]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
Fix error message when creating raid 4, 5 and 10
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
bbab0940
TM
84 MPB_ATTRIB_EXP_STRIPE_SIZE | \
85 MPB_ATTRIB_BBM)
418f9b36
N
86
87/* Define attributes that are unused but not harmful */
88#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 89
8e59f3d8 90#define MPB_SECTOR_CNT 2210
611d9529
MD
91#define IMSM_RESERVED_SECTORS 8192
92#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2048
979d38be 93#define SECT_PER_MB_SHIFT 11
f36a9ecd 94#define MAX_SECTOR_SIZE 4096
c2462068
PB
95#define MULTIPLE_PPL_AREA_SIZE_IMSM (1024 * 1024) /* Size of the whole
96 * mutliple PPL area
97 */
cdddbdbc 98
fbc42556
JR
99/*
100 * Internal Write-intent bitmap is stored in the same area where PPL.
101 * Both features are mutually exclusive, so it is not an issue.
102 * The first 8KiB of the area are reserved and shall not be used.
103 */
104#define IMSM_BITMAP_AREA_RESERVED_SIZE 8192
105
106#define IMSM_BITMAP_HEADER_OFFSET (IMSM_BITMAP_AREA_RESERVED_SIZE)
107#define IMSM_BITMAP_HEADER_SIZE MAX_SECTOR_SIZE
108
109#define IMSM_BITMAP_START_OFFSET (IMSM_BITMAP_HEADER_OFFSET + IMSM_BITMAP_HEADER_SIZE)
110#define IMSM_BITMAP_AREA_SIZE (MULTIPLE_PPL_AREA_SIZE_IMSM - IMSM_BITMAP_START_OFFSET)
111#define IMSM_BITMAP_AND_HEADER_SIZE (IMSM_BITMAP_AREA_SIZE + IMSM_BITMAP_HEADER_SIZE)
112
113#define IMSM_DEFAULT_BITMAP_CHUNKSIZE (64 * 1024 * 1024)
114#define IMSM_DEFAULT_BITMAP_DAEMON_SLEEP 5
115
761e3bd9
N
116/*
117 * This macro let's us ensure that no-one accidentally
118 * changes the size of a struct
119 */
120#define ASSERT_SIZE(_struct, size) \
121static inline void __assert_size_##_struct(void) \
122{ \
123 switch (0) { \
124 case 0: break; \
125 case (sizeof(struct _struct) == size): break; \
126 } \
127}
128
cdddbdbc
DW
129/* Disk configuration info. */
130#define IMSM_MAX_DEVICES 255
131struct imsm_disk {
132 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
5551b113 133 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
cdddbdbc 134 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
135#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
136#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
137#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
2432ce9b 138#define JOURNAL_DISK __cpu_to_le32(0x2000000) /* Device marked as Journaling Drive */
cdddbdbc 139 __u32 status; /* 0xF0 - 0xF3 */
1011e834 140 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
5551b113
CA
141 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
142#define IMSM_DISK_FILLERS 3
143 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
cdddbdbc 144};
761e3bd9 145ASSERT_SIZE(imsm_disk, 48)
cdddbdbc 146
3b451610
AK
147/* map selector for map managment
148 */
238c0a71
AK
149#define MAP_0 0
150#define MAP_1 1
151#define MAP_X -1
3b451610 152
cdddbdbc
DW
153/* RAID map configuration infos. */
154struct imsm_map {
5551b113
CA
155 __u32 pba_of_lba0_lo; /* start address of partition */
156 __u32 blocks_per_member_lo;/* blocks per member */
157 __u32 num_data_stripes_lo; /* number of data stripes */
cdddbdbc
DW
158 __u16 blocks_per_strip;
159 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
160#define IMSM_T_STATE_NORMAL 0
161#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
162#define IMSM_T_STATE_DEGRADED 2
163#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
164 __u8 raid_level;
165#define IMSM_T_RAID0 0
166#define IMSM_T_RAID1 1
167#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
168 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
169 __u8 num_domains; /* number of parity domains */
170 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 171 __u8 ddf;
5551b113
CA
172 __u32 pba_of_lba0_hi;
173 __u32 blocks_per_member_hi;
174 __u32 num_data_stripes_hi;
175 __u32 filler[4]; /* expansion area */
7eef0453 176#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 177 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
178 * top byte contains some flags
179 */
761e3bd9
N
180};
181ASSERT_SIZE(imsm_map, 52)
cdddbdbc
DW
182
183struct imsm_vol {
4036e7ee 184 __u32 curr_migr_unit_lo;
fe7ed8cb 185 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 186 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
187#define MIGR_INIT 0
188#define MIGR_REBUILD 1
189#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
190#define MIGR_GEN_MIGR 3
191#define MIGR_STATE_CHANGE 4
1484e727 192#define MIGR_REPAIR 5
cdddbdbc 193 __u8 migr_type; /* Initializing, Rebuilding, ... */
2432ce9b
AP
194#define RAIDVOL_CLEAN 0
195#define RAIDVOL_DIRTY 1
196#define RAIDVOL_DSRECORD_VALID 2
cdddbdbc 197 __u8 dirty;
fe7ed8cb
DW
198 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
199 __u16 verify_errors; /* number of mismatches */
200 __u16 bad_blocks; /* number of bad blocks during verify */
4036e7ee
MT
201 __u32 curr_migr_unit_hi;
202 __u32 filler[3];
cdddbdbc
DW
203 struct imsm_map map[1];
204 /* here comes another one if migr_state */
761e3bd9
N
205};
206ASSERT_SIZE(imsm_vol, 84)
cdddbdbc
DW
207
208struct imsm_dev {
fe7ed8cb 209 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
210 __u32 size_low;
211 __u32 size_high;
fe7ed8cb
DW
212#define DEV_BOOTABLE __cpu_to_le32(0x01)
213#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
214#define DEV_READ_COALESCING __cpu_to_le32(0x04)
215#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
216#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
217#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
218#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
219#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
220#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
221#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
222#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
223#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
224#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
225 __u32 status; /* Persistent RaidDev status */
226 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
227 __u8 migr_priority;
228 __u8 num_sub_vols;
229 __u8 tid;
230 __u8 cng_master_disk;
231 __u16 cache_policy;
232 __u8 cng_state;
233 __u8 cng_sub_state;
2432ce9b
AP
234 __u16 my_vol_raid_dev_num; /* Used in Unique volume Id for this RaidDev */
235
236 /* NVM_EN */
237 __u8 nv_cache_mode;
238 __u8 nv_cache_flags;
239
240 /* Unique Volume Id of the NvCache Volume associated with this volume */
241 __u32 nvc_vol_orig_family_num;
242 __u16 nvc_vol_raid_dev_num;
243
244#define RWH_OFF 0
245#define RWH_DISTRIBUTED 1
246#define RWH_JOURNALING_DRIVE 2
c2462068
PB
247#define RWH_MULTIPLE_DISTRIBUTED 3
248#define RWH_MULTIPLE_PPLS_JOURNALING_DRIVE 4
249#define RWH_MULTIPLE_OFF 5
fbc42556 250#define RWH_BITMAP 6
2432ce9b
AP
251 __u8 rwh_policy; /* Raid Write Hole Policy */
252 __u8 jd_serial[MAX_RAID_SERIAL_LEN]; /* Journal Drive serial number */
253 __u8 filler1;
254
255#define IMSM_DEV_FILLERS 3
cdddbdbc
DW
256 __u32 filler[IMSM_DEV_FILLERS];
257 struct imsm_vol vol;
761e3bd9
N
258};
259ASSERT_SIZE(imsm_dev, 164)
cdddbdbc
DW
260
261struct imsm_super {
262 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
263 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
264 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
265 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
266 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
267 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
268 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
269 __u8 num_disks; /* 0x38 Number of configured disks */
270 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
271 __u8 error_log_pos; /* 0x3A */
272 __u8 fill[1]; /* 0x3B */
273 __u32 cache_size; /* 0x3c - 0x40 in mb */
274 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
275 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
276 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
2a24dc1b
PB
277 __u16 num_raid_devs_created; /* 0x4C - 0x4D Used for generating unique
278 * volume IDs for raid_dev created in this array
279 * (starts at 1)
280 */
281 __u16 filler1; /* 0x4E - 0x4F */
e48aed3c
AP
282 __u64 creation_time; /* 0x50 - 0x57 Array creation time */
283#define IMSM_FILLERS 32
284 __u32 filler[IMSM_FILLERS]; /* 0x58 - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
285 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
286 /* here comes imsm_dev[num_raid_devs] */
604b746f 287 /* here comes BBM logs */
761e3bd9
N
288};
289ASSERT_SIZE(imsm_super, 264)
cdddbdbc 290
604b746f 291#define BBM_LOG_MAX_ENTRIES 254
8d67477f
TM
292#define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */
293#define BBM_LOG_SIGNATURE 0xabadb10c
294
295struct bbm_log_block_addr {
296 __u16 w1;
297 __u32 dw1;
298} __attribute__ ((__packed__));
604b746f
JD
299
300struct bbm_log_entry {
8d67477f
TM
301 __u8 marked_count; /* Number of blocks marked - 1 */
302 __u8 disk_ordinal; /* Disk entry within the imsm_super */
303 struct bbm_log_block_addr defective_block_start;
604b746f
JD
304} __attribute__ ((__packed__));
305
306struct bbm_log {
307 __u32 signature; /* 0xABADB10C */
308 __u32 entry_count;
8d67477f 309 struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
761e3bd9
N
310};
311ASSERT_SIZE(bbm_log, 2040)
604b746f 312
cdddbdbc 313static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
cdddbdbc 314
b53bfba6
TM
315#define BLOCKS_PER_KB (1024/512)
316
8e59f3d8
AK
317#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
318
319#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
320
de44e46f
PB
321#define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
322#define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
323 * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
17a4eaf9
AK
324 */
325
8e59f3d8
AK
326#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
327 * be recovered using srcMap */
328#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
329 * already been migrated and must
330 * be recovered from checkpoint area */
2432ce9b 331
c2462068 332#define PPL_ENTRY_SPACE (128 * 1024) /* Size of single PPL, without the header */
2432ce9b 333
8e59f3d8
AK
334struct migr_record {
335 __u32 rec_status; /* Status used to determine how to restart
336 * migration in case it aborts
337 * in some fashion */
9f421827 338 __u32 curr_migr_unit_lo; /* 0..numMigrUnits-1 */
8e59f3d8
AK
339 __u32 family_num; /* Family number of MPB
340 * containing the RaidDev
341 * that is migrating */
342 __u32 ascending_migr; /* True if migrating in increasing
343 * order of lbas */
344 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
345 __u32 dest_depth_per_unit; /* Num member blocks each destMap
346 * member disk
347 * advances per unit-of-operation */
9f421827
PB
348 __u32 ckpt_area_pba_lo; /* Pba of first block of ckpt copy area */
349 __u32 dest_1st_member_lba_lo; /* First member lba on first
350 * stripe of destination */
351 __u32 num_migr_units_lo; /* Total num migration units-of-op */
8e59f3d8
AK
352 __u32 post_migr_vol_cap; /* Size of volume after
353 * migration completes */
354 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
355 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
356 * migration ckpt record was read from
357 * (for recovered migrations) */
9f421827
PB
358 __u32 curr_migr_unit_hi; /* 0..numMigrUnits-1 high order 32 bits */
359 __u32 ckpt_area_pba_hi; /* Pba of first block of ckpt copy area
360 * high order 32 bits */
361 __u32 dest_1st_member_lba_hi; /* First member lba on first stripe of
362 * destination - high order 32 bits */
363 __u32 num_migr_units_hi; /* Total num migration units-of-op
364 * high order 32 bits */
4036e7ee 365 __u32 filler[16];
761e3bd9 366};
4036e7ee 367ASSERT_SIZE(migr_record, 128)
8e59f3d8 368
ec50f7b6
LM
369struct md_list {
370 /* usage marker:
371 * 1: load metadata
372 * 2: metadata does not match
373 * 4: already checked
374 */
375 int used;
376 char *devname;
377 int found;
378 int container;
379 dev_t st_rdev;
380 struct md_list *next;
381};
382
e7b84f9d 383#define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
ec50f7b6 384
1484e727
DW
385static __u8 migr_type(struct imsm_dev *dev)
386{
387 if (dev->vol.migr_type == MIGR_VERIFY &&
388 dev->status & DEV_VERIFY_AND_FIX)
389 return MIGR_REPAIR;
390 else
391 return dev->vol.migr_type;
392}
393
394static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
395{
396 /* for compatibility with older oroms convert MIGR_REPAIR, into
397 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
398 */
399 if (migr_type == MIGR_REPAIR) {
400 dev->vol.migr_type = MIGR_VERIFY;
401 dev->status |= DEV_VERIFY_AND_FIX;
402 } else {
403 dev->vol.migr_type = migr_type;
404 dev->status &= ~DEV_VERIFY_AND_FIX;
405 }
406}
407
f36a9ecd 408static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
cdddbdbc 409{
f36a9ecd 410 return ROUND_UP(bytes, sector_size) / sector_size;
87eb16df 411}
cdddbdbc 412
f36a9ecd
PB
413static unsigned int mpb_sectors(struct imsm_super *mpb,
414 unsigned int sector_size)
87eb16df 415{
f36a9ecd 416 return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
cdddbdbc
DW
417}
418
ba2de7ba
DW
419struct intel_dev {
420 struct imsm_dev *dev;
421 struct intel_dev *next;
f21e18ca 422 unsigned index;
ba2de7ba
DW
423};
424
88654014
LM
425struct intel_hba {
426 enum sys_dev_type type;
427 char *path;
428 char *pci_id;
429 struct intel_hba *next;
430};
431
1a64be56
LM
432enum action {
433 DISK_REMOVE = 1,
434 DISK_ADD
435};
cdddbdbc
DW
436/* internal representation of IMSM metadata */
437struct intel_super {
438 union {
949c47a0
DW
439 void *buf; /* O_DIRECT buffer for reading/writing metadata */
440 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 441 };
8e59f3d8
AK
442 union {
443 void *migr_rec_buf; /* buffer for I/O operations */
444 struct migr_record *migr_rec; /* migration record */
445 };
51d83f5d
AK
446 int clean_migration_record_by_mdmon; /* when reshape is switched to next
447 array, it indicates that mdmon is allowed to clean migration
448 record */
949c47a0 449 size_t len; /* size of the 'buf' allocation */
bbab0940 450 size_t extra_space; /* extra space in 'buf' that is not used yet */
4d7b1503
DW
451 void *next_buf; /* for realloc'ing buf from the manager */
452 size_t next_len;
c2c087e6 453 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 454 int current_vol; /* index of raid device undergoing creation */
5551b113 455 unsigned long long create_offset; /* common start for 'current_vol' */
148acb7b 456 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 457 struct intel_dev *devlist;
fa7bb6f8 458 unsigned int sector_size; /* sector size of used member drives */
cdddbdbc
DW
459 struct dl {
460 struct dl *next;
461 int index;
462 __u8 serial[MAX_RAID_SERIAL_LEN];
463 int major, minor;
464 char *devname;
b9f594fe 465 struct imsm_disk disk;
cdddbdbc 466 int fd;
0dcecb2e
DW
467 int extent_cnt;
468 struct extent *e; /* for determining freespace @ create */
efb30e7f 469 int raiddisk; /* slot to fill in autolayout */
1a64be56 470 enum action action;
ca0748fa 471 } *disks, *current_disk;
1a64be56
LM
472 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
473 active */
47ee5a45 474 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 475 struct bbm_log *bbm_log;
88654014 476 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 477 const struct imsm_orom *orom; /* platform firmware support */
a2b97981 478 struct intel_super *next; /* (temp) list for disambiguating family_num */
928f1424 479 struct md_bb bb; /* memory for get_bad_blocks call */
a2b97981
DW
480};
481
482struct intel_disk {
483 struct imsm_disk disk;
484 #define IMSM_UNKNOWN_OWNER (-1)
485 int owner;
486 struct intel_disk *next;
cdddbdbc
DW
487};
488
c2c087e6
DW
489struct extent {
490 unsigned long long start, size;
491};
492
694575e7
KW
493/* definitions of reshape process types */
494enum imsm_reshape_type {
495 CH_TAKEOVER,
b5347799 496 CH_MIGRATION,
7abc9871 497 CH_ARRAY_SIZE,
694575e7
KW
498};
499
88758e9d
DW
500/* definition of messages passed to imsm_process_update */
501enum imsm_update_type {
502 update_activate_spare,
8273f55e 503 update_create_array,
33414a01 504 update_kill_array,
aa534678 505 update_rename_array,
1a64be56 506 update_add_remove_disk,
78b10e66 507 update_reshape_container_disks,
48c5303a 508 update_reshape_migration,
2d40f3a1
AK
509 update_takeover,
510 update_general_migration_checkpoint,
f3871fdc 511 update_size_change,
bbab0940 512 update_prealloc_badblocks_mem,
e6e9dd3f 513 update_rwh_policy,
88758e9d
DW
514};
515
516struct imsm_update_activate_spare {
517 enum imsm_update_type type;
d23fe947 518 struct dl *dl;
88758e9d
DW
519 int slot;
520 int array;
521 struct imsm_update_activate_spare *next;
522};
523
78b10e66 524struct geo_params {
4dd2df09 525 char devnm[32];
78b10e66 526 char *dev_name;
d04f65f4 527 unsigned long long size;
78b10e66
N
528 int level;
529 int layout;
530 int chunksize;
531 int raid_disks;
532};
533
bb025c2f
KW
534enum takeover_direction {
535 R10_TO_R0,
536 R0_TO_R10
537};
538struct imsm_update_takeover {
539 enum imsm_update_type type;
540 int subarray;
541 enum takeover_direction direction;
542};
78b10e66
N
543
544struct imsm_update_reshape {
545 enum imsm_update_type type;
546 int old_raid_disks;
547 int new_raid_disks;
48c5303a
PC
548
549 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
550};
551
552struct imsm_update_reshape_migration {
553 enum imsm_update_type type;
554 int old_raid_disks;
555 int new_raid_disks;
556 /* fields for array migration changes
557 */
558 int subdev;
559 int new_level;
560 int new_layout;
4bba0439 561 int new_chunksize;
48c5303a 562
d195167d 563 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
564};
565
f3871fdc
AK
566struct imsm_update_size_change {
567 enum imsm_update_type type;
568 int subdev;
569 long long new_size;
570};
571
2d40f3a1
AK
572struct imsm_update_general_migration_checkpoint {
573 enum imsm_update_type type;
4036e7ee 574 __u64 curr_migr_unit;
2d40f3a1
AK
575};
576
54c2c1ea
DW
577struct disk_info {
578 __u8 serial[MAX_RAID_SERIAL_LEN];
579};
580
8273f55e
DW
581struct imsm_update_create_array {
582 enum imsm_update_type type;
8273f55e 583 int dev_idx;
6a3e913e 584 struct imsm_dev dev;
8273f55e
DW
585};
586
33414a01
DW
587struct imsm_update_kill_array {
588 enum imsm_update_type type;
589 int dev_idx;
590};
591
aa534678
DW
592struct imsm_update_rename_array {
593 enum imsm_update_type type;
594 __u8 name[MAX_RAID_SERIAL_LEN];
595 int dev_idx;
596};
597
1a64be56 598struct imsm_update_add_remove_disk {
43dad3d6
DW
599 enum imsm_update_type type;
600};
601
bbab0940
TM
602struct imsm_update_prealloc_bb_mem {
603 enum imsm_update_type type;
604};
605
e6e9dd3f
AP
606struct imsm_update_rwh_policy {
607 enum imsm_update_type type;
608 int new_policy;
609 int dev_idx;
610};
611
88654014
LM
612static const char *_sys_dev_type[] = {
613 [SYS_DEV_UNKNOWN] = "Unknown",
614 [SYS_DEV_SAS] = "SAS",
614902f6 615 [SYS_DEV_SATA] = "SATA",
60f0f54d
PB
616 [SYS_DEV_NVME] = "NVMe",
617 [SYS_DEV_VMD] = "VMD"
88654014
LM
618};
619
620const char *get_sys_dev_type(enum sys_dev_type type)
621{
622 if (type >= SYS_DEV_MAX)
623 type = SYS_DEV_UNKNOWN;
624
625 return _sys_dev_type[type];
626}
627
628static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
629{
503975b9
N
630 struct intel_hba *result = xmalloc(sizeof(*result));
631
632 result->type = device->type;
633 result->path = xstrdup(device->path);
634 result->next = NULL;
635 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
636 result->pci_id++;
637
88654014
LM
638 return result;
639}
640
641static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
642{
594dc1b8
JS
643 struct intel_hba *result;
644
88654014
LM
645 for (result = hba; result; result = result->next) {
646 if (result->type == device->type && strcmp(result->path, device->path) == 0)
647 break;
648 }
649 return result;
650}
651
b4cf4cba 652static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
653{
654 struct intel_hba *hba;
655
656 /* check if disk attached to Intel HBA */
657 hba = find_intel_hba(super->hba, device);
658 if (hba != NULL)
659 return 1;
660 /* Check if HBA is already attached to super */
661 if (super->hba == NULL) {
662 super->hba = alloc_intel_hba(device);
663 return 1;
6b781d33
AP
664 }
665
666 hba = super->hba;
667 /* Intel metadata allows for all disks attached to the same type HBA.
614902f6 668 * Do not support HBA types mixing
6b781d33
AP
669 */
670 if (device->type != hba->type)
88654014 671 return 2;
6b781d33
AP
672
673 /* Multiple same type HBAs can be used if they share the same OROM */
674 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
675
676 if (device_orom != super->orom)
677 return 2;
678
679 while (hba->next)
680 hba = hba->next;
681
682 hba->next = alloc_intel_hba(device);
683 return 1;
88654014
LM
684}
685
686static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
687{
9bc4ae77 688 struct sys_dev *list, *elem;
88654014
LM
689 char *disk_path;
690
691 if ((list = find_intel_devices()) == NULL)
692 return 0;
693
694 if (fd < 0)
695 disk_path = (char *) devname;
696 else
7c798f87 697 disk_path = diskfd_to_devpath(fd, 1, NULL);
88654014 698
9bc4ae77 699 if (!disk_path)
88654014 700 return 0;
88654014 701
9bc4ae77
N
702 for (elem = list; elem; elem = elem->next)
703 if (path_attached_to_hba(disk_path, elem->path))
88654014 704 return elem;
9bc4ae77 705
88654014
LM
706 if (disk_path != devname)
707 free(disk_path);
88654014
LM
708
709 return NULL;
710}
711
d424212e
N
712static int find_intel_hba_capability(int fd, struct intel_super *super,
713 char *devname);
f2f5c343 714
cdddbdbc
DW
715static struct supertype *match_metadata_desc_imsm(char *arg)
716{
717 struct supertype *st;
718
719 if (strcmp(arg, "imsm") != 0 &&
720 strcmp(arg, "default") != 0
721 )
722 return NULL;
723
503975b9 724 st = xcalloc(1, sizeof(*st));
cdddbdbc
DW
725 st->ss = &super_imsm;
726 st->max_devs = IMSM_MAX_DEVICES;
727 st->minor_version = 0;
728 st->sb = NULL;
729 return st;
730}
731
cdddbdbc
DW
732static __u8 *get_imsm_version(struct imsm_super *mpb)
733{
734 return &mpb->sig[MPB_SIG_LEN];
735}
736
949c47a0
DW
737/* retrieve a disk directly from the anchor when the anchor is known to be
738 * up-to-date, currently only at load time
739 */
740static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 741{
949c47a0 742 if (index >= mpb->num_disks)
cdddbdbc
DW
743 return NULL;
744 return &mpb->disk[index];
745}
746
95d07a2c
LM
747/* retrieve the disk description based on a index of the disk
748 * in the sub-array
749 */
750static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 751{
b9f594fe
DW
752 struct dl *d;
753
754 for (d = super->disks; d; d = d->next)
755 if (d->index == index)
95d07a2c
LM
756 return d;
757
758 return NULL;
759}
760/* retrieve a disk from the parsed metadata */
761static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
762{
763 struct dl *dl;
764
765 dl = get_imsm_dl_disk(super, index);
766 if (dl)
767 return &dl->disk;
768
b9f594fe 769 return NULL;
949c47a0
DW
770}
771
772/* generate a checksum directly from the anchor when the anchor is known to be
773 * up-to-date, currently only at load or write_super after coalescing
774 */
775static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
776{
777 __u32 end = mpb->mpb_size / sizeof(end);
778 __u32 *p = (__u32 *) mpb;
779 __u32 sum = 0;
780
5d500228
N
781 while (end--) {
782 sum += __le32_to_cpu(*p);
97f734fd
N
783 p++;
784 }
cdddbdbc 785
5d500228 786 return sum - __le32_to_cpu(mpb->check_sum);
cdddbdbc
DW
787}
788
a965f303
DW
789static size_t sizeof_imsm_map(struct imsm_map *map)
790{
791 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
792}
793
794struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 795{
5e7b0330
AK
796 /* A device can have 2 maps if it is in the middle of a migration.
797 * If second_map is:
238c0a71
AK
798 * MAP_0 - we return the first map
799 * MAP_1 - we return the second map if it exists, else NULL
800 * MAP_X - we return the second map if it exists, else the first
5e7b0330 801 */
a965f303 802 struct imsm_map *map = &dev->vol.map[0];
9535fc47 803 struct imsm_map *map2 = NULL;
a965f303 804
9535fc47
AK
805 if (dev->vol.migr_state)
806 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 807
9535fc47 808 switch (second_map) {
3b451610 809 case MAP_0:
9535fc47 810 break;
3b451610 811 case MAP_1:
9535fc47
AK
812 map = map2;
813 break;
238c0a71 814 case MAP_X:
9535fc47
AK
815 if (map2)
816 map = map2;
817 break;
9535fc47
AK
818 default:
819 map = NULL;
820 }
821 return map;
5e7b0330 822
a965f303 823}
cdddbdbc 824
3393c6af
DW
825/* return the size of the device.
826 * migr_state increases the returned size if map[0] were to be duplicated
827 */
828static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
829{
830 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
238c0a71 831 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
832
833 /* migrating means an additional map */
a965f303 834 if (dev->vol.migr_state)
238c0a71 835 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
3393c6af 836 else if (migr_state)
238c0a71 837 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
838
839 return size;
840}
841
54c2c1ea
DW
842/* retrieve disk serial number list from a metadata update */
843static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
844{
845 void *u = update;
846 struct disk_info *inf;
847
848 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
849 sizeof_imsm_dev(&update->dev, 0);
850
851 return inf;
852}
54c2c1ea 853
949c47a0 854static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
855{
856 int offset;
857 int i;
858 void *_mpb = mpb;
859
949c47a0 860 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
861 return NULL;
862
863 /* devices start after all disks */
864 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
865
866 for (i = 0; i <= index; i++)
867 if (i == index)
868 return _mpb + offset;
869 else
3393c6af 870 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
871
872 return NULL;
873}
874
949c47a0
DW
875static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
876{
ba2de7ba
DW
877 struct intel_dev *dv;
878
949c47a0
DW
879 if (index >= super->anchor->num_raid_devs)
880 return NULL;
ba2de7ba
DW
881 for (dv = super->devlist; dv; dv = dv->next)
882 if (dv->index == index)
883 return dv->dev;
884 return NULL;
949c47a0
DW
885}
886
8d67477f
TM
887static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
888 *addr)
889{
890 return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
891 __le16_to_cpu(addr->w1));
892}
893
894static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
895{
896 struct bbm_log_block_addr addr;
897
898 addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff));
899 addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
900 return addr;
901}
902
8d67477f
TM
903/* get size of the bbm log */
904static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
905{
906 if (!log || log->entry_count == 0)
907 return 0;
908
909 return sizeof(log->signature) +
910 sizeof(log->entry_count) +
911 log->entry_count * sizeof(struct bbm_log_entry);
912}
6f50473f
TM
913
914/* check if bad block is not partially stored in bbm log */
915static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
916 long long sector, const int length, __u32 *pos)
917{
918 __u32 i;
919
920 for (i = *pos; i < log->entry_count; i++) {
921 struct bbm_log_entry *entry = &log->marked_block_entries[i];
922 unsigned long long bb_start;
923 unsigned long long bb_end;
924
925 bb_start = __le48_to_cpu(&entry->defective_block_start);
926 bb_end = bb_start + (entry->marked_count + 1);
927
928 if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
929 (bb_end <= sector + length)) {
930 *pos = i;
931 return 1;
932 }
933 }
934 return 0;
935}
936
937/* record new bad block in bbm log */
938static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
939 long long sector, int length)
940{
941 int new_bb = 0;
942 __u32 pos = 0;
943 struct bbm_log_entry *entry = NULL;
944
945 while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
946 struct bbm_log_entry *e = &log->marked_block_entries[pos];
947
948 if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
949 (__le48_to_cpu(&e->defective_block_start) == sector)) {
950 sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
951 length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
952 pos = pos + 1;
953 continue;
954 }
955 entry = e;
956 break;
957 }
958
959 if (entry) {
960 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
961 BBM_LOG_MAX_LBA_ENTRY_VAL;
962 entry->defective_block_start = __cpu_to_le48(sector);
963 entry->marked_count = cnt - 1;
964 if (cnt == length)
965 return 1;
966 sector += cnt;
967 length -= cnt;
968 }
969
970 new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
971 BBM_LOG_MAX_LBA_ENTRY_VAL;
972 if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
973 return 0;
974
975 while (length > 0) {
976 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
977 BBM_LOG_MAX_LBA_ENTRY_VAL;
978 struct bbm_log_entry *entry =
979 &log->marked_block_entries[log->entry_count];
980
981 entry->defective_block_start = __cpu_to_le48(sector);
982 entry->marked_count = cnt - 1;
983 entry->disk_ordinal = idx;
984
985 sector += cnt;
986 length -= cnt;
987
988 log->entry_count++;
989 }
990
991 return new_bb;
992}
c07a5a4f 993
4c9e8c1e
TM
994/* clear all bad blocks for given disk */
995static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx)
996{
997 __u32 i = 0;
998
999 while (i < log->entry_count) {
1000 struct bbm_log_entry *entries = log->marked_block_entries;
1001
1002 if (entries[i].disk_ordinal == idx) {
1003 if (i < log->entry_count - 1)
1004 entries[i] = entries[log->entry_count - 1];
1005 log->entry_count--;
1006 } else {
1007 i++;
1008 }
1009 }
1010}
1011
c07a5a4f
TM
1012/* clear given bad block */
1013static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
1014 long long sector, const int length) {
1015 __u32 i = 0;
1016
1017 while (i < log->entry_count) {
1018 struct bbm_log_entry *entries = log->marked_block_entries;
1019
1020 if ((entries[i].disk_ordinal == idx) &&
1021 (__le48_to_cpu(&entries[i].defective_block_start) ==
1022 sector) && (entries[i].marked_count + 1 == length)) {
1023 if (i < log->entry_count - 1)
1024 entries[i] = entries[log->entry_count - 1];
1025 log->entry_count--;
1026 break;
1027 }
1028 i++;
1029 }
1030
1031 return 1;
1032}
8d67477f
TM
1033
1034/* allocate and load BBM log from metadata */
1035static int load_bbm_log(struct intel_super *super)
1036{
1037 struct imsm_super *mpb = super->anchor;
1038 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1039
1040 super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
1041 if (!super->bbm_log)
1042 return 1;
1043
1044 if (bbm_log_size) {
1045 struct bbm_log *log = (void *)mpb +
1046 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1047
1048 __u32 entry_count;
1049
1050 if (bbm_log_size < sizeof(log->signature) +
1051 sizeof(log->entry_count))
1052 return 2;
1053
1054 entry_count = __le32_to_cpu(log->entry_count);
1055 if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
1056 (entry_count > BBM_LOG_MAX_ENTRIES))
1057 return 3;
1058
1059 if (bbm_log_size !=
1060 sizeof(log->signature) + sizeof(log->entry_count) +
1061 entry_count * sizeof(struct bbm_log_entry))
1062 return 4;
1063
1064 memcpy(super->bbm_log, log, bbm_log_size);
1065 } else {
1066 super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
1067 super->bbm_log->entry_count = 0;
1068 }
1069
1070 return 0;
1071}
1072
b12796be
TM
1073/* checks if bad block is within volume boundaries */
1074static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
1075 const unsigned long long start_sector,
1076 const unsigned long long size)
1077{
1078 unsigned long long bb_start;
1079 unsigned long long bb_end;
1080
1081 bb_start = __le48_to_cpu(&entry->defective_block_start);
1082 bb_end = bb_start + (entry->marked_count + 1);
1083
1084 if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
1085 ((bb_end >= start_sector) && (bb_end <= start_sector + size)))
1086 return 1;
1087
1088 return 0;
1089}
1090
1091/* get list of bad blocks on a drive for a volume */
1092static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
1093 const unsigned long long start_sector,
1094 const unsigned long long size,
1095 struct md_bb *bbs)
1096{
1097 __u32 count = 0;
1098 __u32 i;
1099
1100 for (i = 0; i < log->entry_count; i++) {
1101 const struct bbm_log_entry *ent =
1102 &log->marked_block_entries[i];
1103 struct md_bb_entry *bb;
1104
1105 if ((ent->disk_ordinal == idx) &&
1106 is_bad_block_in_volume(ent, start_sector, size)) {
1107
1108 if (!bbs->entries) {
1109 bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
1110 sizeof(*bb));
1111 if (!bbs->entries)
1112 break;
1113 }
1114
1115 bb = &bbs->entries[count++];
1116 bb->sector = __le48_to_cpu(&ent->defective_block_start);
1117 bb->length = ent->marked_count + 1;
1118 }
1119 }
1120 bbs->count = count;
1121}
1122
98130f40
AK
1123/*
1124 * for second_map:
238c0a71
AK
1125 * == MAP_0 get first map
1126 * == MAP_1 get second map
1127 * == MAP_X than get map according to the current migr_state
98130f40
AK
1128 */
1129static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
1130 int slot,
1131 int second_map)
7eef0453
DW
1132{
1133 struct imsm_map *map;
1134
5e7b0330 1135 map = get_imsm_map(dev, second_map);
7eef0453 1136
ff077194
DW
1137 /* top byte identifies disk under rebuild */
1138 return __le32_to_cpu(map->disk_ord_tbl[slot]);
1139}
1140
1141#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 1142static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 1143{
98130f40 1144 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
1145
1146 return ord_to_idx(ord);
7eef0453
DW
1147}
1148
be73972f
DW
1149static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
1150{
1151 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
1152}
1153
f21e18ca 1154static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
1155{
1156 int slot;
1157 __u32 ord;
1158
1159 for (slot = 0; slot < map->num_members; slot++) {
1160 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
1161 if (ord_to_idx(ord) == idx)
1162 return slot;
1163 }
1164
1165 return -1;
1166}
1167
cdddbdbc
DW
1168static int get_imsm_raid_level(struct imsm_map *map)
1169{
1170 if (map->raid_level == 1) {
1171 if (map->num_members == 2)
1172 return 1;
1173 else
1174 return 10;
1175 }
1176
1177 return map->raid_level;
1178}
1179
c2c087e6
DW
1180static int cmp_extent(const void *av, const void *bv)
1181{
1182 const struct extent *a = av;
1183 const struct extent *b = bv;
1184 if (a->start < b->start)
1185 return -1;
1186 if (a->start > b->start)
1187 return 1;
1188 return 0;
1189}
1190
0dcecb2e 1191static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 1192{
c2c087e6 1193 int memberships = 0;
620b1713 1194 int i;
c2c087e6 1195
949c47a0
DW
1196 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1197 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 1198 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 1199
620b1713
DW
1200 if (get_imsm_disk_slot(map, dl->index) >= 0)
1201 memberships++;
c2c087e6 1202 }
0dcecb2e
DW
1203
1204 return memberships;
1205}
1206
b81221b7
CA
1207static __u32 imsm_min_reserved_sectors(struct intel_super *super);
1208
486720e0 1209static int split_ull(unsigned long long n, void *lo, void *hi)
5551b113
CA
1210{
1211 if (lo == 0 || hi == 0)
1212 return 1;
486720e0
JS
1213 __put_unaligned32(__cpu_to_le32((__u32)n), lo);
1214 __put_unaligned32(__cpu_to_le32((n >> 32)), hi);
5551b113
CA
1215 return 0;
1216}
1217
1218static unsigned long long join_u32(__u32 lo, __u32 hi)
1219{
1220 return (unsigned long long)__le32_to_cpu(lo) |
1221 (((unsigned long long)__le32_to_cpu(hi)) << 32);
1222}
1223
1224static unsigned long long total_blocks(struct imsm_disk *disk)
1225{
1226 if (disk == NULL)
1227 return 0;
1228 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
1229}
1230
1c275381
MT
1231/**
1232 * imsm_num_data_members() - get data drives count for an array.
1233 * @map: Map to analyze.
1234 *
1235 * num_data_members value represents minimal count of drives for level.
1236 * The name of the property could be misleading for RAID5 with asymmetric layout
1237 * because some data required to be calculated from parity.
1238 * The property is extracted from level and num_members value.
1239 *
1240 * Return: num_data_members value on success, zero otherwise.
1241 */
1242static __u8 imsm_num_data_members(struct imsm_map *map)
1243{
1244 switch (get_imsm_raid_level(map)) {
1245 case 0:
1246 return map->num_members;
1247 case 1:
1248 case 10:
1249 return map->num_members / 2;
1250 case 5:
1251 return map->num_members - 1;
1252 default:
1253 dprintf("unsupported raid level\n");
1254 return 0;
1255 }
1256}
1257
5551b113
CA
1258static unsigned long long pba_of_lba0(struct imsm_map *map)
1259{
1260 if (map == NULL)
1261 return 0;
1262 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
1263}
1264
1265static unsigned long long blocks_per_member(struct imsm_map *map)
1266{
1267 if (map == NULL)
1268 return 0;
1269 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
1270}
1271
1272static unsigned long long num_data_stripes(struct imsm_map *map)
1273{
1274 if (map == NULL)
1275 return 0;
1276 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
1277}
1278
4036e7ee
MT
1279static unsigned long long vol_curr_migr_unit(struct imsm_dev *dev)
1280{
1281 if (dev == NULL)
1282 return 0;
1283
1284 return join_u32(dev->vol.curr_migr_unit_lo, dev->vol.curr_migr_unit_hi);
1285}
1286
fcc2c9da
MD
1287static unsigned long long imsm_dev_size(struct imsm_dev *dev)
1288{
1289 if (dev == NULL)
1290 return 0;
1291 return join_u32(dev->size_low, dev->size_high);
1292}
1293
9f421827
PB
1294static unsigned long long migr_chkp_area_pba(struct migr_record *migr_rec)
1295{
1296 if (migr_rec == NULL)
1297 return 0;
1298 return join_u32(migr_rec->ckpt_area_pba_lo,
1299 migr_rec->ckpt_area_pba_hi);
1300}
1301
1302static unsigned long long current_migr_unit(struct migr_record *migr_rec)
1303{
1304 if (migr_rec == NULL)
1305 return 0;
1306 return join_u32(migr_rec->curr_migr_unit_lo,
1307 migr_rec->curr_migr_unit_hi);
1308}
1309
1310static unsigned long long migr_dest_1st_member_lba(struct migr_record *migr_rec)
1311{
1312 if (migr_rec == NULL)
1313 return 0;
1314 return join_u32(migr_rec->dest_1st_member_lba_lo,
1315 migr_rec->dest_1st_member_lba_hi);
1316}
1317
1318static unsigned long long get_num_migr_units(struct migr_record *migr_rec)
1319{
1320 if (migr_rec == NULL)
1321 return 0;
1322 return join_u32(migr_rec->num_migr_units_lo,
1323 migr_rec->num_migr_units_hi);
1324}
1325
5551b113
CA
1326static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
1327{
1328 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
1329}
1330
1c275381
MT
1331/**
1332 * set_num_domains() - Set number of domains for an array.
1333 * @map: Map to be updated.
1334 *
1335 * num_domains property represents copies count of each data drive, thus make
1336 * it meaningful only for RAID1 and RAID10. IMSM supports two domains for
1337 * raid1 and raid10.
1338 */
1339static void set_num_domains(struct imsm_map *map)
1340{
1341 int level = get_imsm_raid_level(map);
1342
1343 if (level == 1 || level == 10)
1344 map->num_domains = 2;
1345 else
1346 map->num_domains = 1;
1347}
1348
5551b113
CA
1349static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
1350{
1351 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
1352}
1353
1354static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
1355{
1356 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
1357}
1358
1359static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
1360{
1361 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
1362}
1363
1c275381
MT
1364/**
1365 * update_num_data_stripes() - Calculate and update num_data_stripes value.
1366 * @map: map to be updated.
1367 * @dev_size: size of volume.
1368 *
1369 * num_data_stripes value is addictionally divided by num_domains, therefore for
1370 * levels where num_domains is not 1, nds is a part of real value.
1371 */
1372static void update_num_data_stripes(struct imsm_map *map,
1373 unsigned long long dev_size)
1374{
1375 unsigned long long nds = dev_size / imsm_num_data_members(map);
1376
1377 nds /= map->num_domains;
1378 nds /= map->blocks_per_strip;
1379 set_num_data_stripes(map, nds);
1380}
1381
4036e7ee
MT
1382static void set_vol_curr_migr_unit(struct imsm_dev *dev, unsigned long long n)
1383{
1384 if (dev == NULL)
1385 return;
1386
1387 split_ull(n, &dev->vol.curr_migr_unit_lo, &dev->vol.curr_migr_unit_hi);
1388}
1389
fcc2c9da
MD
1390static void set_imsm_dev_size(struct imsm_dev *dev, unsigned long long n)
1391{
1392 split_ull(n, &dev->size_low, &dev->size_high);
1393}
1394
9f421827
PB
1395static void set_migr_chkp_area_pba(struct migr_record *migr_rec,
1396 unsigned long long n)
1397{
1398 split_ull(n, &migr_rec->ckpt_area_pba_lo, &migr_rec->ckpt_area_pba_hi);
1399}
1400
1401static void set_current_migr_unit(struct migr_record *migr_rec,
1402 unsigned long long n)
1403{
1404 split_ull(n, &migr_rec->curr_migr_unit_lo,
1405 &migr_rec->curr_migr_unit_hi);
1406}
1407
1408static void set_migr_dest_1st_member_lba(struct migr_record *migr_rec,
1409 unsigned long long n)
1410{
1411 split_ull(n, &migr_rec->dest_1st_member_lba_lo,
1412 &migr_rec->dest_1st_member_lba_hi);
1413}
1414
1415static void set_num_migr_units(struct migr_record *migr_rec,
1416 unsigned long long n)
1417{
1418 split_ull(n, &migr_rec->num_migr_units_lo,
1419 &migr_rec->num_migr_units_hi);
1420}
1421
44490938
MD
1422static unsigned long long per_dev_array_size(struct imsm_map *map)
1423{
1424 unsigned long long array_size = 0;
1425
1426 if (map == NULL)
1427 return array_size;
1428
1429 array_size = num_data_stripes(map) * map->blocks_per_strip;
1430 if (get_imsm_raid_level(map) == 1 || get_imsm_raid_level(map) == 10)
1431 array_size *= 2;
1432
1433 return array_size;
1434}
1435
05501181
PB
1436static struct extent *get_extents(struct intel_super *super, struct dl *dl,
1437 int get_minimal_reservation)
0dcecb2e
DW
1438{
1439 /* find a list of used extents on the given physical device */
1440 struct extent *rv, *e;
620b1713 1441 int i;
0dcecb2e 1442 int memberships = count_memberships(dl, super);
b276dd33
DW
1443 __u32 reservation;
1444
1445 /* trim the reserved area for spares, so they can join any array
1446 * regardless of whether the OROM has assigned sectors from the
1447 * IMSM_RESERVED_SECTORS region
1448 */
05501181 1449 if (dl->index == -1 || get_minimal_reservation)
b81221b7 1450 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
1451 else
1452 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 1453
503975b9 1454 rv = xcalloc(sizeof(struct extent), (memberships + 1));
c2c087e6
DW
1455 e = rv;
1456
949c47a0
DW
1457 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1458 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 1459 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 1460
620b1713 1461 if (get_imsm_disk_slot(map, dl->index) >= 0) {
5551b113 1462 e->start = pba_of_lba0(map);
44490938 1463 e->size = per_dev_array_size(map);
620b1713 1464 e++;
c2c087e6
DW
1465 }
1466 }
1467 qsort(rv, memberships, sizeof(*rv), cmp_extent);
1468
1011e834 1469 /* determine the start of the metadata
14e8215b
DW
1470 * when no raid devices are defined use the default
1471 * ...otherwise allow the metadata to truncate the value
1472 * as is the case with older versions of imsm
1473 */
1474 if (memberships) {
1475 struct extent *last = &rv[memberships - 1];
5551b113 1476 unsigned long long remainder;
14e8215b 1477
5551b113 1478 remainder = total_blocks(&dl->disk) - (last->start + last->size);
dda5855f
DW
1479 /* round down to 1k block to satisfy precision of the kernel
1480 * 'size' interface
1481 */
1482 remainder &= ~1UL;
1483 /* make sure remainder is still sane */
f21e18ca 1484 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 1485 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
1486 if (reservation > remainder)
1487 reservation = remainder;
1488 }
5551b113 1489 e->start = total_blocks(&dl->disk) - reservation;
c2c087e6
DW
1490 e->size = 0;
1491 return rv;
1492}
1493
14e8215b
DW
1494/* try to determine how much space is reserved for metadata from
1495 * the last get_extents() entry, otherwise fallback to the
1496 * default
1497 */
1498static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1499{
1500 struct extent *e;
1501 int i;
1502 __u32 rv;
1503
1504 /* for spares just return a minimal reservation which will grow
1505 * once the spare is picked up by an array
1506 */
1507 if (dl->index == -1)
1508 return MPB_SECTOR_CNT;
1509
05501181 1510 e = get_extents(super, dl, 0);
14e8215b
DW
1511 if (!e)
1512 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1513
1514 /* scroll to last entry */
1515 for (i = 0; e[i].size; i++)
1516 continue;
1517
5551b113 1518 rv = total_blocks(&dl->disk) - e[i].start;
14e8215b
DW
1519
1520 free(e);
1521
1522 return rv;
1523}
1524
25ed7e59
DW
1525static int is_spare(struct imsm_disk *disk)
1526{
1527 return (disk->status & SPARE_DISK) == SPARE_DISK;
1528}
1529
1530static int is_configured(struct imsm_disk *disk)
1531{
1532 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1533}
1534
1535static int is_failed(struct imsm_disk *disk)
1536{
1537 return (disk->status & FAILED_DISK) == FAILED_DISK;
1538}
1539
2432ce9b
AP
1540static int is_journal(struct imsm_disk *disk)
1541{
1542 return (disk->status & JOURNAL_DISK) == JOURNAL_DISK;
1543}
1544
b53bfba6
TM
1545/* round array size down to closest MB and ensure it splits evenly
1546 * between members
1547 */
1548static unsigned long long round_size_to_mb(unsigned long long size, unsigned int
1549 disk_count)
1550{
1551 size /= disk_count;
1552 size = (size >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
1553 size *= disk_count;
1554
1555 return size;
1556}
1557
8b9cd157
MK
1558static int able_to_resync(int raid_level, int missing_disks)
1559{
1560 int max_missing_disks = 0;
1561
1562 switch (raid_level) {
1563 case 10:
1564 max_missing_disks = 1;
1565 break;
1566 default:
1567 max_missing_disks = 0;
1568 }
1569 return missing_disks <= max_missing_disks;
1570}
1571
b81221b7
CA
1572/* try to determine how much space is reserved for metadata from
1573 * the last get_extents() entry on the smallest active disk,
1574 * otherwise fallback to the default
1575 */
1576static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1577{
1578 struct extent *e;
1579 int i;
5551b113
CA
1580 unsigned long long min_active;
1581 __u32 remainder;
b81221b7
CA
1582 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1583 struct dl *dl, *dl_min = NULL;
1584
1585 if (!super)
1586 return rv;
1587
1588 min_active = 0;
1589 for (dl = super->disks; dl; dl = dl->next) {
1590 if (dl->index < 0)
1591 continue;
5551b113
CA
1592 unsigned long long blocks = total_blocks(&dl->disk);
1593 if (blocks < min_active || min_active == 0) {
b81221b7 1594 dl_min = dl;
5551b113 1595 min_active = blocks;
b81221b7
CA
1596 }
1597 }
1598 if (!dl_min)
1599 return rv;
1600
1601 /* find last lba used by subarrays on the smallest active disk */
05501181 1602 e = get_extents(super, dl_min, 0);
b81221b7
CA
1603 if (!e)
1604 return rv;
1605 for (i = 0; e[i].size; i++)
1606 continue;
1607
1608 remainder = min_active - e[i].start;
1609 free(e);
1610
1611 /* to give priority to recovery we should not require full
1612 IMSM_RESERVED_SECTORS from the spare */
1613 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1614
1615 /* if real reservation is smaller use that value */
1616 return (remainder < rv) ? remainder : rv;
1617}
1618
fbfdcb06
AO
1619/*
1620 * Return minimum size of a spare and sector size
1621 * that can be used in this array
1622 */
1623int get_spare_criteria_imsm(struct supertype *st, struct spare_criteria *c)
80e7f8c3
AC
1624{
1625 struct intel_super *super = st->sb;
1626 struct dl *dl;
1627 struct extent *e;
1628 int i;
fbfdcb06
AO
1629 unsigned long long size = 0;
1630
1631 c->min_size = 0;
4b57ecf6 1632 c->sector_size = 0;
80e7f8c3
AC
1633
1634 if (!super)
fbfdcb06 1635 return -EINVAL;
80e7f8c3
AC
1636 /* find first active disk in array */
1637 dl = super->disks;
1638 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1639 dl = dl->next;
1640 if (!dl)
fbfdcb06 1641 return -EINVAL;
80e7f8c3 1642 /* find last lba used by subarrays */
05501181 1643 e = get_extents(super, dl, 0);
80e7f8c3 1644 if (!e)
fbfdcb06 1645 return -EINVAL;
80e7f8c3
AC
1646 for (i = 0; e[i].size; i++)
1647 continue;
1648 if (i > 0)
fbfdcb06 1649 size = e[i-1].start + e[i-1].size;
80e7f8c3 1650 free(e);
b81221b7 1651
80e7f8c3 1652 /* add the amount of space needed for metadata */
fbfdcb06
AO
1653 size += imsm_min_reserved_sectors(super);
1654
1655 c->min_size = size * 512;
4b57ecf6 1656 c->sector_size = super->sector_size;
b81221b7 1657
fbfdcb06 1658 return 0;
80e7f8c3
AC
1659}
1660
d1e02575
AK
1661static int is_gen_migration(struct imsm_dev *dev);
1662
f36a9ecd
PB
1663#define IMSM_4K_DIV 8
1664
c47b0ff6
AK
1665static __u64 blocks_per_migr_unit(struct intel_super *super,
1666 struct imsm_dev *dev);
1e5c6983 1667
c47b0ff6
AK
1668static void print_imsm_dev(struct intel_super *super,
1669 struct imsm_dev *dev,
1670 char *uuid,
1671 int disk_idx)
cdddbdbc
DW
1672{
1673 __u64 sz;
0d80bb2f 1674 int slot, i;
238c0a71
AK
1675 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1676 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
b10b37b8 1677 __u32 ord;
cdddbdbc
DW
1678
1679 printf("\n");
1e7bc0ed 1680 printf("[%.16s]:\n", dev->volume);
ba1b3bc8 1681 printf(" Subarray : %d\n", super->current_vol);
44470971 1682 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1683 printf(" RAID Level : %d", get_imsm_raid_level(map));
1684 if (map2)
1685 printf(" <-- %d", get_imsm_raid_level(map2));
1686 printf("\n");
1687 printf(" Members : %d", map->num_members);
1688 if (map2)
1689 printf(" <-- %d", map2->num_members);
1690 printf("\n");
0d80bb2f
DW
1691 printf(" Slots : [");
1692 for (i = 0; i < map->num_members; i++) {
238c0a71 1693 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
0d80bb2f
DW
1694 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1695 }
dd8bcb3b
AK
1696 printf("]");
1697 if (map2) {
1698 printf(" <-- [");
1699 for (i = 0; i < map2->num_members; i++) {
238c0a71 1700 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
dd8bcb3b
AK
1701 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1702 }
1703 printf("]");
1704 }
1705 printf("\n");
7095bccb
AK
1706 printf(" Failed disk : ");
1707 if (map->failed_disk_num == 0xff)
1708 printf("none");
1709 else
1710 printf("%i", map->failed_disk_num);
1711 printf("\n");
620b1713
DW
1712 slot = get_imsm_disk_slot(map, disk_idx);
1713 if (slot >= 0) {
238c0a71 1714 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
b10b37b8
DW
1715 printf(" This Slot : %d%s\n", slot,
1716 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1717 } else
cdddbdbc 1718 printf(" This Slot : ?\n");
84918897 1719 printf(" Sector Size : %u\n", super->sector_size);
fcc2c9da 1720 sz = imsm_dev_size(dev);
84918897
MK
1721 printf(" Array Size : %llu%s\n",
1722 (unsigned long long)sz * 512 / super->sector_size,
cdddbdbc 1723 human_size(sz * 512));
5551b113 1724 sz = blocks_per_member(map);
84918897
MK
1725 printf(" Per Dev Size : %llu%s\n",
1726 (unsigned long long)sz * 512 / super->sector_size,
cdddbdbc 1727 human_size(sz * 512));
5551b113 1728 printf(" Sector Offset : %llu\n",
7d8935cb 1729 pba_of_lba0(map) * 512 / super->sector_size);
5551b113
CA
1730 printf(" Num Stripes : %llu\n",
1731 num_data_stripes(map));
dd8bcb3b 1732 printf(" Chunk Size : %u KiB",
cdddbdbc 1733 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1734 if (map2)
1735 printf(" <-- %u KiB",
1736 __le16_to_cpu(map2->blocks_per_strip) / 2);
1737 printf("\n");
cdddbdbc 1738 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1739 printf(" Migrate State : ");
1484e727
DW
1740 if (dev->vol.migr_state) {
1741 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1742 printf("initialize\n");
1484e727 1743 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1744 printf("rebuild\n");
1484e727 1745 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1746 printf("check\n");
1484e727 1747 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1748 printf("general migration\n");
1484e727 1749 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1750 printf("state change\n");
1484e727 1751 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1752 printf("repair\n");
1484e727 1753 else
8655a7b1
DW
1754 printf("<unknown:%d>\n", migr_type(dev));
1755 } else
1756 printf("idle\n");
3393c6af
DW
1757 printf(" Map State : %s", map_state_str[map->map_state]);
1758 if (dev->vol.migr_state) {
238c0a71 1759 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983 1760
b10b37b8 1761 printf(" <-- %s", map_state_str[map->map_state]);
4036e7ee 1762 printf("\n Checkpoint : %llu ", vol_curr_migr_unit(dev));
089f9d79 1763 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
464d40e8
LD
1764 printf("(N/A)");
1765 else
1766 printf("(%llu)", (unsigned long long)
1767 blocks_per_migr_unit(super, dev));
3393c6af
DW
1768 }
1769 printf("\n");
2432ce9b
AP
1770 printf(" Dirty State : %s\n", (dev->vol.dirty & RAIDVOL_DIRTY) ?
1771 "dirty" : "clean");
1772 printf(" RWH Policy : ");
c2462068 1773 if (dev->rwh_policy == RWH_OFF || dev->rwh_policy == RWH_MULTIPLE_OFF)
2432ce9b
AP
1774 printf("off\n");
1775 else if (dev->rwh_policy == RWH_DISTRIBUTED)
1776 printf("PPL distributed\n");
1777 else if (dev->rwh_policy == RWH_JOURNALING_DRIVE)
1778 printf("PPL journaling drive\n");
c2462068
PB
1779 else if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
1780 printf("Multiple distributed PPLs\n");
1781 else if (dev->rwh_policy == RWH_MULTIPLE_PPLS_JOURNALING_DRIVE)
1782 printf("Multiple PPLs on journaling drive\n");
fbc42556
JR
1783 else if (dev->rwh_policy == RWH_BITMAP)
1784 printf("Write-intent bitmap\n");
2432ce9b
AP
1785 else
1786 printf("<unknown:%d>\n", dev->rwh_policy);
ba1b3bc8
AP
1787
1788 printf(" Volume ID : %u\n", dev->my_vol_raid_dev_num);
cdddbdbc
DW
1789}
1790
ef5c214e
MK
1791static void print_imsm_disk(struct imsm_disk *disk,
1792 int index,
1793 __u32 reserved,
1794 unsigned int sector_size) {
1f24f035 1795 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1796 __u64 sz;
1797
0ec1f4e8 1798 if (index < -1 || !disk)
e9d82038
DW
1799 return;
1800
cdddbdbc 1801 printf("\n");
1f24f035 1802 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1803 if (index >= 0)
1804 printf(" Disk%02d Serial : %s\n", index, str);
1805 else
1806 printf(" Disk Serial : %s\n", str);
2432ce9b
AP
1807 printf(" State :%s%s%s%s\n", is_spare(disk) ? " spare" : "",
1808 is_configured(disk) ? " active" : "",
1809 is_failed(disk) ? " failed" : "",
1810 is_journal(disk) ? " journal" : "");
cdddbdbc 1811 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
5551b113 1812 sz = total_blocks(disk) - reserved;
ef5c214e
MK
1813 printf(" Usable Size : %llu%s\n",
1814 (unsigned long long)sz * 512 / sector_size,
cdddbdbc
DW
1815 human_size(sz * 512));
1816}
1817
de44e46f
PB
1818void convert_to_4k_imsm_migr_rec(struct intel_super *super)
1819{
1820 struct migr_record *migr_rec = super->migr_rec;
1821
1822 migr_rec->blocks_per_unit /= IMSM_4K_DIV;
de44e46f
PB
1823 migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
1824 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1825 migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
1826 &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
9f421827
PB
1827 set_migr_chkp_area_pba(migr_rec,
1828 migr_chkp_area_pba(migr_rec) / IMSM_4K_DIV);
1829 set_migr_dest_1st_member_lba(migr_rec,
1830 migr_dest_1st_member_lba(migr_rec) / IMSM_4K_DIV);
de44e46f
PB
1831}
1832
f36a9ecd
PB
1833void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1834{
1835 set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1836}
1837
1838void convert_to_4k(struct intel_super *super)
1839{
1840 struct imsm_super *mpb = super->anchor;
1841 struct imsm_disk *disk;
1842 int i;
e4467bc7 1843 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
1844
1845 for (i = 0; i < mpb->num_disks ; i++) {
1846 disk = __get_imsm_disk(mpb, i);
1847 /* disk */
1848 convert_to_4k_imsm_disk(disk);
1849 }
1850 for (i = 0; i < mpb->num_raid_devs; i++) {
1851 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1852 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1853 /* dev */
fcc2c9da 1854 set_imsm_dev_size(dev, imsm_dev_size(dev)/IMSM_4K_DIV);
4036e7ee
MT
1855 set_vol_curr_migr_unit(dev,
1856 vol_curr_migr_unit(dev) / IMSM_4K_DIV);
f36a9ecd
PB
1857
1858 /* map0 */
1859 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1860 map->blocks_per_strip /= IMSM_4K_DIV;
1861 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1862
1863 if (dev->vol.migr_state) {
1864 /* map1 */
1865 map = get_imsm_map(dev, MAP_1);
1866 set_blocks_per_member(map,
1867 blocks_per_member(map)/IMSM_4K_DIV);
1868 map->blocks_per_strip /= IMSM_4K_DIV;
1869 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1870 }
1871 }
e4467bc7
TM
1872 if (bbm_log_size) {
1873 struct bbm_log *log = (void *)mpb +
1874 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1875 __u32 i;
1876
1877 for (i = 0; i < log->entry_count; i++) {
1878 struct bbm_log_entry *entry =
1879 &log->marked_block_entries[i];
1880
1881 __u8 count = entry->marked_count + 1;
1882 unsigned long long sector =
1883 __le48_to_cpu(&entry->defective_block_start);
1884
1885 entry->defective_block_start =
1886 __cpu_to_le48(sector/IMSM_4K_DIV);
1887 entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1;
1888 }
1889 }
f36a9ecd
PB
1890
1891 mpb->check_sum = __gen_imsm_checksum(mpb);
1892}
1893
520e69e2
AK
1894void examine_migr_rec_imsm(struct intel_super *super)
1895{
1896 struct migr_record *migr_rec = super->migr_rec;
1897 struct imsm_super *mpb = super->anchor;
1898 int i;
1899
1900 for (i = 0; i < mpb->num_raid_devs; i++) {
1901 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3136abe5 1902 struct imsm_map *map;
b4ab44d8 1903 int slot = -1;
3136abe5 1904
520e69e2
AK
1905 if (is_gen_migration(dev) == 0)
1906 continue;
1907
1908 printf("\nMigration Record Information:");
3136abe5 1909
44bfe6df
AK
1910 /* first map under migration */
1911 map = get_imsm_map(dev, MAP_0);
3136abe5
AK
1912 if (map)
1913 slot = get_imsm_disk_slot(map, super->disks->index);
089f9d79 1914 if (map == NULL || slot > 1 || slot < 0) {
520e69e2
AK
1915 printf(" Empty\n ");
1916 printf("Examine one of first two disks in array\n");
1917 break;
1918 }
1919 printf("\n Status : ");
1920 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1921 printf("Normal\n");
1922 else
1923 printf("Contains Data\n");
9f421827
PB
1924 printf(" Current Unit : %llu\n",
1925 current_migr_unit(migr_rec));
520e69e2
AK
1926 printf(" Family : %u\n",
1927 __le32_to_cpu(migr_rec->family_num));
1928 printf(" Ascending : %u\n",
1929 __le32_to_cpu(migr_rec->ascending_migr));
1930 printf(" Blocks Per Unit : %u\n",
1931 __le32_to_cpu(migr_rec->blocks_per_unit));
1932 printf(" Dest. Depth Per Unit : %u\n",
1933 __le32_to_cpu(migr_rec->dest_depth_per_unit));
9f421827
PB
1934 printf(" Checkpoint Area pba : %llu\n",
1935 migr_chkp_area_pba(migr_rec));
1936 printf(" First member lba : %llu\n",
1937 migr_dest_1st_member_lba(migr_rec));
1938 printf(" Total Number of Units : %llu\n",
1939 get_num_migr_units(migr_rec));
1940 printf(" Size of volume : %llu\n",
1941 join_u32(migr_rec->post_migr_vol_cap,
1942 migr_rec->post_migr_vol_cap_hi));
520e69e2
AK
1943 printf(" Record was read from : %u\n",
1944 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1945
1946 break;
1947 }
1948}
f36a9ecd 1949
de44e46f
PB
1950void convert_from_4k_imsm_migr_rec(struct intel_super *super)
1951{
1952 struct migr_record *migr_rec = super->migr_rec;
1953
1954 migr_rec->blocks_per_unit *= IMSM_4K_DIV;
de44e46f
PB
1955 migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
1956 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1957 migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
1958 &migr_rec->post_migr_vol_cap,
1959 &migr_rec->post_migr_vol_cap_hi);
9f421827
PB
1960 set_migr_chkp_area_pba(migr_rec,
1961 migr_chkp_area_pba(migr_rec) * IMSM_4K_DIV);
1962 set_migr_dest_1st_member_lba(migr_rec,
1963 migr_dest_1st_member_lba(migr_rec) * IMSM_4K_DIV);
de44e46f
PB
1964}
1965
f36a9ecd
PB
1966void convert_from_4k(struct intel_super *super)
1967{
1968 struct imsm_super *mpb = super->anchor;
1969 struct imsm_disk *disk;
1970 int i;
e4467bc7 1971 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
1972
1973 for (i = 0; i < mpb->num_disks ; i++) {
1974 disk = __get_imsm_disk(mpb, i);
1975 /* disk */
1976 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
1977 }
1978
1979 for (i = 0; i < mpb->num_raid_devs; i++) {
1980 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1981 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1982 /* dev */
fcc2c9da 1983 set_imsm_dev_size(dev, imsm_dev_size(dev)*IMSM_4K_DIV);
4036e7ee
MT
1984 set_vol_curr_migr_unit(dev,
1985 vol_curr_migr_unit(dev) * IMSM_4K_DIV);
f36a9ecd
PB
1986
1987 /* map0 */
1988 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
1989 map->blocks_per_strip *= IMSM_4K_DIV;
1990 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1991
1992 if (dev->vol.migr_state) {
1993 /* map1 */
1994 map = get_imsm_map(dev, MAP_1);
1995 set_blocks_per_member(map,
1996 blocks_per_member(map)*IMSM_4K_DIV);
1997 map->blocks_per_strip *= IMSM_4K_DIV;
1998 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1999 }
2000 }
e4467bc7
TM
2001 if (bbm_log_size) {
2002 struct bbm_log *log = (void *)mpb +
2003 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
2004 __u32 i;
2005
2006 for (i = 0; i < log->entry_count; i++) {
2007 struct bbm_log_entry *entry =
2008 &log->marked_block_entries[i];
2009
2010 __u8 count = entry->marked_count + 1;
2011 unsigned long long sector =
2012 __le48_to_cpu(&entry->defective_block_start);
2013
2014 entry->defective_block_start =
2015 __cpu_to_le48(sector*IMSM_4K_DIV);
2016 entry->marked_count = count*IMSM_4K_DIV - 1;
2017 }
2018 }
f36a9ecd
PB
2019
2020 mpb->check_sum = __gen_imsm_checksum(mpb);
2021}
2022
19482bcc
AK
2023/*******************************************************************************
2024 * function: imsm_check_attributes
2025 * Description: Function checks if features represented by attributes flags
1011e834 2026 * are supported by mdadm.
19482bcc
AK
2027 * Parameters:
2028 * attributes - Attributes read from metadata
2029 * Returns:
1011e834
N
2030 * 0 - passed attributes contains unsupported features flags
2031 * 1 - all features are supported
19482bcc
AK
2032 ******************************************************************************/
2033static int imsm_check_attributes(__u32 attributes)
2034{
2035 int ret_val = 1;
418f9b36
N
2036 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
2037
2038 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
2039
2040 not_supported &= attributes;
2041 if (not_supported) {
e7b84f9d 2042 pr_err("(IMSM): Unsupported attributes : %x\n",
418f9b36 2043 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
2044 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
2045 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
2046 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
2047 }
2048 if (not_supported & MPB_ATTRIB_2TB) {
2049 dprintf("\t\tMPB_ATTRIB_2TB\n");
2050 not_supported ^= MPB_ATTRIB_2TB;
2051 }
2052 if (not_supported & MPB_ATTRIB_RAID0) {
2053 dprintf("\t\tMPB_ATTRIB_RAID0\n");
2054 not_supported ^= MPB_ATTRIB_RAID0;
2055 }
2056 if (not_supported & MPB_ATTRIB_RAID1) {
2057 dprintf("\t\tMPB_ATTRIB_RAID1\n");
2058 not_supported ^= MPB_ATTRIB_RAID1;
2059 }
2060 if (not_supported & MPB_ATTRIB_RAID10) {
2061 dprintf("\t\tMPB_ATTRIB_RAID10\n");
2062 not_supported ^= MPB_ATTRIB_RAID10;
2063 }
2064 if (not_supported & MPB_ATTRIB_RAID1E) {
2065 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
2066 not_supported ^= MPB_ATTRIB_RAID1E;
2067 }
2068 if (not_supported & MPB_ATTRIB_RAID5) {
2069 dprintf("\t\tMPB_ATTRIB_RAID5\n");
2070 not_supported ^= MPB_ATTRIB_RAID5;
2071 }
2072 if (not_supported & MPB_ATTRIB_RAIDCNG) {
2073 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
2074 not_supported ^= MPB_ATTRIB_RAIDCNG;
2075 }
2076 if (not_supported & MPB_ATTRIB_BBM) {
2077 dprintf("\t\tMPB_ATTRIB_BBM\n");
2078 not_supported ^= MPB_ATTRIB_BBM;
2079 }
2080 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
2081 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
2082 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
2083 }
2084 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
2085 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
2086 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
2087 }
2088 if (not_supported & MPB_ATTRIB_2TB_DISK) {
2089 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
2090 not_supported ^= MPB_ATTRIB_2TB_DISK;
2091 }
2092 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
2093 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
2094 not_supported ^= MPB_ATTRIB_NEVER_USE2;
2095 }
2096 if (not_supported & MPB_ATTRIB_NEVER_USE) {
2097 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
2098 not_supported ^= MPB_ATTRIB_NEVER_USE;
2099 }
2100
2101 if (not_supported)
1ade5cc1 2102 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
19482bcc
AK
2103
2104 ret_val = 0;
2105 }
2106
2107 return ret_val;
2108}
2109
a5d85af7 2110static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 2111
cdddbdbc
DW
2112static void examine_super_imsm(struct supertype *st, char *homehost)
2113{
2114 struct intel_super *super = st->sb;
949c47a0 2115 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
2116 char str[MAX_SIGNATURE_LENGTH];
2117 int i;
27fd6274
DW
2118 struct mdinfo info;
2119 char nbuf[64];
cdddbdbc 2120 __u32 sum;
14e8215b 2121 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 2122 struct dl *dl;
e48aed3c 2123 time_t creation_time;
27fd6274 2124
618f4e6d
XN
2125 strncpy(str, (char *)mpb->sig, MPB_SIG_LEN);
2126 str[MPB_SIG_LEN-1] = '\0';
cdddbdbc 2127 printf(" Magic : %s\n", str);
cdddbdbc 2128 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 2129 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
2130 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
2131 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
e48aed3c
AP
2132 creation_time = __le64_to_cpu(mpb->creation_time);
2133 printf(" Creation Time : %.24s\n",
2134 creation_time ? ctime(&creation_time) : "Unknown");
19482bcc
AK
2135 printf(" Attributes : ");
2136 if (imsm_check_attributes(mpb->attributes))
2137 printf("All supported\n");
2138 else
2139 printf("not supported\n");
a5d85af7 2140 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2141 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 2142 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
2143 sum = __le32_to_cpu(mpb->check_sum);
2144 printf(" Checksum : %08x %s\n", sum,
949c47a0 2145 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
f36a9ecd 2146 printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
cdddbdbc
DW
2147 printf(" Disks : %d\n", mpb->num_disks);
2148 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
ef5c214e
MK
2149 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index),
2150 super->disks->index, reserved, super->sector_size);
8d67477f 2151 if (get_imsm_bbm_log_size(super->bbm_log)) {
604b746f
JD
2152 struct bbm_log *log = super->bbm_log;
2153
2154 printf("\n");
2155 printf("Bad Block Management Log:\n");
2156 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
2157 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
2158 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
604b746f 2159 }
44470971
DW
2160 for (i = 0; i < mpb->num_raid_devs; i++) {
2161 struct mdinfo info;
2162 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2163
2164 super->current_vol = i;
a5d85af7 2165 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2166 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 2167 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 2168 }
cdddbdbc
DW
2169 for (i = 0; i < mpb->num_disks; i++) {
2170 if (i == super->disks->index)
2171 continue;
ef5c214e
MK
2172 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved,
2173 super->sector_size);
cdddbdbc 2174 }
94827db3 2175
0ec1f4e8
DW
2176 for (dl = super->disks; dl; dl = dl->next)
2177 if (dl->index == -1)
ef5c214e
MK
2178 print_imsm_disk(&dl->disk, -1, reserved,
2179 super->sector_size);
520e69e2
AK
2180
2181 examine_migr_rec_imsm(super);
cdddbdbc
DW
2182}
2183
061f2c6a 2184static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 2185{
27fd6274 2186 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
2187 struct mdinfo info;
2188 char nbuf[64];
2189
a5d85af7 2190 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
2191 fname_from_uuid(st, &info, nbuf, ':');
2192 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
2193}
2194
2195static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
2196{
2197 /* We just write a generic IMSM ARRAY entry */
2198 struct mdinfo info;
2199 char nbuf[64];
2200 char nbuf1[64];
2201 struct intel_super *super = st->sb;
2202 int i;
2203
2204 if (!super->anchor->num_raid_devs)
2205 return;
2206
a5d85af7 2207 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2208 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
2209 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2210 struct imsm_dev *dev = get_imsm_dev(super, i);
2211
2212 super->current_vol = i;
a5d85af7 2213 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2214 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 2215 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 2216 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 2217 }
cdddbdbc
DW
2218}
2219
9d84c8ea
DW
2220static void export_examine_super_imsm(struct supertype *st)
2221{
2222 struct intel_super *super = st->sb;
2223 struct imsm_super *mpb = super->anchor;
2224 struct mdinfo info;
2225 char nbuf[64];
2226
a5d85af7 2227 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
2228 fname_from_uuid(st, &info, nbuf, ':');
2229 printf("MD_METADATA=imsm\n");
2230 printf("MD_LEVEL=container\n");
2231 printf("MD_UUID=%s\n", nbuf+5);
2232 printf("MD_DEVICES=%u\n", mpb->num_disks);
e48aed3c 2233 printf("MD_CREATION_TIME=%llu\n", __le64_to_cpu(mpb->creation_time));
9d84c8ea
DW
2234}
2235
b771faef
BK
2236static void detail_super_imsm(struct supertype *st, char *homehost,
2237 char *subarray)
cdddbdbc 2238{
3ebe00a1
DW
2239 struct mdinfo info;
2240 char nbuf[64];
b771faef
BK
2241 struct intel_super *super = st->sb;
2242 int temp_vol = super->current_vol;
2243
2244 if (subarray)
2245 super->current_vol = strtoul(subarray, NULL, 10);
3ebe00a1 2246
a5d85af7 2247 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2248 fname_from_uuid(st, &info, nbuf, ':');
65884368 2249 printf("\n UUID : %s\n", nbuf + 5);
b771faef
BK
2250
2251 super->current_vol = temp_vol;
cdddbdbc
DW
2252}
2253
b771faef 2254static void brief_detail_super_imsm(struct supertype *st, char *subarray)
cdddbdbc 2255{
ff54de6e
N
2256 struct mdinfo info;
2257 char nbuf[64];
b771faef
BK
2258 struct intel_super *super = st->sb;
2259 int temp_vol = super->current_vol;
2260
2261 if (subarray)
2262 super->current_vol = strtoul(subarray, NULL, 10);
2263
a5d85af7 2264 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2265 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 2266 printf(" UUID=%s", nbuf + 5);
b771faef
BK
2267
2268 super->current_vol = temp_vol;
cdddbdbc 2269}
d665cc31 2270
6da53c0e
BK
2271static int imsm_read_serial(int fd, char *devname, __u8 *serial,
2272 size_t serial_buf_len);
d665cc31
DW
2273static void fd2devname(int fd, char *name);
2274
120dc887 2275static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 2276{
120dc887
LM
2277 /* dump an unsorted list of devices attached to AHCI Intel storage
2278 * controller, as well as non-connected ports
d665cc31
DW
2279 */
2280 int hba_len = strlen(hba_path) + 1;
2281 struct dirent *ent;
2282 DIR *dir;
2283 char *path = NULL;
2284 int err = 0;
2285 unsigned long port_mask = (1 << port_count) - 1;
2286
f21e18ca 2287 if (port_count > (int)sizeof(port_mask) * 8) {
ba728be7 2288 if (verbose > 0)
e7b84f9d 2289 pr_err("port_count %d out of range\n", port_count);
d665cc31
DW
2290 return 2;
2291 }
2292
2293 /* scroll through /sys/dev/block looking for devices attached to
2294 * this hba
2295 */
2296 dir = opendir("/sys/dev/block");
1a6dd6b9
PB
2297 if (!dir)
2298 return 1;
2299
2300 for (ent = readdir(dir); ent; ent = readdir(dir)) {
d665cc31
DW
2301 int fd;
2302 char model[64];
2303 char vendor[64];
2304 char buf[1024];
2305 int major, minor;
fcebeb77 2306 char device[PATH_MAX];
d665cc31
DW
2307 char *c;
2308 int port;
2309 int type;
2310
2311 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
2312 continue;
7c798f87 2313 path = devt_to_devpath(makedev(major, minor), 1, NULL);
d665cc31
DW
2314 if (!path)
2315 continue;
2316 if (!path_attached_to_hba(path, hba_path)) {
2317 free(path);
2318 path = NULL;
2319 continue;
2320 }
2321
fcebeb77
MT
2322 /* retrieve the scsi device */
2323 if (!devt_to_devpath(makedev(major, minor), 1, device)) {
ba728be7 2324 if (verbose > 0)
fcebeb77 2325 pr_err("failed to get device\n");
d665cc31
DW
2326 err = 2;
2327 break;
2328 }
fcebeb77 2329 if (devpath_to_char(device, "type", buf, sizeof(buf), 0)) {
d665cc31 2330 err = 2;
d665cc31
DW
2331 break;
2332 }
2333 type = strtoul(buf, NULL, 10);
2334
2335 /* if it's not a disk print the vendor and model */
2336 if (!(type == 0 || type == 7 || type == 14)) {
2337 vendor[0] = '\0';
2338 model[0] = '\0';
fcebeb77
MT
2339
2340 if (devpath_to_char(device, "vendor", buf,
2341 sizeof(buf), 0) == 0) {
d665cc31
DW
2342 strncpy(vendor, buf, sizeof(vendor));
2343 vendor[sizeof(vendor) - 1] = '\0';
2344 c = (char *) &vendor[sizeof(vendor) - 1];
2345 while (isspace(*c) || *c == '\0')
2346 *c-- = '\0';
2347
2348 }
fcebeb77
MT
2349
2350 if (devpath_to_char(device, "model", buf,
2351 sizeof(buf), 0) == 0) {
d665cc31
DW
2352 strncpy(model, buf, sizeof(model));
2353 model[sizeof(model) - 1] = '\0';
2354 c = (char *) &model[sizeof(model) - 1];
2355 while (isspace(*c) || *c == '\0')
2356 *c-- = '\0';
2357 }
2358
2359 if (vendor[0] && model[0])
2360 sprintf(buf, "%.64s %.64s", vendor, model);
2361 else
2362 switch (type) { /* numbers from hald/linux/device.c */
2363 case 1: sprintf(buf, "tape"); break;
2364 case 2: sprintf(buf, "printer"); break;
2365 case 3: sprintf(buf, "processor"); break;
2366 case 4:
2367 case 5: sprintf(buf, "cdrom"); break;
2368 case 6: sprintf(buf, "scanner"); break;
2369 case 8: sprintf(buf, "media_changer"); break;
2370 case 9: sprintf(buf, "comm"); break;
2371 case 12: sprintf(buf, "raid"); break;
2372 default: sprintf(buf, "unknown");
2373 }
2374 } else
2375 buf[0] = '\0';
d665cc31
DW
2376
2377 /* chop device path to 'host%d' and calculate the port number */
2378 c = strchr(&path[hba_len], '/');
4e5e717d 2379 if (!c) {
ba728be7 2380 if (verbose > 0)
e7b84f9d 2381 pr_err("%s - invalid path name\n", path + hba_len);
4e5e717d
AW
2382 err = 2;
2383 break;
2384 }
d665cc31 2385 *c = '\0';
0858eccf
AP
2386 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
2387 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
d665cc31
DW
2388 port -= host_base;
2389 else {
ba728be7 2390 if (verbose > 0) {
d665cc31 2391 *c = '/'; /* repair the full string */
e7b84f9d 2392 pr_err("failed to determine port number for %s\n",
d665cc31
DW
2393 path);
2394 }
2395 err = 2;
2396 break;
2397 }
2398
2399 /* mark this port as used */
2400 port_mask &= ~(1 << port);
2401
2402 /* print out the device information */
2403 if (buf[0]) {
2404 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
2405 continue;
2406 }
2407
2408 fd = dev_open(ent->d_name, O_RDONLY);
2409 if (fd < 0)
2410 printf(" Port%d : - disk info unavailable -\n", port);
2411 else {
2412 fd2devname(fd, buf);
2413 printf(" Port%d : %s", port, buf);
6da53c0e
BK
2414 if (imsm_read_serial(fd, NULL, (__u8 *)buf,
2415 sizeof(buf)) == 0)
2416 printf(" (%s)\n", buf);
d665cc31 2417 else
664d5325 2418 printf(" ()\n");
4dab422a 2419 close(fd);
d665cc31 2420 }
d665cc31
DW
2421 free(path);
2422 path = NULL;
2423 }
2424 if (path)
2425 free(path);
2426 if (dir)
2427 closedir(dir);
2428 if (err == 0) {
2429 int i;
2430
2431 for (i = 0; i < port_count; i++)
2432 if (port_mask & (1 << i))
2433 printf(" Port%d : - no device attached -\n", i);
2434 }
2435
2436 return err;
2437}
2438
6da53c0e 2439static int print_nvme_info(struct sys_dev *hba)
60f0f54d
PB
2440{
2441 struct dirent *ent;
2442 DIR *dir;
60f0f54d 2443
6da53c0e 2444 dir = opendir("/sys/block/");
b9135011 2445 if (!dir)
b5eece69 2446 return 1;
b9135011
JS
2447
2448 for (ent = readdir(dir); ent; ent = readdir(dir)) {
8662f92d
MT
2449 char ns_path[PATH_MAX];
2450 char cntrl_path[PATH_MAX];
2451 char buf[PATH_MAX];
2452 int fd = -1;
60f0f54d 2453
8662f92d
MT
2454 if (!strstr(ent->d_name, "nvme"))
2455 goto skip;
d835518b 2456
8662f92d
MT
2457 fd = open_dev(ent->d_name);
2458 if (fd < 0)
2459 goto skip;
d835518b 2460
8662f92d
MT
2461 if (!diskfd_to_devpath(fd, 0, ns_path) ||
2462 !diskfd_to_devpath(fd, 1, cntrl_path))
2463 goto skip;
2464
2465 if (!path_attached_to_hba(cntrl_path, hba->path))
2466 goto skip;
2467
2468 if (!imsm_is_nvme_namespace_supported(fd, 0))
2469 goto skip;
2470
2471 fd2devname(fd, buf);
2472 if (hba->type == SYS_DEV_VMD)
2473 printf(" NVMe under VMD : %s", buf);
2474 else if (hba->type == SYS_DEV_NVME)
2475 printf(" NVMe Device : %s", buf);
2476
2477 if (!imsm_read_serial(fd, NULL, (__u8 *)buf,
2478 sizeof(buf)))
2479 printf(" (%s)\n", buf);
2480 else
2481 printf("()\n");
2482
2483skip:
2484 if (fd > -1)
d835518b 2485 close(fd);
60f0f54d
PB
2486 }
2487
b9135011 2488 closedir(dir);
b5eece69 2489 return 0;
60f0f54d
PB
2490}
2491
120dc887
LM
2492static void print_found_intel_controllers(struct sys_dev *elem)
2493{
2494 for (; elem; elem = elem->next) {
e7b84f9d 2495 pr_err("found Intel(R) ");
120dc887
LM
2496 if (elem->type == SYS_DEV_SATA)
2497 fprintf(stderr, "SATA ");
155cbb4c
LM
2498 else if (elem->type == SYS_DEV_SAS)
2499 fprintf(stderr, "SAS ");
0858eccf
AP
2500 else if (elem->type == SYS_DEV_NVME)
2501 fprintf(stderr, "NVMe ");
60f0f54d
PB
2502
2503 if (elem->type == SYS_DEV_VMD)
2504 fprintf(stderr, "VMD domain");
2505 else
2506 fprintf(stderr, "RAID controller");
2507
120dc887
LM
2508 if (elem->pci_id)
2509 fprintf(stderr, " at %s", elem->pci_id);
2510 fprintf(stderr, ".\n");
2511 }
2512 fflush(stderr);
2513}
2514
120dc887
LM
2515static int ahci_get_port_count(const char *hba_path, int *port_count)
2516{
2517 struct dirent *ent;
2518 DIR *dir;
2519 int host_base = -1;
2520
2521 *port_count = 0;
2522 if ((dir = opendir(hba_path)) == NULL)
2523 return -1;
2524
2525 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2526 int host;
2527
0858eccf
AP
2528 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
2529 ((sscanf(ent->d_name, "host%d", &host) != 1)))
120dc887
LM
2530 continue;
2531 if (*port_count == 0)
2532 host_base = host;
2533 else if (host < host_base)
2534 host_base = host;
2535
2536 if (host + 1 > *port_count + host_base)
2537 *port_count = host + 1 - host_base;
2538 }
2539 closedir(dir);
2540 return host_base;
2541}
2542
a891a3c2
LM
2543static void print_imsm_capability(const struct imsm_orom *orom)
2544{
0858eccf
AP
2545 printf(" Platform : Intel(R) ");
2546 if (orom->capabilities == 0 && orom->driver_features == 0)
2547 printf("Matrix Storage Manager\n");
ab0c6bb9
AP
2548 else if (imsm_orom_is_enterprise(orom) && orom->major_ver >= 6)
2549 printf("Virtual RAID on CPU\n");
0858eccf
AP
2550 else
2551 printf("Rapid Storage Technology%s\n",
2552 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
2553 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2554 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
2555 orom->minor_ver, orom->hotfix_ver, orom->build);
a891a3c2
LM
2556 printf(" RAID Levels :%s%s%s%s%s\n",
2557 imsm_orom_has_raid0(orom) ? " raid0" : "",
2558 imsm_orom_has_raid1(orom) ? " raid1" : "",
2559 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
2560 imsm_orom_has_raid10(orom) ? " raid10" : "",
2561 imsm_orom_has_raid5(orom) ? " raid5" : "");
2562 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2563 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
2564 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
2565 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
2566 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
2567 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
2568 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
2569 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
2570 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
2571 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
2572 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
2573 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
2574 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
2575 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
2576 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
2577 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
2578 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
29cd0821
CA
2579 printf(" 2TB volumes :%s supported\n",
2580 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
2581 printf(" 2TB disks :%s supported\n",
2582 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
0e7f69a8 2583 printf(" Max Disks : %d\n", orom->tds);
0858eccf
AP
2584 printf(" Max Volumes : %d per array, %d per %s\n",
2585 orom->vpa, orom->vphba,
2586 imsm_orom_is_nvme(orom) ? "platform" : "controller");
a891a3c2
LM
2587 return;
2588}
2589
e50cf220
MN
2590static void print_imsm_capability_export(const struct imsm_orom *orom)
2591{
2592 printf("MD_FIRMWARE_TYPE=imsm\n");
0858eccf
AP
2593 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2594 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2595 orom->hotfix_ver, orom->build);
e50cf220
MN
2596 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
2597 imsm_orom_has_raid0(orom) ? "raid0 " : "",
2598 imsm_orom_has_raid1(orom) ? "raid1 " : "",
2599 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
2600 imsm_orom_has_raid5(orom) ? "raid10 " : "",
2601 imsm_orom_has_raid10(orom) ? "raid5 " : "");
2602 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2603 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2604 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2605 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2606 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2607 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2608 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2609 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2610 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2611 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2612 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2613 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2614 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2615 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2616 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2617 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2618 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2619 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2620 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2621 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2622 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2623 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2624}
2625
9eafa1de 2626static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
d665cc31
DW
2627{
2628 /* There are two components to imsm platform support, the ahci SATA
2629 * controller and the option-rom. To find the SATA controller we
2630 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2631 * controller with the Intel vendor id is present. This approach
2632 * allows mdadm to leverage the kernel's ahci detection logic, with the
2633 * caveat that if ahci.ko is not loaded mdadm will not be able to
2634 * detect platform raid capabilities. The option-rom resides in a
2635 * platform "Adapter ROM". We scan for its signature to retrieve the
2636 * platform capabilities. If raid support is disabled in the BIOS the
2637 * option-rom capability structure will not be available.
2638 */
d665cc31 2639 struct sys_dev *list, *hba;
d665cc31
DW
2640 int host_base = 0;
2641 int port_count = 0;
9eafa1de 2642 int result=1;
d665cc31 2643
5615172f 2644 if (enumerate_only) {
a891a3c2 2645 if (check_env("IMSM_NO_PLATFORM"))
5615172f 2646 return 0;
a891a3c2
LM
2647 list = find_intel_devices();
2648 if (!list)
2649 return 2;
2650 for (hba = list; hba; hba = hba->next) {
6b781d33
AP
2651 if (find_imsm_capability(hba)) {
2652 result = 0;
a891a3c2
LM
2653 break;
2654 }
9eafa1de 2655 else
6b781d33 2656 result = 2;
a891a3c2 2657 }
a891a3c2 2658 return result;
5615172f
DW
2659 }
2660
155cbb4c
LM
2661 list = find_intel_devices();
2662 if (!list) {
ba728be7 2663 if (verbose > 0)
7a862a02 2664 pr_err("no active Intel(R) RAID controller found.\n");
d665cc31 2665 return 2;
ba728be7 2666 } else if (verbose > 0)
155cbb4c 2667 print_found_intel_controllers(list);
d665cc31 2668
a891a3c2 2669 for (hba = list; hba; hba = hba->next) {
0858eccf 2670 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
9eafa1de 2671 continue;
0858eccf 2672 if (!find_imsm_capability(hba)) {
60f0f54d 2673 char buf[PATH_MAX];
e7b84f9d 2674 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
60f0f54d
PB
2675 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2676 get_sys_dev_type(hba->type));
0858eccf
AP
2677 continue;
2678 }
2679 result = 0;
2680 }
2681
2682 if (controller_path && result == 1) {
2683 pr_err("no active Intel(R) RAID controller found under %s\n",
2684 controller_path);
2685 return result;
2686 }
2687
5e1d6128 2688 const struct orom_entry *entry;
0858eccf 2689
5e1d6128 2690 for (entry = orom_entries; entry; entry = entry->next) {
60f0f54d 2691 if (entry->type == SYS_DEV_VMD) {
07cb1e57 2692 print_imsm_capability(&entry->orom);
32716c51
PB
2693 printf(" 3rd party NVMe :%s supported\n",
2694 imsm_orom_has_tpv_support(&entry->orom)?"":" not");
60f0f54d
PB
2695 for (hba = list; hba; hba = hba->next) {
2696 if (hba->type == SYS_DEV_VMD) {
2697 char buf[PATH_MAX];
60f0f54d
PB
2698 printf(" I/O Controller : %s (%s)\n",
2699 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
6da53c0e 2700 if (print_nvme_info(hba)) {
b5eece69
PB
2701 if (verbose > 0)
2702 pr_err("failed to get devices attached to VMD domain.\n");
2703 result |= 2;
2704 }
60f0f54d
PB
2705 }
2706 }
07cb1e57 2707 printf("\n");
60f0f54d
PB
2708 continue;
2709 }
0858eccf 2710
60f0f54d
PB
2711 print_imsm_capability(&entry->orom);
2712 if (entry->type == SYS_DEV_NVME) {
0858eccf
AP
2713 for (hba = list; hba; hba = hba->next) {
2714 if (hba->type == SYS_DEV_NVME)
6da53c0e 2715 print_nvme_info(hba);
0858eccf 2716 }
60f0f54d 2717 printf("\n");
0858eccf
AP
2718 continue;
2719 }
2720
2721 struct devid_list *devid;
5e1d6128 2722 for (devid = entry->devid_list; devid; devid = devid->next) {
0858eccf
AP
2723 hba = device_by_id(devid->devid);
2724 if (!hba)
2725 continue;
2726
9eafa1de
MN
2727 printf(" I/O Controller : %s (%s)\n",
2728 hba->path, get_sys_dev_type(hba->type));
2729 if (hba->type == SYS_DEV_SATA) {
2730 host_base = ahci_get_port_count(hba->path, &port_count);
2731 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2732 if (verbose > 0)
7a862a02 2733 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
9eafa1de
MN
2734 result |= 2;
2735 }
120dc887
LM
2736 }
2737 }
0858eccf 2738 printf("\n");
d665cc31 2739 }
155cbb4c 2740
120dc887 2741 return result;
d665cc31 2742}
e50cf220 2743
9eafa1de 2744static int export_detail_platform_imsm(int verbose, char *controller_path)
e50cf220 2745{
e50cf220
MN
2746 struct sys_dev *list, *hba;
2747 int result=1;
2748
2749 list = find_intel_devices();
2750 if (!list) {
2751 if (verbose > 0)
2752 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2753 result = 2;
e50cf220
MN
2754 return result;
2755 }
2756
2757 for (hba = list; hba; hba = hba->next) {
9eafa1de
MN
2758 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2759 continue;
60f0f54d
PB
2760 if (!find_imsm_capability(hba) && verbose > 0) {
2761 char buf[PATH_MAX];
2762 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2763 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2764 }
0858eccf 2765 else
e50cf220 2766 result = 0;
e50cf220
MN
2767 }
2768
5e1d6128 2769 const struct orom_entry *entry;
0858eccf 2770
60f0f54d
PB
2771 for (entry = orom_entries; entry; entry = entry->next) {
2772 if (entry->type == SYS_DEV_VMD) {
2773 for (hba = list; hba; hba = hba->next)
2774 print_imsm_capability_export(&entry->orom);
2775 continue;
2776 }
5e1d6128 2777 print_imsm_capability_export(&entry->orom);
60f0f54d 2778 }
0858eccf 2779
e50cf220
MN
2780 return result;
2781}
2782
cdddbdbc
DW
2783static int match_home_imsm(struct supertype *st, char *homehost)
2784{
5115ca67
DW
2785 /* the imsm metadata format does not specify any host
2786 * identification information. We return -1 since we can never
2787 * confirm nor deny whether a given array is "meant" for this
148acb7b 2788 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
2789 * exclude member disks that do not belong, and we rely on
2790 * mdadm.conf to specify the arrays that should be assembled.
2791 * Auto-assembly may still pick up "foreign" arrays.
2792 */
cdddbdbc 2793
9362c1c8 2794 return -1;
cdddbdbc
DW
2795}
2796
2797static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2798{
51006d85
N
2799 /* The uuid returned here is used for:
2800 * uuid to put into bitmap file (Create, Grow)
2801 * uuid for backup header when saving critical section (Grow)
2802 * comparing uuids when re-adding a device into an array
2803 * In these cases the uuid required is that of the data-array,
2804 * not the device-set.
2805 * uuid to recognise same set when adding a missing device back
2806 * to an array. This is a uuid for the device-set.
1011e834 2807 *
51006d85
N
2808 * For each of these we can make do with a truncated
2809 * or hashed uuid rather than the original, as long as
2810 * everyone agrees.
2811 * In each case the uuid required is that of the data-array,
2812 * not the device-set.
43dad3d6 2813 */
51006d85
N
2814 /* imsm does not track uuid's so we synthesis one using sha1 on
2815 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 2816 * - the orig_family_num of the container
51006d85
N
2817 * - the index number of the volume
2818 * - the 'serial' number of the volume.
2819 * Hopefully these are all constant.
2820 */
2821 struct intel_super *super = st->sb;
43dad3d6 2822
51006d85
N
2823 char buf[20];
2824 struct sha1_ctx ctx;
2825 struct imsm_dev *dev = NULL;
148acb7b 2826 __u32 family_num;
51006d85 2827
148acb7b
DW
2828 /* some mdadm versions failed to set ->orig_family_num, in which
2829 * case fall back to ->family_num. orig_family_num will be
2830 * fixed up with the first metadata update.
2831 */
2832 family_num = super->anchor->orig_family_num;
2833 if (family_num == 0)
2834 family_num = super->anchor->family_num;
51006d85 2835 sha1_init_ctx(&ctx);
92bd8f8d 2836 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 2837 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
2838 if (super->current_vol >= 0)
2839 dev = get_imsm_dev(super, super->current_vol);
2840 if (dev) {
2841 __u32 vol = super->current_vol;
2842 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2843 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2844 }
2845 sha1_finish_ctx(&ctx, buf);
2846 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
2847}
2848
0d481d37 2849#if 0
4f5bc454
DW
2850static void
2851get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 2852{
cdddbdbc
DW
2853 __u8 *v = get_imsm_version(mpb);
2854 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2855 char major[] = { 0, 0, 0 };
2856 char minor[] = { 0 ,0, 0 };
2857 char patch[] = { 0, 0, 0 };
2858 char *ver_parse[] = { major, minor, patch };
2859 int i, j;
2860
2861 i = j = 0;
2862 while (*v != '\0' && v < end) {
2863 if (*v != '.' && j < 2)
2864 ver_parse[i][j++] = *v;
2865 else {
2866 i++;
2867 j = 0;
2868 }
2869 v++;
2870 }
2871
4f5bc454
DW
2872 *m = strtol(minor, NULL, 0);
2873 *p = strtol(patch, NULL, 0);
2874}
0d481d37 2875#endif
4f5bc454 2876
1e5c6983
DW
2877static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2878{
2879 /* migr_strip_size when repairing or initializing parity */
238c0a71 2880 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2881 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2882
2883 switch (get_imsm_raid_level(map)) {
2884 case 5:
2885 case 10:
2886 return chunk;
2887 default:
2888 return 128*1024 >> 9;
2889 }
2890}
2891
2892static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2893{
2894 /* migr_strip_size when rebuilding a degraded disk, no idea why
2895 * this is different than migr_strip_size_resync(), but it's good
2896 * to be compatible
2897 */
238c0a71 2898 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2899 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2900
2901 switch (get_imsm_raid_level(map)) {
2902 case 1:
2903 case 10:
2904 if (map->num_members % map->num_domains == 0)
2905 return 128*1024 >> 9;
2906 else
2907 return chunk;
2908 case 5:
2909 return max((__u32) 64*1024 >> 9, chunk);
2910 default:
2911 return 128*1024 >> 9;
2912 }
2913}
2914
2915static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2916{
238c0a71
AK
2917 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2918 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2919 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2920 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2921
2922 return max((__u32) 1, hi_chunk / lo_chunk);
2923}
2924
2925static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2926{
238c0a71 2927 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2928 int level = get_imsm_raid_level(lo);
2929
2930 if (level == 1 || level == 10) {
238c0a71 2931 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2932
2933 return hi->num_domains;
2934 } else
2935 return num_stripes_per_unit_resync(dev);
2936}
2937
44490938
MD
2938static unsigned long long calc_component_size(struct imsm_map *map,
2939 struct imsm_dev *dev)
2940{
2941 unsigned long long component_size;
2942 unsigned long long dev_size = imsm_dev_size(dev);
a4f7290c 2943 long long calc_dev_size = 0;
44490938
MD
2944 unsigned int member_disks = imsm_num_data_members(map);
2945
2946 if (member_disks == 0)
2947 return 0;
2948
2949 component_size = per_dev_array_size(map);
2950 calc_dev_size = component_size * member_disks;
2951
2952 /* Component size is rounded to 1MB so difference between size from
2953 * metadata and size calculated from num_data_stripes equals up to
2954 * 2048 blocks per each device. If the difference is higher it means
2955 * that array size was expanded and num_data_stripes was not updated.
2956 */
a4f7290c 2957 if (llabs(calc_dev_size - (long long)dev_size) >
44490938
MD
2958 (1 << SECT_PER_MB_SHIFT) * member_disks) {
2959 component_size = dev_size / member_disks;
2960 dprintf("Invalid num_data_stripes in metadata; expected=%llu, found=%llu\n",
2961 component_size / map->blocks_per_strip,
2962 num_data_stripes(map));
2963 }
2964
2965 return component_size;
2966}
2967
1e5c6983
DW
2968static __u32 parity_segment_depth(struct imsm_dev *dev)
2969{
238c0a71 2970 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2971 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2972
2973 switch(get_imsm_raid_level(map)) {
2974 case 1:
2975 case 10:
2976 return chunk * map->num_domains;
2977 case 5:
2978 return chunk * map->num_members;
2979 default:
2980 return chunk;
2981 }
2982}
2983
2984static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2985{
238c0a71 2986 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2987 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2988 __u32 strip = block / chunk;
2989
2990 switch (get_imsm_raid_level(map)) {
2991 case 1:
2992 case 10: {
2993 __u32 vol_strip = (strip * map->num_domains) + 1;
2994 __u32 vol_stripe = vol_strip / map->num_members;
2995
2996 return vol_stripe * chunk + block % chunk;
2997 } case 5: {
2998 __u32 stripe = strip / (map->num_members - 1);
2999
3000 return stripe * chunk + block % chunk;
3001 }
3002 default:
3003 return 0;
3004 }
3005}
3006
c47b0ff6
AK
3007static __u64 blocks_per_migr_unit(struct intel_super *super,
3008 struct imsm_dev *dev)
1e5c6983
DW
3009{
3010 /* calculate the conversion factor between per member 'blocks'
3011 * (md/{resync,rebuild}_start) and imsm migration units, return
3012 * 0 for the 'not migrating' and 'unsupported migration' cases
3013 */
3014 if (!dev->vol.migr_state)
3015 return 0;
3016
3017 switch (migr_type(dev)) {
c47b0ff6
AK
3018 case MIGR_GEN_MIGR: {
3019 struct migr_record *migr_rec = super->migr_rec;
3020 return __le32_to_cpu(migr_rec->blocks_per_unit);
3021 }
1e5c6983
DW
3022 case MIGR_VERIFY:
3023 case MIGR_REPAIR:
3024 case MIGR_INIT: {
238c0a71 3025 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
3026 __u32 stripes_per_unit;
3027 __u32 blocks_per_unit;
3028 __u32 parity_depth;
3029 __u32 migr_chunk;
3030 __u32 block_map;
3031 __u32 block_rel;
3032 __u32 segment;
3033 __u32 stripe;
3034 __u8 disks;
3035
3036 /* yes, this is really the translation of migr_units to
3037 * per-member blocks in the 'resync' case
3038 */
3039 stripes_per_unit = num_stripes_per_unit_resync(dev);
3040 migr_chunk = migr_strip_blocks_resync(dev);
9529d343 3041 disks = imsm_num_data_members(map);
1e5c6983 3042 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 3043 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
3044 segment = blocks_per_unit / stripe;
3045 block_rel = blocks_per_unit - segment * stripe;
3046 parity_depth = parity_segment_depth(dev);
3047 block_map = map_migr_block(dev, block_rel);
3048 return block_map + parity_depth * segment;
3049 }
3050 case MIGR_REBUILD: {
3051 __u32 stripes_per_unit;
3052 __u32 migr_chunk;
3053
3054 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
3055 migr_chunk = migr_strip_blocks_rebuild(dev);
3056 return migr_chunk * stripes_per_unit;
3057 }
1e5c6983
DW
3058 case MIGR_STATE_CHANGE:
3059 default:
3060 return 0;
3061 }
3062}
3063
c2c087e6
DW
3064static int imsm_level_to_layout(int level)
3065{
3066 switch (level) {
3067 case 0:
3068 case 1:
3069 return 0;
3070 case 5:
3071 case 6:
a380c027 3072 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 3073 case 10:
c92a2527 3074 return 0x102;
c2c087e6 3075 }
a18a888e 3076 return UnSet;
c2c087e6
DW
3077}
3078
8e59f3d8
AK
3079/*******************************************************************************
3080 * Function: read_imsm_migr_rec
3081 * Description: Function reads imsm migration record from last sector of disk
3082 * Parameters:
3083 * fd : disk descriptor
3084 * super : metadata info
3085 * Returns:
3086 * 0 : success,
3087 * -1 : fail
3088 ******************************************************************************/
3089static int read_imsm_migr_rec(int fd, struct intel_super *super)
3090{
3091 int ret_val = -1;
de44e46f 3092 unsigned int sector_size = super->sector_size;
8e59f3d8
AK
3093 unsigned long long dsize;
3094
3095 get_dev_size(fd, NULL, &dsize);
de44e46f
PB
3096 if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
3097 SEEK_SET) < 0) {
e7b84f9d
N
3098 pr_err("Cannot seek to anchor block: %s\n",
3099 strerror(errno));
8e59f3d8
AK
3100 goto out;
3101 }
466070ad 3102 if ((unsigned int)read(fd, super->migr_rec_buf,
de44e46f
PB
3103 MIGR_REC_BUF_SECTORS*sector_size) !=
3104 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
3105 pr_err("Cannot read migr record block: %s\n",
3106 strerror(errno));
8e59f3d8
AK
3107 goto out;
3108 }
3109 ret_val = 0;
de44e46f
PB
3110 if (sector_size == 4096)
3111 convert_from_4k_imsm_migr_rec(super);
8e59f3d8
AK
3112
3113out:
3114 return ret_val;
3115}
3116
3136abe5
AK
3117static struct imsm_dev *imsm_get_device_during_migration(
3118 struct intel_super *super)
3119{
3120
3121 struct intel_dev *dv;
3122
3123 for (dv = super->devlist; dv; dv = dv->next) {
3124 if (is_gen_migration(dv->dev))
3125 return dv->dev;
3126 }
3127 return NULL;
3128}
3129
8e59f3d8
AK
3130/*******************************************************************************
3131 * Function: load_imsm_migr_rec
3132 * Description: Function reads imsm migration record (it is stored at the last
3133 * sector of disk)
3134 * Parameters:
3135 * super : imsm internal array info
8e59f3d8
AK
3136 * Returns:
3137 * 0 : success
3138 * -1 : fail
4c965cc9 3139 * -2 : no migration in progress
8e59f3d8 3140 ******************************************************************************/
2f86fda3 3141static int load_imsm_migr_rec(struct intel_super *super)
8e59f3d8 3142{
594dc1b8 3143 struct dl *dl;
8e59f3d8
AK
3144 char nm[30];
3145 int retval = -1;
3146 int fd = -1;
3136abe5 3147 struct imsm_dev *dev;
594dc1b8 3148 struct imsm_map *map;
b4ab44d8 3149 int slot = -1;
2f86fda3 3150 int keep_fd = 1;
3136abe5
AK
3151
3152 /* find map under migration */
3153 dev = imsm_get_device_during_migration(super);
3154 /* nothing to load,no migration in progress?
3155 */
3156 if (dev == NULL)
4c965cc9 3157 return -2;
8e59f3d8 3158
2f86fda3
MT
3159 map = get_imsm_map(dev, MAP_0);
3160 if (!map)
3161 return -1;
3136abe5 3162
2f86fda3
MT
3163 for (dl = super->disks; dl; dl = dl->next) {
3164 /* skip spare and failed disks
3165 */
3166 if (dl->index < 0)
3167 continue;
3168 /* read only from one of the first two slots
3169 */
3170 slot = get_imsm_disk_slot(map, dl->index);
3171 if (slot > 1 || slot < 0)
3172 continue;
3173
3174 if (dl->fd < 0) {
8e59f3d8
AK
3175 sprintf(nm, "%d:%d", dl->major, dl->minor);
3176 fd = dev_open(nm, O_RDONLY);
2f86fda3
MT
3177 if (fd >= 0) {
3178 keep_fd = 0;
8e59f3d8 3179 break;
2f86fda3
MT
3180 }
3181 } else {
3182 fd = dl->fd;
3183 break;
8e59f3d8
AK
3184 }
3185 }
2f86fda3 3186
8e59f3d8 3187 if (fd < 0)
2f86fda3 3188 return retval;
8e59f3d8 3189 retval = read_imsm_migr_rec(fd, super);
2f86fda3 3190 if (!keep_fd)
8e59f3d8 3191 close(fd);
2f86fda3 3192
8e59f3d8
AK
3193 return retval;
3194}
3195
c17608ea
AK
3196/*******************************************************************************
3197 * function: imsm_create_metadata_checkpoint_update
3198 * Description: It creates update for checkpoint change.
3199 * Parameters:
3200 * super : imsm internal array info
3201 * u : pointer to prepared update
3202 * Returns:
3203 * Uptate length.
3204 * If length is equal to 0, input pointer u contains no update
3205 ******************************************************************************/
3206static int imsm_create_metadata_checkpoint_update(
3207 struct intel_super *super,
3208 struct imsm_update_general_migration_checkpoint **u)
3209{
3210
3211 int update_memory_size = 0;
3212
1ade5cc1 3213 dprintf("(enter)\n");
c17608ea
AK
3214
3215 if (u == NULL)
3216 return 0;
3217 *u = NULL;
3218
3219 /* size of all update data without anchor */
3220 update_memory_size =
3221 sizeof(struct imsm_update_general_migration_checkpoint);
3222
503975b9 3223 *u = xcalloc(1, update_memory_size);
c17608ea 3224 if (*u == NULL) {
1ade5cc1 3225 dprintf("error: cannot get memory\n");
c17608ea
AK
3226 return 0;
3227 }
3228 (*u)->type = update_general_migration_checkpoint;
9f421827 3229 (*u)->curr_migr_unit = current_migr_unit(super->migr_rec);
83b3de77 3230 dprintf("prepared for %llu\n", (unsigned long long)(*u)->curr_migr_unit);
c17608ea
AK
3231
3232 return update_memory_size;
3233}
3234
c17608ea
AK
3235static void imsm_update_metadata_locally(struct supertype *st,
3236 void *buf, int len);
3237
687629c2
AK
3238/*******************************************************************************
3239 * Function: write_imsm_migr_rec
3240 * Description: Function writes imsm migration record
3241 * (at the last sector of disk)
3242 * Parameters:
3243 * super : imsm internal array info
3244 * Returns:
3245 * 0 : success
3246 * -1 : if fail
3247 ******************************************************************************/
3248static int write_imsm_migr_rec(struct supertype *st)
3249{
3250 struct intel_super *super = st->sb;
de44e46f 3251 unsigned int sector_size = super->sector_size;
687629c2 3252 unsigned long long dsize;
687629c2
AK
3253 int retval = -1;
3254 struct dl *sd;
c17608ea
AK
3255 int len;
3256 struct imsm_update_general_migration_checkpoint *u;
3136abe5 3257 struct imsm_dev *dev;
594dc1b8 3258 struct imsm_map *map;
3136abe5
AK
3259
3260 /* find map under migration */
3261 dev = imsm_get_device_during_migration(super);
3262 /* if no migration, write buffer anyway to clear migr_record
3263 * on disk based on first available device
3264 */
3265 if (dev == NULL)
3266 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
3267 super->current_vol);
3268
44bfe6df 3269 map = get_imsm_map(dev, MAP_0);
687629c2 3270
de44e46f
PB
3271 if (sector_size == 4096)
3272 convert_to_4k_imsm_migr_rec(super);
687629c2 3273 for (sd = super->disks ; sd ; sd = sd->next) {
b4ab44d8 3274 int slot = -1;
3136abe5
AK
3275
3276 /* skip failed and spare devices */
3277 if (sd->index < 0)
3278 continue;
687629c2 3279 /* write to 2 first slots only */
3136abe5
AK
3280 if (map)
3281 slot = get_imsm_disk_slot(map, sd->index);
089f9d79 3282 if (map == NULL || slot > 1 || slot < 0)
687629c2 3283 continue;
3136abe5 3284
2f86fda3
MT
3285 get_dev_size(sd->fd, NULL, &dsize);
3286 if (lseek64(sd->fd, dsize - (MIGR_REC_SECTOR_POSITION *
3287 sector_size),
de44e46f 3288 SEEK_SET) < 0) {
e7b84f9d
N
3289 pr_err("Cannot seek to anchor block: %s\n",
3290 strerror(errno));
687629c2
AK
3291 goto out;
3292 }
2f86fda3 3293 if ((unsigned int)write(sd->fd, super->migr_rec_buf,
de44e46f
PB
3294 MIGR_REC_BUF_SECTORS*sector_size) !=
3295 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
3296 pr_err("Cannot write migr record block: %s\n",
3297 strerror(errno));
687629c2
AK
3298 goto out;
3299 }
687629c2 3300 }
de44e46f
PB
3301 if (sector_size == 4096)
3302 convert_from_4k_imsm_migr_rec(super);
c17608ea
AK
3303 /* update checkpoint information in metadata */
3304 len = imsm_create_metadata_checkpoint_update(super, &u);
c17608ea
AK
3305 if (len <= 0) {
3306 dprintf("imsm: Cannot prepare update\n");
3307 goto out;
3308 }
3309 /* update metadata locally */
3310 imsm_update_metadata_locally(st, u, len);
3311 /* and possibly remotely */
3312 if (st->update_tail) {
3313 append_metadata_update(st, u, len);
3314 /* during reshape we do all work inside metadata handler
3315 * manage_reshape(), so metadata update has to be triggered
3316 * insida it
3317 */
3318 flush_metadata_updates(st);
3319 st->update_tail = &st->updates;
3320 } else
3321 free(u);
687629c2
AK
3322
3323 retval = 0;
3324 out:
687629c2
AK
3325 return retval;
3326}
3327
e2962bfc
AK
3328/* spare/missing disks activations are not allowe when
3329 * array/container performs reshape operation, because
3330 * all arrays in container works on the same disks set
3331 */
3332int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
3333{
3334 int rv = 0;
3335 struct intel_dev *i_dev;
3336 struct imsm_dev *dev;
3337
3338 /* check whole container
3339 */
3340 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
3341 dev = i_dev->dev;
3ad25638 3342 if (is_gen_migration(dev)) {
e2962bfc
AK
3343 /* No repair during any migration in container
3344 */
3345 rv = 1;
3346 break;
3347 }
3348 }
3349 return rv;
3350}
3e684231 3351static unsigned long long imsm_component_size_alignment_check(int level,
c41e00b2 3352 int chunk_size,
f36a9ecd 3353 unsigned int sector_size,
c41e00b2
AK
3354 unsigned long long component_size)
3355{
3e684231 3356 unsigned int component_size_alignment;
c41e00b2 3357
3e684231 3358 /* check component size alignment
c41e00b2 3359 */
3e684231 3360 component_size_alignment = component_size % (chunk_size/sector_size);
c41e00b2 3361
3e684231 3362 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alignment = %u\n",
c41e00b2 3363 level, chunk_size, component_size,
3e684231 3364 component_size_alignment);
c41e00b2 3365
3e684231
MZ
3366 if (component_size_alignment && (level != 1) && (level != UnSet)) {
3367 dprintf("imsm: reported component size aligned from %llu ",
c41e00b2 3368 component_size);
3e684231 3369 component_size -= component_size_alignment;
1ade5cc1 3370 dprintf_cont("to %llu (%i).\n",
3e684231 3371 component_size, component_size_alignment);
c41e00b2
AK
3372 }
3373
3374 return component_size;
3375}
e2962bfc 3376
fbc42556
JR
3377/*******************************************************************************
3378 * Function: get_bitmap_header_sector
3379 * Description: Returns the sector where the bitmap header is placed.
3380 * Parameters:
3381 * st : supertype information
3382 * dev_idx : index of the device with bitmap
3383 *
3384 * Returns:
3385 * The sector where the bitmap header is placed
3386 ******************************************************************************/
3387static unsigned long long get_bitmap_header_sector(struct intel_super *super,
3388 int dev_idx)
3389{
3390 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3391 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3392
3393 if (!super->sector_size) {
3394 dprintf("sector size is not set\n");
3395 return 0;
3396 }
3397
3398 return pba_of_lba0(map) + calc_component_size(map, dev) +
3399 (IMSM_BITMAP_HEADER_OFFSET / super->sector_size);
3400}
3401
3402/*******************************************************************************
3403 * Function: get_bitmap_sector
3404 * Description: Returns the sector where the bitmap is placed.
3405 * Parameters:
3406 * st : supertype information
3407 * dev_idx : index of the device with bitmap
3408 *
3409 * Returns:
3410 * The sector where the bitmap is placed
3411 ******************************************************************************/
3412static unsigned long long get_bitmap_sector(struct intel_super *super,
3413 int dev_idx)
3414{
3415 if (!super->sector_size) {
3416 dprintf("sector size is not set\n");
3417 return 0;
3418 }
3419
3420 return get_bitmap_header_sector(super, dev_idx) +
3421 (IMSM_BITMAP_HEADER_SIZE / super->sector_size);
3422}
3423
2432ce9b
AP
3424static unsigned long long get_ppl_sector(struct intel_super *super, int dev_idx)
3425{
3426 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3427 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3428
3429 return pba_of_lba0(map) +
3430 (num_data_stripes(map) * map->blocks_per_strip);
3431}
3432
a5d85af7 3433static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
3434{
3435 struct intel_super *super = st->sb;
c47b0ff6 3436 struct migr_record *migr_rec = super->migr_rec;
949c47a0 3437 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
238c0a71
AK
3438 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3439 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
b335e593 3440 struct imsm_map *map_to_analyse = map;
efb30e7f 3441 struct dl *dl;
a5d85af7 3442 int map_disks = info->array.raid_disks;
bf5a934a 3443
95eeceeb 3444 memset(info, 0, sizeof(*info));
b335e593
AK
3445 if (prev_map)
3446 map_to_analyse = prev_map;
3447
ca0748fa 3448 dl = super->current_disk;
9894ec0d 3449
bf5a934a 3450 info->container_member = super->current_vol;
cd0430a1 3451 info->array.raid_disks = map->num_members;
b335e593 3452 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
3453 info->array.layout = imsm_level_to_layout(info->array.level);
3454 info->array.md_minor = -1;
3455 info->array.ctime = 0;
3456 info->array.utime = 0;
b335e593
AK
3457 info->array.chunk_size =
3458 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2432ce9b 3459 info->array.state = !(dev->vol.dirty & RAIDVOL_DIRTY);
fcc2c9da 3460 info->custom_array_size = imsm_dev_size(dev);
3ad25638
AK
3461 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3462
3f510843 3463 if (is_gen_migration(dev)) {
3f83228a 3464 info->reshape_active = 1;
b335e593
AK
3465 info->new_level = get_imsm_raid_level(map);
3466 info->new_layout = imsm_level_to_layout(info->new_level);
3467 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 3468 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
3469 if (info->delta_disks) {
3470 /* this needs to be applied to every array
3471 * in the container.
3472 */
81219e70 3473 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 3474 }
3f83228a
N
3475 /* We shape information that we give to md might have to be
3476 * modify to cope with md's requirement for reshaping arrays.
3477 * For example, when reshaping a RAID0, md requires it to be
3478 * presented as a degraded RAID4.
3479 * Also if a RAID0 is migrating to a RAID5 we need to specify
3480 * the array as already being RAID5, but the 'before' layout
3481 * is a RAID4-like layout.
3482 */
3483 switch (info->array.level) {
3484 case 0:
3485 switch(info->new_level) {
3486 case 0:
3487 /* conversion is happening as RAID4 */
3488 info->array.level = 4;
3489 info->array.raid_disks += 1;
3490 break;
3491 case 5:
3492 /* conversion is happening as RAID5 */
3493 info->array.level = 5;
3494 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
3495 info->delta_disks -= 1;
3496 break;
3497 default:
3498 /* FIXME error message */
3499 info->array.level = UnSet;
3500 break;
3501 }
3502 break;
3503 }
b335e593
AK
3504 } else {
3505 info->new_level = UnSet;
3506 info->new_layout = UnSet;
3507 info->new_chunk = info->array.chunk_size;
3f83228a 3508 info->delta_disks = 0;
b335e593 3509 }
ca0748fa 3510
efb30e7f
DW
3511 if (dl) {
3512 info->disk.major = dl->major;
3513 info->disk.minor = dl->minor;
ca0748fa 3514 info->disk.number = dl->index;
656b6b5a
N
3515 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
3516 dl->index);
efb30e7f 3517 }
bf5a934a 3518
5551b113 3519 info->data_offset = pba_of_lba0(map_to_analyse);
44490938 3520 info->component_size = calc_component_size(map, dev);
3e684231 3521 info->component_size = imsm_component_size_alignment_check(
c41e00b2
AK
3522 info->array.level,
3523 info->array.chunk_size,
f36a9ecd 3524 super->sector_size,
c41e00b2 3525 info->component_size);
5e46202e 3526 info->bb.supported = 1;
139dae11 3527
301406c9 3528 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 3529 info->recovery_start = MaxSector;
bf5a934a 3530
c2462068
PB
3531 if (info->array.level == 5 &&
3532 (dev->rwh_policy == RWH_DISTRIBUTED ||
3533 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)) {
2432ce9b
AP
3534 info->consistency_policy = CONSISTENCY_POLICY_PPL;
3535 info->ppl_sector = get_ppl_sector(super, super->current_vol);
c2462068
PB
3536 if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
3537 info->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
3538 else
3539 info->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE)
3540 >> 9;
2432ce9b
AP
3541 } else if (info->array.level <= 0) {
3542 info->consistency_policy = CONSISTENCY_POLICY_NONE;
3543 } else {
fbc42556
JR
3544 if (dev->rwh_policy == RWH_BITMAP) {
3545 info->bitmap_offset = get_bitmap_sector(super, super->current_vol);
3546 info->consistency_policy = CONSISTENCY_POLICY_BITMAP;
3547 } else {
3548 info->consistency_policy = CONSISTENCY_POLICY_RESYNC;
3549 }
2432ce9b
AP
3550 }
3551
d2e6d5d6 3552 info->reshape_progress = 0;
b6796ce1 3553 info->resync_start = MaxSector;
b9172665 3554 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2432ce9b 3555 !(info->array.state & 1)) &&
b9172665 3556 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 3557 info->resync_start = 0;
b6796ce1
AK
3558 }
3559 if (dev->vol.migr_state) {
1e5c6983
DW
3560 switch (migr_type(dev)) {
3561 case MIGR_REPAIR:
3562 case MIGR_INIT: {
c47b0ff6
AK
3563 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3564 dev);
4036e7ee 3565 __u64 units = vol_curr_migr_unit(dev);
1e5c6983
DW
3566
3567 info->resync_start = blocks_per_unit * units;
3568 break;
3569 }
d2e6d5d6 3570 case MIGR_GEN_MIGR: {
c47b0ff6
AK
3571 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3572 dev);
9f421827 3573 __u64 units = current_migr_unit(migr_rec);
04fa9523 3574 int used_disks;
d2e6d5d6 3575
befb629b
AK
3576 if (__le32_to_cpu(migr_rec->ascending_migr) &&
3577 (units <
9f421827 3578 (get_num_migr_units(migr_rec)-1)) &&
befb629b
AK
3579 (super->migr_rec->rec_status ==
3580 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
3581 units++;
3582
d2e6d5d6 3583 info->reshape_progress = blocks_per_unit * units;
6289d1e0 3584
7a862a02 3585 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
19986c72
MB
3586 (unsigned long long)units,
3587 (unsigned long long)blocks_per_unit,
3588 info->reshape_progress);
75156c46 3589
9529d343 3590 used_disks = imsm_num_data_members(prev_map);
75156c46 3591 if (used_disks > 0) {
895ffd99 3592 info->custom_array_size = per_dev_array_size(map) *
75156c46 3593 used_disks;
75156c46 3594 }
d2e6d5d6 3595 }
1e5c6983
DW
3596 case MIGR_VERIFY:
3597 /* we could emulate the checkpointing of
3598 * 'sync_action=check' migrations, but for now
3599 * we just immediately complete them
3600 */
3601 case MIGR_REBUILD:
3602 /* this is handled by container_content_imsm() */
1e5c6983
DW
3603 case MIGR_STATE_CHANGE:
3604 /* FIXME handle other migrations */
3605 default:
3606 /* we are not dirty, so... */
3607 info->resync_start = MaxSector;
3608 }
b6796ce1 3609 }
301406c9
DW
3610
3611 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
3612 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 3613
f35f2525
N
3614 info->array.major_version = -1;
3615 info->array.minor_version = -2;
4dd2df09 3616 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
a67dd8cc 3617 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 3618 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
3619
3620 if (dmap) {
3621 int i, j;
3622 for (i=0; i<map_disks; i++) {
3623 dmap[i] = 0;
3624 if (i < info->array.raid_disks) {
3625 struct imsm_disk *dsk;
238c0a71 3626 j = get_imsm_disk_idx(dev, i, MAP_X);
a5d85af7
N
3627 dsk = get_imsm_disk(super, j);
3628 if (dsk && (dsk->status & CONFIGURED_DISK))
3629 dmap[i] = 1;
3630 }
3631 }
3632 }
81ac8b4d 3633}
bf5a934a 3634
3b451610
AK
3635static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
3636 int failed, int look_in_map);
3637
3638static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
3639 int look_in_map);
3640
3641static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
3642{
3643 if (is_gen_migration(dev)) {
3644 int failed;
3645 __u8 map_state;
3646 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
3647
3648 failed = imsm_count_failed(super, dev, MAP_1);
238c0a71 3649 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3b451610
AK
3650 if (map2->map_state != map_state) {
3651 map2->map_state = map_state;
3652 super->updates_pending++;
3653 }
3654 }
3655}
97b4d0e9
DW
3656
3657static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3658{
3659 struct dl *d;
3660
3661 for (d = super->missing; d; d = d->next)
3662 if (d->index == index)
3663 return &d->disk;
3664 return NULL;
3665}
3666
a5d85af7 3667static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
3668{
3669 struct intel_super *super = st->sb;
4f5bc454 3670 struct imsm_disk *disk;
a5d85af7 3671 int map_disks = info->array.raid_disks;
ab3cb6b3
N
3672 int max_enough = -1;
3673 int i;
3674 struct imsm_super *mpb;
4f5bc454 3675
bf5a934a 3676 if (super->current_vol >= 0) {
a5d85af7 3677 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
3678 return;
3679 }
95eeceeb 3680 memset(info, 0, sizeof(*info));
d23fe947
DW
3681
3682 /* Set raid_disks to zero so that Assemble will always pull in valid
3683 * spares
3684 */
3685 info->array.raid_disks = 0;
cdddbdbc
DW
3686 info->array.level = LEVEL_CONTAINER;
3687 info->array.layout = 0;
3688 info->array.md_minor = -1;
1011e834 3689 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
3690 info->array.utime = 0;
3691 info->array.chunk_size = 0;
3692
3693 info->disk.major = 0;
3694 info->disk.minor = 0;
cdddbdbc 3695 info->disk.raid_disk = -1;
c2c087e6 3696 info->reshape_active = 0;
f35f2525
N
3697 info->array.major_version = -1;
3698 info->array.minor_version = -2;
c2c087e6 3699 strcpy(info->text_version, "imsm");
a67dd8cc 3700 info->safe_mode_delay = 0;
c2c087e6
DW
3701 info->disk.number = -1;
3702 info->disk.state = 0;
c5afc314 3703 info->name[0] = 0;
921d9e16 3704 info->recovery_start = MaxSector;
3ad25638 3705 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
5e46202e 3706 info->bb.supported = 1;
c2c087e6 3707
97b4d0e9 3708 /* do we have the all the insync disks that we expect? */
ab3cb6b3 3709 mpb = super->anchor;
b7d81a38 3710 info->events = __le32_to_cpu(mpb->generation_num);
97b4d0e9 3711
ab3cb6b3
N
3712 for (i = 0; i < mpb->num_raid_devs; i++) {
3713 struct imsm_dev *dev = get_imsm_dev(super, i);
3714 int failed, enough, j, missing = 0;
3715 struct imsm_map *map;
3716 __u8 state;
97b4d0e9 3717
3b451610
AK
3718 failed = imsm_count_failed(super, dev, MAP_0);
3719 state = imsm_check_degraded(super, dev, failed, MAP_0);
238c0a71 3720 map = get_imsm_map(dev, MAP_0);
ab3cb6b3
N
3721
3722 /* any newly missing disks?
3723 * (catches single-degraded vs double-degraded)
3724 */
3725 for (j = 0; j < map->num_members; j++) {
238c0a71 3726 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ab3cb6b3
N
3727 __u32 idx = ord_to_idx(ord);
3728
20dc76d1
MT
3729 if (super->disks && super->disks->index == (int)idx)
3730 info->disk.raid_disk = j;
3731
ab3cb6b3
N
3732 if (!(ord & IMSM_ORD_REBUILD) &&
3733 get_imsm_missing(super, idx)) {
3734 missing = 1;
3735 break;
3736 }
97b4d0e9 3737 }
ab3cb6b3
N
3738
3739 if (state == IMSM_T_STATE_FAILED)
3740 enough = -1;
3741 else if (state == IMSM_T_STATE_DEGRADED &&
3742 (state != map->map_state || missing))
3743 enough = 0;
3744 else /* we're normal, or already degraded */
3745 enough = 1;
d2bde6d3
AK
3746 if (is_gen_migration(dev) && missing) {
3747 /* during general migration we need all disks
3748 * that process is running on.
3749 * No new missing disk is allowed.
3750 */
3751 max_enough = -1;
3752 enough = -1;
3753 /* no more checks necessary
3754 */
3755 break;
3756 }
ab3cb6b3
N
3757 /* in the missing/failed disk case check to see
3758 * if at least one array is runnable
3759 */
3760 max_enough = max(max_enough, enough);
3761 }
1ade5cc1 3762 dprintf("enough: %d\n", max_enough);
ab3cb6b3 3763 info->container_enough = max_enough;
97b4d0e9 3764
4a04ec6c 3765 if (super->disks) {
14e8215b
DW
3766 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3767
b9f594fe 3768 disk = &super->disks->disk;
5551b113 3769 info->data_offset = total_blocks(&super->disks->disk) - reserved;
14e8215b 3770 info->component_size = reserved;
25ed7e59 3771 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
3772 /* we don't change info->disk.raid_disk here because
3773 * this state will be finalized in mdmon after we have
3774 * found the 'most fresh' version of the metadata
3775 */
25ed7e59 3776 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2432ce9b
AP
3777 info->disk.state |= (is_spare(disk) || is_journal(disk)) ?
3778 0 : (1 << MD_DISK_SYNC);
cdddbdbc 3779 }
a575e2a7
DW
3780
3781 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3782 * ->compare_super may have updated the 'num_raid_devs' field for spares
3783 */
3784 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 3785 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
3786 else
3787 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
3788
3789 /* I don't know how to compute 'map' on imsm, so use safe default */
3790 if (map) {
3791 int i;
3792 for (i = 0; i < map_disks; i++)
3793 map[i] = 1;
3794 }
3795
cdddbdbc
DW
3796}
3797
5c4cd5da
AC
3798/* allocates memory and fills disk in mdinfo structure
3799 * for each disk in array */
3800struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3801{
594dc1b8 3802 struct mdinfo *mddev;
5c4cd5da
AC
3803 struct intel_super *super = st->sb;
3804 struct imsm_disk *disk;
3805 int count = 0;
3806 struct dl *dl;
3807 if (!super || !super->disks)
3808 return NULL;
3809 dl = super->disks;
503975b9 3810 mddev = xcalloc(1, sizeof(*mddev));
5c4cd5da
AC
3811 while (dl) {
3812 struct mdinfo *tmp;
3813 disk = &dl->disk;
503975b9 3814 tmp = xcalloc(1, sizeof(*tmp));
5c4cd5da
AC
3815 if (mddev->devs)
3816 tmp->next = mddev->devs;
3817 mddev->devs = tmp;
3818 tmp->disk.number = count++;
3819 tmp->disk.major = dl->major;
3820 tmp->disk.minor = dl->minor;
3821 tmp->disk.state = is_configured(disk) ?
3822 (1 << MD_DISK_ACTIVE) : 0;
3823 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3824 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3825 tmp->disk.raid_disk = -1;
3826 dl = dl->next;
3827 }
3828 return mddev;
3829}
3830
cdddbdbc
DW
3831static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3832 char *update, char *devname, int verbose,
3833 int uuid_set, char *homehost)
3834{
f352c545
DW
3835 /* For 'assemble' and 'force' we need to return non-zero if any
3836 * change was made. For others, the return value is ignored.
3837 * Update options are:
3838 * force-one : This device looks a bit old but needs to be included,
3839 * update age info appropriately.
3840 * assemble: clear any 'faulty' flag to allow this device to
3841 * be assembled.
3842 * force-array: Array is degraded but being forced, mark it clean
3843 * if that will be needed to assemble it.
3844 *
3845 * newdev: not used ????
3846 * grow: Array has gained a new device - this is currently for
3847 * linear only
3848 * resync: mark as dirty so a resync will happen.
3849 * name: update the name - preserving the homehost
6e46bf34 3850 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
3851 *
3852 * Following are not relevant for this imsm:
3853 * sparc2.2 : update from old dodgey metadata
3854 * super-minor: change the preferred_minor number
3855 * summaries: update redundant counters.
f352c545
DW
3856 * homehost: update the recorded homehost
3857 * _reshape_progress: record new reshape_progress position.
3858 */
6e46bf34
DW
3859 int rv = 1;
3860 struct intel_super *super = st->sb;
3861 struct imsm_super *mpb;
f352c545 3862
6e46bf34
DW
3863 /* we can only update container info */
3864 if (!super || super->current_vol >= 0 || !super->anchor)
3865 return 1;
3866
3867 mpb = super->anchor;
3868
81a5b4f5
N
3869 if (strcmp(update, "uuid") == 0) {
3870 /* We take this to mean that the family_num should be updated.
3871 * However that is much smaller than the uuid so we cannot really
3872 * allow an explicit uuid to be given. And it is hard to reliably
3873 * know if one was.
3874 * So if !uuid_set we know the current uuid is random and just used
3875 * the first 'int' and copy it to the other 3 positions.
3876 * Otherwise we require the 4 'int's to be the same as would be the
3877 * case if we are using a random uuid. So an explicit uuid will be
3878 * accepted as long as all for ints are the same... which shouldn't hurt
6e46bf34 3879 */
81a5b4f5
N
3880 if (!uuid_set) {
3881 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
6e46bf34 3882 rv = 0;
81a5b4f5
N
3883 } else {
3884 if (info->uuid[0] != info->uuid[1] ||
3885 info->uuid[1] != info->uuid[2] ||
3886 info->uuid[2] != info->uuid[3])
3887 rv = -1;
3888 else
3889 rv = 0;
6e46bf34 3890 }
81a5b4f5
N
3891 if (rv == 0)
3892 mpb->orig_family_num = info->uuid[0];
6e46bf34
DW
3893 } else if (strcmp(update, "assemble") == 0)
3894 rv = 0;
3895 else
1e2b2765 3896 rv = -1;
f352c545 3897
6e46bf34
DW
3898 /* successful update? recompute checksum */
3899 if (rv == 0)
3900 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
3901
3902 return rv;
cdddbdbc
DW
3903}
3904
c2c087e6 3905static size_t disks_to_mpb_size(int disks)
cdddbdbc 3906{
c2c087e6 3907 size_t size;
cdddbdbc 3908
c2c087e6
DW
3909 size = sizeof(struct imsm_super);
3910 size += (disks - 1) * sizeof(struct imsm_disk);
3911 size += 2 * sizeof(struct imsm_dev);
3912 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3913 size += (4 - 2) * sizeof(struct imsm_map);
3914 /* 4 possible disk_ord_tbl's */
3915 size += 4 * (disks - 1) * sizeof(__u32);
bbab0940
TM
3916 /* maximum bbm log */
3917 size += sizeof(struct bbm_log);
c2c087e6
DW
3918
3919 return size;
3920}
3921
387fcd59
N
3922static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3923 unsigned long long data_offset)
c2c087e6
DW
3924{
3925 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3926 return 0;
3927
3928 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
3929}
3930
ba2de7ba
DW
3931static void free_devlist(struct intel_super *super)
3932{
3933 struct intel_dev *dv;
3934
3935 while (super->devlist) {
3936 dv = super->devlist->next;
3937 free(super->devlist->dev);
3938 free(super->devlist);
3939 super->devlist = dv;
3940 }
3941}
3942
3943static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3944{
3945 memcpy(dest, src, sizeof_imsm_dev(src, 0));
3946}
3947
c7b8547c
MT
3948static int compare_super_imsm(struct supertype *st, struct supertype *tst,
3949 int verbose)
cdddbdbc 3950{
601ffa78 3951 /* return:
cdddbdbc 3952 * 0 same, or first was empty, and second was copied
601ffa78 3953 * 1 sb are different
cdddbdbc
DW
3954 */
3955 struct intel_super *first = st->sb;
3956 struct intel_super *sec = tst->sb;
3957
5d500228
N
3958 if (!first) {
3959 st->sb = tst->sb;
3960 tst->sb = NULL;
3961 return 0;
3962 }
601ffa78 3963
8603ea6f
LM
3964 /* in platform dependent environment test if the disks
3965 * use the same Intel hba
601ffa78
OS
3966 * if not on Intel hba at all, allow anything.
3967 * doesn't check HBAs if num_raid_devs is not set, as it means
3968 * it is a free floating spare, and all spares regardless of HBA type
3969 * will fall into separate container during the assembly
8603ea6f 3970 */
601ffa78 3971 if (first->hba && sec->hba && first->anchor->num_raid_devs != 0) {
6b781d33 3972 if (first->hba->type != sec->hba->type) {
c7b8547c
MT
3973 if (verbose)
3974 pr_err("HBAs of devices do not match %s != %s\n",
3975 get_sys_dev_type(first->hba->type),
3976 get_sys_dev_type(sec->hba->type));
601ffa78 3977 return 1;
6b781d33
AP
3978 }
3979 if (first->orom != sec->orom) {
c7b8547c
MT
3980 if (verbose)
3981 pr_err("HBAs of devices do not match %s != %s\n",
3982 first->hba->pci_id, sec->hba->pci_id);
601ffa78 3983 return 1;
8603ea6f
LM
3984 }
3985 }
cdddbdbc 3986
d23fe947
DW
3987 if (first->anchor->num_raid_devs > 0 &&
3988 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
3989 /* Determine if these disks might ever have been
3990 * related. Further disambiguation can only take place
3991 * in load_super_imsm_all
3992 */
3993 __u32 first_family = first->anchor->orig_family_num;
3994 __u32 sec_family = sec->anchor->orig_family_num;
3995
f796af5d
DW
3996 if (memcmp(first->anchor->sig, sec->anchor->sig,
3997 MAX_SIGNATURE_LENGTH) != 0)
601ffa78 3998 return 1;
f796af5d 3999
a2b97981
DW
4000 if (first_family == 0)
4001 first_family = first->anchor->family_num;
4002 if (sec_family == 0)
4003 sec_family = sec->anchor->family_num;
4004
4005 if (first_family != sec_family)
601ffa78 4006 return 1;
f796af5d 4007
d23fe947 4008 }
cdddbdbc 4009
601ffa78
OS
4010 /* if an anchor does not have num_raid_devs set then it is a free
4011 * floating spare. don't assosiate spare with any array, as during assembly
4012 * spares shall fall into separate container, from which they can be moved
4013 * when necessary
4014 */
4015 if (first->anchor->num_raid_devs ^ sec->anchor->num_raid_devs)
4016 return 1;
3e372e5a 4017
cdddbdbc
DW
4018 return 0;
4019}
4020
0030e8d6
DW
4021static void fd2devname(int fd, char *name)
4022{
0030e8d6 4023 char *nm;
0030e8d6 4024
7c798f87
MT
4025 nm = fd2kname(fd);
4026 if (!nm)
0030e8d6 4027 return;
9587c373 4028
7c798f87 4029 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
0030e8d6
DW
4030}
4031
21e9380b
AP
4032static int nvme_get_serial(int fd, void *buf, size_t buf_len)
4033{
fcebeb77 4034 char path[PATH_MAX];
21e9380b
AP
4035 char *name = fd2kname(fd);
4036
4037 if (!name)
4038 return 1;
4039
4040 if (strncmp(name, "nvme", 4) != 0)
4041 return 1;
4042
fcebeb77
MT
4043 if (!diskfd_to_devpath(fd, 1, path))
4044 return 1;
21e9380b 4045
fcebeb77 4046 return devpath_to_char(path, "serial", buf, buf_len, 0);
21e9380b
AP
4047}
4048
cdddbdbc
DW
4049extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
4050
4051static int imsm_read_serial(int fd, char *devname,
6da53c0e 4052 __u8 *serial, size_t serial_buf_len)
cdddbdbc 4053{
21e9380b 4054 char buf[50];
cdddbdbc 4055 int rv;
6da53c0e 4056 size_t len;
316e2bf4
DW
4057 char *dest;
4058 char *src;
21e9380b
AP
4059 unsigned int i;
4060
4061 memset(buf, 0, sizeof(buf));
cdddbdbc 4062
21e9380b 4063 rv = nvme_get_serial(fd, buf, sizeof(buf));
cdddbdbc 4064
21e9380b
AP
4065 if (rv)
4066 rv = scsi_get_serial(fd, buf, sizeof(buf));
f9ba0ff1 4067
40ebbb9c 4068 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
4069 memset(serial, 0, MAX_RAID_SERIAL_LEN);
4070 fd2devname(fd, (char *) serial);
0030e8d6
DW
4071 return 0;
4072 }
4073
cdddbdbc
DW
4074 if (rv != 0) {
4075 if (devname)
e7b84f9d
N
4076 pr_err("Failed to retrieve serial for %s\n",
4077 devname);
cdddbdbc
DW
4078 return rv;
4079 }
4080
316e2bf4
DW
4081 /* trim all whitespace and non-printable characters and convert
4082 * ':' to ';'
4083 */
21e9380b
AP
4084 for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
4085 src = &buf[i];
316e2bf4
DW
4086 if (*src > 0x20) {
4087 /* ':' is reserved for use in placeholder serial
4088 * numbers for missing disks
4089 */
4090 if (*src == ':')
4091 *dest++ = ';';
4092 else
4093 *dest++ = *src;
4094 }
4095 }
21e9380b
AP
4096 len = dest - buf;
4097 dest = buf;
316e2bf4 4098
6da53c0e
BK
4099 if (len > serial_buf_len) {
4100 /* truncate leading characters */
4101 dest += len - serial_buf_len;
4102 len = serial_buf_len;
316e2bf4 4103 }
5c3db629 4104
6da53c0e 4105 memset(serial, 0, serial_buf_len);
316e2bf4 4106 memcpy(serial, dest, len);
cdddbdbc
DW
4107
4108 return 0;
4109}
4110
1f24f035
DW
4111static int serialcmp(__u8 *s1, __u8 *s2)
4112{
4113 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
4114}
4115
4116static void serialcpy(__u8 *dest, __u8 *src)
4117{
4118 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
4119}
4120
54c2c1ea
DW
4121static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
4122{
4123 struct dl *dl;
4124
4125 for (dl = super->disks; dl; dl = dl->next)
4126 if (serialcmp(dl->serial, serial) == 0)
4127 break;
4128
4129 return dl;
4130}
4131
a2b97981
DW
4132static struct imsm_disk *
4133__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
4134{
4135 int i;
4136
4137 for (i = 0; i < mpb->num_disks; i++) {
4138 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4139
4140 if (serialcmp(disk->serial, serial) == 0) {
4141 if (idx)
4142 *idx = i;
4143 return disk;
4144 }
4145 }
4146
4147 return NULL;
4148}
4149
cdddbdbc
DW
4150static int
4151load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
4152{
a2b97981 4153 struct imsm_disk *disk;
cdddbdbc
DW
4154 struct dl *dl;
4155 struct stat stb;
cdddbdbc 4156 int rv;
a2b97981 4157 char name[40];
d23fe947
DW
4158 __u8 serial[MAX_RAID_SERIAL_LEN];
4159
6da53c0e 4160 rv = imsm_read_serial(fd, devname, serial, MAX_RAID_SERIAL_LEN);
d23fe947
DW
4161
4162 if (rv != 0)
4163 return 2;
4164
503975b9 4165 dl = xcalloc(1, sizeof(*dl));
cdddbdbc 4166
a2b97981
DW
4167 fstat(fd, &stb);
4168 dl->major = major(stb.st_rdev);
4169 dl->minor = minor(stb.st_rdev);
4170 dl->next = super->disks;
4171 dl->fd = keep_fd ? fd : -1;
4172 assert(super->disks == NULL);
4173 super->disks = dl;
4174 serialcpy(dl->serial, serial);
4175 dl->index = -2;
4176 dl->e = NULL;
4177 fd2devname(fd, name);
4178 if (devname)
503975b9 4179 dl->devname = xstrdup(devname);
a2b97981 4180 else
503975b9 4181 dl->devname = xstrdup(name);
cdddbdbc 4182
d23fe947 4183 /* look up this disk's index in the current anchor */
a2b97981
DW
4184 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
4185 if (disk) {
4186 dl->disk = *disk;
4187 /* only set index on disks that are a member of a
4188 * populated contianer, i.e. one with raid_devs
4189 */
4190 if (is_failed(&dl->disk))
3f6efecc 4191 dl->index = -2;
2432ce9b 4192 else if (is_spare(&dl->disk) || is_journal(&dl->disk))
a2b97981 4193 dl->index = -1;
3f6efecc
DW
4194 }
4195
949c47a0
DW
4196 return 0;
4197}
4198
0c046afd
DW
4199/* When migrating map0 contains the 'destination' state while map1
4200 * contains the current state. When not migrating map0 contains the
4201 * current state. This routine assumes that map[0].map_state is set to
4202 * the current array state before being called.
4203 *
4204 * Migration is indicated by one of the following states
4205 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 4206 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 4207 * map1state=unitialized)
1484e727 4208 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 4209 * map1state=normal)
e3bba0e0 4210 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 4211 * map1state=degraded)
8e59f3d8
AK
4212 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
4213 * map1state=normal)
0c046afd 4214 */
8e59f3d8
AK
4215static void migrate(struct imsm_dev *dev, struct intel_super *super,
4216 __u8 to_state, int migr_type)
3393c6af 4217{
0c046afd 4218 struct imsm_map *dest;
238c0a71 4219 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3393c6af 4220
0c046afd 4221 dev->vol.migr_state = 1;
1484e727 4222 set_migr_type(dev, migr_type);
4036e7ee 4223 set_vol_curr_migr_unit(dev, 0);
238c0a71 4224 dest = get_imsm_map(dev, MAP_1);
0c046afd 4225
0556e1a2 4226 /* duplicate and then set the target end state in map[0] */
3393c6af 4227 memcpy(dest, src, sizeof_imsm_map(src));
fb12a745 4228 if (migr_type == MIGR_GEN_MIGR) {
0556e1a2
DW
4229 __u32 ord;
4230 int i;
4231
4232 for (i = 0; i < src->num_members; i++) {
4233 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
4234 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
4235 }
4236 }
4237
8e59f3d8
AK
4238 if (migr_type == MIGR_GEN_MIGR)
4239 /* Clear migration record */
4240 memset(super->migr_rec, 0, sizeof(struct migr_record));
4241
0c046afd 4242 src->map_state = to_state;
949c47a0 4243}
f8f603f1 4244
809da78e
AK
4245static void end_migration(struct imsm_dev *dev, struct intel_super *super,
4246 __u8 map_state)
f8f603f1 4247{
238c0a71
AK
4248 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4249 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
4250 MAP_0 : MAP_1);
28bce06f 4251 int i, j;
0556e1a2
DW
4252
4253 /* merge any IMSM_ORD_REBUILD bits that were not successfully
4254 * completed in the last migration.
4255 *
28bce06f 4256 * FIXME add support for raid-level-migration
0556e1a2 4257 */
089f9d79
JS
4258 if (map_state != map->map_state && (is_gen_migration(dev) == 0) &&
4259 prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
809da78e
AK
4260 /* when final map state is other than expected
4261 * merge maps (not for migration)
4262 */
4263 int failed;
4264
4265 for (i = 0; i < prev->num_members; i++)
4266 for (j = 0; j < map->num_members; j++)
4267 /* during online capacity expansion
4268 * disks position can be changed
4269 * if takeover is used
4270 */
4271 if (ord_to_idx(map->disk_ord_tbl[j]) ==
4272 ord_to_idx(prev->disk_ord_tbl[i])) {
4273 map->disk_ord_tbl[j] |=
4274 prev->disk_ord_tbl[i];
4275 break;
4276 }
4277 failed = imsm_count_failed(super, dev, MAP_0);
4278 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
4279 }
f8f603f1
DW
4280
4281 dev->vol.migr_state = 0;
ea672ee1 4282 set_migr_type(dev, 0);
4036e7ee 4283 set_vol_curr_migr_unit(dev, 0);
f8f603f1
DW
4284 map->map_state = map_state;
4285}
949c47a0
DW
4286
4287static int parse_raid_devices(struct intel_super *super)
4288{
4289 int i;
4290 struct imsm_dev *dev_new;
4d7b1503 4291 size_t len, len_migr;
401d313b 4292 size_t max_len = 0;
4d7b1503
DW
4293 size_t space_needed = 0;
4294 struct imsm_super *mpb = super->anchor;
949c47a0
DW
4295
4296 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4297 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 4298 struct intel_dev *dv;
949c47a0 4299
4d7b1503
DW
4300 len = sizeof_imsm_dev(dev_iter, 0);
4301 len_migr = sizeof_imsm_dev(dev_iter, 1);
4302 if (len_migr > len)
4303 space_needed += len_migr - len;
ca9de185 4304
503975b9 4305 dv = xmalloc(sizeof(*dv));
401d313b
AK
4306 if (max_len < len_migr)
4307 max_len = len_migr;
4308 if (max_len > len_migr)
4309 space_needed += max_len - len_migr;
503975b9 4310 dev_new = xmalloc(max_len);
949c47a0 4311 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
4312 dv->dev = dev_new;
4313 dv->index = i;
4314 dv->next = super->devlist;
4315 super->devlist = dv;
949c47a0 4316 }
cdddbdbc 4317
4d7b1503
DW
4318 /* ensure that super->buf is large enough when all raid devices
4319 * are migrating
4320 */
4321 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
4322 void *buf;
4323
f36a9ecd
PB
4324 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
4325 super->sector_size);
4326 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
4d7b1503
DW
4327 return 1;
4328
1f45a8ad
DW
4329 memcpy(buf, super->buf, super->len);
4330 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
4331 free(super->buf);
4332 super->buf = buf;
4333 super->len = len;
4334 }
ca9de185 4335
bbab0940
TM
4336 super->extra_space += space_needed;
4337
cdddbdbc
DW
4338 return 0;
4339}
4340
e2f41b2c
AK
4341/*******************************************************************************
4342 * Function: check_mpb_migr_compatibility
4343 * Description: Function checks for unsupported migration features:
4344 * - migration optimization area (pba_of_lba0)
4345 * - descending reshape (ascending_migr)
4346 * Parameters:
4347 * super : imsm metadata information
4348 * Returns:
4349 * 0 : migration is compatible
4350 * -1 : migration is not compatible
4351 ******************************************************************************/
4352int check_mpb_migr_compatibility(struct intel_super *super)
4353{
4354 struct imsm_map *map0, *map1;
4355 struct migr_record *migr_rec = super->migr_rec;
4356 int i;
4357
4358 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4359 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4360
4361 if (dev_iter &&
4362 dev_iter->vol.migr_state == 1 &&
4363 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
4364 /* This device is migrating */
238c0a71
AK
4365 map0 = get_imsm_map(dev_iter, MAP_0);
4366 map1 = get_imsm_map(dev_iter, MAP_1);
5551b113 4367 if (pba_of_lba0(map0) != pba_of_lba0(map1))
e2f41b2c
AK
4368 /* migration optimization area was used */
4369 return -1;
fc54fe7a
JS
4370 if (migr_rec->ascending_migr == 0 &&
4371 migr_rec->dest_depth_per_unit > 0)
e2f41b2c
AK
4372 /* descending reshape not supported yet */
4373 return -1;
4374 }
4375 }
4376 return 0;
4377}
4378
d23fe947 4379static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 4380
cdddbdbc 4381/* load_imsm_mpb - read matrix metadata
f2f5c343 4382 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
4383 */
4384static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
4385{
4386 unsigned long long dsize;
cdddbdbc 4387 unsigned long long sectors;
f36a9ecd 4388 unsigned int sector_size = super->sector_size;
cdddbdbc 4389 struct stat;
6416d527 4390 struct imsm_super *anchor;
cdddbdbc
DW
4391 __u32 check_sum;
4392
cdddbdbc 4393 get_dev_size(fd, NULL, &dsize);
f36a9ecd 4394 if (dsize < 2*sector_size) {
64436f06 4395 if (devname)
e7b84f9d
N
4396 pr_err("%s: device to small for imsm\n",
4397 devname);
64436f06
N
4398 return 1;
4399 }
cdddbdbc 4400
f36a9ecd 4401 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
cdddbdbc 4402 if (devname)
e7b84f9d
N
4403 pr_err("Cannot seek to anchor block on %s: %s\n",
4404 devname, strerror(errno));
cdddbdbc
DW
4405 return 1;
4406 }
4407
f36a9ecd 4408 if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
ad97895e 4409 if (devname)
7a862a02 4410 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
ad97895e
DW
4411 return 1;
4412 }
466070ad 4413 if ((unsigned int)read(fd, anchor, sector_size) != sector_size) {
cdddbdbc 4414 if (devname)
e7b84f9d
N
4415 pr_err("Cannot read anchor block on %s: %s\n",
4416 devname, strerror(errno));
6416d527 4417 free(anchor);
cdddbdbc
DW
4418 return 1;
4419 }
4420
6416d527 4421 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc 4422 if (devname)
e7b84f9d 4423 pr_err("no IMSM anchor on %s\n", devname);
6416d527 4424 free(anchor);
cdddbdbc
DW
4425 return 2;
4426 }
4427
d23fe947 4428 __free_imsm(super, 0);
f2f5c343
LM
4429 /* reload capability and hba */
4430
4431 /* capability and hba must be updated with new super allocation */
d424212e 4432 find_intel_hba_capability(fd, super, devname);
f36a9ecd
PB
4433 super->len = ROUND_UP(anchor->mpb_size, sector_size);
4434 if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
cdddbdbc 4435 if (devname)
e7b84f9d
N
4436 pr_err("unable to allocate %zu byte mpb buffer\n",
4437 super->len);
6416d527 4438 free(anchor);
cdddbdbc
DW
4439 return 2;
4440 }
f36a9ecd 4441 memcpy(super->buf, anchor, sector_size);
cdddbdbc 4442
f36a9ecd 4443 sectors = mpb_sectors(anchor, sector_size) - 1;
6416d527 4444 free(anchor);
8e59f3d8 4445
85337573
AO
4446 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
4447 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 4448 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
4449 free(super->buf);
4450 return 2;
4451 }
51d83f5d 4452 super->clean_migration_record_by_mdmon = 0;
8e59f3d8 4453
949c47a0 4454 if (!sectors) {
ecf45690
DW
4455 check_sum = __gen_imsm_checksum(super->anchor);
4456 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4457 if (devname)
e7b84f9d
N
4458 pr_err("IMSM checksum %x != %x on %s\n",
4459 check_sum,
4460 __le32_to_cpu(super->anchor->check_sum),
4461 devname);
ecf45690
DW
4462 return 2;
4463 }
4464
a2b97981 4465 return 0;
949c47a0 4466 }
cdddbdbc
DW
4467
4468 /* read the extended mpb */
f36a9ecd 4469 if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
cdddbdbc 4470 if (devname)
e7b84f9d
N
4471 pr_err("Cannot seek to extended mpb on %s: %s\n",
4472 devname, strerror(errno));
cdddbdbc
DW
4473 return 1;
4474 }
4475
f36a9ecd
PB
4476 if ((unsigned int)read(fd, super->buf + sector_size,
4477 super->len - sector_size) != super->len - sector_size) {
cdddbdbc 4478 if (devname)
e7b84f9d
N
4479 pr_err("Cannot read extended mpb on %s: %s\n",
4480 devname, strerror(errno));
cdddbdbc
DW
4481 return 2;
4482 }
4483
949c47a0
DW
4484 check_sum = __gen_imsm_checksum(super->anchor);
4485 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc 4486 if (devname)
e7b84f9d
N
4487 pr_err("IMSM checksum %x != %x on %s\n",
4488 check_sum, __le32_to_cpu(super->anchor->check_sum),
4489 devname);
db575f3b 4490 return 3;
cdddbdbc
DW
4491 }
4492
a2b97981
DW
4493 return 0;
4494}
4495
8e59f3d8
AK
4496static int read_imsm_migr_rec(int fd, struct intel_super *super);
4497
97f81ee2
CA
4498/* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
4499static void clear_hi(struct intel_super *super)
4500{
4501 struct imsm_super *mpb = super->anchor;
4502 int i, n;
4503 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
4504 return;
4505 for (i = 0; i < mpb->num_disks; ++i) {
4506 struct imsm_disk *disk = &mpb->disk[i];
4507 disk->total_blocks_hi = 0;
4508 }
4509 for (i = 0; i < mpb->num_raid_devs; ++i) {
4510 struct imsm_dev *dev = get_imsm_dev(super, i);
4511 if (!dev)
4512 return;
4513 for (n = 0; n < 2; ++n) {
4514 struct imsm_map *map = get_imsm_map(dev, n);
4515 if (!map)
4516 continue;
4517 map->pba_of_lba0_hi = 0;
4518 map->blocks_per_member_hi = 0;
4519 map->num_data_stripes_hi = 0;
4520 }
4521 }
4522}
4523
a2b97981
DW
4524static int
4525load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
4526{
4527 int err;
4528
4529 err = load_imsm_mpb(fd, super, devname);
4530 if (err)
4531 return err;
f36a9ecd
PB
4532 if (super->sector_size == 4096)
4533 convert_from_4k(super);
a2b97981
DW
4534 err = load_imsm_disk(fd, super, devname, keep_fd);
4535 if (err)
4536 return err;
4537 err = parse_raid_devices(super);
8d67477f
TM
4538 if (err)
4539 return err;
4540 err = load_bbm_log(super);
97f81ee2 4541 clear_hi(super);
a2b97981 4542 return err;
cdddbdbc
DW
4543}
4544
3a85bf0e 4545static void __free_imsm_disk(struct dl *d, int close_fd)
ae6aad82 4546{
3a85bf0e 4547 if (close_fd && d->fd > -1)
ae6aad82
DW
4548 close(d->fd);
4549 if (d->devname)
4550 free(d->devname);
0dcecb2e
DW
4551 if (d->e)
4552 free(d->e);
ae6aad82
DW
4553 free(d);
4554
4555}
1a64be56 4556
cdddbdbc
DW
4557static void free_imsm_disks(struct intel_super *super)
4558{
47ee5a45 4559 struct dl *d;
cdddbdbc 4560
47ee5a45
DW
4561 while (super->disks) {
4562 d = super->disks;
cdddbdbc 4563 super->disks = d->next;
3a85bf0e 4564 __free_imsm_disk(d, 1);
cdddbdbc 4565 }
cb82edca
AK
4566 while (super->disk_mgmt_list) {
4567 d = super->disk_mgmt_list;
4568 super->disk_mgmt_list = d->next;
3a85bf0e 4569 __free_imsm_disk(d, 1);
cb82edca 4570 }
47ee5a45
DW
4571 while (super->missing) {
4572 d = super->missing;
4573 super->missing = d->next;
3a85bf0e 4574 __free_imsm_disk(d, 1);
47ee5a45
DW
4575 }
4576
cdddbdbc
DW
4577}
4578
9ca2c81c 4579/* free all the pieces hanging off of a super pointer */
d23fe947 4580static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 4581{
88654014
LM
4582 struct intel_hba *elem, *next;
4583
9ca2c81c 4584 if (super->buf) {
949c47a0 4585 free(super->buf);
9ca2c81c
DW
4586 super->buf = NULL;
4587 }
f2f5c343
LM
4588 /* unlink capability description */
4589 super->orom = NULL;
8e59f3d8
AK
4590 if (super->migr_rec_buf) {
4591 free(super->migr_rec_buf);
4592 super->migr_rec_buf = NULL;
4593 }
d23fe947
DW
4594 if (free_disks)
4595 free_imsm_disks(super);
ba2de7ba 4596 free_devlist(super);
88654014
LM
4597 elem = super->hba;
4598 while (elem) {
4599 if (elem->path)
4600 free((void *)elem->path);
4601 next = elem->next;
4602 free(elem);
4603 elem = next;
88c32bb1 4604 }
8d67477f
TM
4605 if (super->bbm_log)
4606 free(super->bbm_log);
88654014 4607 super->hba = NULL;
cdddbdbc
DW
4608}
4609
9ca2c81c
DW
4610static void free_imsm(struct intel_super *super)
4611{
d23fe947 4612 __free_imsm(super, 1);
928f1424 4613 free(super->bb.entries);
9ca2c81c
DW
4614 free(super);
4615}
cdddbdbc
DW
4616
4617static void free_super_imsm(struct supertype *st)
4618{
4619 struct intel_super *super = st->sb;
4620
4621 if (!super)
4622 return;
4623
4624 free_imsm(super);
4625 st->sb = NULL;
4626}
4627
49133e57 4628static struct intel_super *alloc_super(void)
c2c087e6 4629{
503975b9 4630 struct intel_super *super = xcalloc(1, sizeof(*super));
c2c087e6 4631
503975b9
N
4632 super->current_vol = -1;
4633 super->create_offset = ~((unsigned long long) 0);
928f1424
TM
4634
4635 super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES *
4636 sizeof(struct md_bb_entry));
4637 if (!super->bb.entries) {
4638 free(super);
4639 return NULL;
4640 }
4641
c2c087e6
DW
4642 return super;
4643}
4644
f0f5a016
LM
4645/*
4646 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4647 */
d424212e 4648static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
4649{
4650 struct sys_dev *hba_name;
4651 int rv = 0;
4652
3a30e28e
MT
4653 if (fd >= 0 && test_partition(fd)) {
4654 pr_err("imsm: %s is a partition, cannot be used in IMSM\n",
4655 devname);
4656 return 1;
4657 }
089f9d79 4658 if (fd < 0 || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 4659 super->orom = NULL;
f0f5a016
LM
4660 super->hba = NULL;
4661 return 0;
4662 }
4663 hba_name = find_disk_attached_hba(fd, NULL);
4664 if (!hba_name) {
d424212e 4665 if (devname)
e7b84f9d
N
4666 pr_err("%s is not attached to Intel(R) RAID controller.\n",
4667 devname);
f0f5a016
LM
4668 return 1;
4669 }
4670 rv = attach_hba_to_super(super, hba_name);
4671 if (rv == 2) {
d424212e
N
4672 if (devname) {
4673 struct intel_hba *hba = super->hba;
f0f5a016 4674
60f0f54d
PB
4675 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4676 " but the container is assigned to Intel(R) %s %s (",
d424212e 4677 devname,
614902f6 4678 get_sys_dev_type(hba_name->type),
60f0f54d 4679 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
f0f5a016 4680 hba_name->pci_id ? : "Err!",
60f0f54d
PB
4681 get_sys_dev_type(super->hba->type),
4682 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
f0f5a016 4683
f0f5a016
LM
4684 while (hba) {
4685 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4686 if (hba->next)
4687 fprintf(stderr, ", ");
4688 hba = hba->next;
4689 }
6b781d33 4690 fprintf(stderr, ").\n"
cca67208 4691 " Mixing devices attached to different controllers is not allowed.\n");
f0f5a016 4692 }
f0f5a016
LM
4693 return 2;
4694 }
6b781d33 4695 super->orom = find_imsm_capability(hba_name);
f2f5c343
LM
4696 if (!super->orom)
4697 return 3;
614902f6 4698
f0f5a016
LM
4699 return 0;
4700}
4701
47ee5a45
DW
4702/* find_missing - helper routine for load_super_imsm_all that identifies
4703 * disks that have disappeared from the system. This routine relies on
4704 * the mpb being uptodate, which it is at load time.
4705 */
4706static int find_missing(struct intel_super *super)
4707{
4708 int i;
4709 struct imsm_super *mpb = super->anchor;
4710 struct dl *dl;
4711 struct imsm_disk *disk;
47ee5a45
DW
4712
4713 for (i = 0; i < mpb->num_disks; i++) {
4714 disk = __get_imsm_disk(mpb, i);
54c2c1ea 4715 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
4716 if (dl)
4717 continue;
47ee5a45 4718
503975b9 4719 dl = xmalloc(sizeof(*dl));
47ee5a45
DW
4720 dl->major = 0;
4721 dl->minor = 0;
4722 dl->fd = -1;
503975b9 4723 dl->devname = xstrdup("missing");
47ee5a45
DW
4724 dl->index = i;
4725 serialcpy(dl->serial, disk->serial);
4726 dl->disk = *disk;
689c9bf3 4727 dl->e = NULL;
47ee5a45
DW
4728 dl->next = super->missing;
4729 super->missing = dl;
4730 }
4731
4732 return 0;
4733}
4734
a2b97981
DW
4735static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4736{
4737 struct intel_disk *idisk = disk_list;
4738
4739 while (idisk) {
4740 if (serialcmp(idisk->disk.serial, serial) == 0)
4741 break;
4742 idisk = idisk->next;
4743 }
4744
4745 return idisk;
4746}
4747
4748static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4749 struct intel_super *super,
4750 struct intel_disk **disk_list)
4751{
4752 struct imsm_disk *d = &super->disks->disk;
4753 struct imsm_super *mpb = super->anchor;
4754 int i, j;
4755
4756 for (i = 0; i < tbl_size; i++) {
4757 struct imsm_super *tbl_mpb = table[i]->anchor;
4758 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4759
4760 if (tbl_mpb->family_num == mpb->family_num) {
4761 if (tbl_mpb->check_sum == mpb->check_sum) {
1ade5cc1
N
4762 dprintf("mpb from %d:%d matches %d:%d\n",
4763 super->disks->major,
a2b97981
DW
4764 super->disks->minor,
4765 table[i]->disks->major,
4766 table[i]->disks->minor);
4767 break;
4768 }
4769
4770 if (((is_configured(d) && !is_configured(tbl_d)) ||
4771 is_configured(d) == is_configured(tbl_d)) &&
4772 tbl_mpb->generation_num < mpb->generation_num) {
4773 /* current version of the mpb is a
4774 * better candidate than the one in
4775 * super_table, but copy over "cross
4776 * generational" status
4777 */
4778 struct intel_disk *idisk;
4779
1ade5cc1
N
4780 dprintf("mpb from %d:%d replaces %d:%d\n",
4781 super->disks->major,
a2b97981
DW
4782 super->disks->minor,
4783 table[i]->disks->major,
4784 table[i]->disks->minor);
4785
4786 idisk = disk_list_get(tbl_d->serial, *disk_list);
4787 if (idisk && is_failed(&idisk->disk))
4788 tbl_d->status |= FAILED_DISK;
4789 break;
4790 } else {
4791 struct intel_disk *idisk;
4792 struct imsm_disk *disk;
4793
4794 /* tbl_mpb is more up to date, but copy
4795 * over cross generational status before
4796 * returning
4797 */
4798 disk = __serial_to_disk(d->serial, mpb, NULL);
4799 if (disk && is_failed(disk))
4800 d->status |= FAILED_DISK;
4801
4802 idisk = disk_list_get(d->serial, *disk_list);
4803 if (idisk) {
4804 idisk->owner = i;
4805 if (disk && is_configured(disk))
4806 idisk->disk.status |= CONFIGURED_DISK;
4807 }
4808
1ade5cc1
N
4809 dprintf("mpb from %d:%d prefer %d:%d\n",
4810 super->disks->major,
a2b97981
DW
4811 super->disks->minor,
4812 table[i]->disks->major,
4813 table[i]->disks->minor);
4814
4815 return tbl_size;
4816 }
4817 }
4818 }
4819
4820 if (i >= tbl_size)
4821 table[tbl_size++] = super;
4822 else
4823 table[i] = super;
4824
4825 /* update/extend the merged list of imsm_disk records */
4826 for (j = 0; j < mpb->num_disks; j++) {
4827 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4828 struct intel_disk *idisk;
4829
4830 idisk = disk_list_get(disk->serial, *disk_list);
4831 if (idisk) {
4832 idisk->disk.status |= disk->status;
4833 if (is_configured(&idisk->disk) ||
4834 is_failed(&idisk->disk))
4835 idisk->disk.status &= ~(SPARE_DISK);
4836 } else {
503975b9 4837 idisk = xcalloc(1, sizeof(*idisk));
a2b97981
DW
4838 idisk->owner = IMSM_UNKNOWN_OWNER;
4839 idisk->disk = *disk;
4840 idisk->next = *disk_list;
4841 *disk_list = idisk;
4842 }
4843
4844 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4845 idisk->owner = i;
4846 }
4847
4848 return tbl_size;
4849}
4850
4851static struct intel_super *
4852validate_members(struct intel_super *super, struct intel_disk *disk_list,
4853 const int owner)
4854{
4855 struct imsm_super *mpb = super->anchor;
4856 int ok_count = 0;
4857 int i;
4858
4859 for (i = 0; i < mpb->num_disks; i++) {
4860 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4861 struct intel_disk *idisk;
4862
4863 idisk = disk_list_get(disk->serial, disk_list);
4864 if (idisk) {
4865 if (idisk->owner == owner ||
4866 idisk->owner == IMSM_UNKNOWN_OWNER)
4867 ok_count++;
4868 else
1ade5cc1
N
4869 dprintf("'%.16s' owner %d != %d\n",
4870 disk->serial, idisk->owner,
a2b97981
DW
4871 owner);
4872 } else {
1ade5cc1
N
4873 dprintf("unknown disk %x [%d]: %.16s\n",
4874 __le32_to_cpu(mpb->family_num), i,
a2b97981
DW
4875 disk->serial);
4876 break;
4877 }
4878 }
4879
4880 if (ok_count == mpb->num_disks)
4881 return super;
4882 return NULL;
4883}
4884
4885static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4886{
4887 struct intel_super *s;
4888
4889 for (s = super_list; s; s = s->next) {
4890 if (family_num != s->anchor->family_num)
4891 continue;
e12b3daa 4892 pr_err("Conflict, offlining family %#x on '%s'\n",
a2b97981
DW
4893 __le32_to_cpu(family_num), s->disks->devname);
4894 }
4895}
4896
4897static struct intel_super *
4898imsm_thunderdome(struct intel_super **super_list, int len)
4899{
4900 struct intel_super *super_table[len];
4901 struct intel_disk *disk_list = NULL;
4902 struct intel_super *champion, *spare;
4903 struct intel_super *s, **del;
4904 int tbl_size = 0;
4905 int conflict;
4906 int i;
4907
4908 memset(super_table, 0, sizeof(super_table));
4909 for (s = *super_list; s; s = s->next)
4910 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4911
4912 for (i = 0; i < tbl_size; i++) {
4913 struct imsm_disk *d;
4914 struct intel_disk *idisk;
4915 struct imsm_super *mpb = super_table[i]->anchor;
4916
4917 s = super_table[i];
4918 d = &s->disks->disk;
4919
4920 /* 'd' must appear in merged disk list for its
4921 * configuration to be valid
4922 */
4923 idisk = disk_list_get(d->serial, disk_list);
4924 if (idisk && idisk->owner == i)
4925 s = validate_members(s, disk_list, i);
4926 else
4927 s = NULL;
4928
4929 if (!s)
1ade5cc1
N
4930 dprintf("marking family: %#x from %d:%d offline\n",
4931 mpb->family_num,
a2b97981
DW
4932 super_table[i]->disks->major,
4933 super_table[i]->disks->minor);
4934 super_table[i] = s;
4935 }
4936
4937 /* This is where the mdadm implementation differs from the Windows
4938 * driver which has no strict concept of a container. We can only
4939 * assemble one family from a container, so when returning a prodigal
4940 * array member to this system the code will not be able to disambiguate
4941 * the container contents that should be assembled ("foreign" versus
4942 * "local"). It requires user intervention to set the orig_family_num
4943 * to a new value to establish a new container. The Windows driver in
4944 * this situation fixes up the volume name in place and manages the
4945 * foreign array as an independent entity.
4946 */
4947 s = NULL;
4948 spare = NULL;
4949 conflict = 0;
4950 for (i = 0; i < tbl_size; i++) {
4951 struct intel_super *tbl_ent = super_table[i];
4952 int is_spare = 0;
4953
4954 if (!tbl_ent)
4955 continue;
4956
4957 if (tbl_ent->anchor->num_raid_devs == 0) {
4958 spare = tbl_ent;
4959 is_spare = 1;
4960 }
4961
4962 if (s && !is_spare) {
4963 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4964 conflict++;
4965 } else if (!s && !is_spare)
4966 s = tbl_ent;
4967 }
4968
4969 if (!s)
4970 s = spare;
4971 if (!s) {
4972 champion = NULL;
4973 goto out;
4974 }
4975 champion = s;
4976
4977 if (conflict)
7a862a02 4978 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
a2b97981
DW
4979 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4980
4981 /* collect all dl's onto 'champion', and update them to
4982 * champion's version of the status
4983 */
4984 for (s = *super_list; s; s = s->next) {
4985 struct imsm_super *mpb = champion->anchor;
4986 struct dl *dl = s->disks;
4987
4988 if (s == champion)
4989 continue;
4990
5d7b407a
CA
4991 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4992
a2b97981
DW
4993 for (i = 0; i < mpb->num_disks; i++) {
4994 struct imsm_disk *disk;
4995
4996 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4997 if (disk) {
4998 dl->disk = *disk;
4999 /* only set index on disks that are a member of
5000 * a populated contianer, i.e. one with
5001 * raid_devs
5002 */
5003 if (is_failed(&dl->disk))
5004 dl->index = -2;
5005 else if (is_spare(&dl->disk))
5006 dl->index = -1;
5007 break;
5008 }
5009 }
5010
5011 if (i >= mpb->num_disks) {
5012 struct intel_disk *idisk;
5013
5014 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 5015 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
5016 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
5017 dl->index = -1;
5018 else {
5019 dl->index = -2;
5020 continue;
5021 }
5022 }
5023
5024 dl->next = champion->disks;
5025 champion->disks = dl;
5026 s->disks = NULL;
5027 }
5028
5029 /* delete 'champion' from super_list */
5030 for (del = super_list; *del; ) {
5031 if (*del == champion) {
5032 *del = (*del)->next;
5033 break;
5034 } else
5035 del = &(*del)->next;
5036 }
5037 champion->next = NULL;
5038
5039 out:
5040 while (disk_list) {
5041 struct intel_disk *idisk = disk_list;
5042
5043 disk_list = disk_list->next;
5044 free(idisk);
5045 }
5046
5047 return champion;
5048}
5049
9587c373
LM
5050static int
5051get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4dd2df09 5052static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373 5053 int major, int minor, int keep_fd);
ec50f7b6
LM
5054static int
5055get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5056 int *max, int keep_fd);
5057
cdddbdbc 5058static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
ec50f7b6
LM
5059 char *devname, struct md_list *devlist,
5060 int keep_fd)
cdddbdbc 5061{
a2b97981
DW
5062 struct intel_super *super_list = NULL;
5063 struct intel_super *super = NULL;
a2b97981 5064 int err = 0;
9587c373 5065 int i = 0;
dab4a513 5066
9587c373
LM
5067 if (fd >= 0)
5068 /* 'fd' is an opened container */
5069 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
5070 else
ec50f7b6
LM
5071 /* get super block from devlist devices */
5072 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
9587c373 5073 if (err)
1602d52c 5074 goto error;
a2b97981
DW
5075 /* all mpbs enter, maybe one leaves */
5076 super = imsm_thunderdome(&super_list, i);
5077 if (!super) {
5078 err = 1;
5079 goto error;
cdddbdbc
DW
5080 }
5081
47ee5a45
DW
5082 if (find_missing(super) != 0) {
5083 free_imsm(super);
a2b97981
DW
5084 err = 2;
5085 goto error;
47ee5a45 5086 }
8e59f3d8
AK
5087
5088 /* load migration record */
2f86fda3 5089 err = load_imsm_migr_rec(super);
4c965cc9
AK
5090 if (err == -1) {
5091 /* migration is in progress,
5092 * but migr_rec cannot be loaded,
5093 */
8e59f3d8
AK
5094 err = 4;
5095 goto error;
5096 }
e2f41b2c
AK
5097
5098 /* Check migration compatibility */
089f9d79 5099 if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 5100 pr_err("Unsupported migration detected");
e2f41b2c
AK
5101 if (devname)
5102 fprintf(stderr, " on %s\n", devname);
5103 else
5104 fprintf(stderr, " (IMSM).\n");
5105
5106 err = 5;
5107 goto error;
5108 }
5109
a2b97981
DW
5110 err = 0;
5111
5112 error:
5113 while (super_list) {
5114 struct intel_super *s = super_list;
5115
5116 super_list = super_list->next;
5117 free_imsm(s);
5118 }
9587c373 5119
a2b97981
DW
5120 if (err)
5121 return err;
f7e7067b 5122
cdddbdbc 5123 *sbp = super;
9587c373 5124 if (fd >= 0)
4dd2df09 5125 strcpy(st->container_devnm, fd2devnm(fd));
9587c373 5126 else
4dd2df09 5127 st->container_devnm[0] = 0;
a2b97981 5128 if (err == 0 && st->ss == NULL) {
bf5a934a 5129 st->ss = &super_imsm;
cdddbdbc
DW
5130 st->minor_version = 0;
5131 st->max_devs = IMSM_MAX_DEVICES;
5132 }
cdddbdbc
DW
5133 return 0;
5134}
2b959fbf 5135
ec50f7b6
LM
5136static int
5137get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5138 int *max, int keep_fd)
5139{
5140 struct md_list *tmpdev;
5141 int err = 0;
5142 int i = 0;
9587c373 5143
ec50f7b6
LM
5144 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5145 if (tmpdev->used != 1)
5146 continue;
5147 if (tmpdev->container == 1) {
ca9de185 5148 int lmax = 0;
ec50f7b6
LM
5149 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
5150 if (fd < 0) {
e7b84f9d 5151 pr_err("cannot open device %s: %s\n",
ec50f7b6
LM
5152 tmpdev->devname, strerror(errno));
5153 err = 8;
5154 goto error;
5155 }
5156 err = get_sra_super_block(fd, super_list,
5157 tmpdev->devname, &lmax,
5158 keep_fd);
5159 i += lmax;
5160 close(fd);
5161 if (err) {
5162 err = 7;
5163 goto error;
5164 }
5165 } else {
5166 int major = major(tmpdev->st_rdev);
5167 int minor = minor(tmpdev->st_rdev);
5168 err = get_super_block(super_list,
4dd2df09 5169 NULL,
ec50f7b6
LM
5170 tmpdev->devname,
5171 major, minor,
5172 keep_fd);
5173 i++;
5174 if (err) {
5175 err = 6;
5176 goto error;
5177 }
5178 }
5179 }
5180 error:
5181 *max = i;
5182 return err;
5183}
9587c373 5184
4dd2df09 5185static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373
LM
5186 int major, int minor, int keep_fd)
5187{
594dc1b8 5188 struct intel_super *s;
9587c373
LM
5189 char nm[32];
5190 int dfd = -1;
9587c373
LM
5191 int err = 0;
5192 int retry;
5193
5194 s = alloc_super();
5195 if (!s) {
5196 err = 1;
5197 goto error;
5198 }
5199
5200 sprintf(nm, "%d:%d", major, minor);
5201 dfd = dev_open(nm, O_RDWR);
5202 if (dfd < 0) {
5203 err = 2;
5204 goto error;
5205 }
5206
aec01630
JS
5207 if (!get_dev_sector_size(dfd, NULL, &s->sector_size)) {
5208 err = 2;
5209 goto error;
5210 }
cb8f6859 5211 find_intel_hba_capability(dfd, s, devname);
9587c373
LM
5212 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5213
5214 /* retry the load if we might have raced against mdmon */
4dd2df09 5215 if (err == 3 && devnm && mdmon_running(devnm))
9587c373
LM
5216 for (retry = 0; retry < 3; retry++) {
5217 usleep(3000);
5218 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5219 if (err != 3)
5220 break;
5221 }
5222 error:
5223 if (!err) {
5224 s->next = *super_list;
5225 *super_list = s;
5226 } else {
5227 if (s)
8d67477f 5228 free_imsm(s);
36614e95 5229 if (dfd >= 0)
9587c373
LM
5230 close(dfd);
5231 }
089f9d79 5232 if (dfd >= 0 && !keep_fd)
9587c373
LM
5233 close(dfd);
5234 return err;
5235
5236}
5237
5238static int
5239get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
5240{
5241 struct mdinfo *sra;
4dd2df09 5242 char *devnm;
9587c373
LM
5243 struct mdinfo *sd;
5244 int err = 0;
5245 int i = 0;
4dd2df09 5246 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
9587c373
LM
5247 if (!sra)
5248 return 1;
5249
5250 if (sra->array.major_version != -1 ||
5251 sra->array.minor_version != -2 ||
5252 strcmp(sra->text_version, "imsm") != 0) {
5253 err = 1;
5254 goto error;
5255 }
5256 /* load all mpbs */
4dd2df09 5257 devnm = fd2devnm(fd);
9587c373 5258 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4dd2df09 5259 if (get_super_block(super_list, devnm, devname,
9587c373
LM
5260 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
5261 err = 7;
5262 goto error;
5263 }
5264 }
5265 error:
5266 sysfs_free(sra);
5267 *max = i;
5268 return err;
5269}
5270
2b959fbf
N
5271static int load_container_imsm(struct supertype *st, int fd, char *devname)
5272{
ec50f7b6 5273 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
2b959fbf 5274}
cdddbdbc
DW
5275
5276static int load_super_imsm(struct supertype *st, int fd, char *devname)
5277{
5278 struct intel_super *super;
5279 int rv;
8a3544f8 5280 int retry;
cdddbdbc 5281
357ac106 5282 if (test_partition(fd))
691c6ee1
N
5283 /* IMSM not allowed on partitions */
5284 return 1;
5285
37424f13
DW
5286 free_super_imsm(st);
5287
49133e57 5288 super = alloc_super();
8d67477f
TM
5289 if (!super)
5290 return 1;
3a85bf0e
MG
5291
5292 if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
5293 free_imsm(super);
5294 return 1;
5295 }
ea2bc72b
LM
5296 /* Load hba and capabilities if they exist.
5297 * But do not preclude loading metadata in case capabilities or hba are
5298 * non-compliant and ignore_hw_compat is set.
5299 */
d424212e 5300 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5301 /* no orom/efi or non-intel hba of the disk */
089f9d79 5302 if (rv != 0 && st->ignore_hw_compat == 0) {
f2f5c343 5303 if (devname)
e7b84f9d 5304 pr_err("No OROM/EFI properties for %s\n", devname);
f2f5c343
LM
5305 free_imsm(super);
5306 return 2;
5307 }
a2b97981 5308 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc 5309
8a3544f8
AP
5310 /* retry the load if we might have raced against mdmon */
5311 if (rv == 3) {
f96b1302
AP
5312 struct mdstat_ent *mdstat = NULL;
5313 char *name = fd2kname(fd);
5314
5315 if (name)
5316 mdstat = mdstat_by_component(name);
8a3544f8
AP
5317
5318 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
5319 for (retry = 0; retry < 3; retry++) {
5320 usleep(3000);
5321 rv = load_and_parse_mpb(fd, super, devname, 0);
5322 if (rv != 3)
5323 break;
5324 }
5325 }
5326
5327 free_mdstat(mdstat);
5328 }
5329
cdddbdbc
DW
5330 if (rv) {
5331 if (devname)
7a862a02 5332 pr_err("Failed to load all information sections on %s\n", devname);
cdddbdbc
DW
5333 free_imsm(super);
5334 return rv;
5335 }
5336
5337 st->sb = super;
5338 if (st->ss == NULL) {
5339 st->ss = &super_imsm;
5340 st->minor_version = 0;
5341 st->max_devs = IMSM_MAX_DEVICES;
5342 }
8e59f3d8
AK
5343
5344 /* load migration record */
2f86fda3 5345 if (load_imsm_migr_rec(super) == 0) {
2e062e82
AK
5346 /* Check for unsupported migration features */
5347 if (check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 5348 pr_err("Unsupported migration detected");
2e062e82
AK
5349 if (devname)
5350 fprintf(stderr, " on %s\n", devname);
5351 else
5352 fprintf(stderr, " (IMSM).\n");
5353 return 3;
5354 }
e2f41b2c
AK
5355 }
5356
cdddbdbc
DW
5357 return 0;
5358}
5359
ef6ffade
DW
5360static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
5361{
5362 if (info->level == 1)
5363 return 128;
5364 return info->chunk_size >> 9;
5365}
5366
5551b113
CA
5367static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
5368 unsigned long long size)
fcfd9599 5369{
4025c288 5370 if (info->level == 1)
5551b113 5371 return size * 2;
4025c288 5372 else
5551b113 5373 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
5374}
5375
4d1313e9
DW
5376static void imsm_update_version_info(struct intel_super *super)
5377{
5378 /* update the version and attributes */
5379 struct imsm_super *mpb = super->anchor;
5380 char *version;
5381 struct imsm_dev *dev;
5382 struct imsm_map *map;
5383 int i;
5384
5385 for (i = 0; i < mpb->num_raid_devs; i++) {
5386 dev = get_imsm_dev(super, i);
238c0a71 5387 map = get_imsm_map(dev, MAP_0);
4d1313e9
DW
5388 if (__le32_to_cpu(dev->size_high) > 0)
5389 mpb->attributes |= MPB_ATTRIB_2TB;
5390
5391 /* FIXME detect when an array spans a port multiplier */
5392 #if 0
5393 mpb->attributes |= MPB_ATTRIB_PM;
5394 #endif
5395
5396 if (mpb->num_raid_devs > 1 ||
5397 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
5398 version = MPB_VERSION_ATTRIBS;
5399 switch (get_imsm_raid_level(map)) {
5400 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
5401 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
5402 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
5403 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
5404 }
5405 } else {
5406 if (map->num_members >= 5)
5407 version = MPB_VERSION_5OR6_DISK_ARRAY;
5408 else if (dev->status == DEV_CLONE_N_GO)
5409 version = MPB_VERSION_CNG;
5410 else if (get_imsm_raid_level(map) == 5)
5411 version = MPB_VERSION_RAID5;
5412 else if (map->num_members >= 3)
5413 version = MPB_VERSION_3OR4_DISK_ARRAY;
5414 else if (get_imsm_raid_level(map) == 1)
5415 version = MPB_VERSION_RAID1;
5416 else
5417 version = MPB_VERSION_RAID0;
5418 }
5419 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
5420 }
5421}
5422
aa534678
DW
5423static int check_name(struct intel_super *super, char *name, int quiet)
5424{
5425 struct imsm_super *mpb = super->anchor;
5426 char *reason = NULL;
9bd99a90
RS
5427 char *start = name;
5428 size_t len = strlen(name);
aa534678
DW
5429 int i;
5430
9bd99a90
RS
5431 if (len > 0) {
5432 while (isspace(start[len - 1]))
5433 start[--len] = 0;
5434 while (*start && isspace(*start))
5435 ++start, --len;
5436 memmove(name, start, len + 1);
5437 }
5438
5439 if (len > MAX_RAID_SERIAL_LEN)
aa534678 5440 reason = "must be 16 characters or less";
9bd99a90
RS
5441 else if (len == 0)
5442 reason = "must be a non-empty string";
aa534678
DW
5443
5444 for (i = 0; i < mpb->num_raid_devs; i++) {
5445 struct imsm_dev *dev = get_imsm_dev(super, i);
5446
5447 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
5448 reason = "already exists";
5449 break;
5450 }
5451 }
5452
5453 if (reason && !quiet)
e7b84f9d 5454 pr_err("imsm volume name %s\n", reason);
aa534678
DW
5455
5456 return !reason;
5457}
5458
8b353278 5459static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
5308f117 5460 struct shape *s, char *name,
83cd1e97
N
5461 char *homehost, int *uuid,
5462 long long data_offset)
cdddbdbc 5463{
c2c087e6
DW
5464 /* We are creating a volume inside a pre-existing container.
5465 * so st->sb is already set.
5466 */
5467 struct intel_super *super = st->sb;
f36a9ecd 5468 unsigned int sector_size = super->sector_size;
949c47a0 5469 struct imsm_super *mpb = super->anchor;
ba2de7ba 5470 struct intel_dev *dv;
c2c087e6
DW
5471 struct imsm_dev *dev;
5472 struct imsm_vol *vol;
5473 struct imsm_map *map;
5474 int idx = mpb->num_raid_devs;
5475 int i;
760365f9 5476 int namelen;
c2c087e6 5477 unsigned long long array_blocks;
2c092cad 5478 size_t size_old, size_new;
b53bfba6
TM
5479 unsigned int data_disks;
5480 unsigned long long size_per_member;
cdddbdbc 5481
88c32bb1 5482 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
7a862a02 5483 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
5484 return 0;
5485 }
5486
2c092cad
DW
5487 /* ensure the mpb is large enough for the new data */
5488 size_old = __le32_to_cpu(mpb->mpb_size);
5489 size_new = disks_to_mpb_size(info->nr_disks);
5490 if (size_new > size_old) {
5491 void *mpb_new;
f36a9ecd 5492 size_t size_round = ROUND_UP(size_new, sector_size);
2c092cad 5493
f36a9ecd 5494 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
e7b84f9d 5495 pr_err("could not allocate new mpb\n");
2c092cad
DW
5496 return 0;
5497 }
85337573
AO
5498 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5499 MIGR_REC_BUF_SECTORS*
5500 MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5501 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
5502 free(super->buf);
5503 free(super);
ea944c8f 5504 free(mpb_new);
8e59f3d8
AK
5505 return 0;
5506 }
2c092cad
DW
5507 memcpy(mpb_new, mpb, size_old);
5508 free(mpb);
5509 mpb = mpb_new;
949c47a0 5510 super->anchor = mpb_new;
2c092cad
DW
5511 mpb->mpb_size = __cpu_to_le32(size_new);
5512 memset(mpb_new + size_old, 0, size_round - size_old);
bbab0940 5513 super->len = size_round;
2c092cad 5514 }
bf5a934a 5515 super->current_vol = idx;
3960e579
DW
5516
5517 /* handle 'failed_disks' by either:
5518 * a) create dummy disk entries in the table if this the first
5519 * volume in the array. We add them here as this is the only
5520 * opportunity to add them. add_to_super_imsm_volume()
5521 * handles the non-failed disks and continues incrementing
5522 * mpb->num_disks.
5523 * b) validate that 'failed_disks' matches the current number
5524 * of missing disks if the container is populated
d23fe947 5525 */
3960e579 5526 if (super->current_vol == 0) {
d23fe947 5527 mpb->num_disks = 0;
3960e579
DW
5528 for (i = 0; i < info->failed_disks; i++) {
5529 struct imsm_disk *disk;
5530
5531 mpb->num_disks++;
5532 disk = __get_imsm_disk(mpb, i);
5533 disk->status = CONFIGURED_DISK | FAILED_DISK;
5534 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5535 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
5b975129 5536 "missing:%d", (__u8)i);
3960e579
DW
5537 }
5538 find_missing(super);
5539 } else {
5540 int missing = 0;
5541 struct dl *d;
5542
5543 for (d = super->missing; d; d = d->next)
5544 missing++;
5545 if (info->failed_disks > missing) {
e7b84f9d 5546 pr_err("unable to add 'missing' disk to container\n");
3960e579
DW
5547 return 0;
5548 }
5549 }
5a038140 5550
aa534678
DW
5551 if (!check_name(super, name, 0))
5552 return 0;
503975b9
N
5553 dv = xmalloc(sizeof(*dv));
5554 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
760365f9
JS
5555 /*
5556 * Explicitly allow truncating to not confuse gcc's
5557 * -Werror=stringop-truncation
5558 */
5559 namelen = min((int) strlen(name), MAX_RAID_SERIAL_LEN);
5560 memcpy(dev->volume, name, namelen);
e03640bd 5561 array_blocks = calc_array_size(info->level, info->raid_disks,
03bcbc65 5562 info->layout, info->chunk_size,
b53bfba6
TM
5563 s->size * BLOCKS_PER_KB);
5564 data_disks = get_data_disks(info->level, info->layout,
5565 info->raid_disks);
5566 array_blocks = round_size_to_mb(array_blocks, data_disks);
5567 size_per_member = array_blocks / data_disks;
979d38be 5568
fcc2c9da 5569 set_imsm_dev_size(dev, array_blocks);
1a2487c2 5570 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
5571 vol = &dev->vol;
5572 vol->migr_state = 0;
1484e727 5573 set_migr_type(dev, MIGR_INIT);
3960e579 5574 vol->dirty = !info->state;
4036e7ee 5575 set_vol_curr_migr_unit(dev, 0);
238c0a71 5576 map = get_imsm_map(dev, MAP_0);
5551b113 5577 set_pba_of_lba0(map, super->create_offset);
ef6ffade 5578 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 5579 map->failed_disk_num = ~0;
bf4442ab 5580 if (info->level > 0)
fffaf1ff
N
5581 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
5582 : IMSM_T_STATE_UNINITIALIZED);
bf4442ab
AK
5583 else
5584 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
5585 IMSM_T_STATE_NORMAL;
252d23c0 5586 map->ddf = 1;
ef6ffade
DW
5587
5588 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
5589 free(dev);
5590 free(dv);
7a862a02 5591 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
ef6ffade
DW
5592 return 0;
5593 }
81062a36
DW
5594
5595 map->raid_level = info->level;
1c275381 5596 if (info->level == 10)
c2c087e6 5597 map->raid_level = 1;
1c275381 5598 set_num_domains(map);
ef6ffade 5599
44490938
MD
5600 size_per_member += NUM_BLOCKS_DIRTY_STRIPE_REGION;
5601 set_blocks_per_member(map, info_to_blocks_per_member(info,
5602 size_per_member /
5603 BLOCKS_PER_KB));
5604
c2c087e6 5605 map->num_members = info->raid_disks;
1c275381 5606 update_num_data_stripes(map, array_blocks);
c2c087e6
DW
5607 for (i = 0; i < map->num_members; i++) {
5608 /* initialized in add_to_super */
4eb26970 5609 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 5610 }
949c47a0 5611 mpb->num_raid_devs++;
2a24dc1b
PB
5612 mpb->num_raid_devs_created++;
5613 dev->my_vol_raid_dev_num = mpb->num_raid_devs_created;
ba2de7ba 5614
b7580566 5615 if (s->consistency_policy <= CONSISTENCY_POLICY_RESYNC) {
c2462068 5616 dev->rwh_policy = RWH_MULTIPLE_OFF;
2432ce9b 5617 } else if (s->consistency_policy == CONSISTENCY_POLICY_PPL) {
c2462068 5618 dev->rwh_policy = RWH_MULTIPLE_DISTRIBUTED;
2432ce9b
AP
5619 } else {
5620 free(dev);
5621 free(dv);
5622 pr_err("imsm does not support consistency policy %s\n",
5623 map_num(consistency_policies, s->consistency_policy));
5624 return 0;
5625 }
5626
ba2de7ba
DW
5627 dv->dev = dev;
5628 dv->index = super->current_vol;
5629 dv->next = super->devlist;
5630 super->devlist = dv;
c2c087e6 5631
4d1313e9
DW
5632 imsm_update_version_info(super);
5633
c2c087e6 5634 return 1;
cdddbdbc
DW
5635}
5636
bf5a934a 5637static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
5308f117 5638 struct shape *s, char *name,
83cd1e97
N
5639 char *homehost, int *uuid,
5640 unsigned long long data_offset)
bf5a934a
DW
5641{
5642 /* This is primarily called by Create when creating a new array.
5643 * We will then get add_to_super called for each component, and then
5644 * write_init_super called to write it out to each device.
5645 * For IMSM, Create can create on fresh devices or on a pre-existing
5646 * array.
5647 * To create on a pre-existing array a different method will be called.
5648 * This one is just for fresh drives.
5649 */
5650 struct intel_super *super;
5651 struct imsm_super *mpb;
5652 size_t mpb_size;
4d1313e9 5653 char *version;
bf5a934a 5654
83cd1e97 5655 if (data_offset != INVALID_SECTORS) {
ed503f89 5656 pr_err("data-offset not supported by imsm\n");
83cd1e97
N
5657 return 0;
5658 }
5659
bf5a934a 5660 if (st->sb)
5308f117 5661 return init_super_imsm_volume(st, info, s, name, homehost, uuid,
83cd1e97 5662 data_offset);
e683ca88
DW
5663
5664 if (info)
5665 mpb_size = disks_to_mpb_size(info->nr_disks);
5666 else
f36a9ecd 5667 mpb_size = MAX_SECTOR_SIZE;
bf5a934a 5668
49133e57 5669 super = alloc_super();
f36a9ecd
PB
5670 if (super &&
5671 posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
8d67477f 5672 free_imsm(super);
e683ca88
DW
5673 super = NULL;
5674 }
5675 if (!super) {
1ade5cc1 5676 pr_err("could not allocate superblock\n");
bf5a934a
DW
5677 return 0;
5678 }
de44e46f
PB
5679 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5680 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5681 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8 5682 free(super->buf);
8d67477f 5683 free_imsm(super);
8e59f3d8
AK
5684 return 0;
5685 }
e683ca88 5686 memset(super->buf, 0, mpb_size);
ef649044 5687 mpb = super->buf;
e683ca88
DW
5688 mpb->mpb_size = __cpu_to_le32(mpb_size);
5689 st->sb = super;
5690
5691 if (info == NULL) {
5692 /* zeroing superblock */
5693 return 0;
5694 }
bf5a934a 5695
4d1313e9
DW
5696 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5697
5698 version = (char *) mpb->sig;
5699 strcpy(version, MPB_SIGNATURE);
5700 version += strlen(MPB_SIGNATURE);
5701 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 5702
bf5a934a
DW
5703 return 1;
5704}
5705
f2cc4f7d
AO
5706static int drive_validate_sector_size(struct intel_super *super, struct dl *dl)
5707{
5708 unsigned int member_sector_size;
5709
5710 if (dl->fd < 0) {
5711 pr_err("Invalid file descriptor for %s\n", dl->devname);
5712 return 0;
5713 }
5714
5715 if (!get_dev_sector_size(dl->fd, dl->devname, &member_sector_size))
5716 return 0;
5717 if (member_sector_size != super->sector_size)
5718 return 0;
5719 return 1;
5720}
5721
f20c3968 5722static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
5723 int fd, char *devname)
5724{
5725 struct intel_super *super = st->sb;
d23fe947 5726 struct imsm_super *mpb = super->anchor;
3960e579 5727 struct imsm_disk *_disk;
bf5a934a
DW
5728 struct imsm_dev *dev;
5729 struct imsm_map *map;
3960e579 5730 struct dl *dl, *df;
4eb26970 5731 int slot;
bf5a934a 5732
949c47a0 5733 dev = get_imsm_dev(super, super->current_vol);
238c0a71 5734 map = get_imsm_map(dev, MAP_0);
bf5a934a 5735
208933a7 5736 if (! (dk->state & (1<<MD_DISK_SYNC))) {
e7b84f9d 5737 pr_err("%s: Cannot add spare devices to IMSM volume\n",
208933a7
N
5738 devname);
5739 return 1;
5740 }
5741
efb30e7f
DW
5742 if (fd == -1) {
5743 /* we're doing autolayout so grab the pre-marked (in
5744 * validate_geometry) raid_disk
5745 */
5746 for (dl = super->disks; dl; dl = dl->next)
5747 if (dl->raiddisk == dk->raid_disk)
5748 break;
5749 } else {
5750 for (dl = super->disks; dl ; dl = dl->next)
5751 if (dl->major == dk->major &&
5752 dl->minor == dk->minor)
5753 break;
5754 }
d23fe947 5755
208933a7 5756 if (!dl) {
e7b84f9d 5757 pr_err("%s is not a member of the same container\n", devname);
f20c3968 5758 return 1;
208933a7 5759 }
bf5a934a 5760
59632db9
MZ
5761 if (mpb->num_disks == 0)
5762 if (!get_dev_sector_size(dl->fd, dl->devname,
5763 &super->sector_size))
5764 return 1;
5765
f2cc4f7d
AO
5766 if (!drive_validate_sector_size(super, dl)) {
5767 pr_err("Combining drives of different sector size in one volume is not allowed\n");
5768 return 1;
5769 }
5770
d23fe947
DW
5771 /* add a pristine spare to the metadata */
5772 if (dl->index < 0) {
5773 dl->index = super->anchor->num_disks;
5774 super->anchor->num_disks++;
5775 }
4eb26970
DW
5776 /* Check the device has not already been added */
5777 slot = get_imsm_disk_slot(map, dl->index);
5778 if (slot >= 0 &&
238c0a71 5779 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
e7b84f9d 5780 pr_err("%s has been included in this array twice\n",
4eb26970
DW
5781 devname);
5782 return 1;
5783 }
656b6b5a 5784 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 5785 dl->disk.status = CONFIGURED_DISK;
d23fe947 5786
3960e579
DW
5787 /* update size of 'missing' disks to be at least as large as the
5788 * largest acitve member (we only have dummy missing disks when
5789 * creating the first volume)
5790 */
5791 if (super->current_vol == 0) {
5792 for (df = super->missing; df; df = df->next) {
5551b113
CA
5793 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5794 set_total_blocks(&df->disk, total_blocks(&dl->disk));
3960e579
DW
5795 _disk = __get_imsm_disk(mpb, df->index);
5796 *_disk = df->disk;
5797 }
5798 }
5799
5800 /* refresh unset/failed slots to point to valid 'missing' entries */
5801 for (df = super->missing; df; df = df->next)
5802 for (slot = 0; slot < mpb->num_disks; slot++) {
238c0a71 5803 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
3960e579
DW
5804
5805 if ((ord & IMSM_ORD_REBUILD) == 0)
5806 continue;
5807 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
1ace8403 5808 if (is_gen_migration(dev)) {
238c0a71
AK
5809 struct imsm_map *map2 = get_imsm_map(dev,
5810 MAP_1);
0a108d63 5811 int slot2 = get_imsm_disk_slot(map2, df->index);
089f9d79 5812 if (slot2 < map2->num_members && slot2 >= 0) {
1ace8403 5813 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
238c0a71
AK
5814 slot2,
5815 MAP_1);
1ace8403
AK
5816 if ((unsigned)df->index ==
5817 ord_to_idx(ord2))
5818 set_imsm_ord_tbl_ent(map2,
0a108d63 5819 slot2,
1ace8403
AK
5820 df->index |
5821 IMSM_ORD_REBUILD);
5822 }
5823 }
3960e579
DW
5824 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5825 break;
5826 }
5827
d23fe947
DW
5828 /* if we are creating the first raid device update the family number */
5829 if (super->current_vol == 0) {
5830 __u32 sum;
5831 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 5832
3960e579 5833 _disk = __get_imsm_disk(mpb, dl->index);
791b666a 5834 if (!_dev || !_disk) {
e7b84f9d 5835 pr_err("BUG mpb setup error\n");
791b666a
AW
5836 return 1;
5837 }
d23fe947
DW
5838 *_dev = *dev;
5839 *_disk = dl->disk;
148acb7b
DW
5840 sum = random32();
5841 sum += __gen_imsm_checksum(mpb);
d23fe947 5842 mpb->family_num = __cpu_to_le32(sum);
148acb7b 5843 mpb->orig_family_num = mpb->family_num;
e48aed3c 5844 mpb->creation_time = __cpu_to_le64((__u64)time(NULL));
d23fe947 5845 }
ca0748fa 5846 super->current_disk = dl;
f20c3968 5847 return 0;
bf5a934a
DW
5848}
5849
a8619d23
AK
5850/* mark_spare()
5851 * Function marks disk as spare and restores disk serial
5852 * in case it was previously marked as failed by takeover operation
5853 * reruns:
5854 * -1 : critical error
5855 * 0 : disk is marked as spare but serial is not set
5856 * 1 : success
5857 */
5858int mark_spare(struct dl *disk)
5859{
5860 __u8 serial[MAX_RAID_SERIAL_LEN];
5861 int ret_val = -1;
5862
5863 if (!disk)
5864 return ret_val;
5865
5866 ret_val = 0;
6da53c0e 5867 if (!imsm_read_serial(disk->fd, NULL, serial, MAX_RAID_SERIAL_LEN)) {
a8619d23
AK
5868 /* Restore disk serial number, because takeover marks disk
5869 * as failed and adds to serial ':0' before it becomes
5870 * a spare disk.
5871 */
5872 serialcpy(disk->serial, serial);
5873 serialcpy(disk->disk.serial, serial);
5874 ret_val = 1;
5875 }
5876 disk->disk.status = SPARE_DISK;
5877 disk->index = -1;
5878
5879 return ret_val;
5880}
88654014 5881
12724c01
TM
5882
5883static int write_super_imsm_spare(struct intel_super *super, struct dl *d);
5884
f20c3968 5885static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
72ca9bcf
N
5886 int fd, char *devname,
5887 unsigned long long data_offset)
cdddbdbc 5888{
c2c087e6 5889 struct intel_super *super = st->sb;
c2c087e6
DW
5890 struct dl *dd;
5891 unsigned long long size;
fa7bb6f8 5892 unsigned int member_sector_size;
f2f27e63 5893 __u32 id;
c2c087e6
DW
5894 int rv;
5895 struct stat stb;
5896
88654014
LM
5897 /* If we are on an RAID enabled platform check that the disk is
5898 * attached to the raid controller.
5899 * We do not need to test disks attachment for container based additions,
5900 * they shall be already tested when container was created/assembled.
88c32bb1 5901 */
d424212e 5902 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5903 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
5904 if (rv != 0) {
5905 dprintf("capability: %p fd: %d ret: %d\n",
5906 super->orom, fd, rv);
5907 return 1;
88c32bb1
DW
5908 }
5909
f20c3968
DW
5910 if (super->current_vol >= 0)
5911 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 5912
c2c087e6 5913 fstat(fd, &stb);
503975b9 5914 dd = xcalloc(sizeof(*dd), 1);
c2c087e6
DW
5915 dd->major = major(stb.st_rdev);
5916 dd->minor = minor(stb.st_rdev);
503975b9 5917 dd->devname = devname ? xstrdup(devname) : NULL;
c2c087e6 5918 dd->fd = fd;
689c9bf3 5919 dd->e = NULL;
1a64be56 5920 dd->action = DISK_ADD;
6da53c0e 5921 rv = imsm_read_serial(fd, devname, dd->serial, MAX_RAID_SERIAL_LEN);
32ba9157 5922 if (rv) {
e7b84f9d 5923 pr_err("failed to retrieve scsi serial, aborting\n");
3a85bf0e 5924 __free_imsm_disk(dd, 0);
0030e8d6 5925 abort();
c2c087e6 5926 }
7c798f87 5927
20bee0f8
PB
5928 if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
5929 (super->hba->type == SYS_DEV_VMD))) {
5930 int i;
7c798f87
MT
5931 char cntrl_path[PATH_MAX];
5932 char *cntrl_name;
5933 char pci_dev_path[PATH_MAX];
20bee0f8 5934
7c798f87
MT
5935 if (!diskfd_to_devpath(fd, 2, pci_dev_path) ||
5936 !diskfd_to_devpath(fd, 1, cntrl_path)) {
8662f92d 5937 pr_err("failed to get dev paths, aborting\n");
3a85bf0e 5938 __free_imsm_disk(dd, 0);
a8f3cfd5
MT
5939 return 1;
5940 }
5941
7c798f87
MT
5942 cntrl_name = basename(cntrl_path);
5943 if (is_multipath_nvme(fd))
5944 pr_err("%s controller supports Multi-Path I/O, Intel (R) VROC does not support multipathing\n",
5945 cntrl_name);
5946
5947 if (devpath_to_vendor(pci_dev_path) == 0x8086) {
20bee0f8
PB
5948 /*
5949 * If Intel's NVMe drive has serial ended with
5950 * "-A","-B","-1" or "-2" it means that this is "x8"
5951 * device (double drive on single PCIe card).
5952 * User should be warned about potential data loss.
5953 */
5954 for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
5955 /* Skip empty character at the end */
5956 if (dd->serial[i] == 0)
5957 continue;
5958
5959 if (((dd->serial[i] == 'A') ||
5960 (dd->serial[i] == 'B') ||
5961 (dd->serial[i] == '1') ||
5962 (dd->serial[i] == '2')) &&
5963 (dd->serial[i-1] == '-'))
5964 pr_err("\tThe action you are about to take may put your data at risk.\n"
5965 "\tPlease note that x8 devices may consist of two separate x4 devices "
5966 "located on a single PCIe port.\n"
5967 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
5968 break;
5969 }
32716c51
PB
5970 } else if (super->hba->type == SYS_DEV_VMD && super->orom &&
5971 !imsm_orom_has_tpv_support(super->orom)) {
5972 pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n"
8b751247 5973 "\tPlease refer to Intel(R) RSTe/VROC user guide.\n");
3a85bf0e 5974 __free_imsm_disk(dd, 0);
32716c51 5975 return 1;
20bee0f8
PB
5976 }
5977 }
c2c087e6 5978
c2c087e6 5979 get_dev_size(fd, NULL, &size);
3a85bf0e
MG
5980 if (!get_dev_sector_size(fd, NULL, &member_sector_size)) {
5981 __free_imsm_disk(dd, 0);
aec01630 5982 return 1;
3a85bf0e 5983 }
fa7bb6f8
PB
5984
5985 if (super->sector_size == 0) {
5986 /* this a first device, so sector_size is not set yet */
5987 super->sector_size = member_sector_size;
fa7bb6f8
PB
5988 }
5989
71e5411e 5990 /* clear migr_rec when adding disk to container */
85337573
AO
5991 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
5992 if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*member_sector_size,
de44e46f 5993 SEEK_SET) >= 0) {
466070ad 5994 if ((unsigned int)write(fd, super->migr_rec_buf,
85337573
AO
5995 MIGR_REC_BUF_SECTORS*member_sector_size) !=
5996 MIGR_REC_BUF_SECTORS*member_sector_size)
71e5411e
PB
5997 perror("Write migr_rec failed");
5998 }
5999
c2c087e6 6000 size /= 512;
1f24f035 6001 serialcpy(dd->disk.serial, dd->serial);
5551b113
CA
6002 set_total_blocks(&dd->disk, size);
6003 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
6004 struct imsm_super *mpb = super->anchor;
6005 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
6006 }
a8619d23 6007 mark_spare(dd);
c2c087e6 6008 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 6009 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 6010 else
b9f594fe 6011 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
6012
6013 if (st->update_tail) {
1a64be56
LM
6014 dd->next = super->disk_mgmt_list;
6015 super->disk_mgmt_list = dd;
43dad3d6 6016 } else {
12724c01
TM
6017 /* this is called outside of mdmon
6018 * write initial spare metadata
6019 * mdmon will overwrite it.
6020 */
43dad3d6
DW
6021 dd->next = super->disks;
6022 super->disks = dd;
12724c01 6023 write_super_imsm_spare(super, dd);
43dad3d6 6024 }
f20c3968
DW
6025
6026 return 0;
cdddbdbc
DW
6027}
6028
1a64be56
LM
6029static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
6030{
6031 struct intel_super *super = st->sb;
6032 struct dl *dd;
6033
6034 /* remove from super works only in mdmon - for communication
6035 * manager - monitor. Check if communication memory buffer
6036 * is prepared.
6037 */
6038 if (!st->update_tail) {
1ade5cc1 6039 pr_err("shall be used in mdmon context only\n");
1a64be56
LM
6040 return 1;
6041 }
503975b9 6042 dd = xcalloc(1, sizeof(*dd));
1a64be56
LM
6043 dd->major = dk->major;
6044 dd->minor = dk->minor;
1a64be56 6045 dd->fd = -1;
a8619d23 6046 mark_spare(dd);
1a64be56
LM
6047 dd->action = DISK_REMOVE;
6048
6049 dd->next = super->disk_mgmt_list;
6050 super->disk_mgmt_list = dd;
6051
1a64be56
LM
6052 return 0;
6053}
6054
f796af5d
DW
6055static int store_imsm_mpb(int fd, struct imsm_super *mpb);
6056
6057static union {
f36a9ecd 6058 char buf[MAX_SECTOR_SIZE];
f796af5d 6059 struct imsm_super anchor;
f36a9ecd 6060} spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
c2c087e6 6061
12724c01
TM
6062
6063static int write_super_imsm_spare(struct intel_super *super, struct dl *d)
d23fe947 6064{
d23fe947 6065 struct imsm_super *mpb = super->anchor;
f796af5d 6066 struct imsm_super *spare = &spare_record.anchor;
d23fe947 6067 __u32 sum;
12724c01
TM
6068
6069 if (d->index != -1)
6070 return 1;
d23fe947 6071
68641cdb
JS
6072 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
6073 spare->generation_num = __cpu_to_le32(1UL);
f796af5d 6074 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
68641cdb
JS
6075 spare->num_disks = 1;
6076 spare->num_raid_devs = 0;
6077 spare->cache_size = mpb->cache_size;
6078 spare->pwr_cycle_count = __cpu_to_le32(1);
f796af5d
DW
6079
6080 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
6081 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947 6082
12724c01
TM
6083 spare->disk[0] = d->disk;
6084 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
6085 spare->attributes |= MPB_ATTRIB_2TB_DISK;
6086
6087 if (super->sector_size == 4096)
6088 convert_to_4k_imsm_disk(&spare->disk[0]);
d23fe947 6089
12724c01
TM
6090 sum = __gen_imsm_checksum(spare);
6091 spare->family_num = __cpu_to_le32(sum);
6092 spare->orig_family_num = 0;
6093 sum = __gen_imsm_checksum(spare);
6094 spare->check_sum = __cpu_to_le32(sum);
027c374f 6095
12724c01
TM
6096 if (store_imsm_mpb(d->fd, spare)) {
6097 pr_err("failed for device %d:%d %s\n",
6098 d->major, d->minor, strerror(errno));
6099 return 1;
6100 }
6101
6102 return 0;
6103}
6104/* spare records have their own family number and do not have any defined raid
6105 * devices
6106 */
6107static int write_super_imsm_spares(struct intel_super *super, int doclose)
6108{
6109 struct dl *d;
f36a9ecd 6110
12724c01
TM
6111 for (d = super->disks; d; d = d->next) {
6112 if (d->index != -1)
6113 continue;
d23fe947 6114
12724c01 6115 if (write_super_imsm_spare(super, d))
e74255d9 6116 return 1;
12724c01 6117
d23fe947
DW
6118 if (doclose) {
6119 close(d->fd);
6120 d->fd = -1;
6121 }
6122 }
6123
e74255d9 6124 return 0;
d23fe947
DW
6125}
6126
36988a3d 6127static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 6128{
36988a3d 6129 struct intel_super *super = st->sb;
f36a9ecd 6130 unsigned int sector_size = super->sector_size;
949c47a0 6131 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
6132 struct dl *d;
6133 __u32 generation;
6134 __u32 sum;
d23fe947 6135 int spares = 0;
949c47a0 6136 int i;
a48ac0a8 6137 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 6138 int num_disks = 0;
146c6260 6139 int clear_migration_record = 1;
bbab0940 6140 __u32 bbm_log_size;
cdddbdbc 6141
c2c087e6
DW
6142 /* 'generation' is incremented everytime the metadata is written */
6143 generation = __le32_to_cpu(mpb->generation_num);
6144 generation++;
6145 mpb->generation_num = __cpu_to_le32(generation);
6146
148acb7b
DW
6147 /* fix up cases where previous mdadm releases failed to set
6148 * orig_family_num
6149 */
6150 if (mpb->orig_family_num == 0)
6151 mpb->orig_family_num = mpb->family_num;
6152
d23fe947 6153 for (d = super->disks; d; d = d->next) {
8796fdc4 6154 if (d->index == -1)
d23fe947 6155 spares++;
36988a3d 6156 else {
d23fe947 6157 mpb->disk[d->index] = d->disk;
36988a3d
AK
6158 num_disks++;
6159 }
d23fe947 6160 }
36988a3d 6161 for (d = super->missing; d; d = d->next) {
47ee5a45 6162 mpb->disk[d->index] = d->disk;
36988a3d
AK
6163 num_disks++;
6164 }
6165 mpb->num_disks = num_disks;
6166 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 6167
949c47a0
DW
6168 for (i = 0; i < mpb->num_raid_devs; i++) {
6169 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
6170 struct imsm_dev *dev2 = get_imsm_dev(super, i);
6171 if (dev && dev2) {
6172 imsm_copy_dev(dev, dev2);
6173 mpb_size += sizeof_imsm_dev(dev, 0);
6174 }
146c6260
AK
6175 if (is_gen_migration(dev2))
6176 clear_migration_record = 0;
949c47a0 6177 }
bbab0940
TM
6178
6179 bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
6180
6181 if (bbm_log_size) {
6182 memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
6183 mpb->attributes |= MPB_ATTRIB_BBM;
6184 } else
6185 mpb->attributes &= ~MPB_ATTRIB_BBM;
6186
6187 super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
6188 mpb_size += bbm_log_size;
a48ac0a8 6189 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 6190
bbab0940
TM
6191#ifdef DEBUG
6192 assert(super->len == 0 || mpb_size <= super->len);
6193#endif
6194
c2c087e6 6195 /* recalculate checksum */
949c47a0 6196 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
6197 mpb->check_sum = __cpu_to_le32(sum);
6198
51d83f5d
AK
6199 if (super->clean_migration_record_by_mdmon) {
6200 clear_migration_record = 1;
6201 super->clean_migration_record_by_mdmon = 0;
6202 }
146c6260 6203 if (clear_migration_record)
de44e46f 6204 memset(super->migr_rec_buf, 0,
85337573 6205 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
146c6260 6206
f36a9ecd
PB
6207 if (sector_size == 4096)
6208 convert_to_4k(super);
6209
d23fe947 6210 /* write the mpb for disks that compose raid devices */
c2c087e6 6211 for (d = super->disks; d ; d = d->next) {
86c54047 6212 if (d->index < 0 || is_failed(&d->disk))
d23fe947 6213 continue;
30602f53 6214
146c6260
AK
6215 if (clear_migration_record) {
6216 unsigned long long dsize;
6217
6218 get_dev_size(d->fd, NULL, &dsize);
de44e46f
PB
6219 if (lseek64(d->fd, dsize - sector_size,
6220 SEEK_SET) >= 0) {
466070ad
PB
6221 if ((unsigned int)write(d->fd,
6222 super->migr_rec_buf,
de44e46f
PB
6223 MIGR_REC_BUF_SECTORS*sector_size) !=
6224 MIGR_REC_BUF_SECTORS*sector_size)
9e2d750d 6225 perror("Write migr_rec failed");
146c6260
AK
6226 }
6227 }
51d83f5d
AK
6228
6229 if (store_imsm_mpb(d->fd, mpb))
6230 fprintf(stderr,
1ade5cc1
N
6231 "failed for device %d:%d (fd: %d)%s\n",
6232 d->major, d->minor,
51d83f5d
AK
6233 d->fd, strerror(errno));
6234
c2c087e6
DW
6235 if (doclose) {
6236 close(d->fd);
6237 d->fd = -1;
6238 }
6239 }
6240
d23fe947
DW
6241 if (spares)
6242 return write_super_imsm_spares(super, doclose);
6243
e74255d9 6244 return 0;
c2c087e6
DW
6245}
6246
9b1fb677 6247static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
6248{
6249 size_t len;
6250 struct imsm_update_create_array *u;
6251 struct intel_super *super = st->sb;
9b1fb677 6252 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
238c0a71 6253 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
6254 struct disk_info *inf;
6255 struct imsm_disk *disk;
6256 int i;
43dad3d6 6257
54c2c1ea
DW
6258 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
6259 sizeof(*inf) * map->num_members;
503975b9 6260 u = xmalloc(len);
43dad3d6 6261 u->type = update_create_array;
9b1fb677 6262 u->dev_idx = dev_idx;
43dad3d6 6263 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
6264 inf = get_disk_info(u);
6265 for (i = 0; i < map->num_members; i++) {
238c0a71 6266 int idx = get_imsm_disk_idx(dev, i, MAP_X);
9b1fb677 6267
54c2c1ea 6268 disk = get_imsm_disk(super, idx);
1ca5c8e0
N
6269 if (!disk)
6270 disk = get_imsm_missing(super, idx);
54c2c1ea
DW
6271 serialcpy(inf[i].serial, disk->serial);
6272 }
43dad3d6
DW
6273 append_metadata_update(st, u, len);
6274
6275 return 0;
6276}
6277
1a64be56 6278static int mgmt_disk(struct supertype *st)
43dad3d6
DW
6279{
6280 struct intel_super *super = st->sb;
6281 size_t len;
1a64be56 6282 struct imsm_update_add_remove_disk *u;
43dad3d6 6283
1a64be56 6284 if (!super->disk_mgmt_list)
43dad3d6
DW
6285 return 0;
6286
6287 len = sizeof(*u);
503975b9 6288 u = xmalloc(len);
1a64be56 6289 u->type = update_add_remove_disk;
43dad3d6
DW
6290 append_metadata_update(st, u, len);
6291
6292 return 0;
6293}
2432ce9b
AP
6294
6295__u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len);
6296
e397cefe
AP
6297static int write_ppl_header(unsigned long long ppl_sector, int fd, void *buf)
6298{
6299 struct ppl_header *ppl_hdr = buf;
6300 int ret;
6301
6302 ppl_hdr->checksum = __cpu_to_le32(~crc32c_le(~0, buf, PPL_HEADER_SIZE));
6303
6304 if (lseek64(fd, ppl_sector * 512, SEEK_SET) < 0) {
6305 ret = -errno;
6306 perror("Failed to seek to PPL header location");
6307 return ret;
6308 }
6309
6310 if (write(fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6311 ret = -errno;
6312 perror("Write PPL header failed");
6313 return ret;
6314 }
6315
6316 fsync(fd);
6317
6318 return 0;
6319}
6320
2432ce9b
AP
6321static int write_init_ppl_imsm(struct supertype *st, struct mdinfo *info, int fd)
6322{
6323 struct intel_super *super = st->sb;
6324 void *buf;
6325 struct ppl_header *ppl_hdr;
6326 int ret;
6327
b2514242
PB
6328 /* first clear entire ppl space */
6329 ret = zero_disk_range(fd, info->ppl_sector, info->ppl_size);
6330 if (ret)
6331 return ret;
6332
6333 ret = posix_memalign(&buf, MAX_SECTOR_SIZE, PPL_HEADER_SIZE);
2432ce9b
AP
6334 if (ret) {
6335 pr_err("Failed to allocate PPL header buffer\n");
e397cefe 6336 return -ret;
2432ce9b
AP
6337 }
6338
6339 memset(buf, 0, PPL_HEADER_SIZE);
6340 ppl_hdr = buf;
6341 memset(ppl_hdr->reserved, 0xff, PPL_HDR_RESERVED);
6342 ppl_hdr->signature = __cpu_to_le32(super->anchor->orig_family_num);
b23d0750
AP
6343
6344 if (info->mismatch_cnt) {
6345 /*
6346 * We are overwriting an invalid ppl. Make one entry with wrong
6347 * checksum to prevent the kernel from skipping resync.
6348 */
6349 ppl_hdr->entries_count = __cpu_to_le32(1);
6350 ppl_hdr->entries[0].checksum = ~0;
6351 }
6352
e397cefe 6353 ret = write_ppl_header(info->ppl_sector, fd, buf);
2432ce9b
AP
6354
6355 free(buf);
6356 return ret;
6357}
6358
e397cefe
AP
6359static int is_rebuilding(struct imsm_dev *dev);
6360
2432ce9b
AP
6361static int validate_ppl_imsm(struct supertype *st, struct mdinfo *info,
6362 struct mdinfo *disk)
6363{
6364 struct intel_super *super = st->sb;
6365 struct dl *d;
e397cefe 6366 void *buf_orig, *buf, *buf_prev = NULL;
2432ce9b 6367 int ret = 0;
e397cefe 6368 struct ppl_header *ppl_hdr = NULL;
2432ce9b
AP
6369 __u32 crc;
6370 struct imsm_dev *dev;
2432ce9b 6371 __u32 idx;
44b6b876
PB
6372 unsigned int i;
6373 unsigned long long ppl_offset = 0;
6374 unsigned long long prev_gen_num = 0;
2432ce9b
AP
6375
6376 if (disk->disk.raid_disk < 0)
6377 return 0;
6378
2432ce9b 6379 dev = get_imsm_dev(super, info->container_member);
2fc0fc63 6380 idx = get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_0);
2432ce9b
AP
6381 d = get_imsm_dl_disk(super, idx);
6382
6383 if (!d || d->index < 0 || is_failed(&d->disk))
e397cefe
AP
6384 return 0;
6385
6386 if (posix_memalign(&buf_orig, MAX_SECTOR_SIZE, PPL_HEADER_SIZE * 2)) {
6387 pr_err("Failed to allocate PPL header buffer\n");
6388 return -1;
6389 }
6390 buf = buf_orig;
2432ce9b 6391
44b6b876
PB
6392 ret = 1;
6393 while (ppl_offset < MULTIPLE_PPL_AREA_SIZE_IMSM) {
e397cefe
AP
6394 void *tmp;
6395
44b6b876 6396 dprintf("Checking potential PPL at offset: %llu\n", ppl_offset);
2432ce9b 6397
44b6b876
PB
6398 if (lseek64(d->fd, info->ppl_sector * 512 + ppl_offset,
6399 SEEK_SET) < 0) {
6400 perror("Failed to seek to PPL header location");
6401 ret = -1;
e397cefe 6402 break;
44b6b876 6403 }
2432ce9b 6404
44b6b876
PB
6405 if (read(d->fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6406 perror("Read PPL header failed");
6407 ret = -1;
e397cefe 6408 break;
44b6b876 6409 }
2432ce9b 6410
44b6b876 6411 ppl_hdr = buf;
2432ce9b 6412
44b6b876
PB
6413 crc = __le32_to_cpu(ppl_hdr->checksum);
6414 ppl_hdr->checksum = 0;
6415
6416 if (crc != ~crc32c_le(~0, buf, PPL_HEADER_SIZE)) {
6417 dprintf("Wrong PPL header checksum on %s\n",
6418 d->devname);
e397cefe 6419 break;
44b6b876
PB
6420 }
6421
6422 if (prev_gen_num > __le64_to_cpu(ppl_hdr->generation)) {
6423 /* previous was newest, it was already checked */
e397cefe 6424 break;
44b6b876
PB
6425 }
6426
6427 if ((__le32_to_cpu(ppl_hdr->signature) !=
6428 super->anchor->orig_family_num)) {
6429 dprintf("Wrong PPL header signature on %s\n",
6430 d->devname);
6431 ret = 1;
e397cefe 6432 break;
44b6b876
PB
6433 }
6434
6435 ret = 0;
6436 prev_gen_num = __le64_to_cpu(ppl_hdr->generation);
2432ce9b 6437
44b6b876
PB
6438 ppl_offset += PPL_HEADER_SIZE;
6439 for (i = 0; i < __le32_to_cpu(ppl_hdr->entries_count); i++)
6440 ppl_offset +=
6441 __le32_to_cpu(ppl_hdr->entries[i].pp_size);
e397cefe
AP
6442
6443 if (!buf_prev)
6444 buf_prev = buf + PPL_HEADER_SIZE;
6445 tmp = buf_prev;
6446 buf_prev = buf;
6447 buf = tmp;
2432ce9b
AP
6448 }
6449
e397cefe
AP
6450 if (buf_prev) {
6451 buf = buf_prev;
6452 ppl_hdr = buf_prev;
6453 }
2432ce9b 6454
54148aba
PB
6455 /*
6456 * Update metadata to use mutliple PPLs area (1MB).
6457 * This is done once for all RAID members
6458 */
6459 if (info->consistency_policy == CONSISTENCY_POLICY_PPL &&
6460 info->ppl_size != (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9)) {
6461 char subarray[20];
6462 struct mdinfo *member_dev;
6463
6464 sprintf(subarray, "%d", info->container_member);
6465
6466 if (mdmon_running(st->container_devnm))
6467 st->update_tail = &st->updates;
6468
6469 if (st->ss->update_subarray(st, subarray, "ppl", NULL)) {
6470 pr_err("Failed to update subarray %s\n",
6471 subarray);
6472 } else {
6473 if (st->update_tail)
6474 flush_metadata_updates(st);
6475 else
6476 st->ss->sync_metadata(st);
6477 info->ppl_size = (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6478 for (member_dev = info->devs; member_dev;
6479 member_dev = member_dev->next)
6480 member_dev->ppl_size =
6481 (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6482 }
6483 }
6484
b23d0750 6485 if (ret == 1) {
2fc0fc63
AP
6486 struct imsm_map *map = get_imsm_map(dev, MAP_X);
6487
50b9c10d
PB
6488 if (map->map_state == IMSM_T_STATE_UNINITIALIZED ||
6489 (map->map_state == IMSM_T_STATE_NORMAL &&
2ec9d182 6490 !(dev->vol.dirty & RAIDVOL_DIRTY)) ||
e397cefe 6491 (is_rebuilding(dev) &&
4036e7ee 6492 vol_curr_migr_unit(dev) == 0 &&
2ec9d182 6493 get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_1) != idx))
b23d0750
AP
6494 ret = st->ss->write_init_ppl(st, info, d->fd);
6495 else
6496 info->mismatch_cnt++;
e397cefe
AP
6497 } else if (ret == 0 &&
6498 ppl_hdr->entries_count == 0 &&
6499 is_rebuilding(dev) &&
6500 info->resync_start == 0) {
6501 /*
6502 * The header has no entries - add a single empty entry and
6503 * rewrite the header to prevent the kernel from going into
6504 * resync after an interrupted rebuild.
6505 */
6506 ppl_hdr->entries_count = __cpu_to_le32(1);
6507 ret = write_ppl_header(info->ppl_sector, d->fd, buf);
b23d0750 6508 }
2432ce9b 6509
e397cefe
AP
6510 free(buf_orig);
6511
2432ce9b
AP
6512 return ret;
6513}
6514
2432ce9b
AP
6515static int write_init_ppl_imsm_all(struct supertype *st, struct mdinfo *info)
6516{
6517 struct intel_super *super = st->sb;
6518 struct dl *d;
6519 int ret = 0;
6520
6521 if (info->consistency_policy != CONSISTENCY_POLICY_PPL ||
6522 info->array.level != 5)
6523 return 0;
6524
6525 for (d = super->disks; d ; d = d->next) {
6526 if (d->index < 0 || is_failed(&d->disk))
6527 continue;
6528
6529 ret = st->ss->write_init_ppl(st, info, d->fd);
6530 if (ret)
6531 break;
6532 }
6533
6534 return ret;
6535}
43dad3d6 6536
fbc42556
JR
6537/*******************************************************************************
6538 * Function: write_init_bitmap_imsm_vol
6539 * Description: Write a bitmap header and prepares the area for the bitmap.
6540 * Parameters:
6541 * st : supertype information
6542 * vol_idx : the volume index to use
6543 *
6544 * Returns:
6545 * 0 : success
6546 * -1 : fail
6547 ******************************************************************************/
6548static int write_init_bitmap_imsm_vol(struct supertype *st, int vol_idx)
6549{
6550 struct intel_super *super = st->sb;
6551 int prev_current_vol = super->current_vol;
6552 struct dl *d;
6553 int ret = 0;
6554
6555 super->current_vol = vol_idx;
6556 for (d = super->disks; d; d = d->next) {
6557 if (d->index < 0 || is_failed(&d->disk))
6558 continue;
6559 ret = st->ss->write_bitmap(st, d->fd, NoUpdate);
6560 if (ret)
6561 break;
6562 }
6563 super->current_vol = prev_current_vol;
6564 return ret;
6565}
6566
6567/*******************************************************************************
6568 * Function: write_init_bitmap_imsm_all
6569 * Description: Write a bitmap header and prepares the area for the bitmap.
6570 * Operation is executed for volumes with CONSISTENCY_POLICY_BITMAP.
6571 * Parameters:
6572 * st : supertype information
6573 * info : info about the volume where the bitmap should be written
6574 * vol_idx : the volume index to use
6575 *
6576 * Returns:
6577 * 0 : success
6578 * -1 : fail
6579 ******************************************************************************/
6580static int write_init_bitmap_imsm_all(struct supertype *st, struct mdinfo *info,
6581 int vol_idx)
6582{
6583 int ret = 0;
6584
6585 if (info && (info->consistency_policy == CONSISTENCY_POLICY_BITMAP))
6586 ret = write_init_bitmap_imsm_vol(st, vol_idx);
6587
6588 return ret;
6589}
6590
c2c087e6
DW
6591static int write_init_super_imsm(struct supertype *st)
6592{
9b1fb677
DW
6593 struct intel_super *super = st->sb;
6594 int current_vol = super->current_vol;
2432ce9b
AP
6595 int rv = 0;
6596 struct mdinfo info;
6597
6598 getinfo_super_imsm(st, &info, NULL);
9b1fb677
DW
6599
6600 /* we are done with current_vol reset it to point st at the container */
6601 super->current_vol = -1;
6602
8273f55e 6603 if (st->update_tail) {
43dad3d6
DW
6604 /* queue the recently created array / added disk
6605 * as a metadata update */
8273f55e 6606
43dad3d6 6607 /* determine if we are creating a volume or adding a disk */
9b1fb677 6608 if (current_vol < 0) {
1a64be56
LM
6609 /* in the mgmt (add/remove) disk case we are running
6610 * in mdmon context, so don't close fd's
43dad3d6 6611 */
2432ce9b
AP
6612 rv = mgmt_disk(st);
6613 } else {
fbc42556 6614 /* adding the second volume to the array */
2432ce9b 6615 rv = write_init_ppl_imsm_all(st, &info);
fbc42556
JR
6616 if (!rv)
6617 rv = write_init_bitmap_imsm_all(st, &info, current_vol);
2432ce9b
AP
6618 if (!rv)
6619 rv = create_array(st, current_vol);
6620 }
d682f344
N
6621 } else {
6622 struct dl *d;
6623 for (d = super->disks; d; d = d->next)
ba728be7 6624 Kill(d->devname, NULL, 0, -1, 1);
fbc42556 6625 if (current_vol >= 0) {
2432ce9b 6626 rv = write_init_ppl_imsm_all(st, &info);
fbc42556
JR
6627 if (!rv)
6628 rv = write_init_bitmap_imsm_all(st, &info, current_vol);
6629 }
6630
2432ce9b
AP
6631 if (!rv)
6632 rv = write_super_imsm(st, 1);
d682f344 6633 }
2432ce9b
AP
6634
6635 return rv;
cdddbdbc
DW
6636}
6637
e683ca88 6638static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 6639{
e683ca88
DW
6640 struct intel_super *super = st->sb;
6641 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 6642
e683ca88 6643 if (!mpb)
ad97895e
DW
6644 return 1;
6645
f36a9ecd
PB
6646 if (super->sector_size == 4096)
6647 convert_to_4k(super);
e683ca88 6648 return store_imsm_mpb(fd, mpb);
cdddbdbc
DW
6649}
6650
cdddbdbc 6651static int validate_geometry_imsm_container(struct supertype *st, int level,
1f5d54a0 6652 int raiddisks,
af4348dd
N
6653 unsigned long long data_offset,
6654 char *dev,
2c514b71
NB
6655 unsigned long long *freesize,
6656 int verbose)
cdddbdbc 6657{
c2c087e6
DW
6658 int fd;
6659 unsigned long long ldsize;
8662f92d 6660 struct intel_super *super = NULL;
f2f5c343 6661 int rv = 0;
cdddbdbc 6662
c2c087e6
DW
6663 if (level != LEVEL_CONTAINER)
6664 return 0;
6665 if (!dev)
6666 return 1;
6667
dca80fcd 6668 fd = dev_open(dev, O_RDONLY|O_EXCL);
c2c087e6 6669 if (fd < 0) {
ba728be7 6670 if (verbose > 0)
e7b84f9d 6671 pr_err("imsm: Cannot open %s: %s\n",
2c514b71 6672 dev, strerror(errno));
c2c087e6
DW
6673 return 0;
6674 }
8662f92d
MT
6675 if (!get_dev_size(fd, dev, &ldsize))
6676 goto exit;
f2f5c343
LM
6677
6678 /* capabilities retrieve could be possible
6679 * note that there is no fd for the disks in array.
6680 */
6681 super = alloc_super();
8662f92d
MT
6682 if (!super)
6683 goto exit;
6684
6685 if (!get_dev_sector_size(fd, NULL, &super->sector_size))
6686 goto exit;
fa7bb6f8 6687
ba728be7 6688 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
f2f5c343
LM
6689 if (rv != 0) {
6690#if DEBUG
6691 char str[256];
6692 fd2devname(fd, str);
1ade5cc1 6693 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
f2f5c343
LM
6694 fd, str, super->orom, rv, raiddisks);
6695#endif
6696 /* no orom/efi or non-intel hba of the disk */
8662f92d
MT
6697 rv = 0;
6698 goto exit;
f2f5c343 6699 }
9126b9a8
CA
6700 if (super->orom) {
6701 if (raiddisks > super->orom->tds) {
6702 if (verbose)
7a862a02 6703 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
9126b9a8 6704 raiddisks, super->orom->tds);
8662f92d 6705 goto exit;
9126b9a8
CA
6706 }
6707 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
6708 (ldsize >> 9) >> 32 > 0) {
6709 if (verbose)
e7b84f9d 6710 pr_err("%s exceeds maximum platform supported size\n", dev);
8662f92d
MT
6711 goto exit;
6712 }
6713
6714 if (super->hba->type == SYS_DEV_VMD ||
6715 super->hba->type == SYS_DEV_NVME) {
6716 if (!imsm_is_nvme_namespace_supported(fd, 1)) {
6717 if (verbose)
6718 pr_err("NVMe namespace %s is not supported by IMSM\n",
6719 basename(dev));
6720 goto exit;
6721 }
9126b9a8 6722 }
f2f5c343 6723 }
1f5d54a0
MT
6724 if (freesize)
6725 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
8662f92d
MT
6726 rv = 1;
6727exit:
6728 if (super)
6729 free_imsm(super);
6730 close(fd);
c2c087e6 6731
8662f92d 6732 return rv;
cdddbdbc
DW
6733}
6734
0dcecb2e
DW
6735static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
6736{
6737 const unsigned long long base_start = e[*idx].start;
6738 unsigned long long end = base_start + e[*idx].size;
6739 int i;
6740
6741 if (base_start == end)
6742 return 0;
6743
6744 *idx = *idx + 1;
6745 for (i = *idx; i < num_extents; i++) {
6746 /* extend overlapping extents */
6747 if (e[i].start >= base_start &&
6748 e[i].start <= end) {
6749 if (e[i].size == 0)
6750 return 0;
6751 if (e[i].start + e[i].size > end)
6752 end = e[i].start + e[i].size;
6753 } else if (e[i].start > end) {
6754 *idx = i;
6755 break;
6756 }
6757 }
6758
6759 return end - base_start;
6760}
6761
6762static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
6763{
6764 /* build a composite disk with all known extents and generate a new
6765 * 'maxsize' given the "all disks in an array must share a common start
6766 * offset" constraint
6767 */
503975b9 6768 struct extent *e = xcalloc(sum_extents, sizeof(*e));
0dcecb2e
DW
6769 struct dl *dl;
6770 int i, j;
6771 int start_extent;
6772 unsigned long long pos;
b9d77223 6773 unsigned long long start = 0;
0dcecb2e
DW
6774 unsigned long long maxsize;
6775 unsigned long reserve;
6776
0dcecb2e
DW
6777 /* coalesce and sort all extents. also, check to see if we need to
6778 * reserve space between member arrays
6779 */
6780 j = 0;
6781 for (dl = super->disks; dl; dl = dl->next) {
6782 if (!dl->e)
6783 continue;
6784 for (i = 0; i < dl->extent_cnt; i++)
6785 e[j++] = dl->e[i];
6786 }
6787 qsort(e, sum_extents, sizeof(*e), cmp_extent);
6788
6789 /* merge extents */
6790 i = 0;
6791 j = 0;
6792 while (i < sum_extents) {
6793 e[j].start = e[i].start;
6794 e[j].size = find_size(e, &i, sum_extents);
6795 j++;
6796 if (e[j-1].size == 0)
6797 break;
6798 }
6799
6800 pos = 0;
6801 maxsize = 0;
6802 start_extent = 0;
6803 i = 0;
6804 do {
6805 unsigned long long esize;
6806
6807 esize = e[i].start - pos;
6808 if (esize >= maxsize) {
6809 maxsize = esize;
6810 start = pos;
6811 start_extent = i;
6812 }
6813 pos = e[i].start + e[i].size;
6814 i++;
6815 } while (e[i-1].size);
6816 free(e);
6817
a7dd165b
DW
6818 if (maxsize == 0)
6819 return 0;
6820
6821 /* FIXME assumes volume at offset 0 is the first volume in a
6822 * container
6823 */
0dcecb2e
DW
6824 if (start_extent > 0)
6825 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
6826 else
6827 reserve = 0;
6828
6829 if (maxsize < reserve)
a7dd165b 6830 return 0;
0dcecb2e 6831
5551b113 6832 super->create_offset = ~((unsigned long long) 0);
0dcecb2e 6833 if (start + reserve > super->create_offset)
a7dd165b 6834 return 0; /* start overflows create_offset */
0dcecb2e
DW
6835 super->create_offset = start + reserve;
6836
6837 return maxsize - reserve;
6838}
6839
88c32bb1
DW
6840static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
6841{
6842 if (level < 0 || level == 6 || level == 4)
6843 return 0;
6844
6845 /* if we have an orom prevent invalid raid levels */
6846 if (orom)
6847 switch (level) {
6848 case 0: return imsm_orom_has_raid0(orom);
6849 case 1:
6850 if (raiddisks > 2)
6851 return imsm_orom_has_raid1e(orom);
1c556e92
DW
6852 return imsm_orom_has_raid1(orom) && raiddisks == 2;
6853 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
6854 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
6855 }
6856 else
6857 return 1; /* not on an Intel RAID platform so anything goes */
6858
6859 return 0;
6860}
6861
ca9de185
LM
6862static int
6863active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
6864 int dpa, int verbose)
6865{
6866 struct mdstat_ent *mdstat = mdstat_read(0, 0);
594dc1b8 6867 struct mdstat_ent *memb;
ca9de185
LM
6868 int count = 0;
6869 int num = 0;
594dc1b8 6870 struct md_list *dv;
ca9de185
LM
6871 int found;
6872
6873 for (memb = mdstat ; memb ; memb = memb->next) {
6874 if (memb->metadata_version &&
fc54fe7a 6875 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
ca9de185
LM
6876 (strcmp(&memb->metadata_version[9], name) == 0) &&
6877 !is_subarray(memb->metadata_version+9) &&
6878 memb->members) {
6879 struct dev_member *dev = memb->members;
6880 int fd = -1;
6881 while(dev && (fd < 0)) {
503975b9
N
6882 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
6883 num = sprintf(path, "%s%s", "/dev/", dev->name);
6884 if (num > 0)
6885 fd = open(path, O_RDONLY, 0);
089f9d79 6886 if (num <= 0 || fd < 0) {
676e87a8 6887 pr_vrb("Cannot open %s: %s\n",
503975b9 6888 dev->name, strerror(errno));
ca9de185 6889 }
503975b9 6890 free(path);
ca9de185
LM
6891 dev = dev->next;
6892 }
6893 found = 0;
089f9d79 6894 if (fd >= 0 && disk_attached_to_hba(fd, hba)) {
ca9de185
LM
6895 struct mdstat_ent *vol;
6896 for (vol = mdstat ; vol ; vol = vol->next) {
089f9d79 6897 if (vol->active > 0 &&
ca9de185 6898 vol->metadata_version &&
9581efb1 6899 is_container_member(vol, memb->devnm)) {
ca9de185
LM
6900 found++;
6901 count++;
6902 }
6903 }
6904 if (*devlist && (found < dpa)) {
503975b9 6905 dv = xcalloc(1, sizeof(*dv));
9581efb1
N
6906 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
6907 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
503975b9
N
6908 dv->found = found;
6909 dv->used = 0;
6910 dv->next = *devlist;
6911 *devlist = dv;
ca9de185
LM
6912 }
6913 }
6914 if (fd >= 0)
6915 close(fd);
6916 }
6917 }
6918 free_mdstat(mdstat);
6919 return count;
6920}
6921
6922#ifdef DEBUG_LOOP
6923static struct md_list*
6924get_loop_devices(void)
6925{
6926 int i;
6927 struct md_list *devlist = NULL;
594dc1b8 6928 struct md_list *dv;
ca9de185
LM
6929
6930 for(i = 0; i < 12; i++) {
503975b9
N
6931 dv = xcalloc(1, sizeof(*dv));
6932 dv->devname = xmalloc(40);
ca9de185
LM
6933 sprintf(dv->devname, "/dev/loop%d", i);
6934 dv->next = devlist;
6935 devlist = dv;
6936 }
6937 return devlist;
6938}
6939#endif
6940
6941static struct md_list*
6942get_devices(const char *hba_path)
6943{
6944 struct md_list *devlist = NULL;
594dc1b8 6945 struct md_list *dv;
ca9de185
LM
6946 struct dirent *ent;
6947 DIR *dir;
6948 int err = 0;
6949
6950#if DEBUG_LOOP
6951 devlist = get_loop_devices();
6952 return devlist;
6953#endif
6954 /* scroll through /sys/dev/block looking for devices attached to
6955 * this hba
6956 */
6957 dir = opendir("/sys/dev/block");
6958 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
6959 int fd;
6960 char buf[1024];
6961 int major, minor;
6962 char *path = NULL;
6963 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
6964 continue;
7c798f87 6965 path = devt_to_devpath(makedev(major, minor), 1, NULL);
ca9de185
LM
6966 if (!path)
6967 continue;
6968 if (!path_attached_to_hba(path, hba_path)) {
6969 free(path);
6970 path = NULL;
6971 continue;
6972 }
6973 free(path);
6974 path = NULL;
6975 fd = dev_open(ent->d_name, O_RDONLY);
6976 if (fd >= 0) {
6977 fd2devname(fd, buf);
6978 close(fd);
6979 } else {
e7b84f9d 6980 pr_err("cannot open device: %s\n",
ca9de185
LM
6981 ent->d_name);
6982 continue;
6983 }
6984
503975b9
N
6985 dv = xcalloc(1, sizeof(*dv));
6986 dv->devname = xstrdup(buf);
ca9de185
LM
6987 dv->next = devlist;
6988 devlist = dv;
6989 }
6990 if (err) {
6991 while(devlist) {
6992 dv = devlist;
6993 devlist = devlist->next;
6994 free(dv->devname);
6995 free(dv);
6996 }
6997 }
562aa102 6998 closedir(dir);
ca9de185
LM
6999 return devlist;
7000}
7001
7002static int
7003count_volumes_list(struct md_list *devlist, char *homehost,
7004 int verbose, int *found)
7005{
7006 struct md_list *tmpdev;
7007 int count = 0;
594dc1b8 7008 struct supertype *st;
ca9de185
LM
7009
7010 /* first walk the list of devices to find a consistent set
7011 * that match the criterea, if that is possible.
7012 * We flag the ones we like with 'used'.
7013 */
7014 *found = 0;
7015 st = match_metadata_desc_imsm("imsm");
7016 if (st == NULL) {
676e87a8 7017 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
7018 return 0;
7019 }
7020
7021 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
7022 char *devname = tmpdev->devname;
0a6bff09 7023 dev_t rdev;
ca9de185
LM
7024 struct supertype *tst;
7025 int dfd;
7026 if (tmpdev->used > 1)
7027 continue;
7028 tst = dup_super(st);
7029 if (tst == NULL) {
676e87a8 7030 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
7031 goto err_1;
7032 }
7033 tmpdev->container = 0;
7034 dfd = dev_open(devname, O_RDONLY|O_EXCL);
7035 if (dfd < 0) {
1ade5cc1 7036 dprintf("cannot open device %s: %s\n",
ca9de185
LM
7037 devname, strerror(errno));
7038 tmpdev->used = 2;
0a6bff09 7039 } else if (!fstat_is_blkdev(dfd, devname, &rdev)) {
ca9de185
LM
7040 tmpdev->used = 2;
7041 } else if (must_be_container(dfd)) {
7042 struct supertype *cst;
7043 cst = super_by_fd(dfd, NULL);
7044 if (cst == NULL) {
1ade5cc1 7045 dprintf("cannot recognize container type %s\n",
ca9de185
LM
7046 devname);
7047 tmpdev->used = 2;
7048 } else if (tst->ss != st->ss) {
1ade5cc1 7049 dprintf("non-imsm container - ignore it: %s\n",
ca9de185
LM
7050 devname);
7051 tmpdev->used = 2;
7052 } else if (!tst->ss->load_container ||
7053 tst->ss->load_container(tst, dfd, NULL))
7054 tmpdev->used = 2;
7055 else {
7056 tmpdev->container = 1;
7057 }
7058 if (cst)
7059 cst->ss->free_super(cst);
7060 } else {
0a6bff09 7061 tmpdev->st_rdev = rdev;
ca9de185 7062 if (tst->ss->load_super(tst,dfd, NULL)) {
1ade5cc1 7063 dprintf("no RAID superblock on %s\n",
ca9de185
LM
7064 devname);
7065 tmpdev->used = 2;
7066 } else if (tst->ss->compare_super == NULL) {
1ade5cc1 7067 dprintf("Cannot assemble %s metadata on %s\n",
ca9de185
LM
7068 tst->ss->name, devname);
7069 tmpdev->used = 2;
7070 }
7071 }
7072 if (dfd >= 0)
7073 close(dfd);
7074 if (tmpdev->used == 2 || tmpdev->used == 4) {
7075 /* Ignore unrecognised devices during auto-assembly */
7076 goto loop;
7077 }
7078 else {
7079 struct mdinfo info;
7080 tst->ss->getinfo_super(tst, &info, NULL);
7081
7082 if (st->minor_version == -1)
7083 st->minor_version = tst->minor_version;
7084
7085 if (memcmp(info.uuid, uuid_zero,
7086 sizeof(int[4])) == 0) {
7087 /* this is a floating spare. It cannot define
7088 * an array unless there are no more arrays of
7089 * this type to be found. It can be included
7090 * in an array of this type though.
7091 */
7092 tmpdev->used = 3;
7093 goto loop;
7094 }
7095
7096 if (st->ss != tst->ss ||
7097 st->minor_version != tst->minor_version ||
c7b8547c 7098 st->ss->compare_super(st, tst, 1) != 0) {
ca9de185
LM
7099 /* Some mismatch. If exactly one array matches this host,
7100 * we can resolve on that one.
7101 * Or, if we are auto assembling, we just ignore the second
7102 * for now.
7103 */
1ade5cc1 7104 dprintf("superblock on %s doesn't match others - assembly aborted\n",
ca9de185
LM
7105 devname);
7106 goto loop;
7107 }
7108 tmpdev->used = 1;
7109 *found = 1;
7110 dprintf("found: devname: %s\n", devname);
7111 }
7112 loop:
7113 if (tst)
7114 tst->ss->free_super(tst);
7115 }
7116 if (*found != 0) {
7117 int err;
7118 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
7119 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
7120 for (iter = head; iter; iter = iter->next) {
7121 dprintf("content->text_version: %s vol\n",
7122 iter->text_version);
7123 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
7124 /* do not assemble arrays with unsupported
7125 configurations */
1ade5cc1 7126 dprintf("Cannot activate member %s.\n",
ca9de185
LM
7127 iter->text_version);
7128 } else
7129 count++;
7130 }
7131 sysfs_free(head);
7132
7133 } else {
1ade5cc1 7134 dprintf("No valid super block on device list: err: %d %p\n",
ca9de185
LM
7135 err, st->sb);
7136 }
7137 } else {
1ade5cc1 7138 dprintf("no more devices to examine\n");
ca9de185
LM
7139 }
7140
7141 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
089f9d79 7142 if (tmpdev->used == 1 && tmpdev->found) {
ca9de185
LM
7143 if (count) {
7144 if (count < tmpdev->found)
7145 count = 0;
7146 else
7147 count -= tmpdev->found;
7148 }
7149 }
7150 if (tmpdev->used == 1)
7151 tmpdev->used = 4;
7152 }
7153 err_1:
7154 if (st)
7155 st->ss->free_super(st);
7156 return count;
7157}
7158
d3c11416
AO
7159static int __count_volumes(char *hba_path, int dpa, int verbose,
7160 int cmp_hba_path)
ca9de185 7161{
72a45777 7162 struct sys_dev *idev, *intel_devices = find_intel_devices();
ca9de185 7163 int count = 0;
72a45777
PB
7164 const struct orom_entry *entry;
7165 struct devid_list *dv, *devid_list;
ca9de185 7166
d3c11416 7167 if (!hba_path)
ca9de185
LM
7168 return 0;
7169
72a45777 7170 for (idev = intel_devices; idev; idev = idev->next) {
d3c11416
AO
7171 if (strstr(idev->path, hba_path))
7172 break;
72a45777
PB
7173 }
7174
7175 if (!idev || !idev->dev_id)
ca9de185 7176 return 0;
72a45777
PB
7177
7178 entry = get_orom_entry_by_device_id(idev->dev_id);
7179
7180 if (!entry || !entry->devid_list)
7181 return 0;
7182
7183 devid_list = entry->devid_list;
7184 for (dv = devid_list; dv; dv = dv->next) {
594dc1b8 7185 struct md_list *devlist;
d3c11416
AO
7186 struct sys_dev *device = NULL;
7187 char *hpath;
72a45777
PB
7188 int found = 0;
7189
d3c11416
AO
7190 if (cmp_hba_path)
7191 device = device_by_id_and_path(dv->devid, hba_path);
7192 else
7193 device = device_by_id(dv->devid);
7194
72a45777 7195 if (device)
d3c11416 7196 hpath = device->path;
72a45777
PB
7197 else
7198 return 0;
7199
d3c11416 7200 devlist = get_devices(hpath);
72a45777
PB
7201 /* if no intel devices return zero volumes */
7202 if (devlist == NULL)
7203 return 0;
7204
d3c11416
AO
7205 count += active_arrays_by_format("imsm", hpath, &devlist, dpa,
7206 verbose);
7207 dprintf("path: %s active arrays: %d\n", hpath, count);
72a45777
PB
7208 if (devlist == NULL)
7209 return 0;
7210 do {
7211 found = 0;
7212 count += count_volumes_list(devlist,
7213 NULL,
7214 verbose,
7215 &found);
7216 dprintf("found %d count: %d\n", found, count);
7217 } while (found);
7218
d3c11416 7219 dprintf("path: %s total number of volumes: %d\n", hpath, count);
72a45777
PB
7220
7221 while (devlist) {
7222 struct md_list *dv = devlist;
7223 devlist = devlist->next;
7224 free(dv->devname);
7225 free(dv);
7226 }
ca9de185
LM
7227 }
7228 return count;
7229}
7230
d3c11416
AO
7231static int count_volumes(struct intel_hba *hba, int dpa, int verbose)
7232{
7233 if (!hba)
7234 return 0;
7235 if (hba->type == SYS_DEV_VMD) {
7236 struct sys_dev *dev;
7237 int count = 0;
7238
7239 for (dev = find_intel_devices(); dev; dev = dev->next) {
7240 if (dev->type == SYS_DEV_VMD)
7241 count += __count_volumes(dev->path, dpa,
7242 verbose, 1);
7243 }
7244 return count;
7245 }
7246 return __count_volumes(hba->path, dpa, verbose, 0);
7247}
7248
cd9d1ac7
DW
7249static int imsm_default_chunk(const struct imsm_orom *orom)
7250{
7251 /* up to 512 if the plaform supports it, otherwise the platform max.
7252 * 128 if no platform detected
7253 */
7254 int fs = max(7, orom ? fls(orom->sss) : 0);
7255
7256 return min(512, (1 << fs));
7257}
73408129 7258
6592ce37
DW
7259static int
7260validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
2cc699af 7261 int raiddisks, int *chunk, unsigned long long size, int verbose)
6592ce37 7262{
660260d0
DW
7263 /* check/set platform and metadata limits/defaults */
7264 if (super->orom && raiddisks > super->orom->dpa) {
676e87a8 7265 pr_vrb("platform supports a maximum of %d disks per array\n",
660260d0 7266 super->orom->dpa);
73408129
LM
7267 return 0;
7268 }
7269
5d500228 7270 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 7271 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
676e87a8 7272 pr_vrb("platform does not support raid%d with %d disk%s\n",
6592ce37
DW
7273 level, raiddisks, raiddisks > 1 ? "s" : "");
7274 return 0;
7275 }
cd9d1ac7 7276
7ccc4cc4 7277 if (*chunk == 0 || *chunk == UnSet)
cd9d1ac7
DW
7278 *chunk = imsm_default_chunk(super->orom);
7279
7ccc4cc4 7280 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
676e87a8 7281 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
cd9d1ac7 7282 return 0;
6592ce37 7283 }
cd9d1ac7 7284
6592ce37
DW
7285 if (layout != imsm_level_to_layout(level)) {
7286 if (level == 5)
676e87a8 7287 pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
6592ce37 7288 else if (level == 10)
676e87a8 7289 pr_vrb("imsm raid 10 only supports the n2 layout\n");
6592ce37 7290 else
676e87a8 7291 pr_vrb("imsm unknown layout %#x for this raid level %d\n",
6592ce37
DW
7292 layout, level);
7293 return 0;
7294 }
2cc699af 7295
7ccc4cc4 7296 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
2cc699af 7297 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
676e87a8 7298 pr_vrb("platform does not support a volume size over 2TB\n");
2cc699af
CA
7299 return 0;
7300 }
614902f6 7301
6592ce37
DW
7302 return 1;
7303}
7304
1011e834 7305/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
c2c087e6
DW
7306 * FIX ME add ahci details
7307 */
8b353278 7308static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 7309 int layout, int raiddisks, int *chunk,
af4348dd
N
7310 unsigned long long size,
7311 unsigned long long data_offset,
7312 char *dev,
2c514b71
NB
7313 unsigned long long *freesize,
7314 int verbose)
cdddbdbc 7315{
9e04ac1c 7316 dev_t rdev;
c2c087e6 7317 struct intel_super *super = st->sb;
b2916f25 7318 struct imsm_super *mpb;
c2c087e6
DW
7319 struct dl *dl;
7320 unsigned long long pos = 0;
7321 unsigned long long maxsize;
7322 struct extent *e;
7323 int i;
cdddbdbc 7324
88c32bb1
DW
7325 /* We must have the container info already read in. */
7326 if (!super)
c2c087e6
DW
7327 return 0;
7328
b2916f25
JS
7329 mpb = super->anchor;
7330
2cc699af 7331 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
3e684231 7332 pr_err("RAID geometry validation failed. Cannot proceed with the action(s).\n");
c2c087e6 7333 return 0;
d54559f0 7334 }
c2c087e6
DW
7335 if (!dev) {
7336 /* General test: make sure there is space for
2da8544a
DW
7337 * 'raiddisks' device extents of size 'size' at a given
7338 * offset
c2c087e6 7339 */
e46273eb 7340 unsigned long long minsize = size;
b7528a20 7341 unsigned long long start_offset = MaxSector;
c2c087e6
DW
7342 int dcnt = 0;
7343 if (minsize == 0)
7344 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
7345 for (dl = super->disks; dl ; dl = dl->next) {
7346 int found = 0;
7347
bf5a934a 7348 pos = 0;
c2c087e6 7349 i = 0;
05501181 7350 e = get_extents(super, dl, 0);
c2c087e6
DW
7351 if (!e) continue;
7352 do {
7353 unsigned long long esize;
7354 esize = e[i].start - pos;
7355 if (esize >= minsize)
7356 found = 1;
b7528a20 7357 if (found && start_offset == MaxSector) {
2da8544a
DW
7358 start_offset = pos;
7359 break;
7360 } else if (found && pos != start_offset) {
7361 found = 0;
7362 break;
7363 }
c2c087e6
DW
7364 pos = e[i].start + e[i].size;
7365 i++;
7366 } while (e[i-1].size);
7367 if (found)
7368 dcnt++;
7369 free(e);
7370 }
7371 if (dcnt < raiddisks) {
2c514b71 7372 if (verbose)
7a862a02 7373 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
2c514b71 7374 dcnt, raiddisks);
c2c087e6
DW
7375 return 0;
7376 }
7377 return 1;
7378 }
0dcecb2e 7379
c2c087e6 7380 /* This device must be a member of the set */
9e04ac1c 7381 if (!stat_is_blkdev(dev, &rdev))
c2c087e6
DW
7382 return 0;
7383 for (dl = super->disks ; dl ; dl = dl->next) {
9e04ac1c
ZL
7384 if (dl->major == (int)major(rdev) &&
7385 dl->minor == (int)minor(rdev))
c2c087e6
DW
7386 break;
7387 }
7388 if (!dl) {
2c514b71 7389 if (verbose)
7a862a02 7390 pr_err("%s is not in the same imsm set\n", dev);
c2c087e6 7391 return 0;
a20d2ba5
DW
7392 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
7393 /* If a volume is present then the current creation attempt
7394 * cannot incorporate new spares because the orom may not
7395 * understand this configuration (all member disks must be
7396 * members of each array in the container).
7397 */
7a862a02
N
7398 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
7399 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
a20d2ba5 7400 return 0;
5fe62b94
WD
7401 } else if (super->orom && mpb->num_raid_devs > 0 &&
7402 mpb->num_disks != raiddisks) {
7a862a02 7403 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
5fe62b94 7404 return 0;
c2c087e6 7405 }
0dcecb2e
DW
7406
7407 /* retrieve the largest free space block */
05501181 7408 e = get_extents(super, dl, 0);
c2c087e6
DW
7409 maxsize = 0;
7410 i = 0;
0dcecb2e
DW
7411 if (e) {
7412 do {
7413 unsigned long long esize;
7414
7415 esize = e[i].start - pos;
7416 if (esize >= maxsize)
7417 maxsize = esize;
7418 pos = e[i].start + e[i].size;
7419 i++;
7420 } while (e[i-1].size);
7421 dl->e = e;
7422 dl->extent_cnt = i;
7423 } else {
7424 if (verbose)
e7b84f9d 7425 pr_err("unable to determine free space for: %s\n",
0dcecb2e
DW
7426 dev);
7427 return 0;
7428 }
7429 if (maxsize < size) {
7430 if (verbose)
e7b84f9d 7431 pr_err("%s not enough space (%llu < %llu)\n",
0dcecb2e
DW
7432 dev, maxsize, size);
7433 return 0;
7434 }
7435
7436 /* count total number of extents for merge */
7437 i = 0;
7438 for (dl = super->disks; dl; dl = dl->next)
7439 if (dl->e)
7440 i += dl->extent_cnt;
7441
7442 maxsize = merge_extents(super, i);
3baa56ab 7443
1a1ced1e
KS
7444 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7445 pr_err("attempting to create a second volume with size less then remaining space.\n");
3baa56ab 7446
a7dd165b 7447 if (maxsize < size || maxsize == 0) {
b3071342
LD
7448 if (verbose) {
7449 if (maxsize == 0)
7a862a02 7450 pr_err("no free space left on device. Aborting...\n");
b3071342 7451 else
7a862a02 7452 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
b3071342
LD
7453 maxsize, size);
7454 }
0dcecb2e 7455 return 0;
0dcecb2e
DW
7456 }
7457
c2c087e6
DW
7458 *freesize = maxsize;
7459
ca9de185 7460 if (super->orom) {
72a45777 7461 int count = count_volumes(super->hba,
ca9de185
LM
7462 super->orom->dpa, verbose);
7463 if (super->orom->vphba <= count) {
676e87a8 7464 pr_vrb("platform does not support more than %d raid volumes.\n",
ca9de185
LM
7465 super->orom->vphba);
7466 return 0;
7467 }
7468 }
c2c087e6 7469 return 1;
cdddbdbc
DW
7470}
7471
13bcac90 7472static int imsm_get_free_size(struct supertype *st, int raiddisks,
efb30e7f
DW
7473 unsigned long long size, int chunk,
7474 unsigned long long *freesize)
7475{
7476 struct intel_super *super = st->sb;
7477 struct imsm_super *mpb = super->anchor;
7478 struct dl *dl;
7479 int i;
7480 int extent_cnt;
7481 struct extent *e;
7482 unsigned long long maxsize;
7483 unsigned long long minsize;
7484 int cnt;
7485 int used;
7486
7487 /* find the largest common start free region of the possible disks */
7488 used = 0;
7489 extent_cnt = 0;
7490 cnt = 0;
7491 for (dl = super->disks; dl; dl = dl->next) {
7492 dl->raiddisk = -1;
7493
7494 if (dl->index >= 0)
7495 used++;
7496
7497 /* don't activate new spares if we are orom constrained
7498 * and there is already a volume active in the container
7499 */
7500 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
7501 continue;
7502
05501181 7503 e = get_extents(super, dl, 0);
efb30e7f
DW
7504 if (!e)
7505 continue;
7506 for (i = 1; e[i-1].size; i++)
7507 ;
7508 dl->e = e;
7509 dl->extent_cnt = i;
7510 extent_cnt += i;
7511 cnt++;
7512 }
7513
7514 maxsize = merge_extents(super, extent_cnt);
7515 minsize = size;
7516 if (size == 0)
612e59d8
CA
7517 /* chunk is in K */
7518 minsize = chunk * 2;
efb30e7f
DW
7519
7520 if (cnt < raiddisks ||
7521 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
7522 maxsize < minsize ||
7523 maxsize == 0) {
e7b84f9d 7524 pr_err("not enough devices with space to create array.\n");
efb30e7f
DW
7525 return 0; /* No enough free spaces large enough */
7526 }
7527
7528 if (size == 0) {
7529 size = maxsize;
7530 if (chunk) {
612e59d8
CA
7531 size /= 2 * chunk;
7532 size *= 2 * chunk;
efb30e7f 7533 }
f878b242
LM
7534 maxsize = size;
7535 }
1a1ced1e
KS
7536 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7537 pr_err("attempting to create a second volume with size less then remaining space.\n");
efb30e7f
DW
7538 cnt = 0;
7539 for (dl = super->disks; dl; dl = dl->next)
7540 if (dl->e)
7541 dl->raiddisk = cnt++;
7542
7543 *freesize = size;
7544
13bcac90
AK
7545 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
7546
efb30e7f
DW
7547 return 1;
7548}
7549
13bcac90
AK
7550static int reserve_space(struct supertype *st, int raiddisks,
7551 unsigned long long size, int chunk,
7552 unsigned long long *freesize)
7553{
7554 struct intel_super *super = st->sb;
7555 struct dl *dl;
7556 int cnt;
7557 int rv = 0;
7558
7559 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
7560 if (rv) {
7561 cnt = 0;
7562 for (dl = super->disks; dl; dl = dl->next)
7563 if (dl->e)
7564 dl->raiddisk = cnt++;
7565 rv = 1;
7566 }
7567
7568 return rv;
7569}
7570
bf5a934a 7571static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 7572 int raiddisks, int *chunk, unsigned long long size,
af4348dd 7573 unsigned long long data_offset,
bf5a934a 7574 char *dev, unsigned long long *freesize,
5308f117 7575 int consistency_policy, int verbose)
bf5a934a
DW
7576{
7577 int fd, cfd;
7578 struct mdinfo *sra;
20cbe8d2 7579 int is_member = 0;
bf5a934a 7580
d54559f0
LM
7581 /* load capability
7582 * if given unused devices create a container
bf5a934a
DW
7583 * if given given devices in a container create a member volume
7584 */
1f5d54a0 7585 if (level == LEVEL_CONTAINER)
bf5a934a 7586 /* Must be a fresh device to add to a container */
1f5d54a0
MT
7587 return validate_geometry_imsm_container(st, level, raiddisks,
7588 data_offset, dev,
7589 freesize, verbose);
9587c373 7590
06a6101c
BK
7591 /*
7592 * Size is given in sectors.
7593 */
7594 if (size && (size < 2048)) {
22dc741f 7595 pr_err("Given size must be greater than 1M.\n");
54865c30
RS
7596 /* Depends on algorithm in Create.c :
7597 * if container was given (dev == NULL) return -1,
7598 * if block device was given ( dev != NULL) return 0.
7599 */
7600 return dev ? -1 : 0;
7601 }
7602
8592f29d 7603 if (!dev) {
e91a3bad 7604 if (st->sb) {
ca9de185 7605 struct intel_super *super = st->sb;
e91a3bad 7606 if (!validate_geometry_imsm_orom(st->sb, level, layout,
2cc699af 7607 raiddisks, chunk, size,
e91a3bad
LM
7608 verbose))
7609 return 0;
efb30e7f
DW
7610 /* we are being asked to automatically layout a
7611 * new volume based on the current contents of
7612 * the container. If the the parameters can be
7613 * satisfied reserve_space will record the disks,
7614 * start offset, and size of the volume to be
7615 * created. add_to_super and getinfo_super
7616 * detect when autolayout is in progress.
7617 */
ca9de185
LM
7618 /* assuming that freesize is always given when array is
7619 created */
7620 if (super->orom && freesize) {
7621 int count;
72a45777 7622 count = count_volumes(super->hba,
ca9de185
LM
7623 super->orom->dpa, verbose);
7624 if (super->orom->vphba <= count) {
676e87a8 7625 pr_vrb("platform does not support more than %d raid volumes.\n",
ca9de185
LM
7626 super->orom->vphba);
7627 return 0;
7628 }
7629 }
e91a3bad
LM
7630 if (freesize)
7631 return reserve_space(st, raiddisks, size,
7ccc4cc4 7632 *chunk, freesize);
8592f29d
N
7633 }
7634 return 1;
7635 }
bf5a934a
DW
7636 if (st->sb) {
7637 /* creating in a given container */
7638 return validate_geometry_imsm_volume(st, level, layout,
7639 raiddisks, chunk, size,
af4348dd 7640 data_offset,
bf5a934a
DW
7641 dev, freesize, verbose);
7642 }
7643
bf5a934a
DW
7644 /* This device needs to be a device in an 'imsm' container */
7645 fd = open(dev, O_RDONLY|O_EXCL, 0);
7646 if (fd >= 0) {
7647 if (verbose)
e7b84f9d
N
7648 pr_err("Cannot create this array on device %s\n",
7649 dev);
bf5a934a
DW
7650 close(fd);
7651 return 0;
7652 }
7653 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
7654 if (verbose)
e7b84f9d 7655 pr_err("Cannot open %s: %s\n",
bf5a934a
DW
7656 dev, strerror(errno));
7657 return 0;
7658 }
7659 /* Well, it is in use by someone, maybe an 'imsm' container. */
7660 cfd = open_container(fd);
20cbe8d2 7661 close(fd);
bf5a934a 7662 if (cfd < 0) {
bf5a934a 7663 if (verbose)
e7b84f9d 7664 pr_err("Cannot use %s: It is busy\n",
bf5a934a
DW
7665 dev);
7666 return 0;
7667 }
4dd2df09 7668 sra = sysfs_read(cfd, NULL, GET_VERSION);
bf5a934a 7669 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
7670 strcmp(sra->text_version, "imsm") == 0)
7671 is_member = 1;
7672 sysfs_free(sra);
7673 if (is_member) {
bf5a934a
DW
7674 /* This is a member of a imsm container. Load the container
7675 * and try to create a volume
7676 */
7677 struct intel_super *super;
7678
ec50f7b6 7679 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
bf5a934a 7680 st->sb = super;
4dd2df09 7681 strcpy(st->container_devnm, fd2devnm(cfd));
bf5a934a
DW
7682 close(cfd);
7683 return validate_geometry_imsm_volume(st, level, layout,
7684 raiddisks, chunk,
af4348dd 7685 size, data_offset, dev,
ecbd9e81
N
7686 freesize, 1)
7687 ? 1 : -1;
bf5a934a 7688 }
20cbe8d2 7689 }
bf5a934a 7690
20cbe8d2 7691 if (verbose)
e7b84f9d 7692 pr_err("failed container membership check\n");
20cbe8d2
AW
7693
7694 close(cfd);
7695 return 0;
bf5a934a 7696}
0bd16cf2 7697
30f58b22 7698static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
7699{
7700 struct intel_super *super = st->sb;
7701
30f58b22
DW
7702 if (level && *level == UnSet)
7703 *level = LEVEL_CONTAINER;
7704
7705 if (level && layout && *layout == UnSet)
7706 *layout = imsm_level_to_layout(*level);
0bd16cf2 7707
cd9d1ac7
DW
7708 if (chunk && (*chunk == UnSet || *chunk == 0))
7709 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
7710}
7711
33414a01
DW
7712static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
7713
3364781b 7714static int kill_subarray_imsm(struct supertype *st, char *subarray_id)
33414a01 7715{
3364781b 7716 /* remove the subarray currently referenced by subarray_id */
33414a01
DW
7717 __u8 i;
7718 struct intel_dev **dp;
7719 struct intel_super *super = st->sb;
3364781b 7720 __u8 current_vol = strtoul(subarray_id, NULL, 10);
33414a01
DW
7721 struct imsm_super *mpb = super->anchor;
7722
3364781b 7723 if (mpb->num_raid_devs == 0)
33414a01 7724 return 2;
33414a01
DW
7725
7726 /* block deletions that would change the uuid of active subarrays
7727 *
7728 * FIXME when immutable ids are available, but note that we'll
7729 * also need to fixup the invalidated/active subarray indexes in
7730 * mdstat
7731 */
7732 for (i = 0; i < mpb->num_raid_devs; i++) {
7733 char subarray[4];
7734
7735 if (i < current_vol)
7736 continue;
7737 sprintf(subarray, "%u", i);
4dd2df09 7738 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d
N
7739 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
7740 current_vol, i);
33414a01
DW
7741
7742 return 2;
7743 }
7744 }
7745
7746 if (st->update_tail) {
503975b9 7747 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
33414a01 7748
33414a01
DW
7749 u->type = update_kill_array;
7750 u->dev_idx = current_vol;
7751 append_metadata_update(st, u, sizeof(*u));
7752
7753 return 0;
7754 }
7755
7756 for (dp = &super->devlist; *dp;)
7757 if ((*dp)->index == current_vol) {
7758 *dp = (*dp)->next;
7759 } else {
7760 handle_missing(super, (*dp)->dev);
7761 if ((*dp)->index > current_vol)
7762 (*dp)->index--;
7763 dp = &(*dp)->next;
7764 }
7765
7766 /* no more raid devices, all active components are now spares,
7767 * but of course failed are still failed
7768 */
7769 if (--mpb->num_raid_devs == 0) {
7770 struct dl *d;
7771
7772 for (d = super->disks; d; d = d->next)
a8619d23
AK
7773 if (d->index > -2)
7774 mark_spare(d);
33414a01
DW
7775 }
7776
7777 super->updates_pending++;
7778
7779 return 0;
7780}
aa534678 7781
19ad203e
JR
7782static int get_rwh_policy_from_update(char *update)
7783{
7784 if (strcmp(update, "ppl") == 0)
7785 return RWH_MULTIPLE_DISTRIBUTED;
7786 else if (strcmp(update, "no-ppl") == 0)
7787 return RWH_MULTIPLE_OFF;
7788 else if (strcmp(update, "bitmap") == 0)
7789 return RWH_BITMAP;
7790 else if (strcmp(update, "no-bitmap") == 0)
7791 return RWH_OFF;
7792 return -1;
7793}
7794
a951a4f7 7795static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 7796 char *update, struct mddev_ident *ident)
aa534678
DW
7797{
7798 /* update the subarray currently referenced by ->current_vol */
7799 struct intel_super *super = st->sb;
7800 struct imsm_super *mpb = super->anchor;
7801
aa534678
DW
7802 if (strcmp(update, "name") == 0) {
7803 char *name = ident->name;
a951a4f7
N
7804 char *ep;
7805 int vol;
aa534678 7806
4dd2df09 7807 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d 7808 pr_err("Unable to update name of active subarray\n");
aa534678
DW
7809 return 2;
7810 }
7811
7812 if (!check_name(super, name, 0))
7813 return 2;
7814
a951a4f7
N
7815 vol = strtoul(subarray, &ep, 10);
7816 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7817 return 2;
7818
aa534678 7819 if (st->update_tail) {
503975b9 7820 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
aa534678 7821
aa534678 7822 u->type = update_rename_array;
a951a4f7 7823 u->dev_idx = vol;
618f4e6d
XN
7824 strncpy((char *) u->name, name, MAX_RAID_SERIAL_LEN);
7825 u->name[MAX_RAID_SERIAL_LEN-1] = '\0';
aa534678
DW
7826 append_metadata_update(st, u, sizeof(*u));
7827 } else {
7828 struct imsm_dev *dev;
ebad3af2 7829 int i, namelen;
aa534678 7830
a951a4f7 7831 dev = get_imsm_dev(super, vol);
ebad3af2
JS
7832 memset(dev->volume, '\0', MAX_RAID_SERIAL_LEN);
7833 namelen = min((int)strlen(name), MAX_RAID_SERIAL_LEN);
7834 memcpy(dev->volume, name, namelen);
aa534678
DW
7835 for (i = 0; i < mpb->num_raid_devs; i++) {
7836 dev = get_imsm_dev(super, i);
7837 handle_missing(super, dev);
7838 }
7839 super->updates_pending++;
7840 }
19ad203e 7841 } else if (get_rwh_policy_from_update(update) != -1) {
e6e9dd3f
AP
7842 int new_policy;
7843 char *ep;
7844 int vol = strtoul(subarray, &ep, 10);
7845
7846 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7847 return 2;
7848
19ad203e 7849 new_policy = get_rwh_policy_from_update(update);
e6e9dd3f
AP
7850
7851 if (st->update_tail) {
7852 struct imsm_update_rwh_policy *u = xmalloc(sizeof(*u));
7853
7854 u->type = update_rwh_policy;
7855 u->dev_idx = vol;
7856 u->new_policy = new_policy;
7857 append_metadata_update(st, u, sizeof(*u));
7858 } else {
7859 struct imsm_dev *dev;
7860
7861 dev = get_imsm_dev(super, vol);
7862 dev->rwh_policy = new_policy;
7863 super->updates_pending++;
7864 }
19ad203e
JR
7865 if (new_policy == RWH_BITMAP)
7866 return write_init_bitmap_imsm_vol(st, vol);
aa534678
DW
7867 } else
7868 return 2;
7869
7870 return 0;
7871}
bf5a934a 7872
28bce06f
AK
7873static int is_gen_migration(struct imsm_dev *dev)
7874{
7534230b
AK
7875 if (dev == NULL)
7876 return 0;
7877
28bce06f
AK
7878 if (!dev->vol.migr_state)
7879 return 0;
7880
7881 if (migr_type(dev) == MIGR_GEN_MIGR)
7882 return 1;
7883
7884 return 0;
7885}
7886
1e5c6983
DW
7887static int is_rebuilding(struct imsm_dev *dev)
7888{
7889 struct imsm_map *migr_map;
7890
7891 if (!dev->vol.migr_state)
7892 return 0;
7893
7894 if (migr_type(dev) != MIGR_REBUILD)
7895 return 0;
7896
238c0a71 7897 migr_map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
7898
7899 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
7900 return 1;
7901 else
7902 return 0;
7903}
7904
6ce1fbf1
AK
7905static int is_initializing(struct imsm_dev *dev)
7906{
7907 struct imsm_map *migr_map;
7908
7909 if (!dev->vol.migr_state)
7910 return 0;
7911
7912 if (migr_type(dev) != MIGR_INIT)
7913 return 0;
7914
238c0a71 7915 migr_map = get_imsm_map(dev, MAP_1);
6ce1fbf1
AK
7916
7917 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
7918 return 1;
7919
7920 return 0;
6ce1fbf1
AK
7921}
7922
c47b0ff6
AK
7923static void update_recovery_start(struct intel_super *super,
7924 struct imsm_dev *dev,
7925 struct mdinfo *array)
1e5c6983
DW
7926{
7927 struct mdinfo *rebuild = NULL;
7928 struct mdinfo *d;
7929 __u32 units;
7930
7931 if (!is_rebuilding(dev))
7932 return;
7933
7934 /* Find the rebuild target, but punt on the dual rebuild case */
7935 for (d = array->devs; d; d = d->next)
7936 if (d->recovery_start == 0) {
7937 if (rebuild)
7938 return;
7939 rebuild = d;
7940 }
7941
4363fd80
DW
7942 if (!rebuild) {
7943 /* (?) none of the disks are marked with
7944 * IMSM_ORD_REBUILD, so assume they are missing and the
7945 * disk_ord_tbl was not correctly updated
7946 */
1ade5cc1 7947 dprintf("failed to locate out-of-sync disk\n");
4363fd80
DW
7948 return;
7949 }
7950
4036e7ee 7951 units = vol_curr_migr_unit(dev);
c47b0ff6 7952 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
7953}
7954
276d77db 7955static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
1e5c6983 7956
00bbdbda 7957static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 7958{
4f5bc454
DW
7959 /* Given a container loaded by load_super_imsm_all,
7960 * extract information about all the arrays into
7961 * an mdinfo tree.
00bbdbda 7962 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
7963 *
7964 * For each imsm_dev create an mdinfo, fill it in,
7965 * then look for matching devices in super->disks
7966 * and create appropriate device mdinfo.
7967 */
7968 struct intel_super *super = st->sb;
949c47a0 7969 struct imsm_super *mpb = super->anchor;
4f5bc454 7970 struct mdinfo *rest = NULL;
00bbdbda 7971 unsigned int i;
81219e70 7972 int sb_errors = 0;
abef11a3
AK
7973 struct dl *d;
7974 int spare_disks = 0;
b6180160 7975 int current_vol = super->current_vol;
cdddbdbc 7976
19482bcc
AK
7977 /* do not assemble arrays when not all attributes are supported */
7978 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70 7979 sb_errors = 1;
7a862a02 7980 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
19482bcc
AK
7981 }
7982
abef11a3
AK
7983 /* count spare devices, not used in maps
7984 */
7985 for (d = super->disks; d; d = d->next)
7986 if (d->index == -1)
7987 spare_disks++;
7988
4f5bc454 7989 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
7990 struct imsm_dev *dev;
7991 struct imsm_map *map;
86e3692b 7992 struct imsm_map *map2;
4f5bc454 7993 struct mdinfo *this;
a6482415 7994 int slot;
a6482415 7995 int chunk;
00bbdbda 7996 char *ep;
8b9cd157 7997 int level;
00bbdbda
N
7998
7999 if (subarray &&
8000 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
8001 continue;
8002
8003 dev = get_imsm_dev(super, i);
238c0a71
AK
8004 map = get_imsm_map(dev, MAP_0);
8005 map2 = get_imsm_map(dev, MAP_1);
8b9cd157 8006 level = get_imsm_raid_level(map);
4f5bc454 8007
1ce0101c
DW
8008 /* do not publish arrays that are in the middle of an
8009 * unsupported migration
8010 */
8011 if (dev->vol.migr_state &&
28bce06f 8012 (migr_type(dev) == MIGR_STATE_CHANGE)) {
7a862a02 8013 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
1ce0101c
DW
8014 dev->volume);
8015 continue;
8016 }
2db86302
LM
8017 /* do not publish arrays that are not support by controller's
8018 * OROM/EFI
8019 */
1ce0101c 8020
503975b9 8021 this = xmalloc(sizeof(*this));
4f5bc454 8022
301406c9 8023 super->current_vol = i;
a5d85af7 8024 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 8025 this->next = rest;
a6482415 8026 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
81219e70
LM
8027 /* mdadm does not support all metadata features- set the bit in all arrays state */
8028 if (!validate_geometry_imsm_orom(super,
8b9cd157
MK
8029 level, /* RAID level */
8030 imsm_level_to_layout(level),
81219e70 8031 map->num_members, /* raid disks */
fcc2c9da 8032 &chunk, imsm_dev_size(dev),
81219e70 8033 1 /* verbose */)) {
7a862a02 8034 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
81219e70
LM
8035 dev->volume);
8036 this->array.state |=
8037 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
8038 (1<<MD_SB_BLOCK_VOLUME);
8039 }
81219e70
LM
8040
8041 /* if array has bad blocks, set suitable bit in all arrays state */
8042 if (sb_errors)
8043 this->array.state |=
8044 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
8045 (1<<MD_SB_BLOCK_VOLUME);
8046
4f5bc454 8047 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 8048 unsigned long long recovery_start;
4f5bc454
DW
8049 struct mdinfo *info_d;
8050 struct dl *d;
8051 int idx;
9a1608e5 8052 int skip;
7eef0453 8053 __u32 ord;
8b9cd157 8054 int missing = 0;
4f5bc454 8055
9a1608e5 8056 skip = 0;
238c0a71
AK
8057 idx = get_imsm_disk_idx(dev, slot, MAP_0);
8058 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4f5bc454
DW
8059 for (d = super->disks; d ; d = d->next)
8060 if (d->index == idx)
0fbd635c 8061 break;
4f5bc454 8062
1e5c6983 8063 recovery_start = MaxSector;
4f5bc454 8064 if (d == NULL)
9a1608e5 8065 skip = 1;
25ed7e59 8066 if (d && is_failed(&d->disk))
9a1608e5 8067 skip = 1;
8b9cd157 8068 if (!skip && (ord & IMSM_ORD_REBUILD))
1e5c6983 8069 recovery_start = 0;
1e93d0d1
BK
8070 if (!(ord & IMSM_ORD_REBUILD))
8071 this->array.working_disks++;
1011e834 8072 /*
9a1608e5 8073 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
8074 * reset resync start to avoid a dirty-degraded
8075 * situation when performing the intial sync
9a1608e5 8076 */
8b9cd157
MK
8077 if (skip)
8078 missing++;
8079
8080 if (!(dev->vol.dirty & RAIDVOL_DIRTY)) {
8081 if ((!able_to_resync(level, missing) ||
8082 recovery_start == 0))
8083 this->resync_start = MaxSector;
8b9cd157
MK
8084 }
8085
9a1608e5
DW
8086 if (skip)
8087 continue;
4f5bc454 8088
503975b9 8089 info_d = xcalloc(1, sizeof(*info_d));
4f5bc454
DW
8090 info_d->next = this->devs;
8091 this->devs = info_d;
8092
4f5bc454
DW
8093 info_d->disk.number = d->index;
8094 info_d->disk.major = d->major;
8095 info_d->disk.minor = d->minor;
8096 info_d->disk.raid_disk = slot;
1e5c6983 8097 info_d->recovery_start = recovery_start;
86e3692b
AK
8098 if (map2) {
8099 if (slot < map2->num_members)
8100 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
8101 else
8102 this->array.spare_disks++;
86e3692b
AK
8103 } else {
8104 if (slot < map->num_members)
8105 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
8106 else
8107 this->array.spare_disks++;
86e3692b 8108 }
4f5bc454
DW
8109
8110 info_d->events = __le32_to_cpu(mpb->generation_num);
5551b113 8111 info_d->data_offset = pba_of_lba0(map);
44490938 8112 info_d->component_size = calc_component_size(map, dev);
06fb291a
PB
8113
8114 if (map->raid_level == 5) {
2432ce9b
AP
8115 info_d->ppl_sector = this->ppl_sector;
8116 info_d->ppl_size = this->ppl_size;
98e96bdb
AP
8117 if (this->consistency_policy == CONSISTENCY_POLICY_PPL &&
8118 recovery_start == 0)
8119 this->resync_start = 0;
06fb291a 8120 }
b12796be 8121
5e46202e 8122 info_d->bb.supported = 1;
b12796be
TM
8123 get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
8124 info_d->data_offset,
8125 info_d->component_size,
8126 &info_d->bb);
4f5bc454 8127 }
1e5c6983 8128 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 8129 update_recovery_start(super, dev, this);
abef11a3 8130 this->array.spare_disks += spare_disks;
276d77db
AK
8131
8132 /* check for reshape */
8133 if (this->reshape_active == 1)
8134 recover_backup_imsm(st, this);
9a1608e5 8135 rest = this;
4f5bc454
DW
8136 }
8137
b6180160 8138 super->current_vol = current_vol;
4f5bc454 8139 return rest;
cdddbdbc
DW
8140}
8141
3b451610
AK
8142static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
8143 int failed, int look_in_map)
c2a1e7da 8144{
3b451610
AK
8145 struct imsm_map *map;
8146
8147 map = get_imsm_map(dev, look_in_map);
c2a1e7da
DW
8148
8149 if (!failed)
1011e834 8150 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3393c6af 8151 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
8152
8153 switch (get_imsm_raid_level(map)) {
8154 case 0:
8155 return IMSM_T_STATE_FAILED;
8156 break;
8157 case 1:
8158 if (failed < map->num_members)
8159 return IMSM_T_STATE_DEGRADED;
8160 else
8161 return IMSM_T_STATE_FAILED;
8162 break;
8163 case 10:
8164 {
8165 /**
c92a2527
DW
8166 * check to see if any mirrors have failed, otherwise we
8167 * are degraded. Even numbered slots are mirrored on
8168 * slot+1
c2a1e7da 8169 */
c2a1e7da 8170 int i;
d9b420a5
N
8171 /* gcc -Os complains that this is unused */
8172 int insync = insync;
c2a1e7da
DW
8173
8174 for (i = 0; i < map->num_members; i++) {
238c0a71 8175 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
c92a2527
DW
8176 int idx = ord_to_idx(ord);
8177 struct imsm_disk *disk;
c2a1e7da 8178
c92a2527 8179 /* reset the potential in-sync count on even-numbered
1011e834 8180 * slots. num_copies is always 2 for imsm raid10
c92a2527
DW
8181 */
8182 if ((i & 1) == 0)
8183 insync = 2;
c2a1e7da 8184
c92a2527 8185 disk = get_imsm_disk(super, idx);
25ed7e59 8186 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 8187 insync--;
c2a1e7da 8188
c92a2527
DW
8189 /* no in-sync disks left in this mirror the
8190 * array has failed
8191 */
8192 if (insync == 0)
8193 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
8194 }
8195
8196 return IMSM_T_STATE_DEGRADED;
8197 }
8198 case 5:
8199 if (failed < 2)
8200 return IMSM_T_STATE_DEGRADED;
8201 else
8202 return IMSM_T_STATE_FAILED;
8203 break;
8204 default:
8205 break;
8206 }
8207
8208 return map->map_state;
8209}
8210
3b451610
AK
8211static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
8212 int look_in_map)
c2a1e7da
DW
8213{
8214 int i;
8215 int failed = 0;
8216 struct imsm_disk *disk;
d5985138
AK
8217 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8218 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
68fe4598 8219 struct imsm_map *map_for_loop;
0556e1a2
DW
8220 __u32 ord;
8221 int idx;
d5985138 8222 int idx_1;
c2a1e7da 8223
0556e1a2
DW
8224 /* at the beginning of migration we set IMSM_ORD_REBUILD on
8225 * disks that are being rebuilt. New failures are recorded to
8226 * map[0]. So we look through all the disks we started with and
8227 * see if any failures are still present, or if any new ones
8228 * have arrived
0556e1a2 8229 */
d5985138
AK
8230 map_for_loop = map;
8231 if (prev && (map->num_members < prev->num_members))
8232 map_for_loop = prev;
68fe4598
LD
8233
8234 for (i = 0; i < map_for_loop->num_members; i++) {
d5985138 8235 idx_1 = -255;
238c0a71
AK
8236 /* when MAP_X is passed both maps failures are counted
8237 */
d5985138 8238 if (prev &&
089f9d79
JS
8239 (look_in_map == MAP_1 || look_in_map == MAP_X) &&
8240 i < prev->num_members) {
d5985138
AK
8241 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
8242 idx_1 = ord_to_idx(ord);
c2a1e7da 8243
d5985138
AK
8244 disk = get_imsm_disk(super, idx_1);
8245 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
8246 failed++;
8247 }
089f9d79
JS
8248 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
8249 i < map->num_members) {
d5985138
AK
8250 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
8251 idx = ord_to_idx(ord);
8252
8253 if (idx != idx_1) {
8254 disk = get_imsm_disk(super, idx);
8255 if (!disk || is_failed(disk) ||
8256 ord & IMSM_ORD_REBUILD)
8257 failed++;
8258 }
8259 }
c2a1e7da
DW
8260 }
8261
8262 return failed;
845dea95
NB
8263}
8264
97b4d0e9
DW
8265static int imsm_open_new(struct supertype *c, struct active_array *a,
8266 char *inst)
8267{
8268 struct intel_super *super = c->sb;
8269 struct imsm_super *mpb = super->anchor;
bbab0940 8270 struct imsm_update_prealloc_bb_mem u;
9587c373 8271
97b4d0e9 8272 if (atoi(inst) >= mpb->num_raid_devs) {
1ade5cc1 8273 pr_err("subarry index %d, out of range\n", atoi(inst));
97b4d0e9
DW
8274 return -ENODEV;
8275 }
8276
8277 dprintf("imsm: open_new %s\n", inst);
8278 a->info.container_member = atoi(inst);
bbab0940
TM
8279
8280 u.type = update_prealloc_badblocks_mem;
8281 imsm_update_metadata_locally(c, &u, sizeof(u));
8282
97b4d0e9
DW
8283 return 0;
8284}
8285
0c046afd
DW
8286static int is_resyncing(struct imsm_dev *dev)
8287{
8288 struct imsm_map *migr_map;
8289
8290 if (!dev->vol.migr_state)
8291 return 0;
8292
1484e727
DW
8293 if (migr_type(dev) == MIGR_INIT ||
8294 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
8295 return 1;
8296
4c9bc37b
AK
8297 if (migr_type(dev) == MIGR_GEN_MIGR)
8298 return 0;
8299
238c0a71 8300 migr_map = get_imsm_map(dev, MAP_1);
0c046afd 8301
089f9d79
JS
8302 if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
8303 dev->vol.migr_type != MIGR_GEN_MIGR)
0c046afd
DW
8304 return 1;
8305 else
8306 return 0;
8307}
8308
0556e1a2 8309/* return true if we recorded new information */
4c9e8c1e
TM
8310static int mark_failure(struct intel_super *super,
8311 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 8312{
0556e1a2
DW
8313 __u32 ord;
8314 int slot;
8315 struct imsm_map *map;
86c54047
DW
8316 char buf[MAX_RAID_SERIAL_LEN+3];
8317 unsigned int len, shift = 0;
0556e1a2
DW
8318
8319 /* new failures are always set in map[0] */
238c0a71 8320 map = get_imsm_map(dev, MAP_0);
0556e1a2
DW
8321
8322 slot = get_imsm_disk_slot(map, idx);
8323 if (slot < 0)
8324 return 0;
8325
8326 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 8327 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
8328 return 0;
8329
7d0c5e24
LD
8330 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
8331 buf[MAX_RAID_SERIAL_LEN] = '\000';
8332 strcat(buf, ":0");
86c54047
DW
8333 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
8334 shift = len - MAX_RAID_SERIAL_LEN + 1;
167d8bb8 8335 memcpy(disk->serial, &buf[shift], len + 1 - shift);
86c54047 8336
f2f27e63 8337 disk->status |= FAILED_DISK;
0556e1a2 8338 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
17788994
AK
8339 /* mark failures in second map if second map exists and this disk
8340 * in this slot.
8341 * This is valid for migration, initialization and rebuild
8342 */
8343 if (dev->vol.migr_state) {
238c0a71 8344 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
0a108d63
AK
8345 int slot2 = get_imsm_disk_slot(map2, idx);
8346
089f9d79 8347 if (slot2 < map2->num_members && slot2 >= 0)
0a108d63 8348 set_imsm_ord_tbl_ent(map2, slot2,
1ace8403
AK
8349 idx | IMSM_ORD_REBUILD);
8350 }
d7a1fda2
MT
8351 if (map->failed_disk_num == 0xff ||
8352 (!is_rebuilding(dev) && map->failed_disk_num > slot))
0556e1a2 8353 map->failed_disk_num = slot;
4c9e8c1e
TM
8354
8355 clear_disk_badblocks(super->bbm_log, ord_to_idx(ord));
8356
0556e1a2
DW
8357 return 1;
8358}
8359
4c9e8c1e
TM
8360static void mark_missing(struct intel_super *super,
8361 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
0556e1a2 8362{
4c9e8c1e 8363 mark_failure(super, dev, disk, idx);
0556e1a2
DW
8364
8365 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
8366 return;
8367
47ee5a45
DW
8368 disk->scsi_id = __cpu_to_le32(~(__u32)0);
8369 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
8370}
8371
33414a01
DW
8372static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
8373{
33414a01 8374 struct dl *dl;
33414a01
DW
8375
8376 if (!super->missing)
8377 return;
33414a01 8378
79b68f1b
PC
8379 /* When orom adds replacement for missing disk it does
8380 * not remove entry of missing disk, but just updates map with
8381 * new added disk. So it is not enough just to test if there is
8382 * any missing disk, we have to look if there are any failed disks
8383 * in map to stop migration */
8384
33414a01 8385 dprintf("imsm: mark missing\n");
3d59f0c0
AK
8386 /* end process for initialization and rebuild only
8387 */
8388 if (is_gen_migration(dev) == 0) {
fb12a745 8389 int failed = imsm_count_failed(super, dev, MAP_0);
3d59f0c0 8390
fb12a745
TM
8391 if (failed) {
8392 __u8 map_state;
8393 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8394 struct imsm_map *map1;
8395 int i, ord, ord_map1;
8396 int rebuilt = 1;
3d59f0c0 8397
fb12a745
TM
8398 for (i = 0; i < map->num_members; i++) {
8399 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8400 if (!(ord & IMSM_ORD_REBUILD))
8401 continue;
8402
8403 map1 = get_imsm_map(dev, MAP_1);
8404 if (!map1)
8405 continue;
8406
8407 ord_map1 = __le32_to_cpu(map1->disk_ord_tbl[i]);
8408 if (ord_map1 & IMSM_ORD_REBUILD)
8409 rebuilt = 0;
8410 }
8411
8412 if (rebuilt) {
8413 map_state = imsm_check_degraded(super, dev,
8414 failed, MAP_0);
8415 end_migration(dev, super, map_state);
8416 }
8417 }
3d59f0c0 8418 }
33414a01 8419 for (dl = super->missing; dl; dl = dl->next)
4c9e8c1e 8420 mark_missing(super, dev, &dl->disk, dl->index);
33414a01
DW
8421 super->updates_pending++;
8422}
8423
f3871fdc
AK
8424static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
8425 long long new_size)
70bdf0dc 8426{
70bdf0dc 8427 unsigned long long array_blocks;
9529d343
MD
8428 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8429 int used_disks = imsm_num_data_members(map);
70bdf0dc
AK
8430
8431 if (used_disks == 0) {
8432 /* when problems occures
8433 * return current array_blocks value
8434 */
fcc2c9da 8435 array_blocks = imsm_dev_size(dev);
70bdf0dc
AK
8436
8437 return array_blocks;
8438 }
8439
8440 /* set array size in metadata
8441 */
9529d343 8442 if (new_size <= 0)
f3871fdc
AK
8443 /* OLCE size change is caused by added disks
8444 */
44490938 8445 array_blocks = per_dev_array_size(map) * used_disks;
9529d343 8446 else
f3871fdc
AK
8447 /* Online Volume Size Change
8448 * Using available free space
8449 */
8450 array_blocks = new_size;
70bdf0dc 8451
b53bfba6 8452 array_blocks = round_size_to_mb(array_blocks, used_disks);
fcc2c9da 8453 set_imsm_dev_size(dev, array_blocks);
70bdf0dc
AK
8454
8455 return array_blocks;
8456}
8457
28bce06f
AK
8458static void imsm_set_disk(struct active_array *a, int n, int state);
8459
0e2d1a4e
AK
8460static void imsm_progress_container_reshape(struct intel_super *super)
8461{
8462 /* if no device has a migr_state, but some device has a
8463 * different number of members than the previous device, start
8464 * changing the number of devices in this device to match
8465 * previous.
8466 */
8467 struct imsm_super *mpb = super->anchor;
8468 int prev_disks = -1;
8469 int i;
1dfaa380 8470 int copy_map_size;
0e2d1a4e
AK
8471
8472 for (i = 0; i < mpb->num_raid_devs; i++) {
8473 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 8474 struct imsm_map *map = get_imsm_map(dev, MAP_0);
0e2d1a4e
AK
8475 struct imsm_map *map2;
8476 int prev_num_members;
0e2d1a4e
AK
8477
8478 if (dev->vol.migr_state)
8479 return;
8480
8481 if (prev_disks == -1)
8482 prev_disks = map->num_members;
8483 if (prev_disks == map->num_members)
8484 continue;
8485
8486 /* OK, this array needs to enter reshape mode.
8487 * i.e it needs a migr_state
8488 */
8489
1dfaa380 8490 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
8491 prev_num_members = map->num_members;
8492 map->num_members = prev_disks;
8493 dev->vol.migr_state = 1;
4036e7ee 8494 set_vol_curr_migr_unit(dev, 0);
ea672ee1 8495 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
8496 for (i = prev_num_members;
8497 i < map->num_members; i++)
8498 set_imsm_ord_tbl_ent(map, i, i);
238c0a71 8499 map2 = get_imsm_map(dev, MAP_1);
0e2d1a4e 8500 /* Copy the current map */
1dfaa380 8501 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
8502 map2->num_members = prev_num_members;
8503
f3871fdc 8504 imsm_set_array_size(dev, -1);
51d83f5d 8505 super->clean_migration_record_by_mdmon = 1;
0e2d1a4e
AK
8506 super->updates_pending++;
8507 }
8508}
8509
aad6f216 8510/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
8511 * states are handled in imsm_set_disk() with one exception, when a
8512 * resync is stopped due to a new failure this routine will set the
8513 * 'degraded' state for the array.
8514 */
01f157d7 8515static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
8516{
8517 int inst = a->info.container_member;
8518 struct intel_super *super = a->container->sb;
949c47a0 8519 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8520 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3b451610
AK
8521 int failed = imsm_count_failed(super, dev, MAP_0);
8522 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
1e5c6983 8523 __u32 blocks_per_unit;
a862209d 8524
1af97990
AK
8525 if (dev->vol.migr_state &&
8526 dev->vol.migr_type == MIGR_GEN_MIGR) {
8527 /* array state change is blocked due to reshape action
aad6f216
N
8528 * We might need to
8529 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
8530 * - finish the reshape (if last_checkpoint is big and action != reshape)
4036e7ee 8531 * - update vol_curr_migr_unit
1af97990 8532 */
aad6f216 8533 if (a->curr_action == reshape) {
4036e7ee 8534 /* still reshaping, maybe update vol_curr_migr_unit */
633b5610 8535 goto mark_checkpoint;
aad6f216
N
8536 } else {
8537 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
8538 /* for some reason we aborted the reshape.
b66e591b
AK
8539 *
8540 * disable automatic metadata rollback
8541 * user action is required to recover process
aad6f216 8542 */
b66e591b 8543 if (0) {
238c0a71
AK
8544 struct imsm_map *map2 =
8545 get_imsm_map(dev, MAP_1);
8546 dev->vol.migr_state = 0;
8547 set_migr_type(dev, 0);
4036e7ee 8548 set_vol_curr_migr_unit(dev, 0);
238c0a71
AK
8549 memcpy(map, map2,
8550 sizeof_imsm_map(map2));
8551 super->updates_pending++;
b66e591b 8552 }
aad6f216
N
8553 }
8554 if (a->last_checkpoint >= a->info.component_size) {
8555 unsigned long long array_blocks;
8556 int used_disks;
e154ced3 8557 struct mdinfo *mdi;
aad6f216 8558
9529d343 8559 used_disks = imsm_num_data_members(map);
d55adef9
AK
8560 if (used_disks > 0) {
8561 array_blocks =
44490938 8562 per_dev_array_size(map) *
d55adef9 8563 used_disks;
b53bfba6
TM
8564 array_blocks =
8565 round_size_to_mb(array_blocks,
8566 used_disks);
d55adef9
AK
8567 a->info.custom_array_size = array_blocks;
8568 /* encourage manager to update array
8569 * size
8570 */
e154ced3 8571
d55adef9 8572 a->check_reshape = 1;
633b5610 8573 }
e154ced3
AK
8574 /* finalize online capacity expansion/reshape */
8575 for (mdi = a->info.devs; mdi; mdi = mdi->next)
8576 imsm_set_disk(a,
8577 mdi->disk.raid_disk,
8578 mdi->curr_state);
8579
0e2d1a4e 8580 imsm_progress_container_reshape(super);
e154ced3 8581 }
aad6f216 8582 }
1af97990
AK
8583 }
8584
47ee5a45 8585 /* before we activate this array handle any missing disks */
33414a01
DW
8586 if (consistent == 2)
8587 handle_missing(super, dev);
1e5c6983 8588
0c046afd 8589 if (consistent == 2 &&
b7941fd6 8590 (!is_resync_complete(&a->info) ||
0c046afd
DW
8591 map_state != IMSM_T_STATE_NORMAL ||
8592 dev->vol.migr_state))
01f157d7 8593 consistent = 0;
272906ef 8594
b7941fd6 8595 if (is_resync_complete(&a->info)) {
0c046afd 8596 /* complete intialization / resync,
0556e1a2
DW
8597 * recovery and interrupted recovery is completed in
8598 * ->set_disk
0c046afd
DW
8599 */
8600 if (is_resyncing(dev)) {
8601 dprintf("imsm: mark resync done\n");
809da78e 8602 end_migration(dev, super, map_state);
115c3803 8603 super->updates_pending++;
484240d8 8604 a->last_checkpoint = 0;
115c3803 8605 }
b9172665
AK
8606 } else if ((!is_resyncing(dev) && !failed) &&
8607 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 8608 /* mark the start of the init process if nothing is failed */
b7941fd6 8609 dprintf("imsm: mark resync start\n");
1484e727 8610 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 8611 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 8612 else
8e59f3d8 8613 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 8614 super->updates_pending++;
115c3803 8615 }
a862209d 8616
633b5610 8617mark_checkpoint:
5b83bacf
AK
8618 /* skip checkpointing for general migration,
8619 * it is controlled in mdadm
8620 */
8621 if (is_gen_migration(dev))
8622 goto skip_mark_checkpoint;
8623
4036e7ee
MT
8624 /* check if we can update vol_curr_migr_unit from resync_start,
8625 * recovery_start
8626 */
c47b0ff6 8627 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 8628 if (blocks_per_unit) {
4036e7ee
MT
8629 set_vol_curr_migr_unit(dev,
8630 a->last_checkpoint / blocks_per_unit);
8631 dprintf("imsm: mark checkpoint (%llu)\n",
8632 vol_curr_migr_unit(dev));
8633 super->updates_pending++;
1e5c6983 8634 }
f8f603f1 8635
5b83bacf 8636skip_mark_checkpoint:
3393c6af 8637 /* mark dirty / clean */
2432ce9b
AP
8638 if (((dev->vol.dirty & RAIDVOL_DIRTY) && consistent) ||
8639 (!(dev->vol.dirty & RAIDVOL_DIRTY) && !consistent)) {
b7941fd6 8640 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
2432ce9b
AP
8641 if (consistent) {
8642 dev->vol.dirty = RAIDVOL_CLEAN;
8643 } else {
8644 dev->vol.dirty = RAIDVOL_DIRTY;
c2462068
PB
8645 if (dev->rwh_policy == RWH_DISTRIBUTED ||
8646 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
2432ce9b
AP
8647 dev->vol.dirty |= RAIDVOL_DSRECORD_VALID;
8648 }
a862209d
DW
8649 super->updates_pending++;
8650 }
28bce06f 8651
01f157d7 8652 return consistent;
a862209d
DW
8653}
8654
6f50473f
TM
8655static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
8656{
8657 int inst = a->info.container_member;
8658 struct intel_super *super = a->container->sb;
8659 struct imsm_dev *dev = get_imsm_dev(super, inst);
8660 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8661
8662 if (slot > map->num_members) {
8663 pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
8664 slot, map->num_members - 1);
8665 return -1;
8666 }
8667
8668 if (slot < 0)
8669 return -1;
8670
8671 return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
8672}
8673
8d45d196 8674static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 8675{
8d45d196
DW
8676 int inst = a->info.container_member;
8677 struct intel_super *super = a->container->sb;
949c47a0 8678 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8679 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8d45d196 8680 struct imsm_disk *disk;
7ce05701
LD
8681 struct mdinfo *mdi;
8682 int recovery_not_finished = 0;
0c046afd 8683 int failed;
6f50473f 8684 int ord;
0c046afd 8685 __u8 map_state;
fb12a745
TM
8686 int rebuild_done = 0;
8687 int i;
8d45d196 8688
fb12a745 8689 ord = get_imsm_ord_tbl_ent(dev, n, MAP_X);
6f50473f 8690 if (ord < 0)
8d45d196
DW
8691 return;
8692
4e6e574a 8693 dprintf("imsm: set_disk %d:%x\n", n, state);
b10b37b8 8694 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 8695
5802a811 8696 /* check for new failures */
ae7d61e3 8697 if (disk && (state & DS_FAULTY)) {
4c9e8c1e 8698 if (mark_failure(super, dev, disk, ord_to_idx(ord)))
0556e1a2 8699 super->updates_pending++;
8d45d196 8700 }
47ee5a45 8701
19859edc 8702 /* check if in_sync */
0556e1a2 8703 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
238c0a71 8704 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
b10b37b8
DW
8705
8706 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
fb12a745 8707 rebuild_done = 1;
19859edc
DW
8708 super->updates_pending++;
8709 }
8d45d196 8710
3b451610
AK
8711 failed = imsm_count_failed(super, dev, MAP_0);
8712 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
5802a811 8713
0c046afd 8714 /* check if recovery complete, newly degraded, or failed */
94002678
AK
8715 dprintf("imsm: Detected transition to state ");
8716 switch (map_state) {
8717 case IMSM_T_STATE_NORMAL: /* transition to normal state */
8718 dprintf("normal: ");
8719 if (is_rebuilding(dev)) {
1ade5cc1 8720 dprintf_cont("while rebuilding");
7ce05701
LD
8721 /* check if recovery is really finished */
8722 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8723 if (mdi->recovery_start != MaxSector) {
8724 recovery_not_finished = 1;
8725 break;
8726 }
8727 if (recovery_not_finished) {
1ade5cc1
N
8728 dprintf_cont("\n");
8729 dprintf("Rebuild has not finished yet, state not changed");
7ce05701
LD
8730 if (a->last_checkpoint < mdi->recovery_start) {
8731 a->last_checkpoint = mdi->recovery_start;
8732 super->updates_pending++;
8733 }
8734 break;
8735 }
94002678 8736 end_migration(dev, super, map_state);
94002678
AK
8737 map->failed_disk_num = ~0;
8738 super->updates_pending++;
8739 a->last_checkpoint = 0;
8740 break;
8741 }
8742 if (is_gen_migration(dev)) {
1ade5cc1 8743 dprintf_cont("while general migration");
bf2f0071 8744 if (a->last_checkpoint >= a->info.component_size)
809da78e 8745 end_migration(dev, super, map_state);
94002678
AK
8746 else
8747 map->map_state = map_state;
28bce06f 8748 map->failed_disk_num = ~0;
94002678 8749 super->updates_pending++;
bf2f0071 8750 break;
94002678
AK
8751 }
8752 break;
8753 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
1ade5cc1 8754 dprintf_cont("degraded: ");
089f9d79 8755 if (map->map_state != map_state && !dev->vol.migr_state) {
1ade5cc1 8756 dprintf_cont("mark degraded");
94002678
AK
8757 map->map_state = map_state;
8758 super->updates_pending++;
8759 a->last_checkpoint = 0;
8760 break;
8761 }
8762 if (is_rebuilding(dev)) {
d7a1fda2 8763 dprintf_cont("while rebuilding ");
a4e96fd8
MT
8764 if (state & DS_FAULTY) {
8765 dprintf_cont("removing failed drive ");
d7a1fda2
MT
8766 if (n == map->failed_disk_num) {
8767 dprintf_cont("end migration");
8768 end_migration(dev, super, map_state);
a4e96fd8 8769 a->last_checkpoint = 0;
d7a1fda2 8770 } else {
a4e96fd8 8771 dprintf_cont("fail detected during rebuild, changing map state");
d7a1fda2
MT
8772 map->map_state = map_state;
8773 }
94002678 8774 super->updates_pending++;
fb12a745
TM
8775 }
8776
a4e96fd8
MT
8777 if (!rebuild_done)
8778 break;
8779
fb12a745
TM
8780 /* check if recovery is really finished */
8781 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8782 if (mdi->recovery_start != MaxSector) {
8783 recovery_not_finished = 1;
8784 break;
8785 }
8786 if (recovery_not_finished) {
8787 dprintf_cont("\n");
a4e96fd8 8788 dprintf_cont("Rebuild has not finished yet");
fb12a745
TM
8789 if (a->last_checkpoint < mdi->recovery_start) {
8790 a->last_checkpoint =
8791 mdi->recovery_start;
8792 super->updates_pending++;
8793 }
8794 break;
94002678 8795 }
fb12a745
TM
8796
8797 dprintf_cont(" Rebuild done, still degraded");
a4e96fd8
MT
8798 end_migration(dev, super, map_state);
8799 a->last_checkpoint = 0;
8800 super->updates_pending++;
fb12a745
TM
8801
8802 for (i = 0; i < map->num_members; i++) {
8803 int idx = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8804
8805 if (idx & IMSM_ORD_REBUILD)
8806 map->failed_disk_num = i;
8807 }
8808 super->updates_pending++;
94002678
AK
8809 break;
8810 }
8811 if (is_gen_migration(dev)) {
1ade5cc1 8812 dprintf_cont("while general migration");
bf2f0071 8813 if (a->last_checkpoint >= a->info.component_size)
809da78e 8814 end_migration(dev, super, map_state);
94002678
AK
8815 else {
8816 map->map_state = map_state;
3b451610 8817 manage_second_map(super, dev);
94002678
AK
8818 }
8819 super->updates_pending++;
bf2f0071 8820 break;
28bce06f 8821 }
6ce1fbf1 8822 if (is_initializing(dev)) {
1ade5cc1 8823 dprintf_cont("while initialization.");
6ce1fbf1
AK
8824 map->map_state = map_state;
8825 super->updates_pending++;
8826 break;
8827 }
94002678
AK
8828 break;
8829 case IMSM_T_STATE_FAILED: /* transition to failed state */
1ade5cc1 8830 dprintf_cont("failed: ");
94002678 8831 if (is_gen_migration(dev)) {
1ade5cc1 8832 dprintf_cont("while general migration");
94002678
AK
8833 map->map_state = map_state;
8834 super->updates_pending++;
8835 break;
8836 }
8837 if (map->map_state != map_state) {
1ade5cc1 8838 dprintf_cont("mark failed");
94002678
AK
8839 end_migration(dev, super, map_state);
8840 super->updates_pending++;
8841 a->last_checkpoint = 0;
8842 break;
8843 }
8844 break;
8845 default:
1ade5cc1 8846 dprintf_cont("state %i\n", map_state);
5802a811 8847 }
1ade5cc1 8848 dprintf_cont("\n");
845dea95
NB
8849}
8850
f796af5d 8851static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 8852{
f796af5d 8853 void *buf = mpb;
c2a1e7da
DW
8854 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
8855 unsigned long long dsize;
8856 unsigned long long sectors;
f36a9ecd 8857 unsigned int sector_size;
c2a1e7da 8858
aec01630
JS
8859 if (!get_dev_sector_size(fd, NULL, &sector_size))
8860 return 1;
c2a1e7da
DW
8861 get_dev_size(fd, NULL, &dsize);
8862
f36a9ecd 8863 if (mpb_size > sector_size) {
272f648f 8864 /* -1 to account for anchor */
f36a9ecd 8865 sectors = mpb_sectors(mpb, sector_size) - 1;
c2a1e7da 8866
272f648f 8867 /* write the extended mpb to the sectors preceeding the anchor */
f36a9ecd
PB
8868 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
8869 SEEK_SET) < 0)
272f648f 8870 return 1;
c2a1e7da 8871
f36a9ecd
PB
8872 if ((unsigned long long)write(fd, buf + sector_size,
8873 sector_size * sectors) != sector_size * sectors)
272f648f
DW
8874 return 1;
8875 }
c2a1e7da 8876
272f648f 8877 /* first block is stored on second to last sector of the disk */
f36a9ecd 8878 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
c2a1e7da
DW
8879 return 1;
8880
466070ad 8881 if ((unsigned int)write(fd, buf, sector_size) != sector_size)
c2a1e7da
DW
8882 return 1;
8883
c2a1e7da
DW
8884 return 0;
8885}
8886
2e735d19 8887static void imsm_sync_metadata(struct supertype *container)
845dea95 8888{
2e735d19 8889 struct intel_super *super = container->sb;
c2a1e7da 8890
1a64be56 8891 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
8892 if (!super->updates_pending)
8893 return;
8894
36988a3d 8895 write_super_imsm(container, 0);
c2a1e7da
DW
8896
8897 super->updates_pending = 0;
845dea95
NB
8898}
8899
272906ef
DW
8900static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
8901{
8902 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 8903 int i = get_imsm_disk_idx(dev, idx, MAP_X);
272906ef
DW
8904 struct dl *dl;
8905
8906 for (dl = super->disks; dl; dl = dl->next)
8907 if (dl->index == i)
8908 break;
8909
25ed7e59 8910 if (dl && is_failed(&dl->disk))
272906ef
DW
8911 dl = NULL;
8912
8913 if (dl)
1ade5cc1 8914 dprintf("found %x:%x\n", dl->major, dl->minor);
272906ef
DW
8915
8916 return dl;
8917}
8918
a20d2ba5 8919static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
8920 struct active_array *a, int activate_new,
8921 struct mdinfo *additional_test_list)
272906ef
DW
8922{
8923 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 8924 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
a20d2ba5
DW
8925 struct imsm_super *mpb = super->anchor;
8926 struct imsm_map *map;
272906ef
DW
8927 unsigned long long pos;
8928 struct mdinfo *d;
8929 struct extent *ex;
a20d2ba5 8930 int i, j;
272906ef 8931 int found;
569cc43f
DW
8932 __u32 array_start = 0;
8933 __u32 array_end = 0;
272906ef 8934 struct dl *dl;
6c932028 8935 struct mdinfo *test_list;
272906ef
DW
8936
8937 for (dl = super->disks; dl; dl = dl->next) {
8938 /* If in this array, skip */
8939 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
8940 if (d->state_fd >= 0 &&
8941 d->disk.major == dl->major &&
272906ef 8942 d->disk.minor == dl->minor) {
8ba77d32
AK
8943 dprintf("%x:%x already in array\n",
8944 dl->major, dl->minor);
272906ef
DW
8945 break;
8946 }
8947 if (d)
8948 continue;
6c932028
AK
8949 test_list = additional_test_list;
8950 while (test_list) {
8951 if (test_list->disk.major == dl->major &&
8952 test_list->disk.minor == dl->minor) {
8ba77d32
AK
8953 dprintf("%x:%x already in additional test list\n",
8954 dl->major, dl->minor);
8955 break;
8956 }
6c932028 8957 test_list = test_list->next;
8ba77d32 8958 }
6c932028 8959 if (test_list)
8ba77d32 8960 continue;
272906ef 8961
e553d2a4 8962 /* skip in use or failed drives */
25ed7e59 8963 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
8964 dl->index == -2) {
8965 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 8966 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
8967 continue;
8968 }
8969
a20d2ba5
DW
8970 /* skip pure spares when we are looking for partially
8971 * assimilated drives
8972 */
8973 if (dl->index == -1 && !activate_new)
8974 continue;
8975
f2cc4f7d
AO
8976 if (!drive_validate_sector_size(super, dl))
8977 continue;
8978
272906ef 8979 /* Does this unused device have the requisite free space?
a20d2ba5 8980 * It needs to be able to cover all member volumes
272906ef 8981 */
05501181 8982 ex = get_extents(super, dl, 1);
272906ef
DW
8983 if (!ex) {
8984 dprintf("cannot get extents\n");
8985 continue;
8986 }
a20d2ba5
DW
8987 for (i = 0; i < mpb->num_raid_devs; i++) {
8988 dev = get_imsm_dev(super, i);
238c0a71 8989 map = get_imsm_map(dev, MAP_0);
272906ef 8990
a20d2ba5
DW
8991 /* check if this disk is already a member of
8992 * this array
272906ef 8993 */
620b1713 8994 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
8995 continue;
8996
8997 found = 0;
8998 j = 0;
8999 pos = 0;
5551b113 9000 array_start = pba_of_lba0(map);
329c8278 9001 array_end = array_start +
44490938 9002 per_dev_array_size(map) - 1;
a20d2ba5
DW
9003
9004 do {
9005 /* check that we can start at pba_of_lba0 with
44490938 9006 * num_data_stripes*blocks_per_stripe of space
a20d2ba5 9007 */
329c8278 9008 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
9009 found = 1;
9010 break;
9011 }
9012 pos = ex[j].start + ex[j].size;
9013 j++;
9014 } while (ex[j-1].size);
9015
9016 if (!found)
272906ef 9017 break;
a20d2ba5 9018 }
272906ef
DW
9019
9020 free(ex);
a20d2ba5 9021 if (i < mpb->num_raid_devs) {
329c8278
DW
9022 dprintf("%x:%x does not have %u to %u available\n",
9023 dl->major, dl->minor, array_start, array_end);
272906ef
DW
9024 /* No room */
9025 continue;
a20d2ba5
DW
9026 }
9027 return dl;
272906ef
DW
9028 }
9029
9030 return dl;
9031}
9032
95d07a2c
LM
9033static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
9034{
9035 struct imsm_dev *dev2;
9036 struct imsm_map *map;
9037 struct dl *idisk;
9038 int slot;
9039 int idx;
9040 __u8 state;
9041
9042 dev2 = get_imsm_dev(cont->sb, dev_idx);
9043 if (dev2) {
238c0a71 9044 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
95d07a2c 9045 if (state == IMSM_T_STATE_FAILED) {
238c0a71 9046 map = get_imsm_map(dev2, MAP_0);
95d07a2c
LM
9047 if (!map)
9048 return 1;
9049 for (slot = 0; slot < map->num_members; slot++) {
9050 /*
9051 * Check if failed disks are deleted from intel
9052 * disk list or are marked to be deleted
9053 */
238c0a71 9054 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
95d07a2c
LM
9055 idisk = get_imsm_dl_disk(cont->sb, idx);
9056 /*
9057 * Do not rebuild the array if failed disks
9058 * from failed sub-array are not removed from
9059 * container.
9060 */
9061 if (idisk &&
9062 is_failed(&idisk->disk) &&
9063 (idisk->action != DISK_REMOVE))
9064 return 0;
9065 }
9066 }
9067 }
9068 return 1;
9069}
9070
88758e9d
DW
9071static struct mdinfo *imsm_activate_spare(struct active_array *a,
9072 struct metadata_update **updates)
9073{
9074 /**
d23fe947
DW
9075 * Find a device with unused free space and use it to replace a
9076 * failed/vacant region in an array. We replace failed regions one a
9077 * array at a time. The result is that a new spare disk will be added
9078 * to the first failed array and after the monitor has finished
9079 * propagating failures the remainder will be consumed.
88758e9d 9080 *
d23fe947
DW
9081 * FIXME add a capability for mdmon to request spares from another
9082 * container.
88758e9d
DW
9083 */
9084
9085 struct intel_super *super = a->container->sb;
88758e9d 9086 int inst = a->info.container_member;
949c47a0 9087 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 9088 struct imsm_map *map = get_imsm_map(dev, MAP_0);
88758e9d
DW
9089 int failed = a->info.array.raid_disks;
9090 struct mdinfo *rv = NULL;
9091 struct mdinfo *d;
9092 struct mdinfo *di;
9093 struct metadata_update *mu;
9094 struct dl *dl;
9095 struct imsm_update_activate_spare *u;
9096 int num_spares = 0;
9097 int i;
95d07a2c 9098 int allowed;
88758e9d
DW
9099
9100 for (d = a->info.devs ; d ; d = d->next) {
9101 if ((d->curr_state & DS_FAULTY) &&
9102 d->state_fd >= 0)
9103 /* wait for Removal to happen */
9104 return NULL;
9105 if (d->state_fd >= 0)
9106 failed--;
9107 }
9108
9109 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
9110 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 9111
e2962bfc
AK
9112 if (imsm_reshape_blocks_arrays_changes(super))
9113 return NULL;
1af97990 9114
fc8ca064
AK
9115 /* Cannot activate another spare if rebuild is in progress already
9116 */
9117 if (is_rebuilding(dev)) {
7a862a02 9118 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
fc8ca064
AK
9119 return NULL;
9120 }
9121
89c67882
AK
9122 if (a->info.array.level == 4)
9123 /* No repair for takeovered array
9124 * imsm doesn't support raid4
9125 */
9126 return NULL;
9127
3b451610
AK
9128 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
9129 IMSM_T_STATE_DEGRADED)
88758e9d
DW
9130 return NULL;
9131
83ca7d45
AP
9132 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
9133 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
9134 return NULL;
9135 }
9136
95d07a2c
LM
9137 /*
9138 * If there are any failed disks check state of the other volume.
9139 * Block rebuild if the another one is failed until failed disks
9140 * are removed from container.
9141 */
9142 if (failed) {
7a862a02 9143 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
c4acd1e5 9144 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
9145 /* check if states of the other volumes allow for rebuild */
9146 for (i = 0; i < super->anchor->num_raid_devs; i++) {
9147 if (i != inst) {
9148 allowed = imsm_rebuild_allowed(a->container,
9149 i, failed);
9150 if (!allowed)
9151 return NULL;
9152 }
9153 }
9154 }
9155
88758e9d 9156 /* For each slot, if it is not working, find a spare */
88758e9d
DW
9157 for (i = 0; i < a->info.array.raid_disks; i++) {
9158 for (d = a->info.devs ; d ; d = d->next)
9159 if (d->disk.raid_disk == i)
9160 break;
9161 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
9162 if (d && (d->state_fd >= 0))
9163 continue;
9164
272906ef 9165 /*
a20d2ba5
DW
9166 * OK, this device needs recovery. Try to re-add the
9167 * previous occupant of this slot, if this fails see if
9168 * we can continue the assimilation of a spare that was
9169 * partially assimilated, finally try to activate a new
9170 * spare.
272906ef
DW
9171 */
9172 dl = imsm_readd(super, i, a);
9173 if (!dl)
b303fe21 9174 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 9175 if (!dl)
b303fe21 9176 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
9177 if (!dl)
9178 continue;
1011e834 9179
272906ef 9180 /* found a usable disk with enough space */
503975b9 9181 di = xcalloc(1, sizeof(*di));
272906ef
DW
9182
9183 /* dl->index will be -1 in the case we are activating a
9184 * pristine spare. imsm_process_update() will create a
9185 * new index in this case. Once a disk is found to be
9186 * failed in all member arrays it is kicked from the
9187 * metadata
9188 */
9189 di->disk.number = dl->index;
d23fe947 9190
272906ef
DW
9191 /* (ab)use di->devs to store a pointer to the device
9192 * we chose
9193 */
9194 di->devs = (struct mdinfo *) dl;
9195
9196 di->disk.raid_disk = i;
9197 di->disk.major = dl->major;
9198 di->disk.minor = dl->minor;
9199 di->disk.state = 0;
d23534e4 9200 di->recovery_start = 0;
5551b113 9201 di->data_offset = pba_of_lba0(map);
272906ef
DW
9202 di->component_size = a->info.component_size;
9203 di->container_member = inst;
5e46202e 9204 di->bb.supported = 1;
2c8890e9 9205 if (a->info.consistency_policy == CONSISTENCY_POLICY_PPL) {
2432ce9b 9206 di->ppl_sector = get_ppl_sector(super, inst);
c2462068 9207 di->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
2432ce9b 9208 }
148acb7b 9209 super->random = random32();
272906ef
DW
9210 di->next = rv;
9211 rv = di;
9212 num_spares++;
9213 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
9214 i, di->data_offset);
88758e9d
DW
9215 }
9216
9217 if (!rv)
9218 /* No spares found */
9219 return rv;
9220 /* Now 'rv' has a list of devices to return.
9221 * Create a metadata_update record to update the
9222 * disk_ord_tbl for the array
9223 */
503975b9 9224 mu = xmalloc(sizeof(*mu));
1011e834 9225 mu->buf = xcalloc(num_spares,
503975b9 9226 sizeof(struct imsm_update_activate_spare));
88758e9d 9227 mu->space = NULL;
cb23f1f4 9228 mu->space_list = NULL;
88758e9d
DW
9229 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
9230 mu->next = *updates;
9231 u = (struct imsm_update_activate_spare *) mu->buf;
9232
9233 for (di = rv ; di ; di = di->next) {
9234 u->type = update_activate_spare;
d23fe947
DW
9235 u->dl = (struct dl *) di->devs;
9236 di->devs = NULL;
88758e9d
DW
9237 u->slot = di->disk.raid_disk;
9238 u->array = inst;
9239 u->next = u + 1;
9240 u++;
9241 }
9242 (u-1)->next = NULL;
9243 *updates = mu;
9244
9245 return rv;
9246}
9247
54c2c1ea 9248static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 9249{
54c2c1ea 9250 struct imsm_dev *dev = get_imsm_dev(super, idx);
238c0a71
AK
9251 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9252 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
54c2c1ea
DW
9253 struct disk_info *inf = get_disk_info(u);
9254 struct imsm_disk *disk;
8273f55e
DW
9255 int i;
9256 int j;
8273f55e 9257
54c2c1ea 9258 for (i = 0; i < map->num_members; i++) {
238c0a71 9259 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
54c2c1ea
DW
9260 for (j = 0; j < new_map->num_members; j++)
9261 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
9262 return 1;
9263 }
9264
9265 return 0;
9266}
9267
1a64be56
LM
9268static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
9269{
594dc1b8
JS
9270 struct dl *dl;
9271
1a64be56 9272 for (dl = super->disks; dl; dl = dl->next)
089f9d79 9273 if (dl->major == major && dl->minor == minor)
1a64be56
LM
9274 return dl;
9275 return NULL;
9276}
9277
9278static int remove_disk_super(struct intel_super *super, int major, int minor)
9279{
594dc1b8 9280 struct dl *prev;
1a64be56
LM
9281 struct dl *dl;
9282
9283 prev = NULL;
9284 for (dl = super->disks; dl; dl = dl->next) {
089f9d79 9285 if (dl->major == major && dl->minor == minor) {
1a64be56
LM
9286 /* remove */
9287 if (prev)
9288 prev->next = dl->next;
9289 else
9290 super->disks = dl->next;
9291 dl->next = NULL;
3a85bf0e 9292 __free_imsm_disk(dl, 1);
1ade5cc1 9293 dprintf("removed %x:%x\n", major, minor);
1a64be56
LM
9294 break;
9295 }
9296 prev = dl;
9297 }
9298 return 0;
9299}
9300
f21e18ca 9301static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 9302
1a64be56
LM
9303static int add_remove_disk_update(struct intel_super *super)
9304{
9305 int check_degraded = 0;
594dc1b8
JS
9306 struct dl *disk;
9307
1a64be56
LM
9308 /* add/remove some spares to/from the metadata/contrainer */
9309 while (super->disk_mgmt_list) {
9310 struct dl *disk_cfg;
9311
9312 disk_cfg = super->disk_mgmt_list;
9313 super->disk_mgmt_list = disk_cfg->next;
9314 disk_cfg->next = NULL;
9315
9316 if (disk_cfg->action == DISK_ADD) {
9317 disk_cfg->next = super->disks;
9318 super->disks = disk_cfg;
9319 check_degraded = 1;
1ade5cc1
N
9320 dprintf("added %x:%x\n",
9321 disk_cfg->major, disk_cfg->minor);
1a64be56
LM
9322 } else if (disk_cfg->action == DISK_REMOVE) {
9323 dprintf("Disk remove action processed: %x.%x\n",
9324 disk_cfg->major, disk_cfg->minor);
9325 disk = get_disk_super(super,
9326 disk_cfg->major,
9327 disk_cfg->minor);
9328 if (disk) {
9329 /* store action status */
9330 disk->action = DISK_REMOVE;
9331 /* remove spare disks only */
9332 if (disk->index == -1) {
9333 remove_disk_super(super,
9334 disk_cfg->major,
9335 disk_cfg->minor);
91c97c54
MT
9336 } else {
9337 disk_cfg->fd = disk->fd;
9338 disk->fd = -1;
1a64be56
LM
9339 }
9340 }
9341 /* release allocate disk structure */
3a85bf0e 9342 __free_imsm_disk(disk_cfg, 1);
1a64be56
LM
9343 }
9344 }
9345 return check_degraded;
9346}
9347
a29911da
PC
9348static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
9349 struct intel_super *super,
9350 void ***space_list)
9351{
9352 struct intel_dev *id;
9353 void **tofree = NULL;
9354 int ret_val = 0;
9355
1ade5cc1 9356 dprintf("(enter)\n");
089f9d79 9357 if (u->subdev < 0 || u->subdev > 1) {
a29911da
PC
9358 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9359 return ret_val;
9360 }
089f9d79 9361 if (space_list == NULL || *space_list == NULL) {
a29911da
PC
9362 dprintf("imsm: Error: Memory is not allocated\n");
9363 return ret_val;
9364 }
9365
9366 for (id = super->devlist ; id; id = id->next) {
9367 if (id->index == (unsigned)u->subdev) {
9368 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9369 struct imsm_map *map;
9370 struct imsm_dev *new_dev =
9371 (struct imsm_dev *)*space_list;
238c0a71 9372 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
a29911da
PC
9373 int to_state;
9374 struct dl *new_disk;
9375
9376 if (new_dev == NULL)
9377 return ret_val;
9378 *space_list = **space_list;
9379 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
238c0a71 9380 map = get_imsm_map(new_dev, MAP_0);
a29911da
PC
9381 if (migr_map) {
9382 dprintf("imsm: Error: migration in progress");
9383 return ret_val;
9384 }
9385
9386 to_state = map->map_state;
9387 if ((u->new_level == 5) && (map->raid_level == 0)) {
9388 map->num_members++;
9389 /* this should not happen */
9390 if (u->new_disks[0] < 0) {
9391 map->failed_disk_num =
9392 map->num_members - 1;
9393 to_state = IMSM_T_STATE_DEGRADED;
9394 } else
9395 to_state = IMSM_T_STATE_NORMAL;
9396 }
8e59f3d8 9397 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
9398 if (u->new_level > -1)
9399 map->raid_level = u->new_level;
238c0a71 9400 migr_map = get_imsm_map(new_dev, MAP_1);
a29911da
PC
9401 if ((u->new_level == 5) &&
9402 (migr_map->raid_level == 0)) {
9403 int ord = map->num_members - 1;
9404 migr_map->num_members--;
9405 if (u->new_disks[0] < 0)
9406 ord |= IMSM_ORD_REBUILD;
9407 set_imsm_ord_tbl_ent(map,
9408 map->num_members - 1,
9409 ord);
9410 }
9411 id->dev = new_dev;
9412 tofree = (void **)dev;
9413
4bba0439
PC
9414 /* update chunk size
9415 */
06fb291a 9416 if (u->new_chunksize > 0) {
9529d343
MD
9417 struct imsm_map *dest_map =
9418 get_imsm_map(dev, MAP_0);
06fb291a 9419 int used_disks =
9529d343 9420 imsm_num_data_members(dest_map);
06fb291a
PB
9421
9422 if (used_disks == 0)
9423 return ret_val;
9424
4bba0439
PC
9425 map->blocks_per_strip =
9426 __cpu_to_le16(u->new_chunksize * 2);
1c275381 9427 update_num_data_stripes(map, imsm_dev_size(dev));
06fb291a 9428 }
4bba0439 9429
44490938
MD
9430 /* ensure blocks_per_member has valid value
9431 */
9432 set_blocks_per_member(map,
9433 per_dev_array_size(map) +
9434 NUM_BLOCKS_DIRTY_STRIPE_REGION);
9435
a29911da
PC
9436 /* add disk
9437 */
089f9d79
JS
9438 if (u->new_level != 5 || migr_map->raid_level != 0 ||
9439 migr_map->raid_level == map->raid_level)
a29911da
PC
9440 goto skip_disk_add;
9441
9442 if (u->new_disks[0] >= 0) {
9443 /* use passes spare
9444 */
9445 new_disk = get_disk_super(super,
9446 major(u->new_disks[0]),
9447 minor(u->new_disks[0]));
7a862a02 9448 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
a29911da
PC
9449 major(u->new_disks[0]),
9450 minor(u->new_disks[0]),
9451 new_disk, new_disk->index);
9452 if (new_disk == NULL)
9453 goto error_disk_add;
9454
9455 new_disk->index = map->num_members - 1;
9456 /* slot to fill in autolayout
9457 */
9458 new_disk->raiddisk = new_disk->index;
9459 new_disk->disk.status |= CONFIGURED_DISK;
9460 new_disk->disk.status &= ~SPARE_DISK;
9461 } else
9462 goto error_disk_add;
9463
9464skip_disk_add:
9465 *tofree = *space_list;
9466 /* calculate new size
9467 */
f3871fdc 9468 imsm_set_array_size(new_dev, -1);
a29911da
PC
9469
9470 ret_val = 1;
9471 }
9472 }
9473
9474 if (tofree)
9475 *space_list = tofree;
9476 return ret_val;
9477
9478error_disk_add:
9479 dprintf("Error: imsm: Cannot find disk.\n");
9480 return ret_val;
9481}
9482
f3871fdc
AK
9483static int apply_size_change_update(struct imsm_update_size_change *u,
9484 struct intel_super *super)
9485{
9486 struct intel_dev *id;
9487 int ret_val = 0;
9488
1ade5cc1 9489 dprintf("(enter)\n");
089f9d79 9490 if (u->subdev < 0 || u->subdev > 1) {
f3871fdc
AK
9491 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9492 return ret_val;
9493 }
9494
9495 for (id = super->devlist ; id; id = id->next) {
9496 if (id->index == (unsigned)u->subdev) {
9497 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9498 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9529d343 9499 int used_disks = imsm_num_data_members(map);
f3871fdc 9500 unsigned long long blocks_per_member;
44490938
MD
9501 unsigned long long new_size_per_disk;
9502
9503 if (used_disks == 0)
9504 return 0;
f3871fdc
AK
9505
9506 /* calculate new size
9507 */
44490938
MD
9508 new_size_per_disk = u->new_size / used_disks;
9509 blocks_per_member = new_size_per_disk +
9510 NUM_BLOCKS_DIRTY_STRIPE_REGION;
f3871fdc 9511
1c275381
MT
9512 imsm_set_array_size(dev, u->new_size);
9513 set_blocks_per_member(map, blocks_per_member);
9514 update_num_data_stripes(map, u->new_size);
f3871fdc
AK
9515 ret_val = 1;
9516 break;
9517 }
9518 }
9519
9520 return ret_val;
9521}
9522
69d40de4
JR
9523static int prepare_spare_to_activate(struct supertype *st,
9524 struct imsm_update_activate_spare *u)
9525{
9526 struct intel_super *super = st->sb;
9527 int prev_current_vol = super->current_vol;
9528 struct active_array *a;
9529 int ret = 1;
9530
9531 for (a = st->arrays; a; a = a->next)
9532 /*
9533 * Additional initialization (adding bitmap header, filling
9534 * the bitmap area with '1's to force initial rebuild for a whole
9535 * data-area) is required when adding the spare to the volume
9536 * with write-intent bitmap.
9537 */
9538 if (a->info.container_member == u->array &&
9539 a->info.consistency_policy == CONSISTENCY_POLICY_BITMAP) {
9540 struct dl *dl;
9541
9542 for (dl = super->disks; dl; dl = dl->next)
9543 if (dl == u->dl)
9544 break;
9545 if (!dl)
9546 break;
9547
9548 super->current_vol = u->array;
9549 if (st->ss->write_bitmap(st, dl->fd, NoUpdate))
9550 ret = 0;
9551 super->current_vol = prev_current_vol;
9552 }
9553 return ret;
9554}
9555
061d7da3 9556static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
ca9de185 9557 struct intel_super *super,
061d7da3
LO
9558 struct active_array *active_array)
9559{
9560 struct imsm_super *mpb = super->anchor;
9561 struct imsm_dev *dev = get_imsm_dev(super, u->array);
238c0a71 9562 struct imsm_map *map = get_imsm_map(dev, MAP_0);
061d7da3
LO
9563 struct imsm_map *migr_map;
9564 struct active_array *a;
9565 struct imsm_disk *disk;
9566 __u8 to_state;
9567 struct dl *dl;
9568 unsigned int found;
9569 int failed;
5961eeec 9570 int victim;
061d7da3 9571 int i;
5961eeec 9572 int second_map_created = 0;
061d7da3 9573
5961eeec 9574 for (; u; u = u->next) {
238c0a71 9575 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
061d7da3 9576
5961eeec 9577 if (victim < 0)
9578 return 0;
061d7da3 9579
5961eeec 9580 for (dl = super->disks; dl; dl = dl->next)
9581 if (dl == u->dl)
9582 break;
061d7da3 9583
5961eeec 9584 if (!dl) {
7a862a02 9585 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
5961eeec 9586 u->dl->index);
9587 return 0;
9588 }
061d7da3 9589
5961eeec 9590 /* count failures (excluding rebuilds and the victim)
9591 * to determine map[0] state
9592 */
9593 failed = 0;
9594 for (i = 0; i < map->num_members; i++) {
9595 if (i == u->slot)
9596 continue;
9597 disk = get_imsm_disk(super,
238c0a71 9598 get_imsm_disk_idx(dev, i, MAP_X));
5961eeec 9599 if (!disk || is_failed(disk))
9600 failed++;
9601 }
061d7da3 9602
5961eeec 9603 /* adding a pristine spare, assign a new index */
9604 if (dl->index < 0) {
9605 dl->index = super->anchor->num_disks;
9606 super->anchor->num_disks++;
9607 }
9608 disk = &dl->disk;
9609 disk->status |= CONFIGURED_DISK;
9610 disk->status &= ~SPARE_DISK;
9611
9612 /* mark rebuild */
238c0a71 9613 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
5961eeec 9614 if (!second_map_created) {
9615 second_map_created = 1;
9616 map->map_state = IMSM_T_STATE_DEGRADED;
9617 migrate(dev, super, to_state, MIGR_REBUILD);
9618 } else
9619 map->map_state = to_state;
238c0a71 9620 migr_map = get_imsm_map(dev, MAP_1);
5961eeec 9621 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
9622 set_imsm_ord_tbl_ent(migr_map, u->slot,
9623 dl->index | IMSM_ORD_REBUILD);
9624
9625 /* update the family_num to mark a new container
9626 * generation, being careful to record the existing
9627 * family_num in orig_family_num to clean up after
9628 * earlier mdadm versions that neglected to set it.
9629 */
9630 if (mpb->orig_family_num == 0)
9631 mpb->orig_family_num = mpb->family_num;
9632 mpb->family_num += super->random;
9633
9634 /* count arrays using the victim in the metadata */
9635 found = 0;
9636 for (a = active_array; a ; a = a->next) {
9637 dev = get_imsm_dev(super, a->info.container_member);
238c0a71 9638 map = get_imsm_map(dev, MAP_0);
061d7da3 9639
5961eeec 9640 if (get_imsm_disk_slot(map, victim) >= 0)
9641 found++;
9642 }
061d7da3 9643
5961eeec 9644 /* delete the victim if it is no longer being
9645 * utilized anywhere
061d7da3 9646 */
5961eeec 9647 if (!found) {
9648 struct dl **dlp;
061d7da3 9649
5961eeec 9650 /* We know that 'manager' isn't touching anything,
9651 * so it is safe to delete
9652 */
9653 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
9654 if ((*dlp)->index == victim)
9655 break;
5961eeec 9656
9657 /* victim may be on the missing list */
9658 if (!*dlp)
9659 for (dlp = &super->missing; *dlp;
9660 dlp = &(*dlp)->next)
9661 if ((*dlp)->index == victim)
9662 break;
9663 imsm_delete(super, dlp, victim);
9664 }
061d7da3
LO
9665 }
9666
9667 return 1;
9668}
a29911da 9669
2e5dc010
N
9670static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
9671 struct intel_super *super,
9672 void ***space_list)
9673{
9674 struct dl *new_disk;
9675 struct intel_dev *id;
9676 int i;
9677 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 9678 int disk_count = u->old_raid_disks;
2e5dc010
N
9679 void **tofree = NULL;
9680 int devices_to_reshape = 1;
9681 struct imsm_super *mpb = super->anchor;
9682 int ret_val = 0;
d098291a 9683 unsigned int dev_id;
2e5dc010 9684
1ade5cc1 9685 dprintf("(enter)\n");
2e5dc010
N
9686
9687 /* enable spares to use in array */
9688 for (i = 0; i < delta_disks; i++) {
9689 new_disk = get_disk_super(super,
9690 major(u->new_disks[i]),
9691 minor(u->new_disks[i]));
7a862a02 9692 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
2e5dc010
N
9693 major(u->new_disks[i]), minor(u->new_disks[i]),
9694 new_disk, new_disk->index);
089f9d79
JS
9695 if (new_disk == NULL ||
9696 (new_disk->index >= 0 &&
9697 new_disk->index < u->old_raid_disks))
2e5dc010 9698 goto update_reshape_exit;
ee4beede 9699 new_disk->index = disk_count++;
2e5dc010
N
9700 /* slot to fill in autolayout
9701 */
9702 new_disk->raiddisk = new_disk->index;
9703 new_disk->disk.status |=
9704 CONFIGURED_DISK;
9705 new_disk->disk.status &= ~SPARE_DISK;
9706 }
9707
ed7333bd
AK
9708 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
9709 mpb->num_raid_devs);
2e5dc010
N
9710 /* manage changes in volume
9711 */
d098291a 9712 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
9713 void **sp = *space_list;
9714 struct imsm_dev *newdev;
9715 struct imsm_map *newmap, *oldmap;
9716
d098291a
AK
9717 for (id = super->devlist ; id; id = id->next) {
9718 if (id->index == dev_id)
9719 break;
9720 }
9721 if (id == NULL)
9722 break;
2e5dc010
N
9723 if (!sp)
9724 continue;
9725 *space_list = *sp;
9726 newdev = (void*)sp;
9727 /* Copy the dev, but not (all of) the map */
9728 memcpy(newdev, id->dev, sizeof(*newdev));
238c0a71
AK
9729 oldmap = get_imsm_map(id->dev, MAP_0);
9730 newmap = get_imsm_map(newdev, MAP_0);
2e5dc010
N
9731 /* Copy the current map */
9732 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9733 /* update one device only
9734 */
9735 if (devices_to_reshape) {
ed7333bd
AK
9736 dprintf("imsm: modifying subdev: %i\n",
9737 id->index);
2e5dc010
N
9738 devices_to_reshape--;
9739 newdev->vol.migr_state = 1;
4036e7ee 9740 set_vol_curr_migr_unit(newdev, 0);
ea672ee1 9741 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
9742 newmap->num_members = u->new_raid_disks;
9743 for (i = 0; i < delta_disks; i++) {
9744 set_imsm_ord_tbl_ent(newmap,
9745 u->old_raid_disks + i,
9746 u->old_raid_disks + i);
9747 }
9748 /* New map is correct, now need to save old map
9749 */
238c0a71 9750 newmap = get_imsm_map(newdev, MAP_1);
2e5dc010
N
9751 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9752
f3871fdc 9753 imsm_set_array_size(newdev, -1);
2e5dc010
N
9754 }
9755
9756 sp = (void **)id->dev;
9757 id->dev = newdev;
9758 *sp = tofree;
9759 tofree = sp;
8e59f3d8
AK
9760
9761 /* Clear migration record */
9762 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 9763 }
819bc634
AK
9764 if (tofree)
9765 *space_list = tofree;
2e5dc010
N
9766 ret_val = 1;
9767
9768update_reshape_exit:
9769
9770 return ret_val;
9771}
9772
bb025c2f 9773static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
9774 struct intel_super *super,
9775 void ***space_list)
bb025c2f
KW
9776{
9777 struct imsm_dev *dev = NULL;
8ca6df95
KW
9778 struct intel_dev *dv;
9779 struct imsm_dev *dev_new;
bb025c2f
KW
9780 struct imsm_map *map;
9781 struct dl *dm, *du;
8ca6df95 9782 int i;
bb025c2f
KW
9783
9784 for (dv = super->devlist; dv; dv = dv->next)
9785 if (dv->index == (unsigned int)u->subarray) {
9786 dev = dv->dev;
9787 break;
9788 }
9789
9790 if (dev == NULL)
9791 return 0;
9792
238c0a71 9793 map = get_imsm_map(dev, MAP_0);
bb025c2f
KW
9794
9795 if (u->direction == R10_TO_R0) {
43d5ec18 9796 /* Number of failed disks must be half of initial disk number */
3b451610
AK
9797 if (imsm_count_failed(super, dev, MAP_0) !=
9798 (map->num_members / 2))
43d5ec18
KW
9799 return 0;
9800
bb025c2f
KW
9801 /* iterate through devices to mark removed disks as spare */
9802 for (dm = super->disks; dm; dm = dm->next) {
9803 if (dm->disk.status & FAILED_DISK) {
9804 int idx = dm->index;
9805 /* update indexes on the disk list */
9806/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
9807 the index values will end up being correct.... NB */
9808 for (du = super->disks; du; du = du->next)
9809 if (du->index > idx)
9810 du->index--;
9811 /* mark as spare disk */
a8619d23 9812 mark_spare(dm);
bb025c2f
KW
9813 }
9814 }
bb025c2f 9815 /* update map */
1c275381 9816 map->num_members /= map->num_domains;
bb025c2f 9817 map->map_state = IMSM_T_STATE_NORMAL;
bb025c2f 9818 map->raid_level = 0;
1c275381
MT
9819 set_num_domains(map);
9820 update_num_data_stripes(map, imsm_dev_size(dev));
bb025c2f
KW
9821 map->failed_disk_num = -1;
9822 }
9823
8ca6df95
KW
9824 if (u->direction == R0_TO_R10) {
9825 void **space;
4a353e6e 9826
8ca6df95
KW
9827 /* update slots in current disk list */
9828 for (dm = super->disks; dm; dm = dm->next) {
9829 if (dm->index >= 0)
9830 dm->index *= 2;
9831 }
9832 /* create new *missing* disks */
9833 for (i = 0; i < map->num_members; i++) {
9834 space = *space_list;
9835 if (!space)
9836 continue;
9837 *space_list = *space;
9838 du = (void *)space;
9839 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
9840 du->fd = -1;
9841 du->minor = 0;
9842 du->major = 0;
9843 du->index = (i * 2) + 1;
9844 sprintf((char *)du->disk.serial,
9845 " MISSING_%d", du->index);
9846 sprintf((char *)du->serial,
9847 "MISSING_%d", du->index);
9848 du->next = super->missing;
9849 super->missing = du;
9850 }
9851 /* create new dev and map */
9852 space = *space_list;
9853 if (!space)
9854 return 0;
9855 *space_list = *space;
9856 dev_new = (void *)space;
9857 memcpy(dev_new, dev, sizeof(*dev));
9858 /* update new map */
238c0a71 9859 map = get_imsm_map(dev_new, MAP_0);
1c275381 9860
1a2487c2 9861 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95 9862 map->raid_level = 1;
1c275381
MT
9863 set_num_domains(map);
9864 map->num_members = map->num_members * map->num_domains;
9865 update_num_data_stripes(map, imsm_dev_size(dev));
4a353e6e 9866
8ca6df95
KW
9867 /* replace dev<->dev_new */
9868 dv->dev = dev_new;
9869 }
bb025c2f
KW
9870 /* update disk order table */
9871 for (du = super->disks; du; du = du->next)
9872 if (du->index >= 0)
9873 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 9874 for (du = super->missing; du; du = du->next)
1a2487c2
KW
9875 if (du->index >= 0) {
9876 set_imsm_ord_tbl_ent(map, du->index, du->index);
4c9e8c1e 9877 mark_missing(super, dv->dev, &du->disk, du->index);
1a2487c2 9878 }
bb025c2f
KW
9879
9880 return 1;
9881}
9882
e8319a19
DW
9883static void imsm_process_update(struct supertype *st,
9884 struct metadata_update *update)
9885{
9886 /**
9887 * crack open the metadata_update envelope to find the update record
9888 * update can be one of:
d195167d
AK
9889 * update_reshape_container_disks - all the arrays in the container
9890 * are being reshaped to have more devices. We need to mark
9891 * the arrays for general migration and convert selected spares
9892 * into active devices.
9893 * update_activate_spare - a spare device has replaced a failed
1011e834
N
9894 * device in an array, update the disk_ord_tbl. If this disk is
9895 * present in all member arrays then also clear the SPARE_DISK
9896 * flag
d195167d
AK
9897 * update_create_array
9898 * update_kill_array
9899 * update_rename_array
9900 * update_add_remove_disk
e8319a19
DW
9901 */
9902 struct intel_super *super = st->sb;
4d7b1503 9903 struct imsm_super *mpb;
e8319a19
DW
9904 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
9905
4d7b1503
DW
9906 /* update requires a larger buf but the allocation failed */
9907 if (super->next_len && !super->next_buf) {
9908 super->next_len = 0;
9909 return;
9910 }
9911
9912 if (super->next_buf) {
9913 memcpy(super->next_buf, super->buf, super->len);
9914 free(super->buf);
9915 super->len = super->next_len;
9916 super->buf = super->next_buf;
9917
9918 super->next_len = 0;
9919 super->next_buf = NULL;
9920 }
9921
9922 mpb = super->anchor;
9923
e8319a19 9924 switch (type) {
0ec5d470
AK
9925 case update_general_migration_checkpoint: {
9926 struct intel_dev *id;
9927 struct imsm_update_general_migration_checkpoint *u =
9928 (void *)update->buf;
9929
1ade5cc1 9930 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470
AK
9931
9932 /* find device under general migration */
9933 for (id = super->devlist ; id; id = id->next) {
9934 if (is_gen_migration(id->dev)) {
4036e7ee
MT
9935 set_vol_curr_migr_unit(id->dev,
9936 u->curr_migr_unit);
0ec5d470
AK
9937 super->updates_pending++;
9938 }
9939 }
9940 break;
9941 }
bb025c2f
KW
9942 case update_takeover: {
9943 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
9944 if (apply_takeover_update(u, super, &update->space_list)) {
9945 imsm_update_version_info(super);
bb025c2f 9946 super->updates_pending++;
1a2487c2 9947 }
bb025c2f
KW
9948 break;
9949 }
9950
78b10e66 9951 case update_reshape_container_disks: {
d195167d 9952 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
9953 if (apply_reshape_container_disks_update(
9954 u, super, &update->space_list))
9955 super->updates_pending++;
78b10e66
N
9956 break;
9957 }
48c5303a 9958 case update_reshape_migration: {
a29911da
PC
9959 struct imsm_update_reshape_migration *u = (void *)update->buf;
9960 if (apply_reshape_migration_update(
9961 u, super, &update->space_list))
9962 super->updates_pending++;
48c5303a
PC
9963 break;
9964 }
f3871fdc
AK
9965 case update_size_change: {
9966 struct imsm_update_size_change *u = (void *)update->buf;
9967 if (apply_size_change_update(u, super))
9968 super->updates_pending++;
9969 break;
9970 }
e8319a19 9971 case update_activate_spare: {
1011e834 9972 struct imsm_update_activate_spare *u = (void *) update->buf;
69d40de4
JR
9973
9974 if (prepare_spare_to_activate(st, u) &&
9975 apply_update_activate_spare(u, super, st->arrays))
061d7da3 9976 super->updates_pending++;
8273f55e
DW
9977 break;
9978 }
9979 case update_create_array: {
9980 /* someone wants to create a new array, we need to be aware of
9981 * a few races/collisions:
9982 * 1/ 'Create' called by two separate instances of mdadm
9983 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
9984 * devices that have since been assimilated via
9985 * activate_spare.
9986 * In the event this update can not be carried out mdadm will
9987 * (FIX ME) notice that its update did not take hold.
9988 */
9989 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 9990 struct intel_dev *dv;
8273f55e
DW
9991 struct imsm_dev *dev;
9992 struct imsm_map *map, *new_map;
9993 unsigned long long start, end;
9994 unsigned long long new_start, new_end;
9995 int i;
54c2c1ea
DW
9996 struct disk_info *inf;
9997 struct dl *dl;
8273f55e
DW
9998
9999 /* handle racing creates: first come first serve */
10000 if (u->dev_idx < mpb->num_raid_devs) {
1ade5cc1 10001 dprintf("subarray %d already defined\n", u->dev_idx);
ba2de7ba 10002 goto create_error;
8273f55e
DW
10003 }
10004
10005 /* check update is next in sequence */
10006 if (u->dev_idx != mpb->num_raid_devs) {
1ade5cc1
N
10007 dprintf("can not create array %d expected index %d\n",
10008 u->dev_idx, mpb->num_raid_devs);
ba2de7ba 10009 goto create_error;
8273f55e
DW
10010 }
10011
238c0a71 10012 new_map = get_imsm_map(&u->dev, MAP_0);
5551b113 10013 new_start = pba_of_lba0(new_map);
44490938 10014 new_end = new_start + per_dev_array_size(new_map);
54c2c1ea 10015 inf = get_disk_info(u);
8273f55e
DW
10016
10017 /* handle activate_spare versus create race:
10018 * check to make sure that overlapping arrays do not include
10019 * overalpping disks
10020 */
10021 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 10022 dev = get_imsm_dev(super, i);
238c0a71 10023 map = get_imsm_map(dev, MAP_0);
5551b113 10024 start = pba_of_lba0(map);
44490938 10025 end = start + per_dev_array_size(map);
8273f55e
DW
10026 if ((new_start >= start && new_start <= end) ||
10027 (start >= new_start && start <= new_end))
54c2c1ea
DW
10028 /* overlap */;
10029 else
10030 continue;
10031
10032 if (disks_overlap(super, i, u)) {
1ade5cc1 10033 dprintf("arrays overlap\n");
ba2de7ba 10034 goto create_error;
8273f55e
DW
10035 }
10036 }
8273f55e 10037
949c47a0
DW
10038 /* check that prepare update was successful */
10039 if (!update->space) {
1ade5cc1 10040 dprintf("prepare update failed\n");
ba2de7ba 10041 goto create_error;
949c47a0
DW
10042 }
10043
54c2c1ea
DW
10044 /* check that all disks are still active before committing
10045 * changes. FIXME: could we instead handle this by creating a
10046 * degraded array? That's probably not what the user expects,
10047 * so better to drop this update on the floor.
10048 */
10049 for (i = 0; i < new_map->num_members; i++) {
10050 dl = serial_to_dl(inf[i].serial, super);
10051 if (!dl) {
1ade5cc1 10052 dprintf("disk disappeared\n");
ba2de7ba 10053 goto create_error;
54c2c1ea 10054 }
949c47a0
DW
10055 }
10056
8273f55e 10057 super->updates_pending++;
54c2c1ea
DW
10058
10059 /* convert spares to members and fixup ord_tbl */
10060 for (i = 0; i < new_map->num_members; i++) {
10061 dl = serial_to_dl(inf[i].serial, super);
10062 if (dl->index == -1) {
10063 dl->index = mpb->num_disks;
10064 mpb->num_disks++;
10065 dl->disk.status |= CONFIGURED_DISK;
10066 dl->disk.status &= ~SPARE_DISK;
10067 }
10068 set_imsm_ord_tbl_ent(new_map, i, dl->index);
10069 }
10070
ba2de7ba
DW
10071 dv = update->space;
10072 dev = dv->dev;
949c47a0
DW
10073 update->space = NULL;
10074 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
10075 dv->index = u->dev_idx;
10076 dv->next = super->devlist;
10077 super->devlist = dv;
8273f55e 10078 mpb->num_raid_devs++;
8273f55e 10079
4d1313e9 10080 imsm_update_version_info(super);
8273f55e 10081 break;
ba2de7ba
DW
10082 create_error:
10083 /* mdmon knows how to release update->space, but not
10084 * ((struct intel_dev *) update->space)->dev
10085 */
10086 if (update->space) {
10087 dv = update->space;
10088 free(dv->dev);
10089 }
8273f55e 10090 break;
e8319a19 10091 }
33414a01
DW
10092 case update_kill_array: {
10093 struct imsm_update_kill_array *u = (void *) update->buf;
10094 int victim = u->dev_idx;
10095 struct active_array *a;
10096 struct intel_dev **dp;
10097 struct imsm_dev *dev;
10098
10099 /* sanity check that we are not affecting the uuid of
10100 * active arrays, or deleting an active array
10101 *
10102 * FIXME when immutable ids are available, but note that
10103 * we'll also need to fixup the invalidated/active
10104 * subarray indexes in mdstat
10105 */
10106 for (a = st->arrays; a; a = a->next)
10107 if (a->info.container_member >= victim)
10108 break;
10109 /* by definition if mdmon is running at least one array
10110 * is active in the container, so checking
10111 * mpb->num_raid_devs is just extra paranoia
10112 */
10113 dev = get_imsm_dev(super, victim);
10114 if (a || !dev || mpb->num_raid_devs == 1) {
10115 dprintf("failed to delete subarray-%d\n", victim);
10116 break;
10117 }
10118
10119 for (dp = &super->devlist; *dp;)
f21e18ca 10120 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
10121 *dp = (*dp)->next;
10122 } else {
f21e18ca 10123 if ((*dp)->index > (unsigned)victim)
33414a01
DW
10124 (*dp)->index--;
10125 dp = &(*dp)->next;
10126 }
10127 mpb->num_raid_devs--;
10128 super->updates_pending++;
10129 break;
10130 }
aa534678
DW
10131 case update_rename_array: {
10132 struct imsm_update_rename_array *u = (void *) update->buf;
10133 char name[MAX_RAID_SERIAL_LEN+1];
10134 int target = u->dev_idx;
10135 struct active_array *a;
10136 struct imsm_dev *dev;
10137
10138 /* sanity check that we are not affecting the uuid of
10139 * an active array
10140 */
40659392 10141 memset(name, 0, sizeof(name));
aa534678
DW
10142 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
10143 name[MAX_RAID_SERIAL_LEN] = '\0';
10144 for (a = st->arrays; a; a = a->next)
10145 if (a->info.container_member == target)
10146 break;
10147 dev = get_imsm_dev(super, u->dev_idx);
10148 if (a || !dev || !check_name(super, name, 1)) {
10149 dprintf("failed to rename subarray-%d\n", target);
10150 break;
10151 }
10152
40659392 10153 memcpy(dev->volume, name, MAX_RAID_SERIAL_LEN);
aa534678
DW
10154 super->updates_pending++;
10155 break;
10156 }
1a64be56 10157 case update_add_remove_disk: {
43dad3d6 10158 /* we may be able to repair some arrays if disks are
095b8088 10159 * being added, check the status of add_remove_disk
1a64be56
LM
10160 * if discs has been added.
10161 */
10162 if (add_remove_disk_update(super)) {
43dad3d6 10163 struct active_array *a;
072b727f
DW
10164
10165 super->updates_pending++;
1a64be56 10166 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
10167 a->check_degraded = 1;
10168 }
43dad3d6 10169 break;
e8319a19 10170 }
bbab0940
TM
10171 case update_prealloc_badblocks_mem:
10172 break;
e6e9dd3f
AP
10173 case update_rwh_policy: {
10174 struct imsm_update_rwh_policy *u = (void *)update->buf;
10175 int target = u->dev_idx;
10176 struct imsm_dev *dev = get_imsm_dev(super, target);
10177 if (!dev) {
10178 dprintf("could not find subarray-%d\n", target);
10179 break;
10180 }
10181
10182 if (dev->rwh_policy != u->new_policy) {
10183 dev->rwh_policy = u->new_policy;
10184 super->updates_pending++;
10185 }
10186 break;
10187 }
1a64be56 10188 default:
ebf3be99 10189 pr_err("error: unsupported process update type:(type: %d)\n", type);
1a64be56 10190 }
e8319a19 10191}
88758e9d 10192
bc0b9d34
PC
10193static struct mdinfo *get_spares_for_grow(struct supertype *st);
10194
5fe6f031
N
10195static int imsm_prepare_update(struct supertype *st,
10196 struct metadata_update *update)
8273f55e 10197{
949c47a0 10198 /**
4d7b1503
DW
10199 * Allocate space to hold new disk entries, raid-device entries or a new
10200 * mpb if necessary. The manager synchronously waits for updates to
10201 * complete in the monitor, so new mpb buffers allocated here can be
10202 * integrated by the monitor thread without worrying about live pointers
10203 * in the manager thread.
8273f55e 10204 */
095b8088 10205 enum imsm_update_type type;
4d7b1503 10206 struct intel_super *super = st->sb;
f36a9ecd 10207 unsigned int sector_size = super->sector_size;
4d7b1503
DW
10208 struct imsm_super *mpb = super->anchor;
10209 size_t buf_len;
10210 size_t len = 0;
949c47a0 10211
095b8088
N
10212 if (update->len < (int)sizeof(type))
10213 return 0;
10214
10215 type = *(enum imsm_update_type *) update->buf;
10216
949c47a0 10217 switch (type) {
0ec5d470 10218 case update_general_migration_checkpoint:
095b8088
N
10219 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
10220 return 0;
1ade5cc1 10221 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470 10222 break;
abedf5fc
KW
10223 case update_takeover: {
10224 struct imsm_update_takeover *u = (void *)update->buf;
095b8088
N
10225 if (update->len < (int)sizeof(*u))
10226 return 0;
abedf5fc
KW
10227 if (u->direction == R0_TO_R10) {
10228 void **tail = (void **)&update->space_list;
10229 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
238c0a71 10230 struct imsm_map *map = get_imsm_map(dev, MAP_0);
abedf5fc
KW
10231 int num_members = map->num_members;
10232 void *space;
10233 int size, i;
abedf5fc
KW
10234 /* allocate memory for added disks */
10235 for (i = 0; i < num_members; i++) {
10236 size = sizeof(struct dl);
503975b9 10237 space = xmalloc(size);
abedf5fc
KW
10238 *tail = space;
10239 tail = space;
10240 *tail = NULL;
10241 }
10242 /* allocate memory for new device */
10243 size = sizeof_imsm_dev(super->devlist->dev, 0) +
10244 (num_members * sizeof(__u32));
503975b9
N
10245 space = xmalloc(size);
10246 *tail = space;
10247 tail = space;
10248 *tail = NULL;
10249 len = disks_to_mpb_size(num_members * 2);
abedf5fc
KW
10250 }
10251
10252 break;
10253 }
78b10e66 10254 case update_reshape_container_disks: {
d195167d
AK
10255 /* Every raid device in the container is about to
10256 * gain some more devices, and we will enter a
10257 * reconfiguration.
10258 * So each 'imsm_map' will be bigger, and the imsm_vol
10259 * will now hold 2 of them.
10260 * Thus we need new 'struct imsm_dev' allocations sized
10261 * as sizeof_imsm_dev but with more devices in both maps.
10262 */
10263 struct imsm_update_reshape *u = (void *)update->buf;
10264 struct intel_dev *dl;
10265 void **space_tail = (void**)&update->space_list;
10266
095b8088
N
10267 if (update->len < (int)sizeof(*u))
10268 return 0;
10269
1ade5cc1 10270 dprintf("for update_reshape\n");
d195167d
AK
10271
10272 for (dl = super->devlist; dl; dl = dl->next) {
10273 int size = sizeof_imsm_dev(dl->dev, 1);
10274 void *s;
d677e0b8
AK
10275 if (u->new_raid_disks > u->old_raid_disks)
10276 size += sizeof(__u32)*2*
10277 (u->new_raid_disks - u->old_raid_disks);
503975b9 10278 s = xmalloc(size);
d195167d
AK
10279 *space_tail = s;
10280 space_tail = s;
10281 *space_tail = NULL;
10282 }
10283
10284 len = disks_to_mpb_size(u->new_raid_disks);
10285 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
10286 break;
10287 }
48c5303a 10288 case update_reshape_migration: {
bc0b9d34
PC
10289 /* for migration level 0->5 we need to add disks
10290 * so the same as for container operation we will copy
10291 * device to the bigger location.
10292 * in memory prepared device and new disk area are prepared
10293 * for usage in process update
10294 */
10295 struct imsm_update_reshape_migration *u = (void *)update->buf;
10296 struct intel_dev *id;
10297 void **space_tail = (void **)&update->space_list;
10298 int size;
10299 void *s;
10300 int current_level = -1;
10301
095b8088
N
10302 if (update->len < (int)sizeof(*u))
10303 return 0;
10304
1ade5cc1 10305 dprintf("for update_reshape\n");
bc0b9d34
PC
10306
10307 /* add space for bigger array in update
10308 */
10309 for (id = super->devlist; id; id = id->next) {
10310 if (id->index == (unsigned)u->subdev) {
10311 size = sizeof_imsm_dev(id->dev, 1);
10312 if (u->new_raid_disks > u->old_raid_disks)
10313 size += sizeof(__u32)*2*
10314 (u->new_raid_disks - u->old_raid_disks);
503975b9 10315 s = xmalloc(size);
bc0b9d34
PC
10316 *space_tail = s;
10317 space_tail = s;
10318 *space_tail = NULL;
10319 break;
10320 }
10321 }
10322 if (update->space_list == NULL)
10323 break;
10324
10325 /* add space for disk in update
10326 */
10327 size = sizeof(struct dl);
503975b9 10328 s = xmalloc(size);
bc0b9d34
PC
10329 *space_tail = s;
10330 space_tail = s;
10331 *space_tail = NULL;
10332
10333 /* add spare device to update
10334 */
10335 for (id = super->devlist ; id; id = id->next)
10336 if (id->index == (unsigned)u->subdev) {
10337 struct imsm_dev *dev;
10338 struct imsm_map *map;
10339
10340 dev = get_imsm_dev(super, u->subdev);
238c0a71 10341 map = get_imsm_map(dev, MAP_0);
bc0b9d34
PC
10342 current_level = map->raid_level;
10343 break;
10344 }
089f9d79 10345 if (u->new_level == 5 && u->new_level != current_level) {
bc0b9d34
PC
10346 struct mdinfo *spares;
10347
10348 spares = get_spares_for_grow(st);
10349 if (spares) {
10350 struct dl *dl;
10351 struct mdinfo *dev;
10352
10353 dev = spares->devs;
10354 if (dev) {
10355 u->new_disks[0] =
10356 makedev(dev->disk.major,
10357 dev->disk.minor);
10358 dl = get_disk_super(super,
10359 dev->disk.major,
10360 dev->disk.minor);
10361 dl->index = u->old_raid_disks;
10362 dev = dev->next;
10363 }
10364 sysfs_free(spares);
10365 }
10366 }
10367 len = disks_to_mpb_size(u->new_raid_disks);
10368 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
10369 break;
10370 }
f3871fdc 10371 case update_size_change: {
095b8088
N
10372 if (update->len < (int)sizeof(struct imsm_update_size_change))
10373 return 0;
10374 break;
10375 }
10376 case update_activate_spare: {
10377 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
10378 return 0;
f3871fdc
AK
10379 break;
10380 }
949c47a0
DW
10381 case update_create_array: {
10382 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 10383 struct intel_dev *dv;
54c2c1ea 10384 struct imsm_dev *dev = &u->dev;
238c0a71 10385 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
10386 struct dl *dl;
10387 struct disk_info *inf;
10388 int i;
10389 int activate = 0;
949c47a0 10390
095b8088
N
10391 if (update->len < (int)sizeof(*u))
10392 return 0;
10393
54c2c1ea
DW
10394 inf = get_disk_info(u);
10395 len = sizeof_imsm_dev(dev, 1);
ba2de7ba 10396 /* allocate a new super->devlist entry */
503975b9
N
10397 dv = xmalloc(sizeof(*dv));
10398 dv->dev = xmalloc(len);
10399 update->space = dv;
949c47a0 10400
54c2c1ea
DW
10401 /* count how many spares will be converted to members */
10402 for (i = 0; i < map->num_members; i++) {
10403 dl = serial_to_dl(inf[i].serial, super);
10404 if (!dl) {
10405 /* hmm maybe it failed?, nothing we can do about
10406 * it here
10407 */
10408 continue;
10409 }
10410 if (count_memberships(dl, super) == 0)
10411 activate++;
10412 }
10413 len += activate * sizeof(struct imsm_disk);
949c47a0 10414 break;
095b8088
N
10415 }
10416 case update_kill_array: {
10417 if (update->len < (int)sizeof(struct imsm_update_kill_array))
10418 return 0;
949c47a0
DW
10419 break;
10420 }
095b8088
N
10421 case update_rename_array: {
10422 if (update->len < (int)sizeof(struct imsm_update_rename_array))
10423 return 0;
10424 break;
10425 }
10426 case update_add_remove_disk:
10427 /* no update->len needed */
10428 break;
bbab0940
TM
10429 case update_prealloc_badblocks_mem:
10430 super->extra_space += sizeof(struct bbm_log) -
10431 get_imsm_bbm_log_size(super->bbm_log);
10432 break;
e6e9dd3f
AP
10433 case update_rwh_policy: {
10434 if (update->len < (int)sizeof(struct imsm_update_rwh_policy))
10435 return 0;
10436 break;
10437 }
095b8088
N
10438 default:
10439 return 0;
949c47a0 10440 }
8273f55e 10441
4d7b1503
DW
10442 /* check if we need a larger metadata buffer */
10443 if (super->next_buf)
10444 buf_len = super->next_len;
10445 else
10446 buf_len = super->len;
10447
bbab0940 10448 if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
4d7b1503
DW
10449 /* ok we need a larger buf than what is currently allocated
10450 * if this allocation fails process_update will notice that
10451 * ->next_len is set and ->next_buf is NULL
10452 */
bbab0940
TM
10453 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
10454 super->extra_space + len, sector_size);
4d7b1503
DW
10455 if (super->next_buf)
10456 free(super->next_buf);
10457
10458 super->next_len = buf_len;
f36a9ecd 10459 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
1f45a8ad
DW
10460 memset(super->next_buf, 0, buf_len);
10461 else
4d7b1503
DW
10462 super->next_buf = NULL;
10463 }
5fe6f031 10464 return 1;
8273f55e
DW
10465}
10466
ae6aad82 10467/* must be called while manager is quiesced */
f21e18ca 10468static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
10469{
10470 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
10471 struct dl *iter;
10472 struct imsm_dev *dev;
10473 struct imsm_map *map;
4c9e8c1e 10474 unsigned int i, j, num_members;
fb12a745 10475 __u32 ord, ord_map0;
4c9e8c1e 10476 struct bbm_log *log = super->bbm_log;
ae6aad82 10477
1ade5cc1 10478 dprintf("deleting device[%d] from imsm_super\n", index);
ae6aad82
DW
10479
10480 /* shift all indexes down one */
10481 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 10482 if (iter->index > (int)index)
ae6aad82 10483 iter->index--;
47ee5a45 10484 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 10485 if (iter->index > (int)index)
47ee5a45 10486 iter->index--;
ae6aad82
DW
10487
10488 for (i = 0; i < mpb->num_raid_devs; i++) {
10489 dev = get_imsm_dev(super, i);
238c0a71 10490 map = get_imsm_map(dev, MAP_0);
24565c9a
DW
10491 num_members = map->num_members;
10492 for (j = 0; j < num_members; j++) {
10493 /* update ord entries being careful not to propagate
10494 * ord-flags to the first map
10495 */
238c0a71 10496 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
fb12a745 10497 ord_map0 = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ae6aad82 10498
24565c9a
DW
10499 if (ord_to_idx(ord) <= index)
10500 continue;
ae6aad82 10501
238c0a71 10502 map = get_imsm_map(dev, MAP_0);
fb12a745 10503 set_imsm_ord_tbl_ent(map, j, ord_map0 - 1);
238c0a71 10504 map = get_imsm_map(dev, MAP_1);
24565c9a
DW
10505 if (map)
10506 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
10507 }
10508 }
10509
4c9e8c1e
TM
10510 for (i = 0; i < log->entry_count; i++) {
10511 struct bbm_log_entry *entry = &log->marked_block_entries[i];
10512
10513 if (entry->disk_ordinal <= index)
10514 continue;
10515 entry->disk_ordinal--;
10516 }
10517
ae6aad82
DW
10518 mpb->num_disks--;
10519 super->updates_pending++;
24565c9a
DW
10520 if (*dlp) {
10521 struct dl *dl = *dlp;
10522
10523 *dlp = (*dlp)->next;
3a85bf0e 10524 __free_imsm_disk(dl, 1);
24565c9a 10525 }
ae6aad82 10526}
9a717282 10527
9a717282
AK
10528static int imsm_get_allowed_degradation(int level, int raid_disks,
10529 struct intel_super *super,
10530 struct imsm_dev *dev)
10531{
10532 switch (level) {
bf5cf7c7 10533 case 1:
9a717282
AK
10534 case 10:{
10535 int ret_val = 0;
10536 struct imsm_map *map;
10537 int i;
10538
10539 ret_val = raid_disks/2;
10540 /* check map if all disks pairs not failed
10541 * in both maps
10542 */
238c0a71 10543 map = get_imsm_map(dev, MAP_0);
9a717282
AK
10544 for (i = 0; i < ret_val; i++) {
10545 int degradation = 0;
10546 if (get_imsm_disk(super, i) == NULL)
10547 degradation++;
10548 if (get_imsm_disk(super, i + 1) == NULL)
10549 degradation++;
10550 if (degradation == 2)
10551 return 0;
10552 }
238c0a71 10553 map = get_imsm_map(dev, MAP_1);
9a717282
AK
10554 /* if there is no second map
10555 * result can be returned
10556 */
10557 if (map == NULL)
10558 return ret_val;
10559 /* check degradation in second map
10560 */
10561 for (i = 0; i < ret_val; i++) {
10562 int degradation = 0;
10563 if (get_imsm_disk(super, i) == NULL)
10564 degradation++;
10565 if (get_imsm_disk(super, i + 1) == NULL)
10566 degradation++;
10567 if (degradation == 2)
10568 return 0;
10569 }
10570 return ret_val;
10571 }
10572 case 5:
10573 return 1;
10574 case 6:
10575 return 2;
10576 default:
10577 return 0;
10578 }
10579}
10580
d31ad643
PB
10581/*******************************************************************************
10582 * Function: validate_container_imsm
10583 * Description: This routine validates container after assemble,
10584 * eg. if devices in container are under the same controller.
10585 *
10586 * Parameters:
10587 * info : linked list with info about devices used in array
10588 * Returns:
10589 * 1 : HBA mismatch
10590 * 0 : Success
10591 ******************************************************************************/
10592int validate_container_imsm(struct mdinfo *info)
10593{
6b781d33
AP
10594 if (check_env("IMSM_NO_PLATFORM"))
10595 return 0;
d31ad643 10596
6b781d33
AP
10597 struct sys_dev *idev;
10598 struct sys_dev *hba = NULL;
10599 struct sys_dev *intel_devices = find_intel_devices();
10600 char *dev_path = devt_to_devpath(makedev(info->disk.major,
7c798f87 10601 info->disk.minor), 1, NULL);
6b781d33
AP
10602
10603 for (idev = intel_devices; idev; idev = idev->next) {
10604 if (dev_path && strstr(dev_path, idev->path)) {
10605 hba = idev;
10606 break;
d31ad643 10607 }
6b781d33
AP
10608 }
10609 if (dev_path)
d31ad643
PB
10610 free(dev_path);
10611
6b781d33
AP
10612 if (!hba) {
10613 pr_err("WARNING - Cannot detect HBA for device %s!\n",
10614 devid2kname(makedev(info->disk.major, info->disk.minor)));
10615 return 1;
10616 }
10617
10618 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
10619 struct mdinfo *dev;
10620
10621 for (dev = info->next; dev; dev = dev->next) {
7c798f87
MT
10622 dev_path = devt_to_devpath(makedev(dev->disk.major,
10623 dev->disk.minor), 1, NULL);
6b781d33
AP
10624
10625 struct sys_dev *hba2 = NULL;
10626 for (idev = intel_devices; idev; idev = idev->next) {
10627 if (dev_path && strstr(dev_path, idev->path)) {
10628 hba2 = idev;
10629 break;
d31ad643
PB
10630 }
10631 }
6b781d33
AP
10632 if (dev_path)
10633 free(dev_path);
10634
10635 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
10636 get_orom_by_device_id(hba2->dev_id);
10637
10638 if (hba2 && hba->type != hba2->type) {
10639 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
10640 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
10641 return 1;
10642 }
10643
07cb1e57 10644 if (orom != orom2) {
6b781d33
AP
10645 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
10646 " This operation is not supported and can lead to data loss.\n");
10647 return 1;
10648 }
10649
10650 if (!orom) {
10651 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
10652 " This operation is not supported and can lead to data loss.\n");
10653 return 1;
10654 }
d31ad643 10655 }
6b781d33 10656
d31ad643
PB
10657 return 0;
10658}
32141c17 10659
6f50473f
TM
10660/*******************************************************************************
10661* Function: imsm_record_badblock
10662* Description: This routine stores new bad block record in BBM log
10663*
10664* Parameters:
10665* a : array containing a bad block
10666* slot : disk number containing a bad block
10667* sector : bad block sector
10668* length : bad block sectors range
10669* Returns:
10670* 1 : Success
10671* 0 : Error
10672******************************************************************************/
10673static int imsm_record_badblock(struct active_array *a, int slot,
10674 unsigned long long sector, int length)
10675{
10676 struct intel_super *super = a->container->sb;
10677 int ord;
10678 int ret;
10679
10680 ord = imsm_disk_slot_to_ord(a, slot);
10681 if (ord < 0)
10682 return 0;
10683
10684 ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
10685 length);
10686 if (ret)
10687 super->updates_pending++;
10688
10689 return ret;
10690}
c07a5a4f
TM
10691/*******************************************************************************
10692* Function: imsm_clear_badblock
10693* Description: This routine clears bad block record from BBM log
10694*
10695* Parameters:
10696* a : array containing a bad block
10697* slot : disk number containing a bad block
10698* sector : bad block sector
10699* length : bad block sectors range
10700* Returns:
10701* 1 : Success
10702* 0 : Error
10703******************************************************************************/
10704static int imsm_clear_badblock(struct active_array *a, int slot,
10705 unsigned long long sector, int length)
10706{
10707 struct intel_super *super = a->container->sb;
10708 int ord;
10709 int ret;
10710
10711 ord = imsm_disk_slot_to_ord(a, slot);
10712 if (ord < 0)
10713 return 0;
10714
10715 ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
10716 if (ret)
10717 super->updates_pending++;
10718
10719 return ret;
10720}
928f1424
TM
10721/*******************************************************************************
10722* Function: imsm_get_badblocks
10723* Description: This routine get list of bad blocks for an array
10724*
10725* Parameters:
10726* a : array
10727* slot : disk number
10728* Returns:
10729* bb : structure containing bad blocks
10730* NULL : error
10731******************************************************************************/
10732static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot)
10733{
10734 int inst = a->info.container_member;
10735 struct intel_super *super = a->container->sb;
10736 struct imsm_dev *dev = get_imsm_dev(super, inst);
10737 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10738 int ord;
10739
10740 ord = imsm_disk_slot_to_ord(a, slot);
10741 if (ord < 0)
10742 return NULL;
10743
10744 get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map),
44490938 10745 per_dev_array_size(map), &super->bb);
928f1424
TM
10746
10747 return &super->bb;
10748}
27156a57
TM
10749/*******************************************************************************
10750* Function: examine_badblocks_imsm
10751* Description: Prints list of bad blocks on a disk to the standard output
10752*
10753* Parameters:
10754* st : metadata handler
10755* fd : open file descriptor for device
10756* devname : device name
10757* Returns:
10758* 0 : Success
10759* 1 : Error
10760******************************************************************************/
10761static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname)
10762{
10763 struct intel_super *super = st->sb;
10764 struct bbm_log *log = super->bbm_log;
10765 struct dl *d = NULL;
10766 int any = 0;
10767
10768 for (d = super->disks; d ; d = d->next) {
10769 if (strcmp(d->devname, devname) == 0)
10770 break;
10771 }
10772
10773 if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */
10774 pr_err("%s doesn't appear to be part of a raid array\n",
10775 devname);
10776 return 1;
10777 }
10778
10779 if (log != NULL) {
10780 unsigned int i;
10781 struct bbm_log_entry *entry = &log->marked_block_entries[0];
10782
10783 for (i = 0; i < log->entry_count; i++) {
10784 if (entry[i].disk_ordinal == d->index) {
10785 unsigned long long sector = __le48_to_cpu(
10786 &entry[i].defective_block_start);
10787 int cnt = entry[i].marked_count + 1;
10788
10789 if (!any) {
10790 printf("Bad-blocks on %s:\n", devname);
10791 any = 1;
10792 }
10793
10794 printf("%20llu for %d sectors\n", sector, cnt);
10795 }
10796 }
10797 }
10798
10799 if (!any)
10800 printf("No bad-blocks list configured on %s\n", devname);
10801
10802 return 0;
10803}
687629c2
AK
10804/*******************************************************************************
10805 * Function: init_migr_record_imsm
10806 * Description: Function inits imsm migration record
10807 * Parameters:
10808 * super : imsm internal array info
10809 * dev : device under migration
10810 * info : general array info to find the smallest device
10811 * Returns:
10812 * none
10813 ******************************************************************************/
10814void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
10815 struct mdinfo *info)
10816{
10817 struct intel_super *super = st->sb;
10818 struct migr_record *migr_rec = super->migr_rec;
10819 int new_data_disks;
10820 unsigned long long dsize, dev_sectors;
10821 long long unsigned min_dev_sectors = -1LLU;
238c0a71
AK
10822 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10823 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
687629c2 10824 unsigned long long num_migr_units;
3ef4403c 10825 unsigned long long array_blocks;
2f86fda3 10826 struct dl *dl_disk = NULL;
687629c2
AK
10827
10828 memset(migr_rec, 0, sizeof(struct migr_record));
10829 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
10830
10831 /* only ascending reshape supported now */
10832 migr_rec->ascending_migr = __cpu_to_le32(1);
10833
10834 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
10835 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
e1742195
AK
10836 migr_rec->dest_depth_per_unit *=
10837 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9529d343 10838 new_data_disks = imsm_num_data_members(map_dest);
687629c2
AK
10839 migr_rec->blocks_per_unit =
10840 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
10841 migr_rec->dest_depth_per_unit =
10842 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 10843 array_blocks = info->component_size * new_data_disks;
687629c2
AK
10844 num_migr_units =
10845 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
10846
10847 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
10848 num_migr_units++;
9f421827 10849 set_num_migr_units(migr_rec, num_migr_units);
687629c2
AK
10850
10851 migr_rec->post_migr_vol_cap = dev->size_low;
10852 migr_rec->post_migr_vol_cap_hi = dev->size_high;
10853
687629c2 10854 /* Find the smallest dev */
2f86fda3
MT
10855 for (dl_disk = super->disks; dl_disk ; dl_disk = dl_disk->next) {
10856 /* ignore spares in container */
10857 if (dl_disk->index < 0)
687629c2 10858 continue;
2f86fda3 10859 get_dev_size(dl_disk->fd, NULL, &dsize);
687629c2
AK
10860 dev_sectors = dsize / 512;
10861 if (dev_sectors < min_dev_sectors)
10862 min_dev_sectors = dev_sectors;
687629c2 10863 }
9f421827 10864 set_migr_chkp_area_pba(migr_rec, min_dev_sectors -
687629c2
AK
10865 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
10866
10867 write_imsm_migr_rec(st);
10868
10869 return;
10870}
10871
10872/*******************************************************************************
10873 * Function: save_backup_imsm
10874 * Description: Function saves critical data stripes to Migration Copy Area
10875 * and updates the current migration unit status.
10876 * Use restore_stripes() to form a destination stripe,
10877 * and to write it to the Copy Area.
10878 * Parameters:
10879 * st : supertype information
aea93171 10880 * dev : imsm device that backup is saved for
687629c2
AK
10881 * info : general array info
10882 * buf : input buffer
687629c2
AK
10883 * length : length of data to backup (blocks_per_unit)
10884 * Returns:
10885 * 0 : success
10886 *, -1 : fail
10887 ******************************************************************************/
10888int save_backup_imsm(struct supertype *st,
10889 struct imsm_dev *dev,
10890 struct mdinfo *info,
10891 void *buf,
687629c2
AK
10892 int length)
10893{
10894 int rv = -1;
10895 struct intel_super *super = st->sb;
594dc1b8
JS
10896 unsigned long long *target_offsets;
10897 int *targets;
687629c2 10898 int i;
238c0a71 10899 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
687629c2 10900 int new_disks = map_dest->num_members;
ab724b98
AK
10901 int dest_layout = 0;
10902 int dest_chunk;
d1877f69 10903 unsigned long long start;
9529d343 10904 int data_disks = imsm_num_data_members(map_dest);
687629c2 10905
503975b9 10906 targets = xmalloc(new_disks * sizeof(int));
687629c2 10907
2f86fda3
MT
10908 for (i = 0; i < new_disks; i++) {
10909 struct dl *dl_disk = get_imsm_dl_disk(super, i);
10910
10911 targets[i] = dl_disk->fd;
10912 }
7e45b550 10913
503975b9 10914 target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
687629c2 10915
d1877f69 10916 start = info->reshape_progress * 512;
687629c2 10917 for (i = 0; i < new_disks; i++) {
9f421827 10918 target_offsets[i] = migr_chkp_area_pba(super->migr_rec) * 512;
d1877f69
AK
10919 /* move back copy area adderss, it will be moved forward
10920 * in restore_stripes() using start input variable
10921 */
10922 target_offsets[i] -= start/data_disks;
687629c2
AK
10923 }
10924
68eb8bc6 10925 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
10926 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
10927
687629c2
AK
10928 if (restore_stripes(targets, /* list of dest devices */
10929 target_offsets, /* migration record offsets */
10930 new_disks,
ab724b98
AK
10931 dest_chunk,
10932 map_dest->raid_level,
10933 dest_layout,
10934 -1, /* source backup file descriptor */
10935 0, /* input buf offset
10936 * always 0 buf is already offseted */
d1877f69 10937 start,
687629c2
AK
10938 length,
10939 buf) != 0) {
e7b84f9d 10940 pr_err("Error restoring stripes\n");
687629c2
AK
10941 goto abort;
10942 }
10943
10944 rv = 0;
10945
10946abort:
10947 if (targets) {
687629c2
AK
10948 free(targets);
10949 }
10950 free(target_offsets);
10951
10952 return rv;
10953}
10954
10955/*******************************************************************************
10956 * Function: save_checkpoint_imsm
10957 * Description: Function called for current unit status update
10958 * in the migration record. It writes it to disk.
10959 * Parameters:
10960 * super : imsm internal array info
10961 * info : general array info
10962 * Returns:
10963 * 0: success
10964 * 1: failure
0228d92c
AK
10965 * 2: failure, means no valid migration record
10966 * / no general migration in progress /
687629c2
AK
10967 ******************************************************************************/
10968int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
10969{
10970 struct intel_super *super = st->sb;
f8b72ef5
AK
10971 unsigned long long blocks_per_unit;
10972 unsigned long long curr_migr_unit;
10973
2f86fda3 10974 if (load_imsm_migr_rec(super) != 0) {
7a862a02 10975 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
2e062e82
AK
10976 return 1;
10977 }
10978
f8b72ef5
AK
10979 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
10980 if (blocks_per_unit == 0) {
0228d92c
AK
10981 dprintf("imsm: no migration in progress.\n");
10982 return 2;
687629c2 10983 }
f8b72ef5
AK
10984 curr_migr_unit = info->reshape_progress / blocks_per_unit;
10985 /* check if array is alligned to copy area
10986 * if it is not alligned, add one to current migration unit value
10987 * this can happend on array reshape finish only
10988 */
10989 if (info->reshape_progress % blocks_per_unit)
10990 curr_migr_unit++;
687629c2 10991
9f421827 10992 set_current_migr_unit(super->migr_rec, curr_migr_unit);
687629c2 10993 super->migr_rec->rec_status = __cpu_to_le32(state);
9f421827
PB
10994 set_migr_dest_1st_member_lba(super->migr_rec,
10995 super->migr_rec->dest_depth_per_unit * curr_migr_unit);
10996
687629c2 10997 if (write_imsm_migr_rec(st) < 0) {
7a862a02 10998 dprintf("imsm: Cannot write migration record outside backup area\n");
687629c2
AK
10999 return 1;
11000 }
11001
11002 return 0;
11003}
11004
276d77db
AK
11005/*******************************************************************************
11006 * Function: recover_backup_imsm
11007 * Description: Function recovers critical data from the Migration Copy Area
11008 * while assembling an array.
11009 * Parameters:
11010 * super : imsm internal array info
11011 * info : general array info
11012 * Returns:
11013 * 0 : success (or there is no data to recover)
11014 * 1 : fail
11015 ******************************************************************************/
11016int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
11017{
11018 struct intel_super *super = st->sb;
11019 struct migr_record *migr_rec = super->migr_rec;
594dc1b8 11020 struct imsm_map *map_dest;
276d77db
AK
11021 struct intel_dev *id = NULL;
11022 unsigned long long read_offset;
11023 unsigned long long write_offset;
11024 unsigned unit_len;
2f86fda3 11025 int new_disks, err;
276d77db
AK
11026 char *buf = NULL;
11027 int retval = 1;
f36a9ecd 11028 unsigned int sector_size = super->sector_size;
4036e7ee
MT
11029 unsigned long long curr_migr_unit = current_migr_unit(migr_rec);
11030 unsigned long long num_migr_units = get_num_migr_units(migr_rec);
276d77db 11031 char buffer[20];
6c3560c0 11032 int skipped_disks = 0;
2f86fda3 11033 struct dl *dl_disk;
276d77db
AK
11034
11035 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
11036 if (err < 1)
11037 return 1;
11038
11039 /* recover data only during assemblation */
11040 if (strncmp(buffer, "inactive", 8) != 0)
11041 return 0;
11042 /* no data to recover */
11043 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
11044 return 0;
11045 if (curr_migr_unit >= num_migr_units)
11046 return 1;
11047
11048 /* find device during reshape */
11049 for (id = super->devlist; id; id = id->next)
11050 if (is_gen_migration(id->dev))
11051 break;
11052 if (id == NULL)
11053 return 1;
11054
238c0a71 11055 map_dest = get_imsm_map(id->dev, MAP_0);
276d77db
AK
11056 new_disks = map_dest->num_members;
11057
9f421827 11058 read_offset = migr_chkp_area_pba(migr_rec) * 512;
276d77db 11059
9f421827 11060 write_offset = (migr_dest_1st_member_lba(migr_rec) +
5551b113 11061 pba_of_lba0(map_dest)) * 512;
276d77db
AK
11062
11063 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
f36a9ecd 11064 if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
276d77db 11065 goto abort;
276d77db 11066
2f86fda3
MT
11067 for (dl_disk = super->disks; dl_disk; dl_disk = dl_disk->next) {
11068 if (dl_disk->index < 0)
11069 continue;
276d77db 11070
2f86fda3 11071 if (dl_disk->fd < 0) {
6c3560c0
AK
11072 skipped_disks++;
11073 continue;
11074 }
2f86fda3 11075 if (lseek64(dl_disk->fd, read_offset, SEEK_SET) < 0) {
e7b84f9d
N
11076 pr_err("Cannot seek to block: %s\n",
11077 strerror(errno));
137debce
AK
11078 skipped_disks++;
11079 continue;
276d77db 11080 }
83b3de77 11081 if (read(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) {
e7b84f9d
N
11082 pr_err("Cannot read copy area block: %s\n",
11083 strerror(errno));
137debce
AK
11084 skipped_disks++;
11085 continue;
276d77db 11086 }
2f86fda3 11087 if (lseek64(dl_disk->fd, write_offset, SEEK_SET) < 0) {
e7b84f9d
N
11088 pr_err("Cannot seek to block: %s\n",
11089 strerror(errno));
137debce
AK
11090 skipped_disks++;
11091 continue;
276d77db 11092 }
83b3de77 11093 if (write(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) {
e7b84f9d
N
11094 pr_err("Cannot restore block: %s\n",
11095 strerror(errno));
137debce
AK
11096 skipped_disks++;
11097 continue;
276d77db
AK
11098 }
11099 }
11100
137debce
AK
11101 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
11102 new_disks,
11103 super,
11104 id->dev)) {
7a862a02 11105 pr_err("Cannot restore data from backup. Too many failed disks\n");
6c3560c0
AK
11106 goto abort;
11107 }
11108
befb629b
AK
11109 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
11110 /* ignore error == 2, this can mean end of reshape here
11111 */
7a862a02 11112 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
befb629b 11113 } else
276d77db 11114 retval = 0;
276d77db
AK
11115
11116abort:
276d77db
AK
11117 free(buf);
11118 return retval;
11119}
11120
2cda7640
ML
11121static char disk_by_path[] = "/dev/disk/by-path/";
11122
11123static const char *imsm_get_disk_controller_domain(const char *path)
11124{
2cda7640 11125 char disk_path[PATH_MAX];
96234762
LM
11126 char *drv=NULL;
11127 struct stat st;
2cda7640 11128
6d8d290a 11129 strcpy(disk_path, disk_by_path);
96234762
LM
11130 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
11131 if (stat(disk_path, &st) == 0) {
11132 struct sys_dev* hba;
594dc1b8 11133 char *path;
96234762 11134
7c798f87 11135 path = devt_to_devpath(st.st_rdev, 1, NULL);
96234762
LM
11136 if (path == NULL)
11137 return "unknown";
11138 hba = find_disk_attached_hba(-1, path);
11139 if (hba && hba->type == SYS_DEV_SAS)
11140 drv = "isci";
11141 else if (hba && hba->type == SYS_DEV_SATA)
11142 drv = "ahci";
c6839718
MT
11143 else if (hba && hba->type == SYS_DEV_VMD)
11144 drv = "vmd";
11145 else if (hba && hba->type == SYS_DEV_NVME)
11146 drv = "nvme";
1011e834 11147 else
96234762
LM
11148 drv = "unknown";
11149 dprintf("path: %s hba: %s attached: %s\n",
11150 path, (hba) ? hba->path : "NULL", drv);
11151 free(path);
2cda7640 11152 }
96234762 11153 return drv;
2cda7640
ML
11154}
11155
4dd2df09 11156static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
78b10e66 11157{
4dd2df09 11158 static char devnm[32];
78b10e66
N
11159 char subdev_name[20];
11160 struct mdstat_ent *mdstat;
11161
11162 sprintf(subdev_name, "%d", subdev);
11163 mdstat = mdstat_by_subdev(subdev_name, container);
11164 if (!mdstat)
4dd2df09 11165 return NULL;
78b10e66 11166
4dd2df09 11167 strcpy(devnm, mdstat->devnm);
78b10e66 11168 free_mdstat(mdstat);
4dd2df09 11169 return devnm;
78b10e66
N
11170}
11171
11172static int imsm_reshape_is_allowed_on_container(struct supertype *st,
11173 struct geo_params *geo,
fbf3d202
AK
11174 int *old_raid_disks,
11175 int direction)
78b10e66 11176{
694575e7
KW
11177 /* currently we only support increasing the number of devices
11178 * for a container. This increases the number of device for each
11179 * member array. They must all be RAID0 or RAID5.
11180 */
78b10e66
N
11181 int ret_val = 0;
11182 struct mdinfo *info, *member;
11183 int devices_that_can_grow = 0;
11184
7a862a02 11185 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
78b10e66 11186
d04f65f4 11187 if (geo->size > 0 ||
78b10e66
N
11188 geo->level != UnSet ||
11189 geo->layout != UnSet ||
11190 geo->chunksize != 0 ||
11191 geo->raid_disks == UnSet) {
7a862a02 11192 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
78b10e66
N
11193 return ret_val;
11194 }
11195
fbf3d202 11196 if (direction == ROLLBACK_METADATA_CHANGES) {
7a862a02 11197 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
fbf3d202
AK
11198 return ret_val;
11199 }
11200
78b10e66
N
11201 info = container_content_imsm(st, NULL);
11202 for (member = info; member; member = member->next) {
4dd2df09 11203 char *result;
78b10e66
N
11204
11205 dprintf("imsm: checking device_num: %i\n",
11206 member->container_member);
11207
d7d205bd 11208 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
11209 /* we work on container for Online Capacity Expansion
11210 * only so raid_disks has to grow
11211 */
7a862a02 11212 dprintf("imsm: for container operation raid disks increase is required\n");
78b10e66
N
11213 break;
11214 }
11215
089f9d79 11216 if (info->array.level != 0 && info->array.level != 5) {
78b10e66
N
11217 /* we cannot use this container with other raid level
11218 */
7a862a02 11219 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
78b10e66
N
11220 info->array.level);
11221 break;
11222 } else {
11223 /* check for platform support
11224 * for this raid level configuration
11225 */
11226 struct intel_super *super = st->sb;
11227 if (!is_raid_level_supported(super->orom,
11228 member->array.level,
11229 geo->raid_disks)) {
7a862a02 11230 dprintf("platform does not support raid%d with %d disk%s\n",
78b10e66
N
11231 info->array.level,
11232 geo->raid_disks,
11233 geo->raid_disks > 1 ? "s" : "");
11234 break;
11235 }
2a4a08e7
AK
11236 /* check if component size is aligned to chunk size
11237 */
11238 if (info->component_size %
11239 (info->array.chunk_size/512)) {
7a862a02 11240 dprintf("Component size is not aligned to chunk size\n");
2a4a08e7
AK
11241 break;
11242 }
78b10e66
N
11243 }
11244
11245 if (*old_raid_disks &&
11246 info->array.raid_disks != *old_raid_disks)
11247 break;
11248 *old_raid_disks = info->array.raid_disks;
11249
11250 /* All raid5 and raid0 volumes in container
11251 * have to be ready for Online Capacity Expansion
11252 * so they need to be assembled. We have already
11253 * checked that no recovery etc is happening.
11254 */
4dd2df09
N
11255 result = imsm_find_array_devnm_by_subdev(member->container_member,
11256 st->container_devnm);
11257 if (result == NULL) {
78b10e66
N
11258 dprintf("imsm: cannot find array\n");
11259 break;
11260 }
11261 devices_that_can_grow++;
11262 }
11263 sysfs_free(info);
11264 if (!member && devices_that_can_grow)
11265 ret_val = 1;
11266
11267 if (ret_val)
1ade5cc1 11268 dprintf("Container operation allowed\n");
78b10e66 11269 else
1ade5cc1 11270 dprintf("Error: %i\n", ret_val);
78b10e66
N
11271
11272 return ret_val;
11273}
11274
11275/* Function: get_spares_for_grow
11276 * Description: Allocates memory and creates list of spare devices
1011e834 11277 * avaliable in container. Checks if spare drive size is acceptable.
78b10e66
N
11278 * Parameters: Pointer to the supertype structure
11279 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
1011e834 11280 * NULL if fail
78b10e66
N
11281 */
11282static struct mdinfo *get_spares_for_grow(struct supertype *st)
11283{
fbfdcb06
AO
11284 struct spare_criteria sc;
11285
11286 get_spare_criteria_imsm(st, &sc);
11287 return container_choose_spares(st, &sc, NULL, NULL, NULL, 0);
78b10e66
N
11288}
11289
11290/******************************************************************************
11291 * function: imsm_create_metadata_update_for_reshape
11292 * Function creates update for whole IMSM container.
11293 *
11294 ******************************************************************************/
11295static int imsm_create_metadata_update_for_reshape(
11296 struct supertype *st,
11297 struct geo_params *geo,
11298 int old_raid_disks,
11299 struct imsm_update_reshape **updatep)
11300{
11301 struct intel_super *super = st->sb;
11302 struct imsm_super *mpb = super->anchor;
594dc1b8
JS
11303 int update_memory_size;
11304 struct imsm_update_reshape *u;
11305 struct mdinfo *spares;
78b10e66 11306 int i;
594dc1b8 11307 int delta_disks;
bbd24d86 11308 struct mdinfo *dev;
78b10e66 11309
1ade5cc1 11310 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
78b10e66
N
11311
11312 delta_disks = geo->raid_disks - old_raid_disks;
11313
11314 /* size of all update data without anchor */
11315 update_memory_size = sizeof(struct imsm_update_reshape);
11316
11317 /* now add space for spare disks that we need to add. */
11318 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
11319
503975b9 11320 u = xcalloc(1, update_memory_size);
78b10e66
N
11321 u->type = update_reshape_container_disks;
11322 u->old_raid_disks = old_raid_disks;
11323 u->new_raid_disks = geo->raid_disks;
11324
11325 /* now get spare disks list
11326 */
11327 spares = get_spares_for_grow(st);
11328
d7be7d87 11329 if (spares == NULL || delta_disks > spares->array.spare_disks) {
7a862a02 11330 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
e4c72d1d 11331 i = -1;
78b10e66
N
11332 goto abort;
11333 }
11334
11335 /* we have got spares
11336 * update disk list in imsm_disk list table in anchor
11337 */
11338 dprintf("imsm: %i spares are available.\n\n",
11339 spares->array.spare_disks);
11340
bbd24d86 11341 dev = spares->devs;
78b10e66 11342 for (i = 0; i < delta_disks; i++) {
78b10e66
N
11343 struct dl *dl;
11344
bbd24d86
AK
11345 if (dev == NULL)
11346 break;
78b10e66
N
11347 u->new_disks[i] = makedev(dev->disk.major,
11348 dev->disk.minor);
11349 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
11350 dl->index = mpb->num_disks;
11351 mpb->num_disks++;
bbd24d86 11352 dev = dev->next;
78b10e66 11353 }
78b10e66
N
11354
11355abort:
11356 /* free spares
11357 */
11358 sysfs_free(spares);
11359
d677e0b8 11360 dprintf("imsm: reshape update preparation :");
78b10e66 11361 if (i == delta_disks) {
1ade5cc1 11362 dprintf_cont(" OK\n");
78b10e66
N
11363 *updatep = u;
11364 return update_memory_size;
11365 }
11366 free(u);
1ade5cc1 11367 dprintf_cont(" Error\n");
78b10e66
N
11368
11369 return 0;
11370}
11371
f3871fdc
AK
11372/******************************************************************************
11373 * function: imsm_create_metadata_update_for_size_change()
11374 * Creates update for IMSM array for array size change.
11375 *
11376 ******************************************************************************/
11377static int imsm_create_metadata_update_for_size_change(
11378 struct supertype *st,
11379 struct geo_params *geo,
11380 struct imsm_update_size_change **updatep)
11381{
11382 struct intel_super *super = st->sb;
594dc1b8
JS
11383 int update_memory_size;
11384 struct imsm_update_size_change *u;
f3871fdc 11385
1ade5cc1 11386 dprintf("(enter) New size = %llu\n", geo->size);
f3871fdc
AK
11387
11388 /* size of all update data without anchor */
11389 update_memory_size = sizeof(struct imsm_update_size_change);
11390
503975b9 11391 u = xcalloc(1, update_memory_size);
f3871fdc
AK
11392 u->type = update_size_change;
11393 u->subdev = super->current_vol;
11394 u->new_size = geo->size;
11395
11396 dprintf("imsm: reshape update preparation : OK\n");
11397 *updatep = u;
11398
11399 return update_memory_size;
11400}
11401
48c5303a
PC
11402/******************************************************************************
11403 * function: imsm_create_metadata_update_for_migration()
11404 * Creates update for IMSM array.
11405 *
11406 ******************************************************************************/
11407static int imsm_create_metadata_update_for_migration(
11408 struct supertype *st,
11409 struct geo_params *geo,
11410 struct imsm_update_reshape_migration **updatep)
11411{
11412 struct intel_super *super = st->sb;
594dc1b8
JS
11413 int update_memory_size;
11414 struct imsm_update_reshape_migration *u;
48c5303a
PC
11415 struct imsm_dev *dev;
11416 int previous_level = -1;
11417
1ade5cc1 11418 dprintf("(enter) New Level = %i\n", geo->level);
48c5303a
PC
11419
11420 /* size of all update data without anchor */
11421 update_memory_size = sizeof(struct imsm_update_reshape_migration);
11422
503975b9 11423 u = xcalloc(1, update_memory_size);
48c5303a
PC
11424 u->type = update_reshape_migration;
11425 u->subdev = super->current_vol;
11426 u->new_level = geo->level;
11427 u->new_layout = geo->layout;
11428 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
11429 u->new_disks[0] = -1;
4bba0439 11430 u->new_chunksize = -1;
48c5303a
PC
11431
11432 dev = get_imsm_dev(super, u->subdev);
11433 if (dev) {
11434 struct imsm_map *map;
11435
238c0a71 11436 map = get_imsm_map(dev, MAP_0);
4bba0439
PC
11437 if (map) {
11438 int current_chunk_size =
11439 __le16_to_cpu(map->blocks_per_strip) / 2;
11440
11441 if (geo->chunksize != current_chunk_size) {
11442 u->new_chunksize = geo->chunksize / 1024;
7a862a02 11443 dprintf("imsm: chunk size change from %i to %i\n",
4bba0439
PC
11444 current_chunk_size, u->new_chunksize);
11445 }
48c5303a 11446 previous_level = map->raid_level;
4bba0439 11447 }
48c5303a 11448 }
089f9d79 11449 if (geo->level == 5 && previous_level == 0) {
48c5303a
PC
11450 struct mdinfo *spares = NULL;
11451
11452 u->new_raid_disks++;
11453 spares = get_spares_for_grow(st);
089f9d79 11454 if (spares == NULL || spares->array.spare_disks < 1) {
48c5303a
PC
11455 free(u);
11456 sysfs_free(spares);
11457 update_memory_size = 0;
565cc99e 11458 pr_err("cannot get spare device for requested migration\n");
48c5303a
PC
11459 return 0;
11460 }
11461 sysfs_free(spares);
11462 }
11463 dprintf("imsm: reshape update preparation : OK\n");
11464 *updatep = u;
11465
11466 return update_memory_size;
11467}
11468
8dd70bce
AK
11469static void imsm_update_metadata_locally(struct supertype *st,
11470 void *buf, int len)
11471{
11472 struct metadata_update mu;
11473
11474 mu.buf = buf;
11475 mu.len = len;
11476 mu.space = NULL;
11477 mu.space_list = NULL;
11478 mu.next = NULL;
5fe6f031
N
11479 if (imsm_prepare_update(st, &mu))
11480 imsm_process_update(st, &mu);
8dd70bce
AK
11481
11482 while (mu.space_list) {
11483 void **space = mu.space_list;
11484 mu.space_list = *space;
11485 free(space);
11486 }
11487}
78b10e66 11488
471bceb6 11489/***************************************************************************
694575e7 11490* Function: imsm_analyze_change
471bceb6 11491* Description: Function analyze change for single volume
1011e834 11492* and validate if transition is supported
fbf3d202
AK
11493* Parameters: Geometry parameters, supertype structure,
11494* metadata change direction (apply/rollback)
694575e7 11495* Returns: Operation type code on success, -1 if fail
471bceb6
KW
11496****************************************************************************/
11497enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
fbf3d202
AK
11498 struct geo_params *geo,
11499 int direction)
694575e7 11500{
471bceb6
KW
11501 struct mdinfo info;
11502 int change = -1;
11503 int check_devs = 0;
c21e737b 11504 int chunk;
67a2db32
AK
11505 /* number of added/removed disks in operation result */
11506 int devNumChange = 0;
11507 /* imsm compatible layout value for array geometry verification */
11508 int imsm_layout = -1;
7abc9871
AK
11509 int data_disks;
11510 struct imsm_dev *dev;
9529d343 11511 struct imsm_map *map;
7abc9871 11512 struct intel_super *super;
d04f65f4 11513 unsigned long long current_size;
65d38cca 11514 unsigned long long free_size;
d04f65f4 11515 unsigned long long max_size;
65d38cca 11516 int rv;
471bceb6
KW
11517
11518 getinfo_super_imsm_volume(st, &info, NULL);
089f9d79
JS
11519 if (geo->level != info.array.level && geo->level >= 0 &&
11520 geo->level != UnSet) {
471bceb6
KW
11521 switch (info.array.level) {
11522 case 0:
11523 if (geo->level == 5) {
b5347799 11524 change = CH_MIGRATION;
e13ce846 11525 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
7a862a02 11526 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
e13ce846
AK
11527 change = -1;
11528 goto analyse_change_exit;
11529 }
67a2db32 11530 imsm_layout = geo->layout;
471bceb6 11531 check_devs = 1;
e91a3bad
LM
11532 devNumChange = 1; /* parity disk added */
11533 } else if (geo->level == 10) {
471bceb6
KW
11534 change = CH_TAKEOVER;
11535 check_devs = 1;
e91a3bad 11536 devNumChange = 2; /* two mirrors added */
67a2db32 11537 imsm_layout = 0x102; /* imsm supported layout */
471bceb6 11538 }
dfe77a9e
KW
11539 break;
11540 case 1:
471bceb6
KW
11541 case 10:
11542 if (geo->level == 0) {
11543 change = CH_TAKEOVER;
11544 check_devs = 1;
e91a3bad 11545 devNumChange = -(geo->raid_disks/2);
67a2db32 11546 imsm_layout = 0; /* imsm raid0 layout */
471bceb6
KW
11547 }
11548 break;
11549 }
11550 if (change == -1) {
7a862a02 11551 pr_err("Error. Level Migration from %d to %d not supported!\n",
e7b84f9d 11552 info.array.level, geo->level);
471bceb6
KW
11553 goto analyse_change_exit;
11554 }
11555 } else
11556 geo->level = info.array.level;
11557
089f9d79
JS
11558 if (geo->layout != info.array.layout &&
11559 (geo->layout != UnSet && geo->layout != -1)) {
b5347799 11560 change = CH_MIGRATION;
089f9d79
JS
11561 if (info.array.layout == 0 && info.array.level == 5 &&
11562 geo->layout == 5) {
471bceb6 11563 /* reshape 5 -> 4 */
089f9d79
JS
11564 } else if (info.array.layout == 5 && info.array.level == 5 &&
11565 geo->layout == 0) {
471bceb6
KW
11566 /* reshape 4 -> 5 */
11567 geo->layout = 0;
11568 geo->level = 5;
11569 } else {
7a862a02 11570 pr_err("Error. Layout Migration from %d to %d not supported!\n",
e7b84f9d 11571 info.array.layout, geo->layout);
471bceb6
KW
11572 change = -1;
11573 goto analyse_change_exit;
11574 }
67a2db32 11575 } else {
471bceb6 11576 geo->layout = info.array.layout;
67a2db32
AK
11577 if (imsm_layout == -1)
11578 imsm_layout = info.array.layout;
11579 }
471bceb6 11580
089f9d79
JS
11581 if (geo->chunksize > 0 && geo->chunksize != UnSet &&
11582 geo->chunksize != info.array.chunk_size) {
2d2b0eb7
MD
11583 if (info.array.level == 10) {
11584 pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
11585 change = -1;
11586 goto analyse_change_exit;
1e9b2c3f
PB
11587 } else if (info.component_size % (geo->chunksize/512)) {
11588 pr_err("New chunk size (%dK) does not evenly divide device size (%lluk). Aborting...\n",
11589 geo->chunksize/1024, info.component_size/2);
11590 change = -1;
11591 goto analyse_change_exit;
2d2b0eb7 11592 }
b5347799 11593 change = CH_MIGRATION;
2d2b0eb7 11594 } else {
471bceb6 11595 geo->chunksize = info.array.chunk_size;
2d2b0eb7 11596 }
471bceb6 11597
c21e737b 11598 chunk = geo->chunksize / 1024;
7abc9871
AK
11599
11600 super = st->sb;
11601 dev = get_imsm_dev(super, super->current_vol);
9529d343
MD
11602 map = get_imsm_map(dev, MAP_0);
11603 data_disks = imsm_num_data_members(map);
c41e00b2 11604 /* compute current size per disk member
7abc9871 11605 */
c41e00b2
AK
11606 current_size = info.custom_array_size / data_disks;
11607
089f9d79 11608 if (geo->size > 0 && geo->size != MAX_SIZE) {
c41e00b2
AK
11609 /* align component size
11610 */
3e684231 11611 geo->size = imsm_component_size_alignment_check(
c41e00b2 11612 get_imsm_raid_level(dev->vol.map),
f36a9ecd 11613 chunk * 1024, super->sector_size,
c41e00b2 11614 geo->size * 2);
65d0b4ce 11615 if (geo->size == 0) {
7a862a02 11616 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
65d0b4ce
LD
11617 current_size);
11618 goto analyse_change_exit;
11619 }
c41e00b2 11620 }
7abc9871 11621
089f9d79 11622 if (current_size != geo->size && geo->size > 0) {
7abc9871 11623 if (change != -1) {
7a862a02 11624 pr_err("Error. Size change should be the only one at a time.\n");
7abc9871
AK
11625 change = -1;
11626 goto analyse_change_exit;
11627 }
11628 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
7a862a02 11629 pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
4dd2df09 11630 super->current_vol, st->devnm);
7abc9871
AK
11631 goto analyse_change_exit;
11632 }
65d38cca
LD
11633 /* check the maximum available size
11634 */
11635 rv = imsm_get_free_size(st, dev->vol.map->num_members,
11636 0, chunk, &free_size);
11637 if (rv == 0)
11638 /* Cannot find maximum available space
11639 */
11640 max_size = 0;
11641 else {
11642 max_size = free_size + current_size;
11643 /* align component size
11644 */
3e684231 11645 max_size = imsm_component_size_alignment_check(
65d38cca 11646 get_imsm_raid_level(dev->vol.map),
f36a9ecd 11647 chunk * 1024, super->sector_size,
65d38cca
LD
11648 max_size);
11649 }
d04f65f4 11650 if (geo->size == MAX_SIZE) {
b130333f
AK
11651 /* requested size change to the maximum available size
11652 */
65d38cca 11653 if (max_size == 0) {
7a862a02 11654 pr_err("Error. Cannot find maximum available space.\n");
b130333f
AK
11655 change = -1;
11656 goto analyse_change_exit;
65d38cca
LD
11657 } else
11658 geo->size = max_size;
c41e00b2 11659 }
b130333f 11660
681b7ae2 11661 if (direction == ROLLBACK_METADATA_CHANGES) {
fbf3d202
AK
11662 /* accept size for rollback only
11663 */
11664 } else {
11665 /* round size due to metadata compatibility
11666 */
11667 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
11668 << SECT_PER_MB_SHIFT;
11669 dprintf("Prepare update for size change to %llu\n",
11670 geo->size );
11671 if (current_size >= geo->size) {
7a862a02 11672 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 11673 current_size, geo->size);
fbf3d202
AK
11674 goto analyse_change_exit;
11675 }
65d38cca 11676 if (max_size && geo->size > max_size) {
7a862a02 11677 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 11678 max_size, geo->size);
65d38cca
LD
11679 goto analyse_change_exit;
11680 }
7abc9871
AK
11681 }
11682 geo->size *= data_disks;
11683 geo->raid_disks = dev->vol.map->num_members;
11684 change = CH_ARRAY_SIZE;
11685 }
471bceb6
KW
11686 if (!validate_geometry_imsm(st,
11687 geo->level,
67a2db32 11688 imsm_layout,
e91a3bad 11689 geo->raid_disks + devNumChange,
c21e737b 11690 &chunk,
af4348dd 11691 geo->size, INVALID_SECTORS,
5308f117 11692 0, 0, info.consistency_policy, 1))
471bceb6
KW
11693 change = -1;
11694
11695 if (check_devs) {
11696 struct intel_super *super = st->sb;
11697 struct imsm_super *mpb = super->anchor;
11698
11699 if (mpb->num_raid_devs > 1) {
7a862a02 11700 pr_err("Error. Cannot perform operation on %s- for this operation it MUST be single array in container\n",
e7b84f9d 11701 geo->dev_name);
471bceb6
KW
11702 change = -1;
11703 }
11704 }
11705
11706analyse_change_exit:
089f9d79
JS
11707 if (direction == ROLLBACK_METADATA_CHANGES &&
11708 (change == CH_MIGRATION || change == CH_TAKEOVER)) {
7a862a02 11709 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
fbf3d202
AK
11710 change = -1;
11711 }
471bceb6 11712 return change;
694575e7
KW
11713}
11714
bb025c2f
KW
11715int imsm_takeover(struct supertype *st, struct geo_params *geo)
11716{
11717 struct intel_super *super = st->sb;
11718 struct imsm_update_takeover *u;
11719
503975b9 11720 u = xmalloc(sizeof(struct imsm_update_takeover));
bb025c2f
KW
11721
11722 u->type = update_takeover;
11723 u->subarray = super->current_vol;
11724
11725 /* 10->0 transition */
11726 if (geo->level == 0)
11727 u->direction = R10_TO_R0;
11728
0529c688
KW
11729 /* 0->10 transition */
11730 if (geo->level == 10)
11731 u->direction = R0_TO_R10;
11732
bb025c2f
KW
11733 /* update metadata locally */
11734 imsm_update_metadata_locally(st, u,
11735 sizeof(struct imsm_update_takeover));
11736 /* and possibly remotely */
11737 if (st->update_tail)
11738 append_metadata_update(st, u,
11739 sizeof(struct imsm_update_takeover));
11740 else
11741 free(u);
11742
11743 return 0;
11744}
11745
895ffd99
MT
11746/* Flush size update if size calculated by num_data_stripes is higher than
11747 * imsm_dev_size to eliminate differences during reshape.
11748 * Mdmon will recalculate them correctly.
11749 * If subarray index is not set then check whole container.
11750 * Returns:
11751 * 0 - no error occurred
11752 * 1 - error detected
11753 */
11754static int imsm_fix_size_mismatch(struct supertype *st, int subarray_index)
11755{
11756 struct intel_super *super = st->sb;
11757 int tmp = super->current_vol;
11758 int ret_val = 1;
11759 int i;
11760
11761 for (i = 0; i < super->anchor->num_raid_devs; i++) {
11762 if (subarray_index >= 0 && i != subarray_index)
11763 continue;
11764 super->current_vol = i;
11765 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11766 struct imsm_map *map = get_imsm_map(dev, MAP_0);
11767 unsigned int disc_count = imsm_num_data_members(map);
11768 struct geo_params geo;
11769 struct imsm_update_size_change *update;
11770 unsigned long long calc_size = per_dev_array_size(map) * disc_count;
11771 unsigned long long d_size = imsm_dev_size(dev);
11772 int u_size;
11773
11774 if (calc_size == d_size || dev->vol.migr_type == MIGR_GEN_MIGR)
11775 continue;
11776
ff904202
MT
11777 /* There is a difference, confirm that imsm_dev_size is
11778 * smaller and push update.
895ffd99 11779 */
ff904202
MT
11780 if (d_size > calc_size) {
11781 pr_err("imsm: dev size of subarray %d is incorrect\n",
11782 i);
895ffd99
MT
11783 goto exit;
11784 }
11785 memset(&geo, 0, sizeof(struct geo_params));
11786 geo.size = d_size;
11787 u_size = imsm_create_metadata_update_for_size_change(st, &geo,
11788 &update);
11789 if (u_size < 1) {
11790 dprintf("imsm: Cannot prepare size change update\n");
11791 goto exit;
11792 }
11793 imsm_update_metadata_locally(st, update, u_size);
11794 if (st->update_tail) {
11795 append_metadata_update(st, update, u_size);
11796 flush_metadata_updates(st);
11797 st->update_tail = &st->updates;
11798 } else {
11799 imsm_sync_metadata(st);
11800 }
11801 }
11802 ret_val = 0;
11803exit:
11804 super->current_vol = tmp;
11805 return ret_val;
11806}
11807
d04f65f4
N
11808static int imsm_reshape_super(struct supertype *st, unsigned long long size,
11809 int level,
78b10e66 11810 int layout, int chunksize, int raid_disks,
41784c88 11811 int delta_disks, char *backup, char *dev,
016e00f5 11812 int direction, int verbose)
78b10e66 11813{
78b10e66
N
11814 int ret_val = 1;
11815 struct geo_params geo;
11816
1ade5cc1 11817 dprintf("(enter)\n");
78b10e66 11818
71204a50 11819 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
11820
11821 geo.dev_name = dev;
4dd2df09 11822 strcpy(geo.devnm, st->devnm);
78b10e66
N
11823 geo.size = size;
11824 geo.level = level;
11825 geo.layout = layout;
11826 geo.chunksize = chunksize;
11827 geo.raid_disks = raid_disks;
41784c88
AK
11828 if (delta_disks != UnSet)
11829 geo.raid_disks += delta_disks;
78b10e66 11830
1ade5cc1
N
11831 dprintf("for level : %i\n", geo.level);
11832 dprintf("for raid_disks : %i\n", geo.raid_disks);
78b10e66 11833
4dd2df09 11834 if (strcmp(st->container_devnm, st->devnm) == 0) {
694575e7
KW
11835 /* On container level we can only increase number of devices. */
11836 dprintf("imsm: info: Container operation\n");
78b10e66 11837 int old_raid_disks = 0;
6dc0be30 11838
78b10e66 11839 if (imsm_reshape_is_allowed_on_container(
fbf3d202 11840 st, &geo, &old_raid_disks, direction)) {
78b10e66
N
11841 struct imsm_update_reshape *u = NULL;
11842 int len;
11843
895ffd99
MT
11844 if (imsm_fix_size_mismatch(st, -1)) {
11845 dprintf("imsm: Cannot fix size mismatch\n");
11846 goto exit_imsm_reshape_super;
11847 }
11848
78b10e66
N
11849 len = imsm_create_metadata_update_for_reshape(
11850 st, &geo, old_raid_disks, &u);
11851
ed08d51c
AK
11852 if (len <= 0) {
11853 dprintf("imsm: Cannot prepare update\n");
11854 goto exit_imsm_reshape_super;
11855 }
11856
8dd70bce
AK
11857 ret_val = 0;
11858 /* update metadata locally */
11859 imsm_update_metadata_locally(st, u, len);
11860 /* and possibly remotely */
11861 if (st->update_tail)
11862 append_metadata_update(st, u, len);
11863 else
ed08d51c 11864 free(u);
8dd70bce 11865
694575e7 11866 } else {
7a862a02 11867 pr_err("(imsm) Operation is not allowed on this container\n");
694575e7
KW
11868 }
11869 } else {
11870 /* On volume level we support following operations
471bceb6
KW
11871 * - takeover: raid10 -> raid0; raid0 -> raid10
11872 * - chunk size migration
11873 * - migration: raid5 -> raid0; raid0 -> raid5
11874 */
11875 struct intel_super *super = st->sb;
11876 struct intel_dev *dev = super->devlist;
4dd2df09 11877 int change;
694575e7 11878 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
11879 /* find requested device */
11880 while (dev) {
1011e834 11881 char *devnm =
4dd2df09
N
11882 imsm_find_array_devnm_by_subdev(
11883 dev->index, st->container_devnm);
11884 if (devnm && strcmp(devnm, geo.devnm) == 0)
471bceb6
KW
11885 break;
11886 dev = dev->next;
11887 }
11888 if (dev == NULL) {
4dd2df09
N
11889 pr_err("Cannot find %s (%s) subarray\n",
11890 geo.dev_name, geo.devnm);
471bceb6
KW
11891 goto exit_imsm_reshape_super;
11892 }
11893 super->current_vol = dev->index;
fbf3d202 11894 change = imsm_analyze_change(st, &geo, direction);
694575e7 11895 switch (change) {
471bceb6 11896 case CH_TAKEOVER:
bb025c2f 11897 ret_val = imsm_takeover(st, &geo);
694575e7 11898 break;
48c5303a
PC
11899 case CH_MIGRATION: {
11900 struct imsm_update_reshape_migration *u = NULL;
11901 int len =
11902 imsm_create_metadata_update_for_migration(
11903 st, &geo, &u);
11904 if (len < 1) {
7a862a02 11905 dprintf("imsm: Cannot prepare update\n");
48c5303a
PC
11906 break;
11907 }
471bceb6 11908 ret_val = 0;
48c5303a
PC
11909 /* update metadata locally */
11910 imsm_update_metadata_locally(st, u, len);
11911 /* and possibly remotely */
11912 if (st->update_tail)
11913 append_metadata_update(st, u, len);
11914 else
11915 free(u);
11916 }
11917 break;
7abc9871 11918 case CH_ARRAY_SIZE: {
f3871fdc
AK
11919 struct imsm_update_size_change *u = NULL;
11920 int len =
11921 imsm_create_metadata_update_for_size_change(
11922 st, &geo, &u);
11923 if (len < 1) {
7a862a02 11924 dprintf("imsm: Cannot prepare update\n");
f3871fdc
AK
11925 break;
11926 }
11927 ret_val = 0;
11928 /* update metadata locally */
11929 imsm_update_metadata_locally(st, u, len);
11930 /* and possibly remotely */
11931 if (st->update_tail)
11932 append_metadata_update(st, u, len);
11933 else
11934 free(u);
7abc9871
AK
11935 }
11936 break;
471bceb6
KW
11937 default:
11938 ret_val = 1;
694575e7 11939 }
694575e7 11940 }
78b10e66 11941
ed08d51c 11942exit_imsm_reshape_super:
78b10e66
N
11943 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
11944 return ret_val;
11945}
2cda7640 11946
0febb20c
AO
11947#define COMPLETED_OK 0
11948#define COMPLETED_NONE 1
11949#define COMPLETED_DELAYED 2
11950
11951static int read_completed(int fd, unsigned long long *val)
11952{
11953 int ret;
11954 char buf[50];
11955
11956 ret = sysfs_fd_get_str(fd, buf, 50);
11957 if (ret < 0)
11958 return ret;
11959
11960 ret = COMPLETED_OK;
11961 if (strncmp(buf, "none", 4) == 0) {
11962 ret = COMPLETED_NONE;
11963 } else if (strncmp(buf, "delayed", 7) == 0) {
11964 ret = COMPLETED_DELAYED;
11965 } else {
11966 char *ep;
11967 *val = strtoull(buf, &ep, 0);
11968 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
11969 ret = -1;
11970 }
11971 return ret;
11972}
11973
eee67a47
AK
11974/*******************************************************************************
11975 * Function: wait_for_reshape_imsm
11976 * Description: Function writes new sync_max value and waits until
11977 * reshape process reach new position
11978 * Parameters:
11979 * sra : general array info
eee67a47
AK
11980 * ndata : number of disks in new array's layout
11981 * Returns:
11982 * 0 : success,
11983 * 1 : there is no reshape in progress,
11984 * -1 : fail
11985 ******************************************************************************/
ae9f01f8 11986int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47 11987{
85ca499c 11988 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
df2647fa 11989 int retry = 3;
eee67a47 11990 unsigned long long completed;
ae9f01f8
AK
11991 /* to_complete : new sync_max position */
11992 unsigned long long to_complete = sra->reshape_progress;
11993 unsigned long long position_to_set = to_complete / ndata;
eee67a47 11994
ae9f01f8 11995 if (fd < 0) {
1ade5cc1 11996 dprintf("cannot open reshape_position\n");
eee67a47 11997 return 1;
ae9f01f8 11998 }
eee67a47 11999
df2647fa
PB
12000 do {
12001 if (sysfs_fd_get_ll(fd, &completed) < 0) {
12002 if (!retry) {
12003 dprintf("cannot read reshape_position (no reshape in progres)\n");
12004 close(fd);
12005 return 1;
12006 }
12007 usleep(30000);
12008 } else
12009 break;
12010 } while (retry--);
eee67a47 12011
85ca499c 12012 if (completed > position_to_set) {
1ade5cc1 12013 dprintf("wrong next position to set %llu (%llu)\n",
85ca499c 12014 to_complete, position_to_set);
ae9f01f8
AK
12015 close(fd);
12016 return -1;
12017 }
12018 dprintf("Position set: %llu\n", position_to_set);
12019 if (sysfs_set_num(sra, NULL, "sync_max",
12020 position_to_set) != 0) {
1ade5cc1 12021 dprintf("cannot set reshape position to %llu\n",
ae9f01f8
AK
12022 position_to_set);
12023 close(fd);
12024 return -1;
eee67a47
AK
12025 }
12026
eee67a47 12027 do {
0febb20c 12028 int rc;
eee67a47 12029 char action[20];
5ff3a780 12030 int timeout = 3000;
0febb20c 12031
5ff3a780 12032 sysfs_wait(fd, &timeout);
a47e44fb
AK
12033 if (sysfs_get_str(sra, NULL, "sync_action",
12034 action, 20) > 0 &&
d7d3809a 12035 strncmp(action, "reshape", 7) != 0) {
b2be2b62
AO
12036 if (strncmp(action, "idle", 4) == 0)
12037 break;
d7d3809a
AP
12038 close(fd);
12039 return -1;
12040 }
0febb20c
AO
12041
12042 rc = read_completed(fd, &completed);
12043 if (rc < 0) {
1ade5cc1 12044 dprintf("cannot read reshape_position (in loop)\n");
eee67a47
AK
12045 close(fd);
12046 return 1;
0febb20c
AO
12047 } else if (rc == COMPLETED_NONE)
12048 break;
85ca499c 12049 } while (completed < position_to_set);
b2be2b62 12050
eee67a47
AK
12051 close(fd);
12052 return 0;
eee67a47
AK
12053}
12054
b915c95f
AK
12055/*******************************************************************************
12056 * Function: check_degradation_change
12057 * Description: Check that array hasn't become failed.
12058 * Parameters:
12059 * info : for sysfs access
12060 * sources : source disks descriptors
12061 * degraded: previous degradation level
12062 * Returns:
12063 * degradation level
12064 ******************************************************************************/
12065int check_degradation_change(struct mdinfo *info,
12066 int *sources,
12067 int degraded)
12068{
12069 unsigned long long new_degraded;
e1993023
LD
12070 int rv;
12071
12072 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
089f9d79 12073 if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
b915c95f
AK
12074 /* check each device to ensure it is still working */
12075 struct mdinfo *sd;
12076 new_degraded = 0;
12077 for (sd = info->devs ; sd ; sd = sd->next) {
12078 if (sd->disk.state & (1<<MD_DISK_FAULTY))
12079 continue;
12080 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
cf52eff5
TM
12081 char sbuf[100];
12082
b915c95f 12083 if (sysfs_get_str(info,
cf52eff5 12084 sd, "state", sbuf, sizeof(sbuf)) < 0 ||
b915c95f
AK
12085 strstr(sbuf, "faulty") ||
12086 strstr(sbuf, "in_sync") == NULL) {
12087 /* this device is dead */
12088 sd->disk.state = (1<<MD_DISK_FAULTY);
12089 if (sd->disk.raid_disk >= 0 &&
12090 sources[sd->disk.raid_disk] >= 0) {
12091 close(sources[
12092 sd->disk.raid_disk]);
12093 sources[sd->disk.raid_disk] =
12094 -1;
12095 }
12096 new_degraded++;
12097 }
12098 }
12099 }
12100 }
12101
12102 return new_degraded;
12103}
12104
10f22854
AK
12105/*******************************************************************************
12106 * Function: imsm_manage_reshape
12107 * Description: Function finds array under reshape and it manages reshape
12108 * process. It creates stripes backups (if required) and sets
942e1cdb 12109 * checkpoints.
10f22854
AK
12110 * Parameters:
12111 * afd : Backup handle (nattive) - not used
12112 * sra : general array info
12113 * reshape : reshape parameters - not used
12114 * st : supertype structure
12115 * blocks : size of critical section [blocks]
12116 * fds : table of source device descriptor
12117 * offsets : start of array (offest per devices)
12118 * dests : not used
12119 * destfd : table of destination device descriptor
12120 * destoffsets : table of destination offsets (per device)
12121 * Returns:
12122 * 1 : success, reshape is done
12123 * 0 : fail
12124 ******************************************************************************/
999b4972
N
12125static int imsm_manage_reshape(
12126 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 12127 struct supertype *st, unsigned long backup_blocks,
999b4972
N
12128 int *fds, unsigned long long *offsets,
12129 int dests, int *destfd, unsigned long long *destoffsets)
12130{
10f22854
AK
12131 int ret_val = 0;
12132 struct intel_super *super = st->sb;
594dc1b8 12133 struct intel_dev *dv;
de44e46f 12134 unsigned int sector_size = super->sector_size;
10f22854 12135 struct imsm_dev *dev = NULL;
9529d343 12136 struct imsm_map *map_src, *map_dest;
10f22854
AK
12137 int migr_vol_qan = 0;
12138 int ndata, odata; /* [bytes] */
12139 int chunk; /* [bytes] */
12140 struct migr_record *migr_rec;
12141 char *buf = NULL;
12142 unsigned int buf_size; /* [bytes] */
12143 unsigned long long max_position; /* array size [bytes] */
12144 unsigned long long next_step; /* [blocks]/[bytes] */
12145 unsigned long long old_data_stripe_length;
10f22854
AK
12146 unsigned long long start_src; /* [bytes] */
12147 unsigned long long start; /* [bytes] */
12148 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 12149 int degraded = 0;
ab724b98 12150 int source_layout = 0;
895ffd99 12151 int subarray_index = -1;
10f22854 12152
79a16a9b
JS
12153 if (!sra)
12154 return ret_val;
12155
12156 if (!fds || !offsets)
10f22854
AK
12157 goto abort;
12158
12159 /* Find volume during the reshape */
12160 for (dv = super->devlist; dv; dv = dv->next) {
fc54fe7a
JS
12161 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR &&
12162 dv->dev->vol.migr_state == 1) {
10f22854
AK
12163 dev = dv->dev;
12164 migr_vol_qan++;
895ffd99 12165 subarray_index = dv->index;
10f22854
AK
12166 }
12167 }
12168 /* Only one volume can migrate at the same time */
12169 if (migr_vol_qan != 1) {
676e87a8 12170 pr_err("%s", migr_vol_qan ?
10f22854
AK
12171 "Number of migrating volumes greater than 1\n" :
12172 "There is no volume during migrationg\n");
12173 goto abort;
12174 }
12175
9529d343 12176 map_dest = get_imsm_map(dev, MAP_0);
238c0a71 12177 map_src = get_imsm_map(dev, MAP_1);
10f22854
AK
12178 if (map_src == NULL)
12179 goto abort;
10f22854 12180
9529d343
MD
12181 ndata = imsm_num_data_members(map_dest);
12182 odata = imsm_num_data_members(map_src);
10f22854 12183
7b1ab482 12184 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
12185 old_data_stripe_length = odata * chunk;
12186
12187 migr_rec = super->migr_rec;
12188
10f22854
AK
12189 /* initialize migration record for start condition */
12190 if (sra->reshape_progress == 0)
12191 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
12192 else {
12193 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
7a862a02 12194 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
b2c59438
AK
12195 goto abort;
12196 }
6a75c8ca
AK
12197 /* Save checkpoint to update migration record for current
12198 * reshape position (in md). It can be farther than current
12199 * reshape position in metadata.
12200 */
12201 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12202 /* ignore error == 2, this can mean end of reshape here
12203 */
7a862a02 12204 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
6a75c8ca
AK
12205 goto abort;
12206 }
b2c59438 12207 }
10f22854
AK
12208
12209 /* size for data */
12210 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
12211 /* extend buffer size for parity disk */
12212 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
3e684231 12213 /* add space for stripe alignment */
10f22854 12214 buf_size += old_data_stripe_length;
de44e46f
PB
12215 if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
12216 dprintf("imsm: Cannot allocate checkpoint buffer\n");
10f22854
AK
12217 goto abort;
12218 }
12219
3ef4403c 12220 max_position = sra->component_size * ndata;
68eb8bc6 12221 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854 12222
9f421827
PB
12223 while (current_migr_unit(migr_rec) <
12224 get_num_migr_units(migr_rec)) {
10f22854
AK
12225 /* current reshape position [blocks] */
12226 unsigned long long current_position =
12227 __le32_to_cpu(migr_rec->blocks_per_unit)
9f421827 12228 * current_migr_unit(migr_rec);
10f22854
AK
12229 unsigned long long border;
12230
b915c95f
AK
12231 /* Check that array hasn't become failed.
12232 */
12233 degraded = check_degradation_change(sra, fds, degraded);
12234 if (degraded > 1) {
7a862a02 12235 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
b915c95f
AK
12236 goto abort;
12237 }
12238
10f22854
AK
12239 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
12240
12241 if ((current_position + next_step) > max_position)
12242 next_step = max_position - current_position;
12243
92144abf 12244 start = current_position * 512;
10f22854 12245
942e1cdb 12246 /* align reading start to old geometry */
10f22854
AK
12247 start_buf_shift = start % old_data_stripe_length;
12248 start_src = start - start_buf_shift;
12249
12250 border = (start_src / odata) - (start / ndata);
12251 border /= 512;
12252 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
12253 /* save critical stripes to buf
12254 * start - start address of current unit
12255 * to backup [bytes]
12256 * start_src - start address of current unit
12257 * to backup alligned to source array
12258 * [bytes]
12259 */
594dc1b8 12260 unsigned long long next_step_filler;
10f22854
AK
12261 unsigned long long copy_length = next_step * 512;
12262
12263 /* allign copy area length to stripe in old geometry */
12264 next_step_filler = ((copy_length + start_buf_shift)
12265 % old_data_stripe_length);
12266 if (next_step_filler)
12267 next_step_filler = (old_data_stripe_length
12268 - next_step_filler);
7a862a02 12269 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
10f22854
AK
12270 start, start_src, copy_length,
12271 start_buf_shift, next_step_filler);
12272
12273 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
12274 chunk, map_src->raid_level,
12275 source_layout, 0, NULL, start_src,
10f22854
AK
12276 copy_length +
12277 next_step_filler + start_buf_shift,
12278 buf)) {
7a862a02 12279 dprintf("imsm: Cannot save stripes to buffer\n");
10f22854
AK
12280 goto abort;
12281 }
12282 /* Convert data to destination format and store it
12283 * in backup general migration area
12284 */
12285 if (save_backup_imsm(st, dev, sra,
aea93171 12286 buf + start_buf_shift, copy_length)) {
7a862a02 12287 dprintf("imsm: Cannot save stripes to target devices\n");
10f22854
AK
12288 goto abort;
12289 }
12290 if (save_checkpoint_imsm(st, sra,
12291 UNIT_SRC_IN_CP_AREA)) {
7a862a02 12292 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
10f22854
AK
12293 goto abort;
12294 }
8016a6d4
AK
12295 } else {
12296 /* set next step to use whole border area */
12297 border /= next_step;
12298 if (border > 1)
12299 next_step *= border;
10f22854
AK
12300 }
12301 /* When data backed up, checkpoint stored,
12302 * kick the kernel to reshape unit of data
12303 */
12304 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
12305 /* limit next step to array max position */
12306 if (next_step > max_position)
12307 next_step = max_position;
10f22854
AK
12308 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
12309 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 12310 sra->reshape_progress = next_step;
10f22854
AK
12311
12312 /* wait until reshape finish */
c85338c6 12313 if (wait_for_reshape_imsm(sra, ndata)) {
c47b0ff6
AK
12314 dprintf("wait_for_reshape_imsm returned error!\n");
12315 goto abort;
12316 }
84d11e6c
N
12317 if (sigterm)
12318 goto abort;
10f22854 12319
0228d92c
AK
12320 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12321 /* ignore error == 2, this can mean end of reshape here
12322 */
7a862a02 12323 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
10f22854
AK
12324 goto abort;
12325 }
12326
12327 }
12328
71e5411e
PB
12329 /* clear migr_rec on disks after successful migration */
12330 struct dl *d;
12331
85337573 12332 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
71e5411e
PB
12333 for (d = super->disks; d; d = d->next) {
12334 if (d->index < 0 || is_failed(&d->disk))
12335 continue;
12336 unsigned long long dsize;
12337
12338 get_dev_size(d->fd, NULL, &dsize);
de44e46f 12339 if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
71e5411e 12340 SEEK_SET) >= 0) {
466070ad 12341 if ((unsigned int)write(d->fd, super->migr_rec_buf,
de44e46f
PB
12342 MIGR_REC_BUF_SECTORS*sector_size) !=
12343 MIGR_REC_BUF_SECTORS*sector_size)
71e5411e
PB
12344 perror("Write migr_rec failed");
12345 }
12346 }
12347
10f22854
AK
12348 /* return '1' if done */
12349 ret_val = 1;
895ffd99
MT
12350
12351 /* After the reshape eliminate size mismatch in metadata.
12352 * Don't update md/component_size here, volume hasn't
12353 * to take whole space. It is allowed by kernel.
12354 * md/component_size will be set propoperly after next assembly.
12355 */
12356 imsm_fix_size_mismatch(st, subarray_index);
12357
10f22854
AK
12358abort:
12359 free(buf);
942e1cdb
N
12360 /* See Grow.c: abort_reshape() for further explanation */
12361 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
12362 sysfs_set_num(sra, NULL, "suspend_hi", 0);
12363 sysfs_set_num(sra, NULL, "suspend_lo", 0);
10f22854
AK
12364
12365 return ret_val;
999b4972 12366}
0c21b485 12367
fbc42556
JR
12368/*******************************************************************************
12369 * Function: calculate_bitmap_min_chunksize
12370 * Description: Calculates the minimal valid bitmap chunk size
12371 * Parameters:
12372 * max_bits : indicate how many bits can be used for the bitmap
12373 * data_area_size : the size of the data area covered by the bitmap
12374 *
12375 * Returns:
12376 * The bitmap chunk size
12377 ******************************************************************************/
12378static unsigned long long
12379calculate_bitmap_min_chunksize(unsigned long long max_bits,
12380 unsigned long long data_area_size)
12381{
12382 unsigned long long min_chunk =
12383 4096; /* sub-page chunks don't work yet.. */
12384 unsigned long long bits = data_area_size / min_chunk + 1;
12385
12386 while (bits > max_bits) {
12387 min_chunk *= 2;
12388 bits = (bits + 1) / 2;
12389 }
12390 return min_chunk;
12391}
12392
12393/*******************************************************************************
12394 * Function: calculate_bitmap_chunksize
12395 * Description: Calculates the bitmap chunk size for the given device
12396 * Parameters:
12397 * st : supertype information
12398 * dev : device for the bitmap
12399 *
12400 * Returns:
12401 * The bitmap chunk size
12402 ******************************************************************************/
12403static unsigned long long calculate_bitmap_chunksize(struct supertype *st,
12404 struct imsm_dev *dev)
12405{
12406 struct intel_super *super = st->sb;
12407 unsigned long long min_chunksize;
12408 unsigned long long result = IMSM_DEFAULT_BITMAP_CHUNKSIZE;
12409 size_t dev_size = imsm_dev_size(dev);
12410
12411 min_chunksize = calculate_bitmap_min_chunksize(
12412 IMSM_BITMAP_AREA_SIZE * super->sector_size, dev_size);
12413
12414 if (result < min_chunksize)
12415 result = min_chunksize;
12416
12417 return result;
12418}
12419
12420/*******************************************************************************
12421 * Function: init_bitmap_header
12422 * Description: Initialize the bitmap header structure
12423 * Parameters:
12424 * st : supertype information
12425 * bms : bitmap header struct to initialize
12426 * dev : device for the bitmap
12427 *
12428 * Returns:
12429 * 0 : success
12430 * -1 : fail
12431 ******************************************************************************/
12432static int init_bitmap_header(struct supertype *st, struct bitmap_super_s *bms,
12433 struct imsm_dev *dev)
12434{
12435 int vol_uuid[4];
12436
12437 if (!bms || !dev)
12438 return -1;
12439
12440 bms->magic = __cpu_to_le32(BITMAP_MAGIC);
12441 bms->version = __cpu_to_le32(BITMAP_MAJOR_HI);
12442 bms->daemon_sleep = __cpu_to_le32(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP);
12443 bms->sync_size = __cpu_to_le64(IMSM_BITMAP_AREA_SIZE);
12444 bms->write_behind = __cpu_to_le32(0);
12445
12446 uuid_from_super_imsm(st, vol_uuid);
12447 memcpy(bms->uuid, vol_uuid, 16);
12448
12449 bms->chunksize = calculate_bitmap_chunksize(st, dev);
12450
12451 return 0;
12452}
12453
12454/*******************************************************************************
12455 * Function: validate_internal_bitmap_for_drive
12456 * Description: Verify if the bitmap header for a given drive.
12457 * Parameters:
12458 * st : supertype information
12459 * offset : The offset from the beginning of the drive where to look for
12460 * the bitmap header.
12461 * d : the drive info
12462 *
12463 * Returns:
12464 * 0 : success
12465 * -1 : fail
12466 ******************************************************************************/
12467static int validate_internal_bitmap_for_drive(struct supertype *st,
12468 unsigned long long offset,
12469 struct dl *d)
12470{
12471 struct intel_super *super = st->sb;
12472 int ret = -1;
12473 int vol_uuid[4];
12474 bitmap_super_t *bms;
12475 int fd;
12476
12477 if (!d)
12478 return -1;
12479
12480 void *read_buf;
12481
12482 if (posix_memalign(&read_buf, MAX_SECTOR_SIZE, IMSM_BITMAP_HEADER_SIZE))
12483 return -1;
12484
12485 fd = d->fd;
12486 if (fd < 0) {
12487 fd = open(d->devname, O_RDONLY, 0);
12488 if (fd < 0) {
12489 dprintf("cannot open the device %s\n", d->devname);
12490 goto abort;
12491 }
12492 }
12493
12494 if (lseek64(fd, offset * super->sector_size, SEEK_SET) < 0)
12495 goto abort;
12496 if (read(fd, read_buf, IMSM_BITMAP_HEADER_SIZE) !=
12497 IMSM_BITMAP_HEADER_SIZE)
12498 goto abort;
12499
12500 uuid_from_super_imsm(st, vol_uuid);
12501
12502 bms = read_buf;
12503 if ((bms->magic != __cpu_to_le32(BITMAP_MAGIC)) ||
12504 (bms->version != __cpu_to_le32(BITMAP_MAJOR_HI)) ||
12505 (!same_uuid((int *)bms->uuid, vol_uuid, st->ss->swapuuid))) {
12506 dprintf("wrong bitmap header detected\n");
12507 goto abort;
12508 }
12509
12510 ret = 0;
12511abort:
12512 if ((d->fd < 0) && (fd >= 0))
12513 close(fd);
12514 if (read_buf)
12515 free(read_buf);
12516
12517 return ret;
12518}
12519
12520/*******************************************************************************
12521 * Function: validate_internal_bitmap_imsm
12522 * Description: Verify if the bitmap header is in place and with proper data.
12523 * Parameters:
12524 * st : supertype information
12525 *
12526 * Returns:
12527 * 0 : success or device w/o RWH_BITMAP
12528 * -1 : fail
12529 ******************************************************************************/
12530static int validate_internal_bitmap_imsm(struct supertype *st)
12531{
12532 struct intel_super *super = st->sb;
12533 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
12534 unsigned long long offset;
12535 struct dl *d;
12536
12537 if (!dev)
12538 return -1;
12539
12540 if (dev->rwh_policy != RWH_BITMAP)
12541 return 0;
12542
12543 offset = get_bitmap_header_sector(super, super->current_vol);
12544 for (d = super->disks; d; d = d->next) {
12545 if (d->index < 0 || is_failed(&d->disk))
12546 continue;
12547
12548 if (validate_internal_bitmap_for_drive(st, offset, d)) {
12549 pr_err("imsm: bitmap validation failed\n");
12550 return -1;
12551 }
12552 }
12553 return 0;
12554}
12555
12556/*******************************************************************************
12557 * Function: add_internal_bitmap_imsm
12558 * Description: Mark the volume to use the bitmap and updates the chunk size value.
12559 * Parameters:
12560 * st : supertype information
12561 * chunkp : bitmap chunk size
12562 * delay : not used for imsm
12563 * write_behind : not used for imsm
12564 * size : not used for imsm
12565 * may_change : not used for imsm
12566 * amajor : not used for imsm
12567 *
12568 * Returns:
12569 * 0 : success
12570 * -1 : fail
12571 ******************************************************************************/
12572static int add_internal_bitmap_imsm(struct supertype *st, int *chunkp,
12573 int delay, int write_behind,
12574 unsigned long long size, int may_change,
12575 int amajor)
12576{
12577 struct intel_super *super = st->sb;
12578 int vol_idx = super->current_vol;
12579 struct imsm_dev *dev;
12580
12581 if (!super->devlist || vol_idx == -1 || !chunkp)
12582 return -1;
12583
12584 dev = get_imsm_dev(super, vol_idx);
12585
12586 if (!dev) {
12587 dprintf("cannot find the device for volume index %d\n",
12588 vol_idx);
12589 return -1;
12590 }
12591 dev->rwh_policy = RWH_BITMAP;
12592
12593 *chunkp = calculate_bitmap_chunksize(st, dev);
12594
12595 return 0;
12596}
12597
12598/*******************************************************************************
12599 * Function: locate_bitmap_imsm
12600 * Description: Seek 'fd' to start of write-intent-bitmap.
12601 * Parameters:
12602 * st : supertype information
12603 * fd : file descriptor for the device
12604 * node_num : not used for imsm
12605 *
12606 * Returns:
12607 * 0 : success
12608 * -1 : fail
12609 ******************************************************************************/
12610static int locate_bitmap_imsm(struct supertype *st, int fd, int node_num)
12611{
12612 struct intel_super *super = st->sb;
12613 unsigned long long offset;
12614 int vol_idx = super->current_vol;
12615
12616 if (!super->devlist || vol_idx == -1)
12617 return -1;
12618
12619 offset = get_bitmap_header_sector(super, super->current_vol);
12620 dprintf("bitmap header offset is %llu\n", offset);
12621
12622 lseek64(fd, offset << 9, 0);
12623
12624 return 0;
12625}
12626
12627/*******************************************************************************
12628 * Function: write_init_bitmap_imsm
12629 * Description: Write a bitmap header and prepares the area for the bitmap.
12630 * Parameters:
12631 * st : supertype information
12632 * fd : file descriptor for the device
12633 * update : not used for imsm
12634 *
12635 * Returns:
12636 * 0 : success
12637 * -1 : fail
12638 ******************************************************************************/
12639static int write_init_bitmap_imsm(struct supertype *st, int fd,
12640 enum bitmap_update update)
12641{
12642 struct intel_super *super = st->sb;
12643 int vol_idx = super->current_vol;
12644 int ret = 0;
12645 unsigned long long offset;
12646 bitmap_super_t bms = { 0 };
12647 size_t written = 0;
12648 size_t to_write;
12649 ssize_t rv_num;
12650 void *buf;
12651
12652 if (!super->devlist || !super->sector_size || vol_idx == -1)
12653 return -1;
12654
12655 struct imsm_dev *dev = get_imsm_dev(super, vol_idx);
12656
12657 /* first clear the space for bitmap header */
12658 unsigned long long bitmap_area_start =
12659 get_bitmap_header_sector(super, vol_idx);
12660
12661 dprintf("zeroing area start (%llu) and size (%u)\n", bitmap_area_start,
12662 IMSM_BITMAP_AND_HEADER_SIZE / super->sector_size);
12663 if (zero_disk_range(fd, bitmap_area_start,
12664 IMSM_BITMAP_HEADER_SIZE / super->sector_size)) {
12665 pr_err("imsm: cannot zeroing the space for the bitmap\n");
12666 return -1;
12667 }
12668
12669 /* The bitmap area should be filled with "1"s to perform initial
12670 * synchronization.
12671 */
12672 if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE))
12673 return -1;
12674 memset(buf, 0xFF, MAX_SECTOR_SIZE);
12675 offset = get_bitmap_sector(super, vol_idx);
12676 lseek64(fd, offset << 9, 0);
12677 while (written < IMSM_BITMAP_AREA_SIZE) {
12678 to_write = IMSM_BITMAP_AREA_SIZE - written;
12679 if (to_write > MAX_SECTOR_SIZE)
12680 to_write = MAX_SECTOR_SIZE;
12681 rv_num = write(fd, buf, MAX_SECTOR_SIZE);
12682 if (rv_num != MAX_SECTOR_SIZE) {
12683 ret = -1;
12684 dprintf("cannot initialize bitmap area\n");
12685 goto abort;
12686 }
12687 written += rv_num;
12688 }
12689
12690 /* write a bitmap header */
12691 init_bitmap_header(st, &bms, dev);
12692 memset(buf, 0, MAX_SECTOR_SIZE);
12693 memcpy(buf, &bms, sizeof(bitmap_super_t));
12694 if (locate_bitmap_imsm(st, fd, 0)) {
12695 ret = -1;
12696 dprintf("cannot locate the bitmap\n");
12697 goto abort;
12698 }
12699 if (write(fd, buf, MAX_SECTOR_SIZE) != MAX_SECTOR_SIZE) {
12700 ret = -1;
12701 dprintf("cannot write the bitmap header\n");
12702 goto abort;
12703 }
12704 fsync(fd);
12705
12706abort:
12707 free(buf);
12708
12709 return ret;
12710}
12711
12712/*******************************************************************************
12713 * Function: is_vol_to_setup_bitmap
12714 * Description: Checks if a bitmap should be activated on the dev.
12715 * Parameters:
12716 * info : info about the volume to setup the bitmap
12717 * dev : the device to check against bitmap creation
12718 *
12719 * Returns:
12720 * 0 : bitmap should be set up on the device
12721 * -1 : otherwise
12722 ******************************************************************************/
12723static int is_vol_to_setup_bitmap(struct mdinfo *info, struct imsm_dev *dev)
12724{
12725 if (!dev || !info)
12726 return -1;
12727
12728 if ((strcmp((char *)dev->volume, info->name) == 0) &&
12729 (dev->rwh_policy == RWH_BITMAP))
12730 return -1;
12731
12732 return 0;
12733}
12734
12735/*******************************************************************************
12736 * Function: set_bitmap_sysfs
12737 * Description: Set the sysfs atributes of a given volume to activate the bitmap.
12738 * Parameters:
12739 * info : info about the volume where the bitmap should be setup
12740 * chunksize : bitmap chunk size
12741 * location : location of the bitmap
12742 *
12743 * Returns:
12744 * 0 : success
12745 * -1 : fail
12746 ******************************************************************************/
12747static int set_bitmap_sysfs(struct mdinfo *info, unsigned long long chunksize,
12748 char *location)
12749{
12750 /* The bitmap/metadata is set to external to allow changing of value for
12751 * bitmap/location. When external is used, the kernel will treat an offset
12752 * related to the device's first lba (in opposition to the "internal" case
12753 * when this value is related to the beginning of the superblock).
12754 */
12755 if (sysfs_set_str(info, NULL, "bitmap/metadata", "external")) {
12756 dprintf("failed to set bitmap/metadata\n");
12757 return -1;
12758 }
12759
12760 /* It can only be changed when no bitmap is active.
12761 * Should be bigger than 512 and must be power of 2.
12762 * It is expecting the value in bytes.
12763 */
12764 if (sysfs_set_num(info, NULL, "bitmap/chunksize",
12765 __cpu_to_le32(chunksize))) {
12766 dprintf("failed to set bitmap/chunksize\n");
12767 return -1;
12768 }
12769
12770 /* It is expecting the value in sectors. */
12771 if (sysfs_set_num(info, NULL, "bitmap/space",
12772 __cpu_to_le64(IMSM_BITMAP_AREA_SIZE))) {
12773 dprintf("failed to set bitmap/space\n");
12774 return -1;
12775 }
12776
12777 /* Determines the delay between the bitmap updates.
12778 * It is expecting the value in seconds.
12779 */
12780 if (sysfs_set_num(info, NULL, "bitmap/time_base",
12781 __cpu_to_le64(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP))) {
12782 dprintf("failed to set bitmap/time_base\n");
12783 return -1;
12784 }
12785
12786 /* It is expecting the value in sectors with a sign at the beginning. */
12787 if (sysfs_set_str(info, NULL, "bitmap/location", location)) {
12788 dprintf("failed to set bitmap/location\n");
12789 return -1;
12790 }
12791
12792 return 0;
12793}
12794
12795/*******************************************************************************
12796 * Function: set_bitmap_imsm
12797 * Description: Setup the bitmap for the given volume
12798 * Parameters:
12799 * st : supertype information
12800 * info : info about the volume where the bitmap should be setup
12801 *
12802 * Returns:
12803 * 0 : success
12804 * -1 : fail
12805 ******************************************************************************/
12806static int set_bitmap_imsm(struct supertype *st, struct mdinfo *info)
12807{
12808 struct intel_super *super = st->sb;
12809 int prev_current_vol = super->current_vol;
12810 struct imsm_dev *dev;
12811 int ret = -1;
12812 char location[16] = "";
12813 unsigned long long chunksize;
12814 struct intel_dev *dev_it;
12815
12816 for (dev_it = super->devlist; dev_it; dev_it = dev_it->next) {
12817 super->current_vol = dev_it->index;
12818 dev = get_imsm_dev(super, super->current_vol);
12819
12820 if (is_vol_to_setup_bitmap(info, dev)) {
12821 if (validate_internal_bitmap_imsm(st)) {
12822 dprintf("bitmap header validation failed\n");
12823 goto abort;
12824 }
12825
12826 chunksize = calculate_bitmap_chunksize(st, dev);
12827 dprintf("chunk size is %llu\n", chunksize);
12828
12829 snprintf(location, sizeof(location), "+%llu",
12830 get_bitmap_sector(super, super->current_vol));
12831 dprintf("bitmap offset is %s\n", location);
12832
12833 if (set_bitmap_sysfs(info, chunksize, location)) {
12834 dprintf("cannot setup the bitmap\n");
12835 goto abort;
12836 }
12837 }
12838 }
12839 ret = 0;
12840abort:
12841 super->current_vol = prev_current_vol;
12842 return ret;
12843}
12844
cdddbdbc 12845struct superswitch super_imsm = {
cdddbdbc
DW
12846 .examine_super = examine_super_imsm,
12847 .brief_examine_super = brief_examine_super_imsm,
4737ae25 12848 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 12849 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
12850 .detail_super = detail_super_imsm,
12851 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 12852 .write_init_super = write_init_super_imsm,
0e600426
N
12853 .validate_geometry = validate_geometry_imsm,
12854 .add_to_super = add_to_super_imsm,
1a64be56 12855 .remove_from_super = remove_from_super_imsm,
d665cc31 12856 .detail_platform = detail_platform_imsm,
e50cf220 12857 .export_detail_platform = export_detail_platform_imsm,
33414a01 12858 .kill_subarray = kill_subarray_imsm,
aa534678 12859 .update_subarray = update_subarray_imsm,
2b959fbf 12860 .load_container = load_container_imsm,
71204a50
N
12861 .default_geometry = default_geometry_imsm,
12862 .get_disk_controller_domain = imsm_get_disk_controller_domain,
12863 .reshape_super = imsm_reshape_super,
12864 .manage_reshape = imsm_manage_reshape,
9e2d750d 12865 .recover_backup = recover_backup_imsm,
27156a57 12866 .examine_badblocks = examine_badblocks_imsm,
cdddbdbc
DW
12867 .match_home = match_home_imsm,
12868 .uuid_from_super= uuid_from_super_imsm,
12869 .getinfo_super = getinfo_super_imsm,
5c4cd5da 12870 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
12871 .update_super = update_super_imsm,
12872
12873 .avail_size = avail_size_imsm,
fbfdcb06 12874 .get_spare_criteria = get_spare_criteria_imsm,
cdddbdbc
DW
12875
12876 .compare_super = compare_super_imsm,
12877
12878 .load_super = load_super_imsm,
bf5a934a 12879 .init_super = init_super_imsm,
e683ca88 12880 .store_super = store_super_imsm,
cdddbdbc
DW
12881 .free_super = free_super_imsm,
12882 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 12883 .container_content = container_content_imsm,
0c21b485 12884 .validate_container = validate_container_imsm,
cdddbdbc 12885
fbc42556
JR
12886 .add_internal_bitmap = add_internal_bitmap_imsm,
12887 .locate_bitmap = locate_bitmap_imsm,
12888 .write_bitmap = write_init_bitmap_imsm,
12889 .set_bitmap = set_bitmap_imsm,
12890
2432ce9b
AP
12891 .write_init_ppl = write_init_ppl_imsm,
12892 .validate_ppl = validate_ppl_imsm,
12893
cdddbdbc 12894 .external = 1,
4cce4069 12895 .name = "imsm",
845dea95
NB
12896
12897/* for mdmon */
12898 .open_new = imsm_open_new,
ed9d66aa 12899 .set_array_state= imsm_set_array_state,
845dea95
NB
12900 .set_disk = imsm_set_disk,
12901 .sync_metadata = imsm_sync_metadata,
88758e9d 12902 .activate_spare = imsm_activate_spare,
e8319a19 12903 .process_update = imsm_process_update,
8273f55e 12904 .prepare_update = imsm_prepare_update,
6f50473f 12905 .record_bad_block = imsm_record_badblock,
c07a5a4f 12906 .clear_bad_block = imsm_clear_badblock,
928f1424 12907 .get_bad_blocks = imsm_get_badblocks,
cdddbdbc 12908};