744
JB
13497 NEON_SHAPE_DEF,
13498 NS_NULL
5287ad62 13499};
b99bd4ef 13500
037e8744
JB
13501#undef X
13502#undef S2
13503#undef S3
13504#undef S4
13505
13506enum neon_shape_class
13507{
d54af2d0 13508 SC_HALF,
037e8744
JB
13509 SC_SINGLE,
13510 SC_DOUBLE,
13511 SC_QUAD,
13512 SC_MIXED
13513};
13514
13515#define X(N, L, C) SC_##C
13516
13517static enum neon_shape_class neon_shape_class[] =
13518{
13519 NEON_SHAPE_DEF
13520};
13521
13522#undef X
13523
13524enum neon_shape_el
13525{
d54af2d0 13526 SE_H,
037e8744
JB
13527 SE_F,
13528 SE_D,
13529 SE_Q,
13530 SE_I,
13531 SE_S,
13532 SE_R,
13533 SE_L
13534};
13535
13536/* Register widths of above. */
13537static unsigned neon_shape_el_size[] =
13538{
d54af2d0 13539 16,
037e8744
JB
13540 32,
13541 64,
13542 128,
13543 0,
13544 32,
13545 32,
13546 0
13547};
13548
13549struct neon_shape_info
13550{
13551 unsigned els;
13552 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
13553};
13554
13555#define S2(A,B) { SE_##A, SE_##B }
13556#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
13557#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
13558
13559#define X(N, L, C) { N, S##N L }
13560
13561static struct neon_shape_info neon_shape_tab[] =
13562{
13563 NEON_SHAPE_DEF
13564};
13565
13566#undef X
13567#undef S2
13568#undef S3
13569#undef S4
13570
5287ad62
JB
13571/* Bit masks used in type checking given instructions.
13572 'N_EQK' means the type must be the same as (or based on in some way) the key
13573 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
13574 set, various other bits can be set as well in order to modify the meaning of
13575 the type constraint. */
13576
13577enum neon_type_mask
13578{
8e79c3df
CM
13579 N_S8 = 0x0000001,
13580 N_S16 = 0x0000002,
13581 N_S32 = 0x0000004,
13582 N_S64 = 0x0000008,
13583 N_U8 = 0x0000010,
13584 N_U16 = 0x0000020,
13585 N_U32 = 0x0000040,
13586 N_U64 = 0x0000080,
13587 N_I8 = 0x0000100,
13588 N_I16 = 0x0000200,
13589 N_I32 = 0x0000400,
13590 N_I64 = 0x0000800,
13591 N_8 = 0x0001000,
13592 N_16 = 0x0002000,
13593 N_32 = 0x0004000,
13594 N_64 = 0x0008000,
13595 N_P8 = 0x0010000,
13596 N_P16 = 0x0020000,
13597 N_F16 = 0x0040000,
13598 N_F32 = 0x0080000,
13599 N_F64 = 0x0100000,
4f51b4bd 13600 N_P64 = 0x0200000,
c921be7d
NC
13601 N_KEY = 0x1000000, /* Key element (main type specifier). */
13602 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 13603 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
91ff7894 13604 N_UNT = 0x8000000, /* Must be explicitly untyped. */
c921be7d
NC
13605 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
13606 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
13607 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
13608 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
13609 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
13610 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
13611 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 13612 N_UTYP = 0,
4f51b4bd 13613 N_MAX_NONSPECIAL = N_P64
5287ad62
JB
13614};
13615
dcbf9037
JB
13616#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
13617
5287ad62
JB
13618#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
13619#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
13620#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
cc933301
JW
13621#define N_S_32 (N_S8 | N_S16 | N_S32)
13622#define N_F_16_32 (N_F16 | N_F32)
13623#define N_SUF_32 (N_SU_32 | N_F_16_32)
5287ad62 13624#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
cc933301 13625#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
d54af2d0 13626#define N_F_ALL (N_F16 | N_F32 | N_F64)
5287ad62
JB
13627
13628/* Pass this as the first type argument to neon_check_type to ignore types
13629 altogether. */
13630#define N_IGNORE_TYPE (N_KEY | N_EQK)
13631
037e8744
JB
13632/* Select a "shape" for the current instruction (describing register types or
13633 sizes) from a list of alternatives. Return NS_NULL if the current instruction
13634 doesn't fit. For non-polymorphic shapes, checking is usually done as a
13635 function of operand parsing, so this function doesn't need to be called.
13636 Shapes should be listed in order of decreasing length. */
5287ad62
JB
13637
13638static enum neon_shape
037e8744 13639neon_select_shape (enum neon_shape shape, ...)
5287ad62 13640{
037e8744
JB
13641 va_list ap;
13642 enum neon_shape first_shape = shape;
5287ad62
JB
13643
13644 /* Fix missing optional operands. FIXME: we don't know at this point how
13645 many arguments we should have, so this makes the assumption that we have
13646 > 1. This is true of all current Neon opcodes, I think, but may not be
13647 true in the future. */
13648 if (!inst.operands[1].present)
13649 inst.operands[1] = inst.operands[0];
13650
037e8744 13651 va_start (ap, shape);
5f4273c7 13652
21d799b5 13653 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
13654 {
13655 unsigned j;
13656 int matches = 1;
13657
13658 for (j = 0; j < neon_shape_tab[shape].els; j++)
477330fc
RM
13659 {
13660 if (!inst.operands[j].present)
13661 {
13662 matches = 0;
13663 break;
13664 }
13665
13666 switch (neon_shape_tab[shape].el[j])
13667 {
d54af2d0
RL
13668 /* If a .f16, .16, .u16, .s16 type specifier is given over
13669 a VFP single precision register operand, it's essentially
13670 means only half of the register is used.
13671
13672 If the type specifier is given after the mnemonics, the
13673 information is stored in inst.vectype. If the type specifier
13674 is given after register operand, the information is stored
13675 in inst.operands[].vectype.
13676
13677 When there is only one type specifier, and all the register
13678 operands are the same type of hardware register, the type
13679 specifier applies to all register operands.
13680
13681 If no type specifier is given, the shape is inferred from
13682 operand information.
13683
13684 for example:
13685 vadd.f16 s0, s1, s2: NS_HHH
13686 vabs.f16 s0, s1: NS_HH
13687 vmov.f16 s0, r1: NS_HR
13688 vmov.f16 r0, s1: NS_RH
13689 vcvt.f16 r0, s1: NS_RH
13690 vcvt.f16.s32 s2, s2, #29: NS_HFI
13691 vcvt.f16.s32 s2, s2: NS_HF
13692 */
13693 case SE_H:
13694 if (!(inst.operands[j].isreg
13695 && inst.operands[j].isvec
13696 && inst.operands[j].issingle
13697 && !inst.operands[j].isquad
13698 && ((inst.vectype.elems == 1
13699 && inst.vectype.el[0].size == 16)
13700 || (inst.vectype.elems > 1
13701 && inst.vectype.el[j].size == 16)
13702 || (inst.vectype.elems == 0
13703 && inst.operands[j].vectype.type != NT_invtype
13704 && inst.operands[j].vectype.size == 16))))
13705 matches = 0;
13706 break;
13707
477330fc
RM
13708 case SE_F:
13709 if (!(inst.operands[j].isreg
13710 && inst.operands[j].isvec
13711 && inst.operands[j].issingle
d54af2d0
RL
13712 && !inst.operands[j].isquad
13713 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
13714 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
13715 || (inst.vectype.elems == 0
13716 && (inst.operands[j].vectype.size == 32
13717 || inst.operands[j].vectype.type == NT_invtype)))))
477330fc
RM
13718 matches = 0;
13719 break;
13720
13721 case SE_D:
13722 if (!(inst.operands[j].isreg
13723 && inst.operands[j].isvec
13724 && !inst.operands[j].isquad
13725 && !inst.operands[j].issingle))
13726 matches = 0;
13727 break;
13728
13729 case SE_R:
13730 if (!(inst.operands[j].isreg
13731 && !inst.operands[j].isvec))
13732 matches = 0;
13733 break;
13734
13735 case SE_Q:
13736 if (!(inst.operands[j].isreg
13737 && inst.operands[j].isvec
13738 && inst.operands[j].isquad
13739 && !inst.operands[j].issingle))
13740 matches = 0;
13741 break;
13742
13743 case SE_I:
13744 if (!(!inst.operands[j].isreg
13745 && !inst.operands[j].isscalar))
13746 matches = 0;
13747 break;
13748
13749 case SE_S:
13750 if (!(!inst.operands[j].isreg
13751 && inst.operands[j].isscalar))
13752 matches = 0;
13753 break;
13754
13755 case SE_L:
13756 break;
13757 }
3fde54a2
JZ
13758 if (!matches)
13759 break;
477330fc 13760 }
ad6cec43
MGD
13761 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
13762 /* We've matched all the entries in the shape table, and we don't
13763 have any left over operands which have not been matched. */
477330fc 13764 break;
037e8744 13765 }
5f4273c7 13766
037e8744 13767 va_end (ap);
5287ad62 13768
037e8744
JB
13769 if (shape == NS_NULL && first_shape != NS_NULL)
13770 first_error (_("invalid instruction shape"));
5287ad62 13771
037e8744
JB
13772 return shape;
13773}
5287ad62 13774
037e8744
JB
13775/* True if SHAPE is predominantly a quadword operation (most of the time, this
13776 means the Q bit should be set). */
13777
13778static int
13779neon_quad (enum neon_shape shape)
13780{
13781 return neon_shape_class[shape] == SC_QUAD;
5287ad62 13782}
037e8744 13783
5287ad62
JB
13784static void
13785neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
477330fc 13786 unsigned *g_size)
5287ad62
JB
13787{
13788 /* Allow modification to be made to types which are constrained to be
13789 based on the key element, based on bits set alongside N_EQK. */
13790 if ((typebits & N_EQK) != 0)
13791 {
13792 if ((typebits & N_HLF) != 0)
13793 *g_size /= 2;
13794 else if ((typebits & N_DBL) != 0)
13795 *g_size *= 2;
13796 if ((typebits & N_SGN) != 0)
13797 *g_type = NT_signed;
13798 else if ((typebits & N_UNS) != 0)
477330fc 13799 *g_type = NT_unsigned;
5287ad62 13800 else if ((typebits & N_INT) != 0)
477330fc 13801 *g_type = NT_integer;
5287ad62 13802 else if ((typebits & N_FLT) != 0)
477330fc 13803 *g_type = NT_float;
dcbf9037 13804 else if ((typebits & N_SIZ) != 0)
477330fc 13805 *g_type = NT_untyped;
5287ad62
JB
13806 }
13807}
5f4273c7 13808
5287ad62
JB
13809/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
13810 operand type, i.e. the single type specified in a Neon instruction when it
13811 is the only one given. */
13812
13813static struct neon_type_el
13814neon_type_promote (struct neon_type_el *key, unsigned thisarg)
13815{
13816 struct neon_type_el dest = *key;
5f4273c7 13817
9c2799c2 13818 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 13819
5287ad62
JB
13820 neon_modify_type_size (thisarg, &dest.type, &dest.size);
13821
13822 return dest;
13823}
13824
13825/* Convert Neon type and size into compact bitmask representation. */
13826
13827static enum neon_type_mask
13828type_chk_of_el_type (enum neon_el_type type, unsigned size)
13829{
13830 switch (type)
13831 {
13832 case NT_untyped:
13833 switch (size)
477330fc
RM
13834 {
13835 case 8: return N_8;
13836 case 16: return N_16;
13837 case 32: return N_32;
13838 case 64: return N_64;
13839 default: ;
13840 }
5287ad62
JB
13841 break;
13842
13843 case NT_integer:
13844 switch (size)
477330fc
RM
13845 {
13846 case 8: return N_I8;
13847 case 16: return N_I16;
13848 case 32: return N_I32;
13849 case 64: return N_I64;
13850 default: ;
13851 }
5287ad62
JB
13852 break;
13853
13854 case NT_float:
037e8744 13855 switch (size)
477330fc 13856 {
8e79c3df 13857 case 16: return N_F16;
477330fc
RM
13858 case 32: return N_F32;
13859 case 64: return N_F64;
13860 default: ;
13861 }
5287ad62
JB
13862 break;
13863
13864 case NT_poly:
13865 switch (size)
477330fc
RM
13866 {
13867 case 8: return N_P8;
13868 case 16: return N_P16;
4f51b4bd 13869 case 64: return N_P64;
477330fc
RM
13870 default: ;
13871 }
5287ad62
JB
13872 break;
13873
13874 case NT_signed:
13875 switch (size)
477330fc
RM
13876 {
13877 case 8: return N_S8;
13878 case 16: return N_S16;
13879 case 32: return N_S32;
13880 case 64: return N_S64;
13881 default: ;
13882 }
5287ad62
JB
13883 break;
13884
13885 case NT_unsigned:
13886 switch (size)
477330fc
RM
13887 {
13888 case 8: return N_U8;
13889 case 16: return N_U16;
13890 case 32: return N_U32;
13891 case 64: return N_U64;
13892 default: ;
13893 }
5287ad62
JB
13894 break;
13895
13896 default: ;
13897 }
5f4273c7 13898
5287ad62
JB
13899 return N_UTYP;
13900}
13901
13902/* Convert compact Neon bitmask type representation to a type and size. Only
13903 handles the case where a single bit is set in the mask. */
13904
dcbf9037 13905static int
5287ad62 13906el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
477330fc 13907 enum neon_type_mask mask)
5287ad62 13908{
dcbf9037
JB
13909 if ((mask & N_EQK) != 0)
13910 return FAIL;
13911
5287ad62
JB
13912 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
13913 *size = 8;
c70a8987 13914 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
5287ad62 13915 *size = 16;
dcbf9037 13916 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 13917 *size = 32;
4f51b4bd 13918 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
5287ad62 13919 *size = 64;
dcbf9037
JB
13920 else
13921 return FAIL;
13922
5287ad62
JB
13923 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
13924 *type = NT_signed;
dcbf9037 13925 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 13926 *type = NT_unsigned;
dcbf9037 13927 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 13928 *type = NT_integer;
dcbf9037 13929 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 13930 *type = NT_untyped;
4f51b4bd 13931 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
5287ad62 13932 *type = NT_poly;
d54af2d0 13933 else if ((mask & (N_F_ALL)) != 0)
5287ad62 13934 *type = NT_float;
dcbf9037
JB
13935 else
13936 return FAIL;
5f4273c7 13937
dcbf9037 13938 return SUCCESS;
5287ad62
JB
13939}
13940
13941/* Modify a bitmask of allowed types. This is only needed for type
13942 relaxation. */
13943
13944static unsigned
13945modify_types_allowed (unsigned allowed, unsigned mods)
13946{
13947 unsigned size;
13948 enum neon_el_type type;
13949 unsigned destmask;
13950 int i;
5f4273c7 13951
5287ad62 13952 destmask = 0;
5f4273c7 13953
5287ad62
JB
13954 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
13955 {
21d799b5 13956 if (el_type_of_type_chk (&type, &size,
477330fc
RM
13957 (enum neon_type_mask) (allowed & i)) == SUCCESS)
13958 {
13959 neon_modify_type_size (mods, &type, &size);
13960 destmask |= type_chk_of_el_type (type, size);
13961 }
5287ad62 13962 }
5f4273c7 13963
5287ad62
JB
13964 return destmask;
13965}
13966
13967/* Check type and return type classification.
13968 The manual states (paraphrase): If one datatype is given, it indicates the
13969 type given in:
13970 - the second operand, if there is one
13971 - the operand, if there is no second operand
13972 - the result, if there are no operands.
13973 This isn't quite good enough though, so we use a concept of a "key" datatype
13974 which is set on a per-instruction basis, which is the one which matters when
13975 only one data type is written.
13976 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 13977 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
13978
13979static struct neon_type_el
13980neon_check_type (unsigned els, enum neon_shape ns, ...)
13981{
13982 va_list ap;
13983 unsigned i, pass, key_el = 0;
13984 unsigned types[NEON_MAX_TYPE_ELS];
13985 enum neon_el_type k_type = NT_invtype;
13986 unsigned k_size = -1u;
13987 struct neon_type_el badtype = {NT_invtype, -1};
13988 unsigned key_allowed = 0;
13989
13990 /* Optional registers in Neon instructions are always (not) in operand 1.
13991 Fill in the missing operand here, if it was omitted. */
13992 if (els > 1 && !inst.operands[1].present)
13993 inst.operands[1] = inst.operands[0];
13994
13995 /* Suck up all the varargs. */
13996 va_start (ap, ns);
13997 for (i = 0; i < els; i++)
13998 {
13999 unsigned thisarg = va_arg (ap, unsigned);
14000 if (thisarg == N_IGNORE_TYPE)
477330fc
RM
14001 {
14002 va_end (ap);
14003 return badtype;
14004 }
5287ad62
JB
14005 types[i] = thisarg;
14006 if ((thisarg & N_KEY) != 0)
477330fc 14007 key_el = i;
5287ad62
JB
14008 }
14009 va_end (ap);
14010
dcbf9037
JB
14011 if (inst.vectype.elems > 0)
14012 for (i = 0; i < els; i++)
14013 if (inst.operands[i].vectype.type != NT_invtype)
477330fc
RM
14014 {
14015 first_error (_("types specified in both the mnemonic and operands"));
14016 return badtype;
14017 }
dcbf9037 14018
5287ad62
JB
14019 /* Duplicate inst.vectype elements here as necessary.
14020 FIXME: No idea if this is exactly the same as the ARM assembler,
14021 particularly when an insn takes one register and one non-register
14022 operand. */
14023 if (inst.vectype.elems == 1 && els > 1)
14024 {
14025 unsigned j;
14026 inst.vectype.elems = els;
14027 inst.vectype.el[key_el] = inst.vectype.el[0];
14028 for (j = 0; j < els; j++)
477330fc
RM
14029 if (j != key_el)
14030 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14031 types[j]);
dcbf9037
JB
14032 }
14033 else if (inst.vectype.elems == 0 && els > 0)
14034 {
14035 unsigned j;
14036 /* No types were given after the mnemonic, so look for types specified
477330fc
RM
14037 after each operand. We allow some flexibility here; as long as the
14038 "key" operand has a type, we can infer the others. */
dcbf9037 14039 for (j = 0; j < els; j++)
477330fc
RM
14040 if (inst.operands[j].vectype.type != NT_invtype)
14041 inst.vectype.el[j] = inst.operands[j].vectype;
dcbf9037
JB
14042
14043 if (inst.operands[key_el].vectype.type != NT_invtype)
477330fc
RM
14044 {
14045 for (j = 0; j < els; j++)
14046 if (inst.operands[j].vectype.type == NT_invtype)
14047 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14048 types[j]);
14049 }
dcbf9037 14050 else
477330fc
RM
14051 {
14052 first_error (_("operand types can't be inferred"));
14053 return badtype;
14054 }
5287ad62
JB
14055 }
14056 else if (inst.vectype.elems != els)
14057 {
dcbf9037 14058 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
14059 return badtype;
14060 }
14061
14062 for (pass = 0; pass < 2; pass++)
14063 {
14064 for (i = 0; i < els; i++)
477330fc
RM
14065 {
14066 unsigned thisarg = types[i];
14067 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14068 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14069 enum neon_el_type g_type = inst.vectype.el[i].type;
14070 unsigned g_size = inst.vectype.el[i].size;
14071
14072 /* Decay more-specific signed & unsigned types to sign-insensitive
5287ad62 14073 integer types if sign-specific variants are unavailable. */
477330fc 14074 if ((g_type == NT_signed || g_type == NT_unsigned)
5287ad62
JB
14075 && (types_allowed & N_SU_ALL) == 0)
14076 g_type = NT_integer;
14077
477330fc 14078 /* If only untyped args are allowed, decay any more specific types to
5287ad62
JB
14079 them. Some instructions only care about signs for some element
14080 sizes, so handle that properly. */
477330fc 14081 if (((types_allowed & N_UNT) == 0)
91ff7894
MGD
14082 && ((g_size == 8 && (types_allowed & N_8) != 0)
14083 || (g_size == 16 && (types_allowed & N_16) != 0)
14084 || (g_size == 32 && (types_allowed & N_32) != 0)
14085 || (g_size == 64 && (types_allowed & N_64) != 0)))
5287ad62
JB
14086 g_type = NT_untyped;
14087
477330fc
RM
14088 if (pass == 0)
14089 {
14090 if ((thisarg & N_KEY) != 0)
14091 {
14092 k_type = g_type;
14093 k_size = g_size;
14094 key_allowed = thisarg & ~N_KEY;
cc933301
JW
14095
14096 /* Check architecture constraint on FP16 extension. */
14097 if (k_size == 16
14098 && k_type == NT_float
14099 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14100 {
14101 inst.error = _(BAD_FP16);
14102 return badtype;
14103 }
477330fc
RM
14104 }
14105 }
14106 else
14107 {
14108 if ((thisarg & N_VFP) != 0)
14109 {
14110 enum neon_shape_el regshape;
14111 unsigned regwidth, match;
99b253c5
NC
14112
14113 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
14114 if (ns == NS_NULL)
14115 {
14116 first_error (_("invalid instruction shape"));
14117 return badtype;
14118 }
477330fc
RM
14119 regshape = neon_shape_tab[ns].el[i];
14120 regwidth = neon_shape_el_size[regshape];
14121
14122 /* In VFP mode, operands must match register widths. If we
14123 have a key operand, use its width, else use the width of
14124 the current operand. */
14125 if (k_size != -1u)
14126 match = k_size;
14127 else
14128 match = g_size;
14129
9db2f6b4
RL
14130 /* FP16 will use a single precision register. */
14131 if (regwidth == 32 && match == 16)
14132 {
14133 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14134 match = regwidth;
14135 else
14136 {
14137 inst.error = _(BAD_FP16);
14138 return badtype;
14139 }
14140 }
14141
477330fc
RM
14142 if (regwidth != match)
14143 {
14144 first_error (_("operand size must match register width"));
14145 return badtype;
14146 }
14147 }
14148
14149 if ((thisarg & N_EQK) == 0)
14150 {
14151 unsigned given_type = type_chk_of_el_type (g_type, g_size);
14152
14153 if ((given_type & types_allowed) == 0)
14154 {
14155 first_error (_("bad type in Neon instruction"));
14156 return badtype;
14157 }
14158 }
14159 else
14160 {
14161 enum neon_el_type mod_k_type = k_type;
14162 unsigned mod_k_size = k_size;
14163 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
14164 if (g_type != mod_k_type || g_size != mod_k_size)
14165 {
14166 first_error (_("inconsistent types in Neon instruction"));
14167 return badtype;
14168 }
14169 }
14170 }
14171 }
5287ad62
JB
14172 }
14173
14174 return inst.vectype.el[key_el];
14175}
14176
037e8744 14177/* Neon-style VFP instruction forwarding. */
5287ad62 14178
037e8744
JB
14179/* Thumb VFP instructions have 0xE in the condition field. */
14180
14181static void
14182do_vfp_cond_or_thumb (void)
5287ad62 14183{
88714cb8
DG
14184 inst.is_neon = 1;
14185
5287ad62 14186 if (thumb_mode)
037e8744 14187 inst.instruction |= 0xe0000000;
5287ad62 14188 else
037e8744 14189 inst.instruction |= inst.cond << 28;
5287ad62
JB
14190}
14191
037e8744
JB
14192/* Look up and encode a simple mnemonic, for use as a helper function for the
14193 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
14194 etc. It is assumed that operand parsing has already been done, and that the
14195 operands are in the form expected by the given opcode (this isn't necessarily
14196 the same as the form in which they were parsed, hence some massaging must
14197 take place before this function is called).
14198 Checks current arch version against that in the looked-up opcode. */
5287ad62 14199
037e8744
JB
14200static void
14201do_vfp_nsyn_opcode (const char *opname)
5287ad62 14202{
037e8744 14203 const struct asm_opcode *opcode;
5f4273c7 14204
21d799b5 14205 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 14206
037e8744
JB
14207 if (!opcode)
14208 abort ();
5287ad62 14209
037e8744 14210 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
477330fc
RM
14211 thumb_mode ? *opcode->tvariant : *opcode->avariant),
14212 _(BAD_FPU));
5287ad62 14213
88714cb8
DG
14214 inst.is_neon = 1;
14215
037e8744
JB
14216 if (thumb_mode)
14217 {
14218 inst.instruction = opcode->tvalue;
14219 opcode->tencode ();
14220 }
14221 else
14222 {
14223 inst.instruction = (inst.cond << 28) | opcode->avalue;
14224 opcode->aencode ();
14225 }
14226}
5287ad62
JB
14227
14228static void
037e8744 14229do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 14230{
037e8744
JB
14231 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
14232
9db2f6b4 14233 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
14234 {
14235 if (is_add)
477330fc 14236 do_vfp_nsyn_opcode ("fadds");
037e8744 14237 else
477330fc 14238 do_vfp_nsyn_opcode ("fsubs");
9db2f6b4
RL
14239
14240 /* ARMv8.2 fp16 instruction. */
14241 if (rs == NS_HHH)
14242 do_scalar_fp16_v82_encode ();
037e8744
JB
14243 }
14244 else
14245 {
14246 if (is_add)
477330fc 14247 do_vfp_nsyn_opcode ("faddd");
037e8744 14248 else
477330fc 14249 do_vfp_nsyn_opcode ("fsubd");
037e8744
JB
14250 }
14251}
14252
14253/* Check operand types to see if this is a VFP instruction, and if so call
14254 PFN (). */
14255
14256static int
14257try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
14258{
14259 enum neon_shape rs;
14260 struct neon_type_el et;
14261
14262 switch (args)
14263 {
14264 case 2:
9db2f6b4
RL
14265 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14266 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
037e8744 14267 break;
5f4273c7 14268
037e8744 14269 case 3:
9db2f6b4
RL
14270 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14271 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14272 N_F_ALL | N_KEY | N_VFP);
037e8744
JB
14273 break;
14274
14275 default:
14276 abort ();
14277 }
14278
14279 if (et.type != NT_invtype)
14280 {
14281 pfn (rs);
14282 return SUCCESS;
14283 }
037e8744 14284
99b253c5 14285 inst.error = NULL;
037e8744
JB
14286 return FAIL;
14287}
14288
14289static void
14290do_vfp_nsyn_mla_mls (enum neon_shape rs)
14291{
14292 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 14293
9db2f6b4 14294 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
14295 {
14296 if (is_mla)
477330fc 14297 do_vfp_nsyn_opcode ("fmacs");
037e8744 14298 else
477330fc 14299 do_vfp_nsyn_opcode ("fnmacs");
9db2f6b4
RL
14300
14301 /* ARMv8.2 fp16 instruction. */
14302 if (rs == NS_HHH)
14303 do_scalar_fp16_v82_encode ();
037e8744
JB
14304 }
14305 else
14306 {
14307 if (is_mla)
477330fc 14308 do_vfp_nsyn_opcode ("fmacd");
037e8744 14309 else
477330fc 14310 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
14311 }
14312}
14313
62f3b8c8
PB
14314static void
14315do_vfp_nsyn_fma_fms (enum neon_shape rs)
14316{
14317 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
14318
9db2f6b4 14319 if (rs == NS_FFF || rs == NS_HHH)
62f3b8c8
PB
14320 {
14321 if (is_fma)
477330fc 14322 do_vfp_nsyn_opcode ("ffmas");
62f3b8c8 14323 else
477330fc 14324 do_vfp_nsyn_opcode ("ffnmas");
9db2f6b4
RL
14325
14326 /* ARMv8.2 fp16 instruction. */
14327 if (rs == NS_HHH)
14328 do_scalar_fp16_v82_encode ();
62f3b8c8
PB
14329 }
14330 else
14331 {
14332 if (is_fma)
477330fc 14333 do_vfp_nsyn_opcode ("ffmad");
62f3b8c8 14334 else
477330fc 14335 do_vfp_nsyn_opcode ("ffnmad");
62f3b8c8
PB
14336 }
14337}
14338
037e8744
JB
14339static void
14340do_vfp_nsyn_mul (enum neon_shape rs)
14341{
9db2f6b4
RL
14342 if (rs == NS_FFF || rs == NS_HHH)
14343 {
14344 do_vfp_nsyn_opcode ("fmuls");
14345
14346 /* ARMv8.2 fp16 instruction. */
14347 if (rs == NS_HHH)
14348 do_scalar_fp16_v82_encode ();
14349 }
037e8744
JB
14350 else
14351 do_vfp_nsyn_opcode ("fmuld");
14352}
14353
14354static void
14355do_vfp_nsyn_abs_neg (enum neon_shape rs)
14356{
14357 int is_neg = (inst.instruction & 0x80) != 0;
9db2f6b4 14358 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
037e8744 14359
9db2f6b4 14360 if (rs == NS_FF || rs == NS_HH)
037e8744
JB
14361 {
14362 if (is_neg)
477330fc 14363 do_vfp_nsyn_opcode ("fnegs");
037e8744 14364 else
477330fc 14365 do_vfp_nsyn_opcode ("fabss");
9db2f6b4
RL
14366
14367 /* ARMv8.2 fp16 instruction. */
14368 if (rs == NS_HH)
14369 do_scalar_fp16_v82_encode ();
037e8744
JB
14370 }
14371 else
14372 {
14373 if (is_neg)
477330fc 14374 do_vfp_nsyn_opcode ("fnegd");
037e8744 14375 else
477330fc 14376 do_vfp_nsyn_opcode ("fabsd");
037e8744
JB
14377 }
14378}
14379
14380/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
14381 insns belong to Neon, and are handled elsewhere. */
14382
14383static void
14384do_vfp_nsyn_ldm_stm (int is_dbmode)
14385{
14386 int is_ldm = (inst.instruction & (1 << 20)) != 0;
14387 if (is_ldm)
14388 {
14389 if (is_dbmode)
477330fc 14390 do_vfp_nsyn_opcode ("fldmdbs");
037e8744 14391 else
477330fc 14392 do_vfp_nsyn_opcode ("fldmias");
037e8744
JB
14393 }
14394 else
14395 {
14396 if (is_dbmode)
477330fc 14397 do_vfp_nsyn_opcode ("fstmdbs");
037e8744 14398 else
477330fc 14399 do_vfp_nsyn_opcode ("fstmias");
037e8744
JB
14400 }
14401}
14402
037e8744
JB
14403static void
14404do_vfp_nsyn_sqrt (void)
14405{
9db2f6b4
RL
14406 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14407 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 14408
9db2f6b4
RL
14409 if (rs == NS_FF || rs == NS_HH)
14410 {
14411 do_vfp_nsyn_opcode ("fsqrts");
14412
14413 /* ARMv8.2 fp16 instruction. */
14414 if (rs == NS_HH)
14415 do_scalar_fp16_v82_encode ();
14416 }
037e8744
JB
14417 else
14418 do_vfp_nsyn_opcode ("fsqrtd");
14419}
14420
14421static void
14422do_vfp_nsyn_div (void)
14423{
9db2f6b4 14424 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 14425 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 14426 N_F_ALL | N_KEY | N_VFP);
5f4273c7 14427
9db2f6b4
RL
14428 if (rs == NS_FFF || rs == NS_HHH)
14429 {
14430 do_vfp_nsyn_opcode ("fdivs");
14431
14432 /* ARMv8.2 fp16 instruction. */
14433 if (rs == NS_HHH)
14434 do_scalar_fp16_v82_encode ();
14435 }
037e8744
JB
14436 else
14437 do_vfp_nsyn_opcode ("fdivd");
14438}
14439
14440static void
14441do_vfp_nsyn_nmul (void)
14442{
9db2f6b4 14443 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 14444 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 14445 N_F_ALL | N_KEY | N_VFP);
5f4273c7 14446
9db2f6b4 14447 if (rs == NS_FFF || rs == NS_HHH)
037e8744 14448 {
88714cb8 14449 NEON_ENCODE (SINGLE, inst);
037e8744 14450 do_vfp_sp_dyadic ();
9db2f6b4
RL
14451
14452 /* ARMv8.2 fp16 instruction. */
14453 if (rs == NS_HHH)
14454 do_scalar_fp16_v82_encode ();
037e8744
JB
14455 }
14456 else
14457 {
88714cb8 14458 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
14459 do_vfp_dp_rd_rn_rm ();
14460 }
14461 do_vfp_cond_or_thumb ();
9db2f6b4 14462
037e8744
JB
14463}
14464
14465static void
14466do_vfp_nsyn_cmp (void)
14467{
9db2f6b4 14468 enum neon_shape rs;
037e8744
JB
14469 if (inst.operands[1].isreg)
14470 {
9db2f6b4
RL
14471 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14472 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 14473
9db2f6b4 14474 if (rs == NS_FF || rs == NS_HH)
477330fc
RM
14475 {
14476 NEON_ENCODE (SINGLE, inst);
14477 do_vfp_sp_monadic ();
14478 }
037e8744 14479 else
477330fc
RM
14480 {
14481 NEON_ENCODE (DOUBLE, inst);
14482 do_vfp_dp_rd_rm ();
14483 }
037e8744
JB
14484 }
14485 else
14486 {
9db2f6b4
RL
14487 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
14488 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
037e8744
JB
14489
14490 switch (inst.instruction & 0x0fffffff)
477330fc
RM
14491 {
14492 case N_MNEM_vcmp:
14493 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
14494 break;
14495 case N_MNEM_vcmpe:
14496 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
14497 break;
14498 default:
14499 abort ();
14500 }
5f4273c7 14501
9db2f6b4 14502 if (rs == NS_FI || rs == NS_HI)
477330fc
RM
14503 {
14504 NEON_ENCODE (SINGLE, inst);
14505 do_vfp_sp_compare_z ();
14506 }
037e8744 14507 else
477330fc
RM
14508 {
14509 NEON_ENCODE (DOUBLE, inst);
14510 do_vfp_dp_rd ();
14511 }
037e8744
JB
14512 }
14513 do_vfp_cond_or_thumb ();
9db2f6b4
RL
14514
14515 /* ARMv8.2 fp16 instruction. */
14516 if (rs == NS_HI || rs == NS_HH)
14517 do_scalar_fp16_v82_encode ();
037e8744
JB
14518}
14519
14520static void
14521nsyn_insert_sp (void)
14522{
14523 inst.operands[1] = inst.operands[0];
14524 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 14525 inst.operands[0].reg = REG_SP;
037e8744
JB
14526 inst.operands[0].isreg = 1;
14527 inst.operands[0].writeback = 1;
14528 inst.operands[0].present = 1;
14529}
14530
14531static void
14532do_vfp_nsyn_push (void)
14533{
14534 nsyn_insert_sp ();
b126985e
NC
14535
14536 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14537 _("register list must contain at least 1 and at most 16 "
14538 "registers"));
14539
037e8744
JB
14540 if (inst.operands[1].issingle)
14541 do_vfp_nsyn_opcode ("fstmdbs");
14542 else
14543 do_vfp_nsyn_opcode ("fstmdbd");
14544}
14545
14546static void
14547do_vfp_nsyn_pop (void)
14548{
14549 nsyn_insert_sp ();
b126985e
NC
14550
14551 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14552 _("register list must contain at least 1 and at most 16 "
14553 "registers"));
14554
037e8744 14555 if (inst.operands[1].issingle)
22b5b651 14556 do_vfp_nsyn_opcode ("fldmias");
037e8744 14557 else
22b5b651 14558 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
14559}
14560
14561/* Fix up Neon data-processing instructions, ORing in the correct bits for
14562 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
14563
88714cb8
DG
14564static void
14565neon_dp_fixup (struct arm_it* insn)
037e8744 14566{
88714cb8
DG
14567 unsigned int i = insn->instruction;
14568 insn->is_neon = 1;
14569
037e8744
JB
14570 if (thumb_mode)
14571 {
14572 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
14573 if (i & (1 << 24))
477330fc 14574 i |= 1 << 28;
5f4273c7 14575
037e8744 14576 i &= ~(1 << 24);
5f4273c7 14577
037e8744
JB
14578 i |= 0xef000000;
14579 }
14580 else
14581 i |= 0xf2000000;
5f4273c7 14582
88714cb8 14583 insn->instruction = i;
037e8744
JB
14584}
14585
14586/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
14587 (0, 1, 2, 3). */
14588
14589static unsigned
14590neon_logbits (unsigned x)
14591{
14592 return ffs (x) - 4;
14593}
14594
14595#define LOW4(R) ((R) & 0xf)
14596#define HI1(R) (((R) >> 4) & 1)
14597
14598/* Encode insns with bit pattern:
14599
14600 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14601 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 14602
037e8744
JB
14603 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
14604 different meaning for some instruction. */
14605
14606static void
14607neon_three_same (int isquad, int ubit, int size)
14608{
14609 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14610 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14611 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14612 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14613 inst.instruction |= LOW4 (inst.operands[2].reg);
14614 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14615 inst.instruction |= (isquad != 0) << 6;
14616 inst.instruction |= (ubit != 0) << 24;
14617 if (size != -1)
14618 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 14619
88714cb8 14620 neon_dp_fixup (&inst);
037e8744
JB
14621}
14622
14623/* Encode instructions of the form:
14624
14625 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
14626 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
14627
14628 Don't write size if SIZE == -1. */
14629
14630static void
14631neon_two_same (int qbit, int ubit, int size)
14632{
14633 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14634 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14635 inst.instruction |= LOW4 (inst.operands[1].reg);
14636 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14637 inst.instruction |= (qbit != 0) << 6;
14638 inst.instruction |= (ubit != 0) << 24;
14639
14640 if (size != -1)
14641 inst.instruction |= neon_logbits (size) << 18;
14642
88714cb8 14643 neon_dp_fixup (&inst);
5287ad62
JB
14644}
14645
14646/* Neon instruction encoders, in approximate order of appearance. */
14647
14648static void
14649do_neon_dyadic_i_su (void)
14650{
037e8744 14651 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14652 struct neon_type_el et = neon_check_type (3, rs,
14653 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 14654 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14655}
14656
14657static void
14658do_neon_dyadic_i64_su (void)
14659{
037e8744 14660 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14661 struct neon_type_el et = neon_check_type (3, rs,
14662 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 14663 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14664}
14665
14666static void
14667neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
477330fc 14668 unsigned immbits)
5287ad62
JB
14669{
14670 unsigned size = et.size >> 3;
14671 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14672 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14673 inst.instruction |= LOW4 (inst.operands[1].reg);
14674 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14675 inst.instruction |= (isquad != 0) << 6;
14676 inst.instruction |= immbits << 16;
14677 inst.instruction |= (size >> 3) << 7;
14678 inst.instruction |= (size & 0x7) << 19;
14679 if (write_ubit)
14680 inst.instruction |= (uval != 0) << 24;
14681
88714cb8 14682 neon_dp_fixup (&inst);
5287ad62
JB
14683}
14684
14685static void
14686do_neon_shl_imm (void)
14687{
14688 if (!inst.operands[2].isreg)
14689 {
037e8744 14690 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 14691 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
cb3b1e65
JB
14692 int imm = inst.operands[2].imm;
14693
14694 constraint (imm < 0 || (unsigned)imm >= et.size,
14695 _("immediate out of range for shift"));
88714cb8 14696 NEON_ENCODE (IMMED, inst);
cb3b1e65 14697 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
14698 }
14699 else
14700 {
037e8744 14701 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 14702 struct neon_type_el et = neon_check_type (3, rs,
477330fc 14703 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
14704 unsigned int tmp;
14705
14706 /* VSHL/VQSHL 3-register variants have syntax such as:
477330fc
RM
14707 vshl.xx Dd, Dm, Dn
14708 whereas other 3-register operations encoded by neon_three_same have
14709 syntax like:
14710 vadd.xx Dd, Dn, Dm
14711 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
14712 here. */
627907b7
JB
14713 tmp = inst.operands[2].reg;
14714 inst.operands[2].reg = inst.operands[1].reg;
14715 inst.operands[1].reg = tmp;
88714cb8 14716 NEON_ENCODE (INTEGER, inst);
037e8744 14717 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14718 }
14719}
14720
14721static void
14722do_neon_qshl_imm (void)
14723{
14724 if (!inst.operands[2].isreg)
14725 {
037e8744 14726 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 14727 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
cb3b1e65 14728 int imm = inst.operands[2].imm;
627907b7 14729
cb3b1e65
JB
14730 constraint (imm < 0 || (unsigned)imm >= et.size,
14731 _("immediate out of range for shift"));
88714cb8 14732 NEON_ENCODE (IMMED, inst);
cb3b1e65 14733 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
5287ad62
JB
14734 }
14735 else
14736 {
037e8744 14737 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 14738 struct neon_type_el et = neon_check_type (3, rs,
477330fc 14739 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
14740 unsigned int tmp;
14741
14742 /* See note in do_neon_shl_imm. */
14743 tmp = inst.operands[2].reg;
14744 inst.operands[2].reg = inst.operands[1].reg;
14745 inst.operands[1].reg = tmp;
88714cb8 14746 NEON_ENCODE (INTEGER, inst);
037e8744 14747 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14748 }
14749}
14750
627907b7
JB
14751static void
14752do_neon_rshl (void)
14753{
14754 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14755 struct neon_type_el et = neon_check_type (3, rs,
14756 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14757 unsigned int tmp;
14758
14759 tmp = inst.operands[2].reg;
14760 inst.operands[2].reg = inst.operands[1].reg;
14761 inst.operands[1].reg = tmp;
14762 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14763}
14764
5287ad62
JB
14765static int
14766neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
14767{
036dc3f7
PB
14768 /* Handle .I8 pseudo-instructions. */
14769 if (size == 8)
5287ad62 14770 {
5287ad62 14771 /* Unfortunately, this will make everything apart from zero out-of-range.
477330fc
RM
14772 FIXME is this the intended semantics? There doesn't seem much point in
14773 accepting .I8 if so. */
5287ad62
JB
14774 immediate |= immediate << 8;
14775 size = 16;
036dc3f7
PB
14776 }
14777
14778 if (size >= 32)
14779 {
14780 if (immediate == (immediate & 0x000000ff))
14781 {
14782 *immbits = immediate;
14783 return 0x1;
14784 }
14785 else if (immediate == (immediate & 0x0000ff00))
14786 {
14787 *immbits = immediate >> 8;
14788 return 0x3;
14789 }
14790 else if (immediate == (immediate & 0x00ff0000))
14791 {
14792 *immbits = immediate >> 16;
14793 return 0x5;
14794 }
14795 else if (immediate == (immediate & 0xff000000))
14796 {
14797 *immbits = immediate >> 24;
14798 return 0x7;
14799 }
14800 if ((immediate & 0xffff) != (immediate >> 16))
14801 goto bad_immediate;
14802 immediate &= 0xffff;
5287ad62
JB
14803 }
14804
14805 if (immediate == (immediate & 0x000000ff))
14806 {
14807 *immbits = immediate;
036dc3f7 14808 return 0x9;
5287ad62
JB
14809 }
14810 else if (immediate == (immediate & 0x0000ff00))
14811 {
14812 *immbits = immediate >> 8;
036dc3f7 14813 return 0xb;
5287ad62
JB
14814 }
14815
14816 bad_immediate:
dcbf9037 14817 first_error (_("immediate value out of range"));
5287ad62
JB
14818 return FAIL;
14819}
14820
5287ad62
JB
14821static void
14822do_neon_logic (void)
14823{
14824 if (inst.operands[2].present && inst.operands[2].isreg)
14825 {
037e8744 14826 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14827 neon_check_type (3, rs, N_IGNORE_TYPE);
14828 /* U bit and size field were set as part of the bitmask. */
88714cb8 14829 NEON_ENCODE (INTEGER, inst);
037e8744 14830 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
14831 }
14832 else
14833 {
4316f0d2
DG
14834 const int three_ops_form = (inst.operands[2].present
14835 && !inst.operands[2].isreg);
14836 const int immoperand = (three_ops_form ? 2 : 1);
14837 enum neon_shape rs = (three_ops_form
14838 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
14839 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744 14840 struct neon_type_el et = neon_check_type (2, rs,
477330fc 14841 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 14842 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
14843 unsigned immbits;
14844 int cmode;
5f4273c7 14845
5287ad62 14846 if (et.type == NT_invtype)
477330fc 14847 return;
5f4273c7 14848
4316f0d2
DG
14849 if (three_ops_form)
14850 constraint (inst.operands[0].reg != inst.operands[1].reg,
14851 _("first and second operands shall be the same register"));
14852
88714cb8 14853 NEON_ENCODE (IMMED, inst);
5287ad62 14854
4316f0d2 14855 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
14856 if (et.size == 64)
14857 {
14858 /* .i64 is a pseudo-op, so the immediate must be a repeating
14859 pattern. */
4316f0d2
DG
14860 if (immbits != (inst.operands[immoperand].regisimm ?
14861 inst.operands[immoperand].reg : 0))
036dc3f7
PB
14862 {
14863 /* Set immbits to an invalid constant. */
14864 immbits = 0xdeadbeef;
14865 }
14866 }
14867
5287ad62 14868 switch (opcode)
477330fc
RM
14869 {
14870 case N_MNEM_vbic:
14871 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14872 break;
14873
14874 case N_MNEM_vorr:
14875 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14876 break;
14877
14878 case N_MNEM_vand:
14879 /* Pseudo-instruction for VBIC. */
14880 neon_invert_size (&immbits, 0, et.size);
14881 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14882 break;
14883
14884 case N_MNEM_vorn:
14885 /* Pseudo-instruction for VORR. */
14886 neon_invert_size (&immbits, 0, et.size);
14887 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14888 break;
14889
14890 default:
14891 abort ();
14892 }
5287ad62
JB
14893
14894 if (cmode == FAIL)
477330fc 14895 return;
5287ad62 14896
037e8744 14897 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14898 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14899 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14900 inst.instruction |= cmode << 8;
14901 neon_write_immbits (immbits);
5f4273c7 14902
88714cb8 14903 neon_dp_fixup (&inst);
5287ad62
JB
14904 }
14905}
14906
14907static void
14908do_neon_bitfield (void)
14909{
037e8744 14910 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 14911 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 14912 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
14913}
14914
14915static void
dcbf9037 14916neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
477330fc 14917 unsigned destbits)
5287ad62 14918{
037e8744 14919 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 14920 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
477330fc 14921 types | N_KEY);
5287ad62
JB
14922 if (et.type == NT_float)
14923 {
88714cb8 14924 NEON_ENCODE (FLOAT, inst);
cc933301 14925 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
14926 }
14927 else
14928 {
88714cb8 14929 NEON_ENCODE (INTEGER, inst);
037e8744 14930 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
14931 }
14932}
14933
14934static void
14935do_neon_dyadic_if_su (void)
14936{
dcbf9037 14937 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
14938}
14939
14940static void
14941do_neon_dyadic_if_su_d (void)
14942{
14943 /* This version only allow D registers, but that constraint is enforced during
14944 operand parsing so we don't need to do anything extra here. */
dcbf9037 14945 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
14946}
14947
5287ad62
JB
14948static void
14949do_neon_dyadic_if_i_d (void)
14950{
428e3f1f
PB
14951 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14952 affected if we specify unsigned args. */
14953 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
14954}
14955
037e8744
JB
14956enum vfp_or_neon_is_neon_bits
14957{
14958 NEON_CHECK_CC = 1,
73924fbc
MGD
14959 NEON_CHECK_ARCH = 2,
14960 NEON_CHECK_ARCH8 = 4
037e8744
JB
14961};
14962
14963/* Call this function if an instruction which may have belonged to the VFP or
14964 Neon instruction sets, but turned out to be a Neon instruction (due to the
14965 operand types involved, etc.). We have to check and/or fix-up a couple of
14966 things:
14967
14968 - Make sure the user hasn't attempted to make a Neon instruction
14969 conditional.
14970 - Alter the value in the condition code field if necessary.
14971 - Make sure that the arch supports Neon instructions.
14972
14973 Which of these operations take place depends on bits from enum
14974 vfp_or_neon_is_neon_bits.
14975
14976 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
14977 current instruction's condition is COND_ALWAYS, the condition field is
14978 changed to inst.uncond_value. This is necessary because instructions shared
14979 between VFP and Neon may be conditional for the VFP variants only, and the
14980 unconditional Neon version must have, e.g., 0xF in the condition field. */
14981
14982static int
14983vfp_or_neon_is_neon (unsigned check)
14984{
14985 /* Conditions are always legal in Thumb mode (IT blocks). */
14986 if (!thumb_mode && (check & NEON_CHECK_CC))
14987 {
14988 if (inst.cond != COND_ALWAYS)
477330fc
RM
14989 {
14990 first_error (_(BAD_COND));
14991 return FAIL;
14992 }
037e8744 14993 if (inst.uncond_value != -1)
477330fc 14994 inst.instruction |= inst.uncond_value << 28;
037e8744 14995 }
5f4273c7 14996
037e8744 14997 if ((check & NEON_CHECK_ARCH)
73924fbc
MGD
14998 && !mark_feature_used (&fpu_neon_ext_v1))
14999 {
15000 first_error (_(BAD_FPU));
15001 return FAIL;
15002 }
15003
15004 if ((check & NEON_CHECK_ARCH8)
15005 && !mark_feature_used (&fpu_neon_ext_armv8))
037e8744
JB
15006 {
15007 first_error (_(BAD_FPU));
15008 return FAIL;
15009 }
5f4273c7 15010
037e8744
JB
15011 return SUCCESS;
15012}
15013
5287ad62
JB
15014static void
15015do_neon_addsub_if_i (void)
15016{
037e8744
JB
15017 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
15018 return;
15019
15020 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15021 return;
15022
5287ad62
JB
15023 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15024 affected if we specify unsigned args. */
dcbf9037 15025 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
15026}
15027
15028/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
15029 result to be:
15030 V<op> A,B (A is operand 0, B is operand 2)
15031 to mean:
15032 V<op> A,B,A
15033 not:
15034 V<op> A,B,B
15035 so handle that case specially. */
15036
15037static void
15038neon_exchange_operands (void)
15039{
5287ad62
JB
15040 if (inst.operands[1].present)
15041 {
e1fa0163
NC
15042 void *scratch = xmalloc (sizeof (inst.operands[0]));
15043
5287ad62
JB
15044 /* Swap operands[1] and operands[2]. */
15045 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
15046 inst.operands[1] = inst.operands[2];
15047 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
e1fa0163 15048 free (scratch);
5287ad62
JB
15049 }
15050 else
15051 {
15052 inst.operands[1] = inst.operands[2];
15053 inst.operands[2] = inst.operands[0];
15054 }
15055}
15056
15057static void
15058neon_compare (unsigned regtypes, unsigned immtypes, int invert)
15059{
15060 if (inst.operands[2].isreg)
15061 {
15062 if (invert)
477330fc 15063 neon_exchange_operands ();
dcbf9037 15064 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
15065 }
15066 else
15067 {
037e8744 15068 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037 15069 struct neon_type_el et = neon_check_type (2, rs,
477330fc 15070 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 15071
88714cb8 15072 NEON_ENCODE (IMMED, inst);
5287ad62
JB
15073 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15074 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15075 inst.instruction |= LOW4 (inst.operands[1].reg);
15076 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 15077 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15078 inst.instruction |= (et.type == NT_float) << 10;
15079 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 15080
88714cb8 15081 neon_dp_fixup (&inst);
5287ad62
JB
15082 }
15083}
15084
15085static void
15086do_neon_cmp (void)
15087{
cc933301 15088 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
5287ad62
JB
15089}
15090
15091static void
15092do_neon_cmp_inv (void)
15093{
cc933301 15094 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
5287ad62
JB
15095}
15096
15097static void
15098do_neon_ceq (void)
15099{
15100 neon_compare (N_IF_32, N_IF_32, FALSE);
15101}
15102
15103/* For multiply instructions, we have the possibility of 16-bit or 32-bit
15104 scalars, which are encoded in 5 bits, M : Rm.
15105 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
15106 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
c604a79a
JW
15107 index in M.
15108
15109 Dot Product instructions are similar to multiply instructions except elsize
15110 should always be 32.
15111
15112 This function translates SCALAR, which is GAS's internal encoding of indexed
15113 scalar register, to raw encoding. There is also register and index range
15114 check based on ELSIZE. */
5287ad62
JB
15115
15116static unsigned
15117neon_scalar_for_mul (unsigned scalar, unsigned elsize)
15118{
dcbf9037
JB
15119 unsigned regno = NEON_SCALAR_REG (scalar);
15120 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
15121
15122 switch (elsize)
15123 {
15124 case 16:
15125 if (regno > 7 || elno > 3)
477330fc 15126 goto bad_scalar;
5287ad62 15127 return regno | (elno << 3);
5f4273c7 15128
5287ad62
JB
15129 case 32:
15130 if (regno > 15 || elno > 1)
477330fc 15131 goto bad_scalar;
5287ad62
JB
15132 return regno | (elno << 4);
15133
15134 default:
15135 bad_scalar:
dcbf9037 15136 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
15137 }
15138
15139 return 0;
15140}
15141
15142/* Encode multiply / multiply-accumulate scalar instructions. */
15143
15144static void
15145neon_mul_mac (struct neon_type_el et, int ubit)
15146{
dcbf9037
JB
15147 unsigned scalar;
15148
15149 /* Give a more helpful error message if we have an invalid type. */
15150 if (et.type == NT_invtype)
15151 return;
5f4273c7 15152
dcbf9037 15153 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
15154 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15155 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15156 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15157 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15158 inst.instruction |= LOW4 (scalar);
15159 inst.instruction |= HI1 (scalar) << 5;
15160 inst.instruction |= (et.type == NT_float) << 8;
15161 inst.instruction |= neon_logbits (et.size) << 20;
15162 inst.instruction |= (ubit != 0) << 24;
15163
88714cb8 15164 neon_dp_fixup (&inst);
5287ad62
JB
15165}
15166
15167static void
15168do_neon_mac_maybe_scalar (void)
15169{
037e8744
JB
15170 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
15171 return;
15172
15173 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15174 return;
15175
5287ad62
JB
15176 if (inst.operands[2].isscalar)
15177 {
037e8744 15178 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 15179 struct neon_type_el et = neon_check_type (3, rs,
589a7d88 15180 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
88714cb8 15181 NEON_ENCODE (SCALAR, inst);
037e8744 15182 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
15183 }
15184 else
428e3f1f
PB
15185 {
15186 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15187 affected if we specify unsigned args. */
15188 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15189 }
5287ad62
JB
15190}
15191
62f3b8c8
PB
15192static void
15193do_neon_fmac (void)
15194{
15195 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
15196 return;
15197
15198 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15199 return;
15200
15201 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15202}
15203
5287ad62
JB
15204static void
15205do_neon_tst (void)
15206{
037e8744 15207 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
15208 struct neon_type_el et = neon_check_type (3, rs,
15209 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 15210 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
15211}
15212
15213/* VMUL with 3 registers allows the P8 type. The scalar version supports the
15214 same types as the MAC equivalents. The polynomial type for this instruction
15215 is encoded the same as the integer type. */
15216
15217static void
15218do_neon_mul (void)
15219{
037e8744
JB
15220 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
15221 return;
15222
15223 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15224 return;
15225
5287ad62
JB
15226 if (inst.operands[2].isscalar)
15227 do_neon_mac_maybe_scalar ();
15228 else
cc933301 15229 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
5287ad62
JB
15230}
15231
15232static void
15233do_neon_qdmulh (void)
15234{
15235 if (inst.operands[2].isscalar)
15236 {
037e8744 15237 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 15238 struct neon_type_el et = neon_check_type (3, rs,
477330fc 15239 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 15240 NEON_ENCODE (SCALAR, inst);
037e8744 15241 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
15242 }
15243 else
15244 {
037e8744 15245 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 15246 struct neon_type_el et = neon_check_type (3, rs,
477330fc 15247 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 15248 NEON_ENCODE (INTEGER, inst);
5287ad62 15249 /* The U bit (rounding) comes from bit mask. */
037e8744 15250 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
15251 }
15252}
15253
643afb90
MW
15254static void
15255do_neon_qrdmlah (void)
15256{
15257 /* Check we're on the correct architecture. */
15258 if (!mark_feature_used (&fpu_neon_ext_armv8))
15259 inst.error =
15260 _("instruction form not available on this architecture.");
15261 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
15262 {
15263 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
15264 record_feature_use (&fpu_neon_ext_v8_1);
15265 }
15266
15267 if (inst.operands[2].isscalar)
15268 {
15269 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15270 struct neon_type_el et = neon_check_type (3, rs,
15271 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15272 NEON_ENCODE (SCALAR, inst);
15273 neon_mul_mac (et, neon_quad (rs));
15274 }
15275 else
15276 {
15277 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15278 struct neon_type_el et = neon_check_type (3, rs,
15279 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15280 NEON_ENCODE (INTEGER, inst);
15281 /* The U bit (rounding) comes from bit mask. */
15282 neon_three_same (neon_quad (rs), 0, et.size);
15283 }
15284}
15285
5287ad62
JB
15286static void
15287do_neon_fcmp_absolute (void)
15288{
037e8744 15289 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
15290 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15291 N_F_16_32 | N_KEY);
5287ad62 15292 /* Size field comes from bit mask. */
cc933301 15293 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
15294}
15295
15296static void
15297do_neon_fcmp_absolute_inv (void)
15298{
15299 neon_exchange_operands ();
15300 do_neon_fcmp_absolute ();
15301}
15302
15303static void
15304do_neon_step (void)
15305{
037e8744 15306 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
15307 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15308 N_F_16_32 | N_KEY);
15309 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
15310}
15311
15312static void
15313do_neon_abs_neg (void)
15314{
037e8744
JB
15315 enum neon_shape rs;
15316 struct neon_type_el et;
5f4273c7 15317
037e8744
JB
15318 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
15319 return;
15320
15321 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15322 return;
15323
15324 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
cc933301 15325 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
5f4273c7 15326
5287ad62
JB
15327 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15328 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15329 inst.instruction |= LOW4 (inst.operands[1].reg);
15330 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 15331 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15332 inst.instruction |= (et.type == NT_float) << 10;
15333 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 15334
88714cb8 15335 neon_dp_fixup (&inst);
5287ad62
JB
15336}
15337
15338static void
15339do_neon_sli (void)
15340{
037e8744 15341 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15342 struct neon_type_el et = neon_check_type (2, rs,
15343 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15344 int imm = inst.operands[2].imm;
15345 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 15346 _("immediate out of range for insert"));
037e8744 15347 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
15348}
15349
15350static void
15351do_neon_sri (void)
15352{
037e8744 15353 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15354 struct neon_type_el et = neon_check_type (2, rs,
15355 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15356 int imm = inst.operands[2].imm;
15357 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15358 _("immediate out of range for insert"));
037e8744 15359 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
15360}
15361
15362static void
15363do_neon_qshlu_imm (void)
15364{
037e8744 15365 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15366 struct neon_type_el et = neon_check_type (2, rs,
15367 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
15368 int imm = inst.operands[2].imm;
15369 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 15370 _("immediate out of range for shift"));
5287ad62
JB
15371 /* Only encodes the 'U present' variant of the instruction.
15372 In this case, signed types have OP (bit 8) set to 0.
15373 Unsigned types have OP set to 1. */
15374 inst.instruction |= (et.type == NT_unsigned) << 8;
15375 /* The rest of the bits are the same as other immediate shifts. */
037e8744 15376 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
15377}
15378
15379static void
15380do_neon_qmovn (void)
15381{
15382 struct neon_type_el et = neon_check_type (2, NS_DQ,
15383 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15384 /* Saturating move where operands can be signed or unsigned, and the
15385 destination has the same signedness. */
88714cb8 15386 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15387 if (et.type == NT_unsigned)
15388 inst.instruction |= 0xc0;
15389 else
15390 inst.instruction |= 0x80;
15391 neon_two_same (0, 1, et.size / 2);
15392}
15393
15394static void
15395do_neon_qmovun (void)
15396{
15397 struct neon_type_el et = neon_check_type (2, NS_DQ,
15398 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15399 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 15400 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15401 neon_two_same (0, 1, et.size / 2);
15402}
15403
15404static void
15405do_neon_rshift_sat_narrow (void)
15406{
15407 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15408 or unsigned. If operands are unsigned, results must also be unsigned. */
15409 struct neon_type_el et = neon_check_type (2, NS_DQI,
15410 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15411 int imm = inst.operands[2].imm;
15412 /* This gets the bounds check, size encoding and immediate bits calculation
15413 right. */
15414 et.size /= 2;
5f4273c7 15415
5287ad62
JB
15416 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
15417 VQMOVN.I<size> <Dd>, <Qm>. */
15418 if (imm == 0)
15419 {
15420 inst.operands[2].present = 0;
15421 inst.instruction = N_MNEM_vqmovn;
15422 do_neon_qmovn ();
15423 return;
15424 }
5f4273c7 15425
5287ad62 15426 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15427 _("immediate out of range"));
5287ad62
JB
15428 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
15429}
15430
15431static void
15432do_neon_rshift_sat_narrow_u (void)
15433{
15434 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15435 or unsigned. If operands are unsigned, results must also be unsigned. */
15436 struct neon_type_el et = neon_check_type (2, NS_DQI,
15437 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15438 int imm = inst.operands[2].imm;
15439 /* This gets the bounds check, size encoding and immediate bits calculation
15440 right. */
15441 et.size /= 2;
15442
15443 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
15444 VQMOVUN.I<size> <Dd>, <Qm>. */
15445 if (imm == 0)
15446 {
15447 inst.operands[2].present = 0;
15448 inst.instruction = N_MNEM_vqmovun;
15449 do_neon_qmovun ();
15450 return;
15451 }
15452
15453 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15454 _("immediate out of range"));
5287ad62
JB
15455 /* FIXME: The manual is kind of unclear about what value U should have in
15456 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
15457 must be 1. */
15458 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
15459}
15460
15461static void
15462do_neon_movn (void)
15463{
15464 struct neon_type_el et = neon_check_type (2, NS_DQ,
15465 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 15466 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15467 neon_two_same (0, 1, et.size / 2);
15468}
15469
15470static void
15471do_neon_rshift_narrow (void)
15472{
15473 struct neon_type_el et = neon_check_type (2, NS_DQI,
15474 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15475 int imm = inst.operands[2].imm;
15476 /* This gets the bounds check, size encoding and immediate bits calculation
15477 right. */
15478 et.size /= 2;
5f4273c7 15479
5287ad62
JB
15480 /* If immediate is zero then we are a pseudo-instruction for
15481 VMOVN.I<size> <Dd>, <Qm> */
15482 if (imm == 0)
15483 {
15484 inst.operands[2].present = 0;
15485 inst.instruction = N_MNEM_vmovn;
15486 do_neon_movn ();
15487 return;
15488 }
5f4273c7 15489
5287ad62 15490 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15491 _("immediate out of range for narrowing operation"));
5287ad62
JB
15492 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
15493}
15494
15495static void
15496do_neon_shll (void)
15497{
15498 /* FIXME: Type checking when lengthening. */
15499 struct neon_type_el et = neon_check_type (2, NS_QDI,
15500 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
15501 unsigned imm = inst.operands[2].imm;
15502
15503 if (imm == et.size)
15504 {
15505 /* Maximum shift variant. */
88714cb8 15506 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15507 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15508 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15509 inst.instruction |= LOW4 (inst.operands[1].reg);
15510 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15511 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 15512
88714cb8 15513 neon_dp_fixup (&inst);
5287ad62
JB
15514 }
15515 else
15516 {
15517 /* A more-specific type check for non-max versions. */
15518 et = neon_check_type (2, NS_QDI,
477330fc 15519 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 15520 NEON_ENCODE (IMMED, inst);
5287ad62
JB
15521 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
15522 }
15523}
15524
037e8744 15525/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
15526 the current instruction is. */
15527
6b9a8b67
MGD
15528#define CVT_FLAVOUR_VAR \
15529 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
15530 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
15531 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
15532 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
15533 /* Half-precision conversions. */ \
cc933301
JW
15534 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15535 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15536 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
15537 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
6b9a8b67
MGD
15538 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
15539 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
9db2f6b4
RL
15540 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
15541 Compared with single/double precision variants, only the co-processor \
15542 field is different, so the encoding flow is reused here. */ \
15543 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
15544 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
15545 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
15546 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
6b9a8b67
MGD
15547 /* VFP instructions. */ \
15548 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
15549 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
15550 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
15551 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
15552 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
15553 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
15554 /* VFP instructions with bitshift. */ \
15555 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
15556 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
15557 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
15558 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
15559 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
15560 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
15561 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
15562 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
15563
15564#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
15565 neon_cvt_flavour_##C,
15566
15567/* The different types of conversions we can do. */
15568enum neon_cvt_flavour
15569{
15570 CVT_FLAVOUR_VAR
15571 neon_cvt_flavour_invalid,
15572 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
15573};
15574
15575#undef CVT_VAR
15576
15577static enum neon_cvt_flavour
15578get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 15579{
6b9a8b67
MGD
15580#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
15581 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
15582 if (et.type != NT_invtype) \
15583 { \
15584 inst.error = NULL; \
15585 return (neon_cvt_flavour_##C); \
5287ad62 15586 }
6b9a8b67 15587
5287ad62 15588 struct neon_type_el et;
037e8744 15589 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
477330fc 15590 || rs == NS_FF) ? N_VFP : 0;
037e8744
JB
15591 /* The instruction versions which take an immediate take one register
15592 argument, which is extended to the width of the full register. Thus the
15593 "source" and "destination" registers must have the same width. Hack that
15594 here by making the size equal to the key (wider, in this case) operand. */
15595 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 15596
6b9a8b67
MGD
15597 CVT_FLAVOUR_VAR;
15598
15599 return neon_cvt_flavour_invalid;
5287ad62
JB
15600#undef CVT_VAR
15601}
15602
7e8e6784
MGD
15603enum neon_cvt_mode
15604{
15605 neon_cvt_mode_a,
15606 neon_cvt_mode_n,
15607 neon_cvt_mode_p,
15608 neon_cvt_mode_m,
15609 neon_cvt_mode_z,
30bdf752
MGD
15610 neon_cvt_mode_x,
15611 neon_cvt_mode_r
7e8e6784
MGD
15612};
15613
037e8744
JB
15614/* Neon-syntax VFP conversions. */
15615
5287ad62 15616static void
6b9a8b67 15617do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 15618{
037e8744 15619 const char *opname = 0;
5f4273c7 15620
d54af2d0
RL
15621 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
15622 || rs == NS_FHI || rs == NS_HFI)
5287ad62 15623 {
037e8744
JB
15624 /* Conversions with immediate bitshift. */
15625 const char *enc[] =
477330fc 15626 {
6b9a8b67
MGD
15627#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
15628 CVT_FLAVOUR_VAR
15629 NULL
15630#undef CVT_VAR
477330fc 15631 };
037e8744 15632
6b9a8b67 15633 if (flavour < (int) ARRAY_SIZE (enc))
477330fc
RM
15634 {
15635 opname = enc[flavour];
15636 constraint (inst.operands[0].reg != inst.operands[1].reg,
15637 _("operands 0 and 1 must be the same register"));
15638 inst.operands[1] = inst.operands[2];
15639 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
15640 }
5287ad62
JB
15641 }
15642 else
15643 {
037e8744
JB
15644 /* Conversions without bitshift. */
15645 const char *enc[] =
477330fc 15646 {
6b9a8b67
MGD
15647#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
15648 CVT_FLAVOUR_VAR
15649 NULL
15650#undef CVT_VAR
477330fc 15651 };
037e8744 15652
6b9a8b67 15653 if (flavour < (int) ARRAY_SIZE (enc))
477330fc 15654 opname = enc[flavour];
037e8744
JB
15655 }
15656
15657 if (opname)
15658 do_vfp_nsyn_opcode (opname);
9db2f6b4
RL
15659
15660 /* ARMv8.2 fp16 VCVT instruction. */
15661 if (flavour == neon_cvt_flavour_s32_f16
15662 || flavour == neon_cvt_flavour_u32_f16
15663 || flavour == neon_cvt_flavour_f16_u32
15664 || flavour == neon_cvt_flavour_f16_s32)
15665 do_scalar_fp16_v82_encode ();
037e8744
JB
15666}
15667
15668static void
15669do_vfp_nsyn_cvtz (void)
15670{
d54af2d0 15671 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
6b9a8b67 15672 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
15673 const char *enc[] =
15674 {
6b9a8b67
MGD
15675#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
15676 CVT_FLAVOUR_VAR
15677 NULL
15678#undef CVT_VAR
037e8744
JB
15679 };
15680
6b9a8b67 15681 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
15682 do_vfp_nsyn_opcode (enc[flavour]);
15683}
f31fef98 15684
037e8744 15685static void
bacebabc 15686do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
7e8e6784
MGD
15687 enum neon_cvt_mode mode)
15688{
15689 int sz, op;
15690 int rm;
15691
a715796b
TG
15692 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
15693 D register operands. */
15694 if (flavour == neon_cvt_flavour_s32_f64
15695 || flavour == neon_cvt_flavour_u32_f64)
15696 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15697 _(BAD_FPU));
15698
9db2f6b4
RL
15699 if (flavour == neon_cvt_flavour_s32_f16
15700 || flavour == neon_cvt_flavour_u32_f16)
15701 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
15702 _(BAD_FP16));
15703
7e8e6784
MGD
15704 set_it_insn_type (OUTSIDE_IT_INSN);
15705
15706 switch (flavour)
15707 {
15708 case neon_cvt_flavour_s32_f64:
15709 sz = 1;
827f64ff 15710 op = 1;
7e8e6784
MGD
15711 break;
15712 case neon_cvt_flavour_s32_f32:
15713 sz = 0;
15714 op = 1;
15715 break;
9db2f6b4
RL
15716 case neon_cvt_flavour_s32_f16:
15717 sz = 0;
15718 op = 1;
15719 break;
7e8e6784
MGD
15720 case neon_cvt_flavour_u32_f64:
15721 sz = 1;
15722 op = 0;
15723 break;
15724 case neon_cvt_flavour_u32_f32:
15725 sz = 0;
15726 op = 0;
15727 break;
9db2f6b4
RL
15728 case neon_cvt_flavour_u32_f16:
15729 sz = 0;
15730 op = 0;
15731 break;
7e8e6784
MGD
15732 default:
15733 first_error (_("invalid instruction shape"));
15734 return;
15735 }
15736
15737 switch (mode)
15738 {
15739 case neon_cvt_mode_a: rm = 0; break;
15740 case neon_cvt_mode_n: rm = 1; break;
15741 case neon_cvt_mode_p: rm = 2; break;
15742 case neon_cvt_mode_m: rm = 3; break;
15743 default: first_error (_("invalid rounding mode")); return;
15744 }
15745
15746 NEON_ENCODE (FPV8, inst);
15747 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
15748 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
15749 inst.instruction |= sz << 8;
9db2f6b4
RL
15750
15751 /* ARMv8.2 fp16 VCVT instruction. */
15752 if (flavour == neon_cvt_flavour_s32_f16
15753 ||flavour == neon_cvt_flavour_u32_f16)
15754 do_scalar_fp16_v82_encode ();
7e8e6784
MGD
15755 inst.instruction |= op << 7;
15756 inst.instruction |= rm << 16;
15757 inst.instruction |= 0xf0000000;
15758 inst.is_neon = TRUE;
15759}
15760
15761static void
15762do_neon_cvt_1 (enum neon_cvt_mode mode)
037e8744
JB
15763{
15764 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
d54af2d0
RL
15765 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
15766 NS_FH, NS_HF, NS_FHI, NS_HFI,
15767 NS_NULL);
6b9a8b67 15768 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 15769
cc933301
JW
15770 if (flavour == neon_cvt_flavour_invalid)
15771 return;
15772
e3e535bc 15773 /* PR11109: Handle round-to-zero for VCVT conversions. */
7e8e6784 15774 if (mode == neon_cvt_mode_z
e3e535bc 15775 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
cc933301
JW
15776 && (flavour == neon_cvt_flavour_s16_f16
15777 || flavour == neon_cvt_flavour_u16_f16
15778 || flavour == neon_cvt_flavour_s32_f32
bacebabc
RM
15779 || flavour == neon_cvt_flavour_u32_f32
15780 || flavour == neon_cvt_flavour_s32_f64
6b9a8b67 15781 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
15782 && (rs == NS_FD || rs == NS_FF))
15783 {
15784 do_vfp_nsyn_cvtz ();
15785 return;
15786 }
15787
9db2f6b4
RL
15788 /* ARMv8.2 fp16 VCVT conversions. */
15789 if (mode == neon_cvt_mode_z
15790 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
15791 && (flavour == neon_cvt_flavour_s32_f16
15792 || flavour == neon_cvt_flavour_u32_f16)
15793 && (rs == NS_FH))
15794 {
15795 do_vfp_nsyn_cvtz ();
15796 do_scalar_fp16_v82_encode ();
15797 return;
15798 }
15799
037e8744 15800 /* VFP rather than Neon conversions. */
6b9a8b67 15801 if (flavour >= neon_cvt_flavour_first_fp)
037e8744 15802 {
7e8e6784
MGD
15803 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15804 do_vfp_nsyn_cvt (rs, flavour);
15805 else
15806 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15807
037e8744
JB
15808 return;
15809 }
15810
15811 switch (rs)
15812 {
15813 case NS_DDI:
15814 case NS_QQI:
15815 {
477330fc 15816 unsigned immbits;
cc933301
JW
15817 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
15818 0x0000100, 0x1000100, 0x0, 0x1000000};
35997600 15819
477330fc
RM
15820 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15821 return;
037e8744 15822
477330fc
RM
15823 /* Fixed-point conversion with #0 immediate is encoded as an
15824 integer conversion. */
15825 if (inst.operands[2].present && inst.operands[2].imm == 0)
15826 goto int_encode;
477330fc
RM
15827 NEON_ENCODE (IMMED, inst);
15828 if (flavour != neon_cvt_flavour_invalid)
15829 inst.instruction |= enctab[flavour];
15830 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15831 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15832 inst.instruction |= LOW4 (inst.operands[1].reg);
15833 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15834 inst.instruction |= neon_quad (rs) << 6;
15835 inst.instruction |= 1 << 21;
cc933301
JW
15836 if (flavour < neon_cvt_flavour_s16_f16)
15837 {
15838 inst.instruction |= 1 << 21;
15839 immbits = 32 - inst.operands[2].imm;
15840 inst.instruction |= immbits << 16;
15841 }
15842 else
15843 {
15844 inst.instruction |= 3 << 20;
15845 immbits = 16 - inst.operands[2].imm;
15846 inst.instruction |= immbits << 16;
15847 inst.instruction &= ~(1 << 9);
15848 }
477330fc
RM
15849
15850 neon_dp_fixup (&inst);
037e8744
JB
15851 }
15852 break;
15853
15854 case NS_DD:
15855 case NS_QQ:
7e8e6784
MGD
15856 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
15857 {
15858 NEON_ENCODE (FLOAT, inst);
15859 set_it_insn_type (OUTSIDE_IT_INSN);
15860
15861 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
15862 return;
15863
15864 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15865 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15866 inst.instruction |= LOW4 (inst.operands[1].reg);
15867 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15868 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
15869 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
15870 || flavour == neon_cvt_flavour_u32_f32) << 7;
7e8e6784 15871 inst.instruction |= mode << 8;
cc933301
JW
15872 if (flavour == neon_cvt_flavour_u16_f16
15873 || flavour == neon_cvt_flavour_s16_f16)
15874 /* Mask off the original size bits and reencode them. */
15875 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
15876
7e8e6784
MGD
15877 if (thumb_mode)
15878 inst.instruction |= 0xfc000000;
15879 else
15880 inst.instruction |= 0xf0000000;
15881 }
15882 else
15883 {
037e8744 15884 int_encode:
7e8e6784 15885 {
cc933301
JW
15886 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
15887 0x100, 0x180, 0x0, 0x080};
037e8744 15888
7e8e6784 15889 NEON_ENCODE (INTEGER, inst);
037e8744 15890
7e8e6784
MGD
15891 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15892 return;
037e8744 15893
7e8e6784
MGD
15894 if (flavour != neon_cvt_flavour_invalid)
15895 inst.instruction |= enctab[flavour];
037e8744 15896
7e8e6784
MGD
15897 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15898 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15899 inst.instruction |= LOW4 (inst.operands[1].reg);
15900 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15901 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
15902 if (flavour >= neon_cvt_flavour_s16_f16
15903 && flavour <= neon_cvt_flavour_f16_u16)
15904 /* Half precision. */
15905 inst.instruction |= 1 << 18;
15906 else
15907 inst.instruction |= 2 << 18;
037e8744 15908
7e8e6784
MGD
15909 neon_dp_fixup (&inst);
15910 }
15911 }
15912 break;
037e8744 15913
8e79c3df
CM
15914 /* Half-precision conversions for Advanced SIMD -- neon. */
15915 case NS_QD:
15916 case NS_DQ:
bc52d49c
MM
15917 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15918 return;
8e79c3df
CM
15919
15920 if ((rs == NS_DQ)
15921 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
15922 {
15923 as_bad (_("operand size must match register width"));
15924 break;
15925 }
15926
15927 if ((rs == NS_QD)
15928 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
15929 {
15930 as_bad (_("operand size must match register width"));
15931 break;
15932 }
15933
15934 if (rs == NS_DQ)
477330fc 15935 inst.instruction = 0x3b60600;
8e79c3df
CM
15936 else
15937 inst.instruction = 0x3b60700;
15938
15939 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15940 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15941 inst.instruction |= LOW4 (inst.operands[1].reg);
15942 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 15943 neon_dp_fixup (&inst);
8e79c3df
CM
15944 break;
15945
037e8744
JB
15946 default:
15947 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
7e8e6784
MGD
15948 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15949 do_vfp_nsyn_cvt (rs, flavour);
15950 else
15951 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
5287ad62 15952 }
5287ad62
JB
15953}
15954
e3e535bc
NC
15955static void
15956do_neon_cvtr (void)
15957{
7e8e6784 15958 do_neon_cvt_1 (neon_cvt_mode_x);
e3e535bc
NC
15959}
15960
15961static void
15962do_neon_cvt (void)
15963{
7e8e6784
MGD
15964 do_neon_cvt_1 (neon_cvt_mode_z);
15965}
15966
15967static void
15968do_neon_cvta (void)
15969{
15970 do_neon_cvt_1 (neon_cvt_mode_a);
15971}
15972
15973static void
15974do_neon_cvtn (void)
15975{
15976 do_neon_cvt_1 (neon_cvt_mode_n);
15977}
15978
15979static void
15980do_neon_cvtp (void)
15981{
15982 do_neon_cvt_1 (neon_cvt_mode_p);
15983}
15984
15985static void
15986do_neon_cvtm (void)
15987{
15988 do_neon_cvt_1 (neon_cvt_mode_m);
e3e535bc
NC
15989}
15990
8e79c3df 15991static void
c70a8987 15992do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
8e79c3df 15993{
c70a8987
MGD
15994 if (is_double)
15995 mark_feature_used (&fpu_vfp_ext_armv8);
8e79c3df 15996
c70a8987
MGD
15997 encode_arm_vfp_reg (inst.operands[0].reg,
15998 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
15999 encode_arm_vfp_reg (inst.operands[1].reg,
16000 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
16001 inst.instruction |= to ? 0x10000 : 0;
16002 inst.instruction |= t ? 0x80 : 0;
16003 inst.instruction |= is_double ? 0x100 : 0;
16004 do_vfp_cond_or_thumb ();
16005}
8e79c3df 16006
c70a8987
MGD
16007static void
16008do_neon_cvttb_1 (bfd_boolean t)
16009{
d54af2d0
RL
16010 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
16011 NS_DF, NS_DH, NS_NULL);
8e79c3df 16012
c70a8987
MGD
16013 if (rs == NS_NULL)
16014 return;
16015 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
16016 {
16017 inst.error = NULL;
16018 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
16019 }
16020 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
16021 {
16022 inst.error = NULL;
16023 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
16024 }
16025 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
16026 {
a715796b
TG
16027 /* The VCVTB and VCVTT instructions with D-register operands
16028 don't work for SP only targets. */
16029 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16030 _(BAD_FPU));
16031
c70a8987
MGD
16032 inst.error = NULL;
16033 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
16034 }
16035 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
16036 {
a715796b
TG
16037 /* The VCVTB and VCVTT instructions with D-register operands
16038 don't work for SP only targets. */
16039 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16040 _(BAD_FPU));
16041
c70a8987
MGD
16042 inst.error = NULL;
16043 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
16044 }
16045 else
16046 return;
16047}
16048
16049static void
16050do_neon_cvtb (void)
16051{
16052 do_neon_cvttb_1 (FALSE);
8e79c3df
CM
16053}
16054
16055
16056static void
16057do_neon_cvtt (void)
16058{
c70a8987 16059 do_neon_cvttb_1 (TRUE);
8e79c3df
CM
16060}
16061
5287ad62
JB
16062static void
16063neon_move_immediate (void)
16064{
037e8744
JB
16065 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
16066 struct neon_type_el et = neon_check_type (2, rs,
16067 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 16068 unsigned immlo, immhi = 0, immbits;
c96612cc 16069 int op, cmode, float_p;
5287ad62 16070
037e8744 16071 constraint (et.type == NT_invtype,
477330fc 16072 _("operand size must be specified for immediate VMOV"));
037e8744 16073
5287ad62
JB
16074 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
16075 op = (inst.instruction & (1 << 5)) != 0;
16076
16077 immlo = inst.operands[1].imm;
16078 if (inst.operands[1].regisimm)
16079 immhi = inst.operands[1].reg;
16080
16081 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
477330fc 16082 _("immediate has bits set outside the operand size"));
5287ad62 16083
c96612cc
JB
16084 float_p = inst.operands[1].immisfloat;
16085
16086 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
477330fc 16087 et.size, et.type)) == FAIL)
5287ad62
JB
16088 {
16089 /* Invert relevant bits only. */
16090 neon_invert_size (&immlo, &immhi, et.size);
16091 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
477330fc
RM
16092 with one or the other; those cases are caught by
16093 neon_cmode_for_move_imm. */
5287ad62 16094 op = !op;
c96612cc
JB
16095 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
16096 &op, et.size, et.type)) == FAIL)
477330fc
RM
16097 {
16098 first_error (_("immediate out of range"));
16099 return;
16100 }
5287ad62
JB
16101 }
16102
16103 inst.instruction &= ~(1 << 5);
16104 inst.instruction |= op << 5;
16105
16106 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16107 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 16108 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16109 inst.instruction |= cmode << 8;
16110
16111 neon_write_immbits (immbits);
16112}
16113
16114static void
16115do_neon_mvn (void)
16116{
16117 if (inst.operands[1].isreg)
16118 {
037e8744 16119 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 16120
88714cb8 16121 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
16122 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16123 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16124 inst.instruction |= LOW4 (inst.operands[1].reg);
16125 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 16126 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16127 }
16128 else
16129 {
88714cb8 16130 NEON_ENCODE (IMMED, inst);
5287ad62
JB
16131 neon_move_immediate ();
16132 }
16133
88714cb8 16134 neon_dp_fixup (&inst);
5287ad62
JB
16135}
16136
16137/* Encode instructions of form:
16138
16139 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 16140 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
16141
16142static void
16143neon_mixed_length (struct neon_type_el et, unsigned size)
16144{
16145 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16146 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16147 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16148 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16149 inst.instruction |= LOW4 (inst.operands[2].reg);
16150 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16151 inst.instruction |= (et.type == NT_unsigned) << 24;
16152 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 16153
88714cb8 16154 neon_dp_fixup (&inst);
5287ad62
JB
16155}
16156
16157static void
16158do_neon_dyadic_long (void)
16159{
16160 /* FIXME: Type checking for lengthening op. */
16161 struct neon_type_el et = neon_check_type (3, NS_QDD,
16162 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
16163 neon_mixed_length (et, et.size);
16164}
16165
16166static void
16167do_neon_abal (void)
16168{
16169 struct neon_type_el et = neon_check_type (3, NS_QDD,
16170 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
16171 neon_mixed_length (et, et.size);
16172}
16173
16174static void
16175neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
16176{
16177 if (inst.operands[2].isscalar)
16178 {
dcbf9037 16179 struct neon_type_el et = neon_check_type (3, NS_QDS,
477330fc 16180 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 16181 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
16182 neon_mul_mac (et, et.type == NT_unsigned);
16183 }
16184 else
16185 {
16186 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 16187 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 16188 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
16189 neon_mixed_length (et, et.size);
16190 }
16191}
16192
16193static void
16194do_neon_mac_maybe_scalar_long (void)
16195{
16196 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
16197}
16198
dec41383
JW
16199/* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
16200 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
16201
16202static unsigned
16203neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
16204{
16205 unsigned regno = NEON_SCALAR_REG (scalar);
16206 unsigned elno = NEON_SCALAR_INDEX (scalar);
16207
16208 if (quad_p)
16209 {
16210 if (regno > 7 || elno > 3)
16211 goto bad_scalar;
16212
16213 return ((regno & 0x7)
16214 | ((elno & 0x1) << 3)
16215 | (((elno >> 1) & 0x1) << 5));
16216 }
16217 else
16218 {
16219 if (regno > 15 || elno > 1)
16220 goto bad_scalar;
16221
16222 return (((regno & 0x1) << 5)
16223 | ((regno >> 1) & 0x7)
16224 | ((elno & 0x1) << 3));
16225 }
16226
16227bad_scalar:
16228 first_error (_("scalar out of range for multiply instruction"));
16229 return 0;
16230}
16231
16232static void
16233do_neon_fmac_maybe_scalar_long (int subtype)
16234{
16235 enum neon_shape rs;
16236 int high8;
16237 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
16238 field (bits[21:20]) has different meaning. For scalar index variant, it's
16239 used to differentiate add and subtract, otherwise it's with fixed value
16240 0x2. */
16241 int size = -1;
16242
16243 if (inst.cond != COND_ALWAYS)
16244 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
16245 "behaviour is UNPREDICTABLE"));
16246
01f48020 16247 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
dec41383
JW
16248 _(BAD_FP16));
16249
16250 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
16251 _(BAD_FPU));
16252
16253 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
16254 be a scalar index register. */
16255 if (inst.operands[2].isscalar)
16256 {
16257 high8 = 0xfe000000;
16258 if (subtype)
16259 size = 16;
16260 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
16261 }
16262 else
16263 {
16264 high8 = 0xfc000000;
16265 size = 32;
16266 if (subtype)
16267 inst.instruction |= (0x1 << 23);
16268 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
16269 }
16270
16271 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
16272
16273 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
16274 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
16275 so we simply pass -1 as size. */
16276 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
16277 neon_three_same (quad_p, 0, size);
16278
16279 /* Undo neon_dp_fixup. Redo the high eight bits. */
16280 inst.instruction &= 0x00ffffff;
16281 inst.instruction |= high8;
16282
16283#define LOW1(R) ((R) & 0x1)
16284#define HI4(R) (((R) >> 1) & 0xf)
16285 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
16286 whether the instruction is in Q form and whether Vm is a scalar indexed
16287 operand. */
16288 if (inst.operands[2].isscalar)
16289 {
16290 unsigned rm
16291 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
16292 inst.instruction &= 0xffffffd0;
16293 inst.instruction |= rm;
16294
16295 if (!quad_p)
16296 {
16297 /* Redo Rn as well. */
16298 inst.instruction &= 0xfff0ff7f;
16299 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
16300 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
16301 }
16302 }
16303 else if (!quad_p)
16304 {
16305 /* Redo Rn and Rm. */
16306 inst.instruction &= 0xfff0ff50;
16307 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
16308 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
16309 inst.instruction |= HI4 (inst.operands[2].reg);
16310 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
16311 }
16312}
16313
16314static void
16315do_neon_vfmal (void)
16316{
16317 return do_neon_fmac_maybe_scalar_long (0);
16318}
16319
16320static void
16321do_neon_vfmsl (void)
16322{
16323 return do_neon_fmac_maybe_scalar_long (1);
16324}
16325
5287ad62
JB
16326static void
16327do_neon_dyadic_wide (void)
16328{
16329 struct neon_type_el et = neon_check_type (3, NS_QQD,
16330 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
16331 neon_mixed_length (et, et.size);
16332}
16333
16334static void
16335do_neon_dyadic_narrow (void)
16336{
16337 struct neon_type_el et = neon_check_type (3, NS_QDD,
16338 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
16339 /* Operand sign is unimportant, and the U bit is part of the opcode,
16340 so force the operand type to integer. */
16341 et.type = NT_integer;
5287ad62
JB
16342 neon_mixed_length (et, et.size / 2);
16343}
16344
16345static void
16346do_neon_mul_sat_scalar_long (void)
16347{
16348 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
16349}
16350
16351static void
16352do_neon_vmull (void)
16353{
16354 if (inst.operands[2].isscalar)
16355 do_neon_mac_maybe_scalar_long ();
16356 else
16357 {
16358 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 16359 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
4f51b4bd 16360
5287ad62 16361 if (et.type == NT_poly)
477330fc 16362 NEON_ENCODE (POLY, inst);
5287ad62 16363 else
477330fc 16364 NEON_ENCODE (INTEGER, inst);
4f51b4bd
MGD
16365
16366 /* For polynomial encoding the U bit must be zero, and the size must
16367 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
16368 obviously, as 0b10). */
16369 if (et.size == 64)
16370 {
16371 /* Check we're on the correct architecture. */
16372 if (!mark_feature_used (&fpu_crypto_ext_armv8))
16373 inst.error =
16374 _("Instruction form not available on this architecture.");
16375
16376 et.size = 32;
16377 }
16378
5287ad62
JB
16379 neon_mixed_length (et, et.size);
16380 }
16381}
16382
16383static void
16384do_neon_ext (void)
16385{
037e8744 16386 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
16387 struct neon_type_el et = neon_check_type (3, rs,
16388 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16389 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
16390
16391 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
16392 _("shift out of range"));
5287ad62
JB
16393 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16394 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16395 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16396 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16397 inst.instruction |= LOW4 (inst.operands[2].reg);
16398 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 16399 inst.instruction |= neon_quad (rs) << 6;
5287ad62 16400 inst.instruction |= imm << 8;
5f4273c7 16401
88714cb8 16402 neon_dp_fixup (&inst);
5287ad62
JB
16403}
16404
16405static void
16406do_neon_rev (void)
16407{
037e8744 16408 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16409 struct neon_type_el et = neon_check_type (2, rs,
16410 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16411 unsigned op = (inst.instruction >> 7) & 3;
16412 /* N (width of reversed regions) is encoded as part of the bitmask. We
16413 extract it here to check the elements to be reversed are smaller.
16414 Otherwise we'd get a reserved instruction. */
16415 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 16416 gas_assert (elsize != 0);
5287ad62 16417 constraint (et.size >= elsize,
477330fc 16418 _("elements must be smaller than reversal region"));
037e8744 16419 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16420}
16421
16422static void
16423do_neon_dup (void)
16424{
16425 if (inst.operands[1].isscalar)
16426 {
037e8744 16427 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037 16428 struct neon_type_el et = neon_check_type (2, rs,
477330fc 16429 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 16430 unsigned sizebits = et.size >> 3;
dcbf9037 16431 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 16432 int logsize = neon_logbits (et.size);
dcbf9037 16433 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
16434
16435 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
477330fc 16436 return;
037e8744 16437
88714cb8 16438 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
16439 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16440 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16441 inst.instruction |= LOW4 (dm);
16442 inst.instruction |= HI1 (dm) << 5;
037e8744 16443 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16444 inst.instruction |= x << 17;
16445 inst.instruction |= sizebits << 16;
5f4273c7 16446
88714cb8 16447 neon_dp_fixup (&inst);
5287ad62
JB
16448 }
16449 else
16450 {
037e8744
JB
16451 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
16452 struct neon_type_el et = neon_check_type (2, rs,
477330fc 16453 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 16454 /* Duplicate ARM register to lanes of vector. */
88714cb8 16455 NEON_ENCODE (ARMREG, inst);
5287ad62 16456 switch (et.size)
477330fc
RM
16457 {
16458 case 8: inst.instruction |= 0x400000; break;
16459 case 16: inst.instruction |= 0x000020; break;
16460 case 32: inst.instruction |= 0x000000; break;
16461 default: break;
16462 }
5287ad62
JB
16463 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16464 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
16465 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 16466 inst.instruction |= neon_quad (rs) << 21;
5287ad62 16467 /* The encoding for this instruction is identical for the ARM and Thumb
477330fc 16468 variants, except for the condition field. */
037e8744 16469 do_vfp_cond_or_thumb ();
5287ad62
JB
16470 }
16471}
16472
16473/* VMOV has particularly many variations. It can be one of:
16474 0. VMOV<c><q> <Qd>, <Qm>
16475 1. VMOV<c><q> <Dd>, <Dm>
16476 (Register operations, which are VORR with Rm = Rn.)
16477 2. VMOV<c><q>.<dt> <Qd>, #<imm>
16478 3. VMOV<c><q>.<dt> <Dd>, #<imm>
16479 (Immediate loads.)
16480 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
16481 (ARM register to scalar.)
16482 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
16483 (Two ARM registers to vector.)
16484 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
16485 (Scalar to ARM register.)
16486 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
16487 (Vector to two ARM registers.)
037e8744
JB
16488 8. VMOV.F32 <Sd>, <Sm>
16489 9. VMOV.F64 <Dd>, <Dm>
16490 (VFP register moves.)
16491 10. VMOV.F32 <Sd>, #imm
16492 11. VMOV.F64 <Dd>, #imm
16493 (VFP float immediate load.)
16494 12. VMOV <Rd>, <Sm>
16495 (VFP single to ARM reg.)
16496 13. VMOV <Sd>, <Rm>
16497 (ARM reg to VFP single.)
16498 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
16499 (Two ARM regs to two VFP singles.)
16500 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
16501 (Two VFP singles to two ARM regs.)
5f4273c7 16502
037e8744
JB
16503 These cases can be disambiguated using neon_select_shape, except cases 1/9
16504 and 3/11 which depend on the operand type too.
5f4273c7 16505
5287ad62 16506 All the encoded bits are hardcoded by this function.
5f4273c7 16507
b7fc2769
JB
16508 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
16509 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 16510
5287ad62 16511 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 16512 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
16513
16514static void
16515do_neon_mov (void)
16516{
037e8744 16517 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
9db2f6b4
RL
16518 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR,
16519 NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
16520 NS_HR, NS_RH, NS_HI, NS_NULL);
037e8744
JB
16521 struct neon_type_el et;
16522 const char *ldconst = 0;
5287ad62 16523
037e8744 16524 switch (rs)
5287ad62 16525 {
037e8744
JB
16526 case NS_DD: /* case 1/9. */
16527 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16528 /* It is not an error here if no type is given. */
16529 inst.error = NULL;
16530 if (et.type == NT_float && et.size == 64)
477330fc
RM
16531 {
16532 do_vfp_nsyn_opcode ("fcpyd");
16533 break;
16534 }
037e8744 16535 /* fall through. */
5287ad62 16536
037e8744
JB
16537 case NS_QQ: /* case 0/1. */
16538 {
477330fc
RM
16539 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16540 return;
16541 /* The architecture manual I have doesn't explicitly state which
16542 value the U bit should have for register->register moves, but
16543 the equivalent VORR instruction has U = 0, so do that. */
16544 inst.instruction = 0x0200110;
16545 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16546 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16547 inst.instruction |= LOW4 (inst.operands[1].reg);
16548 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16549 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16550 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16551 inst.instruction |= neon_quad (rs) << 6;
16552
16553 neon_dp_fixup (&inst);
037e8744
JB
16554 }
16555 break;
5f4273c7 16556
037e8744
JB
16557 case NS_DI: /* case 3/11. */
16558 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16559 inst.error = NULL;
16560 if (et.type == NT_float && et.size == 64)
477330fc
RM
16561 {
16562 /* case 11 (fconstd). */
16563 ldconst = "fconstd";
16564 goto encode_fconstd;
16565 }
037e8744
JB
16566 /* fall through. */
16567
16568 case NS_QI: /* case 2/3. */
16569 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
477330fc 16570 return;
037e8744
JB
16571 inst.instruction = 0x0800010;
16572 neon_move_immediate ();
88714cb8 16573 neon_dp_fixup (&inst);
5287ad62 16574 break;
5f4273c7 16575
037e8744
JB
16576 case NS_SR: /* case 4. */
16577 {
477330fc
RM
16578 unsigned bcdebits = 0;
16579 int logsize;
16580 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
16581 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
037e8744 16582
05ac0ffb
JB
16583 /* .<size> is optional here, defaulting to .32. */
16584 if (inst.vectype.elems == 0
16585 && inst.operands[0].vectype.type == NT_invtype
16586 && inst.operands[1].vectype.type == NT_invtype)
16587 {
16588 inst.vectype.el[0].type = NT_untyped;
16589 inst.vectype.el[0].size = 32;
16590 inst.vectype.elems = 1;
16591 }
16592
477330fc
RM
16593 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
16594 logsize = neon_logbits (et.size);
16595
16596 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16597 _(BAD_FPU));
16598 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16599 && et.size != 32, _(BAD_FPU));
16600 constraint (et.type == NT_invtype, _("bad type for scalar"));
16601 constraint (x >= 64 / et.size, _("scalar index out of range"));
16602
16603 switch (et.size)
16604 {
16605 case 8: bcdebits = 0x8; break;
16606 case 16: bcdebits = 0x1; break;
16607 case 32: bcdebits = 0x0; break;
16608 default: ;
16609 }
16610
16611 bcdebits |= x << logsize;
16612
16613 inst.instruction = 0xe000b10;
16614 do_vfp_cond_or_thumb ();
16615 inst.instruction |= LOW4 (dn) << 16;
16616 inst.instruction |= HI1 (dn) << 7;
16617 inst.instruction |= inst.operands[1].reg << 12;
16618 inst.instruction |= (bcdebits & 3) << 5;
16619 inst.instruction |= (bcdebits >> 2) << 21;
037e8744
JB
16620 }
16621 break;
5f4273c7 16622
037e8744 16623 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 16624 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
477330fc 16625 _(BAD_FPU));
b7fc2769 16626
037e8744
JB
16627 inst.instruction = 0xc400b10;
16628 do_vfp_cond_or_thumb ();
16629 inst.instruction |= LOW4 (inst.operands[0].reg);
16630 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
16631 inst.instruction |= inst.operands[1].reg << 12;
16632 inst.instruction |= inst.operands[2].reg << 16;
16633 break;
5f4273c7 16634
037e8744
JB
16635 case NS_RS: /* case 6. */
16636 {
477330fc
RM
16637 unsigned logsize;
16638 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
16639 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
16640 unsigned abcdebits = 0;
037e8744 16641
05ac0ffb
JB
16642 /* .<dt> is optional here, defaulting to .32. */
16643 if (inst.vectype.elems == 0
16644 && inst.operands[0].vectype.type == NT_invtype
16645 && inst.operands[1].vectype.type == NT_invtype)
16646 {
16647 inst.vectype.el[0].type = NT_untyped;
16648 inst.vectype.el[0].size = 32;
16649 inst.vectype.elems = 1;
16650 }
16651
91d6fa6a
NC
16652 et = neon_check_type (2, NS_NULL,
16653 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
477330fc
RM
16654 logsize = neon_logbits (et.size);
16655
16656 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16657 _(BAD_FPU));
16658 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16659 && et.size != 32, _(BAD_FPU));
16660 constraint (et.type == NT_invtype, _("bad type for scalar"));
16661 constraint (x >= 64 / et.size, _("scalar index out of range"));
16662
16663 switch (et.size)
16664 {
16665 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
16666 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
16667 case 32: abcdebits = 0x00; break;
16668 default: ;
16669 }
16670
16671 abcdebits |= x << logsize;
16672 inst.instruction = 0xe100b10;
16673 do_vfp_cond_or_thumb ();
16674 inst.instruction |= LOW4 (dn) << 16;
16675 inst.instruction |= HI1 (dn) << 7;
16676 inst.instruction |= inst.operands[0].reg << 12;
16677 inst.instruction |= (abcdebits & 3) << 5;
16678 inst.instruction |= (abcdebits >> 2) << 21;
037e8744
JB
16679 }
16680 break;
5f4273c7 16681
037e8744
JB
16682 case NS_RRD: /* case 7 (fmrrd). */
16683 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
477330fc 16684 _(BAD_FPU));
037e8744
JB
16685
16686 inst.instruction = 0xc500b10;
16687 do_vfp_cond_or_thumb ();
16688 inst.instruction |= inst.operands[0].reg << 12;
16689 inst.instruction |= inst.operands[1].reg << 16;
16690 inst.instruction |= LOW4 (inst.operands[2].reg);
16691 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16692 break;
5f4273c7 16693
037e8744
JB
16694 case NS_FF: /* case 8 (fcpys). */
16695 do_vfp_nsyn_opcode ("fcpys");
16696 break;
5f4273c7 16697
9db2f6b4 16698 case NS_HI:
037e8744
JB
16699 case NS_FI: /* case 10 (fconsts). */
16700 ldconst = "fconsts";
4ef4710f 16701 encode_fconstd:
58ed5c38
TC
16702 if (!inst.operands[1].immisfloat)
16703 {
4ef4710f 16704 unsigned new_imm;
58ed5c38 16705 /* Immediate has to fit in 8 bits so float is enough. */
4ef4710f
NC
16706 float imm = (float) inst.operands[1].imm;
16707 memcpy (&new_imm, &imm, sizeof (float));
16708 /* But the assembly may have been written to provide an integer
16709 bit pattern that equates to a float, so check that the
16710 conversion has worked. */
16711 if (is_quarter_float (new_imm))
16712 {
16713 if (is_quarter_float (inst.operands[1].imm))
16714 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
16715
16716 inst.operands[1].imm = new_imm;
16717 inst.operands[1].immisfloat = 1;
16718 }
58ed5c38
TC
16719 }
16720
037e8744 16721 if (is_quarter_float (inst.operands[1].imm))
477330fc
RM
16722 {
16723 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
16724 do_vfp_nsyn_opcode (ldconst);
9db2f6b4
RL
16725
16726 /* ARMv8.2 fp16 vmov.f16 instruction. */
16727 if (rs == NS_HI)
16728 do_scalar_fp16_v82_encode ();
477330fc 16729 }
5287ad62 16730 else
477330fc 16731 first_error (_("immediate out of range"));
037e8744 16732 break;
5f4273c7 16733
9db2f6b4 16734 case NS_RH:
037e8744
JB
16735 case NS_RF: /* case 12 (fmrs). */
16736 do_vfp_nsyn_opcode ("fmrs");
9db2f6b4
RL
16737 /* ARMv8.2 fp16 vmov.f16 instruction. */
16738 if (rs == NS_RH)
16739 do_scalar_fp16_v82_encode ();
037e8744 16740 break;
5f4273c7 16741
9db2f6b4 16742 case NS_HR:
037e8744
JB
16743 case NS_FR: /* case 13 (fmsr). */
16744 do_vfp_nsyn_opcode ("fmsr");
9db2f6b4
RL
16745 /* ARMv8.2 fp16 vmov.f16 instruction. */
16746 if (rs == NS_HR)
16747 do_scalar_fp16_v82_encode ();
037e8744 16748 break;
5f4273c7 16749
037e8744
JB
16750 /* The encoders for the fmrrs and fmsrr instructions expect three operands
16751 (one of which is a list), but we have parsed four. Do some fiddling to
16752 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
16753 expect. */
16754 case NS_RRFF: /* case 14 (fmrrs). */
16755 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
477330fc 16756 _("VFP registers must be adjacent"));
037e8744
JB
16757 inst.operands[2].imm = 2;
16758 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16759 do_vfp_nsyn_opcode ("fmrrs");
16760 break;
5f4273c7 16761
037e8744
JB
16762 case NS_FFRR: /* case 15 (fmsrr). */
16763 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
477330fc 16764 _("VFP registers must be adjacent"));
037e8744
JB
16765 inst.operands[1] = inst.operands[2];
16766 inst.operands[2] = inst.operands[3];
16767 inst.operands[0].imm = 2;
16768 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16769 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 16770 break;
5f4273c7 16771
4c261dff
NC
16772 case NS_NULL:
16773 /* neon_select_shape has determined that the instruction
16774 shape is wrong and has already set the error message. */
16775 break;
16776
5287ad62
JB
16777 default:
16778 abort ();
16779 }
16780}
16781
16782static void
16783do_neon_rshift_round_imm (void)
16784{
037e8744 16785 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
16786 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16787 int imm = inst.operands[2].imm;
16788
16789 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
16790 if (imm == 0)
16791 {
16792 inst.operands[2].present = 0;
16793 do_neon_mov ();
16794 return;
16795 }
16796
16797 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 16798 _("immediate out of range for shift"));
037e8744 16799 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
477330fc 16800 et.size - imm);
5287ad62
JB
16801}
16802
9db2f6b4
RL
16803static void
16804do_neon_movhf (void)
16805{
16806 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
16807 constraint (rs != NS_HH, _("invalid suffix"));
16808
16809 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16810 _(BAD_FPU));
16811
7bdf778b
ASDV
16812 if (inst.cond != COND_ALWAYS)
16813 {
16814 if (thumb_mode)
16815 {
16816 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
16817 " the behaviour is UNPREDICTABLE"));
16818 }
16819 else
16820 {
16821 inst.error = BAD_COND;
16822 return;
16823 }
16824 }
16825
9db2f6b4
RL
16826 do_vfp_sp_monadic ();
16827
16828 inst.is_neon = 1;
16829 inst.instruction |= 0xf0000000;
16830}
16831
5287ad62
JB
16832static void
16833do_neon_movl (void)
16834{
16835 struct neon_type_el et = neon_check_type (2, NS_QD,
16836 N_EQK | N_DBL, N_SU_32 | N_KEY);
16837 unsigned sizebits = et.size >> 3;
16838 inst.instruction |= sizebits << 19;
16839 neon_two_same (0, et.type == NT_unsigned, -1);
16840}
16841
16842static void
16843do_neon_trn (void)
16844{
037e8744 16845 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16846 struct neon_type_el et = neon_check_type (2, rs,
16847 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 16848 NEON_ENCODE (INTEGER, inst);
037e8744 16849 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16850}
16851
16852static void
16853do_neon_zip_uzp (void)
16854{
037e8744 16855 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16856 struct neon_type_el et = neon_check_type (2, rs,
16857 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16858 if (rs == NS_DD && et.size == 32)
16859 {
16860 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
16861 inst.instruction = N_MNEM_vtrn;
16862 do_neon_trn ();
16863 return;
16864 }
037e8744 16865 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16866}
16867
16868static void
16869do_neon_sat_abs_neg (void)
16870{
037e8744 16871 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16872 struct neon_type_el et = neon_check_type (2, rs,
16873 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 16874 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16875}
16876
16877static void
16878do_neon_pair_long (void)
16879{
037e8744 16880 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16881 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
16882 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
16883 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 16884 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16885}
16886
16887static void
16888do_neon_recip_est (void)
16889{
037e8744 16890 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62 16891 struct neon_type_el et = neon_check_type (2, rs,
cc933301 16892 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
5287ad62 16893 inst.instruction |= (et.type == NT_float) << 8;
037e8744 16894 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16895}
16896
16897static void
16898do_neon_cls (void)
16899{
037e8744 16900 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16901 struct neon_type_el et = neon_check_type (2, rs,
16902 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 16903 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16904}
16905
16906static void
16907do_neon_clz (void)
16908{
037e8744 16909 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16910 struct neon_type_el et = neon_check_type (2, rs,
16911 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 16912 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16913}
16914
16915static void
16916do_neon_cnt (void)
16917{
037e8744 16918 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16919 struct neon_type_el et = neon_check_type (2, rs,
16920 N_EQK | N_INT, N_8 | N_KEY);
037e8744 16921 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16922}
16923
16924static void
16925do_neon_swp (void)
16926{
037e8744
JB
16927 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16928 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
16929}
16930
16931static void
16932do_neon_tbl_tbx (void)
16933{
16934 unsigned listlenbits;
dcbf9037 16935 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 16936
5287ad62
JB
16937 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
16938 {
dcbf9037 16939 first_error (_("bad list length for table lookup"));
5287ad62
JB
16940 return;
16941 }
5f4273c7 16942
5287ad62
JB
16943 listlenbits = inst.operands[1].imm - 1;
16944 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16945 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16946 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16947 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16948 inst.instruction |= LOW4 (inst.operands[2].reg);
16949 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16950 inst.instruction |= listlenbits << 8;
5f4273c7 16951
88714cb8 16952 neon_dp_fixup (&inst);
5287ad62
JB
16953}
16954
16955static void
16956do_neon_ldm_stm (void)
16957{
16958 /* P, U and L bits are part of bitmask. */
16959 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
16960 unsigned offsetbits = inst.operands[1].imm * 2;
16961
037e8744
JB
16962 if (inst.operands[1].issingle)
16963 {
16964 do_vfp_nsyn_ldm_stm (is_dbmode);
16965 return;
16966 }
16967
5287ad62 16968 constraint (is_dbmode && !inst.operands[0].writeback,
477330fc 16969 _("writeback (!) must be used for VLDMDB and VSTMDB"));
5287ad62
JB
16970
16971 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
477330fc
RM
16972 _("register list must contain at least 1 and at most 16 "
16973 "registers"));
5287ad62
JB
16974
16975 inst.instruction |= inst.operands[0].reg << 16;
16976 inst.instruction |= inst.operands[0].writeback << 21;
16977 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16978 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
16979
16980 inst.instruction |= offsetbits;
5f4273c7 16981
037e8744 16982 do_vfp_cond_or_thumb ();
5287ad62
JB
16983}
16984
16985static void
16986do_neon_ldr_str (void)
16987{
5287ad62 16988 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 16989
6844b2c2
MGD
16990 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
16991 And is UNPREDICTABLE in thumb mode. */
fa94de6b 16992 if (!is_ldr
6844b2c2 16993 && inst.operands[1].reg == REG_PC
ba86b375 16994 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
6844b2c2 16995 {
94dcf8bf 16996 if (thumb_mode)
6844b2c2 16997 inst.error = _("Use of PC here is UNPREDICTABLE");
94dcf8bf 16998 else if (warn_on_deprecated)
5c3696f8 16999 as_tsktsk (_("Use of PC here is deprecated"));
6844b2c2
MGD
17000 }
17001
037e8744
JB
17002 if (inst.operands[0].issingle)
17003 {
cd2f129f 17004 if (is_ldr)
477330fc 17005 do_vfp_nsyn_opcode ("flds");
cd2f129f 17006 else
477330fc 17007 do_vfp_nsyn_opcode ("fsts");
9db2f6b4
RL
17008
17009 /* ARMv8.2 vldr.16/vstr.16 instruction. */
17010 if (inst.vectype.el[0].size == 16)
17011 do_scalar_fp16_v82_encode ();
5287ad62
JB
17012 }
17013 else
5287ad62 17014 {
cd2f129f 17015 if (is_ldr)
477330fc 17016 do_vfp_nsyn_opcode ("fldd");
5287ad62 17017 else
477330fc 17018 do_vfp_nsyn_opcode ("fstd");
5287ad62 17019 }
5287ad62
JB
17020}
17021
17022/* "interleave" version also handles non-interleaving register VLD1/VST1
17023 instructions. */
17024
17025static void
17026do_neon_ld_st_interleave (void)
17027{
037e8744 17028 struct neon_type_el et = neon_check_type (1, NS_NULL,
477330fc 17029 N_8 | N_16 | N_32 | N_64);
5287ad62
JB
17030 unsigned alignbits = 0;
17031 unsigned idx;
17032 /* The bits in this table go:
17033 0: register stride of one (0) or two (1)
17034 1,2: register list length, minus one (1, 2, 3, 4).
17035 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
17036 We use -1 for invalid entries. */
17037 const int typetable[] =
17038 {
17039 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
17040 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
17041 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
17042 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
17043 };
17044 int typebits;
17045
dcbf9037
JB
17046 if (et.type == NT_invtype)
17047 return;
17048
5287ad62
JB
17049 if (inst.operands[1].immisalign)
17050 switch (inst.operands[1].imm >> 8)
17051 {
17052 case 64: alignbits = 1; break;
17053 case 128:
477330fc 17054 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
e23c0ad8 17055 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
477330fc
RM
17056 goto bad_alignment;
17057 alignbits = 2;
17058 break;
5287ad62 17059 case 256:
477330fc
RM
17060 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
17061 goto bad_alignment;
17062 alignbits = 3;
17063 break;
5287ad62
JB
17064 default:
17065 bad_alignment:
477330fc
RM
17066 first_error (_("bad alignment"));
17067 return;
5287ad62
JB
17068 }
17069
17070 inst.instruction |= alignbits << 4;
17071 inst.instruction |= neon_logbits (et.size) << 6;
17072
17073 /* Bits [4:6] of the immediate in a list specifier encode register stride
17074 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
17075 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
17076 up the right value for "type" in a table based on this value and the given
17077 list style, then stick it back. */
17078 idx = ((inst.operands[0].imm >> 4) & 7)
477330fc 17079 | (((inst.instruction >> 8) & 3) << 3);
5287ad62
JB
17080
17081 typebits = typetable[idx];
5f4273c7 17082
5287ad62 17083 constraint (typebits == -1, _("bad list type for instruction"));
1d50d57c
WN
17084 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
17085 _("bad element type for instruction"));
5287ad62
JB
17086
17087 inst.instruction &= ~0xf00;
17088 inst.instruction |= typebits << 8;
17089}
17090
17091/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
17092 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
17093 otherwise. The variable arguments are a list of pairs of legal (size, align)
17094 values, terminated with -1. */
17095
17096static int
aa8a0863 17097neon_alignment_bit (int size, int align, int *do_alignment, ...)
5287ad62
JB
17098{
17099 va_list ap;
17100 int result = FAIL, thissize, thisalign;
5f4273c7 17101
5287ad62
JB
17102 if (!inst.operands[1].immisalign)
17103 {
aa8a0863 17104 *do_alignment = 0;
5287ad62
JB
17105 return SUCCESS;
17106 }
5f4273c7 17107
aa8a0863 17108 va_start (ap, do_alignment);
5287ad62
JB
17109
17110 do
17111 {
17112 thissize = va_arg (ap, int);
17113 if (thissize == -1)
477330fc 17114 break;
5287ad62
JB
17115 thisalign = va_arg (ap, int);
17116
17117 if (size == thissize && align == thisalign)
477330fc 17118 result = SUCCESS;
5287ad62
JB
17119 }
17120 while (result != SUCCESS);
17121
17122 va_end (ap);
17123
17124 if (result == SUCCESS)
aa8a0863 17125 *do_alignment = 1;
5287ad62 17126 else
dcbf9037 17127 first_error (_("unsupported alignment for instruction"));
5f4273c7 17128
5287ad62
JB
17129 return result;
17130}
17131
17132static void
17133do_neon_ld_st_lane (void)
17134{
037e8744 17135 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 17136 int align_good, do_alignment = 0;
5287ad62
JB
17137 int logsize = neon_logbits (et.size);
17138 int align = inst.operands[1].imm >> 8;
17139 int n = (inst.instruction >> 8) & 3;
17140 int max_el = 64 / et.size;
5f4273c7 17141
dcbf9037
JB
17142 if (et.type == NT_invtype)
17143 return;
5f4273c7 17144
5287ad62 17145 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
477330fc 17146 _("bad list length"));
5287ad62 17147 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
477330fc 17148 _("scalar index out of range"));
5287ad62 17149 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
477330fc
RM
17150 && et.size == 8,
17151 _("stride of 2 unavailable when element size is 8"));
5f4273c7 17152
5287ad62
JB
17153 switch (n)
17154 {
17155 case 0: /* VLD1 / VST1. */
aa8a0863 17156 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
477330fc 17157 32, 32, -1);
5287ad62 17158 if (align_good == FAIL)
477330fc 17159 return;
aa8a0863 17160 if (do_alignment)
477330fc
RM
17161 {
17162 unsigned alignbits = 0;
17163 switch (et.size)
17164 {
17165 case 16: alignbits = 0x1; break;
17166 case 32: alignbits = 0x3; break;
17167 default: ;
17168 }
17169 inst.instruction |= alignbits << 4;
17170 }
5287ad62
JB
17171 break;
17172
17173 case 1: /* VLD2 / VST2. */
aa8a0863
TS
17174 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
17175 16, 32, 32, 64, -1);
5287ad62 17176 if (align_good == FAIL)
477330fc 17177 return;
aa8a0863 17178 if (do_alignment)
477330fc 17179 inst.instruction |= 1 << 4;
5287ad62
JB
17180 break;
17181
17182 case 2: /* VLD3 / VST3. */
17183 constraint (inst.operands[1].immisalign,
477330fc 17184 _("can't use alignment with this instruction"));
5287ad62
JB
17185 break;
17186
17187 case 3: /* VLD4 / VST4. */
aa8a0863 17188 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc 17189 16, 64, 32, 64, 32, 128, -1);
5287ad62 17190 if (align_good == FAIL)
477330fc 17191 return;
aa8a0863 17192 if (do_alignment)
477330fc
RM
17193 {
17194 unsigned alignbits = 0;
17195 switch (et.size)
17196 {
17197 case 8: alignbits = 0x1; break;
17198 case 16: alignbits = 0x1; break;
17199 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
17200 default: ;
17201 }
17202 inst.instruction |= alignbits << 4;
17203 }
5287ad62
JB
17204 break;
17205
17206 default: ;
17207 }
17208
17209 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
17210 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17211 inst.instruction |= 1 << (4 + logsize);
5f4273c7 17212
5287ad62
JB
17213 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
17214 inst.instruction |= logsize << 10;
17215}
17216
17217/* Encode single n-element structure to all lanes VLD<n> instructions. */
17218
17219static void
17220do_neon_ld_dup (void)
17221{
037e8744 17222 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 17223 int align_good, do_alignment = 0;
5287ad62 17224
dcbf9037
JB
17225 if (et.type == NT_invtype)
17226 return;
17227
5287ad62
JB
17228 switch ((inst.instruction >> 8) & 3)
17229 {
17230 case 0: /* VLD1. */
9c2799c2 17231 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62 17232 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863 17233 &do_alignment, 16, 16, 32, 32, -1);
5287ad62 17234 if (align_good == FAIL)
477330fc 17235 return;
5287ad62 17236 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
477330fc
RM
17237 {
17238 case 1: break;
17239 case 2: inst.instruction |= 1 << 5; break;
17240 default: first_error (_("bad list length")); return;
17241 }
5287ad62
JB
17242 inst.instruction |= neon_logbits (et.size) << 6;
17243 break;
17244
17245 case 1: /* VLD2. */
17246 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863
TS
17247 &do_alignment, 8, 16, 16, 32, 32, 64,
17248 -1);
5287ad62 17249 if (align_good == FAIL)
477330fc 17250 return;
5287ad62 17251 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
477330fc 17252 _("bad list length"));
5287ad62 17253 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 17254 inst.instruction |= 1 << 5;
5287ad62
JB
17255 inst.instruction |= neon_logbits (et.size) << 6;
17256 break;
17257
17258 case 2: /* VLD3. */
17259 constraint (inst.operands[1].immisalign,
477330fc 17260 _("can't use alignment with this instruction"));
5287ad62 17261 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
477330fc 17262 _("bad list length"));
5287ad62 17263 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 17264 inst.instruction |= 1 << 5;
5287ad62
JB
17265 inst.instruction |= neon_logbits (et.size) << 6;
17266 break;
17267
17268 case 3: /* VLD4. */
17269 {
477330fc 17270 int align = inst.operands[1].imm >> 8;
aa8a0863 17271 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc
RM
17272 16, 64, 32, 64, 32, 128, -1);
17273 if (align_good == FAIL)
17274 return;
17275 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
17276 _("bad list length"));
17277 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17278 inst.instruction |= 1 << 5;
17279 if (et.size == 32 && align == 128)
17280 inst.instruction |= 0x3 << 6;
17281 else
17282 inst.instruction |= neon_logbits (et.size) << 6;
5287ad62
JB
17283 }
17284 break;
17285
17286 default: ;
17287 }
17288
aa8a0863 17289 inst.instruction |= do_alignment << 4;
5287ad62
JB
17290}
17291
17292/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
17293 apart from bits [11:4]. */
17294
17295static void
17296do_neon_ldx_stx (void)
17297{
b1a769ed
DG
17298 if (inst.operands[1].isreg)
17299 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17300
5287ad62
JB
17301 switch (NEON_LANE (inst.operands[0].imm))
17302 {
17303 case NEON_INTERLEAVE_LANES:
88714cb8 17304 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
17305 do_neon_ld_st_interleave ();
17306 break;
5f4273c7 17307
5287ad62 17308 case NEON_ALL_LANES:
88714cb8 17309 NEON_ENCODE (DUP, inst);
2d51fb74
JB
17310 if (inst.instruction == N_INV)
17311 {
17312 first_error ("only loads support such operands");
17313 break;
17314 }
5287ad62
JB
17315 do_neon_ld_dup ();
17316 break;
5f4273c7 17317
5287ad62 17318 default:
88714cb8 17319 NEON_ENCODE (LANE, inst);
5287ad62
JB
17320 do_neon_ld_st_lane ();
17321 }
17322
17323 /* L bit comes from bit mask. */
17324 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17325 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17326 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 17327
5287ad62
JB
17328 if (inst.operands[1].postind)
17329 {
17330 int postreg = inst.operands[1].imm & 0xf;
17331 constraint (!inst.operands[1].immisreg,
477330fc 17332 _("post-index must be a register"));
5287ad62 17333 constraint (postreg == 0xd || postreg == 0xf,
477330fc 17334 _("bad register for post-index"));
5287ad62
JB
17335 inst.instruction |= postreg;
17336 }
4f2374c7 17337 else
5287ad62 17338 {
4f2374c7
WN
17339 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
17340 constraint (inst.reloc.exp.X_op != O_constant
17341 || inst.reloc.exp.X_add_number != 0,
17342 BAD_ADDR_MODE);
17343
17344 if (inst.operands[1].writeback)
17345 {
17346 inst.instruction |= 0xd;
17347 }
17348 else
17349 inst.instruction |= 0xf;
5287ad62 17350 }
5f4273c7 17351
5287ad62
JB
17352 if (thumb_mode)
17353 inst.instruction |= 0xf9000000;
17354 else
17355 inst.instruction |= 0xf4000000;
17356}
33399f07
MGD
17357
17358/* FP v8. */
17359static void
17360do_vfp_nsyn_fpv8 (enum neon_shape rs)
17361{
a715796b
TG
17362 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17363 D register operands. */
17364 if (neon_shape_class[rs] == SC_DOUBLE)
17365 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17366 _(BAD_FPU));
17367
33399f07
MGD
17368 NEON_ENCODE (FPV8, inst);
17369
9db2f6b4
RL
17370 if (rs == NS_FFF || rs == NS_HHH)
17371 {
17372 do_vfp_sp_dyadic ();
17373
17374 /* ARMv8.2 fp16 instruction. */
17375 if (rs == NS_HHH)
17376 do_scalar_fp16_v82_encode ();
17377 }
33399f07
MGD
17378 else
17379 do_vfp_dp_rd_rn_rm ();
17380
17381 if (rs == NS_DDD)
17382 inst.instruction |= 0x100;
17383
17384 inst.instruction |= 0xf0000000;
17385}
17386
17387static void
17388do_vsel (void)
17389{
17390 set_it_insn_type (OUTSIDE_IT_INSN);
17391
17392 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
17393 first_error (_("invalid instruction shape"));
17394}
17395
73924fbc
MGD
17396static void
17397do_vmaxnm (void)
17398{
17399 set_it_insn_type (OUTSIDE_IT_INSN);
17400
17401 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
17402 return;
17403
17404 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17405 return;
17406
cc933301 17407 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
73924fbc
MGD
17408}
17409
30bdf752
MGD
17410static void
17411do_vrint_1 (enum neon_cvt_mode mode)
17412{
9db2f6b4 17413 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
30bdf752
MGD
17414 struct neon_type_el et;
17415
17416 if (rs == NS_NULL)
17417 return;
17418
a715796b
TG
17419 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17420 D register operands. */
17421 if (neon_shape_class[rs] == SC_DOUBLE)
17422 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17423 _(BAD_FPU));
17424
9db2f6b4
RL
17425 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
17426 | N_VFP);
30bdf752
MGD
17427 if (et.type != NT_invtype)
17428 {
17429 /* VFP encodings. */
17430 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17431 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
17432 set_it_insn_type (OUTSIDE_IT_INSN);
17433
17434 NEON_ENCODE (FPV8, inst);
9db2f6b4 17435 if (rs == NS_FF || rs == NS_HH)
30bdf752
MGD
17436 do_vfp_sp_monadic ();
17437 else
17438 do_vfp_dp_rd_rm ();
17439
17440 switch (mode)
17441 {
17442 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
17443 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
17444 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
17445 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
17446 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
17447 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
17448 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
17449 default: abort ();
17450 }
17451
17452 inst.instruction |= (rs == NS_DD) << 8;
17453 do_vfp_cond_or_thumb ();
9db2f6b4
RL
17454
17455 /* ARMv8.2 fp16 vrint instruction. */
17456 if (rs == NS_HH)
17457 do_scalar_fp16_v82_encode ();
30bdf752
MGD
17458 }
17459 else
17460 {
17461 /* Neon encodings (or something broken...). */
17462 inst.error = NULL;
cc933301 17463 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
30bdf752
MGD
17464
17465 if (et.type == NT_invtype)
17466 return;
17467
17468 set_it_insn_type (OUTSIDE_IT_INSN);
17469 NEON_ENCODE (FLOAT, inst);
17470
17471 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17472 return;
17473
17474 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17475 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17476 inst.instruction |= LOW4 (inst.operands[1].reg);
17477 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17478 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
17479 /* Mask off the original size bits and reencode them. */
17480 inst.instruction = ((inst.instruction & 0xfff3ffff)
17481 | neon_logbits (et.size) << 18);
17482
30bdf752
MGD
17483 switch (mode)
17484 {
17485 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
17486 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
17487 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
17488 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
17489 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
17490 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
17491 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
17492 default: abort ();
17493 }
17494
17495 if (thumb_mode)
17496 inst.instruction |= 0xfc000000;
17497 else
17498 inst.instruction |= 0xf0000000;
17499 }
17500}
17501
17502static void
17503do_vrintx (void)
17504{
17505 do_vrint_1 (neon_cvt_mode_x);
17506}
17507
17508static void
17509do_vrintz (void)
17510{
17511 do_vrint_1 (neon_cvt_mode_z);
17512}
17513
17514static void
17515do_vrintr (void)
17516{
17517 do_vrint_1 (neon_cvt_mode_r);
17518}
17519
17520static void
17521do_vrinta (void)
17522{
17523 do_vrint_1 (neon_cvt_mode_a);
17524}
17525
17526static void
17527do_vrintn (void)
17528{
17529 do_vrint_1 (neon_cvt_mode_n);
17530}
17531
17532static void
17533do_vrintp (void)
17534{
17535 do_vrint_1 (neon_cvt_mode_p);
17536}
17537
17538static void
17539do_vrintm (void)
17540{
17541 do_vrint_1 (neon_cvt_mode_m);
17542}
17543
c28eeff2
SN
17544static unsigned
17545neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
17546{
17547 unsigned regno = NEON_SCALAR_REG (opnd);
17548 unsigned elno = NEON_SCALAR_INDEX (opnd);
17549
17550 if (elsize == 16 && elno < 2 && regno < 16)
17551 return regno | (elno << 4);
17552 else if (elsize == 32 && elno == 0)
17553 return regno;
17554
17555 first_error (_("scalar out of range"));
17556 return 0;
17557}
17558
17559static void
17560do_vcmla (void)
17561{
17562 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17563 _(BAD_FPU));
17564 constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex"));
17565 unsigned rot = inst.reloc.exp.X_add_number;
17566 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
17567 _("immediate out of range"));
17568 rot /= 90;
17569 if (inst.operands[2].isscalar)
17570 {
17571 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
17572 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17573 N_KEY | N_F16 | N_F32).size;
17574 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
17575 inst.is_neon = 1;
17576 inst.instruction = 0xfe000800;
17577 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17578 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17579 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17580 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17581 inst.instruction |= LOW4 (m);
17582 inst.instruction |= HI1 (m) << 5;
17583 inst.instruction |= neon_quad (rs) << 6;
17584 inst.instruction |= rot << 20;
17585 inst.instruction |= (size == 32) << 23;
17586 }
17587 else
17588 {
17589 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17590 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17591 N_KEY | N_F16 | N_F32).size;
17592 neon_three_same (neon_quad (rs), 0, -1);
17593 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17594 inst.instruction |= 0xfc200800;
17595 inst.instruction |= rot << 23;
17596 inst.instruction |= (size == 32) << 20;
17597 }
17598}
17599
17600static void
17601do_vcadd (void)
17602{
17603 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17604 _(BAD_FPU));
17605 constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex"));
17606 unsigned rot = inst.reloc.exp.X_add_number;
17607 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17608 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17609 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17610 N_KEY | N_F16 | N_F32).size;
17611 neon_three_same (neon_quad (rs), 0, -1);
17612 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17613 inst.instruction |= 0xfc800800;
17614 inst.instruction |= (rot == 270) << 24;
17615 inst.instruction |= (size == 32) << 20;
17616}
17617
c604a79a
JW
17618/* Dot Product instructions encoding support. */
17619
17620static void
17621do_neon_dotproduct (int unsigned_p)
17622{
17623 enum neon_shape rs;
17624 unsigned scalar_oprd2 = 0;
17625 int high8;
17626
17627 if (inst.cond != COND_ALWAYS)
17628 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
17629 "is UNPREDICTABLE"));
17630
17631 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17632 _(BAD_FPU));
17633
17634 /* Dot Product instructions are in three-same D/Q register format or the third
17635 operand can be a scalar index register. */
17636 if (inst.operands[2].isscalar)
17637 {
17638 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
17639 high8 = 0xfe000000;
17640 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17641 }
17642 else
17643 {
17644 high8 = 0xfc000000;
17645 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17646 }
17647
17648 if (unsigned_p)
17649 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
17650 else
17651 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
17652
17653 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
17654 Product instruction, so we pass 0 as the "ubit" parameter. And the
17655 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
17656 neon_three_same (neon_quad (rs), 0, 32);
17657
17658 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
17659 different NEON three-same encoding. */
17660 inst.instruction &= 0x00ffffff;
17661 inst.instruction |= high8;
17662 /* Encode 'U' bit which indicates signedness. */
17663 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
17664 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
17665 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
17666 the instruction encoding. */
17667 if (inst.operands[2].isscalar)
17668 {
17669 inst.instruction &= 0xffffffd0;
17670 inst.instruction |= LOW4 (scalar_oprd2);
17671 inst.instruction |= HI1 (scalar_oprd2) << 5;
17672 }
17673}
17674
17675/* Dot Product instructions for signed integer. */
17676
17677static void
17678do_neon_dotproduct_s (void)
17679{
17680 return do_neon_dotproduct (0);
17681}
17682
17683/* Dot Product instructions for unsigned integer. */
17684
17685static void
17686do_neon_dotproduct_u (void)
17687{
17688 return do_neon_dotproduct (1);
17689}
17690
91ff7894
MGD
17691/* Crypto v1 instructions. */
17692static void
17693do_crypto_2op_1 (unsigned elttype, int op)
17694{
17695 set_it_insn_type (OUTSIDE_IT_INSN);
17696
17697 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
17698 == NT_invtype)
17699 return;
17700
17701 inst.error = NULL;
17702
17703 NEON_ENCODE (INTEGER, inst);
17704 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17705 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17706 inst.instruction |= LOW4 (inst.operands[1].reg);
17707 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17708 if (op != -1)
17709 inst.instruction |= op << 6;
17710
17711 if (thumb_mode)
17712 inst.instruction |= 0xfc000000;
17713 else
17714 inst.instruction |= 0xf0000000;
17715}
17716
48adcd8e
MGD
17717static void
17718do_crypto_3op_1 (int u, int op)
17719{
17720 set_it_insn_type (OUTSIDE_IT_INSN);
17721
17722 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
17723 N_32 | N_UNT | N_KEY).type == NT_invtype)
17724 return;
17725
17726 inst.error = NULL;
17727
17728 NEON_ENCODE (INTEGER, inst);
17729 neon_three_same (1, u, 8 << op);
17730}
17731
91ff7894
MGD
17732static void
17733do_aese (void)
17734{
17735 do_crypto_2op_1 (N_8, 0);
17736}
17737
17738static void
17739do_aesd (void)
17740{
17741 do_crypto_2op_1 (N_8, 1);
17742}
17743
17744static void
17745do_aesmc (void)
17746{
17747 do_crypto_2op_1 (N_8, 2);
17748}
17749
17750static void
17751do_aesimc (void)
17752{
17753 do_crypto_2op_1 (N_8, 3);
17754}
17755
48adcd8e
MGD
17756static void
17757do_sha1c (void)
17758{
17759 do_crypto_3op_1 (0, 0);
17760}
17761
17762static void
17763do_sha1p (void)
17764{
17765 do_crypto_3op_1 (0, 1);
17766}
17767
17768static void
17769do_sha1m (void)
17770{
17771 do_crypto_3op_1 (0, 2);
17772}
17773
17774static void
17775do_sha1su0 (void)
17776{
17777 do_crypto_3op_1 (0, 3);
17778}
91ff7894 17779
48adcd8e
MGD
17780static void
17781do_sha256h (void)
17782{
17783 do_crypto_3op_1 (1, 0);
17784}
17785
17786static void
17787do_sha256h2 (void)
17788{
17789 do_crypto_3op_1 (1, 1);
17790}
17791
17792static void
17793do_sha256su1 (void)
17794{
17795 do_crypto_3op_1 (1, 2);
17796}
3c9017d2
MGD
17797
17798static void
17799do_sha1h (void)
17800{
17801 do_crypto_2op_1 (N_32, -1);
17802}
17803
17804static void
17805do_sha1su1 (void)
17806{
17807 do_crypto_2op_1 (N_32, 0);
17808}
17809
17810static void
17811do_sha256su0 (void)
17812{
17813 do_crypto_2op_1 (N_32, 1);
17814}
dd5181d5
KT
17815
17816static void
17817do_crc32_1 (unsigned int poly, unsigned int sz)
17818{
17819 unsigned int Rd = inst.operands[0].reg;
17820 unsigned int Rn = inst.operands[1].reg;
17821 unsigned int Rm = inst.operands[2].reg;
17822
17823 set_it_insn_type (OUTSIDE_IT_INSN);
17824 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
17825 inst.instruction |= LOW4 (Rn) << 16;
17826 inst.instruction |= LOW4 (Rm);
17827 inst.instruction |= sz << (thumb_mode ? 4 : 21);
17828 inst.instruction |= poly << (thumb_mode ? 20 : 9);
17829
17830 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
17831 as_warn (UNPRED_REG ("r15"));
dd5181d5
KT
17832}
17833
17834static void
17835do_crc32b (void)
17836{
17837 do_crc32_1 (0, 0);
17838}
17839
17840static void
17841do_crc32h (void)
17842{
17843 do_crc32_1 (0, 1);
17844}
17845
17846static void
17847do_crc32w (void)
17848{
17849 do_crc32_1 (0, 2);
17850}
17851
17852static void
17853do_crc32cb (void)
17854{
17855 do_crc32_1 (1, 0);
17856}
17857
17858static void
17859do_crc32ch (void)
17860{
17861 do_crc32_1 (1, 1);
17862}
17863
17864static void
17865do_crc32cw (void)
17866{
17867 do_crc32_1 (1, 2);
17868}
17869
49e8a725
SN
17870static void
17871do_vjcvt (void)
17872{
17873 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17874 _(BAD_FPU));
17875 neon_check_type (2, NS_FD, N_S32, N_F64);
17876 do_vfp_sp_dp_cvt ();
17877 do_vfp_cond_or_thumb ();
17878}
17879
5287ad62
JB
17880\f
17881/* Overall per-instruction processing. */
17882
17883/* We need to be able to fix up arbitrary expressions in some statements.
17884 This is so that we can handle symbols that are an arbitrary distance from
17885 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
17886 which returns part of an address in a form which will be valid for
17887 a data instruction. We do this by pushing the expression into a symbol
17888 in the expr_section, and creating a fix for that. */
17889
17890static void
17891fix_new_arm (fragS * frag,
17892 int where,
17893 short int size,
17894 expressionS * exp,
17895 int pc_rel,
17896 int reloc)
17897{
17898 fixS * new_fix;
17899
17900 switch (exp->X_op)
17901 {
17902 case O_constant:
6e7ce2cd
PB
17903 if (pc_rel)
17904 {
17905 /* Create an absolute valued symbol, so we have something to
477330fc
RM
17906 refer to in the object file. Unfortunately for us, gas's
17907 generic expression parsing will already have folded out
17908 any use of .set foo/.type foo %function that may have
17909 been used to set type information of the target location,
17910 that's being specified symbolically. We have to presume
17911 the user knows what they are doing. */
6e7ce2cd
PB
17912 char name[16 + 8];
17913 symbolS *symbol;
17914
17915 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
17916
17917 symbol = symbol_find_or_make (name);
17918 S_SET_SEGMENT (symbol, absolute_section);
17919 symbol_set_frag (symbol, &zero_address_frag);
17920 S_SET_VALUE (symbol, exp->X_add_number);
17921 exp->X_op = O_symbol;
17922 exp->X_add_symbol = symbol;
17923 exp->X_add_number = 0;
17924 }
17925 /* FALLTHROUGH */
5287ad62
JB
17926 case O_symbol:
17927 case O_add:
17928 case O_subtract:
21d799b5 17929 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
477330fc 17930 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
17931 break;
17932
17933 default:
21d799b5 17934 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
477330fc 17935 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
17936 break;
17937 }
17938
17939 /* Mark whether the fix is to a THUMB instruction, or an ARM
17940 instruction. */
17941 new_fix->tc_fix_data = thumb_mode;
17942}
17943
17944/* Create a frg for an instruction requiring relaxation. */
17945static void
17946output_relax_insn (void)
17947{
17948 char * to;
17949 symbolS *sym;
0110f2b8
PB
17950 int offset;
17951
6e1cb1a6
PB
17952 /* The size of the instruction is unknown, so tie the debug info to the
17953 start of the instruction. */
17954 dwarf2_emit_insn (0);
6e1cb1a6 17955
0110f2b8
PB
17956 switch (inst.reloc.exp.X_op)
17957 {
17958 case O_symbol:
17959 sym = inst.reloc.exp.X_add_symbol;
17960 offset = inst.reloc.exp.X_add_number;
17961 break;
17962 case O_constant:
17963 sym = NULL;
17964 offset = inst.reloc.exp.X_add_number;
17965 break;
17966 default:
17967 sym = make_expr_symbol (&inst.reloc.exp);
17968 offset = 0;
17969 break;
17970 }
17971 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
17972 inst.relax, sym, offset, NULL/*offset, opcode*/);
17973 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
17974}
17975
17976/* Write a 32-bit thumb instruction to buf. */
17977static void
17978put_thumb32_insn (char * buf, unsigned long insn)
17979{
17980 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
17981 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
17982}
17983
b99bd4ef 17984static void
c19d1205 17985output_inst (const char * str)
b99bd4ef 17986{
c19d1205 17987 char * to = NULL;
b99bd4ef 17988
c19d1205 17989 if (inst.error)
b99bd4ef 17990 {
c19d1205 17991 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
17992 return;
17993 }
5f4273c7
NC
17994 if (inst.relax)
17995 {
17996 output_relax_insn ();
0110f2b8 17997 return;
5f4273c7 17998 }
c19d1205
ZW
17999 if (inst.size == 0)
18000 return;
b99bd4ef 18001
c19d1205 18002 to = frag_more (inst.size);
8dc2430f
NC
18003 /* PR 9814: Record the thumb mode into the current frag so that we know
18004 what type of NOP padding to use, if necessary. We override any previous
18005 setting so that if the mode has changed then the NOPS that we use will
18006 match the encoding of the last instruction in the frag. */
cd000bff 18007 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
18008
18009 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 18010 {
9c2799c2 18011 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 18012 put_thumb32_insn (to, inst.instruction);
b99bd4ef 18013 }
c19d1205 18014 else if (inst.size > INSN_SIZE)
b99bd4ef 18015 {
9c2799c2 18016 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
18017 md_number_to_chars (to, inst.instruction, INSN_SIZE);
18018 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 18019 }
c19d1205
ZW
18020 else
18021 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 18022
c19d1205
ZW
18023 if (inst.reloc.type != BFD_RELOC_UNUSED)
18024 fix_new_arm (frag_now, to - frag_now->fr_literal,
18025 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
18026 inst.reloc.type);
b99bd4ef 18027
c19d1205 18028 dwarf2_emit_insn (inst.size);
c19d1205 18029}
b99bd4ef 18030
e07e6e58
NC
18031static char *
18032output_it_inst (int cond, int mask, char * to)
18033{
18034 unsigned long instruction = 0xbf00;
18035
18036 mask &= 0xf;
18037 instruction |= mask;
18038 instruction |= cond << 4;
18039
18040 if (to == NULL)
18041 {
18042 to = frag_more (2);
18043#ifdef OBJ_ELF
18044 dwarf2_emit_insn (2);
18045#endif
18046 }
18047
18048 md_number_to_chars (to, instruction, 2);
18049
18050 return to;
18051}
18052
c19d1205
ZW
18053/* Tag values used in struct asm_opcode's tag field. */
18054enum opcode_tag
18055{
18056 OT_unconditional, /* Instruction cannot be conditionalized.
18057 The ARM condition field is still 0xE. */
18058 OT_unconditionalF, /* Instruction cannot be conditionalized
18059 and carries 0xF in its ARM condition field. */
18060 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744 18061 OT_csuffixF, /* Some forms of the instruction take a conditional
477330fc
RM
18062 suffix, others place 0xF where the condition field
18063 would be. */
c19d1205
ZW
18064 OT_cinfix3, /* Instruction takes a conditional infix,
18065 beginning at character index 3. (In
18066 unified mode, it becomes a suffix.) */
088fa78e
KH
18067 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
18068 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
18069 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
18070 character index 3, even in unified mode. Used for
18071 legacy instructions where suffix and infix forms
18072 may be ambiguous. */
c19d1205 18073 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 18074 suffix or an infix at character index 3. */
c19d1205
ZW
18075 OT_odd_infix_unc, /* This is the unconditional variant of an
18076 instruction that takes a conditional infix
18077 at an unusual position. In unified mode,
18078 this variant will accept a suffix. */
18079 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
18080 are the conditional variants of instructions that
18081 take conditional infixes in unusual positions.
18082 The infix appears at character index
18083 (tag - OT_odd_infix_0). These are not accepted
18084 in unified mode. */
18085};
b99bd4ef 18086
c19d1205
ZW
18087/* Subroutine of md_assemble, responsible for looking up the primary
18088 opcode from the mnemonic the user wrote. STR points to the
18089 beginning of the mnemonic.
18090
18091 This is not simply a hash table lookup, because of conditional
18092 variants. Most instructions have conditional variants, which are
18093 expressed with a _conditional affix_ to the mnemonic. If we were
18094 to encode each conditional variant as a literal string in the opcode
18095 table, it would have approximately 20,000 entries.
18096
18097 Most mnemonics take this affix as a suffix, and in unified syntax,
18098 'most' is upgraded to 'all'. However, in the divided syntax, some
18099 instructions take the affix as an infix, notably the s-variants of
18100 the arithmetic instructions. Of those instructions, all but six
18101 have the infix appear after the third character of the mnemonic.
18102
18103 Accordingly, the algorithm for looking up primary opcodes given
18104 an identifier is:
18105
18106 1. Look up the identifier in the opcode table.
18107 If we find a match, go to step U.
18108
18109 2. Look up the last two characters of the identifier in the
18110 conditions table. If we find a match, look up the first N-2
18111 characters of the identifier in the opcode table. If we
18112 find a match, go to step CE.
18113
18114 3. Look up the fourth and fifth characters of the identifier in
18115 the conditions table. If we find a match, extract those
18116 characters from the identifier, and look up the remaining
18117 characters in the opcode table. If we find a match, go
18118 to step CM.
18119
18120 4. Fail.
18121
18122 U. Examine the tag field of the opcode structure, in case this is
18123 one of the six instructions with its conditional infix in an
18124 unusual place. If it is, the tag tells us where to find the
18125 infix; look it up in the conditions table and set inst.cond
18126 accordingly. Otherwise, this is an unconditional instruction.
18127 Again set inst.cond accordingly. Return the opcode structure.
18128
18129 CE. Examine the tag field to make sure this is an instruction that
18130 should receive a conditional suffix. If it is not, fail.
18131 Otherwise, set inst.cond from the suffix we already looked up,
18132 and return the opcode structure.
18133
18134 CM. Examine the tag field to make sure this is an instruction that
18135 should receive a conditional infix after the third character.
18136 If it is not, fail. Otherwise, undo the edits to the current
18137 line of input and proceed as for case CE. */
18138
18139static const struct asm_opcode *
18140opcode_lookup (char **str)
18141{
18142 char *end, *base;
18143 char *affix;
18144 const struct asm_opcode *opcode;
18145 const struct asm_cond *cond;
e3cb604e 18146 char save[2];
c19d1205
ZW
18147
18148 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 18149 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 18150 for (base = end = *str; *end != '\0'; end++)
721a8186 18151 if (*end == ' ' || *end == '.')
c19d1205 18152 break;
b99bd4ef 18153
c19d1205 18154 if (end == base)
c921be7d 18155 return NULL;
b99bd4ef 18156
5287ad62 18157 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 18158 if (end[0] == '.')
b99bd4ef 18159 {
5287ad62 18160 int offset = 2;
5f4273c7 18161
267d2029 18162 /* The .w and .n suffixes are only valid if the unified syntax is in
477330fc 18163 use. */
267d2029 18164 if (unified_syntax && end[1] == 'w')
c19d1205 18165 inst.size_req = 4;
267d2029 18166 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
18167 inst.size_req = 2;
18168 else
477330fc 18169 offset = 0;
5287ad62
JB
18170
18171 inst.vectype.elems = 0;
18172
18173 *str = end + offset;
b99bd4ef 18174
5f4273c7 18175 if (end[offset] == '.')
5287ad62 18176 {
267d2029 18177 /* See if we have a Neon type suffix (possible in either unified or
477330fc
RM
18178 non-unified ARM syntax mode). */
18179 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 18180 return NULL;
477330fc 18181 }
5287ad62 18182 else if (end[offset] != '\0' && end[offset] != ' ')
477330fc 18183 return NULL;
b99bd4ef 18184 }
c19d1205
ZW
18185 else
18186 *str = end;
b99bd4ef 18187
c19d1205 18188 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5 18189 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 18190 end - base);
c19d1205 18191 if (opcode)
b99bd4ef 18192 {
c19d1205
ZW
18193 /* step U */
18194 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 18195 {
c19d1205
ZW
18196 inst.cond = COND_ALWAYS;
18197 return opcode;
b99bd4ef 18198 }
b99bd4ef 18199
278df34e 18200 if (warn_on_deprecated && unified_syntax)
5c3696f8 18201 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205 18202 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 18203 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 18204 gas_assert (cond);
b99bd4ef 18205
c19d1205
ZW
18206 inst.cond = cond->value;
18207 return opcode;
18208 }
b99bd4ef 18209
c19d1205
ZW
18210 /* Cannot have a conditional suffix on a mnemonic of less than two
18211 characters. */
18212 if (end - base < 3)
c921be7d 18213 return NULL;
b99bd4ef 18214
c19d1205
ZW
18215 /* Look for suffixed mnemonic. */
18216 affix = end - 2;
21d799b5
NC
18217 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
18218 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 18219 affix - base);
c19d1205
ZW
18220 if (opcode && cond)
18221 {
18222 /* step CE */
18223 switch (opcode->tag)
18224 {
e3cb604e
PB
18225 case OT_cinfix3_legacy:
18226 /* Ignore conditional suffixes matched on infix only mnemonics. */
18227 break;
18228
c19d1205 18229 case OT_cinfix3:
088fa78e 18230 case OT_cinfix3_deprecated:
c19d1205
ZW
18231 case OT_odd_infix_unc:
18232 if (!unified_syntax)
0198d5e6 18233 return NULL;
1a0670f3 18234 /* Fall through. */
c19d1205
ZW
18235
18236 case OT_csuffix:
477330fc 18237 case OT_csuffixF:
c19d1205
ZW
18238 case OT_csuf_or_in3:
18239 inst.cond = cond->value;
18240 return opcode;
18241
18242 case OT_unconditional:
18243 case OT_unconditionalF:
dfa9f0d5 18244 if (thumb_mode)
c921be7d 18245 inst.cond = cond->value;
dfa9f0d5
PB
18246 else
18247 {
c921be7d 18248 /* Delayed diagnostic. */
dfa9f0d5
PB
18249 inst.error = BAD_COND;
18250 inst.cond = COND_ALWAYS;
18251 }
c19d1205 18252 return opcode;
b99bd4ef 18253
c19d1205 18254 default:
c921be7d 18255 return NULL;
c19d1205
ZW
18256 }
18257 }
b99bd4ef 18258
c19d1205
ZW
18259 /* Cannot have a usual-position infix on a mnemonic of less than
18260 six characters (five would be a suffix). */
18261 if (end - base < 6)
c921be7d 18262 return NULL;
b99bd4ef 18263
c19d1205
ZW
18264 /* Look for infixed mnemonic in the usual position. */
18265 affix = base + 3;
21d799b5 18266 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 18267 if (!cond)
c921be7d 18268 return NULL;
e3cb604e
PB
18269
18270 memcpy (save, affix, 2);
18271 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5 18272 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 18273 (end - base) - 2);
e3cb604e
PB
18274 memmove (affix + 2, affix, (end - affix) - 2);
18275 memcpy (affix, save, 2);
18276
088fa78e
KH
18277 if (opcode
18278 && (opcode->tag == OT_cinfix3
18279 || opcode->tag == OT_cinfix3_deprecated
18280 || opcode->tag == OT_csuf_or_in3
18281 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 18282 {
c921be7d 18283 /* Step CM. */
278df34e 18284 if (warn_on_deprecated && unified_syntax
088fa78e
KH
18285 && (opcode->tag == OT_cinfix3
18286 || opcode->tag == OT_cinfix3_deprecated))
5c3696f8 18287 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205
ZW
18288
18289 inst.cond = cond->value;
18290 return opcode;
b99bd4ef
NC
18291 }
18292
c921be7d 18293 return NULL;
b99bd4ef
NC
18294}
18295
e07e6e58
NC
18296/* This function generates an initial IT instruction, leaving its block
18297 virtually open for the new instructions. Eventually,
18298 the mask will be updated by now_it_add_mask () each time
18299 a new instruction needs to be included in the IT block.
18300 Finally, the block is closed with close_automatic_it_block ().
18301 The block closure can be requested either from md_assemble (),
18302 a tencode (), or due to a label hook. */
18303
18304static void
18305new_automatic_it_block (int cond)
18306{
18307 now_it.state = AUTOMATIC_IT_BLOCK;
18308 now_it.mask = 0x18;
18309 now_it.cc = cond;
18310 now_it.block_length = 1;
cd000bff 18311 mapping_state (MAP_THUMB);
e07e6e58 18312 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
5a01bb1d
MGD
18313 now_it.warn_deprecated = FALSE;
18314 now_it.insn_cond = TRUE;
e07e6e58
NC
18315}
18316
18317/* Close an automatic IT block.
18318 See comments in new_automatic_it_block (). */
18319
18320static void
18321close_automatic_it_block (void)
18322{
18323 now_it.mask = 0x10;
18324 now_it.block_length = 0;
18325}
18326
18327/* Update the mask of the current automatically-generated IT
18328 instruction. See comments in new_automatic_it_block (). */
18329
18330static void
18331now_it_add_mask (int cond)
18332{
18333#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
18334#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
477330fc 18335 | ((bitvalue) << (nbit)))
e07e6e58 18336 const int resulting_bit = (cond & 1);
c921be7d 18337
e07e6e58
NC
18338 now_it.mask &= 0xf;
18339 now_it.mask = SET_BIT_VALUE (now_it.mask,
477330fc
RM
18340 resulting_bit,
18341 (5 - now_it.block_length));
e07e6e58 18342 now_it.mask = SET_BIT_VALUE (now_it.mask,
477330fc
RM
18343 1,
18344 ((5 - now_it.block_length) - 1) );
e07e6e58
NC
18345 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
18346
18347#undef CLEAR_BIT
18348#undef SET_BIT_VALUE
e07e6e58
NC
18349}
18350
18351/* The IT blocks handling machinery is accessed through the these functions:
18352 it_fsm_pre_encode () from md_assemble ()
18353 set_it_insn_type () optional, from the tencode functions
18354 set_it_insn_type_last () ditto
18355 in_it_block () ditto
18356 it_fsm_post_encode () from md_assemble ()
33eaf5de 18357 force_automatic_it_block_close () from label handling functions
e07e6e58
NC
18358
18359 Rationale:
18360 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
477330fc
RM
18361 initializing the IT insn type with a generic initial value depending
18362 on the inst.condition.
e07e6e58 18363 2) During the tencode function, two things may happen:
477330fc
RM
18364 a) The tencode function overrides the IT insn type by
18365 calling either set_it_insn_type (type) or set_it_insn_type_last ().
18366 b) The tencode function queries the IT block state by
18367 calling in_it_block () (i.e. to determine narrow/not narrow mode).
18368
18369 Both set_it_insn_type and in_it_block run the internal FSM state
18370 handling function (handle_it_state), because: a) setting the IT insn
18371 type may incur in an invalid state (exiting the function),
18372 and b) querying the state requires the FSM to be updated.
18373 Specifically we want to avoid creating an IT block for conditional
18374 branches, so it_fsm_pre_encode is actually a guess and we can't
18375 determine whether an IT block is required until the tencode () routine
18376 has decided what type of instruction this actually it.
18377 Because of this, if set_it_insn_type and in_it_block have to be used,
18378 set_it_insn_type has to be called first.
18379
18380 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
18381 determines the insn IT type depending on the inst.cond code.
18382 When a tencode () routine encodes an instruction that can be
18383 either outside an IT block, or, in the case of being inside, has to be
18384 the last one, set_it_insn_type_last () will determine the proper
18385 IT instruction type based on the inst.cond code. Otherwise,
18386 set_it_insn_type can be called for overriding that logic or
18387 for covering other cases.
18388
18389 Calling handle_it_state () may not transition the IT block state to
2b0f3761 18390 OUTSIDE_IT_BLOCK immediately, since the (current) state could be
477330fc
RM
18391 still queried. Instead, if the FSM determines that the state should
18392 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
18393 after the tencode () function: that's what it_fsm_post_encode () does.
18394
18395 Since in_it_block () calls the state handling function to get an
18396 updated state, an error may occur (due to invalid insns combination).
18397 In that case, inst.error is set.
18398 Therefore, inst.error has to be checked after the execution of
18399 the tencode () routine.
e07e6e58
NC
18400
18401 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
477330fc
RM
18402 any pending state change (if any) that didn't take place in
18403 handle_it_state () as explained above. */
e07e6e58
NC
18404
18405static void
18406it_fsm_pre_encode (void)
18407{
18408 if (inst.cond != COND_ALWAYS)
18409 inst.it_insn_type = INSIDE_IT_INSN;
18410 else
18411 inst.it_insn_type = OUTSIDE_IT_INSN;
18412
18413 now_it.state_handled = 0;
18414}
18415
18416/* IT state FSM handling function. */
18417
18418static int
18419handle_it_state (void)
18420{
18421 now_it.state_handled = 1;
5a01bb1d 18422 now_it.insn_cond = FALSE;
e07e6e58
NC
18423
18424 switch (now_it.state)
18425 {
18426 case OUTSIDE_IT_BLOCK:
18427 switch (inst.it_insn_type)
18428 {
18429 case OUTSIDE_IT_INSN:
18430 break;
18431
18432 case INSIDE_IT_INSN:
18433 case INSIDE_IT_LAST_INSN:
18434 if (thumb_mode == 0)
18435 {
c921be7d 18436 if (unified_syntax
e07e6e58
NC
18437 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
18438 as_tsktsk (_("Warning: conditional outside an IT block"\
18439 " for Thumb."));
18440 }
18441 else
18442 {
18443 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
fc289b0a 18444 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
e07e6e58
NC
18445 {
18446 /* Automatically generate the IT instruction. */
18447 new_automatic_it_block (inst.cond);
18448 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
18449 close_automatic_it_block ();
18450 }
18451 else
18452 {
18453 inst.error = BAD_OUT_IT;
18454 return FAIL;
18455 }
18456 }
18457 break;
18458
18459 case IF_INSIDE_IT_LAST_INSN:
18460 case NEUTRAL_IT_INSN:
18461 break;
18462
18463 case IT_INSN:
18464 now_it.state = MANUAL_IT_BLOCK;
18465 now_it.block_length = 0;
18466 break;
18467 }
18468 break;
18469
18470 case AUTOMATIC_IT_BLOCK:
18471 /* Three things may happen now:
18472 a) We should increment current it block size;
18473 b) We should close current it block (closing insn or 4 insns);
18474 c) We should close current it block and start a new one (due
18475 to incompatible conditions or
18476 4 insns-length block reached). */
18477
18478 switch (inst.it_insn_type)
18479 {
18480 case OUTSIDE_IT_INSN:
2b0f3761 18481 /* The closure of the block shall happen immediately,
e07e6e58
NC
18482 so any in_it_block () call reports the block as closed. */
18483 force_automatic_it_block_close ();
18484 break;
18485
18486 case INSIDE_IT_INSN:
18487 case INSIDE_IT_LAST_INSN:
18488 case IF_INSIDE_IT_LAST_INSN:
18489 now_it.block_length++;
18490
18491 if (now_it.block_length > 4
18492 || !now_it_compatible (inst.cond))
18493 {
18494 force_automatic_it_block_close ();
18495 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
18496 new_automatic_it_block (inst.cond);
18497 }
18498 else
18499 {
5a01bb1d 18500 now_it.insn_cond = TRUE;
e07e6e58
NC
18501 now_it_add_mask (inst.cond);
18502 }
18503
18504 if (now_it.state == AUTOMATIC_IT_BLOCK
18505 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
18506 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
18507 close_automatic_it_block ();
18508 break;
18509
18510 case NEUTRAL_IT_INSN:
18511 now_it.block_length++;
5a01bb1d 18512 now_it.insn_cond = TRUE;
e07e6e58
NC
18513
18514 if (now_it.block_length > 4)
18515 force_automatic_it_block_close ();
18516 else
18517 now_it_add_mask (now_it.cc & 1);
18518 break;
18519
18520 case IT_INSN:
18521 close_automatic_it_block ();
18522 now_it.state = MANUAL_IT_BLOCK;
18523 break;
18524 }
18525 break;
18526
18527 case MANUAL_IT_BLOCK:
18528 {
18529 /* Check conditional suffixes. */
18530 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
18531 int is_last;
18532 now_it.mask <<= 1;
18533 now_it.mask &= 0x1f;
18534 is_last = (now_it.mask == 0x10);
5a01bb1d 18535 now_it.insn_cond = TRUE;
e07e6e58
NC
18536
18537 switch (inst.it_insn_type)
18538 {
18539 case OUTSIDE_IT_INSN:
18540 inst.error = BAD_NOT_IT;
18541 return FAIL;
18542
18543 case INSIDE_IT_INSN:
18544 if (cond != inst.cond)
18545 {
18546 inst.error = BAD_IT_COND;
18547 return FAIL;
18548 }
18549 break;
18550
18551 case INSIDE_IT_LAST_INSN:
18552 case IF_INSIDE_IT_LAST_INSN:
18553 if (cond != inst.cond)
18554 {
18555 inst.error = BAD_IT_COND;
18556 return FAIL;
18557 }
18558 if (!is_last)
18559 {
18560 inst.error = BAD_BRANCH;
18561 return FAIL;
18562 }
18563 break;
18564
18565 case NEUTRAL_IT_INSN:
18566 /* The BKPT instruction is unconditional even in an IT block. */
18567 break;
18568
18569 case IT_INSN:
18570 inst.error = BAD_IT_IT;
18571 return FAIL;
18572 }
18573 }
18574 break;
18575 }
18576
18577 return SUCCESS;
18578}
18579
5a01bb1d
MGD
18580struct depr_insn_mask
18581{
18582 unsigned long pattern;
18583 unsigned long mask;
18584 const char* description;
18585};
18586
18587/* List of 16-bit instruction patterns deprecated in an IT block in
18588 ARMv8. */
18589static const struct depr_insn_mask depr_it_insns[] = {
18590 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
18591 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
18592 { 0xa000, 0xb800, N_("ADR") },
18593 { 0x4800, 0xf800, N_("Literal loads") },
18594 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
18595 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
c8de034b
JW
18596 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
18597 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
18598 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
5a01bb1d
MGD
18599 { 0, 0, NULL }
18600};
18601
e07e6e58
NC
18602static void
18603it_fsm_post_encode (void)
18604{
18605 int is_last;
18606
18607 if (!now_it.state_handled)
18608 handle_it_state ();
18609
5a01bb1d
MGD
18610 if (now_it.insn_cond
18611 && !now_it.warn_deprecated
18612 && warn_on_deprecated
df9909b8
TP
18613 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
18614 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
5a01bb1d
MGD
18615 {
18616 if (inst.instruction >= 0x10000)
18617 {
5c3696f8 18618 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
df9909b8 18619 "performance deprecated in ARMv8-A and ARMv8-R"));
5a01bb1d
MGD
18620 now_it.warn_deprecated = TRUE;
18621 }
18622 else
18623 {
18624 const struct depr_insn_mask *p = depr_it_insns;
18625
18626 while (p->mask != 0)
18627 {
18628 if ((inst.instruction & p->mask) == p->pattern)
18629 {
df9909b8
TP
18630 as_tsktsk (_("IT blocks containing 16-bit Thumb "
18631 "instructions of the following class are "
18632 "performance deprecated in ARMv8-A and "
18633 "ARMv8-R: %s"), p->description);
5a01bb1d
MGD
18634 now_it.warn_deprecated = TRUE;
18635 break;
18636 }
18637
18638 ++p;
18639 }
18640 }
18641
18642 if (now_it.block_length > 1)
18643 {
5c3696f8 18644 as_tsktsk (_("IT blocks containing more than one conditional "
df9909b8
TP
18645 "instruction are performance deprecated in ARMv8-A and "
18646 "ARMv8-R"));
5a01bb1d
MGD
18647 now_it.warn_deprecated = TRUE;
18648 }
18649 }
18650
e07e6e58
NC
18651 is_last = (now_it.mask == 0x10);
18652 if (is_last)
18653 {
18654 now_it.state = OUTSIDE_IT_BLOCK;
18655 now_it.mask = 0;
18656 }
18657}
18658
18659static void
18660force_automatic_it_block_close (void)
18661{
18662 if (now_it.state == AUTOMATIC_IT_BLOCK)
18663 {
18664 close_automatic_it_block ();
18665 now_it.state = OUTSIDE_IT_BLOCK;
18666 now_it.mask = 0;
18667 }
18668}
18669
18670static int
18671in_it_block (void)
18672{
18673 if (!now_it.state_handled)
18674 handle_it_state ();
18675
18676 return now_it.state != OUTSIDE_IT_BLOCK;
18677}
18678
ff8646ee
TP
18679/* Whether OPCODE only has T32 encoding. Since this function is only used by
18680 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
18681 here, hence the "known" in the function name. */
fc289b0a
TP
18682
18683static bfd_boolean
ff8646ee 18684known_t32_only_insn (const struct asm_opcode *opcode)
fc289b0a
TP
18685{
18686 /* Original Thumb-1 wide instruction. */
18687 if (opcode->tencode == do_t_blx
18688 || opcode->tencode == do_t_branch23
18689 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
18690 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
18691 return TRUE;
18692
16a1fa25
TP
18693 /* Wide-only instruction added to ARMv8-M Baseline. */
18694 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
ff8646ee
TP
18695 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
18696 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
18697 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
18698 return TRUE;
18699
18700 return FALSE;
18701}
18702
18703/* Whether wide instruction variant can be used if available for a valid OPCODE
18704 in ARCH. */
18705
18706static bfd_boolean
18707t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
18708{
18709 if (known_t32_only_insn (opcode))
18710 return TRUE;
18711
18712 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
18713 of variant T3 of B.W is checked in do_t_branch. */
18714 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18715 && opcode->tencode == do_t_branch)
18716 return TRUE;
18717
bada4342
JW
18718 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
18719 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18720 && opcode->tencode == do_t_mov_cmp
18721 /* Make sure CMP instruction is not affected. */
18722 && opcode->aencode == do_mov)
18723 return TRUE;
18724
ff8646ee
TP
18725 /* Wide instruction variants of all instructions with narrow *and* wide
18726 variants become available with ARMv6t2. Other opcodes are either
18727 narrow-only or wide-only and are thus available if OPCODE is valid. */
18728 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
18729 return TRUE;
18730
18731 /* OPCODE with narrow only instruction variant or wide variant not
18732 available. */
fc289b0a
TP
18733 return FALSE;
18734}
18735
c19d1205
ZW
18736void
18737md_assemble (char *str)
b99bd4ef 18738{
c19d1205
ZW
18739 char *p = str;
18740 const struct asm_opcode * opcode;
b99bd4ef 18741
c19d1205
ZW
18742 /* Align the previous label if needed. */
18743 if (last_label_seen != NULL)
b99bd4ef 18744 {
c19d1205
ZW
18745 symbol_set_frag (last_label_seen, frag_now);
18746 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
18747 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
18748 }
18749
c19d1205
ZW
18750 memset (&inst, '\0', sizeof (inst));
18751 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 18752
c19d1205
ZW
18753 opcode = opcode_lookup (&p);
18754 if (!opcode)
b99bd4ef 18755 {
c19d1205 18756 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 18757 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d 18758 if (! create_register_alias (str, p)
477330fc 18759 && ! create_neon_reg_alias (str, p))
c19d1205 18760 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 18761
b99bd4ef
NC
18762 return;
18763 }
18764
278df34e 18765 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
5c3696f8 18766 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
088fa78e 18767
037e8744
JB
18768 /* The value which unconditional instructions should have in place of the
18769 condition field. */
18770 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
18771
c19d1205 18772 if (thumb_mode)
b99bd4ef 18773 {
e74cfd16 18774 arm_feature_set variant;
8f06b2d8
PB
18775
18776 variant = cpu_variant;
18777 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
18778 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
18779 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 18780 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
18781 if (!opcode->tvariant
18782 || (thumb_mode == 1
18783 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 18784 {
173205ca
TP
18785 if (opcode->tencode == do_t_swi)
18786 as_bad (_("SVC is not permitted on this architecture"));
18787 else
18788 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
b99bd4ef
NC
18789 return;
18790 }
c19d1205
ZW
18791 if (inst.cond != COND_ALWAYS && !unified_syntax
18792 && opcode->tencode != do_t_branch)
b99bd4ef 18793 {
c19d1205 18794 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
18795 return;
18796 }
18797
fc289b0a
TP
18798 /* Two things are addressed here:
18799 1) Implicit require narrow instructions on Thumb-1.
18800 This avoids relaxation accidentally introducing Thumb-2
18801 instructions.
18802 2) Reject wide instructions in non Thumb-2 cores.
18803
18804 Only instructions with narrow and wide variants need to be handled
18805 but selecting all non wide-only instructions is easier. */
18806 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
ff8646ee 18807 && !t32_insn_ok (variant, opcode))
076d447c 18808 {
fc289b0a
TP
18809 if (inst.size_req == 0)
18810 inst.size_req = 2;
18811 else if (inst.size_req == 4)
752d5da4 18812 {
ff8646ee
TP
18813 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
18814 as_bad (_("selected processor does not support 32bit wide "
18815 "variant of instruction `%s'"), str);
18816 else
18817 as_bad (_("selected processor does not support `%s' in "
18818 "Thumb-2 mode"), str);
fc289b0a 18819 return;
752d5da4 18820 }
076d447c
PB
18821 }
18822
c19d1205
ZW
18823 inst.instruction = opcode->tvalue;
18824
5be8be5d 18825 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
477330fc
RM
18826 {
18827 /* Prepare the it_insn_type for those encodings that don't set
18828 it. */
18829 it_fsm_pre_encode ();
c19d1205 18830
477330fc 18831 opcode->tencode ();
e07e6e58 18832
477330fc
RM
18833 it_fsm_post_encode ();
18834 }
e27ec89e 18835
0110f2b8 18836 if (!(inst.error || inst.relax))
b99bd4ef 18837 {
9c2799c2 18838 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
18839 inst.size = (inst.instruction > 0xffff ? 4 : 2);
18840 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 18841 {
c19d1205 18842 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
18843 return;
18844 }
18845 }
076d447c
PB
18846
18847 /* Something has gone badly wrong if we try to relax a fixed size
477330fc 18848 instruction. */
9c2799c2 18849 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 18850
e74cfd16
PB
18851 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18852 *opcode->tvariant);
ee065d83 18853 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
fc289b0a
TP
18854 set those bits when Thumb-2 32-bit instructions are seen. The impact
18855 of relaxable instructions will be considered later after we finish all
18856 relaxation. */
ff8646ee
TP
18857 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
18858 variant = arm_arch_none;
18859 else
18860 variant = cpu_variant;
18861 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
e74cfd16
PB
18862 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18863 arm_ext_v6t2);
cd000bff 18864
88714cb8
DG
18865 check_neon_suffixes;
18866
cd000bff 18867 if (!inst.error)
c877a2f2
NC
18868 {
18869 mapping_state (MAP_THUMB);
18870 }
c19d1205 18871 }
3e9e4fcf 18872 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 18873 {
845b51d6
PB
18874 bfd_boolean is_bx;
18875
18876 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
18877 is_bx = (opcode->aencode == do_bx);
18878
c19d1205 18879 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
18880 if (!(is_bx && fix_v4bx)
18881 && !(opcode->avariant &&
18882 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 18883 {
84b52b66 18884 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
c19d1205 18885 return;
b99bd4ef 18886 }
c19d1205 18887 if (inst.size_req)
b99bd4ef 18888 {
c19d1205
ZW
18889 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
18890 return;
b99bd4ef
NC
18891 }
18892
c19d1205
ZW
18893 inst.instruction = opcode->avalue;
18894 if (opcode->tag == OT_unconditionalF)
eff0bc54 18895 inst.instruction |= 0xFU << 28;
c19d1205
ZW
18896 else
18897 inst.instruction |= inst.cond << 28;
18898 inst.size = INSN_SIZE;
5be8be5d 18899 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
477330fc
RM
18900 {
18901 it_fsm_pre_encode ();
18902 opcode->aencode ();
18903 it_fsm_post_encode ();
18904 }
ee065d83 18905 /* Arm mode bx is marked as both v4T and v5 because it's still required
477330fc 18906 on a hypothetical non-thumb v5 core. */
845b51d6 18907 if (is_bx)
e74cfd16 18908 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 18909 else
e74cfd16
PB
18910 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
18911 *opcode->avariant);
88714cb8
DG
18912
18913 check_neon_suffixes;
18914
cd000bff 18915 if (!inst.error)
c877a2f2
NC
18916 {
18917 mapping_state (MAP_ARM);
18918 }
b99bd4ef 18919 }
3e9e4fcf
JB
18920 else
18921 {
18922 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
18923 "-- `%s'"), str);
18924 return;
18925 }
c19d1205
ZW
18926 output_inst (str);
18927}
b99bd4ef 18928
e07e6e58
NC
18929static void
18930check_it_blocks_finished (void)
18931{
18932#ifdef OBJ_ELF
18933 asection *sect;
18934
18935 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
18936 if (seg_info (sect)->tc_segment_info_data.current_it.state
18937 == MANUAL_IT_BLOCK)
18938 {
18939 as_warn (_("section '%s' finished with an open IT block."),
18940 sect->name);
18941 }
18942#else
18943 if (now_it.state == MANUAL_IT_BLOCK)
18944 as_warn (_("file finished with an open IT block."));
18945#endif
18946}
18947
c19d1205
ZW
18948/* Various frobbings of labels and their addresses. */
18949
18950void
18951arm_start_line_hook (void)
18952{
18953 last_label_seen = NULL;
b99bd4ef
NC
18954}
18955
c19d1205
ZW
18956void
18957arm_frob_label (symbolS * sym)
b99bd4ef 18958{
c19d1205 18959 last_label_seen = sym;
b99bd4ef 18960
c19d1205 18961 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 18962
c19d1205
ZW
18963#if defined OBJ_COFF || defined OBJ_ELF
18964 ARM_SET_INTERWORK (sym, support_interwork);
18965#endif
b99bd4ef 18966
e07e6e58
NC
18967 force_automatic_it_block_close ();
18968
5f4273c7 18969 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
18970 as Thumb functions. This is because these labels, whilst
18971 they exist inside Thumb code, are not the entry points for
18972 possible ARM->Thumb calls. Also, these labels can be used
18973 as part of a computed goto or switch statement. eg gcc
18974 can generate code that looks like this:
b99bd4ef 18975
c19d1205
ZW
18976 ldr r2, [pc, .Laaa]
18977 lsl r3, r3, #2
18978 ldr r2, [r3, r2]
18979 mov pc, r2
b99bd4ef 18980
c19d1205
ZW
18981 .Lbbb: .word .Lxxx
18982 .Lccc: .word .Lyyy
18983 ..etc...
18984 .Laaa: .word Lbbb
b99bd4ef 18985
c19d1205
ZW
18986 The first instruction loads the address of the jump table.
18987 The second instruction converts a table index into a byte offset.
18988 The third instruction gets the jump address out of the table.
18989 The fourth instruction performs the jump.
b99bd4ef 18990
c19d1205
ZW
18991 If the address stored at .Laaa is that of a symbol which has the
18992 Thumb_Func bit set, then the linker will arrange for this address
18993 to have the bottom bit set, which in turn would mean that the
18994 address computation performed by the third instruction would end
18995 up with the bottom bit set. Since the ARM is capable of unaligned
18996 word loads, the instruction would then load the incorrect address
18997 out of the jump table, and chaos would ensue. */
18998 if (label_is_thumb_function_name
18999 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
19000 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 19001 {
c19d1205
ZW
19002 /* When the address of a Thumb function is taken the bottom
19003 bit of that address should be set. This will allow
19004 interworking between Arm and Thumb functions to work
19005 correctly. */
b99bd4ef 19006
c19d1205 19007 THUMB_SET_FUNC (sym, 1);
b99bd4ef 19008
c19d1205 19009 label_is_thumb_function_name = FALSE;
b99bd4ef 19010 }
07a53e5c 19011
07a53e5c 19012 dwarf2_emit_label (sym);
b99bd4ef
NC
19013}
19014
c921be7d 19015bfd_boolean
c19d1205 19016arm_data_in_code (void)
b99bd4ef 19017{
c19d1205 19018 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 19019 {
c19d1205
ZW
19020 *input_line_pointer = '/';
19021 input_line_pointer += 5;
19022 *input_line_pointer = 0;
c921be7d 19023 return TRUE;
b99bd4ef
NC
19024 }
19025
c921be7d 19026 return FALSE;
b99bd4ef
NC
19027}
19028
c19d1205
ZW
19029char *
19030arm_canonicalize_symbol_name (char * name)
b99bd4ef 19031{
c19d1205 19032 int len;
b99bd4ef 19033
c19d1205
ZW
19034 if (thumb_mode && (len = strlen (name)) > 5
19035 && streq (name + len - 5, "/data"))
19036 *(name + len - 5) = 0;
b99bd4ef 19037
c19d1205 19038 return name;
b99bd4ef 19039}
c19d1205
ZW
19040\f
19041/* Table of all register names defined by default. The user can
19042 define additional names with .req. Note that all register names
19043 should appear in both upper and lowercase variants. Some registers
19044 also have mixed-case names. */
b99bd4ef 19045
dcbf9037 19046#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 19047#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 19048#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
19049#define REGSET(p,t) \
19050 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
19051 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
19052 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
19053 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
19054#define REGSETH(p,t) \
19055 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
19056 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
19057 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
19058 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
19059#define REGSET2(p,t) \
19060 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
19061 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
19062 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
19063 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
19064#define SPLRBANK(base,bank,t) \
19065 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
19066 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
19067 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
19068 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
19069 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
19070 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 19071
c19d1205 19072static const struct reg_entry reg_names[] =
7ed4c4c5 19073{
c19d1205
ZW
19074 /* ARM integer registers. */
19075 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 19076
c19d1205
ZW
19077 /* ATPCS synonyms. */
19078 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
19079 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
19080 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 19081
c19d1205
ZW
19082 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
19083 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
19084 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 19085
c19d1205
ZW
19086 /* Well-known aliases. */
19087 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
19088 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
19089
19090 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
19091 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
19092
19093 /* Coprocessor numbers. */
19094 REGSET(p, CP), REGSET(P, CP),
19095
19096 /* Coprocessor register numbers. The "cr" variants are for backward
19097 compatibility. */
19098 REGSET(c, CN), REGSET(C, CN),
19099 REGSET(cr, CN), REGSET(CR, CN),
19100
90ec0d68
MGD
19101 /* ARM banked registers. */
19102 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
19103 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
19104 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
19105 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
19106 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
19107 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
19108 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
19109
19110 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
19111 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
19112 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
19113 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
19114 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
1472d06f 19115 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
90ec0d68
MGD
19116 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
19117 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
19118
19119 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
19120 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
19121 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
19122 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
19123 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
19124 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
19125 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 19126 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
19127 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
19128
c19d1205
ZW
19129 /* FPA registers. */
19130 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
19131 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
19132
19133 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
19134 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
19135
19136 /* VFP SP registers. */
5287ad62
JB
19137 REGSET(s,VFS), REGSET(S,VFS),
19138 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
19139
19140 /* VFP DP Registers. */
5287ad62
JB
19141 REGSET(d,VFD), REGSET(D,VFD),
19142 /* Extra Neon DP registers. */
19143 REGSETH(d,VFD), REGSETH(D,VFD),
19144
19145 /* Neon QP registers. */
19146 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
19147
19148 /* VFP control registers. */
19149 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
19150 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
19151 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
19152 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
19153 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
19154 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
40c7d507 19155 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
c19d1205
ZW
19156
19157 /* Maverick DSP coprocessor registers. */
19158 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
19159 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
19160
19161 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
19162 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
19163 REGDEF(dspsc,0,DSPSC),
19164
19165 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
19166 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
19167 REGDEF(DSPSC,0,DSPSC),
19168
19169 /* iWMMXt data registers - p0, c0-15. */
19170 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
19171
19172 /* iWMMXt control registers - p1, c0-3. */
19173 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
19174 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
19175 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
19176 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
19177
19178 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
19179 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
19180 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
19181 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
19182 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
19183
19184 /* XScale accumulator registers. */
19185 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
19186};
19187#undef REGDEF
19188#undef REGNUM
19189#undef REGSET
7ed4c4c5 19190
c19d1205
ZW
19191/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
19192 within psr_required_here. */
19193static const struct asm_psr psrs[] =
19194{
19195 /* Backward compatibility notation. Note that "all" is no longer
19196 truly all possible PSR bits. */
19197 {"all", PSR_c | PSR_f},
19198 {"flg", PSR_f},
19199 {"ctl", PSR_c},
19200
19201 /* Individual flags. */
19202 {"f", PSR_f},
19203 {"c", PSR_c},
19204 {"x", PSR_x},
19205 {"s", PSR_s},
59b42a0d 19206
c19d1205
ZW
19207 /* Combinations of flags. */
19208 {"fs", PSR_f | PSR_s},
19209 {"fx", PSR_f | PSR_x},
19210 {"fc", PSR_f | PSR_c},
19211 {"sf", PSR_s | PSR_f},
19212 {"sx", PSR_s | PSR_x},
19213 {"sc", PSR_s | PSR_c},
19214 {"xf", PSR_x | PSR_f},
19215 {"xs", PSR_x | PSR_s},
19216 {"xc", PSR_x | PSR_c},
19217 {"cf", PSR_c | PSR_f},
19218 {"cs", PSR_c | PSR_s},
19219 {"cx", PSR_c | PSR_x},
19220 {"fsx", PSR_f | PSR_s | PSR_x},
19221 {"fsc", PSR_f | PSR_s | PSR_c},
19222 {"fxs", PSR_f | PSR_x | PSR_s},
19223 {"fxc", PSR_f | PSR_x | PSR_c},
19224 {"fcs", PSR_f | PSR_c | PSR_s},
19225 {"fcx", PSR_f | PSR_c | PSR_x},
19226 {"sfx", PSR_s | PSR_f | PSR_x},
19227 {"sfc", PSR_s | PSR_f | PSR_c},
19228 {"sxf", PSR_s | PSR_x | PSR_f},
19229 {"sxc", PSR_s | PSR_x | PSR_c},
19230 {"scf", PSR_s | PSR_c | PSR_f},
19231 {"scx", PSR_s | PSR_c | PSR_x},
19232 {"xfs", PSR_x | PSR_f | PSR_s},
19233 {"xfc", PSR_x | PSR_f | PSR_c},
19234 {"xsf", PSR_x | PSR_s | PSR_f},
19235 {"xsc", PSR_x | PSR_s | PSR_c},
19236 {"xcf", PSR_x | PSR_c | PSR_f},
19237 {"xcs", PSR_x | PSR_c | PSR_s},
19238 {"cfs", PSR_c | PSR_f | PSR_s},
19239 {"cfx", PSR_c | PSR_f | PSR_x},
19240 {"csf", PSR_c | PSR_s | PSR_f},
19241 {"csx", PSR_c | PSR_s | PSR_x},
19242 {"cxf", PSR_c | PSR_x | PSR_f},
19243 {"cxs", PSR_c | PSR_x | PSR_s},
19244 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
19245 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
19246 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
19247 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
19248 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
19249 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
19250 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
19251 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
19252 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
19253 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
19254 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
19255 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
19256 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
19257 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
19258 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
19259 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
19260 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
19261 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
19262 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
19263 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
19264 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
19265 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
19266 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
19267 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
19268};
19269
62b3e311
PB
19270/* Table of V7M psr names. */
19271static const struct asm_psr v7m_psrs[] =
19272{
1a336194
TP
19273 {"apsr", 0x0 }, {"APSR", 0x0 },
19274 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
19275 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
19276 {"psr", 0x3 }, {"PSR", 0x3 },
19277 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
19278 {"ipsr", 0x5 }, {"IPSR", 0x5 },
19279 {"epsr", 0x6 }, {"EPSR", 0x6 },
19280 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
19281 {"msp", 0x8 }, {"MSP", 0x8 },
19282 {"psp", 0x9 }, {"PSP", 0x9 },
19283 {"msplim", 0xa }, {"MSPLIM", 0xa },
19284 {"psplim", 0xb }, {"PSPLIM", 0xb },
19285 {"primask", 0x10}, {"PRIMASK", 0x10},
19286 {"basepri", 0x11}, {"BASEPRI", 0x11},
19287 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
1a336194
TP
19288 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
19289 {"control", 0x14}, {"CONTROL", 0x14},
19290 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
19291 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
19292 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
19293 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
19294 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
19295 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
19296 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
19297 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
19298 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
62b3e311
PB
19299};
19300
c19d1205
ZW
19301/* Table of all shift-in-operand names. */
19302static const struct asm_shift_name shift_names [] =
b99bd4ef 19303{
c19d1205
ZW
19304 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
19305 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
19306 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
19307 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
19308 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
19309 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
19310};
b99bd4ef 19311
c19d1205
ZW
19312/* Table of all explicit relocation names. */
19313#ifdef OBJ_ELF
19314static struct reloc_entry reloc_names[] =
19315{
19316 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
19317 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
19318 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
19319 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
19320 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
19321 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
19322 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
19323 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
19324 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
19325 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 19326 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
19327 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
19328 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
477330fc 19329 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
0855e32b 19330 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
477330fc 19331 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
0855e32b 19332 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
188fd7ae
CL
19333 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
19334 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
19335 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
19336 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
19337 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
19338 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
5c5a4843
CL
19339 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
19340 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
19341 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
19342 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
c19d1205
ZW
19343};
19344#endif
b99bd4ef 19345
c19d1205
ZW
19346/* Table of all conditional affixes. 0xF is not defined as a condition code. */
19347static const struct asm_cond conds[] =
19348{
19349 {"eq", 0x0},
19350 {"ne", 0x1},
19351 {"cs", 0x2}, {"hs", 0x2},
19352 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
19353 {"mi", 0x4},
19354 {"pl", 0x5},
19355 {"vs", 0x6},
19356 {"vc", 0x7},
19357 {"hi", 0x8},
19358 {"ls", 0x9},
19359 {"ge", 0xa},
19360 {"lt", 0xb},
19361 {"gt", 0xc},
19362 {"le", 0xd},
19363 {"al", 0xe}
19364};
bfae80f2 19365
e797f7e0 19366#define UL_BARRIER(L,U,CODE,FEAT) \
823d2571
TG
19367 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
19368 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
e797f7e0 19369
62b3e311
PB
19370static struct asm_barrier_opt barrier_opt_names[] =
19371{
e797f7e0
MGD
19372 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
19373 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
19374 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
19375 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
19376 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
19377 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
19378 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
19379 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
19380 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
19381 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
19382 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
19383 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
19384 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
19385 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
19386 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
19387 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
19388};
19389
e797f7e0
MGD
19390#undef UL_BARRIER
19391
c19d1205
ZW
19392/* Table of ARM-format instructions. */
19393
19394/* Macros for gluing together operand strings. N.B. In all cases
19395 other than OPS0, the trailing OP_stop comes from default
19396 zero-initialization of the unspecified elements of the array. */
19397#define OPS0() { OP_stop, }
19398#define OPS1(a) { OP_##a, }
19399#define OPS2(a,b) { OP_##a,OP_##b, }
19400#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
19401#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
19402#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
19403#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
19404
5be8be5d
DG
19405/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
19406 This is useful when mixing operands for ARM and THUMB, i.e. using the
19407 MIX_ARM_THUMB_OPERANDS macro.
19408 In order to use these macros, prefix the number of operands with _
19409 e.g. _3. */
19410#define OPS_1(a) { a, }
19411#define OPS_2(a,b) { a,b, }
19412#define OPS_3(a,b,c) { a,b,c, }
19413#define OPS_4(a,b,c,d) { a,b,c,d, }
19414#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
19415#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
19416
c19d1205
ZW
19417/* These macros abstract out the exact format of the mnemonic table and
19418 save some repeated characters. */
19419
19420/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
19421#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 19422 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 19423 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
19424
19425/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
19426 a T_MNEM_xyz enumerator. */
19427#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 19428 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 19429#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 19430 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
19431
19432/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
19433 infix after the third character. */
19434#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 19435 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 19436 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 19437#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 19438 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 19439 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 19440#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 19441 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 19442#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 19443 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 19444#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 19445 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 19446#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 19447 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205 19448
c19d1205 19449/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
19450 field is still 0xE. Many of the Thumb variants can be executed
19451 conditionally, so this is checked separately. */
c19d1205 19452#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 19453 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 19454 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 19455
dd5181d5
KT
19456/* Same as TUE but the encoding function for ARM and Thumb modes is the same.
19457 Used by mnemonics that have very minimal differences in the encoding for
19458 ARM and Thumb variants and can be handled in a common function. */
19459#define TUEc(mnem, op, top, nops, ops, en) \
19460 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
19461 THUMB_VARIANT, do_##en, do_##en }
19462
c19d1205
ZW
19463/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
19464 condition code field. */
19465#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 19466 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 19467 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
19468
19469/* ARM-only variants of all the above. */
6a86118a 19470#define CE(mnem, op, nops, ops, ae) \
21d799b5 19471 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
19472
19473#define C3(mnem, op, nops, ops, ae) \
19474 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19475
cf3cf39d
TP
19476/* Thumb-only variants of TCE and TUE. */
19477#define ToC(mnem, top, nops, ops, te) \
19478 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
19479 do_##te }
cf3cf39d
TP
19480
19481#define ToU(mnem, top, nops, ops, te) \
19482 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
19483 NULL, do_##te }
cf3cf39d 19484
e3cb604e
PB
19485/* Legacy mnemonics that always have conditional infix after the third
19486 character. */
19487#define CL(mnem, op, nops, ops, ae) \
21d799b5 19488 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
19489 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19490
8f06b2d8
PB
19491/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
19492#define cCE(mnem, op, nops, ops, ae) \
21d799b5 19493 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 19494
e3cb604e
PB
19495/* Legacy coprocessor instructions where conditional infix and conditional
19496 suffix are ambiguous. For consistency this includes all FPA instructions,
19497 not just the potentially ambiguous ones. */
19498#define cCL(mnem, op, nops, ops, ae) \
21d799b5 19499 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
19500 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19501
19502/* Coprocessor, takes either a suffix or a position-3 infix
19503 (for an FPA corner case). */
19504#define C3E(mnem, op, nops, ops, ae) \
21d799b5 19505 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 19506 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 19507
6a86118a 19508#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
19509 { m1 #m2 m3, OPS##nops ops, \
19510 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
19511 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19512
19513#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
19514 xCM_ (m1, , m2, op, nops, ops, ae), \
19515 xCM_ (m1, eq, m2, op, nops, ops, ae), \
19516 xCM_ (m1, ne, m2, op, nops, ops, ae), \
19517 xCM_ (m1, cs, m2, op, nops, ops, ae), \
19518 xCM_ (m1, hs, m2, op, nops, ops, ae), \
19519 xCM_ (m1, cc, m2, op, nops, ops, ae), \
19520 xCM_ (m1, ul, m2, op, nops, ops, ae), \
19521 xCM_ (m1, lo, m2, op, nops, ops, ae), \
19522 xCM_ (m1, mi, m2, op, nops, ops, ae), \
19523 xCM_ (m1, pl, m2, op, nops, ops, ae), \
19524 xCM_ (m1, vs, m2, op, nops, ops, ae), \
19525 xCM_ (m1, vc, m2, op, nops, ops, ae), \
19526 xCM_ (m1, hi, m2, op, nops, ops, ae), \
19527 xCM_ (m1, ls, m2, op, nops, ops, ae), \
19528 xCM_ (m1, ge, m2, op, nops, ops, ae), \
19529 xCM_ (m1, lt, m2, op, nops, ops, ae), \
19530 xCM_ (m1, gt, m2, op, nops, ops, ae), \
19531 xCM_ (m1, le, m2, op, nops, ops, ae), \
19532 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
19533
19534#define UE(mnem, op, nops, ops, ae) \
19535 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19536
19537#define UF(mnem, op, nops, ops, ae) \
19538 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19539
5287ad62
JB
19540/* Neon data-processing. ARM versions are unconditional with cond=0xf.
19541 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
19542 use the same encoding function for each. */
19543#define NUF(mnem, op, nops, ops, enc) \
19544 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
19545 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19546
19547/* Neon data processing, version which indirects through neon_enc_tab for
19548 the various overloaded versions of opcodes. */
19549#define nUF(mnem, op, nops, ops, enc) \
21d799b5 19550 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
19551 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19552
19553/* Neon insn with conditional suffix for the ARM version, non-overloaded
19554 version. */
037e8744
JB
19555#define NCE_tag(mnem, op, nops, ops, enc, tag) \
19556 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
19557 THUMB_VARIANT, do_##enc, do_##enc }
19558
037e8744 19559#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 19560 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
19561
19562#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 19563 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 19564
5287ad62 19565/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 19566#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 19567 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
19568 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19569
037e8744 19570#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 19571 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
19572
19573#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 19574 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 19575
c19d1205
ZW
19576#define do_0 0
19577
c19d1205 19578static const struct asm_opcode insns[] =
bfae80f2 19579{
74db7efb
NC
19580#define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
19581#define THUMB_VARIANT & arm_ext_v4t
21d799b5
NC
19582 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
19583 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
19584 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
19585 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
19586 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
19587 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
19588 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
19589 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
19590 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
19591 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
19592 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
19593 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
19594 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
19595 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
19596 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
19597 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
19598
19599 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
19600 for setting PSR flag bits. They are obsolete in V6 and do not
19601 have Thumb equivalents. */
21d799b5
NC
19602 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19603 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19604 CL("tstp", 110f000, 2, (RR, SH), cmp),
19605 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19606 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19607 CL("cmpp", 150f000, 2, (RR, SH), cmp),
19608 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19609 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19610 CL("cmnp", 170f000, 2, (RR, SH), cmp),
19611
19612 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
72d98d16 19613 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
21d799b5
NC
19614 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
19615 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
19616
19617 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
19618 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
19619 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
19620 OP_RRnpc),
19621 OP_ADDRGLDR),ldst, t_ldst),
19622 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
19623
19624 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19625 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19626 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19627 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19628 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19629 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19630
21d799b5
NC
19631 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
19632 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 19633
c19d1205 19634 /* Pseudo ops. */
21d799b5 19635 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 19636 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 19637 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
74db7efb 19638 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
c19d1205
ZW
19639
19640 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
19641 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
19642 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
19643 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
19644 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
19645 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
19646 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
19647 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
19648 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
19649 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
19650 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
19651 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
19652 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 19653
16a4cf17 19654 /* These may simplify to neg. */
21d799b5
NC
19655 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
19656 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 19657
173205ca
TP
19658#undef THUMB_VARIANT
19659#define THUMB_VARIANT & arm_ext_os
19660
19661 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
19662 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
19663
c921be7d
NC
19664#undef THUMB_VARIANT
19665#define THUMB_VARIANT & arm_ext_v6
19666
21d799b5 19667 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
19668
19669 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
19670#undef THUMB_VARIANT
19671#define THUMB_VARIANT & arm_ext_v6t2
19672
21d799b5
NC
19673 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19674 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19675 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 19676
5be8be5d
DG
19677 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19678 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19679 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
19680 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 19681
21d799b5
NC
19682 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19683 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 19684
21d799b5
NC
19685 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19686 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
19687
19688 /* V1 instructions with no Thumb analogue at all. */
21d799b5 19689 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
19690 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
19691
19692 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
19693 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
19694 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
19695 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
19696 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
19697 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
19698 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
19699 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
19700
c921be7d
NC
19701#undef ARM_VARIANT
19702#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
19703#undef THUMB_VARIANT
19704#define THUMB_VARIANT & arm_ext_v4t
19705
21d799b5
NC
19706 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
19707 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 19708
c921be7d
NC
19709#undef THUMB_VARIANT
19710#define THUMB_VARIANT & arm_ext_v6t2
19711
21d799b5 19712 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
19713 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
19714
19715 /* Generic coprocessor instructions. */
21d799b5
NC
19716 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19717 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19718 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19719 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19720 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19721 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 19722 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 19723
c921be7d
NC
19724#undef ARM_VARIANT
19725#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
19726
21d799b5 19727 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
19728 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
19729
c921be7d
NC
19730#undef ARM_VARIANT
19731#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
19732#undef THUMB_VARIANT
19733#define THUMB_VARIANT & arm_ext_msr
19734
d2cd1205
JB
19735 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
19736 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 19737
c921be7d
NC
19738#undef ARM_VARIANT
19739#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
19740#undef THUMB_VARIANT
19741#define THUMB_VARIANT & arm_ext_v6t2
19742
21d799b5
NC
19743 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19744 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19745 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19746 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19747 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19748 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19749 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19750 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 19751
c921be7d
NC
19752#undef ARM_VARIANT
19753#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
19754#undef THUMB_VARIANT
19755#define THUMB_VARIANT & arm_ext_v4t
19756
5be8be5d
DG
19757 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19758 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19759 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19760 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
56c0a61f
RE
19761 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19762 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 19763
c921be7d
NC
19764#undef ARM_VARIANT
19765#define ARM_VARIANT & arm_ext_v4t_5
19766
c19d1205
ZW
19767 /* ARM Architecture 4T. */
19768 /* Note: bx (and blx) are required on V5, even if the processor does
19769 not support Thumb. */
21d799b5 19770 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 19771
c921be7d
NC
19772#undef ARM_VARIANT
19773#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
19774#undef THUMB_VARIANT
19775#define THUMB_VARIANT & arm_ext_v5t
19776
c19d1205
ZW
19777 /* Note: blx has 2 variants; the .value coded here is for
19778 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
19779 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
19780 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 19781
c921be7d
NC
19782#undef THUMB_VARIANT
19783#define THUMB_VARIANT & arm_ext_v6t2
19784
21d799b5
NC
19785 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
19786 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19787 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19788 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19789 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19790 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19791 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19792 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 19793
c921be7d 19794#undef ARM_VARIANT
74db7efb
NC
19795#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
19796#undef THUMB_VARIANT
19797#define THUMB_VARIANT & arm_ext_v5exp
c921be7d 19798
21d799b5
NC
19799 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19800 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19801 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19802 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 19803
21d799b5
NC
19804 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19805 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 19806
21d799b5
NC
19807 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19808 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19809 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19810 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 19811
21d799b5
NC
19812 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19813 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19814 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19815 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 19816
21d799b5
NC
19817 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19818 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 19819
03ee1b7f
NC
19820 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19821 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19822 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19823 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 19824
c921be7d 19825#undef ARM_VARIANT
74db7efb
NC
19826#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
19827#undef THUMB_VARIANT
19828#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 19829
21d799b5 19830 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
19831 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
19832 ldrd, t_ldstd),
19833 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
19834 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 19835
21d799b5
NC
19836 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19837 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 19838
c921be7d
NC
19839#undef ARM_VARIANT
19840#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
19841
21d799b5 19842 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 19843
c921be7d
NC
19844#undef ARM_VARIANT
19845#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
19846#undef THUMB_VARIANT
19847#define THUMB_VARIANT & arm_ext_v6
19848
21d799b5
NC
19849 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
19850 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
19851 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19852 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19853 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19854 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19855 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19856 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19857 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19858 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 19859
c921be7d 19860#undef THUMB_VARIANT
ff8646ee 19861#define THUMB_VARIANT & arm_ext_v6t2_v8m
c921be7d 19862
5be8be5d
DG
19863 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
19864 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19865 strex, t_strex),
ff8646ee
TP
19866#undef THUMB_VARIANT
19867#define THUMB_VARIANT & arm_ext_v6t2
19868
21d799b5
NC
19869 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19870 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 19871
21d799b5
NC
19872 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
19873 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 19874
9e3c6df6 19875/* ARM V6 not included in V7M. */
c921be7d
NC
19876#undef THUMB_VARIANT
19877#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6 19878 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6 19879 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
9e3c6df6
PB
19880 UF(rfeib, 9900a00, 1, (RRw), rfe),
19881 UF(rfeda, 8100a00, 1, (RRw), rfe),
19882 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
19883 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6
RE
19884 UF(rfefa, 8100a00, 1, (RRw), rfe),
19885 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
19886 UF(rfeed, 9900a00, 1, (RRw), rfe),
9e3c6df6 19887 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
d709e4e6
RE
19888 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
19889 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
9e3c6df6 19890 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
d709e4e6 19891 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
9e3c6df6 19892 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
d709e4e6 19893 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
9e3c6df6 19894 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
d709e4e6 19895 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
941c9cad 19896 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c921be7d 19897
9e3c6df6
PB
19898/* ARM V6 not included in V7M (eg. integer SIMD). */
19899#undef THUMB_VARIANT
19900#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
19901 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
19902 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
19903 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19904 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19905 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19906 /* Old name for QASX. */
74db7efb 19907 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 19908 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19909 /* Old name for QSAX. */
74db7efb 19910 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
19911 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19912 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19913 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19914 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19915 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19916 /* Old name for SASX. */
74db7efb 19917 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
19918 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19919 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 19920 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19921 /* Old name for SHASX. */
21d799b5 19922 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 19923 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19924 /* Old name for SHSAX. */
21d799b5
NC
19925 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19926 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19927 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19928 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19929 /* Old name for SSAX. */
74db7efb 19930 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
19931 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19932 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19933 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19934 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19935 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19936 /* Old name for UASX. */
74db7efb 19937 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
19938 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19939 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 19940 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19941 /* Old name for UHASX. */
21d799b5
NC
19942 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19943 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19944 /* Old name for UHSAX. */
21d799b5
NC
19945 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19946 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19947 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19948 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19949 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 19950 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19951 /* Old name for UQASX. */
21d799b5
NC
19952 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19953 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19954 /* Old name for UQSAX. */
21d799b5
NC
19955 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19956 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19957 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19958 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19959 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19960 /* Old name for USAX. */
74db7efb 19961 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 19962 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
19963 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19964 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19965 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19966 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19967 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19968 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19969 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19970 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19971 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19972 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19973 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19974 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19975 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19976 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19977 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19978 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19979 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19980 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19981 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19982 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19983 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19984 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19985 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19986 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19987 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19988 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19989 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
19990 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
19991 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
19992 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19993 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19994 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 19995
c921be7d
NC
19996#undef ARM_VARIANT
19997#define ARM_VARIANT & arm_ext_v6k
19998#undef THUMB_VARIANT
19999#define THUMB_VARIANT & arm_ext_v6k
20000
21d799b5
NC
20001 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
20002 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
20003 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
20004 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 20005
c921be7d
NC
20006#undef THUMB_VARIANT
20007#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
20008 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
20009 ldrexd, t_ldrexd),
20010 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
20011 RRnpcb), strexd, t_strexd),
ebdca51a 20012
c921be7d 20013#undef THUMB_VARIANT
ff8646ee 20014#define THUMB_VARIANT & arm_ext_v6t2_v8m
5be8be5d
DG
20015 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
20016 rd_rn, rd_rn),
20017 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
20018 rd_rn, rd_rn),
20019 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 20020 strex, t_strexbh),
5be8be5d 20021 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 20022 strex, t_strexbh),
21d799b5 20023 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 20024
c921be7d 20025#undef ARM_VARIANT
f4c65163 20026#define ARM_VARIANT & arm_ext_sec
74db7efb 20027#undef THUMB_VARIANT
f4c65163 20028#define THUMB_VARIANT & arm_ext_sec
c921be7d 20029
21d799b5 20030 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 20031
90ec0d68
MGD
20032#undef ARM_VARIANT
20033#define ARM_VARIANT & arm_ext_virt
20034#undef THUMB_VARIANT
20035#define THUMB_VARIANT & arm_ext_virt
20036
20037 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
20038 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
20039
ddfded2f
MW
20040#undef ARM_VARIANT
20041#define ARM_VARIANT & arm_ext_pan
20042#undef THUMB_VARIANT
20043#define THUMB_VARIANT & arm_ext_pan
20044
20045 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
20046
c921be7d 20047#undef ARM_VARIANT
74db7efb 20048#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
20049#undef THUMB_VARIANT
20050#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 20051
21d799b5
NC
20052 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
20053 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
20054 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
20055 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 20056
21d799b5 20057 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
21d799b5 20058 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 20059
5be8be5d
DG
20060 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20061 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20062 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20063 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 20064
91d8b670
JG
20065#undef ARM_VARIANT
20066#define ARM_VARIANT & arm_ext_v3
20067#undef THUMB_VARIANT
20068#define THUMB_VARIANT & arm_ext_v6t2
20069
20070 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
c597cc3d
SD
20071 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
20072 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
91d8b670
JG
20073
20074#undef ARM_VARIANT
20075#define ARM_VARIANT & arm_ext_v6t2
ff8646ee
TP
20076#undef THUMB_VARIANT
20077#define THUMB_VARIANT & arm_ext_v6t2_v8m
20078 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
20079 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
20080
bf3eeda7 20081 /* Thumb-only instructions. */
74db7efb 20082#undef ARM_VARIANT
bf3eeda7
NS
20083#define ARM_VARIANT NULL
20084 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
20085 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
20086
20087 /* ARM does not really have an IT instruction, so always allow it.
20088 The opcode is copied from Thumb in order to allow warnings in
20089 -mimplicit-it=[never | arm] modes. */
20090#undef ARM_VARIANT
20091#define ARM_VARIANT & arm_ext_v1
ff8646ee
TP
20092#undef THUMB_VARIANT
20093#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 20094
21d799b5
NC
20095 TUE("it", bf08, bf08, 1, (COND), it, t_it),
20096 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
20097 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
20098 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
20099 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
20100 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
20101 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
20102 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
20103 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
20104 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
20105 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
20106 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
20107 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
20108 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
20109 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 20110 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
20111 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
20112 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 20113
92e90b6e 20114 /* Thumb2 only instructions. */
c921be7d
NC
20115#undef ARM_VARIANT
20116#define ARM_VARIANT NULL
92e90b6e 20117
21d799b5
NC
20118 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
20119 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
20120 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
20121 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
20122 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
20123 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 20124
eea54501
MGD
20125 /* Hardware division instructions. */
20126#undef ARM_VARIANT
20127#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
20128#undef THUMB_VARIANT
20129#define THUMB_VARIANT & arm_ext_div
20130
eea54501
MGD
20131 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
20132 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 20133
7e806470 20134 /* ARM V6M/V7 instructions. */
c921be7d
NC
20135#undef ARM_VARIANT
20136#define ARM_VARIANT & arm_ext_barrier
20137#undef THUMB_VARIANT
20138#define THUMB_VARIANT & arm_ext_barrier
20139
ccb84d65
JB
20140 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
20141 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
20142 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
7e806470 20143
62b3e311 20144 /* ARM V7 instructions. */
c921be7d
NC
20145#undef ARM_VARIANT
20146#define ARM_VARIANT & arm_ext_v7
20147#undef THUMB_VARIANT
20148#define THUMB_VARIANT & arm_ext_v7
20149
21d799b5
NC
20150 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
20151 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 20152
74db7efb 20153#undef ARM_VARIANT
60e5ef9f 20154#define ARM_VARIANT & arm_ext_mp
74db7efb 20155#undef THUMB_VARIANT
60e5ef9f
MGD
20156#define THUMB_VARIANT & arm_ext_mp
20157
20158 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
20159
53c4b28b
MGD
20160 /* AArchv8 instructions. */
20161#undef ARM_VARIANT
20162#define ARM_VARIANT & arm_ext_v8
4ed7ed8d
TP
20163
20164/* Instructions shared between armv8-a and armv8-m. */
53c4b28b 20165#undef THUMB_VARIANT
4ed7ed8d 20166#define THUMB_VARIANT & arm_ext_atomics
53c4b28b 20167
4ed7ed8d
TP
20168 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20169 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20170 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20171 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20172 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20173 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
4b8c8c02 20174 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
4b8c8c02
RE
20175 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
20176 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20177 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
20178 stlex, t_stlex),
4b8c8c02
RE
20179 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
20180 stlex, t_stlex),
20181 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
20182 stlex, t_stlex),
4ed7ed8d
TP
20183#undef THUMB_VARIANT
20184#define THUMB_VARIANT & arm_ext_v8
53c4b28b 20185
4ed7ed8d
TP
20186 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
20187 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
20188 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
20189 ldrexd, t_ldrexd),
20190 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
20191 strexd, t_strexd),
8884b720 20192 /* ARMv8 T32 only. */
74db7efb 20193#undef ARM_VARIANT
b79f7053
MGD
20194#define ARM_VARIANT NULL
20195 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
20196 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
20197 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
20198
33399f07
MGD
20199 /* FP for ARMv8. */
20200#undef ARM_VARIANT
a715796b 20201#define ARM_VARIANT & fpu_vfp_ext_armv8xd
33399f07 20202#undef THUMB_VARIANT
a715796b 20203#define THUMB_VARIANT & fpu_vfp_ext_armv8xd
33399f07
MGD
20204
20205 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
20206 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
20207 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
20208 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
73924fbc
MGD
20209 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
20210 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
7e8e6784
MGD
20211 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
20212 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
20213 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
20214 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
30bdf752
MGD
20215 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
20216 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
20217 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
20218 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
20219 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
20220 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
20221 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
33399f07 20222
91ff7894
MGD
20223 /* Crypto v1 extensions. */
20224#undef ARM_VARIANT
20225#define ARM_VARIANT & fpu_crypto_ext_armv8
20226#undef THUMB_VARIANT
20227#define THUMB_VARIANT & fpu_crypto_ext_armv8
20228
20229 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
20230 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
20231 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
20232 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
48adcd8e
MGD
20233 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
20234 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
20235 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
20236 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
20237 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
20238 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
20239 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
3c9017d2
MGD
20240 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
20241 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
20242 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
91ff7894 20243
dd5181d5 20244#undef ARM_VARIANT
74db7efb 20245#define ARM_VARIANT & crc_ext_armv8
dd5181d5
KT
20246#undef THUMB_VARIANT
20247#define THUMB_VARIANT & crc_ext_armv8
20248 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
20249 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
20250 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
20251 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
20252 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
20253 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
20254
105bde57
MW
20255 /* ARMv8.2 RAS extension. */
20256#undef ARM_VARIANT
4d1464f2 20257#define ARM_VARIANT & arm_ext_ras
105bde57 20258#undef THUMB_VARIANT
4d1464f2 20259#define THUMB_VARIANT & arm_ext_ras
105bde57
MW
20260 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
20261
49e8a725
SN
20262#undef ARM_VARIANT
20263#define ARM_VARIANT & arm_ext_v8_3
20264#undef THUMB_VARIANT
20265#define THUMB_VARIANT & arm_ext_v8_3
20266 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
c28eeff2
SN
20267 NUF (vcmla, 0, 4, (RNDQ, RNDQ, RNDQ_RNSC, EXPi), vcmla),
20268 NUF (vcadd, 0, 4, (RNDQ, RNDQ, RNDQ, EXPi), vcadd),
49e8a725 20269
c604a79a
JW
20270#undef ARM_VARIANT
20271#define ARM_VARIANT & fpu_neon_ext_dotprod
20272#undef THUMB_VARIANT
20273#define THUMB_VARIANT & fpu_neon_ext_dotprod
20274 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
20275 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
20276
c921be7d
NC
20277#undef ARM_VARIANT
20278#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
20279#undef THUMB_VARIANT
20280#define THUMB_VARIANT NULL
c921be7d 20281
21d799b5
NC
20282 cCE("wfs", e200110, 1, (RR), rd),
20283 cCE("rfs", e300110, 1, (RR), rd),
20284 cCE("wfc", e400110, 1, (RR), rd),
20285 cCE("rfc", e500110, 1, (RR), rd),
20286
20287 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
20288 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
20289 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
20290 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
20291
20292 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
20293 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
20294 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
20295 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
20296
20297 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
20298 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
20299 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
20300 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
20301 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
20302 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
20303 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
20304 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
20305 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
20306 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
20307 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
20308 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
20309
20310 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
20311 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
20312 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
20313 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
20314 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
20315 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
20316 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
20317 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
20318 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
20319 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
20320 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
20321 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
20322
20323 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
20324 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
20325 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
20326 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
20327 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
20328 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
20329 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
20330 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
20331 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
20332 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
20333 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
20334 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
20335
20336 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
20337 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
20338 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
20339 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
20340 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
20341 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
20342 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
20343 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
20344 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
20345 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
20346 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
20347 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
20348
20349 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
20350 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
20351 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
20352 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
20353 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
20354 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
20355 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
20356 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
20357 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
20358 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
20359 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
20360 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
20361
20362 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
20363 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
20364 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
20365 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
20366 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
20367 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
20368 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
20369 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
20370 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
20371 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
20372 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
20373 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
20374
20375 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
20376 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
20377 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
20378 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
20379 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
20380 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
20381 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
20382 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
20383 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
20384 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
20385 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
20386 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
20387
20388 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
20389 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
20390 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
20391 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
20392 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
20393 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
20394 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
20395 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
20396 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
20397 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
20398 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
20399 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
20400
20401 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
20402 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
20403 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
20404 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
20405 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
20406 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
20407 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
20408 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
20409 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
20410 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
20411 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
20412 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
20413
20414 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
20415 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
20416 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
20417 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
20418 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
20419 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
20420 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
20421 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
20422 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
20423 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
20424 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
20425 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
20426
20427 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
20428 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
20429 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
20430 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
20431 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
20432 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
20433 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
20434 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
20435 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
20436 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
20437 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
20438 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
20439
20440 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
20441 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
20442 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
20443 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
20444 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
20445 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
20446 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
20447 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
20448 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
20449 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
20450 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
20451 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
20452
20453 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
20454 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
20455 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
20456 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
20457 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
20458 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
20459 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
20460 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
20461 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
20462 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
20463 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
20464 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
20465
20466 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
20467 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
20468 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
20469 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
20470 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
20471 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
20472 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
20473 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
20474 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
20475 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
20476 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
20477 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
20478
20479 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
20480 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
20481 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
20482 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
20483 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
20484 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
20485 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
20486 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
20487 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
20488 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
20489 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
20490 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
20491
20492 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
20493 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
20494 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
20495 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
20496 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
20497 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
20498 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
20499 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
20500 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
20501 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
20502 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
20503 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
20504
20505 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
20506 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
20507 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
20508 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
20509 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
20510 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20511 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20512 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20513 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
20514 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
20515 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
20516 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
20517
20518 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
20519 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
20520 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
20521 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
20522 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
20523 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20524 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20525 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20526 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
20527 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
20528 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
20529 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
20530
20531 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
20532 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
20533 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
20534 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
20535 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
20536 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20537 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20538 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20539 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
20540 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
20541 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
20542 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
20543
20544 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
20545 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
20546 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
20547 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
20548 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
20549 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20550 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20551 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20552 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
20553 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
20554 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
20555 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
20556
20557 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
20558 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
20559 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
20560 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
20561 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
20562 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20563 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20564 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20565 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
20566 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
20567 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
20568 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
20569
20570 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
20571 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
20572 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
20573 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
20574 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
20575 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20576 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20577 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20578 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
20579 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
20580 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
20581 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
20582
20583 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
20584 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
20585 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
20586 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
20587 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
20588 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20589 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20590 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20591 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
20592 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
20593 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
20594 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
20595
20596 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
20597 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
20598 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
20599 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
20600 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
20601 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20602 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20603 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20604 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
20605 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
20606 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
20607 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
20608
20609 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
20610 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
20611 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
20612 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
20613 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
20614 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20615 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20616 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20617 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
20618 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
20619 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
20620 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
20621
20622 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
20623 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
20624 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
20625 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
20626 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
20627 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20628 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20629 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20630 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
20631 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
20632 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
20633 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
20634
20635 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20636 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20637 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20638 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20639 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20640 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20641 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20642 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20643 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20644 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20645 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20646 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20647
20648 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20649 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20650 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20651 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20652 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20653 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20654 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20655 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20656 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20657 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20658 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20659 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20660
20661 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20662 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20663 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20664 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20665 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20666 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20667 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20668 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20669 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20670 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20671 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20672 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20673
20674 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
20675 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
20676 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
20677 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
20678
20679 cCL("flts", e000110, 2, (RF, RR), rn_rd),
20680 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
20681 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
20682 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
20683 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
20684 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
20685 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
20686 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
20687 cCL("flte", e080110, 2, (RF, RR), rn_rd),
20688 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
20689 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
20690 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 20691
c19d1205
ZW
20692 /* The implementation of the FIX instruction is broken on some
20693 assemblers, in that it accepts a precision specifier as well as a
20694 rounding specifier, despite the fact that this is meaningless.
20695 To be more compatible, we accept it as well, though of course it
20696 does not set any bits. */
21d799b5
NC
20697 cCE("fix", e100110, 2, (RR, RF), rd_rm),
20698 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
20699 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
20700 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
20701 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
20702 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
20703 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
20704 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
20705 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
20706 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
20707 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
20708 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
20709 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 20710
c19d1205 20711 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
20712#undef ARM_VARIANT
20713#define ARM_VARIANT & fpu_fpa_ext_v2
20714
21d799b5
NC
20715 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20716 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20717 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20718 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20719 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20720 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 20721
c921be7d
NC
20722#undef ARM_VARIANT
20723#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
20724
c19d1205 20725 /* Moves and type conversions. */
21d799b5
NC
20726 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
20727 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
20728 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
20729 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
20730 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
20731 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
20732 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
20733 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
20734 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
20735 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20736 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
20737 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20738 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
20739 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
20740
20741 /* Memory operations. */
21d799b5
NC
20742 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
20743 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
20744 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20745 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20746 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20747 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20748 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20749 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20750 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20751 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20752 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20753 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20754 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20755 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20756 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20757 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20758 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20759 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 20760
c19d1205 20761 /* Monadic operations. */
21d799b5
NC
20762 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
20763 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
20764 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
20765
20766 /* Dyadic operations. */
21d799b5
NC
20767 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20768 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20769 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20770 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20771 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20772 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20773 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20774 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20775 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 20776
c19d1205 20777 /* Comparisons. */
21d799b5
NC
20778 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
20779 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
20780 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
20781 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 20782
62f3b8c8
PB
20783 /* Double precision load/store are still present on single precision
20784 implementations. */
20785 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
20786 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
20787 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20788 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20789 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20790 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20791 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20792 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20793 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20794 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 20795
c921be7d
NC
20796#undef ARM_VARIANT
20797#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
20798
c19d1205 20799 /* Moves and type conversions. */
21d799b5
NC
20800 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20801 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20802 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20803 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
20804 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
20805 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
20806 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
20807 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20808 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
20809 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20810 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20811 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20812 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 20813
c19d1205 20814 /* Monadic operations. */
21d799b5
NC
20815 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20816 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20817 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
20818
20819 /* Dyadic operations. */
21d799b5
NC
20820 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20821 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20822 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20823 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20824 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20825 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20826 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20827 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20828 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 20829
c19d1205 20830 /* Comparisons. */
21d799b5
NC
20831 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20832 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
20833 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20834 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 20835
c921be7d
NC
20836#undef ARM_VARIANT
20837#define ARM_VARIANT & fpu_vfp_ext_v2
20838
21d799b5
NC
20839 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
20840 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
20841 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
20842 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 20843
037e8744
JB
20844/* Instructions which may belong to either the Neon or VFP instruction sets.
20845 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
20846#undef ARM_VARIANT
20847#define ARM_VARIANT & fpu_vfp_ext_v1xd
20848#undef THUMB_VARIANT
20849#define THUMB_VARIANT & fpu_vfp_ext_v1xd
20850
037e8744
JB
20851 /* These mnemonics are unique to VFP. */
20852 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
20853 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
20854 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20855 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20856 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
aacf0b33
KT
20857 nCE(vcmp, _vcmp, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
20858 nCE(vcmpe, _vcmpe, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
037e8744
JB
20859 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
20860 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
20861 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
20862
20863 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
20864 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
20865 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
20866 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 20867
21d799b5
NC
20868 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
20869 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
20870
20871 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20872 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20873
55881a11
MGD
20874 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20875 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20876 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20877 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20878 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20879 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
4962c51a
MS
20880 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
20881 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 20882
5f1af56b 20883 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
e3e535bc 20884 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
c70a8987
MGD
20885 NCEF(vcvtb, eb20a40, 2, (RVSD, RVSD), neon_cvtb),
20886 NCEF(vcvtt, eb20a40, 2, (RVSD, RVSD), neon_cvtt),
f31fef98 20887
037e8744
JB
20888
20889 /* NOTE: All VMOV encoding is special-cased! */
20890 NCE(vmov, 0, 1, (VMOV), neon_mov),
20891 NCE(vmovq, 0, 1, (VMOV), neon_mov),
20892
9db2f6b4
RL
20893#undef ARM_VARIANT
20894#define ARM_VARIANT & arm_ext_fp16
20895#undef THUMB_VARIANT
20896#define THUMB_VARIANT & arm_ext_fp16
20897 /* New instructions added from v8.2, allowing the extraction and insertion of
20898 the upper 16 bits of a 32-bit vector register. */
20899 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
20900 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
20901
dec41383
JW
20902 /* New backported fma/fms instructions optional in v8.2. */
20903 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
20904 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
20905
c921be7d
NC
20906#undef THUMB_VARIANT
20907#define THUMB_VARIANT & fpu_neon_ext_v1
20908#undef ARM_VARIANT
20909#define ARM_VARIANT & fpu_neon_ext_v1
20910
5287ad62
JB
20911 /* Data processing with three registers of the same length. */
20912 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
20913 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
20914 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
20915 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20916 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20917 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20918 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20919 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20920 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20921 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
20922 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
20923 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
20924 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
20925 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
20926 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
20927 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
20928 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
20929 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
20930 /* If not immediate, fall back to neon_dyadic_i64_su.
20931 shl_imm should accept I8 I16 I32 I64,
20932 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
20933 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
20934 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
20935 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
20936 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 20937 /* Logic ops, types optional & ignored. */
4316f0d2
DG
20938 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20939 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20940 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20941 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20942 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20943 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20944 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20945 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20946 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
20947 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
20948 /* Bitfield ops, untyped. */
20949 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20950 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
20951 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20952 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
20953 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20954 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
cc933301 20955 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
21d799b5
NC
20956 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20957 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
20958 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20959 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
20960 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20961 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
20962 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
20963 back to neon_dyadic_if_su. */
21d799b5
NC
20964 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
20965 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
20966 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
20967 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
20968 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
20969 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
20970 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
20971 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 20972 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
20973 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
20974 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 20975 /* As above, D registers only. */
21d799b5
NC
20976 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
20977 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 20978 /* Int and float variants, signedness unimportant. */
21d799b5
NC
20979 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
20980 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
20981 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 20982 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
20983 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
20984 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
20985 /* vtst takes sizes 8, 16, 32. */
20986 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
20987 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
20988 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 20989 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 20990 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
20991 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
20992 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
20993 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
20994 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
20995 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
20996 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
20997 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
20998 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
20999 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
21000 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
21001 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
21002 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
21003 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
21004 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
21005 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
21006 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
d6b4b13e 21007 /* ARM v8.1 extension. */
643afb90
MW
21008 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
21009 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
21010 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
21011 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
5287ad62
JB
21012
21013 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 21014 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
21015 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
21016
21017 /* Data processing with two registers and a shift amount. */
21018 /* Right shifts, and variants with rounding.
21019 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
21020 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
21021 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
21022 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
21023 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
21024 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
21025 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
21026 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
21027 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
21028 /* Shift and insert. Sizes accepted 8 16 32 64. */
21029 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
21030 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
21031 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
21032 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
21033 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
21034 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
21035 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
21036 /* Right shift immediate, saturating & narrowing, with rounding variants.
21037 Types accepted S16 S32 S64 U16 U32 U64. */
21038 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
21039 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
21040 /* As above, unsigned. Types accepted S16 S32 S64. */
21041 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
21042 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
21043 /* Right shift narrowing. Types accepted I16 I32 I64. */
21044 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
21045 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
21046 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 21047 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 21048 /* CVT with optional immediate for fixed-point variant. */
21d799b5 21049 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 21050
4316f0d2
DG
21051 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
21052 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
21053
21054 /* Data processing, three registers of different lengths. */
21055 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
21056 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
21057 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
21058 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
21059 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
21060 /* If not scalar, fall back to neon_dyadic_long.
21061 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
21062 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
21063 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
21064 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
21065 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
21066 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
21067 /* Dyadic, narrowing insns. Types I16 I32 I64. */
21068 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21069 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21070 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21071 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21072 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
21073 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21074 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21075 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
21076 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
21077 S16 S32 U16 U32. */
21d799b5 21078 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
21079
21080 /* Extract. Size 8. */
3b8d421e
PB
21081 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
21082 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
21083
21084 /* Two registers, miscellaneous. */
21085 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
21086 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
21087 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
21088 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
21089 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
21090 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
21091 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
21092 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
21093 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
21094 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
21095 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
21096 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
21097 /* VMOVN. Types I16 I32 I64. */
21d799b5 21098 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 21099 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 21100 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 21101 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 21102 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
21103 /* VZIP / VUZP. Sizes 8 16 32. */
21104 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
21105 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
21106 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
21107 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
21108 /* VQABS / VQNEG. Types S8 S16 S32. */
21109 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
21110 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
21111 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
21112 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
21113 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
21114 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
21115 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
21116 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
21117 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
cc933301 21118 /* Reciprocal estimates. Types U32 F16 F32. */
5287ad62
JB
21119 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
21120 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
21121 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
21122 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
21123 /* VCLS. Types S8 S16 S32. */
21124 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
21125 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
21126 /* VCLZ. Types I8 I16 I32. */
21127 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
21128 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
21129 /* VCNT. Size 8. */
21130 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
21131 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
21132 /* Two address, untyped. */
21133 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
21134 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
21135 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
21136 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
21137 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
21138
21139 /* Table lookup. Size 8. */
21140 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
21141 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
21142
c921be7d
NC
21143#undef THUMB_VARIANT
21144#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
21145#undef ARM_VARIANT
21146#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
21147
5287ad62 21148 /* Neon element/structure load/store. */
21d799b5
NC
21149 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
21150 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
21151 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
21152 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
21153 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
21154 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
21155 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
21156 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 21157
c921be7d 21158#undef THUMB_VARIANT
74db7efb
NC
21159#define THUMB_VARIANT & fpu_vfp_ext_v3xd
21160#undef ARM_VARIANT
21161#define ARM_VARIANT & fpu_vfp_ext_v3xd
62f3b8c8
PB
21162 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
21163 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21164 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21165 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21166 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21167 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21168 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21169 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21170 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21171
74db7efb 21172#undef THUMB_VARIANT
c921be7d
NC
21173#define THUMB_VARIANT & fpu_vfp_ext_v3
21174#undef ARM_VARIANT
21175#define ARM_VARIANT & fpu_vfp_ext_v3
21176
21d799b5 21177 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 21178 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 21179 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 21180 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 21181 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 21182 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 21183 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 21184 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 21185 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 21186
74db7efb
NC
21187#undef ARM_VARIANT
21188#define ARM_VARIANT & fpu_vfp_ext_fma
21189#undef THUMB_VARIANT
21190#define THUMB_VARIANT & fpu_vfp_ext_fma
62f3b8c8
PB
21191 /* Mnemonics shared by Neon and VFP. These are included in the
21192 VFP FMA variant; NEON and VFP FMA always includes the NEON
21193 FMA instructions. */
21194 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
21195 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
21196 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
21197 the v form should always be used. */
21198 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
21199 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
21200 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21201 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21202 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21203 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21204
5287ad62 21205#undef THUMB_VARIANT
c921be7d
NC
21206#undef ARM_VARIANT
21207#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
21208
21d799b5
NC
21209 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21210 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21211 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21212 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21213 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21214 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21215 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
21216 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 21217
c921be7d
NC
21218#undef ARM_VARIANT
21219#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
21220
21d799b5
NC
21221 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
21222 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
21223 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
21224 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
21225 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
21226 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
21227 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
21228 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
21229 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
74db7efb
NC
21230 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21231 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21232 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21233 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21234 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21235 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21d799b5
NC
21236 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21237 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21238 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21239 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
21240 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
21241 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21242 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21243 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21244 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21245 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21246 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
74db7efb
NC
21247 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
21248 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
21249 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21d799b5
NC
21250 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
21251 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
21252 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
21253 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
21254 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
21255 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
21256 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
21257 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
21258 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21259 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21260 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21261 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21262 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21263 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21264 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21265 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21266 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21267 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
74db7efb
NC
21268 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21269 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21270 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21271 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
21272 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21273 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21274 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21275 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21276 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21277 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21278 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21279 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21280 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
21281 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21282 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21283 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21284 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21285 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21286 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
21287 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21288 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21289 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21290 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21291 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21292 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21293 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21294 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21295 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21296 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21297 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21298 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21299 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21300 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21301 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21302 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21303 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21304 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21305 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21306 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21307 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21308 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21309 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
21310 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21311 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21312 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21313 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21314 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
21315 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21316 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21317 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21318 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21319 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21320 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
21321 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21322 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21323 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21324 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21325 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21326 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21327 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21328 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21329 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21330 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21331 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
21332 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21333 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21334 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21335 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21336 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21337 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21338 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21339 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21340 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21341 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21342 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21343 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21344 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21345 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21346 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21347 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21348 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21349 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21350 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21351 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21352 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21353 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21354 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21355 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21356 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21357 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21358 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21359 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21360 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21361 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21362 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21363 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
21364 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
21365 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
21366 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
21367 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
21368 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
21369 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21370 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21371 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21372 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
21373 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
21374 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
21375 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
21376 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
21377 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
21378 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21379 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21380 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21381 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21382 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 21383
c921be7d
NC
21384#undef ARM_VARIANT
21385#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
21386
21d799b5
NC
21387 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
21388 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
21389 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
21390 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
21391 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
21392 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
21393 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21394 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21395 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21396 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21397 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21398 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21399 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21400 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21401 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21402 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21403 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21404 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21405 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21406 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21407 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
21408 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21409 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21410 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21411 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21412 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21413 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21414 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21415 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21416 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21417 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21418 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21419 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21420 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21421 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21422 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21423 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21424 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21425 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21426 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21427 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21428 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21429 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21430 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21431 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21432 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21433 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21434 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21435 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21436 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21437 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21438 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21439 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21440 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21441 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21442 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21443 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 21444
c921be7d
NC
21445#undef ARM_VARIANT
21446#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
21447
21d799b5
NC
21448 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21449 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21450 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21451 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21452 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21453 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21454 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21455 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21456 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
21457 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
21458 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
21459 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
21460 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
21461 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
74db7efb
NC
21462 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
21463 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
21464 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
21465 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
21466 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
21467 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
21468 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
21469 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
21470 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
21471 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21d799b5
NC
21472 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
21473 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
21474 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
21475 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
74db7efb
NC
21476 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
21477 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21d799b5
NC
21478 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
21479 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
21480 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
21481 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
74db7efb
NC
21482 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
21483 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
21484 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
21485 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
21486 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
21487 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21d799b5
NC
21488 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
21489 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
74db7efb
NC
21490 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
21491 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21d799b5
NC
21492 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
21493 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
21494 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
21495 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
21496 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
21497 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
21498 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
21499 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
21500 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
21501 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
21502 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
21503 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
21504 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
21505 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
21506 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
21507 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
21508 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
21509 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
21510 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
21511 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
21512 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21513 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21514 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21515 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21516 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21517 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21518 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21519 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
74db7efb
NC
21520 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21521 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21d799b5
NC
21522 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
21523 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
4ed7ed8d 21524
7fadb25d
SD
21525 /* ARMv8.5-A instructions. */
21526#undef ARM_VARIANT
21527#define ARM_VARIANT & arm_ext_sb
21528#undef THUMB_VARIANT
21529#define THUMB_VARIANT & arm_ext_sb
21530 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
21531
dad0c3bf
SD
21532#undef ARM_VARIANT
21533#define ARM_VARIANT & arm_ext_predres
21534#undef THUMB_VARIANT
21535#define THUMB_VARIANT & arm_ext_predres
21536 CE("cfprctx", e070f93, 1, (RRnpc), rd),
21537 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
21538 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
21539
16a1fa25 21540 /* ARMv8-M instructions. */
4ed7ed8d
TP
21541#undef ARM_VARIANT
21542#define ARM_VARIANT NULL
21543#undef THUMB_VARIANT
21544#define THUMB_VARIANT & arm_ext_v8m
cf3cf39d
TP
21545 ToU("sg", e97fe97f, 0, (), noargs),
21546 ToC("blxns", 4784, 1, (RRnpc), t_blx),
21547 ToC("bxns", 4704, 1, (RRnpc), t_bx),
21548 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
21549 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
21550 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
21551 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
16a1fa25
TP
21552
21553 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
21554 instructions behave as nop if no VFP is present. */
21555#undef THUMB_VARIANT
21556#define THUMB_VARIANT & arm_ext_v8m_main
cf3cf39d
TP
21557 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
21558 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
c19d1205
ZW
21559};
21560#undef ARM_VARIANT
21561#undef THUMB_VARIANT
21562#undef TCE
c19d1205
ZW
21563#undef TUE
21564#undef TUF
21565#undef TCC
8f06b2d8 21566#undef cCE
e3cb604e
PB
21567#undef cCL
21568#undef C3E
c19d1205
ZW
21569#undef CE
21570#undef CM
21571#undef UE
21572#undef UF
21573#undef UT
5287ad62
JB
21574#undef NUF
21575#undef nUF
21576#undef NCE
21577#undef nCE
c19d1205
ZW
21578#undef OPS0
21579#undef OPS1
21580#undef OPS2
21581#undef OPS3
21582#undef OPS4
21583#undef OPS5
21584#undef OPS6
21585#undef do_0
21586\f
21587/* MD interface: bits in the object file. */
bfae80f2 21588
c19d1205
ZW
21589/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
21590 for use in the a.out file, and stores them in the array pointed to by buf.
21591 This knows about the endian-ness of the target machine and does
21592 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
21593 2 (short) and 4 (long) Floating numbers are put out as a series of
21594 LITTLENUMS (shorts, here at least). */
b99bd4ef 21595
c19d1205
ZW
21596void
21597md_number_to_chars (char * buf, valueT val, int n)
21598{
21599 if (target_big_endian)
21600 number_to_chars_bigendian (buf, val, n);
21601 else
21602 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
21603}
21604
c19d1205
ZW
21605static valueT
21606md_chars_to_number (char * buf, int n)
bfae80f2 21607{
c19d1205
ZW
21608 valueT result = 0;
21609 unsigned char * where = (unsigned char *) buf;
bfae80f2 21610
c19d1205 21611 if (target_big_endian)
b99bd4ef 21612 {
c19d1205
ZW
21613 while (n--)
21614 {
21615 result <<= 8;
21616 result |= (*where++ & 255);
21617 }
b99bd4ef 21618 }
c19d1205 21619 else
b99bd4ef 21620 {
c19d1205
ZW
21621 while (n--)
21622 {
21623 result <<= 8;
21624 result |= (where[n] & 255);
21625 }
bfae80f2 21626 }
b99bd4ef 21627
c19d1205 21628 return result;
bfae80f2 21629}
b99bd4ef 21630
c19d1205 21631/* MD interface: Sections. */
b99bd4ef 21632
fa94de6b
RM
21633/* Calculate the maximum variable size (i.e., excluding fr_fix)
21634 that an rs_machine_dependent frag may reach. */
21635
21636unsigned int
21637arm_frag_max_var (fragS *fragp)
21638{
21639 /* We only use rs_machine_dependent for variable-size Thumb instructions,
21640 which are either THUMB_SIZE (2) or INSN_SIZE (4).
21641
21642 Note that we generate relaxable instructions even for cases that don't
21643 really need it, like an immediate that's a trivial constant. So we're
21644 overestimating the instruction size for some of those cases. Rather
21645 than putting more intelligence here, it would probably be better to
21646 avoid generating a relaxation frag in the first place when it can be
21647 determined up front that a short instruction will suffice. */
21648
21649 gas_assert (fragp->fr_type == rs_machine_dependent);
21650 return INSN_SIZE;
21651}
21652
0110f2b8
PB
21653/* Estimate the size of a frag before relaxing. Assume everything fits in
21654 2 bytes. */
21655
c19d1205 21656int
0110f2b8 21657md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
21658 segT segtype ATTRIBUTE_UNUSED)
21659{
0110f2b8
PB
21660 fragp->fr_var = 2;
21661 return 2;
21662}
21663
21664/* Convert a machine dependent frag. */
21665
21666void
21667md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
21668{
21669 unsigned long insn;
21670 unsigned long old_op;
21671 char *buf;
21672 expressionS exp;
21673 fixS *fixp;
21674 int reloc_type;
21675 int pc_rel;
21676 int opcode;
21677
21678 buf = fragp->fr_literal + fragp->fr_fix;
21679
21680 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
21681 if (fragp->fr_symbol)
21682 {
0110f2b8
PB
21683 exp.X_op = O_symbol;
21684 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
21685 }
21686 else
21687 {
0110f2b8 21688 exp.X_op = O_constant;
5f4273c7 21689 }
0110f2b8
PB
21690 exp.X_add_number = fragp->fr_offset;
21691 opcode = fragp->fr_subtype;
21692 switch (opcode)
21693 {
21694 case T_MNEM_ldr_pc:
21695 case T_MNEM_ldr_pc2:
21696 case T_MNEM_ldr_sp:
21697 case T_MNEM_str_sp:
21698 case T_MNEM_ldr:
21699 case T_MNEM_ldrb:
21700 case T_MNEM_ldrh:
21701 case T_MNEM_str:
21702 case T_MNEM_strb:
21703 case T_MNEM_strh:
21704 if (fragp->fr_var == 4)
21705 {
5f4273c7 21706 insn = THUMB_OP32 (opcode);
0110f2b8
PB
21707 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
21708 {
21709 insn |= (old_op & 0x700) << 4;
21710 }
21711 else
21712 {
21713 insn |= (old_op & 7) << 12;
21714 insn |= (old_op & 0x38) << 13;
21715 }
21716 insn |= 0x00000c00;
21717 put_thumb32_insn (buf, insn);
21718 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
21719 }
21720 else
21721 {
21722 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
21723 }
21724 pc_rel = (opcode == T_MNEM_ldr_pc2);
21725 break;
21726 case T_MNEM_adr:
21727 if (fragp->fr_var == 4)
21728 {
21729 insn = THUMB_OP32 (opcode);
21730 insn |= (old_op & 0xf0) << 4;
21731 put_thumb32_insn (buf, insn);
21732 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
21733 }
21734 else
21735 {
21736 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21737 exp.X_add_number -= 4;
21738 }
21739 pc_rel = 1;
21740 break;
21741 case T_MNEM_mov:
21742 case T_MNEM_movs:
21743 case T_MNEM_cmp:
21744 case T_MNEM_cmn:
21745 if (fragp->fr_var == 4)
21746 {
21747 int r0off = (opcode == T_MNEM_mov
21748 || opcode == T_MNEM_movs) ? 0 : 8;
21749 insn = THUMB_OP32 (opcode);
21750 insn = (insn & 0xe1ffffff) | 0x10000000;
21751 insn |= (old_op & 0x700) << r0off;
21752 put_thumb32_insn (buf, insn);
21753 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
21754 }
21755 else
21756 {
21757 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
21758 }
21759 pc_rel = 0;
21760 break;
21761 case T_MNEM_b:
21762 if (fragp->fr_var == 4)
21763 {
21764 insn = THUMB_OP32(opcode);
21765 put_thumb32_insn (buf, insn);
21766 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
21767 }
21768 else
21769 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
21770 pc_rel = 1;
21771 break;
21772 case T_MNEM_bcond:
21773 if (fragp->fr_var == 4)
21774 {
21775 insn = THUMB_OP32(opcode);
21776 insn |= (old_op & 0xf00) << 14;
21777 put_thumb32_insn (buf, insn);
21778 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
21779 }
21780 else
21781 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
21782 pc_rel = 1;
21783 break;
21784 case T_MNEM_add_sp:
21785 case T_MNEM_add_pc:
21786 case T_MNEM_inc_sp:
21787 case T_MNEM_dec_sp:
21788 if (fragp->fr_var == 4)
21789 {
21790 /* ??? Choose between add and addw. */
21791 insn = THUMB_OP32 (opcode);
21792 insn |= (old_op & 0xf0) << 4;
21793 put_thumb32_insn (buf, insn);
16805f35
PB
21794 if (opcode == T_MNEM_add_pc)
21795 reloc_type = BFD_RELOC_ARM_T32_IMM12;
21796 else
21797 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
21798 }
21799 else
21800 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21801 pc_rel = 0;
21802 break;
21803
21804 case T_MNEM_addi:
21805 case T_MNEM_addis:
21806 case T_MNEM_subi:
21807 case T_MNEM_subis:
21808 if (fragp->fr_var == 4)
21809 {
21810 insn = THUMB_OP32 (opcode);
21811 insn |= (old_op & 0xf0) << 4;
21812 insn |= (old_op & 0xf) << 16;
21813 put_thumb32_insn (buf, insn);
16805f35
PB
21814 if (insn & (1 << 20))
21815 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
21816 else
21817 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
21818 }
21819 else
21820 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21821 pc_rel = 0;
21822 break;
21823 default:
5f4273c7 21824 abort ();
0110f2b8
PB
21825 }
21826 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 21827 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
21828 fixp->fx_file = fragp->fr_file;
21829 fixp->fx_line = fragp->fr_line;
21830 fragp->fr_fix += fragp->fr_var;
3cfdb781
TG
21831
21832 /* Set whether we use thumb-2 ISA based on final relaxation results. */
21833 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
21834 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
21835 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
0110f2b8
PB
21836}
21837
21838/* Return the size of a relaxable immediate operand instruction.
21839 SHIFT and SIZE specify the form of the allowable immediate. */
21840static int
21841relax_immediate (fragS *fragp, int size, int shift)
21842{
21843 offsetT offset;
21844 offsetT mask;
21845 offsetT low;
21846
21847 /* ??? Should be able to do better than this. */
21848 if (fragp->fr_symbol)
21849 return 4;
21850
21851 low = (1 << shift) - 1;
21852 mask = (1 << (shift + size)) - (1 << shift);
21853 offset = fragp->fr_offset;
21854 /* Force misaligned offsets to 32-bit variant. */
21855 if (offset & low)
5e77afaa 21856 return 4;
0110f2b8
PB
21857 if (offset & ~mask)
21858 return 4;
21859 return 2;
21860}
21861
5e77afaa
PB
21862/* Get the address of a symbol during relaxation. */
21863static addressT
5f4273c7 21864relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
21865{
21866 fragS *sym_frag;
21867 addressT addr;
21868 symbolS *sym;
21869
21870 sym = fragp->fr_symbol;
21871 sym_frag = symbol_get_frag (sym);
21872 know (S_GET_SEGMENT (sym) != absolute_section
21873 || sym_frag == &zero_address_frag);
21874 addr = S_GET_VALUE (sym) + fragp->fr_offset;
21875
21876 /* If frag has yet to be reached on this pass, assume it will
21877 move by STRETCH just as we did. If this is not so, it will
21878 be because some frag between grows, and that will force
21879 another pass. */
21880
21881 if (stretch != 0
21882 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
21883 {
21884 fragS *f;
21885
21886 /* Adjust stretch for any alignment frag. Note that if have
21887 been expanding the earlier code, the symbol may be
21888 defined in what appears to be an earlier frag. FIXME:
21889 This doesn't handle the fr_subtype field, which specifies
21890 a maximum number of bytes to skip when doing an
21891 alignment. */
21892 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
21893 {
21894 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
21895 {
21896 if (stretch < 0)
21897 stretch = - ((- stretch)
21898 & ~ ((1 << (int) f->fr_offset) - 1));
21899 else
21900 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
21901 if (stretch == 0)
21902 break;
21903 }
21904 }
21905 if (f != NULL)
21906 addr += stretch;
21907 }
5e77afaa
PB
21908
21909 return addr;
21910}
21911
0110f2b8
PB
21912/* Return the size of a relaxable adr pseudo-instruction or PC-relative
21913 load. */
21914static int
5e77afaa 21915relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
21916{
21917 addressT addr;
21918 offsetT val;
21919
21920 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
21921 if (fragp->fr_symbol == NULL
21922 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
21923 || sec != S_GET_SEGMENT (fragp->fr_symbol)
21924 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
21925 return 4;
21926
5f4273c7 21927 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
21928 addr = fragp->fr_address + fragp->fr_fix;
21929 addr = (addr + 4) & ~3;
5e77afaa 21930 /* Force misaligned targets to 32-bit variant. */
0110f2b8 21931 if (val & 3)
5e77afaa 21932 return 4;
0110f2b8
PB
21933 val -= addr;
21934 if (val < 0 || val > 1020)
21935 return 4;
21936 return 2;
21937}
21938
21939/* Return the size of a relaxable add/sub immediate instruction. */
21940static int
21941relax_addsub (fragS *fragp, asection *sec)
21942{
21943 char *buf;
21944 int op;
21945
21946 buf = fragp->fr_literal + fragp->fr_fix;
21947 op = bfd_get_16(sec->owner, buf);
21948 if ((op & 0xf) == ((op >> 4) & 0xf))
21949 return relax_immediate (fragp, 8, 0);
21950 else
21951 return relax_immediate (fragp, 3, 0);
21952}
21953
e83a675f
RE
21954/* Return TRUE iff the definition of symbol S could be pre-empted
21955 (overridden) at link or load time. */
21956static bfd_boolean
21957symbol_preemptible (symbolS *s)
21958{
21959 /* Weak symbols can always be pre-empted. */
21960 if (S_IS_WEAK (s))
21961 return TRUE;
21962
21963 /* Non-global symbols cannot be pre-empted. */
21964 if (! S_IS_EXTERNAL (s))
21965 return FALSE;
21966
21967#ifdef OBJ_ELF
21968 /* In ELF, a global symbol can be marked protected, or private. In that
21969 case it can't be pre-empted (other definitions in the same link unit
21970 would violate the ODR). */
21971 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
21972 return FALSE;
21973#endif
21974
21975 /* Other global symbols might be pre-empted. */
21976 return TRUE;
21977}
0110f2b8
PB
21978
21979/* Return the size of a relaxable branch instruction. BITS is the
21980 size of the offset field in the narrow instruction. */
21981
21982static int
5e77afaa 21983relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
21984{
21985 addressT addr;
21986 offsetT val;
21987 offsetT limit;
21988
21989 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 21990 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
21991 || sec != S_GET_SEGMENT (fragp->fr_symbol)
21992 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
21993 return 4;
21994
267bf995 21995#ifdef OBJ_ELF
e83a675f 21996 /* A branch to a function in ARM state will require interworking. */
267bf995
RR
21997 if (S_IS_DEFINED (fragp->fr_symbol)
21998 && ARM_IS_FUNC (fragp->fr_symbol))
21999 return 4;
e83a675f 22000#endif
0d9b4b55 22001
e83a675f 22002 if (symbol_preemptible (fragp->fr_symbol))
0d9b4b55 22003 return 4;
267bf995 22004
5f4273c7 22005 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
22006 addr = fragp->fr_address + fragp->fr_fix + 4;
22007 val -= addr;
22008
22009 /* Offset is a signed value *2 */
22010 limit = 1 << bits;
22011 if (val >= limit || val < -limit)
22012 return 4;
22013 return 2;
22014}
22015
22016
22017/* Relax a machine dependent frag. This returns the amount by which
22018 the current size of the frag should change. */
22019
22020int
5e77afaa 22021arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
22022{
22023 int oldsize;
22024 int newsize;
22025
22026 oldsize = fragp->fr_var;
22027 switch (fragp->fr_subtype)
22028 {
22029 case T_MNEM_ldr_pc2:
5f4273c7 22030 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
22031 break;
22032 case T_MNEM_ldr_pc:
22033 case T_MNEM_ldr_sp:
22034 case T_MNEM_str_sp:
5f4273c7 22035 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
22036 break;
22037 case T_MNEM_ldr:
22038 case T_MNEM_str:
5f4273c7 22039 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
22040 break;
22041 case T_MNEM_ldrh:
22042 case T_MNEM_strh:
5f4273c7 22043 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
22044 break;
22045 case T_MNEM_ldrb:
22046 case T_MNEM_strb:
5f4273c7 22047 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
22048 break;
22049 case T_MNEM_adr:
5f4273c7 22050 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
22051 break;
22052 case T_MNEM_mov:
22053 case T_MNEM_movs:
22054 case T_MNEM_cmp:
22055 case T_MNEM_cmn:
5f4273c7 22056 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
22057 break;
22058 case T_MNEM_b:
5f4273c7 22059 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
22060 break;
22061 case T_MNEM_bcond:
5f4273c7 22062 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
22063 break;
22064 case T_MNEM_add_sp:
22065 case T_MNEM_add_pc:
22066 newsize = relax_immediate (fragp, 8, 2);
22067 break;
22068 case T_MNEM_inc_sp:
22069 case T_MNEM_dec_sp:
22070 newsize = relax_immediate (fragp, 7, 2);
22071 break;
22072 case T_MNEM_addi:
22073 case T_MNEM_addis:
22074 case T_MNEM_subi:
22075 case T_MNEM_subis:
22076 newsize = relax_addsub (fragp, sec);
22077 break;
22078 default:
5f4273c7 22079 abort ();
0110f2b8 22080 }
5e77afaa
PB
22081
22082 fragp->fr_var = newsize;
22083 /* Freeze wide instructions that are at or before the same location as
22084 in the previous pass. This avoids infinite loops.
5f4273c7
NC
22085 Don't freeze them unconditionally because targets may be artificially
22086 misaligned by the expansion of preceding frags. */
5e77afaa 22087 if (stretch <= 0 && newsize > 2)
0110f2b8 22088 {
0110f2b8 22089 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 22090 frag_wane (fragp);
0110f2b8 22091 }
5e77afaa 22092
0110f2b8 22093 return newsize - oldsize;
c19d1205 22094}
b99bd4ef 22095
c19d1205 22096/* Round up a section size to the appropriate boundary. */
b99bd4ef 22097
c19d1205
ZW
22098valueT
22099md_section_align (segT segment ATTRIBUTE_UNUSED,
22100 valueT size)
22101{
6844c0cc 22102 return size;
bfae80f2 22103}
b99bd4ef 22104
c19d1205
ZW
22105/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
22106 of an rs_align_code fragment. */
22107
22108void
22109arm_handle_align (fragS * fragP)
bfae80f2 22110{
d9235011 22111 static unsigned char const arm_noop[2][2][4] =
e7495e45
NS
22112 {
22113 { /* ARMv1 */
22114 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
22115 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
22116 },
22117 { /* ARMv6k */
22118 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
22119 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
22120 },
22121 };
d9235011 22122 static unsigned char const thumb_noop[2][2][2] =
e7495e45
NS
22123 {
22124 { /* Thumb-1 */
22125 {0xc0, 0x46}, /* LE */
22126 {0x46, 0xc0}, /* BE */
22127 },
22128 { /* Thumb-2 */
22129 {0x00, 0xbf}, /* LE */
22130 {0xbf, 0x00} /* BE */
22131 }
22132 };
d9235011 22133 static unsigned char const wide_thumb_noop[2][4] =
e7495e45
NS
22134 { /* Wide Thumb-2 */
22135 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
22136 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
22137 };
c921be7d 22138
e7495e45 22139 unsigned bytes, fix, noop_size;
c19d1205 22140 char * p;
d9235011
TS
22141 const unsigned char * noop;
22142 const unsigned char *narrow_noop = NULL;
cd000bff
DJ
22143#ifdef OBJ_ELF
22144 enum mstate state;
22145#endif
bfae80f2 22146
c19d1205 22147 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
22148 return;
22149
c19d1205
ZW
22150 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
22151 p = fragP->fr_literal + fragP->fr_fix;
22152 fix = 0;
bfae80f2 22153
c19d1205
ZW
22154 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
22155 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 22156
cd000bff 22157 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 22158
cd000bff 22159 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 22160 {
7f78eb34
JW
22161 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
22162 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
e7495e45
NS
22163 {
22164 narrow_noop = thumb_noop[1][target_big_endian];
22165 noop = wide_thumb_noop[target_big_endian];
22166 }
c19d1205 22167 else
e7495e45
NS
22168 noop = thumb_noop[0][target_big_endian];
22169 noop_size = 2;
cd000bff
DJ
22170#ifdef OBJ_ELF
22171 state = MAP_THUMB;
22172#endif
7ed4c4c5
NC
22173 }
22174 else
22175 {
7f78eb34
JW
22176 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
22177 ? selected_cpu : arm_arch_none,
22178 arm_ext_v6k) != 0]
e7495e45
NS
22179 [target_big_endian];
22180 noop_size = 4;
cd000bff
DJ
22181#ifdef OBJ_ELF
22182 state = MAP_ARM;
22183#endif
7ed4c4c5 22184 }
c921be7d 22185
e7495e45 22186 fragP->fr_var = noop_size;
c921be7d 22187
c19d1205 22188 if (bytes & (noop_size - 1))
7ed4c4c5 22189 {
c19d1205 22190 fix = bytes & (noop_size - 1);
cd000bff
DJ
22191#ifdef OBJ_ELF
22192 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
22193#endif
c19d1205
ZW
22194 memset (p, 0, fix);
22195 p += fix;
22196 bytes -= fix;
a737bd4d 22197 }
a737bd4d 22198
e7495e45
NS
22199 if (narrow_noop)
22200 {
22201 if (bytes & noop_size)
22202 {
22203 /* Insert a narrow noop. */
22204 memcpy (p, narrow_noop, noop_size);
22205 p += noop_size;
22206 bytes -= noop_size;
22207 fix += noop_size;
22208 }
22209
22210 /* Use wide noops for the remainder */
22211 noop_size = 4;
22212 }
22213
c19d1205 22214 while (bytes >= noop_size)
a737bd4d 22215 {
c19d1205
ZW
22216 memcpy (p, noop, noop_size);
22217 p += noop_size;
22218 bytes -= noop_size;
22219 fix += noop_size;
a737bd4d
NC
22220 }
22221
c19d1205 22222 fragP->fr_fix += fix;
a737bd4d
NC
22223}
22224
c19d1205
ZW
22225/* Called from md_do_align. Used to create an alignment
22226 frag in a code section. */
22227
22228void
22229arm_frag_align_code (int n, int max)
bfae80f2 22230{
c19d1205 22231 char * p;
7ed4c4c5 22232
c19d1205 22233 /* We assume that there will never be a requirement
6ec8e702 22234 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 22235 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
22236 {
22237 char err_msg[128];
22238
fa94de6b 22239 sprintf (err_msg,
477330fc
RM
22240 _("alignments greater than %d bytes not supported in .text sections."),
22241 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 22242 as_fatal ("%s", err_msg);
6ec8e702 22243 }
bfae80f2 22244
c19d1205
ZW
22245 p = frag_var (rs_align_code,
22246 MAX_MEM_FOR_RS_ALIGN_CODE,
22247 1,
22248 (relax_substateT) max,
22249 (symbolS *) NULL,
22250 (offsetT) n,
22251 (char *) NULL);
22252 *p = 0;
22253}
bfae80f2 22254
8dc2430f
NC
22255/* Perform target specific initialisation of a frag.
22256 Note - despite the name this initialisation is not done when the frag
22257 is created, but only when its type is assigned. A frag can be created
22258 and used a long time before its type is set, so beware of assuming that
33eaf5de 22259 this initialisation is performed first. */
bfae80f2 22260
cd000bff
DJ
22261#ifndef OBJ_ELF
22262void
22263arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
22264{
22265 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 22266 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
22267}
22268
22269#else /* OBJ_ELF is defined. */
c19d1205 22270void
cd000bff 22271arm_init_frag (fragS * fragP, int max_chars)
c19d1205 22272{
e8d84ca1 22273 bfd_boolean frag_thumb_mode;
b968d18a 22274
8dc2430f
NC
22275 /* If the current ARM vs THUMB mode has not already
22276 been recorded into this frag then do so now. */
cd000bff 22277 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
b968d18a
JW
22278 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
22279
e8d84ca1
NC
22280 /* PR 21809: Do not set a mapping state for debug sections
22281 - it just confuses other tools. */
22282 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
22283 return;
22284
b968d18a 22285 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
cd000bff 22286
f9c1b181
RL
22287 /* Record a mapping symbol for alignment frags. We will delete this
22288 later if the alignment ends up empty. */
22289 switch (fragP->fr_type)
22290 {
22291 case rs_align:
22292 case rs_align_test:
22293 case rs_fill:
22294 mapping_state_2 (MAP_DATA, max_chars);
22295 break;
22296 case rs_align_code:
b968d18a 22297 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
f9c1b181
RL
22298 break;
22299 default:
22300 break;
cd000bff 22301 }
bfae80f2
RE
22302}
22303
c19d1205
ZW
22304/* When we change sections we need to issue a new mapping symbol. */
22305
22306void
22307arm_elf_change_section (void)
bfae80f2 22308{
c19d1205
ZW
22309 /* Link an unlinked unwind index table section to the .text section. */
22310 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
22311 && elf_linked_to_section (now_seg) == NULL)
22312 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
22313}
22314
c19d1205
ZW
22315int
22316arm_elf_section_type (const char * str, size_t len)
e45d0630 22317{
c19d1205
ZW
22318 if (len == 5 && strncmp (str, "exidx", 5) == 0)
22319 return SHT_ARM_EXIDX;
e45d0630 22320
c19d1205
ZW
22321 return -1;
22322}
22323\f
22324/* Code to deal with unwinding tables. */
e45d0630 22325
c19d1205 22326static void add_unwind_adjustsp (offsetT);
e45d0630 22327
5f4273c7 22328/* Generate any deferred unwind frame offset. */
e45d0630 22329
bfae80f2 22330static void
c19d1205 22331flush_pending_unwind (void)
bfae80f2 22332{
c19d1205 22333 offsetT offset;
bfae80f2 22334
c19d1205
ZW
22335 offset = unwind.pending_offset;
22336 unwind.pending_offset = 0;
22337 if (offset != 0)
22338 add_unwind_adjustsp (offset);
bfae80f2
RE
22339}
22340
c19d1205
ZW
22341/* Add an opcode to this list for this function. Two-byte opcodes should
22342 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
22343 order. */
22344
bfae80f2 22345static void
c19d1205 22346add_unwind_opcode (valueT op, int length)
bfae80f2 22347{
c19d1205
ZW
22348 /* Add any deferred stack adjustment. */
22349 if (unwind.pending_offset)
22350 flush_pending_unwind ();
bfae80f2 22351
c19d1205 22352 unwind.sp_restored = 0;
bfae80f2 22353
c19d1205 22354 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 22355 {
c19d1205
ZW
22356 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
22357 if (unwind.opcodes)
325801bd
TS
22358 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
22359 unwind.opcode_alloc);
c19d1205 22360 else
325801bd 22361 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
bfae80f2 22362 }
c19d1205 22363 while (length > 0)
bfae80f2 22364 {
c19d1205
ZW
22365 length--;
22366 unwind.opcodes[unwind.opcode_count] = op & 0xff;
22367 op >>= 8;
22368 unwind.opcode_count++;
bfae80f2 22369 }
bfae80f2
RE
22370}
22371
c19d1205
ZW
22372/* Add unwind opcodes to adjust the stack pointer. */
22373
bfae80f2 22374static void
c19d1205 22375add_unwind_adjustsp (offsetT offset)
bfae80f2 22376{
c19d1205 22377 valueT op;
bfae80f2 22378
c19d1205 22379 if (offset > 0x200)
bfae80f2 22380 {
c19d1205
ZW
22381 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
22382 char bytes[5];
22383 int n;
22384 valueT o;
bfae80f2 22385
c19d1205
ZW
22386 /* Long form: 0xb2, uleb128. */
22387 /* This might not fit in a word so add the individual bytes,
22388 remembering the list is built in reverse order. */
22389 o = (valueT) ((offset - 0x204) >> 2);
22390 if (o == 0)
22391 add_unwind_opcode (0, 1);
bfae80f2 22392
c19d1205
ZW
22393 /* Calculate the uleb128 encoding of the offset. */
22394 n = 0;
22395 while (o)
22396 {
22397 bytes[n] = o & 0x7f;
22398 o >>= 7;
22399 if (o)
22400 bytes[n] |= 0x80;
22401 n++;
22402 }
22403 /* Add the insn. */
22404 for (; n; n--)
22405 add_unwind_opcode (bytes[n - 1], 1);
22406 add_unwind_opcode (0xb2, 1);
22407 }
22408 else if (offset > 0x100)
bfae80f2 22409 {
c19d1205
ZW
22410 /* Two short opcodes. */
22411 add_unwind_opcode (0x3f, 1);
22412 op = (offset - 0x104) >> 2;
22413 add_unwind_opcode (op, 1);
bfae80f2 22414 }
c19d1205
ZW
22415 else if (offset > 0)
22416 {
22417 /* Short opcode. */
22418 op = (offset - 4) >> 2;
22419 add_unwind_opcode (op, 1);
22420 }
22421 else if (offset < 0)
bfae80f2 22422 {
c19d1205
ZW
22423 offset = -offset;
22424 while (offset > 0x100)
bfae80f2 22425 {
c19d1205
ZW
22426 add_unwind_opcode (0x7f, 1);
22427 offset -= 0x100;
bfae80f2 22428 }
c19d1205
ZW
22429 op = ((offset - 4) >> 2) | 0x40;
22430 add_unwind_opcode (op, 1);
bfae80f2 22431 }
bfae80f2
RE
22432}
22433
c19d1205 22434/* Finish the list of unwind opcodes for this function. */
0198d5e6 22435
c19d1205
ZW
22436static void
22437finish_unwind_opcodes (void)
bfae80f2 22438{
c19d1205 22439 valueT op;
bfae80f2 22440
c19d1205 22441 if (unwind.fp_used)
bfae80f2 22442 {
708587a4 22443 /* Adjust sp as necessary. */
c19d1205
ZW
22444 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
22445 flush_pending_unwind ();
bfae80f2 22446
c19d1205
ZW
22447 /* After restoring sp from the frame pointer. */
22448 op = 0x90 | unwind.fp_reg;
22449 add_unwind_opcode (op, 1);
22450 }
22451 else
22452 flush_pending_unwind ();
bfae80f2
RE
22453}
22454
bfae80f2 22455
c19d1205
ZW
22456/* Start an exception table entry. If idx is nonzero this is an index table
22457 entry. */
bfae80f2
RE
22458
22459static void
c19d1205 22460start_unwind_section (const segT text_seg, int idx)
bfae80f2 22461{
c19d1205
ZW
22462 const char * text_name;
22463 const char * prefix;
22464 const char * prefix_once;
22465 const char * group_name;
c19d1205 22466 char * sec_name;
c19d1205
ZW
22467 int type;
22468 int flags;
22469 int linkonce;
bfae80f2 22470
c19d1205 22471 if (idx)
bfae80f2 22472 {
c19d1205
ZW
22473 prefix = ELF_STRING_ARM_unwind;
22474 prefix_once = ELF_STRING_ARM_unwind_once;
22475 type = SHT_ARM_EXIDX;
bfae80f2 22476 }
c19d1205 22477 else
bfae80f2 22478 {
c19d1205
ZW
22479 prefix = ELF_STRING_ARM_unwind_info;
22480 prefix_once = ELF_STRING_ARM_unwind_info_once;
22481 type = SHT_PROGBITS;
bfae80f2
RE
22482 }
22483
c19d1205
ZW
22484 text_name = segment_name (text_seg);
22485 if (streq (text_name, ".text"))
22486 text_name = "";
22487
22488 if (strncmp (text_name, ".gnu.linkonce.t.",
22489 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 22490 {
c19d1205
ZW
22491 prefix = prefix_once;
22492 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
22493 }
22494
29a2809e 22495 sec_name = concat (prefix, text_name, (char *) NULL);
bfae80f2 22496
c19d1205
ZW
22497 flags = SHF_ALLOC;
22498 linkonce = 0;
22499 group_name = 0;
bfae80f2 22500
c19d1205
ZW
22501 /* Handle COMDAT group. */
22502 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 22503 {
c19d1205
ZW
22504 group_name = elf_group_name (text_seg);
22505 if (group_name == NULL)
22506 {
bd3ba5d1 22507 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
22508 segment_name (text_seg));
22509 ignore_rest_of_line ();
22510 return;
22511 }
22512 flags |= SHF_GROUP;
22513 linkonce = 1;
bfae80f2
RE
22514 }
22515
a91e1603
L
22516 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
22517 linkonce, 0);
bfae80f2 22518
5f4273c7 22519 /* Set the section link for index tables. */
c19d1205
ZW
22520 if (idx)
22521 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
22522}
22523
bfae80f2 22524
c19d1205
ZW
22525/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
22526 personality routine data. Returns zero, or the index table value for
cad0da33 22527 an inline entry. */
c19d1205
ZW
22528
22529static valueT
22530create_unwind_entry (int have_data)
bfae80f2 22531{
c19d1205
ZW
22532 int size;
22533 addressT where;
22534 char *ptr;
22535 /* The current word of data. */
22536 valueT data;
22537 /* The number of bytes left in this word. */
22538 int n;
bfae80f2 22539
c19d1205 22540 finish_unwind_opcodes ();
bfae80f2 22541
c19d1205
ZW
22542 /* Remember the current text section. */
22543 unwind.saved_seg = now_seg;
22544 unwind.saved_subseg = now_subseg;
bfae80f2 22545
c19d1205 22546 start_unwind_section (now_seg, 0);
bfae80f2 22547
c19d1205 22548 if (unwind.personality_routine == NULL)
bfae80f2 22549 {
c19d1205
ZW
22550 if (unwind.personality_index == -2)
22551 {
22552 if (have_data)
5f4273c7 22553 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
22554 return 1; /* EXIDX_CANTUNWIND. */
22555 }
bfae80f2 22556
c19d1205
ZW
22557 /* Use a default personality routine if none is specified. */
22558 if (unwind.personality_index == -1)
22559 {
22560 if (unwind.opcode_count > 3)
22561 unwind.personality_index = 1;
22562 else
22563 unwind.personality_index = 0;
22564 }
bfae80f2 22565
c19d1205
ZW
22566 /* Space for the personality routine entry. */
22567 if (unwind.personality_index == 0)
22568 {
22569 if (unwind.opcode_count > 3)
22570 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 22571
c19d1205
ZW
22572 if (!have_data)
22573 {
22574 /* All the data is inline in the index table. */
22575 data = 0x80;
22576 n = 3;
22577 while (unwind.opcode_count > 0)
22578 {
22579 unwind.opcode_count--;
22580 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22581 n--;
22582 }
bfae80f2 22583
c19d1205
ZW
22584 /* Pad with "finish" opcodes. */
22585 while (n--)
22586 data = (data << 8) | 0xb0;
bfae80f2 22587
c19d1205
ZW
22588 return data;
22589 }
22590 size = 0;
22591 }
22592 else
22593 /* We get two opcodes "free" in the first word. */
22594 size = unwind.opcode_count - 2;
22595 }
22596 else
5011093d 22597 {
cad0da33
NC
22598 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
22599 if (unwind.personality_index != -1)
22600 {
22601 as_bad (_("attempt to recreate an unwind entry"));
22602 return 1;
22603 }
5011093d
NC
22604
22605 /* An extra byte is required for the opcode count. */
22606 size = unwind.opcode_count + 1;
22607 }
bfae80f2 22608
c19d1205
ZW
22609 size = (size + 3) >> 2;
22610 if (size > 0xff)
22611 as_bad (_("too many unwind opcodes"));
bfae80f2 22612
c19d1205
ZW
22613 frag_align (2, 0, 0);
22614 record_alignment (now_seg, 2);
22615 unwind.table_entry = expr_build_dot ();
22616
22617 /* Allocate the table entry. */
22618 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
22619 /* PR 13449: Zero the table entries in case some of them are not used. */
22620 memset (ptr, 0, (size << 2) + 4);
c19d1205 22621 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 22622
c19d1205 22623 switch (unwind.personality_index)
bfae80f2 22624 {
c19d1205
ZW
22625 case -1:
22626 /* ??? Should this be a PLT generating relocation? */
22627 /* Custom personality routine. */
22628 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
22629 BFD_RELOC_ARM_PREL31);
bfae80f2 22630
c19d1205
ZW
22631 where += 4;
22632 ptr += 4;
bfae80f2 22633
c19d1205 22634 /* Set the first byte to the number of additional words. */
5011093d 22635 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
22636 n = 3;
22637 break;
bfae80f2 22638
c19d1205
ZW
22639 /* ABI defined personality routines. */
22640 case 0:
22641 /* Three opcodes bytes are packed into the first word. */
22642 data = 0x80;
22643 n = 3;
22644 break;
bfae80f2 22645
c19d1205
ZW
22646 case 1:
22647 case 2:
22648 /* The size and first two opcode bytes go in the first word. */
22649 data = ((0x80 + unwind.personality_index) << 8) | size;
22650 n = 2;
22651 break;
bfae80f2 22652
c19d1205
ZW
22653 default:
22654 /* Should never happen. */
22655 abort ();
22656 }
bfae80f2 22657
c19d1205
ZW
22658 /* Pack the opcodes into words (MSB first), reversing the list at the same
22659 time. */
22660 while (unwind.opcode_count > 0)
22661 {
22662 if (n == 0)
22663 {
22664 md_number_to_chars (ptr, data, 4);
22665 ptr += 4;
22666 n = 4;
22667 data = 0;
22668 }
22669 unwind.opcode_count--;
22670 n--;
22671 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22672 }
22673
22674 /* Finish off the last word. */
22675 if (n < 4)
22676 {
22677 /* Pad with "finish" opcodes. */
22678 while (n--)
22679 data = (data << 8) | 0xb0;
22680
22681 md_number_to_chars (ptr, data, 4);
22682 }
22683
22684 if (!have_data)
22685 {
22686 /* Add an empty descriptor if there is no user-specified data. */
22687 ptr = frag_more (4);
22688 md_number_to_chars (ptr, 0, 4);
22689 }
22690
22691 return 0;
bfae80f2
RE
22692}
22693
f0927246
NC
22694
22695/* Initialize the DWARF-2 unwind information for this procedure. */
22696
22697void
22698tc_arm_frame_initial_instructions (void)
22699{
22700 cfi_add_CFA_def_cfa (REG_SP, 0);
22701}
22702#endif /* OBJ_ELF */
22703
c19d1205
ZW
22704/* Convert REGNAME to a DWARF-2 register number. */
22705
22706int
1df69f4f 22707tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 22708{
1df69f4f 22709 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
1f5afe1c
NC
22710 if (reg != FAIL)
22711 return reg;
c19d1205 22712
1f5afe1c
NC
22713 /* PR 16694: Allow VFP registers as well. */
22714 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
22715 if (reg != FAIL)
22716 return 64 + reg;
c19d1205 22717
1f5afe1c
NC
22718 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
22719 if (reg != FAIL)
22720 return reg + 256;
22721
0198d5e6 22722 return FAIL;
bfae80f2
RE
22723}
22724
f0927246 22725#ifdef TE_PE
c19d1205 22726void
f0927246 22727tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 22728{
91d6fa6a 22729 expressionS exp;
bfae80f2 22730
91d6fa6a
NC
22731 exp.X_op = O_secrel;
22732 exp.X_add_symbol = symbol;
22733 exp.X_add_number = 0;
22734 emit_expr (&exp, size);
f0927246
NC
22735}
22736#endif
bfae80f2 22737
c19d1205 22738/* MD interface: Symbol and relocation handling. */
bfae80f2 22739
2fc8bdac
ZW
22740/* Return the address within the segment that a PC-relative fixup is
22741 relative to. For ARM, PC-relative fixups applied to instructions
22742 are generally relative to the location of the fixup plus 8 bytes.
22743 Thumb branches are offset by 4, and Thumb loads relative to PC
22744 require special handling. */
bfae80f2 22745
c19d1205 22746long
2fc8bdac 22747md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 22748{
2fc8bdac
ZW
22749 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
22750
22751 /* If this is pc-relative and we are going to emit a relocation
22752 then we just want to put out any pipeline compensation that the linker
53baae48
NC
22753 will need. Otherwise we want to use the calculated base.
22754 For WinCE we skip the bias for externals as well, since this
22755 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 22756 if (fixP->fx_pcrel
2fc8bdac 22757 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
22758 || (arm_force_relocation (fixP)
22759#ifdef TE_WINCE
22760 && !S_IS_EXTERNAL (fixP->fx_addsy)
22761#endif
22762 )))
2fc8bdac 22763 base = 0;
bfae80f2 22764
267bf995 22765
c19d1205 22766 switch (fixP->fx_r_type)
bfae80f2 22767 {
2fc8bdac
ZW
22768 /* PC relative addressing on the Thumb is slightly odd as the
22769 bottom two bits of the PC are forced to zero for the
22770 calculation. This happens *after* application of the
22771 pipeline offset. However, Thumb adrl already adjusts for
22772 this, so we need not do it again. */
c19d1205 22773 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 22774 return base & ~3;
c19d1205
ZW
22775
22776 case BFD_RELOC_ARM_THUMB_OFFSET:
22777 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 22778 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 22779 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 22780 return (base + 4) & ~3;
c19d1205 22781
2fc8bdac
ZW
22782 /* Thumb branches are simply offset by +4. */
22783 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22784 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22785 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22786 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 22787 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 22788 return base + 4;
bfae80f2 22789
267bf995 22790 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
22791 if (fixP->fx_addsy
22792 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22793 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995 22794 && ARM_IS_FUNC (fixP->fx_addsy)
477330fc
RM
22795 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22796 base = fixP->fx_where + fixP->fx_frag->fr_address;
267bf995
RR
22797 return base + 4;
22798
00adf2d4
JB
22799 /* BLX is like branches above, but forces the low two bits of PC to
22800 zero. */
486499d0
CL
22801 case BFD_RELOC_THUMB_PCREL_BLX:
22802 if (fixP->fx_addsy
22803 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22804 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
22805 && THUMB_IS_FUNC (fixP->fx_addsy)
22806 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22807 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
22808 return (base + 4) & ~3;
22809
2fc8bdac
ZW
22810 /* ARM mode branches are offset by +8. However, the Windows CE
22811 loader expects the relocation not to take this into account. */
267bf995 22812 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
22813 if (fixP->fx_addsy
22814 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22815 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
22816 && ARM_IS_FUNC (fixP->fx_addsy)
22817 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22818 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 22819 return base + 8;
267bf995 22820
486499d0
CL
22821 case BFD_RELOC_ARM_PCREL_CALL:
22822 if (fixP->fx_addsy
22823 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22824 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
22825 && THUMB_IS_FUNC (fixP->fx_addsy)
22826 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22827 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 22828 return base + 8;
267bf995 22829
2fc8bdac 22830 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 22831 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 22832 case BFD_RELOC_ARM_PLT32:
c19d1205 22833#ifdef TE_WINCE
5f4273c7 22834 /* When handling fixups immediately, because we have already
477330fc 22835 discovered the value of a symbol, or the address of the frag involved
53baae48 22836 we must account for the offset by +8, as the OS loader will never see the reloc.
477330fc
RM
22837 see fixup_segment() in write.c
22838 The S_IS_EXTERNAL test handles the case of global symbols.
22839 Those need the calculated base, not just the pipe compensation the linker will need. */
53baae48
NC
22840 if (fixP->fx_pcrel
22841 && fixP->fx_addsy != NULL
22842 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22843 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
22844 return base + 8;
2fc8bdac 22845 return base;
c19d1205 22846#else
2fc8bdac 22847 return base + 8;
c19d1205 22848#endif
2fc8bdac 22849
267bf995 22850
2fc8bdac
ZW
22851 /* ARM mode loads relative to PC are also offset by +8. Unlike
22852 branches, the Windows CE loader *does* expect the relocation
22853 to take this into account. */
22854 case BFD_RELOC_ARM_OFFSET_IMM:
22855 case BFD_RELOC_ARM_OFFSET_IMM8:
22856 case BFD_RELOC_ARM_HWLITERAL:
22857 case BFD_RELOC_ARM_LITERAL:
22858 case BFD_RELOC_ARM_CP_OFF_IMM:
22859 return base + 8;
22860
22861
22862 /* Other PC-relative relocations are un-offset. */
22863 default:
22864 return base;
22865 }
bfae80f2
RE
22866}
22867
8b2d793c
NC
22868static bfd_boolean flag_warn_syms = TRUE;
22869
ae8714c2
NC
22870bfd_boolean
22871arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
bfae80f2 22872{
8b2d793c
NC
22873 /* PR 18347 - Warn if the user attempts to create a symbol with the same
22874 name as an ARM instruction. Whilst strictly speaking it is allowed, it
22875 does mean that the resulting code might be very confusing to the reader.
22876 Also this warning can be triggered if the user omits an operand before
22877 an immediate address, eg:
22878
22879 LDR =foo
22880
22881 GAS treats this as an assignment of the value of the symbol foo to a
22882 symbol LDR, and so (without this code) it will not issue any kind of
22883 warning or error message.
22884
22885 Note - ARM instructions are case-insensitive but the strings in the hash
22886 table are all stored in lower case, so we must first ensure that name is
ae8714c2
NC
22887 lower case too. */
22888 if (flag_warn_syms && arm_ops_hsh)
8b2d793c
NC
22889 {
22890 char * nbuf = strdup (name);
22891 char * p;
22892
22893 for (p = nbuf; *p; p++)
22894 *p = TOLOWER (*p);
22895 if (hash_find (arm_ops_hsh, nbuf) != NULL)
22896 {
22897 static struct hash_control * already_warned = NULL;
22898
22899 if (already_warned == NULL)
22900 already_warned = hash_new ();
22901 /* Only warn about the symbol once. To keep the code
22902 simple we let hash_insert do the lookup for us. */
22903 if (hash_insert (already_warned, name, NULL) == NULL)
ae8714c2 22904 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
8b2d793c
NC
22905 }
22906 else
22907 free (nbuf);
22908 }
3739860c 22909
ae8714c2
NC
22910 return FALSE;
22911}
22912
22913/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
22914 Otherwise we have no need to default values of symbols. */
22915
22916symbolS *
22917md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
22918{
22919#ifdef OBJ_ELF
22920 if (name[0] == '_' && name[1] == 'G'
22921 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
22922 {
22923 if (!GOT_symbol)
22924 {
22925 if (symbol_find (name))
22926 as_bad (_("GOT already in the symbol table"));
22927
22928 GOT_symbol = symbol_new (name, undefined_section,
22929 (valueT) 0, & zero_address_frag);
22930 }
22931
22932 return GOT_symbol;
22933 }
22934#endif
22935
c921be7d 22936 return NULL;
bfae80f2
RE
22937}
22938
55cf6793 22939/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
22940 computed as two separate immediate values, added together. We
22941 already know that this value cannot be computed by just one ARM
22942 instruction. */
22943
22944static unsigned int
22945validate_immediate_twopart (unsigned int val,
22946 unsigned int * highpart)
bfae80f2 22947{
c19d1205
ZW
22948 unsigned int a;
22949 unsigned int i;
bfae80f2 22950
c19d1205
ZW
22951 for (i = 0; i < 32; i += 2)
22952 if (((a = rotate_left (val, i)) & 0xff) != 0)
22953 {
22954 if (a & 0xff00)
22955 {
22956 if (a & ~ 0xffff)
22957 continue;
22958 * highpart = (a >> 8) | ((i + 24) << 7);
22959 }
22960 else if (a & 0xff0000)
22961 {
22962 if (a & 0xff000000)
22963 continue;
22964 * highpart = (a >> 16) | ((i + 16) << 7);
22965 }
22966 else
22967 {
9c2799c2 22968 gas_assert (a & 0xff000000);
c19d1205
ZW
22969 * highpart = (a >> 24) | ((i + 8) << 7);
22970 }
bfae80f2 22971
c19d1205
ZW
22972 return (a & 0xff) | (i << 7);
22973 }
bfae80f2 22974
c19d1205 22975 return FAIL;
bfae80f2
RE
22976}
22977
c19d1205
ZW
22978static int
22979validate_offset_imm (unsigned int val, int hwse)
22980{
22981 if ((hwse && val > 255) || val > 4095)
22982 return FAIL;
22983 return val;
22984}
bfae80f2 22985
55cf6793 22986/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
22987 negative immediate constant by altering the instruction. A bit of
22988 a hack really.
22989 MOV <-> MVN
22990 AND <-> BIC
22991 ADC <-> SBC
22992 by inverting the second operand, and
22993 ADD <-> SUB
22994 CMP <-> CMN
22995 by negating the second operand. */
bfae80f2 22996
c19d1205
ZW
22997static int
22998negate_data_op (unsigned long * instruction,
22999 unsigned long value)
bfae80f2 23000{
c19d1205
ZW
23001 int op, new_inst;
23002 unsigned long negated, inverted;
bfae80f2 23003
c19d1205
ZW
23004 negated = encode_arm_immediate (-value);
23005 inverted = encode_arm_immediate (~value);
bfae80f2 23006
c19d1205
ZW
23007 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
23008 switch (op)
bfae80f2 23009 {
c19d1205
ZW
23010 /* First negates. */
23011 case OPCODE_SUB: /* ADD <-> SUB */
23012 new_inst = OPCODE_ADD;
23013 value = negated;
23014 break;
bfae80f2 23015
c19d1205
ZW
23016 case OPCODE_ADD:
23017 new_inst = OPCODE_SUB;
23018 value = negated;
23019 break;
bfae80f2 23020
c19d1205
ZW
23021 case OPCODE_CMP: /* CMP <-> CMN */
23022 new_inst = OPCODE_CMN;
23023 value = negated;
23024 break;
bfae80f2 23025
c19d1205
ZW
23026 case OPCODE_CMN:
23027 new_inst = OPCODE_CMP;
23028 value = negated;
23029 break;
bfae80f2 23030
c19d1205
ZW
23031 /* Now Inverted ops. */
23032 case OPCODE_MOV: /* MOV <-> MVN */
23033 new_inst = OPCODE_MVN;
23034 value = inverted;
23035 break;
bfae80f2 23036
c19d1205
ZW
23037 case OPCODE_MVN:
23038 new_inst = OPCODE_MOV;
23039 value = inverted;
23040 break;
bfae80f2 23041
c19d1205
ZW
23042 case OPCODE_AND: /* AND <-> BIC */
23043 new_inst = OPCODE_BIC;
23044 value = inverted;
23045 break;
bfae80f2 23046
c19d1205
ZW
23047 case OPCODE_BIC:
23048 new_inst = OPCODE_AND;
23049 value = inverted;
23050 break;
bfae80f2 23051
c19d1205
ZW
23052 case OPCODE_ADC: /* ADC <-> SBC */
23053 new_inst = OPCODE_SBC;
23054 value = inverted;
23055 break;
bfae80f2 23056
c19d1205
ZW
23057 case OPCODE_SBC:
23058 new_inst = OPCODE_ADC;
23059 value = inverted;
23060 break;
bfae80f2 23061
c19d1205
ZW
23062 /* We cannot do anything. */
23063 default:
23064 return FAIL;
b99bd4ef
NC
23065 }
23066
c19d1205
ZW
23067 if (value == (unsigned) FAIL)
23068 return FAIL;
23069
23070 *instruction &= OPCODE_MASK;
23071 *instruction |= new_inst << DATA_OP_SHIFT;
23072 return value;
b99bd4ef
NC
23073}
23074
ef8d22e6
PB
23075/* Like negate_data_op, but for Thumb-2. */
23076
23077static unsigned int
16dd5e42 23078thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
23079{
23080 int op, new_inst;
23081 int rd;
16dd5e42 23082 unsigned int negated, inverted;
ef8d22e6
PB
23083
23084 negated = encode_thumb32_immediate (-value);
23085 inverted = encode_thumb32_immediate (~value);
23086
23087 rd = (*instruction >> 8) & 0xf;
23088 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
23089 switch (op)
23090 {
23091 /* ADD <-> SUB. Includes CMP <-> CMN. */
23092 case T2_OPCODE_SUB:
23093 new_inst = T2_OPCODE_ADD;
23094 value = negated;
23095 break;
23096
23097 case T2_OPCODE_ADD:
23098 new_inst = T2_OPCODE_SUB;
23099 value = negated;
23100 break;
23101
23102 /* ORR <-> ORN. Includes MOV <-> MVN. */
23103 case T2_OPCODE_ORR:
23104 new_inst = T2_OPCODE_ORN;
23105 value = inverted;
23106 break;
23107
23108 case T2_OPCODE_ORN:
23109 new_inst = T2_OPCODE_ORR;
23110 value = inverted;
23111 break;
23112
23113 /* AND <-> BIC. TST has no inverted equivalent. */
23114 case T2_OPCODE_AND:
23115 new_inst = T2_OPCODE_BIC;
23116 if (rd == 15)
23117 value = FAIL;
23118 else
23119 value = inverted;
23120 break;
23121
23122 case T2_OPCODE_BIC:
23123 new_inst = T2_OPCODE_AND;
23124 value = inverted;
23125 break;
23126
23127 /* ADC <-> SBC */
23128 case T2_OPCODE_ADC:
23129 new_inst = T2_OPCODE_SBC;
23130 value = inverted;
23131 break;
23132
23133 case T2_OPCODE_SBC:
23134 new_inst = T2_OPCODE_ADC;
23135 value = inverted;
23136 break;
23137
23138 /* We cannot do anything. */
23139 default:
23140 return FAIL;
23141 }
23142
16dd5e42 23143 if (value == (unsigned int)FAIL)
ef8d22e6
PB
23144 return FAIL;
23145
23146 *instruction &= T2_OPCODE_MASK;
23147 *instruction |= new_inst << T2_DATA_OP_SHIFT;
23148 return value;
23149}
23150
8f06b2d8 23151/* Read a 32-bit thumb instruction from buf. */
0198d5e6 23152
8f06b2d8
PB
23153static unsigned long
23154get_thumb32_insn (char * buf)
23155{
23156 unsigned long insn;
23157 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
23158 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23159
23160 return insn;
23161}
23162
a8bc6c78
PB
23163/* We usually want to set the low bit on the address of thumb function
23164 symbols. In particular .word foo - . should have the low bit set.
23165 Generic code tries to fold the difference of two symbols to
23166 a constant. Prevent this and force a relocation when the first symbols
23167 is a thumb function. */
c921be7d
NC
23168
23169bfd_boolean
a8bc6c78
PB
23170arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
23171{
23172 if (op == O_subtract
23173 && l->X_op == O_symbol
23174 && r->X_op == O_symbol
23175 && THUMB_IS_FUNC (l->X_add_symbol))
23176 {
23177 l->X_op = O_subtract;
23178 l->X_op_symbol = r->X_add_symbol;
23179 l->X_add_number -= r->X_add_number;
c921be7d 23180 return TRUE;
a8bc6c78 23181 }
c921be7d 23182
a8bc6c78 23183 /* Process as normal. */
c921be7d 23184 return FALSE;
a8bc6c78
PB
23185}
23186
4a42ebbc
RR
23187/* Encode Thumb2 unconditional branches and calls. The encoding
23188 for the 2 are identical for the immediate values. */
23189
23190static void
23191encode_thumb2_b_bl_offset (char * buf, offsetT value)
23192{
23193#define T2I1I2MASK ((1 << 13) | (1 << 11))
23194 offsetT newval;
23195 offsetT newval2;
23196 addressT S, I1, I2, lo, hi;
23197
23198 S = (value >> 24) & 0x01;
23199 I1 = (value >> 23) & 0x01;
23200 I2 = (value >> 22) & 0x01;
23201 hi = (value >> 12) & 0x3ff;
fa94de6b 23202 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
23203 newval = md_chars_to_number (buf, THUMB_SIZE);
23204 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23205 newval |= (S << 10) | hi;
23206 newval2 &= ~T2I1I2MASK;
23207 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
23208 md_number_to_chars (buf, newval, THUMB_SIZE);
23209 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
23210}
23211
c19d1205 23212void
55cf6793 23213md_apply_fix (fixS * fixP,
c19d1205
ZW
23214 valueT * valP,
23215 segT seg)
23216{
23217 offsetT value = * valP;
23218 offsetT newval;
23219 unsigned int newimm;
23220 unsigned long temp;
23221 int sign;
23222 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 23223
9c2799c2 23224 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 23225
c19d1205 23226 /* Note whether this will delete the relocation. */
4962c51a 23227
c19d1205
ZW
23228 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
23229 fixP->fx_done = 1;
b99bd4ef 23230
adbaf948 23231 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 23232 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
23233 for emit_reloc. */
23234 value &= 0xffffffff;
23235 value ^= 0x80000000;
5f4273c7 23236 value -= 0x80000000;
adbaf948
ZW
23237
23238 *valP = value;
c19d1205 23239 fixP->fx_addnumber = value;
b99bd4ef 23240
adbaf948
ZW
23241 /* Same treatment for fixP->fx_offset. */
23242 fixP->fx_offset &= 0xffffffff;
23243 fixP->fx_offset ^= 0x80000000;
23244 fixP->fx_offset -= 0x80000000;
23245
c19d1205 23246 switch (fixP->fx_r_type)
b99bd4ef 23247 {
c19d1205
ZW
23248 case BFD_RELOC_NONE:
23249 /* This will need to go in the object file. */
23250 fixP->fx_done = 0;
23251 break;
b99bd4ef 23252
c19d1205
ZW
23253 case BFD_RELOC_ARM_IMMEDIATE:
23254 /* We claim that this fixup has been processed here,
23255 even if in fact we generate an error because we do
23256 not have a reloc for it, so tc_gen_reloc will reject it. */
23257 fixP->fx_done = 1;
b99bd4ef 23258
77db8e2e 23259 if (fixP->fx_addsy)
b99bd4ef 23260 {
77db8e2e 23261 const char *msg = 0;
b99bd4ef 23262
77db8e2e
NC
23263 if (! S_IS_DEFINED (fixP->fx_addsy))
23264 msg = _("undefined symbol %s used as an immediate value");
23265 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
23266 msg = _("symbol %s is in a different section");
23267 else if (S_IS_WEAK (fixP->fx_addsy))
23268 msg = _("symbol %s is weak and may be overridden later");
23269
23270 if (msg)
23271 {
23272 as_bad_where (fixP->fx_file, fixP->fx_line,
23273 msg, S_GET_NAME (fixP->fx_addsy));
23274 break;
23275 }
42e5fcbf
AS
23276 }
23277
c19d1205
ZW
23278 temp = md_chars_to_number (buf, INSN_SIZE);
23279
5e73442d
SL
23280 /* If the offset is negative, we should use encoding A2 for ADR. */
23281 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
23282 newimm = negate_data_op (&temp, value);
23283 else
23284 {
23285 newimm = encode_arm_immediate (value);
23286
23287 /* If the instruction will fail, see if we can fix things up by
23288 changing the opcode. */
23289 if (newimm == (unsigned int) FAIL)
23290 newimm = negate_data_op (&temp, value);
bada4342
JW
23291 /* MOV accepts both ARM modified immediate (A1 encoding) and
23292 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
23293 When disassembling, MOV is preferred when there is no encoding
23294 overlap. */
23295 if (newimm == (unsigned int) FAIL
23296 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
23297 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
23298 && !((temp >> SBIT_SHIFT) & 0x1)
23299 && value >= 0 && value <= 0xffff)
23300 {
23301 /* Clear bits[23:20] to change encoding from A1 to A2. */
23302 temp &= 0xff0fffff;
23303 /* Encoding high 4bits imm. Code below will encode the remaining
23304 low 12bits. */
23305 temp |= (value & 0x0000f000) << 4;
23306 newimm = value & 0x00000fff;
23307 }
5e73442d
SL
23308 }
23309
23310 if (newimm == (unsigned int) FAIL)
b99bd4ef 23311 {
c19d1205
ZW
23312 as_bad_where (fixP->fx_file, fixP->fx_line,
23313 _("invalid constant (%lx) after fixup"),
23314 (unsigned long) value);
23315 break;
b99bd4ef 23316 }
b99bd4ef 23317
c19d1205
ZW
23318 newimm |= (temp & 0xfffff000);
23319 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
23320 break;
b99bd4ef 23321
c19d1205
ZW
23322 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
23323 {
23324 unsigned int highpart = 0;
23325 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 23326
77db8e2e 23327 if (fixP->fx_addsy)
42e5fcbf 23328 {
77db8e2e 23329 const char *msg = 0;
42e5fcbf 23330
77db8e2e
NC
23331 if (! S_IS_DEFINED (fixP->fx_addsy))
23332 msg = _("undefined symbol %s used as an immediate value");
23333 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
23334 msg = _("symbol %s is in a different section");
23335 else if (S_IS_WEAK (fixP->fx_addsy))
23336 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 23337
77db8e2e
NC
23338 if (msg)
23339 {
23340 as_bad_where (fixP->fx_file, fixP->fx_line,
23341 msg, S_GET_NAME (fixP->fx_addsy));
23342 break;
23343 }
23344 }
fa94de6b 23345
c19d1205
ZW
23346 newimm = encode_arm_immediate (value);
23347 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 23348
c19d1205
ZW
23349 /* If the instruction will fail, see if we can fix things up by
23350 changing the opcode. */
23351 if (newimm == (unsigned int) FAIL
23352 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
23353 {
23354 /* No ? OK - try using two ADD instructions to generate
23355 the value. */
23356 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 23357
c19d1205
ZW
23358 /* Yes - then make sure that the second instruction is
23359 also an add. */
23360 if (newimm != (unsigned int) FAIL)
23361 newinsn = temp;
23362 /* Still No ? Try using a negated value. */
23363 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
23364 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
23365 /* Otherwise - give up. */
23366 else
23367 {
23368 as_bad_where (fixP->fx_file, fixP->fx_line,
23369 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
23370 (long) value);
23371 break;
23372 }
b99bd4ef 23373
c19d1205
ZW
23374 /* Replace the first operand in the 2nd instruction (which
23375 is the PC) with the destination register. We have
23376 already added in the PC in the first instruction and we
23377 do not want to do it again. */
23378 newinsn &= ~ 0xf0000;
23379 newinsn |= ((newinsn & 0x0f000) << 4);
23380 }
b99bd4ef 23381
c19d1205
ZW
23382 newimm |= (temp & 0xfffff000);
23383 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 23384
c19d1205
ZW
23385 highpart |= (newinsn & 0xfffff000);
23386 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
23387 }
23388 break;
b99bd4ef 23389
c19d1205 23390 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
23391 if (!fixP->fx_done && seg->use_rela_p)
23392 value = 0;
1a0670f3 23393 /* Fall through. */
00a97672 23394
c19d1205 23395 case BFD_RELOC_ARM_LITERAL:
26d97720 23396 sign = value > 0;
b99bd4ef 23397
c19d1205
ZW
23398 if (value < 0)
23399 value = - value;
b99bd4ef 23400
c19d1205 23401 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 23402 {
c19d1205
ZW
23403 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
23404 as_bad_where (fixP->fx_file, fixP->fx_line,
23405 _("invalid literal constant: pool needs to be closer"));
23406 else
23407 as_bad_where (fixP->fx_file, fixP->fx_line,
23408 _("bad immediate value for offset (%ld)"),
23409 (long) value);
23410 break;
f03698e6
RE
23411 }
23412
c19d1205 23413 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
23414 if (value == 0)
23415 newval &= 0xfffff000;
23416 else
23417 {
23418 newval &= 0xff7ff000;
23419 newval |= value | (sign ? INDEX_UP : 0);
23420 }
c19d1205
ZW
23421 md_number_to_chars (buf, newval, INSN_SIZE);
23422 break;
b99bd4ef 23423
c19d1205
ZW
23424 case BFD_RELOC_ARM_OFFSET_IMM8:
23425 case BFD_RELOC_ARM_HWLITERAL:
26d97720 23426 sign = value > 0;
b99bd4ef 23427
c19d1205
ZW
23428 if (value < 0)
23429 value = - value;
b99bd4ef 23430
c19d1205 23431 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 23432 {
c19d1205
ZW
23433 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
23434 as_bad_where (fixP->fx_file, fixP->fx_line,
23435 _("invalid literal constant: pool needs to be closer"));
23436 else
427d0db6
RM
23437 as_bad_where (fixP->fx_file, fixP->fx_line,
23438 _("bad immediate value for 8-bit offset (%ld)"),
23439 (long) value);
c19d1205 23440 break;
b99bd4ef
NC
23441 }
23442
c19d1205 23443 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
23444 if (value == 0)
23445 newval &= 0xfffff0f0;
23446 else
23447 {
23448 newval &= 0xff7ff0f0;
23449 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
23450 }
c19d1205
ZW
23451 md_number_to_chars (buf, newval, INSN_SIZE);
23452 break;
b99bd4ef 23453
c19d1205
ZW
23454 case BFD_RELOC_ARM_T32_OFFSET_U8:
23455 if (value < 0 || value > 1020 || value % 4 != 0)
23456 as_bad_where (fixP->fx_file, fixP->fx_line,
23457 _("bad immediate value for offset (%ld)"), (long) value);
23458 value /= 4;
b99bd4ef 23459
c19d1205 23460 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
23461 newval |= value;
23462 md_number_to_chars (buf+2, newval, THUMB_SIZE);
23463 break;
b99bd4ef 23464
c19d1205
ZW
23465 case BFD_RELOC_ARM_T32_OFFSET_IMM:
23466 /* This is a complicated relocation used for all varieties of Thumb32
23467 load/store instruction with immediate offset:
23468
23469 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
477330fc 23470 *4, optional writeback(W)
c19d1205
ZW
23471 (doubleword load/store)
23472
23473 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
23474 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
23475 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
23476 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
23477 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
23478
23479 Uppercase letters indicate bits that are already encoded at
23480 this point. Lowercase letters are our problem. For the
23481 second block of instructions, the secondary opcode nybble
23482 (bits 8..11) is present, and bit 23 is zero, even if this is
23483 a PC-relative operation. */
23484 newval = md_chars_to_number (buf, THUMB_SIZE);
23485 newval <<= 16;
23486 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 23487
c19d1205 23488 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 23489 {
c19d1205
ZW
23490 /* Doubleword load/store: 8-bit offset, scaled by 4. */
23491 if (value >= 0)
23492 newval |= (1 << 23);
23493 else
23494 value = -value;
23495 if (value % 4 != 0)
23496 {
23497 as_bad_where (fixP->fx_file, fixP->fx_line,
23498 _("offset not a multiple of 4"));
23499 break;
23500 }
23501 value /= 4;
216d22bc 23502 if (value > 0xff)
c19d1205
ZW
23503 {
23504 as_bad_where (fixP->fx_file, fixP->fx_line,
23505 _("offset out of range"));
23506 break;
23507 }
23508 newval &= ~0xff;
b99bd4ef 23509 }
c19d1205 23510 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 23511 {
c19d1205
ZW
23512 /* PC-relative, 12-bit offset. */
23513 if (value >= 0)
23514 newval |= (1 << 23);
23515 else
23516 value = -value;
216d22bc 23517 if (value > 0xfff)
c19d1205
ZW
23518 {
23519 as_bad_where (fixP->fx_file, fixP->fx_line,
23520 _("offset out of range"));
23521 break;
23522 }
23523 newval &= ~0xfff;
b99bd4ef 23524 }
c19d1205 23525 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 23526 {
c19d1205
ZW
23527 /* Writeback: 8-bit, +/- offset. */
23528 if (value >= 0)
23529 newval |= (1 << 9);
23530 else
23531 value = -value;
216d22bc 23532 if (value > 0xff)
c19d1205
ZW
23533 {
23534 as_bad_where (fixP->fx_file, fixP->fx_line,
23535 _("offset out of range"));
23536 break;
23537 }
23538 newval &= ~0xff;
b99bd4ef 23539 }
c19d1205 23540 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 23541 {
c19d1205 23542 /* T-instruction: positive 8-bit offset. */
216d22bc 23543 if (value < 0 || value > 0xff)
b99bd4ef 23544 {
c19d1205
ZW
23545 as_bad_where (fixP->fx_file, fixP->fx_line,
23546 _("offset out of range"));
23547 break;
b99bd4ef 23548 }
c19d1205
ZW
23549 newval &= ~0xff;
23550 newval |= value;
b99bd4ef
NC
23551 }
23552 else
b99bd4ef 23553 {
c19d1205
ZW
23554 /* Positive 12-bit or negative 8-bit offset. */
23555 int limit;
23556 if (value >= 0)
b99bd4ef 23557 {
c19d1205
ZW
23558 newval |= (1 << 23);
23559 limit = 0xfff;
23560 }
23561 else
23562 {
23563 value = -value;
23564 limit = 0xff;
23565 }
23566 if (value > limit)
23567 {
23568 as_bad_where (fixP->fx_file, fixP->fx_line,
23569 _("offset out of range"));
23570 break;
b99bd4ef 23571 }
c19d1205 23572 newval &= ~limit;
b99bd4ef 23573 }
b99bd4ef 23574
c19d1205
ZW
23575 newval |= value;
23576 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
23577 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
23578 break;
404ff6b5 23579
c19d1205
ZW
23580 case BFD_RELOC_ARM_SHIFT_IMM:
23581 newval = md_chars_to_number (buf, INSN_SIZE);
23582 if (((unsigned long) value) > 32
23583 || (value == 32
23584 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
23585 {
23586 as_bad_where (fixP->fx_file, fixP->fx_line,
23587 _("shift expression is too large"));
23588 break;
23589 }
404ff6b5 23590
c19d1205
ZW
23591 if (value == 0)
23592 /* Shifts of zero must be done as lsl. */
23593 newval &= ~0x60;
23594 else if (value == 32)
23595 value = 0;
23596 newval &= 0xfffff07f;
23597 newval |= (value & 0x1f) << 7;
23598 md_number_to_chars (buf, newval, INSN_SIZE);
23599 break;
404ff6b5 23600
c19d1205 23601 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 23602 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 23603 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 23604 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
23605 /* We claim that this fixup has been processed here,
23606 even if in fact we generate an error because we do
23607 not have a reloc for it, so tc_gen_reloc will reject it. */
23608 fixP->fx_done = 1;
404ff6b5 23609
c19d1205
ZW
23610 if (fixP->fx_addsy
23611 && ! S_IS_DEFINED (fixP->fx_addsy))
23612 {
23613 as_bad_where (fixP->fx_file, fixP->fx_line,
23614 _("undefined symbol %s used as an immediate value"),
23615 S_GET_NAME (fixP->fx_addsy));
23616 break;
23617 }
404ff6b5 23618
c19d1205
ZW
23619 newval = md_chars_to_number (buf, THUMB_SIZE);
23620 newval <<= 16;
23621 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 23622
16805f35 23623 newimm = FAIL;
bada4342
JW
23624 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
23625 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
23626 Thumb2 modified immediate encoding (T2). */
23627 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
16805f35 23628 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
23629 {
23630 newimm = encode_thumb32_immediate (value);
23631 if (newimm == (unsigned int) FAIL)
23632 newimm = thumb32_negate_data_op (&newval, value);
23633 }
bada4342 23634 if (newimm == (unsigned int) FAIL)
92e90b6e 23635 {
bada4342 23636 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
e9f89963 23637 {
bada4342
JW
23638 /* Turn add/sum into addw/subw. */
23639 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
23640 newval = (newval & 0xfeffffff) | 0x02000000;
23641 /* No flat 12-bit imm encoding for addsw/subsw. */
23642 if ((newval & 0x00100000) == 0)
40f246e3 23643 {
bada4342
JW
23644 /* 12 bit immediate for addw/subw. */
23645 if (value < 0)
23646 {
23647 value = -value;
23648 newval ^= 0x00a00000;
23649 }
23650 if (value > 0xfff)
23651 newimm = (unsigned int) FAIL;
23652 else
23653 newimm = value;
23654 }
23655 }
23656 else
23657 {
23658 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
23659 UINT16 (T3 encoding), MOVW only accepts UINT16. When
23660 disassembling, MOV is preferred when there is no encoding
db7bf105 23661 overlap. */
bada4342 23662 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
db7bf105
NC
23663 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
23664 but with the Rn field [19:16] set to 1111. */
23665 && (((newval >> 16) & 0xf) == 0xf)
bada4342
JW
23666 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
23667 && !((newval >> T2_SBIT_SHIFT) & 0x1)
db7bf105 23668 && value >= 0 && value <= 0xffff)
bada4342
JW
23669 {
23670 /* Toggle bit[25] to change encoding from T2 to T3. */
23671 newval ^= 1 << 25;
23672 /* Clear bits[19:16]. */
23673 newval &= 0xfff0ffff;
23674 /* Encoding high 4bits imm. Code below will encode the
23675 remaining low 12bits. */
23676 newval |= (value & 0x0000f000) << 4;
23677 newimm = value & 0x00000fff;
40f246e3 23678 }
e9f89963 23679 }
92e90b6e 23680 }
cc8a6dd0 23681
c19d1205 23682 if (newimm == (unsigned int)FAIL)
3631a3c8 23683 {
c19d1205
ZW
23684 as_bad_where (fixP->fx_file, fixP->fx_line,
23685 _("invalid constant (%lx) after fixup"),
23686 (unsigned long) value);
23687 break;
3631a3c8
NC
23688 }
23689
c19d1205
ZW
23690 newval |= (newimm & 0x800) << 15;
23691 newval |= (newimm & 0x700) << 4;
23692 newval |= (newimm & 0x0ff);
cc8a6dd0 23693
c19d1205
ZW
23694 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
23695 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
23696 break;
a737bd4d 23697
3eb17e6b 23698 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
23699 if (((unsigned long) value) > 0xffff)
23700 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 23701 _("invalid smc expression"));
2fc8bdac 23702 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
23703 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23704 md_number_to_chars (buf, newval, INSN_SIZE);
23705 break;
a737bd4d 23706
90ec0d68
MGD
23707 case BFD_RELOC_ARM_HVC:
23708 if (((unsigned long) value) > 0xffff)
23709 as_bad_where (fixP->fx_file, fixP->fx_line,
23710 _("invalid hvc expression"));
23711 newval = md_chars_to_number (buf, INSN_SIZE);
23712 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23713 md_number_to_chars (buf, newval, INSN_SIZE);
23714 break;
23715
c19d1205 23716 case BFD_RELOC_ARM_SWI:
adbaf948 23717 if (fixP->tc_fix_data != 0)
c19d1205
ZW
23718 {
23719 if (((unsigned long) value) > 0xff)
23720 as_bad_where (fixP->fx_file, fixP->fx_line,
23721 _("invalid swi expression"));
2fc8bdac 23722 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
23723 newval |= value;
23724 md_number_to_chars (buf, newval, THUMB_SIZE);
23725 }
23726 else
23727 {
23728 if (((unsigned long) value) > 0x00ffffff)
23729 as_bad_where (fixP->fx_file, fixP->fx_line,
23730 _("invalid swi expression"));
2fc8bdac 23731 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
23732 newval |= value;
23733 md_number_to_chars (buf, newval, INSN_SIZE);
23734 }
23735 break;
a737bd4d 23736
c19d1205
ZW
23737 case BFD_RELOC_ARM_MULTI:
23738 if (((unsigned long) value) > 0xffff)
23739 as_bad_where (fixP->fx_file, fixP->fx_line,
23740 _("invalid expression in load/store multiple"));
23741 newval = value | md_chars_to_number (buf, INSN_SIZE);
23742 md_number_to_chars (buf, newval, INSN_SIZE);
23743 break;
a737bd4d 23744
c19d1205 23745#ifdef OBJ_ELF
39b41c9c 23746 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
23747
23748 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23749 && fixP->fx_addsy
34e77a92 23750 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23751 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23752 && THUMB_IS_FUNC (fixP->fx_addsy))
23753 /* Flip the bl to blx. This is a simple flip
23754 bit here because we generate PCREL_CALL for
23755 unconditional bls. */
23756 {
23757 newval = md_chars_to_number (buf, INSN_SIZE);
23758 newval = newval | 0x10000000;
23759 md_number_to_chars (buf, newval, INSN_SIZE);
23760 temp = 1;
23761 fixP->fx_done = 1;
23762 }
39b41c9c
PB
23763 else
23764 temp = 3;
23765 goto arm_branch_common;
23766
23767 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
23768 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23769 && fixP->fx_addsy
34e77a92 23770 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23771 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23772 && THUMB_IS_FUNC (fixP->fx_addsy))
23773 {
23774 /* This would map to a bl<cond>, b<cond>,
23775 b<always> to a Thumb function. We
23776 need to force a relocation for this particular
23777 case. */
23778 newval = md_chars_to_number (buf, INSN_SIZE);
23779 fixP->fx_done = 0;
23780 }
1a0670f3 23781 /* Fall through. */
267bf995 23782
2fc8bdac 23783 case BFD_RELOC_ARM_PLT32:
c19d1205 23784#endif
39b41c9c
PB
23785 case BFD_RELOC_ARM_PCREL_BRANCH:
23786 temp = 3;
23787 goto arm_branch_common;
a737bd4d 23788
39b41c9c 23789 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 23790
39b41c9c 23791 temp = 1;
267bf995
RR
23792 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23793 && fixP->fx_addsy
34e77a92 23794 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23795 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23796 && ARM_IS_FUNC (fixP->fx_addsy))
23797 {
23798 /* Flip the blx to a bl and warn. */
23799 const char *name = S_GET_NAME (fixP->fx_addsy);
23800 newval = 0xeb000000;
23801 as_warn_where (fixP->fx_file, fixP->fx_line,
23802 _("blx to '%s' an ARM ISA state function changed to bl"),
23803 name);
23804 md_number_to_chars (buf, newval, INSN_SIZE);
23805 temp = 3;
23806 fixP->fx_done = 1;
23807 }
23808
23809#ifdef OBJ_ELF
23810 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
477330fc 23811 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
267bf995
RR
23812#endif
23813
39b41c9c 23814 arm_branch_common:
c19d1205 23815 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
23816 instruction, in a 24 bit, signed field. Bits 26 through 32 either
23817 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
de194d85 23818 also be clear. */
39b41c9c 23819 if (value & temp)
c19d1205 23820 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
23821 _("misaligned branch destination"));
23822 if ((value & (offsetT)0xfe000000) != (offsetT)0
23823 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 23824 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 23825
2fc8bdac 23826 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 23827 {
2fc8bdac
ZW
23828 newval = md_chars_to_number (buf, INSN_SIZE);
23829 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
23830 /* Set the H bit on BLX instructions. */
23831 if (temp == 1)
23832 {
23833 if (value & 2)
23834 newval |= 0x01000000;
23835 else
23836 newval &= ~0x01000000;
23837 }
2fc8bdac 23838 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 23839 }
c19d1205 23840 break;
a737bd4d 23841
25fe350b
MS
23842 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
23843 /* CBZ can only branch forward. */
a737bd4d 23844
738755b0 23845 /* Attempts to use CBZ to branch to the next instruction
477330fc
RM
23846 (which, strictly speaking, are prohibited) will be turned into
23847 no-ops.
738755b0
MS
23848
23849 FIXME: It may be better to remove the instruction completely and
23850 perform relaxation. */
23851 if (value == -2)
2fc8bdac
ZW
23852 {
23853 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 23854 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
23855 md_number_to_chars (buf, newval, THUMB_SIZE);
23856 }
738755b0
MS
23857 else
23858 {
23859 if (value & ~0x7e)
08f10d51 23860 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0 23861
477330fc 23862 if (fixP->fx_done || !seg->use_rela_p)
738755b0
MS
23863 {
23864 newval = md_chars_to_number (buf, THUMB_SIZE);
23865 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
23866 md_number_to_chars (buf, newval, THUMB_SIZE);
23867 }
23868 }
c19d1205 23869 break;
a737bd4d 23870
c19d1205 23871 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 23872 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 23873 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 23874
2fc8bdac
ZW
23875 if (fixP->fx_done || !seg->use_rela_p)
23876 {
23877 newval = md_chars_to_number (buf, THUMB_SIZE);
23878 newval |= (value & 0x1ff) >> 1;
23879 md_number_to_chars (buf, newval, THUMB_SIZE);
23880 }
c19d1205 23881 break;
a737bd4d 23882
c19d1205 23883 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 23884 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 23885 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 23886
2fc8bdac
ZW
23887 if (fixP->fx_done || !seg->use_rela_p)
23888 {
23889 newval = md_chars_to_number (buf, THUMB_SIZE);
23890 newval |= (value & 0xfff) >> 1;
23891 md_number_to_chars (buf, newval, THUMB_SIZE);
23892 }
c19d1205 23893 break;
a737bd4d 23894
c19d1205 23895 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
23896 if (fixP->fx_addsy
23897 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 23898 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23899 && ARM_IS_FUNC (fixP->fx_addsy)
23900 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
23901 {
23902 /* Force a relocation for a branch 20 bits wide. */
23903 fixP->fx_done = 0;
23904 }
08f10d51 23905 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
23906 as_bad_where (fixP->fx_file, fixP->fx_line,
23907 _("conditional branch out of range"));
404ff6b5 23908
2fc8bdac
ZW
23909 if (fixP->fx_done || !seg->use_rela_p)
23910 {
23911 offsetT newval2;
23912 addressT S, J1, J2, lo, hi;
404ff6b5 23913
2fc8bdac
ZW
23914 S = (value & 0x00100000) >> 20;
23915 J2 = (value & 0x00080000) >> 19;
23916 J1 = (value & 0x00040000) >> 18;
23917 hi = (value & 0x0003f000) >> 12;
23918 lo = (value & 0x00000ffe) >> 1;
6c43fab6 23919
2fc8bdac
ZW
23920 newval = md_chars_to_number (buf, THUMB_SIZE);
23921 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23922 newval |= (S << 10) | hi;
23923 newval2 |= (J1 << 13) | (J2 << 11) | lo;
23924 md_number_to_chars (buf, newval, THUMB_SIZE);
23925 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
23926 }
c19d1205 23927 break;
6c43fab6 23928
c19d1205 23929 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
23930 /* If there is a blx from a thumb state function to
23931 another thumb function flip this to a bl and warn
23932 about it. */
23933
23934 if (fixP->fx_addsy
34e77a92 23935 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23936 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23937 && THUMB_IS_FUNC (fixP->fx_addsy))
23938 {
23939 const char *name = S_GET_NAME (fixP->fx_addsy);
23940 as_warn_where (fixP->fx_file, fixP->fx_line,
23941 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
23942 name);
23943 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23944 newval = newval | 0x1000;
23945 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
23946 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
23947 fixP->fx_done = 1;
23948 }
23949
23950
23951 goto thumb_bl_common;
23952
c19d1205 23953 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
23954 /* A bl from Thumb state ISA to an internal ARM state function
23955 is converted to a blx. */
23956 if (fixP->fx_addsy
23957 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 23958 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23959 && ARM_IS_FUNC (fixP->fx_addsy)
23960 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
23961 {
23962 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23963 newval = newval & ~0x1000;
23964 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
23965 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
23966 fixP->fx_done = 1;
23967 }
23968
23969 thumb_bl_common:
23970
2fc8bdac
ZW
23971 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
23972 /* For a BLX instruction, make sure that the relocation is rounded up
23973 to a word boundary. This follows the semantics of the instruction
23974 which specifies that bit 1 of the target address will come from bit
23975 1 of the base address. */
d406f3e4
JB
23976 value = (value + 3) & ~ 3;
23977
23978#ifdef OBJ_ELF
23979 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
23980 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
23981 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
23982#endif
404ff6b5 23983
2b2f5df9
NC
23984 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
23985 {
fc289b0a 23986 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
2b2f5df9
NC
23987 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23988 else if ((value & ~0x1ffffff)
23989 && ((value & ~0x1ffffff) != ~0x1ffffff))
23990 as_bad_where (fixP->fx_file, fixP->fx_line,
23991 _("Thumb2 branch out of range"));
23992 }
4a42ebbc
RR
23993
23994 if (fixP->fx_done || !seg->use_rela_p)
23995 encode_thumb2_b_bl_offset (buf, value);
23996
c19d1205 23997 break;
404ff6b5 23998
c19d1205 23999 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
24000 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
24001 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 24002
2fc8bdac 24003 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 24004 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 24005
2fc8bdac 24006 break;
a737bd4d 24007
2fc8bdac
ZW
24008 case BFD_RELOC_8:
24009 if (fixP->fx_done || !seg->use_rela_p)
4b1a927e 24010 *buf = value;
c19d1205 24011 break;
a737bd4d 24012
c19d1205 24013 case BFD_RELOC_16:
2fc8bdac 24014 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 24015 md_number_to_chars (buf, value, 2);
c19d1205 24016 break;
a737bd4d 24017
c19d1205 24018#ifdef OBJ_ELF
0855e32b
NS
24019 case BFD_RELOC_ARM_TLS_CALL:
24020 case BFD_RELOC_ARM_THM_TLS_CALL:
24021 case BFD_RELOC_ARM_TLS_DESCSEQ:
24022 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
0855e32b 24023 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
24024 case BFD_RELOC_ARM_TLS_GD32:
24025 case BFD_RELOC_ARM_TLS_LE32:
24026 case BFD_RELOC_ARM_TLS_IE32:
24027 case BFD_RELOC_ARM_TLS_LDM32:
24028 case BFD_RELOC_ARM_TLS_LDO32:
24029 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4b1a927e 24030 break;
6c43fab6 24031
5c5a4843
CL
24032 /* Same handling as above, but with the arm_fdpic guard. */
24033 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
24034 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
24035 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
24036 if (arm_fdpic)
24037 {
24038 S_SET_THREAD_LOCAL (fixP->fx_addsy);
24039 }
24040 else
24041 {
24042 as_bad_where (fixP->fx_file, fixP->fx_line,
24043 _("Relocation supported only in FDPIC mode"));
24044 }
24045 break;
24046
c19d1205
ZW
24047 case BFD_RELOC_ARM_GOT32:
24048 case BFD_RELOC_ARM_GOTOFF:
c19d1205 24049 break;
b43420e6
NC
24050
24051 case BFD_RELOC_ARM_GOT_PREL:
24052 if (fixP->fx_done || !seg->use_rela_p)
477330fc 24053 md_number_to_chars (buf, value, 4);
b43420e6
NC
24054 break;
24055
9a6f4e97
NS
24056 case BFD_RELOC_ARM_TARGET2:
24057 /* TARGET2 is not partial-inplace, so we need to write the
477330fc
RM
24058 addend here for REL targets, because it won't be written out
24059 during reloc processing later. */
9a6f4e97
NS
24060 if (fixP->fx_done || !seg->use_rela_p)
24061 md_number_to_chars (buf, fixP->fx_offset, 4);
24062 break;
188fd7ae
CL
24063
24064 /* Relocations for FDPIC. */
24065 case BFD_RELOC_ARM_GOTFUNCDESC:
24066 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
24067 case BFD_RELOC_ARM_FUNCDESC:
24068 if (arm_fdpic)
24069 {
24070 if (fixP->fx_done || !seg->use_rela_p)
24071 md_number_to_chars (buf, 0, 4);
24072 }
24073 else
24074 {
24075 as_bad_where (fixP->fx_file, fixP->fx_line,
24076 _("Relocation supported only in FDPIC mode"));
24077 }
24078 break;
c19d1205 24079#endif
6c43fab6 24080
c19d1205
ZW
24081 case BFD_RELOC_RVA:
24082 case BFD_RELOC_32:
24083 case BFD_RELOC_ARM_TARGET1:
24084 case BFD_RELOC_ARM_ROSEGREL32:
24085 case BFD_RELOC_ARM_SBREL32:
24086 case BFD_RELOC_32_PCREL:
f0927246
NC
24087#ifdef TE_PE
24088 case BFD_RELOC_32_SECREL:
24089#endif
2fc8bdac 24090 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
24091#ifdef TE_WINCE
24092 /* For WinCE we only do this for pcrel fixups. */
24093 if (fixP->fx_done || fixP->fx_pcrel)
24094#endif
24095 md_number_to_chars (buf, value, 4);
c19d1205 24096 break;
6c43fab6 24097
c19d1205
ZW
24098#ifdef OBJ_ELF
24099 case BFD_RELOC_ARM_PREL31:
2fc8bdac 24100 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
24101 {
24102 newval = md_chars_to_number (buf, 4) & 0x80000000;
24103 if ((value ^ (value >> 1)) & 0x40000000)
24104 {
24105 as_bad_where (fixP->fx_file, fixP->fx_line,
24106 _("rel31 relocation overflow"));
24107 }
24108 newval |= value & 0x7fffffff;
24109 md_number_to_chars (buf, newval, 4);
24110 }
24111 break;
c19d1205 24112#endif
a737bd4d 24113
c19d1205 24114 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 24115 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
9db2f6b4
RL
24116 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
24117 newval = md_chars_to_number (buf, INSN_SIZE);
24118 else
24119 newval = get_thumb32_insn (buf);
24120 if ((newval & 0x0f200f00) == 0x0d000900)
24121 {
24122 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
24123 has permitted values that are multiples of 2, in the range 0
24124 to 510. */
24125 if (value < -510 || value > 510 || (value & 1))
24126 as_bad_where (fixP->fx_file, fixP->fx_line,
24127 _("co-processor offset out of range"));
24128 }
24129 else if (value < -1023 || value > 1023 || (value & 3))
c19d1205
ZW
24130 as_bad_where (fixP->fx_file, fixP->fx_line,
24131 _("co-processor offset out of range"));
24132 cp_off_common:
26d97720 24133 sign = value > 0;
c19d1205
ZW
24134 if (value < 0)
24135 value = -value;
8f06b2d8
PB
24136 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24137 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
24138 newval = md_chars_to_number (buf, INSN_SIZE);
24139 else
24140 newval = get_thumb32_insn (buf);
26d97720
NS
24141 if (value == 0)
24142 newval &= 0xffffff00;
24143 else
24144 {
24145 newval &= 0xff7fff00;
9db2f6b4
RL
24146 if ((newval & 0x0f200f00) == 0x0d000900)
24147 {
24148 /* This is a fp16 vstr/vldr.
24149
24150 It requires the immediate offset in the instruction is shifted
24151 left by 1 to be a half-word offset.
24152
24153 Here, left shift by 1 first, and later right shift by 2
24154 should get the right offset. */
24155 value <<= 1;
24156 }
26d97720
NS
24157 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
24158 }
8f06b2d8
PB
24159 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24160 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
24161 md_number_to_chars (buf, newval, INSN_SIZE);
24162 else
24163 put_thumb32_insn (buf, newval);
c19d1205 24164 break;
a737bd4d 24165
c19d1205 24166 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 24167 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
24168 if (value < -255 || value > 255)
24169 as_bad_where (fixP->fx_file, fixP->fx_line,
24170 _("co-processor offset out of range"));
df7849c5 24171 value *= 4;
c19d1205 24172 goto cp_off_common;
6c43fab6 24173
c19d1205
ZW
24174 case BFD_RELOC_ARM_THUMB_OFFSET:
24175 newval = md_chars_to_number (buf, THUMB_SIZE);
24176 /* Exactly what ranges, and where the offset is inserted depends
24177 on the type of instruction, we can establish this from the
24178 top 4 bits. */
24179 switch (newval >> 12)
24180 {
24181 case 4: /* PC load. */
24182 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
24183 forced to zero for these loads; md_pcrel_from has already
24184 compensated for this. */
24185 if (value & 3)
24186 as_bad_where (fixP->fx_file, fixP->fx_line,
24187 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
24188 (((unsigned long) fixP->fx_frag->fr_address
24189 + (unsigned long) fixP->fx_where) & ~3)
24190 + (unsigned long) value);
a737bd4d 24191
c19d1205
ZW
24192 if (value & ~0x3fc)
24193 as_bad_where (fixP->fx_file, fixP->fx_line,
24194 _("invalid offset, value too big (0x%08lX)"),
24195 (long) value);
a737bd4d 24196
c19d1205
ZW
24197 newval |= value >> 2;
24198 break;
a737bd4d 24199
c19d1205
ZW
24200 case 9: /* SP load/store. */
24201 if (value & ~0x3fc)
24202 as_bad_where (fixP->fx_file, fixP->fx_line,
24203 _("invalid offset, value too big (0x%08lX)"),
24204 (long) value);
24205 newval |= value >> 2;
24206 break;
6c43fab6 24207
c19d1205
ZW
24208 case 6: /* Word load/store. */
24209 if (value & ~0x7c)
24210 as_bad_where (fixP->fx_file, fixP->fx_line,
24211 _("invalid offset, value too big (0x%08lX)"),
24212 (long) value);
24213 newval |= value << 4; /* 6 - 2. */
24214 break;
a737bd4d 24215
c19d1205
ZW
24216 case 7: /* Byte load/store. */
24217 if (value & ~0x1f)
24218 as_bad_where (fixP->fx_file, fixP->fx_line,
24219 _("invalid offset, value too big (0x%08lX)"),
24220 (long) value);
24221 newval |= value << 6;
24222 break;
a737bd4d 24223
c19d1205
ZW
24224 case 8: /* Halfword load/store. */
24225 if (value & ~0x3e)
24226 as_bad_where (fixP->fx_file, fixP->fx_line,
24227 _("invalid offset, value too big (0x%08lX)"),
24228 (long) value);
24229 newval |= value << 5; /* 6 - 1. */
24230 break;
a737bd4d 24231
c19d1205
ZW
24232 default:
24233 as_bad_where (fixP->fx_file, fixP->fx_line,
24234 "Unable to process relocation for thumb opcode: %lx",
24235 (unsigned long) newval);
24236 break;
24237 }
24238 md_number_to_chars (buf, newval, THUMB_SIZE);
24239 break;
a737bd4d 24240
c19d1205
ZW
24241 case BFD_RELOC_ARM_THUMB_ADD:
24242 /* This is a complicated relocation, since we use it for all of
24243 the following immediate relocations:
a737bd4d 24244
c19d1205
ZW
24245 3bit ADD/SUB
24246 8bit ADD/SUB
24247 9bit ADD/SUB SP word-aligned
24248 10bit ADD PC/SP word-aligned
a737bd4d 24249
c19d1205
ZW
24250 The type of instruction being processed is encoded in the
24251 instruction field:
a737bd4d 24252
c19d1205
ZW
24253 0x8000 SUB
24254 0x00F0 Rd
24255 0x000F Rs
24256 */
24257 newval = md_chars_to_number (buf, THUMB_SIZE);
24258 {
24259 int rd = (newval >> 4) & 0xf;
24260 int rs = newval & 0xf;
24261 int subtract = !!(newval & 0x8000);
a737bd4d 24262
c19d1205
ZW
24263 /* Check for HI regs, only very restricted cases allowed:
24264 Adjusting SP, and using PC or SP to get an address. */
24265 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
24266 || (rs > 7 && rs != REG_SP && rs != REG_PC))
24267 as_bad_where (fixP->fx_file, fixP->fx_line,
24268 _("invalid Hi register with immediate"));
a737bd4d 24269
c19d1205
ZW
24270 /* If value is negative, choose the opposite instruction. */
24271 if (value < 0)
24272 {
24273 value = -value;
24274 subtract = !subtract;
24275 if (value < 0)
24276 as_bad_where (fixP->fx_file, fixP->fx_line,
24277 _("immediate value out of range"));
24278 }
a737bd4d 24279
c19d1205
ZW
24280 if (rd == REG_SP)
24281 {
75c11999 24282 if (value & ~0x1fc)
c19d1205
ZW
24283 as_bad_where (fixP->fx_file, fixP->fx_line,
24284 _("invalid immediate for stack address calculation"));
24285 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
24286 newval |= value >> 2;
24287 }
24288 else if (rs == REG_PC || rs == REG_SP)
24289 {
c12d2c9d
NC
24290 /* PR gas/18541. If the addition is for a defined symbol
24291 within range of an ADR instruction then accept it. */
24292 if (subtract
24293 && value == 4
24294 && fixP->fx_addsy != NULL)
24295 {
24296 subtract = 0;
24297
24298 if (! S_IS_DEFINED (fixP->fx_addsy)
24299 || S_GET_SEGMENT (fixP->fx_addsy) != seg
24300 || S_IS_WEAK (fixP->fx_addsy))
24301 {
24302 as_bad_where (fixP->fx_file, fixP->fx_line,
24303 _("address calculation needs a strongly defined nearby symbol"));
24304 }
24305 else
24306 {
24307 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
24308
24309 /* Round up to the next 4-byte boundary. */
24310 if (v & 3)
24311 v = (v + 3) & ~ 3;
24312 else
24313 v += 4;
24314 v = S_GET_VALUE (fixP->fx_addsy) - v;
24315
24316 if (v & ~0x3fc)
24317 {
24318 as_bad_where (fixP->fx_file, fixP->fx_line,
24319 _("symbol too far away"));
24320 }
24321 else
24322 {
24323 fixP->fx_done = 1;
24324 value = v;
24325 }
24326 }
24327 }
24328
c19d1205
ZW
24329 if (subtract || value & ~0x3fc)
24330 as_bad_where (fixP->fx_file, fixP->fx_line,
24331 _("invalid immediate for address calculation (value = 0x%08lX)"),
5fc177c8 24332 (unsigned long) (subtract ? - value : value));
c19d1205
ZW
24333 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
24334 newval |= rd << 8;
24335 newval |= value >> 2;
24336 }
24337 else if (rs == rd)
24338 {
24339 if (value & ~0xff)
24340 as_bad_where (fixP->fx_file, fixP->fx_line,
24341 _("immediate value out of range"));
24342 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
24343 newval |= (rd << 8) | value;
24344 }
24345 else
24346 {
24347 if (value & ~0x7)
24348 as_bad_where (fixP->fx_file, fixP->fx_line,
24349 _("immediate value out of range"));
24350 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
24351 newval |= rd | (rs << 3) | (value << 6);
24352 }
24353 }
24354 md_number_to_chars (buf, newval, THUMB_SIZE);
24355 break;
a737bd4d 24356
c19d1205
ZW
24357 case BFD_RELOC_ARM_THUMB_IMM:
24358 newval = md_chars_to_number (buf, THUMB_SIZE);
24359 if (value < 0 || value > 255)
24360 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 24361 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
24362 (long) value);
24363 newval |= value;
24364 md_number_to_chars (buf, newval, THUMB_SIZE);
24365 break;
a737bd4d 24366
c19d1205
ZW
24367 case BFD_RELOC_ARM_THUMB_SHIFT:
24368 /* 5bit shift value (0..32). LSL cannot take 32. */
24369 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
24370 temp = newval & 0xf800;
24371 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
24372 as_bad_where (fixP->fx_file, fixP->fx_line,
24373 _("invalid shift value: %ld"), (long) value);
24374 /* Shifts of zero must be encoded as LSL. */
24375 if (value == 0)
24376 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
24377 /* Shifts of 32 are encoded as zero. */
24378 else if (value == 32)
24379 value = 0;
24380 newval |= value << 6;
24381 md_number_to_chars (buf, newval, THUMB_SIZE);
24382 break;
a737bd4d 24383
c19d1205
ZW
24384 case BFD_RELOC_VTABLE_INHERIT:
24385 case BFD_RELOC_VTABLE_ENTRY:
24386 fixP->fx_done = 0;
24387 return;
6c43fab6 24388
b6895b4f
PB
24389 case BFD_RELOC_ARM_MOVW:
24390 case BFD_RELOC_ARM_MOVT:
24391 case BFD_RELOC_ARM_THUMB_MOVW:
24392 case BFD_RELOC_ARM_THUMB_MOVT:
24393 if (fixP->fx_done || !seg->use_rela_p)
24394 {
24395 /* REL format relocations are limited to a 16-bit addend. */
24396 if (!fixP->fx_done)
24397 {
39623e12 24398 if (value < -0x8000 || value > 0x7fff)
b6895b4f 24399 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 24400 _("offset out of range"));
b6895b4f
PB
24401 }
24402 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
24403 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24404 {
24405 value >>= 16;
24406 }
24407
24408 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
24409 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24410 {
24411 newval = get_thumb32_insn (buf);
24412 newval &= 0xfbf08f00;
24413 newval |= (value & 0xf000) << 4;
24414 newval |= (value & 0x0800) << 15;
24415 newval |= (value & 0x0700) << 4;
24416 newval |= (value & 0x00ff);
24417 put_thumb32_insn (buf, newval);
24418 }
24419 else
24420 {
24421 newval = md_chars_to_number (buf, 4);
24422 newval &= 0xfff0f000;
24423 newval |= value & 0x0fff;
24424 newval |= (value & 0xf000) << 4;
24425 md_number_to_chars (buf, newval, 4);
24426 }
24427 }
24428 return;
24429
72d98d16
MG
24430 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
24431 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
24432 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
24433 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
24434 gas_assert (!fixP->fx_done);
24435 {
24436 bfd_vma insn;
24437 bfd_boolean is_mov;
24438 bfd_vma encoded_addend = value;
24439
24440 /* Check that addend can be encoded in instruction. */
24441 if (!seg->use_rela_p && (value < 0 || value > 255))
24442 as_bad_where (fixP->fx_file, fixP->fx_line,
24443 _("the offset 0x%08lX is not representable"),
24444 (unsigned long) encoded_addend);
24445
24446 /* Extract the instruction. */
24447 insn = md_chars_to_number (buf, THUMB_SIZE);
24448 is_mov = (insn & 0xf800) == 0x2000;
24449
24450 /* Encode insn. */
24451 if (is_mov)
24452 {
24453 if (!seg->use_rela_p)
24454 insn |= encoded_addend;
24455 }
24456 else
24457 {
24458 int rd, rs;
24459
24460 /* Extract the instruction. */
24461 /* Encoding is the following
24462 0x8000 SUB
24463 0x00F0 Rd
24464 0x000F Rs
24465 */
24466 /* The following conditions must be true :
24467 - ADD
24468 - Rd == Rs
24469 - Rd <= 7
24470 */
24471 rd = (insn >> 4) & 0xf;
24472 rs = insn & 0xf;
24473 if ((insn & 0x8000) || (rd != rs) || rd > 7)
24474 as_bad_where (fixP->fx_file, fixP->fx_line,
24475 _("Unable to process relocation for thumb opcode: %lx"),
24476 (unsigned long) insn);
24477
24478 /* Encode as ADD immediate8 thumb 1 code. */
24479 insn = 0x3000 | (rd << 8);
24480
24481 /* Place the encoded addend into the first 8 bits of the
24482 instruction. */
24483 if (!seg->use_rela_p)
24484 insn |= encoded_addend;
24485 }
24486
24487 /* Update the instruction. */
24488 md_number_to_chars (buf, insn, THUMB_SIZE);
24489 }
24490 break;
24491
4962c51a
MS
24492 case BFD_RELOC_ARM_ALU_PC_G0_NC:
24493 case BFD_RELOC_ARM_ALU_PC_G0:
24494 case BFD_RELOC_ARM_ALU_PC_G1_NC:
24495 case BFD_RELOC_ARM_ALU_PC_G1:
24496 case BFD_RELOC_ARM_ALU_PC_G2:
24497 case BFD_RELOC_ARM_ALU_SB_G0_NC:
24498 case BFD_RELOC_ARM_ALU_SB_G0:
24499 case BFD_RELOC_ARM_ALU_SB_G1_NC:
24500 case BFD_RELOC_ARM_ALU_SB_G1:
24501 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 24502 gas_assert (!fixP->fx_done);
4962c51a
MS
24503 if (!seg->use_rela_p)
24504 {
477330fc
RM
24505 bfd_vma insn;
24506 bfd_vma encoded_addend;
24507 bfd_vma addend_abs = abs (value);
24508
24509 /* Check that the absolute value of the addend can be
24510 expressed as an 8-bit constant plus a rotation. */
24511 encoded_addend = encode_arm_immediate (addend_abs);
24512 if (encoded_addend == (unsigned int) FAIL)
4962c51a 24513 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24514 _("the offset 0x%08lX is not representable"),
24515 (unsigned long) addend_abs);
24516
24517 /* Extract the instruction. */
24518 insn = md_chars_to_number (buf, INSN_SIZE);
24519
24520 /* If the addend is positive, use an ADD instruction.
24521 Otherwise use a SUB. Take care not to destroy the S bit. */
24522 insn &= 0xff1fffff;
24523 if (value < 0)
24524 insn |= 1 << 22;
24525 else
24526 insn |= 1 << 23;
24527
24528 /* Place the encoded addend into the first 12 bits of the
24529 instruction. */
24530 insn &= 0xfffff000;
24531 insn |= encoded_addend;
24532
24533 /* Update the instruction. */
24534 md_number_to_chars (buf, insn, INSN_SIZE);
4962c51a
MS
24535 }
24536 break;
24537
24538 case BFD_RELOC_ARM_LDR_PC_G0:
24539 case BFD_RELOC_ARM_LDR_PC_G1:
24540 case BFD_RELOC_ARM_LDR_PC_G2:
24541 case BFD_RELOC_ARM_LDR_SB_G0:
24542 case BFD_RELOC_ARM_LDR_SB_G1:
24543 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 24544 gas_assert (!fixP->fx_done);
4962c51a 24545 if (!seg->use_rela_p)
477330fc
RM
24546 {
24547 bfd_vma insn;
24548 bfd_vma addend_abs = abs (value);
4962c51a 24549
477330fc
RM
24550 /* Check that the absolute value of the addend can be
24551 encoded in 12 bits. */
24552 if (addend_abs >= 0x1000)
4962c51a 24553 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24554 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
24555 (unsigned long) addend_abs);
24556
24557 /* Extract the instruction. */
24558 insn = md_chars_to_number (buf, INSN_SIZE);
24559
24560 /* If the addend is negative, clear bit 23 of the instruction.
24561 Otherwise set it. */
24562 if (value < 0)
24563 insn &= ~(1 << 23);
24564 else
24565 insn |= 1 << 23;
24566
24567 /* Place the absolute value of the addend into the first 12 bits
24568 of the instruction. */
24569 insn &= 0xfffff000;
24570 insn |= addend_abs;
24571
24572 /* Update the instruction. */
24573 md_number_to_chars (buf, insn, INSN_SIZE);
24574 }
4962c51a
MS
24575 break;
24576
24577 case BFD_RELOC_ARM_LDRS_PC_G0:
24578 case BFD_RELOC_ARM_LDRS_PC_G1:
24579 case BFD_RELOC_ARM_LDRS_PC_G2:
24580 case BFD_RELOC_ARM_LDRS_SB_G0:
24581 case BFD_RELOC_ARM_LDRS_SB_G1:
24582 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 24583 gas_assert (!fixP->fx_done);
4962c51a 24584 if (!seg->use_rela_p)
477330fc
RM
24585 {
24586 bfd_vma insn;
24587 bfd_vma addend_abs = abs (value);
4962c51a 24588
477330fc
RM
24589 /* Check that the absolute value of the addend can be
24590 encoded in 8 bits. */
24591 if (addend_abs >= 0x100)
4962c51a 24592 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24593 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
24594 (unsigned long) addend_abs);
24595
24596 /* Extract the instruction. */
24597 insn = md_chars_to_number (buf, INSN_SIZE);
24598
24599 /* If the addend is negative, clear bit 23 of the instruction.
24600 Otherwise set it. */
24601 if (value < 0)
24602 insn &= ~(1 << 23);
24603 else
24604 insn |= 1 << 23;
24605
24606 /* Place the first four bits of the absolute value of the addend
24607 into the first 4 bits of the instruction, and the remaining
24608 four into bits 8 .. 11. */
24609 insn &= 0xfffff0f0;
24610 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
24611
24612 /* Update the instruction. */
24613 md_number_to_chars (buf, insn, INSN_SIZE);
24614 }
4962c51a
MS
24615 break;
24616
24617 case BFD_RELOC_ARM_LDC_PC_G0:
24618 case BFD_RELOC_ARM_LDC_PC_G1:
24619 case BFD_RELOC_ARM_LDC_PC_G2:
24620 case BFD_RELOC_ARM_LDC_SB_G0:
24621 case BFD_RELOC_ARM_LDC_SB_G1:
24622 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 24623 gas_assert (!fixP->fx_done);
4962c51a 24624 if (!seg->use_rela_p)
477330fc
RM
24625 {
24626 bfd_vma insn;
24627 bfd_vma addend_abs = abs (value);
4962c51a 24628
477330fc
RM
24629 /* Check that the absolute value of the addend is a multiple of
24630 four and, when divided by four, fits in 8 bits. */
24631 if (addend_abs & 0x3)
4962c51a 24632 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24633 _("bad offset 0x%08lX (must be word-aligned)"),
24634 (unsigned long) addend_abs);
4962c51a 24635
477330fc 24636 if ((addend_abs >> 2) > 0xff)
4962c51a 24637 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24638 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
24639 (unsigned long) addend_abs);
24640
24641 /* Extract the instruction. */
24642 insn = md_chars_to_number (buf, INSN_SIZE);
24643
24644 /* If the addend is negative, clear bit 23 of the instruction.
24645 Otherwise set it. */
24646 if (value < 0)
24647 insn &= ~(1 << 23);
24648 else
24649 insn |= 1 << 23;
24650
24651 /* Place the addend (divided by four) into the first eight
24652 bits of the instruction. */
24653 insn &= 0xfffffff0;
24654 insn |= addend_abs >> 2;
24655
24656 /* Update the instruction. */
24657 md_number_to_chars (buf, insn, INSN_SIZE);
24658 }
4962c51a
MS
24659 break;
24660
845b51d6
PB
24661 case BFD_RELOC_ARM_V4BX:
24662 /* This will need to go in the object file. */
24663 fixP->fx_done = 0;
24664 break;
24665
c19d1205
ZW
24666 case BFD_RELOC_UNUSED:
24667 default:
24668 as_bad_where (fixP->fx_file, fixP->fx_line,
24669 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
24670 }
6c43fab6
RE
24671}
24672
c19d1205
ZW
24673/* Translate internal representation of relocation info to BFD target
24674 format. */
a737bd4d 24675
c19d1205 24676arelent *
00a97672 24677tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 24678{
c19d1205
ZW
24679 arelent * reloc;
24680 bfd_reloc_code_real_type code;
a737bd4d 24681
325801bd 24682 reloc = XNEW (arelent);
a737bd4d 24683
325801bd 24684 reloc->sym_ptr_ptr = XNEW (asymbol *);
c19d1205
ZW
24685 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
24686 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 24687
2fc8bdac 24688 if (fixp->fx_pcrel)
00a97672
RS
24689 {
24690 if (section->use_rela_p)
24691 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
24692 else
24693 fixp->fx_offset = reloc->address;
24694 }
c19d1205 24695 reloc->addend = fixp->fx_offset;
a737bd4d 24696
c19d1205 24697 switch (fixp->fx_r_type)
a737bd4d 24698 {
c19d1205
ZW
24699 case BFD_RELOC_8:
24700 if (fixp->fx_pcrel)
24701 {
24702 code = BFD_RELOC_8_PCREL;
24703 break;
24704 }
1a0670f3 24705 /* Fall through. */
a737bd4d 24706
c19d1205
ZW
24707 case BFD_RELOC_16:
24708 if (fixp->fx_pcrel)
24709 {
24710 code = BFD_RELOC_16_PCREL;
24711 break;
24712 }
1a0670f3 24713 /* Fall through. */
6c43fab6 24714
c19d1205
ZW
24715 case BFD_RELOC_32:
24716 if (fixp->fx_pcrel)
24717 {
24718 code = BFD_RELOC_32_PCREL;
24719 break;
24720 }
1a0670f3 24721 /* Fall through. */
a737bd4d 24722
b6895b4f
PB
24723 case BFD_RELOC_ARM_MOVW:
24724 if (fixp->fx_pcrel)
24725 {
24726 code = BFD_RELOC_ARM_MOVW_PCREL;
24727 break;
24728 }
1a0670f3 24729 /* Fall through. */
b6895b4f
PB
24730
24731 case BFD_RELOC_ARM_MOVT:
24732 if (fixp->fx_pcrel)
24733 {
24734 code = BFD_RELOC_ARM_MOVT_PCREL;
24735 break;
24736 }
1a0670f3 24737 /* Fall through. */
b6895b4f
PB
24738
24739 case BFD_RELOC_ARM_THUMB_MOVW:
24740 if (fixp->fx_pcrel)
24741 {
24742 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
24743 break;
24744 }
1a0670f3 24745 /* Fall through. */
b6895b4f
PB
24746
24747 case BFD_RELOC_ARM_THUMB_MOVT:
24748 if (fixp->fx_pcrel)
24749 {
24750 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
24751 break;
24752 }
1a0670f3 24753 /* Fall through. */
b6895b4f 24754
c19d1205
ZW
24755 case BFD_RELOC_NONE:
24756 case BFD_RELOC_ARM_PCREL_BRANCH:
24757 case BFD_RELOC_ARM_PCREL_BLX:
24758 case BFD_RELOC_RVA:
24759 case BFD_RELOC_THUMB_PCREL_BRANCH7:
24760 case BFD_RELOC_THUMB_PCREL_BRANCH9:
24761 case BFD_RELOC_THUMB_PCREL_BRANCH12:
24762 case BFD_RELOC_THUMB_PCREL_BRANCH20:
24763 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24764 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
24765 case BFD_RELOC_VTABLE_ENTRY:
24766 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
24767#ifdef TE_PE
24768 case BFD_RELOC_32_SECREL:
24769#endif
c19d1205
ZW
24770 code = fixp->fx_r_type;
24771 break;
a737bd4d 24772
00adf2d4
JB
24773 case BFD_RELOC_THUMB_PCREL_BLX:
24774#ifdef OBJ_ELF
24775 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
24776 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
24777 else
24778#endif
24779 code = BFD_RELOC_THUMB_PCREL_BLX;
24780 break;
24781
c19d1205
ZW
24782 case BFD_RELOC_ARM_LITERAL:
24783 case BFD_RELOC_ARM_HWLITERAL:
24784 /* If this is called then the a literal has
24785 been referenced across a section boundary. */
24786 as_bad_where (fixp->fx_file, fixp->fx_line,
24787 _("literal referenced across section boundary"));
24788 return NULL;
a737bd4d 24789
c19d1205 24790#ifdef OBJ_ELF
0855e32b
NS
24791 case BFD_RELOC_ARM_TLS_CALL:
24792 case BFD_RELOC_ARM_THM_TLS_CALL:
24793 case BFD_RELOC_ARM_TLS_DESCSEQ:
24794 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
24795 case BFD_RELOC_ARM_GOT32:
24796 case BFD_RELOC_ARM_GOTOFF:
b43420e6 24797 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
24798 case BFD_RELOC_ARM_PLT32:
24799 case BFD_RELOC_ARM_TARGET1:
24800 case BFD_RELOC_ARM_ROSEGREL32:
24801 case BFD_RELOC_ARM_SBREL32:
24802 case BFD_RELOC_ARM_PREL31:
24803 case BFD_RELOC_ARM_TARGET2:
c19d1205 24804 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
24805 case BFD_RELOC_ARM_PCREL_CALL:
24806 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
24807 case BFD_RELOC_ARM_ALU_PC_G0_NC:
24808 case BFD_RELOC_ARM_ALU_PC_G0:
24809 case BFD_RELOC_ARM_ALU_PC_G1_NC:
24810 case BFD_RELOC_ARM_ALU_PC_G1:
24811 case BFD_RELOC_ARM_ALU_PC_G2:
24812 case BFD_RELOC_ARM_LDR_PC_G0:
24813 case BFD_RELOC_ARM_LDR_PC_G1:
24814 case BFD_RELOC_ARM_LDR_PC_G2:
24815 case BFD_RELOC_ARM_LDRS_PC_G0:
24816 case BFD_RELOC_ARM_LDRS_PC_G1:
24817 case BFD_RELOC_ARM_LDRS_PC_G2:
24818 case BFD_RELOC_ARM_LDC_PC_G0:
24819 case BFD_RELOC_ARM_LDC_PC_G1:
24820 case BFD_RELOC_ARM_LDC_PC_G2:
24821 case BFD_RELOC_ARM_ALU_SB_G0_NC:
24822 case BFD_RELOC_ARM_ALU_SB_G0:
24823 case BFD_RELOC_ARM_ALU_SB_G1_NC:
24824 case BFD_RELOC_ARM_ALU_SB_G1:
24825 case BFD_RELOC_ARM_ALU_SB_G2:
24826 case BFD_RELOC_ARM_LDR_SB_G0:
24827 case BFD_RELOC_ARM_LDR_SB_G1:
24828 case BFD_RELOC_ARM_LDR_SB_G2:
24829 case BFD_RELOC_ARM_LDRS_SB_G0:
24830 case BFD_RELOC_ARM_LDRS_SB_G1:
24831 case BFD_RELOC_ARM_LDRS_SB_G2:
24832 case BFD_RELOC_ARM_LDC_SB_G0:
24833 case BFD_RELOC_ARM_LDC_SB_G1:
24834 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 24835 case BFD_RELOC_ARM_V4BX:
72d98d16
MG
24836 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
24837 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
24838 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
24839 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
188fd7ae
CL
24840 case BFD_RELOC_ARM_GOTFUNCDESC:
24841 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
24842 case BFD_RELOC_ARM_FUNCDESC:
c19d1205
ZW
24843 code = fixp->fx_r_type;
24844 break;
a737bd4d 24845
0855e32b 24846 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205 24847 case BFD_RELOC_ARM_TLS_GD32:
5c5a4843 24848 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
75c11999 24849 case BFD_RELOC_ARM_TLS_LE32:
c19d1205 24850 case BFD_RELOC_ARM_TLS_IE32:
5c5a4843 24851 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
c19d1205 24852 case BFD_RELOC_ARM_TLS_LDM32:
5c5a4843 24853 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
c19d1205
ZW
24854 /* BFD will include the symbol's address in the addend.
24855 But we don't want that, so subtract it out again here. */
24856 if (!S_IS_COMMON (fixp->fx_addsy))
24857 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
24858 code = fixp->fx_r_type;
24859 break;
24860#endif
a737bd4d 24861
c19d1205
ZW
24862 case BFD_RELOC_ARM_IMMEDIATE:
24863 as_bad_where (fixp->fx_file, fixp->fx_line,
24864 _("internal relocation (type: IMMEDIATE) not fixed up"));
24865 return NULL;
a737bd4d 24866
c19d1205
ZW
24867 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
24868 as_bad_where (fixp->fx_file, fixp->fx_line,
24869 _("ADRL used for a symbol not defined in the same file"));
24870 return NULL;
a737bd4d 24871
c19d1205 24872 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
24873 if (section->use_rela_p)
24874 {
24875 code = fixp->fx_r_type;
24876 break;
24877 }
24878
c19d1205
ZW
24879 if (fixp->fx_addsy != NULL
24880 && !S_IS_DEFINED (fixp->fx_addsy)
24881 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 24882 {
c19d1205
ZW
24883 as_bad_where (fixp->fx_file, fixp->fx_line,
24884 _("undefined local label `%s'"),
24885 S_GET_NAME (fixp->fx_addsy));
24886 return NULL;
a737bd4d
NC
24887 }
24888
c19d1205
ZW
24889 as_bad_where (fixp->fx_file, fixp->fx_line,
24890 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
24891 return NULL;
a737bd4d 24892
c19d1205
ZW
24893 default:
24894 {
e0471c16 24895 const char * type;
6c43fab6 24896
c19d1205
ZW
24897 switch (fixp->fx_r_type)
24898 {
24899 case BFD_RELOC_NONE: type = "NONE"; break;
24900 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
24901 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 24902 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
24903 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
24904 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
24905 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 24906 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 24907 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
24908 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
24909 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
24910 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
24911 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
24912 default: type = _("<unknown>"); break;
24913 }
24914 as_bad_where (fixp->fx_file, fixp->fx_line,
24915 _("cannot represent %s relocation in this object file format"),
24916 type);
24917 return NULL;
24918 }
a737bd4d 24919 }
6c43fab6 24920
c19d1205
ZW
24921#ifdef OBJ_ELF
24922 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
24923 && GOT_symbol
24924 && fixp->fx_addsy == GOT_symbol)
24925 {
24926 code = BFD_RELOC_ARM_GOTPC;
24927 reloc->addend = fixp->fx_offset = reloc->address;
24928 }
24929#endif
6c43fab6 24930
c19d1205 24931 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 24932
c19d1205
ZW
24933 if (reloc->howto == NULL)
24934 {
24935 as_bad_where (fixp->fx_file, fixp->fx_line,
24936 _("cannot represent %s relocation in this object file format"),
24937 bfd_get_reloc_code_name (code));
24938 return NULL;
24939 }
6c43fab6 24940
c19d1205
ZW
24941 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
24942 vtable entry to be used in the relocation's section offset. */
24943 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
24944 reloc->address = fixp->fx_offset;
6c43fab6 24945
c19d1205 24946 return reloc;
6c43fab6
RE
24947}
24948
c19d1205 24949/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 24950
c19d1205
ZW
24951void
24952cons_fix_new_arm (fragS * frag,
24953 int where,
24954 int size,
62ebcb5c
AM
24955 expressionS * exp,
24956 bfd_reloc_code_real_type reloc)
6c43fab6 24957{
c19d1205 24958 int pcrel = 0;
6c43fab6 24959
c19d1205
ZW
24960 /* Pick a reloc.
24961 FIXME: @@ Should look at CPU word size. */
24962 switch (size)
24963 {
24964 case 1:
62ebcb5c 24965 reloc = BFD_RELOC_8;
c19d1205
ZW
24966 break;
24967 case 2:
62ebcb5c 24968 reloc = BFD_RELOC_16;
c19d1205
ZW
24969 break;
24970 case 4:
24971 default:
62ebcb5c 24972 reloc = BFD_RELOC_32;
c19d1205
ZW
24973 break;
24974 case 8:
62ebcb5c 24975 reloc = BFD_RELOC_64;
c19d1205
ZW
24976 break;
24977 }
6c43fab6 24978
f0927246
NC
24979#ifdef TE_PE
24980 if (exp->X_op == O_secrel)
24981 {
24982 exp->X_op = O_symbol;
62ebcb5c 24983 reloc = BFD_RELOC_32_SECREL;
f0927246
NC
24984 }
24985#endif
24986
62ebcb5c 24987 fix_new_exp (frag, where, size, exp, pcrel, reloc);
c19d1205 24988}
6c43fab6 24989
4343666d 24990#if defined (OBJ_COFF)
c19d1205
ZW
24991void
24992arm_validate_fix (fixS * fixP)
6c43fab6 24993{
c19d1205
ZW
24994 /* If the destination of the branch is a defined symbol which does not have
24995 the THUMB_FUNC attribute, then we must be calling a function which has
24996 the (interfacearm) attribute. We look for the Thumb entry point to that
24997 function and change the branch to refer to that function instead. */
24998 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
24999 && fixP->fx_addsy != NULL
25000 && S_IS_DEFINED (fixP->fx_addsy)
25001 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 25002 {
c19d1205 25003 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 25004 }
c19d1205
ZW
25005}
25006#endif
6c43fab6 25007
267bf995 25008
c19d1205
ZW
25009int
25010arm_force_relocation (struct fix * fixp)
25011{
25012#if defined (OBJ_COFF) && defined (TE_PE)
25013 if (fixp->fx_r_type == BFD_RELOC_RVA)
25014 return 1;
25015#endif
6c43fab6 25016
267bf995
RR
25017 /* In case we have a call or a branch to a function in ARM ISA mode from
25018 a thumb function or vice-versa force the relocation. These relocations
25019 are cleared off for some cores that might have blx and simple transformations
25020 are possible. */
25021
25022#ifdef OBJ_ELF
25023 switch (fixp->fx_r_type)
25024 {
25025 case BFD_RELOC_ARM_PCREL_JUMP:
25026 case BFD_RELOC_ARM_PCREL_CALL:
25027 case BFD_RELOC_THUMB_PCREL_BLX:
25028 if (THUMB_IS_FUNC (fixp->fx_addsy))
25029 return 1;
25030 break;
25031
25032 case BFD_RELOC_ARM_PCREL_BLX:
25033 case BFD_RELOC_THUMB_PCREL_BRANCH25:
25034 case BFD_RELOC_THUMB_PCREL_BRANCH20:
25035 case BFD_RELOC_THUMB_PCREL_BRANCH23:
25036 if (ARM_IS_FUNC (fixp->fx_addsy))
25037 return 1;
25038 break;
25039
25040 default:
25041 break;
25042 }
25043#endif
25044
b5884301
PB
25045 /* Resolve these relocations even if the symbol is extern or weak.
25046 Technically this is probably wrong due to symbol preemption.
25047 In practice these relocations do not have enough range to be useful
25048 at dynamic link time, and some code (e.g. in the Linux kernel)
25049 expects these references to be resolved. */
c19d1205
ZW
25050 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
25051 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 25052 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 25053 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
25054 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
25055 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
25056 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 25057 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
25058 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
25059 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
25060 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
25061 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
25062 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
25063 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 25064 return 0;
a737bd4d 25065
4962c51a
MS
25066 /* Always leave these relocations for the linker. */
25067 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
25068 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
25069 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
25070 return 1;
25071
f0291e4c
PB
25072 /* Always generate relocations against function symbols. */
25073 if (fixp->fx_r_type == BFD_RELOC_32
25074 && fixp->fx_addsy
25075 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
25076 return 1;
25077
c19d1205 25078 return generic_force_reloc (fixp);
404ff6b5
AH
25079}
25080
0ffdc86c 25081#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
25082/* Relocations against function names must be left unadjusted,
25083 so that the linker can use this information to generate interworking
25084 stubs. The MIPS version of this function
c19d1205
ZW
25085 also prevents relocations that are mips-16 specific, but I do not
25086 know why it does this.
404ff6b5 25087
c19d1205
ZW
25088 FIXME:
25089 There is one other problem that ought to be addressed here, but
25090 which currently is not: Taking the address of a label (rather
25091 than a function) and then later jumping to that address. Such
25092 addresses also ought to have their bottom bit set (assuming that
25093 they reside in Thumb code), but at the moment they will not. */
404ff6b5 25094
c19d1205
ZW
25095bfd_boolean
25096arm_fix_adjustable (fixS * fixP)
404ff6b5 25097{
c19d1205
ZW
25098 if (fixP->fx_addsy == NULL)
25099 return 1;
404ff6b5 25100
e28387c3
PB
25101 /* Preserve relocations against symbols with function type. */
25102 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 25103 return FALSE;
e28387c3 25104
c19d1205
ZW
25105 if (THUMB_IS_FUNC (fixP->fx_addsy)
25106 && fixP->fx_subsy == NULL)
c921be7d 25107 return FALSE;
a737bd4d 25108
c19d1205
ZW
25109 /* We need the symbol name for the VTABLE entries. */
25110 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
25111 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 25112 return FALSE;
404ff6b5 25113
c19d1205
ZW
25114 /* Don't allow symbols to be discarded on GOT related relocs. */
25115 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
25116 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
25117 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
25118 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
5c5a4843 25119 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
c19d1205
ZW
25120 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
25121 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
5c5a4843 25122 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
c19d1205 25123 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
5c5a4843 25124 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
c19d1205 25125 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
25126 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
25127 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
25128 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
25129 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
25130 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 25131 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 25132 return FALSE;
a737bd4d 25133
4962c51a
MS
25134 /* Similarly for group relocations. */
25135 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
25136 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
25137 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 25138 return FALSE;
4962c51a 25139
79947c54
CD
25140 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
25141 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
25142 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
25143 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
25144 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
25145 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
25146 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
25147 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
25148 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 25149 return FALSE;
79947c54 25150
72d98d16
MG
25151 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
25152 offsets, so keep these symbols. */
25153 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
25154 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
25155 return FALSE;
25156
c921be7d 25157 return TRUE;
a737bd4d 25158}
0ffdc86c
NC
25159#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
25160
25161#ifdef OBJ_ELF
c19d1205
ZW
25162const char *
25163elf32_arm_target_format (void)
404ff6b5 25164{
c19d1205
ZW
25165#ifdef TE_SYMBIAN
25166 return (target_big_endian
25167 ? "elf32-bigarm-symbian"
25168 : "elf32-littlearm-symbian");
25169#elif defined (TE_VXWORKS)
25170 return (target_big_endian
25171 ? "elf32-bigarm-vxworks"
25172 : "elf32-littlearm-vxworks");
b38cadfb
NC
25173#elif defined (TE_NACL)
25174 return (target_big_endian
25175 ? "elf32-bigarm-nacl"
25176 : "elf32-littlearm-nacl");
c19d1205 25177#else
18a20338
CL
25178 if (arm_fdpic)
25179 {
25180 if (target_big_endian)
25181 return "elf32-bigarm-fdpic";
25182 else
25183 return "elf32-littlearm-fdpic";
25184 }
c19d1205 25185 else
18a20338
CL
25186 {
25187 if (target_big_endian)
25188 return "elf32-bigarm";
25189 else
25190 return "elf32-littlearm";
25191 }
c19d1205 25192#endif
404ff6b5
AH
25193}
25194
c19d1205
ZW
25195void
25196armelf_frob_symbol (symbolS * symp,
25197 int * puntp)
404ff6b5 25198{
c19d1205
ZW
25199 elf_frob_symbol (symp, puntp);
25200}
25201#endif
404ff6b5 25202
c19d1205 25203/* MD interface: Finalization. */
a737bd4d 25204
c19d1205
ZW
25205void
25206arm_cleanup (void)
25207{
25208 literal_pool * pool;
a737bd4d 25209
e07e6e58
NC
25210 /* Ensure that all the IT blocks are properly closed. */
25211 check_it_blocks_finished ();
25212
c19d1205
ZW
25213 for (pool = list_of_pools; pool; pool = pool->next)
25214 {
5f4273c7 25215 /* Put it at the end of the relevant section. */
c19d1205
ZW
25216 subseg_set (pool->section, pool->sub_section);
25217#ifdef OBJ_ELF
25218 arm_elf_change_section ();
25219#endif
25220 s_ltorg (0);
25221 }
404ff6b5
AH
25222}
25223
cd000bff
DJ
25224#ifdef OBJ_ELF
25225/* Remove any excess mapping symbols generated for alignment frags in
25226 SEC. We may have created a mapping symbol before a zero byte
25227 alignment; remove it if there's a mapping symbol after the
25228 alignment. */
25229static void
25230check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
25231 void *dummy ATTRIBUTE_UNUSED)
25232{
25233 segment_info_type *seginfo = seg_info (sec);
25234 fragS *fragp;
25235
25236 if (seginfo == NULL || seginfo->frchainP == NULL)
25237 return;
25238
25239 for (fragp = seginfo->frchainP->frch_root;
25240 fragp != NULL;
25241 fragp = fragp->fr_next)
25242 {
25243 symbolS *sym = fragp->tc_frag_data.last_map;
25244 fragS *next = fragp->fr_next;
25245
25246 /* Variable-sized frags have been converted to fixed size by
25247 this point. But if this was variable-sized to start with,
25248 there will be a fixed-size frag after it. So don't handle
25249 next == NULL. */
25250 if (sym == NULL || next == NULL)
25251 continue;
25252
25253 if (S_GET_VALUE (sym) < next->fr_address)
25254 /* Not at the end of this frag. */
25255 continue;
25256 know (S_GET_VALUE (sym) == next->fr_address);
25257
25258 do
25259 {
25260 if (next->tc_frag_data.first_map != NULL)
25261 {
25262 /* Next frag starts with a mapping symbol. Discard this
25263 one. */
25264 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
25265 break;
25266 }
25267
25268 if (next->fr_next == NULL)
25269 {
25270 /* This mapping symbol is at the end of the section. Discard
25271 it. */
25272 know (next->fr_fix == 0 && next->fr_var == 0);
25273 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
25274 break;
25275 }
25276
25277 /* As long as we have empty frags without any mapping symbols,
25278 keep looking. */
25279 /* If the next frag is non-empty and does not start with a
25280 mapping symbol, then this mapping symbol is required. */
25281 if (next->fr_address != next->fr_next->fr_address)
25282 break;
25283
25284 next = next->fr_next;
25285 }
25286 while (next != NULL);
25287 }
25288}
25289#endif
25290
c19d1205
ZW
25291/* Adjust the symbol table. This marks Thumb symbols as distinct from
25292 ARM ones. */
404ff6b5 25293
c19d1205
ZW
25294void
25295arm_adjust_symtab (void)
404ff6b5 25296{
c19d1205
ZW
25297#ifdef OBJ_COFF
25298 symbolS * sym;
404ff6b5 25299
c19d1205
ZW
25300 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
25301 {
25302 if (ARM_IS_THUMB (sym))
25303 {
25304 if (THUMB_IS_FUNC (sym))
25305 {
25306 /* Mark the symbol as a Thumb function. */
25307 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
25308 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
25309 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 25310
c19d1205
ZW
25311 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
25312 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
25313 else
25314 as_bad (_("%s: unexpected function type: %d"),
25315 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
25316 }
25317 else switch (S_GET_STORAGE_CLASS (sym))
25318 {
25319 case C_EXT:
25320 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
25321 break;
25322 case C_STAT:
25323 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
25324 break;
25325 case C_LABEL:
25326 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
25327 break;
25328 default:
25329 /* Do nothing. */
25330 break;
25331 }
25332 }
a737bd4d 25333
c19d1205
ZW
25334 if (ARM_IS_INTERWORK (sym))
25335 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 25336 }
c19d1205
ZW
25337#endif
25338#ifdef OBJ_ELF
25339 symbolS * sym;
25340 char bind;
404ff6b5 25341
c19d1205 25342 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 25343 {
c19d1205
ZW
25344 if (ARM_IS_THUMB (sym))
25345 {
25346 elf_symbol_type * elf_sym;
404ff6b5 25347
c19d1205
ZW
25348 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
25349 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 25350
b0796911
PB
25351 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
25352 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
25353 {
25354 /* If it's a .thumb_func, declare it as so,
25355 otherwise tag label as .code 16. */
25356 if (THUMB_IS_FUNC (sym))
39d911fc
TP
25357 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
25358 ST_BRANCH_TO_THUMB);
3ba67470 25359 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
25360 elf_sym->internal_elf_sym.st_info =
25361 ELF_ST_INFO (bind, STT_ARM_16BIT);
25362 }
25363 }
25364 }
cd000bff
DJ
25365
25366 /* Remove any overlapping mapping symbols generated by alignment frags. */
25367 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
25368 /* Now do generic ELF adjustments. */
25369 elf_adjust_symtab ();
c19d1205 25370#endif
404ff6b5
AH
25371}
25372
c19d1205 25373/* MD interface: Initialization. */
404ff6b5 25374
a737bd4d 25375static void
c19d1205 25376set_constant_flonums (void)
a737bd4d 25377{
c19d1205 25378 int i;
404ff6b5 25379
c19d1205
ZW
25380 for (i = 0; i < NUM_FLOAT_VALS; i++)
25381 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
25382 abort ();
a737bd4d 25383}
404ff6b5 25384
3e9e4fcf
JB
25385/* Auto-select Thumb mode if it's the only available instruction set for the
25386 given architecture. */
25387
25388static void
25389autoselect_thumb_from_cpu_variant (void)
25390{
25391 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
25392 opcode_select (16);
25393}
25394
c19d1205
ZW
25395void
25396md_begin (void)
a737bd4d 25397{
c19d1205
ZW
25398 unsigned mach;
25399 unsigned int i;
404ff6b5 25400
c19d1205
ZW
25401 if ( (arm_ops_hsh = hash_new ()) == NULL
25402 || (arm_cond_hsh = hash_new ()) == NULL
25403 || (arm_shift_hsh = hash_new ()) == NULL
25404 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 25405 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 25406 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
25407 || (arm_reloc_hsh = hash_new ()) == NULL
25408 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
25409 as_fatal (_("virtual memory exhausted"));
25410
25411 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 25412 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 25413 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 25414 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 25415 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 25416 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 25417 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 25418 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 25419 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 25420 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
477330fc 25421 (void *) (v7m_psrs + i));
c19d1205 25422 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 25423 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
25424 for (i = 0;
25425 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
25426 i++)
d3ce72d0 25427 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 25428 (void *) (barrier_opt_names + i));
c19d1205 25429#ifdef OBJ_ELF
3da1d841
NC
25430 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
25431 {
25432 struct reloc_entry * entry = reloc_names + i;
25433
25434 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
25435 /* This makes encode_branch() use the EABI versions of this relocation. */
25436 entry->reloc = BFD_RELOC_UNUSED;
25437
25438 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
25439 }
c19d1205
ZW
25440#endif
25441
25442 set_constant_flonums ();
404ff6b5 25443
c19d1205
ZW
25444 /* Set the cpu variant based on the command-line options. We prefer
25445 -mcpu= over -march= if both are set (as for GCC); and we prefer
25446 -mfpu= over any other way of setting the floating point unit.
25447 Use of legacy options with new options are faulted. */
e74cfd16 25448 if (legacy_cpu)
404ff6b5 25449 {
e74cfd16 25450 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
25451 as_bad (_("use of old and new-style options to set CPU type"));
25452
4d354d8b 25453 selected_arch = *legacy_cpu;
404ff6b5 25454 }
4d354d8b
TP
25455 else if (mcpu_cpu_opt)
25456 {
25457 selected_arch = *mcpu_cpu_opt;
25458 selected_ext = *mcpu_ext_opt;
25459 }
25460 else if (march_cpu_opt)
c168ce07 25461 {
4d354d8b
TP
25462 selected_arch = *march_cpu_opt;
25463 selected_ext = *march_ext_opt;
c168ce07 25464 }
4d354d8b 25465 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
404ff6b5 25466
e74cfd16 25467 if (legacy_fpu)
c19d1205 25468 {
e74cfd16 25469 if (mfpu_opt)
c19d1205 25470 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f 25471
4d354d8b 25472 selected_fpu = *legacy_fpu;
03b1477f 25473 }
4d354d8b
TP
25474 else if (mfpu_opt)
25475 selected_fpu = *mfpu_opt;
25476 else
03b1477f 25477 {
45eb4c1b
NS
25478#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
25479 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
25480 /* Some environments specify a default FPU. If they don't, infer it
25481 from the processor. */
e74cfd16 25482 if (mcpu_fpu_opt)
4d354d8b 25483 selected_fpu = *mcpu_fpu_opt;
e7da50fa 25484 else if (march_fpu_opt)
4d354d8b 25485 selected_fpu = *march_fpu_opt;
39c2da32 25486#else
4d354d8b 25487 selected_fpu = fpu_default;
39c2da32 25488#endif
03b1477f
RE
25489 }
25490
4d354d8b 25491 if (ARM_FEATURE_ZERO (selected_fpu))
03b1477f 25492 {
4d354d8b
TP
25493 if (!no_cpu_selected ())
25494 selected_fpu = fpu_default;
03b1477f 25495 else
4d354d8b 25496 selected_fpu = fpu_arch_fpa;
03b1477f
RE
25497 }
25498
ee065d83 25499#ifdef CPU_DEFAULT
4d354d8b 25500 if (ARM_FEATURE_ZERO (selected_arch))
ee065d83 25501 {
4d354d8b
TP
25502 selected_arch = cpu_default;
25503 selected_cpu = selected_arch;
ee065d83 25504 }
4d354d8b 25505 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
e74cfd16 25506#else
4d354d8b
TP
25507 /* Autodection of feature mode: allow all features in cpu_variant but leave
25508 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
25509 after all instruction have been processed and we can decide what CPU
25510 should be selected. */
25511 if (ARM_FEATURE_ZERO (selected_arch))
25512 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
ee065d83 25513 else
4d354d8b 25514 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83 25515#endif
03b1477f 25516
3e9e4fcf
JB
25517 autoselect_thumb_from_cpu_variant ();
25518
e74cfd16 25519 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 25520
f17c130b 25521#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 25522 {
7cc69913
NC
25523 unsigned int flags = 0;
25524
25525#if defined OBJ_ELF
25526 flags = meabi_flags;
d507cf36
PB
25527
25528 switch (meabi_flags)
33a392fb 25529 {
d507cf36 25530 case EF_ARM_EABI_UNKNOWN:
7cc69913 25531#endif
d507cf36
PB
25532 /* Set the flags in the private structure. */
25533 if (uses_apcs_26) flags |= F_APCS26;
25534 if (support_interwork) flags |= F_INTERWORK;
25535 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 25536 if (pic_code) flags |= F_PIC;
e74cfd16 25537 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
25538 flags |= F_SOFT_FLOAT;
25539
d507cf36
PB
25540 switch (mfloat_abi_opt)
25541 {
25542 case ARM_FLOAT_ABI_SOFT:
25543 case ARM_FLOAT_ABI_SOFTFP:
25544 flags |= F_SOFT_FLOAT;
25545 break;
33a392fb 25546
d507cf36
PB
25547 case ARM_FLOAT_ABI_HARD:
25548 if (flags & F_SOFT_FLOAT)
25549 as_bad (_("hard-float conflicts with specified fpu"));
25550 break;
25551 }
03b1477f 25552
e74cfd16
PB
25553 /* Using pure-endian doubles (even if soft-float). */
25554 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 25555 flags |= F_VFP_FLOAT;
f17c130b 25556
fde78edd 25557#if defined OBJ_ELF
e74cfd16 25558 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 25559 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
25560 break;
25561
8cb51566 25562 case EF_ARM_EABI_VER4:
3a4a14e9 25563 case EF_ARM_EABI_VER5:
c19d1205 25564 /* No additional flags to set. */
d507cf36
PB
25565 break;
25566
25567 default:
25568 abort ();
25569 }
7cc69913 25570#endif
b99bd4ef
NC
25571 bfd_set_private_flags (stdoutput, flags);
25572
25573 /* We have run out flags in the COFF header to encode the
25574 status of ATPCS support, so instead we create a dummy,
c19d1205 25575 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
25576 if (atpcs)
25577 {
25578 asection * sec;
25579
25580 sec = bfd_make_section (stdoutput, ".arm.atpcs");
25581
25582 if (sec != NULL)
25583 {
25584 bfd_set_section_flags
25585 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
25586 bfd_set_section_size (stdoutput, sec, 0);
25587 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
25588 }
25589 }
7cc69913 25590 }
f17c130b 25591#endif
b99bd4ef
NC
25592
25593 /* Record the CPU type as well. */
2d447fca
JM
25594 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
25595 mach = bfd_mach_arm_iWMMXt2;
25596 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 25597 mach = bfd_mach_arm_iWMMXt;
e74cfd16 25598 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 25599 mach = bfd_mach_arm_XScale;
e74cfd16 25600 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 25601 mach = bfd_mach_arm_ep9312;
e74cfd16 25602 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 25603 mach = bfd_mach_arm_5TE;
e74cfd16 25604 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 25605 {
e74cfd16 25606 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
25607 mach = bfd_mach_arm_5T;
25608 else
25609 mach = bfd_mach_arm_5;
25610 }
e74cfd16 25611 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 25612 {
e74cfd16 25613 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
25614 mach = bfd_mach_arm_4T;
25615 else
25616 mach = bfd_mach_arm_4;
25617 }
e74cfd16 25618 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 25619 mach = bfd_mach_arm_3M;
e74cfd16
PB
25620 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
25621 mach = bfd_mach_arm_3;
25622 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
25623 mach = bfd_mach_arm_2a;
25624 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
25625 mach = bfd_mach_arm_2;
25626 else
25627 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
25628
25629 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
25630}
25631
c19d1205 25632/* Command line processing. */
b99bd4ef 25633
c19d1205
ZW
25634/* md_parse_option
25635 Invocation line includes a switch not recognized by the base assembler.
25636 See if it's a processor-specific option.
b99bd4ef 25637
c19d1205
ZW
25638 This routine is somewhat complicated by the need for backwards
25639 compatibility (since older releases of gcc can't be changed).
25640 The new options try to make the interface as compatible as
25641 possible with GCC.
b99bd4ef 25642
c19d1205 25643 New options (supported) are:
b99bd4ef 25644
c19d1205
ZW
25645 -mcpu=<cpu name> Assemble for selected processor
25646 -march=<architecture name> Assemble for selected architecture
25647 -mfpu=<fpu architecture> Assemble for selected FPU.
25648 -EB/-mbig-endian Big-endian
25649 -EL/-mlittle-endian Little-endian
25650 -k Generate PIC code
25651 -mthumb Start in Thumb mode
25652 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 25653
278df34e 25654 -m[no-]warn-deprecated Warn about deprecated features
8b2d793c 25655 -m[no-]warn-syms Warn when symbols match instructions
267bf995 25656
c19d1205 25657 For now we will also provide support for:
b99bd4ef 25658
c19d1205
ZW
25659 -mapcs-32 32-bit Program counter
25660 -mapcs-26 26-bit Program counter
25661 -macps-float Floats passed in FP registers
25662 -mapcs-reentrant Reentrant code
25663 -matpcs
25664 (sometime these will probably be replaced with -mapcs=<list of options>
25665 and -matpcs=<list of options>)
b99bd4ef 25666
c19d1205
ZW
25667 The remaining options are only supported for back-wards compatibility.
25668 Cpu variants, the arm part is optional:
25669 -m[arm]1 Currently not supported.
25670 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
25671 -m[arm]3 Arm 3 processor
25672 -m[arm]6[xx], Arm 6 processors
25673 -m[arm]7[xx][t][[d]m] Arm 7 processors
25674 -m[arm]8[10] Arm 8 processors
25675 -m[arm]9[20][tdmi] Arm 9 processors
25676 -mstrongarm[110[0]] StrongARM processors
25677 -mxscale XScale processors
25678 -m[arm]v[2345[t[e]]] Arm architectures
25679 -mall All (except the ARM1)
25680 FP variants:
25681 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
25682 -mfpe-old (No float load/store multiples)
25683 -mvfpxd VFP Single precision
25684 -mvfp All VFP
25685 -mno-fpu Disable all floating point instructions
b99bd4ef 25686
c19d1205
ZW
25687 The following CPU names are recognized:
25688 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
25689 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
25690 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
25691 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
25692 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
25693 arm10t arm10e, arm1020t, arm1020e, arm10200e,
25694 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 25695
c19d1205 25696 */
b99bd4ef 25697
c19d1205 25698const char * md_shortopts = "m:k";
b99bd4ef 25699
c19d1205
ZW
25700#ifdef ARM_BI_ENDIAN
25701#define OPTION_EB (OPTION_MD_BASE + 0)
25702#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 25703#else
c19d1205
ZW
25704#if TARGET_BYTES_BIG_ENDIAN
25705#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 25706#else
c19d1205
ZW
25707#define OPTION_EL (OPTION_MD_BASE + 1)
25708#endif
b99bd4ef 25709#endif
845b51d6 25710#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
18a20338 25711#define OPTION_FDPIC (OPTION_MD_BASE + 3)
b99bd4ef 25712
c19d1205 25713struct option md_longopts[] =
b99bd4ef 25714{
c19d1205
ZW
25715#ifdef OPTION_EB
25716 {"EB", no_argument, NULL, OPTION_EB},
25717#endif
25718#ifdef OPTION_EL
25719 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 25720#endif
845b51d6 25721 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
18a20338
CL
25722#ifdef OBJ_ELF
25723 {"fdpic", no_argument, NULL, OPTION_FDPIC},
25724#endif
c19d1205
ZW
25725 {NULL, no_argument, NULL, 0}
25726};
b99bd4ef 25727
c19d1205 25728size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 25729
c19d1205 25730struct arm_option_table
b99bd4ef 25731{
0198d5e6
TC
25732 const char * option; /* Option name to match. */
25733 const char * help; /* Help information. */
25734 int * var; /* Variable to change. */
25735 int value; /* What to change it to. */
25736 const char * deprecated; /* If non-null, print this message. */
c19d1205 25737};
b99bd4ef 25738
c19d1205
ZW
25739struct arm_option_table arm_opts[] =
25740{
25741 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
25742 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
25743 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
25744 &support_interwork, 1, NULL},
25745 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
25746 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
25747 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
25748 1, NULL},
25749 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
25750 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
25751 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
25752 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
25753 NULL},
b99bd4ef 25754
c19d1205
ZW
25755 /* These are recognized by the assembler, but have no affect on code. */
25756 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
25757 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
25758
25759 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
25760 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
25761 &warn_on_deprecated, 0, NULL},
8b2d793c
NC
25762 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
25763 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
e74cfd16
PB
25764 {NULL, NULL, NULL, 0, NULL}
25765};
25766
25767struct arm_legacy_option_table
25768{
0198d5e6
TC
25769 const char * option; /* Option name to match. */
25770 const arm_feature_set ** var; /* Variable to change. */
25771 const arm_feature_set value; /* What to change it to. */
25772 const char * deprecated; /* If non-null, print this message. */
e74cfd16 25773};
b99bd4ef 25774
e74cfd16
PB
25775const struct arm_legacy_option_table arm_legacy_opts[] =
25776{
c19d1205
ZW
25777 /* DON'T add any new processors to this list -- we want the whole list
25778 to go away... Add them to the processors table instead. */
e74cfd16
PB
25779 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25780 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25781 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25782 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25783 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25784 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25785 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25786 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25787 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25788 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25789 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25790 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25791 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25792 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25793 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25794 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25795 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
25796 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
25797 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
25798 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
25799 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
25800 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
25801 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
25802 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
25803 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
25804 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
25805 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
25806 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
25807 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
25808 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
25809 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
25810 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
25811 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
25812 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
25813 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
25814 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
25815 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
25816 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
25817 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
25818 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
25819 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
25820 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
25821 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
25822 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
25823 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
25824 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
25825 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25826 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25827 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25828 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25829 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
25830 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
25831 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
25832 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
25833 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
25834 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
25835 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
25836 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
25837 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
25838 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
25839 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
25840 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
25841 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
25842 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
25843 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
25844 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
25845 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
25846 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
25847 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
25848 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 25849 N_("use -mcpu=strongarm110")},
e74cfd16 25850 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 25851 N_("use -mcpu=strongarm1100")},
e74cfd16 25852 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 25853 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
25854 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
25855 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
25856 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 25857
c19d1205 25858 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
25859 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
25860 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
25861 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
25862 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
25863 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
25864 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
25865 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
25866 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
25867 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
25868 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
25869 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
25870 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
25871 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
25872 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
25873 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
25874 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
25875 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
25876 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 25877
c19d1205 25878 /* Floating point variants -- don't add any more to this list either. */
0198d5e6
TC
25879 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
25880 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
25881 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
25882 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 25883 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 25884
e74cfd16 25885 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 25886};
7ed4c4c5 25887
c19d1205 25888struct arm_cpu_option_table
7ed4c4c5 25889{
0198d5e6
TC
25890 const char * name;
25891 size_t name_len;
25892 const arm_feature_set value;
25893 const arm_feature_set ext;
c19d1205
ZW
25894 /* For some CPUs we assume an FPU unless the user explicitly sets
25895 -mfpu=... */
0198d5e6 25896 const arm_feature_set default_fpu;
ee065d83
PB
25897 /* The canonical name of the CPU, or NULL to use NAME converted to upper
25898 case. */
0198d5e6 25899 const char * canonical_name;
c19d1205 25900};
7ed4c4c5 25901
c19d1205
ZW
25902/* This list should, at a minimum, contain all the cpu names
25903 recognized by GCC. */
996b5569 25904#define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
0198d5e6 25905
e74cfd16 25906static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 25907{
996b5569
TP
25908 ARM_CPU_OPT ("all", NULL, ARM_ANY,
25909 ARM_ARCH_NONE,
25910 FPU_ARCH_FPA),
25911 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
25912 ARM_ARCH_NONE,
25913 FPU_ARCH_FPA),
25914 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
25915 ARM_ARCH_NONE,
25916 FPU_ARCH_FPA),
25917 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
25918 ARM_ARCH_NONE,
25919 FPU_ARCH_FPA),
25920 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
25921 ARM_ARCH_NONE,
25922 FPU_ARCH_FPA),
25923 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
25924 ARM_ARCH_NONE,
25925 FPU_ARCH_FPA),
25926 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
25927 ARM_ARCH_NONE,
25928 FPU_ARCH_FPA),
25929 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
25930 ARM_ARCH_NONE,
25931 FPU_ARCH_FPA),
25932 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
25933 ARM_ARCH_NONE,
25934 FPU_ARCH_FPA),
25935 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
25936 ARM_ARCH_NONE,
25937 FPU_ARCH_FPA),
25938 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
25939 ARM_ARCH_NONE,
25940 FPU_ARCH_FPA),
25941 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
25942 ARM_ARCH_NONE,
25943 FPU_ARCH_FPA),
25944 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
25945 ARM_ARCH_NONE,
25946 FPU_ARCH_FPA),
25947 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
25948 ARM_ARCH_NONE,
25949 FPU_ARCH_FPA),
25950 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
25951 ARM_ARCH_NONE,
25952 FPU_ARCH_FPA),
25953 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
25954 ARM_ARCH_NONE,
25955 FPU_ARCH_FPA),
25956 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
25957 ARM_ARCH_NONE,
25958 FPU_ARCH_FPA),
25959 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
25960 ARM_ARCH_NONE,
25961 FPU_ARCH_FPA),
25962 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
25963 ARM_ARCH_NONE,
25964 FPU_ARCH_FPA),
25965 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
25966 ARM_ARCH_NONE,
25967 FPU_ARCH_FPA),
25968 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
25969 ARM_ARCH_NONE,
25970 FPU_ARCH_FPA),
25971 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
25972 ARM_ARCH_NONE,
25973 FPU_ARCH_FPA),
25974 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
25975 ARM_ARCH_NONE,
25976 FPU_ARCH_FPA),
25977 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
25978 ARM_ARCH_NONE,
25979 FPU_ARCH_FPA),
25980 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
25981 ARM_ARCH_NONE,
25982 FPU_ARCH_FPA),
25983 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
25984 ARM_ARCH_NONE,
25985 FPU_ARCH_FPA),
25986 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
25987 ARM_ARCH_NONE,
25988 FPU_ARCH_FPA),
25989 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
25990 ARM_ARCH_NONE,
25991 FPU_ARCH_FPA),
25992 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
25993 ARM_ARCH_NONE,
25994 FPU_ARCH_FPA),
25995 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
25996 ARM_ARCH_NONE,
25997 FPU_ARCH_FPA),
25998 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
25999 ARM_ARCH_NONE,
26000 FPU_ARCH_FPA),
26001 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
26002 ARM_ARCH_NONE,
26003 FPU_ARCH_FPA),
26004 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
26005 ARM_ARCH_NONE,
26006 FPU_ARCH_FPA),
26007 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
26008 ARM_ARCH_NONE,
26009 FPU_ARCH_FPA),
26010 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
26011 ARM_ARCH_NONE,
26012 FPU_ARCH_FPA),
26013 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
26014 ARM_ARCH_NONE,
26015 FPU_ARCH_FPA),
26016 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
26017 ARM_ARCH_NONE,
26018 FPU_ARCH_FPA),
26019 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
26020 ARM_ARCH_NONE,
26021 FPU_ARCH_FPA),
26022 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
26023 ARM_ARCH_NONE,
26024 FPU_ARCH_FPA),
26025 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
26026 ARM_ARCH_NONE,
26027 FPU_ARCH_FPA),
26028 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
26029 ARM_ARCH_NONE,
26030 FPU_ARCH_FPA),
26031 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
26032 ARM_ARCH_NONE,
26033 FPU_ARCH_FPA),
26034 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
26035 ARM_ARCH_NONE,
26036 FPU_ARCH_FPA),
26037 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
26038 ARM_ARCH_NONE,
26039 FPU_ARCH_FPA),
26040 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
26041 ARM_ARCH_NONE,
26042 FPU_ARCH_FPA),
26043 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
26044 ARM_ARCH_NONE,
26045 FPU_ARCH_FPA),
26046
c19d1205
ZW
26047 /* For V5 or later processors we default to using VFP; but the user
26048 should really set the FPU type explicitly. */
996b5569
TP
26049 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
26050 ARM_ARCH_NONE,
26051 FPU_ARCH_VFP_V2),
26052 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
26053 ARM_ARCH_NONE,
26054 FPU_ARCH_VFP_V2),
26055 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
26056 ARM_ARCH_NONE,
26057 FPU_ARCH_VFP_V2),
26058 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
26059 ARM_ARCH_NONE,
26060 FPU_ARCH_VFP_V2),
26061 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
26062 ARM_ARCH_NONE,
26063 FPU_ARCH_VFP_V2),
26064 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
26065 ARM_ARCH_NONE,
26066 FPU_ARCH_VFP_V2),
26067 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
26068 ARM_ARCH_NONE,
26069 FPU_ARCH_VFP_V2),
26070 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
26071 ARM_ARCH_NONE,
26072 FPU_ARCH_VFP_V2),
26073 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
26074 ARM_ARCH_NONE,
26075 FPU_ARCH_VFP_V2),
26076 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
26077 ARM_ARCH_NONE,
26078 FPU_ARCH_VFP_V2),
26079 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
26080 ARM_ARCH_NONE,
26081 FPU_ARCH_VFP_V2),
26082 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
26083 ARM_ARCH_NONE,
26084 FPU_ARCH_VFP_V2),
26085 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
26086 ARM_ARCH_NONE,
26087 FPU_ARCH_VFP_V1),
26088 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
26089 ARM_ARCH_NONE,
26090 FPU_ARCH_VFP_V1),
26091 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
26092 ARM_ARCH_NONE,
26093 FPU_ARCH_VFP_V2),
26094 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
26095 ARM_ARCH_NONE,
26096 FPU_ARCH_VFP_V2),
26097 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
26098 ARM_ARCH_NONE,
26099 FPU_ARCH_VFP_V1),
26100 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
26101 ARM_ARCH_NONE,
26102 FPU_ARCH_VFP_V2),
26103 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
26104 ARM_ARCH_NONE,
26105 FPU_ARCH_VFP_V2),
26106 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
26107 ARM_ARCH_NONE,
26108 FPU_ARCH_VFP_V2),
26109 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
26110 ARM_ARCH_NONE,
26111 FPU_ARCH_VFP_V2),
26112 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
26113 ARM_ARCH_NONE,
26114 FPU_ARCH_VFP_V2),
26115 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
26116 ARM_ARCH_NONE,
26117 FPU_ARCH_VFP_V2),
26118 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
26119 ARM_ARCH_NONE,
26120 FPU_ARCH_VFP_V2),
26121 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
26122 ARM_ARCH_NONE,
26123 FPU_ARCH_VFP_V2),
26124 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
26125 ARM_ARCH_NONE,
26126 FPU_ARCH_VFP_V2),
26127 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
26128 ARM_ARCH_NONE,
26129 FPU_NONE),
26130 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
26131 ARM_ARCH_NONE,
26132 FPU_NONE),
26133 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
26134 ARM_ARCH_NONE,
26135 FPU_ARCH_VFP_V2),
26136 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
26137 ARM_ARCH_NONE,
26138 FPU_ARCH_VFP_V2),
26139 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
26140 ARM_ARCH_NONE,
26141 FPU_ARCH_VFP_V2),
26142 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
26143 ARM_ARCH_NONE,
26144 FPU_NONE),
26145 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
26146 ARM_ARCH_NONE,
26147 FPU_NONE),
26148 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
26149 ARM_ARCH_NONE,
26150 FPU_ARCH_VFP_V2),
26151 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
26152 ARM_ARCH_NONE,
26153 FPU_NONE),
26154 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
26155 ARM_ARCH_NONE,
26156 FPU_ARCH_VFP_V2),
26157 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
26158 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26159 FPU_NONE),
26160 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
26161 ARM_ARCH_NONE,
26162 FPU_ARCH_NEON_VFP_V4),
26163 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
26164 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
26165 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
26166 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
26167 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26168 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
26169 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
26170 ARM_ARCH_NONE,
26171 FPU_ARCH_NEON_VFP_V4),
26172 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
26173 ARM_ARCH_NONE,
26174 FPU_ARCH_NEON_VFP_V4),
26175 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
26176 ARM_ARCH_NONE,
26177 FPU_ARCH_NEON_VFP_V4),
26178 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
26179 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26180 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26181 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
26182 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26183 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26184 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
26185 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26186 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
26187 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
26188 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 26189 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
26190 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
26191 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26192 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26193 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
26194 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26195 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26196 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
26197 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26198 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
26199 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
26200 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 26201 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
7ebd1359 26202 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
26203 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26204 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
26205 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
26206 ARM_ARCH_NONE,
26207 FPU_NONE),
26208 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
26209 ARM_ARCH_NONE,
26210 FPU_ARCH_VFP_V3D16),
26211 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
26212 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26213 FPU_NONE),
26214 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
26215 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26216 FPU_ARCH_VFP_V3D16),
26217 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
26218 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26219 FPU_ARCH_VFP_V3D16),
0cda1e19
TP
26220 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
26221 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26222 FPU_ARCH_NEON_VFP_ARMV8),
996b5569
TP
26223 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
26224 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26225 FPU_NONE),
26226 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
26227 ARM_ARCH_NONE,
26228 FPU_NONE),
26229 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
26230 ARM_ARCH_NONE,
26231 FPU_NONE),
26232 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
26233 ARM_ARCH_NONE,
26234 FPU_NONE),
26235 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
26236 ARM_ARCH_NONE,
26237 FPU_NONE),
26238 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
26239 ARM_ARCH_NONE,
26240 FPU_NONE),
26241 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
26242 ARM_ARCH_NONE,
26243 FPU_NONE),
26244 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
26245 ARM_ARCH_NONE,
26246 FPU_NONE),
26247 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
26248 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26249 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
6b21c2bf 26250
c19d1205 26251 /* ??? XSCALE is really an architecture. */
996b5569
TP
26252 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
26253 ARM_ARCH_NONE,
26254 FPU_ARCH_VFP_V2),
26255
c19d1205 26256 /* ??? iwmmxt is not a processor. */
996b5569
TP
26257 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
26258 ARM_ARCH_NONE,
26259 FPU_ARCH_VFP_V2),
26260 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
26261 ARM_ARCH_NONE,
26262 FPU_ARCH_VFP_V2),
26263 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
26264 ARM_ARCH_NONE,
26265 FPU_ARCH_VFP_V2),
26266
0198d5e6 26267 /* Maverick. */
996b5569
TP
26268 ARM_CPU_OPT ("ep9312", "ARM920T",
26269 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
26270 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
26271
da4339ed 26272 /* Marvell processors. */
996b5569
TP
26273 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
26274 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26275 FPU_ARCH_VFP_V3D16),
26276 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
26277 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26278 FPU_ARCH_NEON_VFP_V4),
da4339ed 26279
996b5569
TP
26280 /* APM X-Gene family. */
26281 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
26282 ARM_ARCH_NONE,
26283 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26284 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
26285 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26286 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26287
26288 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 26289};
f3bad469 26290#undef ARM_CPU_OPT
7ed4c4c5 26291
c19d1205 26292struct arm_arch_option_table
7ed4c4c5 26293{
0198d5e6
TC
26294 const char * name;
26295 size_t name_len;
26296 const arm_feature_set value;
26297 const arm_feature_set default_fpu;
c19d1205 26298};
7ed4c4c5 26299
c19d1205
ZW
26300/* This list should, at a minimum, contain all the architecture names
26301 recognized by GCC. */
f3bad469 26302#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
0198d5e6 26303
e74cfd16 26304static const struct arm_arch_option_table arm_archs[] =
c19d1205 26305{
497d849d
TP
26306 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
26307 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
26308 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
26309 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
26310 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
26311 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
26312 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
26313 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
26314 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
26315 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
26316 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
26317 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
26318 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
26319 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
26320 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
26321 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
26322 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
26323 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
26324 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
26325 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
26326 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
f33026a9
MW
26327 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
26328 kept to preserve existing behaviour. */
497d849d
TP
26329 ARM_ARCH_OPT ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP),
26330 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP),
26331 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
26332 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
26333 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
f33026a9
MW
26334 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
26335 kept to preserve existing behaviour. */
497d849d
TP
26336 ARM_ARCH_OPT ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP),
26337 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP),
26338 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
26339 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
26340 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
c450d570
PB
26341 /* The official spelling of the ARMv7 profile variants is the dashed form.
26342 Accept the non-dashed form for compatibility with old toolchains. */
497d849d
TP
26343 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
26344 ARM_ARCH_OPT ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP),
26345 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
26346 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
26347 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
26348 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
26349 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
26350 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
26351 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
26352 ARM_ARCH_OPT ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP),
26353 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
26354 ARM_ARCH_OPT ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP),
26355 ARM_ARCH_OPT ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP),
26356 ARM_ARCH_OPT ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP),
26357 ARM_ARCH_OPT ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP),
26358 ARM_ARCH_OPT ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP),
26359 ARM_ARCH_OPT ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP),
26360 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
26361 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
26362 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
f3bad469 26363 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 26364};
f3bad469 26365#undef ARM_ARCH_OPT
7ed4c4c5 26366
69133863 26367/* ISA extensions in the co-processor and main instruction set space. */
0198d5e6 26368
69133863 26369struct arm_option_extension_value_table
c19d1205 26370{
0198d5e6
TC
26371 const char * name;
26372 size_t name_len;
26373 const arm_feature_set merge_value;
26374 const arm_feature_set clear_value;
d942732e
TP
26375 /* List of architectures for which an extension is available. ARM_ARCH_NONE
26376 indicates that an extension is available for all architectures while
26377 ARM_ANY marks an empty entry. */
0198d5e6 26378 const arm_feature_set allowed_archs[2];
c19d1205 26379};
7ed4c4c5 26380
0198d5e6
TC
26381/* The following table must be in alphabetical order with a NULL last entry. */
26382
d942732e
TP
26383#define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
26384#define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
0198d5e6 26385
69133863 26386static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 26387{
823d2571
TG
26388 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26389 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
bca38921 26390 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
823d2571
TG
26391 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
26392 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
c604a79a
JW
26393 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
26394 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
26395 ARM_ARCH_V8_2A),
15afaa63
TP
26396 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26397 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26398 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
823d2571
TG
26399 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
26400 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
b8ec4e87
JW
26401 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26402 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26403 ARM_ARCH_V8_2A),
01f48020
TC
26404 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
26405 | ARM_EXT2_FP16_FML),
26406 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
26407 | ARM_EXT2_FP16_FML),
26408 ARM_ARCH_V8_2A),
d942732e 26409 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
823d2571 26410 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
d942732e
TP
26411 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
26412 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
3d030cdb
TP
26413 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
26414 Thumb divide instruction. Due to this having the same name as the
26415 previous entry, this will be ignored when doing command-line parsing and
26416 only considered by build attribute selection code. */
26417 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
26418 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
26419 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
823d2571 26420 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
d942732e 26421 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
823d2571 26422 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
d942732e 26423 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
823d2571 26424 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
d942732e
TP
26425 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
26426 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
823d2571 26427 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
d942732e
TP
26428 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
26429 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
823d2571
TG
26430 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
26431 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
26432 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
ddfded2f
MW
26433 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
26434 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
ced40572 26435 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
dad0c3bf
SD
26436 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
26437 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
26438 ARM_ARCH_V8A),
4d1464f2
MW
26439 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
26440 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
ced40572 26441 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
643afb90
MW
26442 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
26443 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
ced40572 26444 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
7fadb25d
SD
26445 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
26446 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
26447 ARM_ARCH_V8A),
d942732e 26448 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
823d2571 26449 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
d942732e
TP
26450 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
26451 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
643afb90
MW
26452 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
26453 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
26454 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
823d2571
TG
26455 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
26456 | ARM_EXT_DIV),
26457 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
26458 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
26459 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
d942732e
TP
26460 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
26461 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
69133863 26462};
f3bad469 26463#undef ARM_EXT_OPT
69133863
MGD
26464
26465/* ISA floating-point and Advanced SIMD extensions. */
26466struct arm_option_fpu_value_table
26467{
0198d5e6
TC
26468 const char * name;
26469 const arm_feature_set value;
c19d1205 26470};
7ed4c4c5 26471
c19d1205
ZW
26472/* This list should, at a minimum, contain all the fpu names
26473 recognized by GCC. */
69133863 26474static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
26475{
26476 {"softfpa", FPU_NONE},
26477 {"fpe", FPU_ARCH_FPE},
26478 {"fpe2", FPU_ARCH_FPE},
26479 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
26480 {"fpa", FPU_ARCH_FPA},
26481 {"fpa10", FPU_ARCH_FPA},
26482 {"fpa11", FPU_ARCH_FPA},
26483 {"arm7500fe", FPU_ARCH_FPA},
26484 {"softvfp", FPU_ARCH_VFP},
26485 {"softvfp+vfp", FPU_ARCH_VFP_V2},
26486 {"vfp", FPU_ARCH_VFP_V2},
26487 {"vfp9", FPU_ARCH_VFP_V2},
d5e0ba9c 26488 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
c19d1205
ZW
26489 {"vfp10", FPU_ARCH_VFP_V2},
26490 {"vfp10-r0", FPU_ARCH_VFP_V1},
26491 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
26492 {"vfpv2", FPU_ARCH_VFP_V2},
26493 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 26494 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 26495 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
26496 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
26497 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
26498 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
26499 {"arm1020t", FPU_ARCH_VFP_V1},
26500 {"arm1020e", FPU_ARCH_VFP_V2},
d5e0ba9c 26501 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
c19d1205
ZW
26502 {"arm1136jf-s", FPU_ARCH_VFP_V2},
26503 {"maverick", FPU_ARCH_MAVERICK},
d5e0ba9c 26504 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
d3375ddd 26505 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 26506 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
26507 {"vfpv4", FPU_ARCH_VFP_V4},
26508 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 26509 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
a715796b
TG
26510 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
26511 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
62f3b8c8 26512 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
26513 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
26514 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
26515 {"crypto-neon-fp-armv8",
26516 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
d6b4b13e 26517 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
081e4c7d
MW
26518 {"crypto-neon-fp-armv8.1",
26519 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
e74cfd16
PB
26520 {NULL, ARM_ARCH_NONE}
26521};
26522
26523struct arm_option_value_table
26524{
e0471c16 26525 const char *name;
e74cfd16 26526 long value;
c19d1205 26527};
7ed4c4c5 26528
e74cfd16 26529static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
26530{
26531 {"hard", ARM_FLOAT_ABI_HARD},
26532 {"softfp", ARM_FLOAT_ABI_SOFTFP},
26533 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 26534 {NULL, 0}
c19d1205 26535};
7ed4c4c5 26536
c19d1205 26537#ifdef OBJ_ELF
3a4a14e9 26538/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 26539static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
26540{
26541 {"gnu", EF_ARM_EABI_UNKNOWN},
26542 {"4", EF_ARM_EABI_VER4},
3a4a14e9 26543 {"5", EF_ARM_EABI_VER5},
e74cfd16 26544 {NULL, 0}
c19d1205
ZW
26545};
26546#endif
7ed4c4c5 26547
c19d1205
ZW
26548struct arm_long_option_table
26549{
0198d5e6 26550 const char * option; /* Substring to match. */
e0471c16 26551 const char * help; /* Help information. */
17b9d67d 26552 int (* func) (const char * subopt); /* Function to decode sub-option. */
e0471c16 26553 const char * deprecated; /* If non-null, print this message. */
c19d1205 26554};
7ed4c4c5 26555
c921be7d 26556static bfd_boolean
c168ce07 26557arm_parse_extension (const char *str, const arm_feature_set *opt_set,
4d354d8b 26558 arm_feature_set *ext_set)
7ed4c4c5 26559{
69133863 26560 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
26561 extensions being added before being removed. We achieve this by having
26562 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 26563 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 26564 or removing it (0) and only allowing it to change in the order
69133863
MGD
26565 -1 -> 1 -> 0. */
26566 const struct arm_option_extension_value_table * opt = NULL;
d942732e 26567 const arm_feature_set arm_any = ARM_ANY;
69133863
MGD
26568 int adding_value = -1;
26569
c19d1205 26570 while (str != NULL && *str != 0)
7ed4c4c5 26571 {
82b8a785 26572 const char *ext;
f3bad469 26573 size_t len;
7ed4c4c5 26574
c19d1205
ZW
26575 if (*str != '+')
26576 {
26577 as_bad (_("invalid architectural extension"));
c921be7d 26578 return FALSE;
c19d1205 26579 }
7ed4c4c5 26580
c19d1205
ZW
26581 str++;
26582 ext = strchr (str, '+');
7ed4c4c5 26583
c19d1205 26584 if (ext != NULL)
f3bad469 26585 len = ext - str;
c19d1205 26586 else
f3bad469 26587 len = strlen (str);
7ed4c4c5 26588
f3bad469 26589 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
26590 {
26591 if (adding_value != 0)
26592 {
26593 adding_value = 0;
26594 opt = arm_extensions;
26595 }
26596
f3bad469 26597 len -= 2;
69133863
MGD
26598 str += 2;
26599 }
f3bad469 26600 else if (len > 0)
69133863
MGD
26601 {
26602 if (adding_value == -1)
26603 {
26604 adding_value = 1;
26605 opt = arm_extensions;
26606 }
26607 else if (adding_value != 1)
26608 {
26609 as_bad (_("must specify extensions to add before specifying "
26610 "those to remove"));
26611 return FALSE;
26612 }
26613 }
26614
f3bad469 26615 if (len == 0)
c19d1205
ZW
26616 {
26617 as_bad (_("missing architectural extension"));
c921be7d 26618 return FALSE;
c19d1205 26619 }
7ed4c4c5 26620
69133863
MGD
26621 gas_assert (adding_value != -1);
26622 gas_assert (opt != NULL);
26623
26624 /* Scan over the options table trying to find an exact match. */
26625 for (; opt->name != NULL; opt++)
f3bad469 26626 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 26627 {
d942732e
TP
26628 int i, nb_allowed_archs =
26629 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
69133863 26630 /* Check we can apply the extension to this architecture. */
d942732e
TP
26631 for (i = 0; i < nb_allowed_archs; i++)
26632 {
26633 /* Empty entry. */
26634 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
26635 continue;
c168ce07 26636 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
d942732e
TP
26637 break;
26638 }
26639 if (i == nb_allowed_archs)
69133863
MGD
26640 {
26641 as_bad (_("extension does not apply to the base architecture"));
26642 return FALSE;
26643 }
26644
26645 /* Add or remove the extension. */
26646 if (adding_value)
4d354d8b 26647 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
69133863 26648 else
4d354d8b 26649 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
69133863 26650
3d030cdb
TP
26651 /* Allowing Thumb division instructions for ARMv7 in autodetection
26652 rely on this break so that duplicate extensions (extensions
26653 with the same name as a previous extension in the list) are not
26654 considered for command-line parsing. */
c19d1205
ZW
26655 break;
26656 }
7ed4c4c5 26657
c19d1205
ZW
26658 if (opt->name == NULL)
26659 {
69133863
MGD
26660 /* Did we fail to find an extension because it wasn't specified in
26661 alphabetical order, or because it does not exist? */
26662
26663 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 26664 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
26665 break;
26666
26667 if (opt->name == NULL)
26668 as_bad (_("unknown architectural extension `%s'"), str);
26669 else
26670 as_bad (_("architectural extensions must be specified in "
26671 "alphabetical order"));
26672
c921be7d 26673 return FALSE;
c19d1205 26674 }
69133863
MGD
26675 else
26676 {
26677 /* We should skip the extension we've just matched the next time
26678 round. */
26679 opt++;
26680 }
7ed4c4c5 26681
c19d1205
ZW
26682 str = ext;
26683 };
7ed4c4c5 26684
c921be7d 26685 return TRUE;
c19d1205 26686}
7ed4c4c5 26687
c921be7d 26688static bfd_boolean
17b9d67d 26689arm_parse_cpu (const char *str)
7ed4c4c5 26690{
f3bad469 26691 const struct arm_cpu_option_table *opt;
82b8a785 26692 const char *ext = strchr (str, '+');
f3bad469 26693 size_t len;
7ed4c4c5 26694
c19d1205 26695 if (ext != NULL)
f3bad469 26696 len = ext - str;
7ed4c4c5 26697 else
f3bad469 26698 len = strlen (str);
7ed4c4c5 26699
f3bad469 26700 if (len == 0)
7ed4c4c5 26701 {
c19d1205 26702 as_bad (_("missing cpu name `%s'"), str);
c921be7d 26703 return FALSE;
7ed4c4c5
NC
26704 }
26705
c19d1205 26706 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 26707 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 26708 {
c168ce07 26709 mcpu_cpu_opt = &opt->value;
4d354d8b
TP
26710 if (mcpu_ext_opt == NULL)
26711 mcpu_ext_opt = XNEW (arm_feature_set);
26712 *mcpu_ext_opt = opt->ext;
e74cfd16 26713 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 26714 if (opt->canonical_name)
ef8e6722
JW
26715 {
26716 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
26717 strcpy (selected_cpu_name, opt->canonical_name);
26718 }
ee065d83
PB
26719 else
26720 {
f3bad469 26721 size_t i;
c921be7d 26722
ef8e6722
JW
26723 if (len >= sizeof selected_cpu_name)
26724 len = (sizeof selected_cpu_name) - 1;
26725
f3bad469 26726 for (i = 0; i < len; i++)
ee065d83
PB
26727 selected_cpu_name[i] = TOUPPER (opt->name[i]);
26728 selected_cpu_name[i] = 0;
26729 }
7ed4c4c5 26730
c19d1205 26731 if (ext != NULL)
4d354d8b 26732 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt);
7ed4c4c5 26733
c921be7d 26734 return TRUE;
c19d1205 26735 }
7ed4c4c5 26736
c19d1205 26737 as_bad (_("unknown cpu `%s'"), str);
c921be7d 26738 return FALSE;
7ed4c4c5
NC
26739}
26740
c921be7d 26741static bfd_boolean
17b9d67d 26742arm_parse_arch (const char *str)
7ed4c4c5 26743{
e74cfd16 26744 const struct arm_arch_option_table *opt;
82b8a785 26745 const char *ext = strchr (str, '+');
f3bad469 26746 size_t len;
7ed4c4c5 26747
c19d1205 26748 if (ext != NULL)
f3bad469 26749 len = ext - str;
7ed4c4c5 26750 else
f3bad469 26751 len = strlen (str);
7ed4c4c5 26752
f3bad469 26753 if (len == 0)
7ed4c4c5 26754 {
c19d1205 26755 as_bad (_("missing architecture name `%s'"), str);
c921be7d 26756 return FALSE;
7ed4c4c5
NC
26757 }
26758
c19d1205 26759 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 26760 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 26761 {
e74cfd16 26762 march_cpu_opt = &opt->value;
4d354d8b
TP
26763 if (march_ext_opt == NULL)
26764 march_ext_opt = XNEW (arm_feature_set);
26765 *march_ext_opt = arm_arch_none;
e74cfd16 26766 march_fpu_opt = &opt->default_fpu;
5f4273c7 26767 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 26768
c19d1205 26769 if (ext != NULL)
4d354d8b 26770 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt);
7ed4c4c5 26771
c921be7d 26772 return TRUE;
c19d1205
ZW
26773 }
26774
26775 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 26776 return FALSE;
7ed4c4c5 26777}
eb043451 26778
c921be7d 26779static bfd_boolean
17b9d67d 26780arm_parse_fpu (const char * str)
c19d1205 26781{
69133863 26782 const struct arm_option_fpu_value_table * opt;
b99bd4ef 26783
c19d1205
ZW
26784 for (opt = arm_fpus; opt->name != NULL; opt++)
26785 if (streq (opt->name, str))
26786 {
e74cfd16 26787 mfpu_opt = &opt->value;
c921be7d 26788 return TRUE;
c19d1205 26789 }
b99bd4ef 26790
c19d1205 26791 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 26792 return FALSE;
c19d1205
ZW
26793}
26794
c921be7d 26795static bfd_boolean
17b9d67d 26796arm_parse_float_abi (const char * str)
b99bd4ef 26797{
e74cfd16 26798 const struct arm_option_value_table * opt;
b99bd4ef 26799
c19d1205
ZW
26800 for (opt = arm_float_abis; opt->name != NULL; opt++)
26801 if (streq (opt->name, str))
26802 {
26803 mfloat_abi_opt = opt->value;
c921be7d 26804 return TRUE;
c19d1205 26805 }
cc8a6dd0 26806
c19d1205 26807 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 26808 return FALSE;
c19d1205 26809}
b99bd4ef 26810
c19d1205 26811#ifdef OBJ_ELF
c921be7d 26812static bfd_boolean
17b9d67d 26813arm_parse_eabi (const char * str)
c19d1205 26814{
e74cfd16 26815 const struct arm_option_value_table *opt;
cc8a6dd0 26816
c19d1205
ZW
26817 for (opt = arm_eabis; opt->name != NULL; opt++)
26818 if (streq (opt->name, str))
26819 {
26820 meabi_flags = opt->value;
c921be7d 26821 return TRUE;
c19d1205
ZW
26822 }
26823 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 26824 return FALSE;
c19d1205
ZW
26825}
26826#endif
cc8a6dd0 26827
c921be7d 26828static bfd_boolean
17b9d67d 26829arm_parse_it_mode (const char * str)
e07e6e58 26830{
c921be7d 26831 bfd_boolean ret = TRUE;
e07e6e58
NC
26832
26833 if (streq ("arm", str))
26834 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
26835 else if (streq ("thumb", str))
26836 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
26837 else if (streq ("always", str))
26838 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
26839 else if (streq ("never", str))
26840 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
26841 else
26842 {
26843 as_bad (_("unknown implicit IT mode `%s', should be "\
477330fc 26844 "arm, thumb, always, or never."), str);
c921be7d 26845 ret = FALSE;
e07e6e58
NC
26846 }
26847
26848 return ret;
26849}
26850
2e6976a8 26851static bfd_boolean
17b9d67d 26852arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
2e6976a8
DG
26853{
26854 codecomposer_syntax = TRUE;
26855 arm_comment_chars[0] = ';';
26856 arm_line_separator_chars[0] = 0;
26857 return TRUE;
26858}
26859
c19d1205
ZW
26860struct arm_long_option_table arm_long_opts[] =
26861{
26862 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
26863 arm_parse_cpu, NULL},
26864 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
26865 arm_parse_arch, NULL},
26866 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
26867 arm_parse_fpu, NULL},
26868 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
26869 arm_parse_float_abi, NULL},
26870#ifdef OBJ_ELF
7fac0536 26871 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
26872 arm_parse_eabi, NULL},
26873#endif
e07e6e58
NC
26874 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
26875 arm_parse_it_mode, NULL},
2e6976a8
DG
26876 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
26877 arm_ccs_mode, NULL},
c19d1205
ZW
26878 {NULL, NULL, 0, NULL}
26879};
cc8a6dd0 26880
c19d1205 26881int
17b9d67d 26882md_parse_option (int c, const char * arg)
c19d1205
ZW
26883{
26884 struct arm_option_table *opt;
e74cfd16 26885 const struct arm_legacy_option_table *fopt;
c19d1205 26886 struct arm_long_option_table *lopt;
b99bd4ef 26887
c19d1205 26888 switch (c)
b99bd4ef 26889 {
c19d1205
ZW
26890#ifdef OPTION_EB
26891 case OPTION_EB:
26892 target_big_endian = 1;
26893 break;
26894#endif
cc8a6dd0 26895
c19d1205
ZW
26896#ifdef OPTION_EL
26897 case OPTION_EL:
26898 target_big_endian = 0;
26899 break;
26900#endif
b99bd4ef 26901
845b51d6
PB
26902 case OPTION_FIX_V4BX:
26903 fix_v4bx = TRUE;
26904 break;
26905
18a20338
CL
26906#ifdef OBJ_ELF
26907 case OPTION_FDPIC:
26908 arm_fdpic = TRUE;
26909 break;
26910#endif /* OBJ_ELF */
26911
c19d1205
ZW
26912 case 'a':
26913 /* Listing option. Just ignore these, we don't support additional
26914 ones. */
26915 return 0;
b99bd4ef 26916
c19d1205
ZW
26917 default:
26918 for (opt = arm_opts; opt->option != NULL; opt++)
26919 {
26920 if (c == opt->option[0]
26921 && ((arg == NULL && opt->option[1] == 0)
26922 || streq (arg, opt->option + 1)))
26923 {
c19d1205 26924 /* If the option is deprecated, tell the user. */
278df34e 26925 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
26926 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
26927 arg ? arg : "", _(opt->deprecated));
b99bd4ef 26928
c19d1205
ZW
26929 if (opt->var != NULL)
26930 *opt->var = opt->value;
cc8a6dd0 26931
c19d1205
ZW
26932 return 1;
26933 }
26934 }
b99bd4ef 26935
e74cfd16
PB
26936 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
26937 {
26938 if (c == fopt->option[0]
26939 && ((arg == NULL && fopt->option[1] == 0)
26940 || streq (arg, fopt->option + 1)))
26941 {
e74cfd16 26942 /* If the option is deprecated, tell the user. */
278df34e 26943 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
26944 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
26945 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
26946
26947 if (fopt->var != NULL)
26948 *fopt->var = &fopt->value;
26949
26950 return 1;
26951 }
26952 }
26953
c19d1205
ZW
26954 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
26955 {
26956 /* These options are expected to have an argument. */
26957 if (c == lopt->option[0]
26958 && arg != NULL
26959 && strncmp (arg, lopt->option + 1,
26960 strlen (lopt->option + 1)) == 0)
26961 {
c19d1205 26962 /* If the option is deprecated, tell the user. */
278df34e 26963 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
26964 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
26965 _(lopt->deprecated));
b99bd4ef 26966
c19d1205
ZW
26967 /* Call the sup-option parser. */
26968 return lopt->func (arg + strlen (lopt->option) - 1);
26969 }
26970 }
a737bd4d 26971
c19d1205
ZW
26972 return 0;
26973 }
a394c00f 26974
c19d1205
ZW
26975 return 1;
26976}
a394c00f 26977
c19d1205
ZW
26978void
26979md_show_usage (FILE * fp)
a394c00f 26980{
c19d1205
ZW
26981 struct arm_option_table *opt;
26982 struct arm_long_option_table *lopt;
a394c00f 26983
c19d1205 26984 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 26985
c19d1205
ZW
26986 for (opt = arm_opts; opt->option != NULL; opt++)
26987 if (opt->help != NULL)
26988 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 26989
c19d1205
ZW
26990 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
26991 if (lopt->help != NULL)
26992 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 26993
c19d1205
ZW
26994#ifdef OPTION_EB
26995 fprintf (fp, _("\
26996 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
26997#endif
26998
c19d1205
ZW
26999#ifdef OPTION_EL
27000 fprintf (fp, _("\
27001 -EL assemble code for a little-endian cpu\n"));
a737bd4d 27002#endif
845b51d6
PB
27003
27004 fprintf (fp, _("\
27005 --fix-v4bx Allow BX in ARMv4 code\n"));
18a20338
CL
27006
27007#ifdef OBJ_ELF
27008 fprintf (fp, _("\
27009 --fdpic generate an FDPIC object file\n"));
27010#endif /* OBJ_ELF */
c19d1205 27011}
ee065d83 27012
ee065d83 27013#ifdef OBJ_ELF
0198d5e6 27014
62b3e311
PB
27015typedef struct
27016{
27017 int val;
27018 arm_feature_set flags;
27019} cpu_arch_ver_table;
27020
2c6b98ea
TP
27021/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
27022 chronologically for architectures, with an exception for ARMv6-M and
27023 ARMv6S-M due to legacy reasons. No new architecture should have a
27024 special case. This allows for build attribute selection results to be
27025 stable when new architectures are added. */
62b3e311
PB
27026static const cpu_arch_ver_table cpu_arch_ver[] =
27027{
c0c468d5
TP
27028 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
27029 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
27030 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
27031 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
27032 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
27033 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
27034 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
27035 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
27036 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
27037 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
27038 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
27039 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
27040 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
27041 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
27042 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
27043 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
27044 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
27045 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
27046 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
27047 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
27048 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
27049 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
27050 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
27051 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
2c6b98ea
TP
27052
27053 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
27054 always selected build attributes to match those of ARMv6-M
27055 (resp. ARMv6S-M). However, due to these architectures being a strict
27056 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
27057 would be selected when fully respecting chronology of architectures.
27058 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
27059 move them before ARMv7 architectures. */
c0c468d5
TP
27060 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
27061 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
27062
27063 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
27064 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
27065 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
27066 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
27067 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
27068 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
27069 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
27070 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
27071 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
27072 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
27073 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
27074 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
27075 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
27076 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
23f233a5 27077 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
c0c468d5 27078 {-1, ARM_ARCH_NONE}
62b3e311
PB
27079};
27080
ee3c0378 27081/* Set an attribute if it has not already been set by the user. */
0198d5e6 27082
ee3c0378
AS
27083static void
27084aeabi_set_attribute_int (int tag, int value)
27085{
27086 if (tag < 1
27087 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
27088 || !attributes_set_explicitly[tag])
27089 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
27090}
27091
27092static void
27093aeabi_set_attribute_string (int tag, const char *value)
27094{
27095 if (tag < 1
27096 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
27097 || !attributes_set_explicitly[tag])
27098 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
27099}
27100
2c6b98ea
TP
27101/* Return whether features in the *NEEDED feature set are available via
27102 extensions for the architecture whose feature set is *ARCH_FSET. */
0198d5e6 27103
2c6b98ea
TP
27104static bfd_boolean
27105have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
27106 const arm_feature_set *needed)
27107{
27108 int i, nb_allowed_archs;
27109 arm_feature_set ext_fset;
27110 const struct arm_option_extension_value_table *opt;
27111
27112 ext_fset = arm_arch_none;
27113 for (opt = arm_extensions; opt->name != NULL; opt++)
27114 {
27115 /* Extension does not provide any feature we need. */
27116 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
27117 continue;
27118
27119 nb_allowed_archs =
27120 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
27121 for (i = 0; i < nb_allowed_archs; i++)
27122 {
27123 /* Empty entry. */
27124 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
27125 break;
27126
27127 /* Extension is available, add it. */
27128 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
27129 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
27130 }
27131 }
27132
27133 /* Can we enable all features in *needed? */
27134 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
27135}
27136
27137/* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
27138 a given architecture feature set *ARCH_EXT_FSET including extension feature
27139 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
27140 - if true, check for an exact match of the architecture modulo extensions;
27141 - otherwise, select build attribute value of the first superset
27142 architecture released so that results remains stable when new architectures
27143 are added.
27144 For -march/-mcpu=all the build attribute value of the most featureful
27145 architecture is returned. Tag_CPU_arch_profile result is returned in
27146 PROFILE. */
0198d5e6 27147
2c6b98ea
TP
27148static int
27149get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
27150 const arm_feature_set *ext_fset,
27151 char *profile, int exact_match)
27152{
27153 arm_feature_set arch_fset;
27154 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
27155
27156 /* Select most featureful architecture with all its extensions if building
27157 for -march=all as the feature sets used to set build attributes. */
27158 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
27159 {
27160 /* Force revisiting of decision for each new architecture. */
27161 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8M_MAIN);
27162 *profile = 'A';
27163 return TAG_CPU_ARCH_V8;
27164 }
27165
27166 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
27167
27168 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
27169 {
27170 arm_feature_set known_arch_fset;
27171
27172 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
27173 if (exact_match)
27174 {
27175 /* Base architecture match user-specified architecture and
27176 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
27177 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
27178 {
27179 p_ver_ret = p_ver;
27180 goto found;
27181 }
27182 /* Base architecture match user-specified architecture only
27183 (eg. ARMv6-M in the same case as above). Record it in case we
27184 find a match with above condition. */
27185 else if (p_ver_ret == NULL
27186 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
27187 p_ver_ret = p_ver;
27188 }
27189 else
27190 {
27191
27192 /* Architecture has all features wanted. */
27193 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
27194 {
27195 arm_feature_set added_fset;
27196
27197 /* Compute features added by this architecture over the one
27198 recorded in p_ver_ret. */
27199 if (p_ver_ret != NULL)
27200 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
27201 p_ver_ret->flags);
27202 /* First architecture that match incl. with extensions, or the
27203 only difference in features over the recorded match is
27204 features that were optional and are now mandatory. */
27205 if (p_ver_ret == NULL
27206 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
27207 {
27208 p_ver_ret = p_ver;
27209 goto found;
27210 }
27211 }
27212 else if (p_ver_ret == NULL)
27213 {
27214 arm_feature_set needed_ext_fset;
27215
27216 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
27217
27218 /* Architecture has all features needed when using some
27219 extensions. Record it and continue searching in case there
27220 exist an architecture providing all needed features without
27221 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
27222 OS extension). */
27223 if (have_ext_for_needed_feat_p (&known_arch_fset,
27224 &needed_ext_fset))
27225 p_ver_ret = p_ver;
27226 }
27227 }
27228 }
27229
27230 if (p_ver_ret == NULL)
27231 return -1;
27232
27233found:
27234 /* Tag_CPU_arch_profile. */
27235 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
27236 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
27237 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
27238 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
27239 *profile = 'A';
27240 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
27241 *profile = 'R';
27242 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
27243 *profile = 'M';
27244 else
27245 *profile = '\0';
27246 return p_ver_ret->val;
27247}
27248
ee065d83 27249/* Set the public EABI object attributes. */
0198d5e6 27250
c168ce07 27251static void
ee065d83
PB
27252aeabi_set_public_attributes (void)
27253{
b90d5ba0 27254 char profile = '\0';
2c6b98ea 27255 int arch = -1;
90ec0d68 27256 int virt_sec = 0;
bca38921 27257 int fp16_optional = 0;
2c6b98ea
TP
27258 int skip_exact_match = 0;
27259 arm_feature_set flags, flags_arch, flags_ext;
ee065d83 27260
54bab281
TP
27261 /* Autodetection mode, choose the architecture based the instructions
27262 actually used. */
27263 if (no_cpu_selected ())
27264 {
27265 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
ddd7f988 27266
54bab281
TP
27267 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
27268 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
ddd7f988 27269
54bab281
TP
27270 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
27271 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
ddd7f988 27272
54bab281 27273 /* Code run during relaxation relies on selected_cpu being set. */
4d354d8b
TP
27274 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
27275 flags_ext = arm_arch_none;
27276 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
27277 selected_ext = flags_ext;
54bab281
TP
27278 selected_cpu = flags;
27279 }
27280 /* Otherwise, choose the architecture based on the capabilities of the
27281 requested cpu. */
27282 else
4d354d8b
TP
27283 {
27284 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
27285 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
27286 flags_ext = selected_ext;
27287 flags = selected_cpu;
27288 }
27289 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
7f78eb34 27290
ddd7f988 27291 /* Allow the user to override the reported architecture. */
4d354d8b 27292 if (!ARM_FEATURE_ZERO (selected_object_arch))
7a1d4c38 27293 {
4d354d8b 27294 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
2c6b98ea 27295 flags_ext = arm_arch_none;
7a1d4c38 27296 }
2c6b98ea 27297 else
4d354d8b 27298 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
2c6b98ea
TP
27299
27300 /* When this function is run again after relaxation has happened there is no
27301 way to determine whether an architecture or CPU was specified by the user:
27302 - selected_cpu is set above for relaxation to work;
27303 - march_cpu_opt is not set if only -mcpu or .cpu is used;
27304 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
27305 Therefore, if not in -march=all case we first try an exact match and fall
27306 back to autodetection. */
27307 if (!skip_exact_match)
27308 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
27309 if (arch == -1)
27310 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
27311 if (arch == -1)
27312 as_bad (_("no architecture contains all the instructions used\n"));
9e3c6df6 27313
ee065d83
PB
27314 /* Tag_CPU_name. */
27315 if (selected_cpu_name[0])
27316 {
91d6fa6a 27317 char *q;
ee065d83 27318
91d6fa6a
NC
27319 q = selected_cpu_name;
27320 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
27321 {
27322 int i;
5f4273c7 27323
91d6fa6a
NC
27324 q += 4;
27325 for (i = 0; q[i]; i++)
27326 q[i] = TOUPPER (q[i]);
ee065d83 27327 }
91d6fa6a 27328 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 27329 }
62f3b8c8 27330
ee065d83 27331 /* Tag_CPU_arch. */
ee3c0378 27332 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 27333
62b3e311 27334 /* Tag_CPU_arch_profile. */
69239280
MGD
27335 if (profile != '\0')
27336 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 27337
15afaa63 27338 /* Tag_DSP_extension. */
4d354d8b 27339 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
6c290d53 27340 aeabi_set_attribute_int (Tag_DSP_extension, 1);
15afaa63 27341
2c6b98ea 27342 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
ee065d83 27343 /* Tag_ARM_ISA_use. */
ee3c0378 27344 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
2c6b98ea 27345 || ARM_FEATURE_ZERO (flags_arch))
ee3c0378 27346 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 27347
ee065d83 27348 /* Tag_THUMB_ISA_use. */
ee3c0378 27349 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
2c6b98ea 27350 || ARM_FEATURE_ZERO (flags_arch))
4ed7ed8d
TP
27351 {
27352 int thumb_isa_use;
27353
27354 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
16a1fa25 27355 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
4ed7ed8d
TP
27356 thumb_isa_use = 3;
27357 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
27358 thumb_isa_use = 2;
27359 else
27360 thumb_isa_use = 1;
27361 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
27362 }
62f3b8c8 27363
ee065d83 27364 /* Tag_VFP_arch. */
a715796b
TG
27365 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
27366 aeabi_set_attribute_int (Tag_VFP_arch,
27367 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
27368 ? 7 : 8);
bca38921 27369 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
27370 aeabi_set_attribute_int (Tag_VFP_arch,
27371 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
27372 ? 5 : 6);
27373 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
27374 {
27375 fp16_optional = 1;
27376 aeabi_set_attribute_int (Tag_VFP_arch, 3);
27377 }
ada65aa3 27378 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
27379 {
27380 aeabi_set_attribute_int (Tag_VFP_arch, 4);
27381 fp16_optional = 1;
27382 }
ee3c0378
AS
27383 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
27384 aeabi_set_attribute_int (Tag_VFP_arch, 2);
27385 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
477330fc 27386 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
ee3c0378 27387 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 27388
4547cb56
NC
27389 /* Tag_ABI_HardFP_use. */
27390 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
27391 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
27392 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
27393
ee065d83 27394 /* Tag_WMMX_arch. */
ee3c0378
AS
27395 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
27396 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
27397 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
27398 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 27399
ee3c0378 27400 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
9411fd44
MW
27401 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
27402 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
27403 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
bca38921
MGD
27404 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
27405 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
27406 {
27407 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
27408 {
27409 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
27410 }
27411 else
27412 {
27413 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
27414 fp16_optional = 1;
27415 }
27416 }
fa94de6b 27417
ee3c0378 27418 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 27419 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 27420 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 27421
69239280
MGD
27422 /* Tag_DIV_use.
27423
27424 We set Tag_DIV_use to two when integer divide instructions have been used
27425 in ARM state, or when Thumb integer divide instructions have been used,
27426 but we have no architecture profile set, nor have we any ARM instructions.
27427
4ed7ed8d
TP
27428 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
27429 by the base architecture.
bca38921 27430
69239280 27431 For new architectures we will have to check these tests. */
ced40572 27432 gas_assert (arch <= TAG_CPU_ARCH_V8M_MAIN);
4ed7ed8d
TP
27433 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
27434 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
bca38921
MGD
27435 aeabi_set_attribute_int (Tag_DIV_use, 0);
27436 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
27437 || (profile == '\0'
27438 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
27439 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 27440 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
27441
27442 /* Tag_MP_extension_use. */
27443 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
27444 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
27445
27446 /* Tag Virtualization_use. */
27447 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
27448 virt_sec |= 1;
27449 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
27450 virt_sec |= 2;
27451 if (virt_sec != 0)
27452 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
27453}
27454
c168ce07
TP
27455/* Post relaxation hook. Recompute ARM attributes now that relaxation is
27456 finished and free extension feature bits which will not be used anymore. */
0198d5e6 27457
c168ce07
TP
27458void
27459arm_md_post_relax (void)
27460{
27461 aeabi_set_public_attributes ();
4d354d8b
TP
27462 XDELETE (mcpu_ext_opt);
27463 mcpu_ext_opt = NULL;
27464 XDELETE (march_ext_opt);
27465 march_ext_opt = NULL;
c168ce07
TP
27466}
27467
104d59d1 27468/* Add the default contents for the .ARM.attributes section. */
0198d5e6 27469
ee065d83
PB
27470void
27471arm_md_end (void)
27472{
ee065d83
PB
27473 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
27474 return;
27475
27476 aeabi_set_public_attributes ();
ee065d83 27477}
8463be01 27478#endif /* OBJ_ELF */
ee065d83 27479
ee065d83
PB
27480/* Parse a .cpu directive. */
27481
27482static void
27483s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
27484{
e74cfd16 27485 const struct arm_cpu_option_table *opt;
ee065d83
PB
27486 char *name;
27487 char saved_char;
27488
27489 name = input_line_pointer;
5f4273c7 27490 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
27491 input_line_pointer++;
27492 saved_char = *input_line_pointer;
27493 *input_line_pointer = 0;
27494
27495 /* Skip the first "all" entry. */
27496 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
27497 if (streq (opt->name, name))
27498 {
4d354d8b
TP
27499 selected_arch = opt->value;
27500 selected_ext = opt->ext;
27501 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
ee065d83 27502 if (opt->canonical_name)
5f4273c7 27503 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
27504 else
27505 {
27506 int i;
27507 for (i = 0; opt->name[i]; i++)
27508 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 27509
ee065d83
PB
27510 selected_cpu_name[i] = 0;
27511 }
4d354d8b
TP
27512 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
27513
ee065d83
PB
27514 *input_line_pointer = saved_char;
27515 demand_empty_rest_of_line ();
27516 return;
27517 }
27518 as_bad (_("unknown cpu `%s'"), name);
27519 *input_line_pointer = saved_char;
27520 ignore_rest_of_line ();
27521}
27522
ee065d83
PB
27523/* Parse a .arch directive. */
27524
27525static void
27526s_arm_arch (int ignored ATTRIBUTE_UNUSED)
27527{
e74cfd16 27528 const struct arm_arch_option_table *opt;
ee065d83
PB
27529 char saved_char;
27530 char *name;
27531
27532 name = input_line_pointer;
5f4273c7 27533 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
27534 input_line_pointer++;
27535 saved_char = *input_line_pointer;
27536 *input_line_pointer = 0;
27537
27538 /* Skip the first "all" entry. */
27539 for (opt = arm_archs + 1; opt->name != NULL; opt++)
27540 if (streq (opt->name, name))
27541 {
4d354d8b
TP
27542 selected_arch = opt->value;
27543 selected_ext = arm_arch_none;
27544 selected_cpu = selected_arch;
5f4273c7 27545 strcpy (selected_cpu_name, opt->name);
4d354d8b 27546 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
27547 *input_line_pointer = saved_char;
27548 demand_empty_rest_of_line ();
27549 return;
27550 }
27551
27552 as_bad (_("unknown architecture `%s'\n"), name);
27553 *input_line_pointer = saved_char;
27554 ignore_rest_of_line ();
27555}
27556
7a1d4c38
PB
27557/* Parse a .object_arch directive. */
27558
27559static void
27560s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
27561{
27562 const struct arm_arch_option_table *opt;
27563 char saved_char;
27564 char *name;
27565
27566 name = input_line_pointer;
5f4273c7 27567 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
27568 input_line_pointer++;
27569 saved_char = *input_line_pointer;
27570 *input_line_pointer = 0;
27571
27572 /* Skip the first "all" entry. */
27573 for (opt = arm_archs + 1; opt->name != NULL; opt++)
27574 if (streq (opt->name, name))
27575 {
4d354d8b 27576 selected_object_arch = opt->value;
7a1d4c38
PB
27577 *input_line_pointer = saved_char;
27578 demand_empty_rest_of_line ();
27579 return;
27580 }
27581
27582 as_bad (_("unknown architecture `%s'\n"), name);
27583 *input_line_pointer = saved_char;
27584 ignore_rest_of_line ();
27585}
27586
69133863
MGD
27587/* Parse a .arch_extension directive. */
27588
27589static void
27590s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
27591{
27592 const struct arm_option_extension_value_table *opt;
27593 char saved_char;
27594 char *name;
27595 int adding_value = 1;
27596
27597 name = input_line_pointer;
27598 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27599 input_line_pointer++;
27600 saved_char = *input_line_pointer;
27601 *input_line_pointer = 0;
27602
27603 if (strlen (name) >= 2
27604 && strncmp (name, "no", 2) == 0)
27605 {
27606 adding_value = 0;
27607 name += 2;
27608 }
27609
27610 for (opt = arm_extensions; opt->name != NULL; opt++)
27611 if (streq (opt->name, name))
27612 {
d942732e
TP
27613 int i, nb_allowed_archs =
27614 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
27615 for (i = 0; i < nb_allowed_archs; i++)
27616 {
27617 /* Empty entry. */
4d354d8b 27618 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
d942732e 27619 continue;
4d354d8b 27620 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
d942732e
TP
27621 break;
27622 }
27623
27624 if (i == nb_allowed_archs)
69133863
MGD
27625 {
27626 as_bad (_("architectural extension `%s' is not allowed for the "
27627 "current base architecture"), name);
27628 break;
27629 }
27630
27631 if (adding_value)
4d354d8b 27632 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
5a70a223 27633 opt->merge_value);
69133863 27634 else
4d354d8b 27635 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
69133863 27636
4d354d8b
TP
27637 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
27638 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
69133863
MGD
27639 *input_line_pointer = saved_char;
27640 demand_empty_rest_of_line ();
3d030cdb
TP
27641 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
27642 on this return so that duplicate extensions (extensions with the
27643 same name as a previous extension in the list) are not considered
27644 for command-line parsing. */
69133863
MGD
27645 return;
27646 }
27647
27648 if (opt->name == NULL)
e673710a 27649 as_bad (_("unknown architecture extension `%s'\n"), name);
69133863
MGD
27650
27651 *input_line_pointer = saved_char;
27652 ignore_rest_of_line ();
27653}
27654
ee065d83
PB
27655/* Parse a .fpu directive. */
27656
27657static void
27658s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
27659{
69133863 27660 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
27661 char saved_char;
27662 char *name;
27663
27664 name = input_line_pointer;
5f4273c7 27665 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
27666 input_line_pointer++;
27667 saved_char = *input_line_pointer;
27668 *input_line_pointer = 0;
5f4273c7 27669
ee065d83
PB
27670 for (opt = arm_fpus; opt->name != NULL; opt++)
27671 if (streq (opt->name, name))
27672 {
4d354d8b
TP
27673 selected_fpu = opt->value;
27674#ifndef CPU_DEFAULT
27675 if (no_cpu_selected ())
27676 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
27677 else
27678#endif
27679 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
27680 *input_line_pointer = saved_char;
27681 demand_empty_rest_of_line ();
27682 return;
27683 }
27684
27685 as_bad (_("unknown floating point format `%s'\n"), name);
27686 *input_line_pointer = saved_char;
27687 ignore_rest_of_line ();
27688}
ee065d83 27689
794ba86a 27690/* Copy symbol information. */
f31fef98 27691
794ba86a
DJ
27692void
27693arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
27694{
27695 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
27696}
e04befd0 27697
f31fef98 27698#ifdef OBJ_ELF
e04befd0
AS
27699/* Given a symbolic attribute NAME, return the proper integer value.
27700 Returns -1 if the attribute is not known. */
f31fef98 27701
e04befd0
AS
27702int
27703arm_convert_symbolic_attribute (const char *name)
27704{
f31fef98
NC
27705 static const struct
27706 {
27707 const char * name;
27708 const int tag;
27709 }
27710 attribute_table[] =
27711 {
27712 /* When you modify this table you should
27713 also modify the list in doc/c-arm.texi. */
e04befd0 27714#define T(tag) {#tag, tag}
f31fef98
NC
27715 T (Tag_CPU_raw_name),
27716 T (Tag_CPU_name),
27717 T (Tag_CPU_arch),
27718 T (Tag_CPU_arch_profile),
27719 T (Tag_ARM_ISA_use),
27720 T (Tag_THUMB_ISA_use),
75375b3e 27721 T (Tag_FP_arch),
f31fef98
NC
27722 T (Tag_VFP_arch),
27723 T (Tag_WMMX_arch),
27724 T (Tag_Advanced_SIMD_arch),
27725 T (Tag_PCS_config),
27726 T (Tag_ABI_PCS_R9_use),
27727 T (Tag_ABI_PCS_RW_data),
27728 T (Tag_ABI_PCS_RO_data),
27729 T (Tag_ABI_PCS_GOT_use),
27730 T (Tag_ABI_PCS_wchar_t),
27731 T (Tag_ABI_FP_rounding),
27732 T (Tag_ABI_FP_denormal),
27733 T (Tag_ABI_FP_exceptions),
27734 T (Tag_ABI_FP_user_exceptions),
27735 T (Tag_ABI_FP_number_model),
75375b3e 27736 T (Tag_ABI_align_needed),
f31fef98 27737 T (Tag_ABI_align8_needed),
75375b3e 27738 T (Tag_ABI_align_preserved),
f31fef98
NC
27739 T (Tag_ABI_align8_preserved),
27740 T (Tag_ABI_enum_size),
27741 T (Tag_ABI_HardFP_use),
27742 T (Tag_ABI_VFP_args),
27743 T (Tag_ABI_WMMX_args),
27744 T (Tag_ABI_optimization_goals),
27745 T (Tag_ABI_FP_optimization_goals),
27746 T (Tag_compatibility),
27747 T (Tag_CPU_unaligned_access),
75375b3e 27748 T (Tag_FP_HP_extension),
f31fef98
NC
27749 T (Tag_VFP_HP_extension),
27750 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
27751 T (Tag_MPextension_use),
27752 T (Tag_DIV_use),
f31fef98
NC
27753 T (Tag_nodefaults),
27754 T (Tag_also_compatible_with),
27755 T (Tag_conformance),
27756 T (Tag_T2EE_use),
27757 T (Tag_Virtualization_use),
15afaa63 27758 T (Tag_DSP_extension),
cd21e546 27759 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 27760#undef T
f31fef98 27761 };
e04befd0
AS
27762 unsigned int i;
27763
27764 if (name == NULL)
27765 return -1;
27766
f31fef98 27767 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 27768 if (streq (name, attribute_table[i].name))
e04befd0
AS
27769 return attribute_table[i].tag;
27770
27771 return -1;
27772}
267bf995 27773
93ef582d
NC
27774/* Apply sym value for relocations only in the case that they are for
27775 local symbols in the same segment as the fixup and you have the
27776 respective architectural feature for blx and simple switches. */
0198d5e6 27777
267bf995 27778int
93ef582d 27779arm_apply_sym_value (struct fix * fixP, segT this_seg)
267bf995
RR
27780{
27781 if (fixP->fx_addsy
27782 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
93ef582d
NC
27783 /* PR 17444: If the local symbol is in a different section then a reloc
27784 will always be generated for it, so applying the symbol value now
27785 will result in a double offset being stored in the relocation. */
27786 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
34e77a92 27787 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
27788 {
27789 switch (fixP->fx_r_type)
27790 {
27791 case BFD_RELOC_ARM_PCREL_BLX:
27792 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27793 if (ARM_IS_FUNC (fixP->fx_addsy))
27794 return 1;
27795 break;
27796
27797 case BFD_RELOC_ARM_PCREL_CALL:
27798 case BFD_RELOC_THUMB_PCREL_BLX:
27799 if (THUMB_IS_FUNC (fixP->fx_addsy))
93ef582d 27800 return 1;
267bf995
RR
27801 break;
27802
27803 default:
27804 break;
27805 }
27806
27807 }
27808 return 0;
27809}
f31fef98 27810#endif /* OBJ_ELF */