]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
imsm: return free space after volume for expand
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
420dafcd 23#include "dlink.h"
51006d85 24#include "sha1.h"
88c32bb1 25#include "platform-intel.h"
cdddbdbc
DW
26#include <values.h>
27#include <scsi/sg.h>
28#include <ctype.h>
d665cc31 29#include <dirent.h>
cdddbdbc
DW
30
31/* MPB == Metadata Parameter Block */
32#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
33#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
34#define MPB_VERSION_RAID0 "1.0.00"
35#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
36#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
37#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 38#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
39#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
40#define MPB_VERSION_CNG "1.2.06"
41#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
42#define MAX_SIGNATURE_LENGTH 32
43#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 44
19482bcc
AK
45/* supports RAID0 */
46#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
47/* supports RAID1 */
48#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49/* supports RAID10 */
50#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
51/* supports RAID1E */
52#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
53/* supports RAID5 */
54#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
55/* supports RAID CNG */
56#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
57/* supports expanded stripe sizes of 256K, 512K and 1MB */
58#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
59
60/* The OROM Support RST Caching of Volumes */
61#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
62/* The OROM supports creating disks greater than 2TB */
63#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
64/* The OROM supports Bad Block Management */
65#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
66
67/* THe OROM Supports NVM Caching of Volumes */
68#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
69/* The OROM supports creating volumes greater than 2TB */
70#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
71/* originally for PMP, now it's wasted b/c. Never use this bit! */
72#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
73/* Verify MPB contents against checksum after reading MPB */
74#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
75
76/* Define all supported attributes that have to be accepted by mdadm
77 */
418f9b36 78#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
79 MPB_ATTRIB_2TB | \
80 MPB_ATTRIB_2TB_DISK | \
81 MPB_ATTRIB_RAID0 | \
82 MPB_ATTRIB_RAID1 | \
83 MPB_ATTRIB_RAID10 | \
84 MPB_ATTRIB_RAID5 | \
bbab0940
TM
85 MPB_ATTRIB_EXP_STRIPE_SIZE | \
86 MPB_ATTRIB_BBM)
418f9b36
N
87
88/* Define attributes that are unused but not harmful */
89#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 90
8e59f3d8 91#define MPB_SECTOR_CNT 2210
611d9529
MD
92#define IMSM_RESERVED_SECTORS 8192
93#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2048
979d38be 94#define SECT_PER_MB_SHIFT 11
f36a9ecd 95#define MAX_SECTOR_SIZE 4096
c2462068
PB
96#define MULTIPLE_PPL_AREA_SIZE_IMSM (1024 * 1024) /* Size of the whole
97 * mutliple PPL area
98 */
cdddbdbc 99
fbc42556
JR
100/*
101 * Internal Write-intent bitmap is stored in the same area where PPL.
102 * Both features are mutually exclusive, so it is not an issue.
103 * The first 8KiB of the area are reserved and shall not be used.
104 */
105#define IMSM_BITMAP_AREA_RESERVED_SIZE 8192
106
107#define IMSM_BITMAP_HEADER_OFFSET (IMSM_BITMAP_AREA_RESERVED_SIZE)
108#define IMSM_BITMAP_HEADER_SIZE MAX_SECTOR_SIZE
109
110#define IMSM_BITMAP_START_OFFSET (IMSM_BITMAP_HEADER_OFFSET + IMSM_BITMAP_HEADER_SIZE)
111#define IMSM_BITMAP_AREA_SIZE (MULTIPLE_PPL_AREA_SIZE_IMSM - IMSM_BITMAP_START_OFFSET)
112#define IMSM_BITMAP_AND_HEADER_SIZE (IMSM_BITMAP_AREA_SIZE + IMSM_BITMAP_HEADER_SIZE)
113
114#define IMSM_DEFAULT_BITMAP_CHUNKSIZE (64 * 1024 * 1024)
115#define IMSM_DEFAULT_BITMAP_DAEMON_SLEEP 5
116
761e3bd9
N
117/*
118 * This macro let's us ensure that no-one accidentally
119 * changes the size of a struct
120 */
121#define ASSERT_SIZE(_struct, size) \
122static inline void __assert_size_##_struct(void) \
123{ \
124 switch (0) { \
125 case 0: break; \
126 case (sizeof(struct _struct) == size): break; \
127 } \
128}
129
cdddbdbc
DW
130/* Disk configuration info. */
131#define IMSM_MAX_DEVICES 255
132struct imsm_disk {
133 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
5551b113 134 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
cdddbdbc 135 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
136#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
137#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
138#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
2432ce9b 139#define JOURNAL_DISK __cpu_to_le32(0x2000000) /* Device marked as Journaling Drive */
cdddbdbc 140 __u32 status; /* 0xF0 - 0xF3 */
1011e834 141 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
5551b113
CA
142 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
143#define IMSM_DISK_FILLERS 3
144 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
cdddbdbc 145};
761e3bd9 146ASSERT_SIZE(imsm_disk, 48)
cdddbdbc 147
3b451610
AK
148/* map selector for map managment
149 */
238c0a71
AK
150#define MAP_0 0
151#define MAP_1 1
152#define MAP_X -1
3b451610 153
cdddbdbc
DW
154/* RAID map configuration infos. */
155struct imsm_map {
5551b113
CA
156 __u32 pba_of_lba0_lo; /* start address of partition */
157 __u32 blocks_per_member_lo;/* blocks per member */
158 __u32 num_data_stripes_lo; /* number of data stripes */
cdddbdbc
DW
159 __u16 blocks_per_strip;
160 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
161#define IMSM_T_STATE_NORMAL 0
162#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
163#define IMSM_T_STATE_DEGRADED 2
164#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
165 __u8 raid_level;
166#define IMSM_T_RAID0 0
167#define IMSM_T_RAID1 1
168#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
169 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
170 __u8 num_domains; /* number of parity domains */
171 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 172 __u8 ddf;
5551b113
CA
173 __u32 pba_of_lba0_hi;
174 __u32 blocks_per_member_hi;
175 __u32 num_data_stripes_hi;
176 __u32 filler[4]; /* expansion area */
7eef0453 177#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 178 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
179 * top byte contains some flags
180 */
761e3bd9
N
181};
182ASSERT_SIZE(imsm_map, 52)
cdddbdbc
DW
183
184struct imsm_vol {
4036e7ee 185 __u32 curr_migr_unit_lo;
fe7ed8cb 186 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 187 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
188#define MIGR_INIT 0
189#define MIGR_REBUILD 1
190#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
191#define MIGR_GEN_MIGR 3
192#define MIGR_STATE_CHANGE 4
1484e727 193#define MIGR_REPAIR 5
cdddbdbc 194 __u8 migr_type; /* Initializing, Rebuilding, ... */
2432ce9b
AP
195#define RAIDVOL_CLEAN 0
196#define RAIDVOL_DIRTY 1
197#define RAIDVOL_DSRECORD_VALID 2
cdddbdbc 198 __u8 dirty;
fe7ed8cb
DW
199 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
200 __u16 verify_errors; /* number of mismatches */
201 __u16 bad_blocks; /* number of bad blocks during verify */
4036e7ee
MT
202 __u32 curr_migr_unit_hi;
203 __u32 filler[3];
cdddbdbc
DW
204 struct imsm_map map[1];
205 /* here comes another one if migr_state */
761e3bd9
N
206};
207ASSERT_SIZE(imsm_vol, 84)
cdddbdbc
DW
208
209struct imsm_dev {
fe7ed8cb 210 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
211 __u32 size_low;
212 __u32 size_high;
fe7ed8cb
DW
213#define DEV_BOOTABLE __cpu_to_le32(0x01)
214#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
215#define DEV_READ_COALESCING __cpu_to_le32(0x04)
216#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
217#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
218#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
219#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
220#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
221#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
222#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
223#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
224#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
225#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
226 __u32 status; /* Persistent RaidDev status */
227 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
228 __u8 migr_priority;
229 __u8 num_sub_vols;
230 __u8 tid;
231 __u8 cng_master_disk;
232 __u16 cache_policy;
233 __u8 cng_state;
234 __u8 cng_sub_state;
2432ce9b
AP
235 __u16 my_vol_raid_dev_num; /* Used in Unique volume Id for this RaidDev */
236
237 /* NVM_EN */
238 __u8 nv_cache_mode;
239 __u8 nv_cache_flags;
240
241 /* Unique Volume Id of the NvCache Volume associated with this volume */
242 __u32 nvc_vol_orig_family_num;
243 __u16 nvc_vol_raid_dev_num;
244
245#define RWH_OFF 0
246#define RWH_DISTRIBUTED 1
247#define RWH_JOURNALING_DRIVE 2
c2462068
PB
248#define RWH_MULTIPLE_DISTRIBUTED 3
249#define RWH_MULTIPLE_PPLS_JOURNALING_DRIVE 4
250#define RWH_MULTIPLE_OFF 5
fbc42556 251#define RWH_BITMAP 6
2432ce9b
AP
252 __u8 rwh_policy; /* Raid Write Hole Policy */
253 __u8 jd_serial[MAX_RAID_SERIAL_LEN]; /* Journal Drive serial number */
254 __u8 filler1;
255
256#define IMSM_DEV_FILLERS 3
cdddbdbc
DW
257 __u32 filler[IMSM_DEV_FILLERS];
258 struct imsm_vol vol;
761e3bd9
N
259};
260ASSERT_SIZE(imsm_dev, 164)
cdddbdbc
DW
261
262struct imsm_super {
263 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
264 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
265 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
266 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
267 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
268 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
269 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
270 __u8 num_disks; /* 0x38 Number of configured disks */
271 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
272 __u8 error_log_pos; /* 0x3A */
273 __u8 fill[1]; /* 0x3B */
274 __u32 cache_size; /* 0x3c - 0x40 in mb */
275 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
276 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
277 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
2a24dc1b
PB
278 __u16 num_raid_devs_created; /* 0x4C - 0x4D Used for generating unique
279 * volume IDs for raid_dev created in this array
280 * (starts at 1)
281 */
282 __u16 filler1; /* 0x4E - 0x4F */
e48aed3c
AP
283 __u64 creation_time; /* 0x50 - 0x57 Array creation time */
284#define IMSM_FILLERS 32
285 __u32 filler[IMSM_FILLERS]; /* 0x58 - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
286 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
287 /* here comes imsm_dev[num_raid_devs] */
604b746f 288 /* here comes BBM logs */
761e3bd9
N
289};
290ASSERT_SIZE(imsm_super, 264)
cdddbdbc 291
604b746f 292#define BBM_LOG_MAX_ENTRIES 254
8d67477f
TM
293#define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */
294#define BBM_LOG_SIGNATURE 0xabadb10c
295
296struct bbm_log_block_addr {
297 __u16 w1;
298 __u32 dw1;
299} __attribute__ ((__packed__));
604b746f
JD
300
301struct bbm_log_entry {
8d67477f
TM
302 __u8 marked_count; /* Number of blocks marked - 1 */
303 __u8 disk_ordinal; /* Disk entry within the imsm_super */
304 struct bbm_log_block_addr defective_block_start;
604b746f
JD
305} __attribute__ ((__packed__));
306
307struct bbm_log {
308 __u32 signature; /* 0xABADB10C */
309 __u32 entry_count;
8d67477f 310 struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
761e3bd9
N
311};
312ASSERT_SIZE(bbm_log, 2040)
604b746f 313
cdddbdbc 314static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
cdddbdbc 315
b53bfba6
TM
316#define BLOCKS_PER_KB (1024/512)
317
8e59f3d8
AK
318#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
319
320#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
321
de44e46f
PB
322#define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
323#define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
324 * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
17a4eaf9
AK
325 */
326
8e59f3d8
AK
327#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
328 * be recovered using srcMap */
329#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
330 * already been migrated and must
331 * be recovered from checkpoint area */
2432ce9b 332
c2462068 333#define PPL_ENTRY_SPACE (128 * 1024) /* Size of single PPL, without the header */
2432ce9b 334
8e59f3d8
AK
335struct migr_record {
336 __u32 rec_status; /* Status used to determine how to restart
337 * migration in case it aborts
338 * in some fashion */
9f421827 339 __u32 curr_migr_unit_lo; /* 0..numMigrUnits-1 */
8e59f3d8
AK
340 __u32 family_num; /* Family number of MPB
341 * containing the RaidDev
342 * that is migrating */
343 __u32 ascending_migr; /* True if migrating in increasing
344 * order of lbas */
345 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
346 __u32 dest_depth_per_unit; /* Num member blocks each destMap
347 * member disk
348 * advances per unit-of-operation */
9f421827
PB
349 __u32 ckpt_area_pba_lo; /* Pba of first block of ckpt copy area */
350 __u32 dest_1st_member_lba_lo; /* First member lba on first
351 * stripe of destination */
352 __u32 num_migr_units_lo; /* Total num migration units-of-op */
8e59f3d8
AK
353 __u32 post_migr_vol_cap; /* Size of volume after
354 * migration completes */
355 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
356 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
357 * migration ckpt record was read from
358 * (for recovered migrations) */
9f421827
PB
359 __u32 curr_migr_unit_hi; /* 0..numMigrUnits-1 high order 32 bits */
360 __u32 ckpt_area_pba_hi; /* Pba of first block of ckpt copy area
361 * high order 32 bits */
362 __u32 dest_1st_member_lba_hi; /* First member lba on first stripe of
363 * destination - high order 32 bits */
364 __u32 num_migr_units_hi; /* Total num migration units-of-op
365 * high order 32 bits */
4036e7ee 366 __u32 filler[16];
761e3bd9 367};
4036e7ee 368ASSERT_SIZE(migr_record, 128)
8e59f3d8 369
76c152ca
MT
370/**
371 * enum imsm_status - internal IMSM return values representation.
372 * @STATUS_OK: function succeeded.
373 * @STATUS_ERROR: General error ocurred (not specified).
374 *
375 * Typedefed to imsm_status_t.
376 */
377typedef enum imsm_status {
378 IMSM_STATUS_ERROR = -1,
379 IMSM_STATUS_OK = 0,
380} imsm_status_t;
381
ec50f7b6
LM
382struct md_list {
383 /* usage marker:
384 * 1: load metadata
385 * 2: metadata does not match
386 * 4: already checked
387 */
388 int used;
389 char *devname;
390 int found;
391 int container;
392 dev_t st_rdev;
393 struct md_list *next;
394};
395
e7b84f9d 396#define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
ec50f7b6 397
1484e727
DW
398static __u8 migr_type(struct imsm_dev *dev)
399{
400 if (dev->vol.migr_type == MIGR_VERIFY &&
401 dev->status & DEV_VERIFY_AND_FIX)
402 return MIGR_REPAIR;
403 else
404 return dev->vol.migr_type;
405}
406
407static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
408{
409 /* for compatibility with older oroms convert MIGR_REPAIR, into
410 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
411 */
412 if (migr_type == MIGR_REPAIR) {
413 dev->vol.migr_type = MIGR_VERIFY;
414 dev->status |= DEV_VERIFY_AND_FIX;
415 } else {
416 dev->vol.migr_type = migr_type;
417 dev->status &= ~DEV_VERIFY_AND_FIX;
418 }
419}
420
f36a9ecd 421static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
cdddbdbc 422{
f36a9ecd 423 return ROUND_UP(bytes, sector_size) / sector_size;
87eb16df 424}
cdddbdbc 425
f36a9ecd
PB
426static unsigned int mpb_sectors(struct imsm_super *mpb,
427 unsigned int sector_size)
87eb16df 428{
f36a9ecd 429 return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
cdddbdbc
DW
430}
431
ba2de7ba
DW
432struct intel_dev {
433 struct imsm_dev *dev;
434 struct intel_dev *next;
f21e18ca 435 unsigned index;
ba2de7ba
DW
436};
437
88654014
LM
438struct intel_hba {
439 enum sys_dev_type type;
440 char *path;
441 char *pci_id;
442 struct intel_hba *next;
443};
444
1a64be56
LM
445enum action {
446 DISK_REMOVE = 1,
447 DISK_ADD
448};
cdddbdbc
DW
449/* internal representation of IMSM metadata */
450struct intel_super {
451 union {
949c47a0
DW
452 void *buf; /* O_DIRECT buffer for reading/writing metadata */
453 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 454 };
8e59f3d8
AK
455 union {
456 void *migr_rec_buf; /* buffer for I/O operations */
457 struct migr_record *migr_rec; /* migration record */
458 };
51d83f5d
AK
459 int clean_migration_record_by_mdmon; /* when reshape is switched to next
460 array, it indicates that mdmon is allowed to clean migration
461 record */
949c47a0 462 size_t len; /* size of the 'buf' allocation */
bbab0940 463 size_t extra_space; /* extra space in 'buf' that is not used yet */
4d7b1503
DW
464 void *next_buf; /* for realloc'ing buf from the manager */
465 size_t next_len;
c2c087e6 466 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 467 int current_vol; /* index of raid device undergoing creation */
5551b113 468 unsigned long long create_offset; /* common start for 'current_vol' */
148acb7b 469 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 470 struct intel_dev *devlist;
fa7bb6f8 471 unsigned int sector_size; /* sector size of used member drives */
cdddbdbc
DW
472 struct dl {
473 struct dl *next;
474 int index;
475 __u8 serial[MAX_RAID_SERIAL_LEN];
476 int major, minor;
477 char *devname;
b9f594fe 478 struct imsm_disk disk;
cdddbdbc 479 int fd;
0dcecb2e
DW
480 int extent_cnt;
481 struct extent *e; /* for determining freespace @ create */
efb30e7f 482 int raiddisk; /* slot to fill in autolayout */
1a64be56 483 enum action action;
ca0748fa 484 } *disks, *current_disk;
1a64be56
LM
485 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
486 active */
47ee5a45 487 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 488 struct bbm_log *bbm_log;
88654014 489 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 490 const struct imsm_orom *orom; /* platform firmware support */
a2b97981 491 struct intel_super *next; /* (temp) list for disambiguating family_num */
928f1424 492 struct md_bb bb; /* memory for get_bad_blocks call */
a2b97981
DW
493};
494
495struct intel_disk {
496 struct imsm_disk disk;
497 #define IMSM_UNKNOWN_OWNER (-1)
498 int owner;
499 struct intel_disk *next;
cdddbdbc
DW
500};
501
aa19fdd4
MT
502/**
503 * struct extent - reserved space details.
504 * @start: start offset.
505 * @size: size of reservation, set to 0 for metadata reservation.
506 * @vol: index of the volume, meaningful if &size is set.
507 */
c2c087e6
DW
508struct extent {
509 unsigned long long start, size;
aa19fdd4 510 int vol;
c2c087e6
DW
511};
512
694575e7
KW
513/* definitions of reshape process types */
514enum imsm_reshape_type {
515 CH_TAKEOVER,
b5347799 516 CH_MIGRATION,
7abc9871 517 CH_ARRAY_SIZE,
694575e7
KW
518};
519
88758e9d
DW
520/* definition of messages passed to imsm_process_update */
521enum imsm_update_type {
522 update_activate_spare,
8273f55e 523 update_create_array,
33414a01 524 update_kill_array,
aa534678 525 update_rename_array,
1a64be56 526 update_add_remove_disk,
78b10e66 527 update_reshape_container_disks,
48c5303a 528 update_reshape_migration,
2d40f3a1
AK
529 update_takeover,
530 update_general_migration_checkpoint,
f3871fdc 531 update_size_change,
bbab0940 532 update_prealloc_badblocks_mem,
e6e9dd3f 533 update_rwh_policy,
88758e9d
DW
534};
535
536struct imsm_update_activate_spare {
537 enum imsm_update_type type;
d23fe947 538 struct dl *dl;
88758e9d
DW
539 int slot;
540 int array;
541 struct imsm_update_activate_spare *next;
542};
543
78b10e66 544struct geo_params {
4dd2df09 545 char devnm[32];
78b10e66 546 char *dev_name;
d04f65f4 547 unsigned long long size;
78b10e66
N
548 int level;
549 int layout;
550 int chunksize;
551 int raid_disks;
552};
553
bb025c2f
KW
554enum takeover_direction {
555 R10_TO_R0,
556 R0_TO_R10
557};
558struct imsm_update_takeover {
559 enum imsm_update_type type;
560 int subarray;
561 enum takeover_direction direction;
562};
78b10e66
N
563
564struct imsm_update_reshape {
565 enum imsm_update_type type;
566 int old_raid_disks;
567 int new_raid_disks;
48c5303a
PC
568
569 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
570};
571
572struct imsm_update_reshape_migration {
573 enum imsm_update_type type;
574 int old_raid_disks;
575 int new_raid_disks;
576 /* fields for array migration changes
577 */
578 int subdev;
579 int new_level;
580 int new_layout;
4bba0439 581 int new_chunksize;
48c5303a 582
d195167d 583 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
584};
585
f3871fdc
AK
586struct imsm_update_size_change {
587 enum imsm_update_type type;
588 int subdev;
589 long long new_size;
590};
591
2d40f3a1
AK
592struct imsm_update_general_migration_checkpoint {
593 enum imsm_update_type type;
4036e7ee 594 __u64 curr_migr_unit;
2d40f3a1
AK
595};
596
54c2c1ea
DW
597struct disk_info {
598 __u8 serial[MAX_RAID_SERIAL_LEN];
599};
600
8273f55e
DW
601struct imsm_update_create_array {
602 enum imsm_update_type type;
8273f55e 603 int dev_idx;
6a3e913e 604 struct imsm_dev dev;
8273f55e
DW
605};
606
33414a01
DW
607struct imsm_update_kill_array {
608 enum imsm_update_type type;
609 int dev_idx;
610};
611
aa534678
DW
612struct imsm_update_rename_array {
613 enum imsm_update_type type;
614 __u8 name[MAX_RAID_SERIAL_LEN];
615 int dev_idx;
616};
617
1a64be56 618struct imsm_update_add_remove_disk {
43dad3d6
DW
619 enum imsm_update_type type;
620};
621
bbab0940
TM
622struct imsm_update_prealloc_bb_mem {
623 enum imsm_update_type type;
624};
625
e6e9dd3f
AP
626struct imsm_update_rwh_policy {
627 enum imsm_update_type type;
628 int new_policy;
629 int dev_idx;
630};
631
88654014
LM
632static const char *_sys_dev_type[] = {
633 [SYS_DEV_UNKNOWN] = "Unknown",
634 [SYS_DEV_SAS] = "SAS",
614902f6 635 [SYS_DEV_SATA] = "SATA",
60f0f54d 636 [SYS_DEV_NVME] = "NVMe",
75350d87
KF
637 [SYS_DEV_VMD] = "VMD",
638 [SYS_DEV_SATA_VMD] = "SATA VMD"
88654014
LM
639};
640
420dafcd
N
641static int no_platform = -1;
642
643static int check_no_platform(void)
644{
645 static const char search[] = "mdadm.imsm.test=1";
646 FILE *fp;
647
648 if (no_platform >= 0)
649 return no_platform;
650
651 if (check_env("IMSM_NO_PLATFORM")) {
652 no_platform = 1;
653 return 1;
654 }
655 fp = fopen("/proc/cmdline", "r");
656 if (fp) {
657 char *l = conf_line(fp);
658 char *w = l;
659
cf1577bf
MG
660 if (l == NULL) {
661 fclose(fp);
662 return 0;
663 }
664
420dafcd
N
665 do {
666 if (strcmp(w, search) == 0)
667 no_platform = 1;
668 w = dl_next(w);
669 } while (w != l);
670 free_line(l);
671 fclose(fp);
672 if (no_platform >= 0)
673 return no_platform;
674 }
675 no_platform = 0;
676 return 0;
677}
678
679void imsm_set_no_platform(int v)
680{
681 no_platform = v;
682}
683
88654014
LM
684const char *get_sys_dev_type(enum sys_dev_type type)
685{
686 if (type >= SYS_DEV_MAX)
687 type = SYS_DEV_UNKNOWN;
688
689 return _sys_dev_type[type];
690}
691
692static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
693{
503975b9
N
694 struct intel_hba *result = xmalloc(sizeof(*result));
695
696 result->type = device->type;
697 result->path = xstrdup(device->path);
698 result->next = NULL;
699 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
700 result->pci_id++;
701
88654014
LM
702 return result;
703}
704
705static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
706{
594dc1b8
JS
707 struct intel_hba *result;
708
88654014
LM
709 for (result = hba; result; result = result->next) {
710 if (result->type == device->type && strcmp(result->path, device->path) == 0)
711 break;
712 }
713 return result;
714}
715
b4cf4cba 716static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
717{
718 struct intel_hba *hba;
719
720 /* check if disk attached to Intel HBA */
721 hba = find_intel_hba(super->hba, device);
722 if (hba != NULL)
723 return 1;
724 /* Check if HBA is already attached to super */
725 if (super->hba == NULL) {
726 super->hba = alloc_intel_hba(device);
727 return 1;
6b781d33
AP
728 }
729
730 hba = super->hba;
731 /* Intel metadata allows for all disks attached to the same type HBA.
614902f6 732 * Do not support HBA types mixing
6b781d33
AP
733 */
734 if (device->type != hba->type)
88654014 735 return 2;
6b781d33
AP
736
737 /* Multiple same type HBAs can be used if they share the same OROM */
738 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
739
740 if (device_orom != super->orom)
741 return 2;
742
743 while (hba->next)
744 hba = hba->next;
745
746 hba->next = alloc_intel_hba(device);
747 return 1;
88654014
LM
748}
749
750static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
751{
9bc4ae77 752 struct sys_dev *list, *elem;
88654014
LM
753 char *disk_path;
754
755 if ((list = find_intel_devices()) == NULL)
756 return 0;
757
4389ce73 758 if (!is_fd_valid(fd))
88654014
LM
759 disk_path = (char *) devname;
760 else
7c798f87 761 disk_path = diskfd_to_devpath(fd, 1, NULL);
88654014 762
9bc4ae77 763 if (!disk_path)
88654014 764 return 0;
88654014 765
9bc4ae77
N
766 for (elem = list; elem; elem = elem->next)
767 if (path_attached_to_hba(disk_path, elem->path))
5d2434d1 768 break;
9bc4ae77 769
88654014
LM
770 if (disk_path != devname)
771 free(disk_path);
88654014 772
5d2434d1 773 return elem;
88654014
LM
774}
775
d424212e
N
776static int find_intel_hba_capability(int fd, struct intel_super *super,
777 char *devname);
f2f5c343 778
cdddbdbc
DW
779static struct supertype *match_metadata_desc_imsm(char *arg)
780{
781 struct supertype *st;
782
783 if (strcmp(arg, "imsm") != 0 &&
784 strcmp(arg, "default") != 0
785 )
786 return NULL;
787
503975b9 788 st = xcalloc(1, sizeof(*st));
cdddbdbc
DW
789 st->ss = &super_imsm;
790 st->max_devs = IMSM_MAX_DEVICES;
791 st->minor_version = 0;
792 st->sb = NULL;
793 return st;
794}
795
cdddbdbc
DW
796static __u8 *get_imsm_version(struct imsm_super *mpb)
797{
798 return &mpb->sig[MPB_SIG_LEN];
799}
800
949c47a0
DW
801/* retrieve a disk directly from the anchor when the anchor is known to be
802 * up-to-date, currently only at load time
803 */
804static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 805{
949c47a0 806 if (index >= mpb->num_disks)
cdddbdbc
DW
807 return NULL;
808 return &mpb->disk[index];
809}
810
95d07a2c
LM
811/* retrieve the disk description based on a index of the disk
812 * in the sub-array
813 */
814static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 815{
b9f594fe
DW
816 struct dl *d;
817
818 for (d = super->disks; d; d = d->next)
819 if (d->index == index)
95d07a2c
LM
820 return d;
821
822 return NULL;
823}
824/* retrieve a disk from the parsed metadata */
825static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
826{
827 struct dl *dl;
828
829 dl = get_imsm_dl_disk(super, index);
830 if (dl)
831 return &dl->disk;
832
b9f594fe 833 return NULL;
949c47a0
DW
834}
835
836/* generate a checksum directly from the anchor when the anchor is known to be
837 * up-to-date, currently only at load or write_super after coalescing
838 */
839static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
840{
841 __u32 end = mpb->mpb_size / sizeof(end);
842 __u32 *p = (__u32 *) mpb;
843 __u32 sum = 0;
844
5d500228
N
845 while (end--) {
846 sum += __le32_to_cpu(*p);
97f734fd
N
847 p++;
848 }
cdddbdbc 849
5d500228 850 return sum - __le32_to_cpu(mpb->check_sum);
cdddbdbc
DW
851}
852
a965f303
DW
853static size_t sizeof_imsm_map(struct imsm_map *map)
854{
855 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
856}
857
858struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 859{
5e7b0330
AK
860 /* A device can have 2 maps if it is in the middle of a migration.
861 * If second_map is:
238c0a71
AK
862 * MAP_0 - we return the first map
863 * MAP_1 - we return the second map if it exists, else NULL
864 * MAP_X - we return the second map if it exists, else the first
5e7b0330 865 */
a965f303 866 struct imsm_map *map = &dev->vol.map[0];
9535fc47 867 struct imsm_map *map2 = NULL;
a965f303 868
9535fc47
AK
869 if (dev->vol.migr_state)
870 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 871
9535fc47 872 switch (second_map) {
3b451610 873 case MAP_0:
9535fc47 874 break;
3b451610 875 case MAP_1:
9535fc47
AK
876 map = map2;
877 break;
238c0a71 878 case MAP_X:
9535fc47
AK
879 if (map2)
880 map = map2;
881 break;
9535fc47
AK
882 default:
883 map = NULL;
884 }
885 return map;
5e7b0330 886
a965f303 887}
cdddbdbc 888
3393c6af
DW
889/* return the size of the device.
890 * migr_state increases the returned size if map[0] were to be duplicated
891 */
892static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
893{
894 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
238c0a71 895 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
896
897 /* migrating means an additional map */
a965f303 898 if (dev->vol.migr_state)
238c0a71 899 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
3393c6af 900 else if (migr_state)
238c0a71 901 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
902
903 return size;
904}
905
54c2c1ea
DW
906/* retrieve disk serial number list from a metadata update */
907static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
908{
909 void *u = update;
910 struct disk_info *inf;
911
912 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
913 sizeof_imsm_dev(&update->dev, 0);
914
915 return inf;
916}
54c2c1ea 917
756a15f3
MG
918/**
919 * __get_imsm_dev() - Get device with index from imsm_super.
920 * @mpb: &imsm_super pointer, not NULL.
921 * @index: Device index.
922 *
923 * Function works as non-NULL, aborting in such a case,
924 * when NULL would be returned.
925 *
926 * Device index should be in range 0 up to num_raid_devs.
927 * Function assumes the index was already verified.
928 * Index must be valid, otherwise abort() is called.
929 *
930 * Return: Pointer to corresponding imsm_dev.
931 *
932 */
949c47a0 933static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
934{
935 int offset;
936 int i;
937 void *_mpb = mpb;
938
949c47a0 939 if (index >= mpb->num_raid_devs)
756a15f3 940 goto error;
cdddbdbc
DW
941
942 /* devices start after all disks */
943 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
944
756a15f3 945 for (i = 0; i <= index; i++, offset += sizeof_imsm_dev(_mpb + offset, 0))
cdddbdbc
DW
946 if (i == index)
947 return _mpb + offset;
756a15f3
MG
948error:
949 pr_err("cannot find imsm_dev with index %u in imsm_super\n", index);
950 abort();
cdddbdbc
DW
951}
952
756a15f3
MG
953/**
954 * get_imsm_dev() - Get device with index from intel_super.
955 * @super: &intel_super pointer, not NULL.
956 * @index: Device index.
957 *
958 * Function works as non-NULL, aborting in such a case,
959 * when NULL would be returned.
960 *
961 * Device index should be in range 0 up to num_raid_devs.
962 * Function assumes the index was already verified.
963 * Index must be valid, otherwise abort() is called.
964 *
965 * Return: Pointer to corresponding imsm_dev.
966 *
967 */
949c47a0
DW
968static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
969{
ba2de7ba
DW
970 struct intel_dev *dv;
971
949c47a0 972 if (index >= super->anchor->num_raid_devs)
756a15f3
MG
973 goto error;
974
ba2de7ba
DW
975 for (dv = super->devlist; dv; dv = dv->next)
976 if (dv->index == index)
977 return dv->dev;
756a15f3
MG
978error:
979 pr_err("cannot find imsm_dev with index %u in intel_super\n", index);
980 abort();
949c47a0
DW
981}
982
8d67477f
TM
983static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
984 *addr)
985{
986 return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
987 __le16_to_cpu(addr->w1));
988}
989
990static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
991{
992 struct bbm_log_block_addr addr;
993
994 addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff));
995 addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
996 return addr;
997}
998
8d67477f
TM
999/* get size of the bbm log */
1000static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
1001{
1002 if (!log || log->entry_count == 0)
1003 return 0;
1004
1005 return sizeof(log->signature) +
1006 sizeof(log->entry_count) +
1007 log->entry_count * sizeof(struct bbm_log_entry);
1008}
6f50473f
TM
1009
1010/* check if bad block is not partially stored in bbm log */
1011static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
1012 long long sector, const int length, __u32 *pos)
1013{
1014 __u32 i;
1015
1016 for (i = *pos; i < log->entry_count; i++) {
1017 struct bbm_log_entry *entry = &log->marked_block_entries[i];
1018 unsigned long long bb_start;
1019 unsigned long long bb_end;
1020
1021 bb_start = __le48_to_cpu(&entry->defective_block_start);
1022 bb_end = bb_start + (entry->marked_count + 1);
1023
1024 if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
1025 (bb_end <= sector + length)) {
1026 *pos = i;
1027 return 1;
1028 }
1029 }
1030 return 0;
1031}
1032
1033/* record new bad block in bbm log */
1034static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
1035 long long sector, int length)
1036{
1037 int new_bb = 0;
1038 __u32 pos = 0;
1039 struct bbm_log_entry *entry = NULL;
1040
1041 while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
1042 struct bbm_log_entry *e = &log->marked_block_entries[pos];
1043
1044 if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
1045 (__le48_to_cpu(&e->defective_block_start) == sector)) {
1046 sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
1047 length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
1048 pos = pos + 1;
1049 continue;
1050 }
1051 entry = e;
1052 break;
1053 }
1054
1055 if (entry) {
1056 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
1057 BBM_LOG_MAX_LBA_ENTRY_VAL;
1058 entry->defective_block_start = __cpu_to_le48(sector);
1059 entry->marked_count = cnt - 1;
1060 if (cnt == length)
1061 return 1;
1062 sector += cnt;
1063 length -= cnt;
1064 }
1065
1066 new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
1067 BBM_LOG_MAX_LBA_ENTRY_VAL;
1068 if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
1069 return 0;
1070
1071 while (length > 0) {
1072 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
1073 BBM_LOG_MAX_LBA_ENTRY_VAL;
1074 struct bbm_log_entry *entry =
1075 &log->marked_block_entries[log->entry_count];
1076
1077 entry->defective_block_start = __cpu_to_le48(sector);
1078 entry->marked_count = cnt - 1;
1079 entry->disk_ordinal = idx;
1080
1081 sector += cnt;
1082 length -= cnt;
1083
1084 log->entry_count++;
1085 }
1086
1087 return new_bb;
1088}
c07a5a4f 1089
4c9e8c1e
TM
1090/* clear all bad blocks for given disk */
1091static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx)
1092{
1093 __u32 i = 0;
1094
1095 while (i < log->entry_count) {
1096 struct bbm_log_entry *entries = log->marked_block_entries;
1097
1098 if (entries[i].disk_ordinal == idx) {
1099 if (i < log->entry_count - 1)
1100 entries[i] = entries[log->entry_count - 1];
1101 log->entry_count--;
1102 } else {
1103 i++;
1104 }
1105 }
1106}
1107
c07a5a4f
TM
1108/* clear given bad block */
1109static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
1110 long long sector, const int length) {
1111 __u32 i = 0;
1112
1113 while (i < log->entry_count) {
1114 struct bbm_log_entry *entries = log->marked_block_entries;
1115
1116 if ((entries[i].disk_ordinal == idx) &&
1117 (__le48_to_cpu(&entries[i].defective_block_start) ==
1118 sector) && (entries[i].marked_count + 1 == length)) {
1119 if (i < log->entry_count - 1)
1120 entries[i] = entries[log->entry_count - 1];
1121 log->entry_count--;
1122 break;
1123 }
1124 i++;
1125 }
1126
1127 return 1;
1128}
8d67477f
TM
1129
1130/* allocate and load BBM log from metadata */
1131static int load_bbm_log(struct intel_super *super)
1132{
1133 struct imsm_super *mpb = super->anchor;
1134 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1135
1136 super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
1137 if (!super->bbm_log)
1138 return 1;
1139
1140 if (bbm_log_size) {
1141 struct bbm_log *log = (void *)mpb +
1142 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1143
1144 __u32 entry_count;
1145
1146 if (bbm_log_size < sizeof(log->signature) +
1147 sizeof(log->entry_count))
1148 return 2;
1149
1150 entry_count = __le32_to_cpu(log->entry_count);
1151 if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
1152 (entry_count > BBM_LOG_MAX_ENTRIES))
1153 return 3;
1154
1155 if (bbm_log_size !=
1156 sizeof(log->signature) + sizeof(log->entry_count) +
1157 entry_count * sizeof(struct bbm_log_entry))
1158 return 4;
1159
1160 memcpy(super->bbm_log, log, bbm_log_size);
1161 } else {
1162 super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
1163 super->bbm_log->entry_count = 0;
1164 }
1165
1166 return 0;
1167}
1168
b12796be
TM
1169/* checks if bad block is within volume boundaries */
1170static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
1171 const unsigned long long start_sector,
1172 const unsigned long long size)
1173{
1174 unsigned long long bb_start;
1175 unsigned long long bb_end;
1176
1177 bb_start = __le48_to_cpu(&entry->defective_block_start);
1178 bb_end = bb_start + (entry->marked_count + 1);
1179
1180 if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
1181 ((bb_end >= start_sector) && (bb_end <= start_sector + size)))
1182 return 1;
1183
1184 return 0;
1185}
1186
1187/* get list of bad blocks on a drive for a volume */
1188static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
1189 const unsigned long long start_sector,
1190 const unsigned long long size,
1191 struct md_bb *bbs)
1192{
1193 __u32 count = 0;
1194 __u32 i;
1195
1196 for (i = 0; i < log->entry_count; i++) {
1197 const struct bbm_log_entry *ent =
1198 &log->marked_block_entries[i];
1199 struct md_bb_entry *bb;
1200
1201 if ((ent->disk_ordinal == idx) &&
1202 is_bad_block_in_volume(ent, start_sector, size)) {
1203
1204 if (!bbs->entries) {
1205 bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
1206 sizeof(*bb));
1207 if (!bbs->entries)
1208 break;
1209 }
1210
1211 bb = &bbs->entries[count++];
1212 bb->sector = __le48_to_cpu(&ent->defective_block_start);
1213 bb->length = ent->marked_count + 1;
1214 }
1215 }
1216 bbs->count = count;
1217}
1218
98130f40
AK
1219/*
1220 * for second_map:
238c0a71
AK
1221 * == MAP_0 get first map
1222 * == MAP_1 get second map
1223 * == MAP_X than get map according to the current migr_state
98130f40
AK
1224 */
1225static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
1226 int slot,
1227 int second_map)
7eef0453
DW
1228{
1229 struct imsm_map *map;
1230
5e7b0330 1231 map = get_imsm_map(dev, second_map);
7eef0453 1232
ff077194
DW
1233 /* top byte identifies disk under rebuild */
1234 return __le32_to_cpu(map->disk_ord_tbl[slot]);
1235}
1236
1237#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 1238static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 1239{
98130f40 1240 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
1241
1242 return ord_to_idx(ord);
7eef0453
DW
1243}
1244
be73972f
DW
1245static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
1246{
1247 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
1248}
1249
76c152ca 1250static int get_imsm_disk_slot(struct imsm_map *map, const unsigned int idx)
620b1713
DW
1251{
1252 int slot;
1253 __u32 ord;
1254
1255 for (slot = 0; slot < map->num_members; slot++) {
1256 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
1257 if (ord_to_idx(ord) == idx)
1258 return slot;
1259 }
1260
76c152ca 1261 return IMSM_STATUS_ERROR;
620b1713
DW
1262}
1263
cdddbdbc
DW
1264static int get_imsm_raid_level(struct imsm_map *map)
1265{
1266 if (map->raid_level == 1) {
1267 if (map->num_members == 2)
1268 return 1;
1269 else
1270 return 10;
1271 }
1272
1273 return map->raid_level;
1274}
1275
76c152ca
MT
1276/**
1277 * get_disk_slot_in_dev() - retrieve disk slot from &imsm_dev.
1278 * @super: &intel_super pointer, not NULL.
1279 * @dev_idx: imsm device index.
1280 * @idx: disk index.
1281 *
1282 * Return: Slot on success, IMSM_STATUS_ERROR otherwise.
1283 */
1284static int get_disk_slot_in_dev(struct intel_super *super, const __u8 dev_idx,
1285 const unsigned int idx)
1286{
1287 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
1288 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1289
1290 return get_imsm_disk_slot(map, idx);
1291}
1292
c2c087e6
DW
1293static int cmp_extent(const void *av, const void *bv)
1294{
1295 const struct extent *a = av;
1296 const struct extent *b = bv;
1297 if (a->start < b->start)
1298 return -1;
1299 if (a->start > b->start)
1300 return 1;
1301 return 0;
1302}
1303
0dcecb2e 1304static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 1305{
c2c087e6 1306 int memberships = 0;
620b1713 1307 int i;
c2c087e6 1308
76c152ca
MT
1309 for (i = 0; i < super->anchor->num_raid_devs; i++)
1310 if (get_disk_slot_in_dev(super, i, dl->index) >= 0)
620b1713 1311 memberships++;
0dcecb2e
DW
1312
1313 return memberships;
1314}
1315
b81221b7
CA
1316static __u32 imsm_min_reserved_sectors(struct intel_super *super);
1317
486720e0 1318static int split_ull(unsigned long long n, void *lo, void *hi)
5551b113
CA
1319{
1320 if (lo == 0 || hi == 0)
1321 return 1;
486720e0
JS
1322 __put_unaligned32(__cpu_to_le32((__u32)n), lo);
1323 __put_unaligned32(__cpu_to_le32((n >> 32)), hi);
5551b113
CA
1324 return 0;
1325}
1326
1327static unsigned long long join_u32(__u32 lo, __u32 hi)
1328{
1329 return (unsigned long long)__le32_to_cpu(lo) |
1330 (((unsigned long long)__le32_to_cpu(hi)) << 32);
1331}
1332
1333static unsigned long long total_blocks(struct imsm_disk *disk)
1334{
1335 if (disk == NULL)
1336 return 0;
1337 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
1338}
1339
1c275381
MT
1340/**
1341 * imsm_num_data_members() - get data drives count for an array.
1342 * @map: Map to analyze.
1343 *
1344 * num_data_members value represents minimal count of drives for level.
1345 * The name of the property could be misleading for RAID5 with asymmetric layout
1346 * because some data required to be calculated from parity.
1347 * The property is extracted from level and num_members value.
1348 *
1349 * Return: num_data_members value on success, zero otherwise.
1350 */
1351static __u8 imsm_num_data_members(struct imsm_map *map)
1352{
1353 switch (get_imsm_raid_level(map)) {
1354 case 0:
1355 return map->num_members;
1356 case 1:
1357 case 10:
1358 return map->num_members / 2;
1359 case 5:
1360 return map->num_members - 1;
1361 default:
1362 dprintf("unsupported raid level\n");
1363 return 0;
1364 }
1365}
1366
5551b113
CA
1367static unsigned long long pba_of_lba0(struct imsm_map *map)
1368{
1369 if (map == NULL)
1370 return 0;
1371 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
1372}
1373
1374static unsigned long long blocks_per_member(struct imsm_map *map)
1375{
1376 if (map == NULL)
1377 return 0;
1378 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
1379}
1380
1381static unsigned long long num_data_stripes(struct imsm_map *map)
1382{
1383 if (map == NULL)
1384 return 0;
1385 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
1386}
1387
4036e7ee
MT
1388static unsigned long long vol_curr_migr_unit(struct imsm_dev *dev)
1389{
1390 if (dev == NULL)
1391 return 0;
1392
1393 return join_u32(dev->vol.curr_migr_unit_lo, dev->vol.curr_migr_unit_hi);
1394}
1395
fcc2c9da
MD
1396static unsigned long long imsm_dev_size(struct imsm_dev *dev)
1397{
1398 if (dev == NULL)
1399 return 0;
1400 return join_u32(dev->size_low, dev->size_high);
1401}
1402
9f421827
PB
1403static unsigned long long migr_chkp_area_pba(struct migr_record *migr_rec)
1404{
1405 if (migr_rec == NULL)
1406 return 0;
1407 return join_u32(migr_rec->ckpt_area_pba_lo,
1408 migr_rec->ckpt_area_pba_hi);
1409}
1410
1411static unsigned long long current_migr_unit(struct migr_record *migr_rec)
1412{
1413 if (migr_rec == NULL)
1414 return 0;
1415 return join_u32(migr_rec->curr_migr_unit_lo,
1416 migr_rec->curr_migr_unit_hi);
1417}
1418
1419static unsigned long long migr_dest_1st_member_lba(struct migr_record *migr_rec)
1420{
1421 if (migr_rec == NULL)
1422 return 0;
1423 return join_u32(migr_rec->dest_1st_member_lba_lo,
1424 migr_rec->dest_1st_member_lba_hi);
1425}
1426
1427static unsigned long long get_num_migr_units(struct migr_record *migr_rec)
1428{
1429 if (migr_rec == NULL)
1430 return 0;
1431 return join_u32(migr_rec->num_migr_units_lo,
1432 migr_rec->num_migr_units_hi);
1433}
1434
5551b113
CA
1435static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
1436{
1437 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
1438}
1439
1c275381
MT
1440/**
1441 * set_num_domains() - Set number of domains for an array.
1442 * @map: Map to be updated.
1443 *
1444 * num_domains property represents copies count of each data drive, thus make
1445 * it meaningful only for RAID1 and RAID10. IMSM supports two domains for
1446 * raid1 and raid10.
1447 */
1448static void set_num_domains(struct imsm_map *map)
1449{
1450 int level = get_imsm_raid_level(map);
1451
1452 if (level == 1 || level == 10)
1453 map->num_domains = 2;
1454 else
1455 map->num_domains = 1;
1456}
1457
5551b113
CA
1458static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
1459{
1460 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
1461}
1462
1463static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
1464{
1465 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
1466}
1467
1468static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
1469{
1470 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
1471}
1472
1c275381
MT
1473/**
1474 * update_num_data_stripes() - Calculate and update num_data_stripes value.
1475 * @map: map to be updated.
1476 * @dev_size: size of volume.
1477 *
1478 * num_data_stripes value is addictionally divided by num_domains, therefore for
1479 * levels where num_domains is not 1, nds is a part of real value.
1480 */
1481static void update_num_data_stripes(struct imsm_map *map,
1482 unsigned long long dev_size)
1483{
1484 unsigned long long nds = dev_size / imsm_num_data_members(map);
1485
1486 nds /= map->num_domains;
1487 nds /= map->blocks_per_strip;
1488 set_num_data_stripes(map, nds);
1489}
1490
4036e7ee
MT
1491static void set_vol_curr_migr_unit(struct imsm_dev *dev, unsigned long long n)
1492{
1493 if (dev == NULL)
1494 return;
1495
1496 split_ull(n, &dev->vol.curr_migr_unit_lo, &dev->vol.curr_migr_unit_hi);
1497}
1498
fcc2c9da
MD
1499static void set_imsm_dev_size(struct imsm_dev *dev, unsigned long long n)
1500{
1501 split_ull(n, &dev->size_low, &dev->size_high);
1502}
1503
9f421827
PB
1504static void set_migr_chkp_area_pba(struct migr_record *migr_rec,
1505 unsigned long long n)
1506{
1507 split_ull(n, &migr_rec->ckpt_area_pba_lo, &migr_rec->ckpt_area_pba_hi);
1508}
1509
1510static void set_current_migr_unit(struct migr_record *migr_rec,
1511 unsigned long long n)
1512{
1513 split_ull(n, &migr_rec->curr_migr_unit_lo,
1514 &migr_rec->curr_migr_unit_hi);
1515}
1516
1517static void set_migr_dest_1st_member_lba(struct migr_record *migr_rec,
1518 unsigned long long n)
1519{
1520 split_ull(n, &migr_rec->dest_1st_member_lba_lo,
1521 &migr_rec->dest_1st_member_lba_hi);
1522}
1523
1524static void set_num_migr_units(struct migr_record *migr_rec,
1525 unsigned long long n)
1526{
1527 split_ull(n, &migr_rec->num_migr_units_lo,
1528 &migr_rec->num_migr_units_hi);
1529}
1530
44490938
MD
1531static unsigned long long per_dev_array_size(struct imsm_map *map)
1532{
1533 unsigned long long array_size = 0;
1534
1535 if (map == NULL)
1536 return array_size;
1537
1538 array_size = num_data_stripes(map) * map->blocks_per_strip;
1539 if (get_imsm_raid_level(map) == 1 || get_imsm_raid_level(map) == 10)
1540 array_size *= 2;
1541
1542 return array_size;
1543}
1544
05501181
PB
1545static struct extent *get_extents(struct intel_super *super, struct dl *dl,
1546 int get_minimal_reservation)
0dcecb2e
DW
1547{
1548 /* find a list of used extents on the given physical device */
0dcecb2e 1549 int memberships = count_memberships(dl, super);
aa19fdd4
MT
1550 struct extent *rv = xcalloc(memberships + 1, sizeof(struct extent));
1551 struct extent *e = rv;
1552 int i;
b276dd33
DW
1553 __u32 reservation;
1554
1555 /* trim the reserved area for spares, so they can join any array
1556 * regardless of whether the OROM has assigned sectors from the
1557 * IMSM_RESERVED_SECTORS region
1558 */
05501181 1559 if (dl->index == -1 || get_minimal_reservation)
b81221b7 1560 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
1561 else
1562 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 1563
949c47a0
DW
1564 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1565 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 1566 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 1567
620b1713 1568 if (get_imsm_disk_slot(map, dl->index) >= 0) {
5551b113 1569 e->start = pba_of_lba0(map);
44490938 1570 e->size = per_dev_array_size(map);
aa19fdd4 1571 e->vol = i;
620b1713 1572 e++;
c2c087e6
DW
1573 }
1574 }
1575 qsort(rv, memberships, sizeof(*rv), cmp_extent);
1576
1011e834 1577 /* determine the start of the metadata
14e8215b
DW
1578 * when no raid devices are defined use the default
1579 * ...otherwise allow the metadata to truncate the value
1580 * as is the case with older versions of imsm
1581 */
1582 if (memberships) {
1583 struct extent *last = &rv[memberships - 1];
5551b113 1584 unsigned long long remainder;
14e8215b 1585
5551b113 1586 remainder = total_blocks(&dl->disk) - (last->start + last->size);
dda5855f
DW
1587 /* round down to 1k block to satisfy precision of the kernel
1588 * 'size' interface
1589 */
1590 remainder &= ~1UL;
1591 /* make sure remainder is still sane */
f21e18ca 1592 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 1593 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
1594 if (reservation > remainder)
1595 reservation = remainder;
1596 }
5551b113 1597 e->start = total_blocks(&dl->disk) - reservation;
c2c087e6
DW
1598 e->size = 0;
1599 return rv;
1600}
1601
14e8215b
DW
1602/* try to determine how much space is reserved for metadata from
1603 * the last get_extents() entry, otherwise fallback to the
1604 * default
1605 */
1606static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1607{
1608 struct extent *e;
1609 int i;
1610 __u32 rv;
1611
1612 /* for spares just return a minimal reservation which will grow
1613 * once the spare is picked up by an array
1614 */
1615 if (dl->index == -1)
1616 return MPB_SECTOR_CNT;
1617
05501181 1618 e = get_extents(super, dl, 0);
14e8215b
DW
1619 if (!e)
1620 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1621
1622 /* scroll to last entry */
1623 for (i = 0; e[i].size; i++)
1624 continue;
1625
5551b113 1626 rv = total_blocks(&dl->disk) - e[i].start;
14e8215b
DW
1627
1628 free(e);
1629
1630 return rv;
1631}
1632
25ed7e59
DW
1633static int is_spare(struct imsm_disk *disk)
1634{
1635 return (disk->status & SPARE_DISK) == SPARE_DISK;
1636}
1637
1638static int is_configured(struct imsm_disk *disk)
1639{
1640 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1641}
1642
1643static int is_failed(struct imsm_disk *disk)
1644{
1645 return (disk->status & FAILED_DISK) == FAILED_DISK;
1646}
1647
2432ce9b
AP
1648static int is_journal(struct imsm_disk *disk)
1649{
1650 return (disk->status & JOURNAL_DISK) == JOURNAL_DISK;
1651}
1652
78c8028b
MT
1653/**
1654 * round_member_size_to_mb()- Round given size to closest MiB.
1655 * @size: size to round in sectors.
b53bfba6 1656 */
78c8028b 1657static inline unsigned long long round_member_size_to_mb(unsigned long long size)
b53bfba6 1658{
78c8028b
MT
1659 return (size >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
1660}
b53bfba6 1661
78c8028b
MT
1662/**
1663 * round_size_to_mb()- Round given size.
1664 * @array_size: size to round in sectors.
1665 * @disk_count: count of data members.
1666 *
1667 * Get size per each data member and round it to closest MiB to ensure that data
1668 * splits evenly between members.
1669 *
1670 * Return: Array size, rounded down.
1671 */
1672static inline unsigned long long round_size_to_mb(unsigned long long array_size,
1673 unsigned int disk_count)
1674{
1675 return round_member_size_to_mb(array_size / disk_count) * disk_count;
b53bfba6
TM
1676}
1677
8b9cd157
MK
1678static int able_to_resync(int raid_level, int missing_disks)
1679{
1680 int max_missing_disks = 0;
1681
1682 switch (raid_level) {
1683 case 10:
1684 max_missing_disks = 1;
1685 break;
1686 default:
1687 max_missing_disks = 0;
1688 }
1689 return missing_disks <= max_missing_disks;
1690}
1691
b81221b7
CA
1692/* try to determine how much space is reserved for metadata from
1693 * the last get_extents() entry on the smallest active disk,
1694 * otherwise fallback to the default
1695 */
1696static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1697{
1698 struct extent *e;
1699 int i;
5551b113
CA
1700 unsigned long long min_active;
1701 __u32 remainder;
b81221b7
CA
1702 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1703 struct dl *dl, *dl_min = NULL;
1704
1705 if (!super)
1706 return rv;
1707
1708 min_active = 0;
1709 for (dl = super->disks; dl; dl = dl->next) {
1710 if (dl->index < 0)
1711 continue;
5551b113
CA
1712 unsigned long long blocks = total_blocks(&dl->disk);
1713 if (blocks < min_active || min_active == 0) {
b81221b7 1714 dl_min = dl;
5551b113 1715 min_active = blocks;
b81221b7
CA
1716 }
1717 }
1718 if (!dl_min)
1719 return rv;
1720
1721 /* find last lba used by subarrays on the smallest active disk */
05501181 1722 e = get_extents(super, dl_min, 0);
b81221b7
CA
1723 if (!e)
1724 return rv;
1725 for (i = 0; e[i].size; i++)
1726 continue;
1727
1728 remainder = min_active - e[i].start;
1729 free(e);
1730
1731 /* to give priority to recovery we should not require full
1732 IMSM_RESERVED_SECTORS from the spare */
1733 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1734
1735 /* if real reservation is smaller use that value */
1736 return (remainder < rv) ? remainder : rv;
1737}
1738
fbfdcb06
AO
1739/*
1740 * Return minimum size of a spare and sector size
1741 * that can be used in this array
1742 */
1743int get_spare_criteria_imsm(struct supertype *st, struct spare_criteria *c)
80e7f8c3
AC
1744{
1745 struct intel_super *super = st->sb;
1746 struct dl *dl;
1747 struct extent *e;
1748 int i;
fbfdcb06
AO
1749 unsigned long long size = 0;
1750
1751 c->min_size = 0;
4b57ecf6 1752 c->sector_size = 0;
80e7f8c3
AC
1753
1754 if (!super)
fbfdcb06 1755 return -EINVAL;
80e7f8c3
AC
1756 /* find first active disk in array */
1757 dl = super->disks;
1758 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1759 dl = dl->next;
1760 if (!dl)
fbfdcb06 1761 return -EINVAL;
80e7f8c3 1762 /* find last lba used by subarrays */
05501181 1763 e = get_extents(super, dl, 0);
80e7f8c3 1764 if (!e)
fbfdcb06 1765 return -EINVAL;
80e7f8c3
AC
1766 for (i = 0; e[i].size; i++)
1767 continue;
1768 if (i > 0)
fbfdcb06 1769 size = e[i-1].start + e[i-1].size;
80e7f8c3 1770 free(e);
b81221b7 1771
80e7f8c3 1772 /* add the amount of space needed for metadata */
fbfdcb06
AO
1773 size += imsm_min_reserved_sectors(super);
1774
1775 c->min_size = size * 512;
4b57ecf6 1776 c->sector_size = super->sector_size;
b81221b7 1777
fbfdcb06 1778 return 0;
80e7f8c3
AC
1779}
1780
195d1d76 1781static bool is_gen_migration(struct imsm_dev *dev);
d1e02575 1782
f36a9ecd
PB
1783#define IMSM_4K_DIV 8
1784
c47b0ff6
AK
1785static __u64 blocks_per_migr_unit(struct intel_super *super,
1786 struct imsm_dev *dev);
1e5c6983 1787
c47b0ff6
AK
1788static void print_imsm_dev(struct intel_super *super,
1789 struct imsm_dev *dev,
1790 char *uuid,
1791 int disk_idx)
cdddbdbc
DW
1792{
1793 __u64 sz;
0d80bb2f 1794 int slot, i;
238c0a71
AK
1795 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1796 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
b10b37b8 1797 __u32 ord;
cdddbdbc
DW
1798
1799 printf("\n");
1e7bc0ed 1800 printf("[%.16s]:\n", dev->volume);
ba1b3bc8 1801 printf(" Subarray : %d\n", super->current_vol);
44470971 1802 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1803 printf(" RAID Level : %d", get_imsm_raid_level(map));
1804 if (map2)
1805 printf(" <-- %d", get_imsm_raid_level(map2));
1806 printf("\n");
1807 printf(" Members : %d", map->num_members);
1808 if (map2)
1809 printf(" <-- %d", map2->num_members);
1810 printf("\n");
0d80bb2f
DW
1811 printf(" Slots : [");
1812 for (i = 0; i < map->num_members; i++) {
238c0a71 1813 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
0d80bb2f
DW
1814 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1815 }
dd8bcb3b
AK
1816 printf("]");
1817 if (map2) {
1818 printf(" <-- [");
1819 for (i = 0; i < map2->num_members; i++) {
238c0a71 1820 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
dd8bcb3b
AK
1821 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1822 }
1823 printf("]");
1824 }
1825 printf("\n");
7095bccb
AK
1826 printf(" Failed disk : ");
1827 if (map->failed_disk_num == 0xff)
1828 printf("none");
1829 else
1830 printf("%i", map->failed_disk_num);
1831 printf("\n");
620b1713
DW
1832 slot = get_imsm_disk_slot(map, disk_idx);
1833 if (slot >= 0) {
238c0a71 1834 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
b10b37b8
DW
1835 printf(" This Slot : %d%s\n", slot,
1836 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1837 } else
cdddbdbc 1838 printf(" This Slot : ?\n");
84918897 1839 printf(" Sector Size : %u\n", super->sector_size);
fcc2c9da 1840 sz = imsm_dev_size(dev);
84918897
MK
1841 printf(" Array Size : %llu%s\n",
1842 (unsigned long long)sz * 512 / super->sector_size,
cdddbdbc 1843 human_size(sz * 512));
5551b113 1844 sz = blocks_per_member(map);
84918897
MK
1845 printf(" Per Dev Size : %llu%s\n",
1846 (unsigned long long)sz * 512 / super->sector_size,
cdddbdbc 1847 human_size(sz * 512));
5551b113 1848 printf(" Sector Offset : %llu\n",
7d8935cb 1849 pba_of_lba0(map) * 512 / super->sector_size);
5551b113
CA
1850 printf(" Num Stripes : %llu\n",
1851 num_data_stripes(map));
dd8bcb3b 1852 printf(" Chunk Size : %u KiB",
cdddbdbc 1853 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1854 if (map2)
1855 printf(" <-- %u KiB",
1856 __le16_to_cpu(map2->blocks_per_strip) / 2);
1857 printf("\n");
cdddbdbc 1858 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1859 printf(" Migrate State : ");
1484e727
DW
1860 if (dev->vol.migr_state) {
1861 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1862 printf("initialize\n");
1484e727 1863 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1864 printf("rebuild\n");
1484e727 1865 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1866 printf("check\n");
1484e727 1867 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1868 printf("general migration\n");
1484e727 1869 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1870 printf("state change\n");
1484e727 1871 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1872 printf("repair\n");
1484e727 1873 else
8655a7b1
DW
1874 printf("<unknown:%d>\n", migr_type(dev));
1875 } else
1876 printf("idle\n");
3393c6af
DW
1877 printf(" Map State : %s", map_state_str[map->map_state]);
1878 if (dev->vol.migr_state) {
238c0a71 1879 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983 1880
b10b37b8 1881 printf(" <-- %s", map_state_str[map->map_state]);
4036e7ee 1882 printf("\n Checkpoint : %llu ", vol_curr_migr_unit(dev));
089f9d79 1883 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
464d40e8
LD
1884 printf("(N/A)");
1885 else
1886 printf("(%llu)", (unsigned long long)
1887 blocks_per_migr_unit(super, dev));
3393c6af
DW
1888 }
1889 printf("\n");
2432ce9b
AP
1890 printf(" Dirty State : %s\n", (dev->vol.dirty & RAIDVOL_DIRTY) ?
1891 "dirty" : "clean");
1892 printf(" RWH Policy : ");
c2462068 1893 if (dev->rwh_policy == RWH_OFF || dev->rwh_policy == RWH_MULTIPLE_OFF)
2432ce9b
AP
1894 printf("off\n");
1895 else if (dev->rwh_policy == RWH_DISTRIBUTED)
1896 printf("PPL distributed\n");
1897 else if (dev->rwh_policy == RWH_JOURNALING_DRIVE)
1898 printf("PPL journaling drive\n");
c2462068
PB
1899 else if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
1900 printf("Multiple distributed PPLs\n");
1901 else if (dev->rwh_policy == RWH_MULTIPLE_PPLS_JOURNALING_DRIVE)
1902 printf("Multiple PPLs on journaling drive\n");
fbc42556
JR
1903 else if (dev->rwh_policy == RWH_BITMAP)
1904 printf("Write-intent bitmap\n");
2432ce9b
AP
1905 else
1906 printf("<unknown:%d>\n", dev->rwh_policy);
ba1b3bc8
AP
1907
1908 printf(" Volume ID : %u\n", dev->my_vol_raid_dev_num);
cdddbdbc
DW
1909}
1910
ef5c214e
MK
1911static void print_imsm_disk(struct imsm_disk *disk,
1912 int index,
1913 __u32 reserved,
1914 unsigned int sector_size) {
1f24f035 1915 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1916 __u64 sz;
1917
0ec1f4e8 1918 if (index < -1 || !disk)
e9d82038
DW
1919 return;
1920
cdddbdbc 1921 printf("\n");
1f24f035 1922 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1923 if (index >= 0)
1924 printf(" Disk%02d Serial : %s\n", index, str);
1925 else
1926 printf(" Disk Serial : %s\n", str);
2432ce9b
AP
1927 printf(" State :%s%s%s%s\n", is_spare(disk) ? " spare" : "",
1928 is_configured(disk) ? " active" : "",
1929 is_failed(disk) ? " failed" : "",
1930 is_journal(disk) ? " journal" : "");
cdddbdbc 1931 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
5551b113 1932 sz = total_blocks(disk) - reserved;
ef5c214e
MK
1933 printf(" Usable Size : %llu%s\n",
1934 (unsigned long long)sz * 512 / sector_size,
cdddbdbc
DW
1935 human_size(sz * 512));
1936}
1937
de44e46f
PB
1938void convert_to_4k_imsm_migr_rec(struct intel_super *super)
1939{
1940 struct migr_record *migr_rec = super->migr_rec;
1941
1942 migr_rec->blocks_per_unit /= IMSM_4K_DIV;
de44e46f
PB
1943 migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
1944 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1945 migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
1946 &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
9f421827
PB
1947 set_migr_chkp_area_pba(migr_rec,
1948 migr_chkp_area_pba(migr_rec) / IMSM_4K_DIV);
1949 set_migr_dest_1st_member_lba(migr_rec,
1950 migr_dest_1st_member_lba(migr_rec) / IMSM_4K_DIV);
de44e46f
PB
1951}
1952
f36a9ecd
PB
1953void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1954{
1955 set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1956}
1957
1958void convert_to_4k(struct intel_super *super)
1959{
1960 struct imsm_super *mpb = super->anchor;
1961 struct imsm_disk *disk;
1962 int i;
e4467bc7 1963 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
1964
1965 for (i = 0; i < mpb->num_disks ; i++) {
1966 disk = __get_imsm_disk(mpb, i);
1967 /* disk */
1968 convert_to_4k_imsm_disk(disk);
1969 }
1970 for (i = 0; i < mpb->num_raid_devs; i++) {
1971 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1972 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1973 /* dev */
fcc2c9da 1974 set_imsm_dev_size(dev, imsm_dev_size(dev)/IMSM_4K_DIV);
4036e7ee
MT
1975 set_vol_curr_migr_unit(dev,
1976 vol_curr_migr_unit(dev) / IMSM_4K_DIV);
f36a9ecd
PB
1977
1978 /* map0 */
1979 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1980 map->blocks_per_strip /= IMSM_4K_DIV;
1981 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1982
1983 if (dev->vol.migr_state) {
1984 /* map1 */
1985 map = get_imsm_map(dev, MAP_1);
1986 set_blocks_per_member(map,
1987 blocks_per_member(map)/IMSM_4K_DIV);
1988 map->blocks_per_strip /= IMSM_4K_DIV;
1989 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1990 }
1991 }
e4467bc7
TM
1992 if (bbm_log_size) {
1993 struct bbm_log *log = (void *)mpb +
1994 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1995 __u32 i;
1996
1997 for (i = 0; i < log->entry_count; i++) {
1998 struct bbm_log_entry *entry =
1999 &log->marked_block_entries[i];
2000
2001 __u8 count = entry->marked_count + 1;
2002 unsigned long long sector =
2003 __le48_to_cpu(&entry->defective_block_start);
2004
2005 entry->defective_block_start =
2006 __cpu_to_le48(sector/IMSM_4K_DIV);
2007 entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1;
2008 }
2009 }
f36a9ecd
PB
2010
2011 mpb->check_sum = __gen_imsm_checksum(mpb);
2012}
2013
520e69e2
AK
2014void examine_migr_rec_imsm(struct intel_super *super)
2015{
2016 struct migr_record *migr_rec = super->migr_rec;
2017 struct imsm_super *mpb = super->anchor;
2018 int i;
2019
2020 for (i = 0; i < mpb->num_raid_devs; i++) {
2021 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3136abe5 2022 struct imsm_map *map;
b4ab44d8 2023 int slot = -1;
3136abe5 2024
195d1d76 2025 if (is_gen_migration(dev) == false)
520e69e2
AK
2026 continue;
2027
2028 printf("\nMigration Record Information:");
3136abe5 2029
44bfe6df
AK
2030 /* first map under migration */
2031 map = get_imsm_map(dev, MAP_0);
76c152ca 2032
3136abe5
AK
2033 if (map)
2034 slot = get_imsm_disk_slot(map, super->disks->index);
089f9d79 2035 if (map == NULL || slot > 1 || slot < 0) {
520e69e2
AK
2036 printf(" Empty\n ");
2037 printf("Examine one of first two disks in array\n");
2038 break;
2039 }
2040 printf("\n Status : ");
2041 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
2042 printf("Normal\n");
2043 else
2044 printf("Contains Data\n");
9f421827
PB
2045 printf(" Current Unit : %llu\n",
2046 current_migr_unit(migr_rec));
520e69e2
AK
2047 printf(" Family : %u\n",
2048 __le32_to_cpu(migr_rec->family_num));
2049 printf(" Ascending : %u\n",
2050 __le32_to_cpu(migr_rec->ascending_migr));
2051 printf(" Blocks Per Unit : %u\n",
2052 __le32_to_cpu(migr_rec->blocks_per_unit));
2053 printf(" Dest. Depth Per Unit : %u\n",
2054 __le32_to_cpu(migr_rec->dest_depth_per_unit));
9f421827
PB
2055 printf(" Checkpoint Area pba : %llu\n",
2056 migr_chkp_area_pba(migr_rec));
2057 printf(" First member lba : %llu\n",
2058 migr_dest_1st_member_lba(migr_rec));
2059 printf(" Total Number of Units : %llu\n",
2060 get_num_migr_units(migr_rec));
2061 printf(" Size of volume : %llu\n",
2062 join_u32(migr_rec->post_migr_vol_cap,
2063 migr_rec->post_migr_vol_cap_hi));
520e69e2
AK
2064 printf(" Record was read from : %u\n",
2065 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
2066
2067 break;
2068 }
2069}
f36a9ecd 2070
de44e46f
PB
2071void convert_from_4k_imsm_migr_rec(struct intel_super *super)
2072{
2073 struct migr_record *migr_rec = super->migr_rec;
2074
2075 migr_rec->blocks_per_unit *= IMSM_4K_DIV;
de44e46f
PB
2076 migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
2077 split_ull((join_u32(migr_rec->post_migr_vol_cap,
2078 migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
2079 &migr_rec->post_migr_vol_cap,
2080 &migr_rec->post_migr_vol_cap_hi);
9f421827
PB
2081 set_migr_chkp_area_pba(migr_rec,
2082 migr_chkp_area_pba(migr_rec) * IMSM_4K_DIV);
2083 set_migr_dest_1st_member_lba(migr_rec,
2084 migr_dest_1st_member_lba(migr_rec) * IMSM_4K_DIV);
de44e46f
PB
2085}
2086
f36a9ecd
PB
2087void convert_from_4k(struct intel_super *super)
2088{
2089 struct imsm_super *mpb = super->anchor;
2090 struct imsm_disk *disk;
2091 int i;
e4467bc7 2092 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
2093
2094 for (i = 0; i < mpb->num_disks ; i++) {
2095 disk = __get_imsm_disk(mpb, i);
2096 /* disk */
2097 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
2098 }
2099
2100 for (i = 0; i < mpb->num_raid_devs; i++) {
2101 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2102 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2103 /* dev */
fcc2c9da 2104 set_imsm_dev_size(dev, imsm_dev_size(dev)*IMSM_4K_DIV);
4036e7ee
MT
2105 set_vol_curr_migr_unit(dev,
2106 vol_curr_migr_unit(dev) * IMSM_4K_DIV);
f36a9ecd
PB
2107
2108 /* map0 */
2109 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
2110 map->blocks_per_strip *= IMSM_4K_DIV;
2111 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
2112
2113 if (dev->vol.migr_state) {
2114 /* map1 */
2115 map = get_imsm_map(dev, MAP_1);
2116 set_blocks_per_member(map,
2117 blocks_per_member(map)*IMSM_4K_DIV);
2118 map->blocks_per_strip *= IMSM_4K_DIV;
2119 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
2120 }
2121 }
e4467bc7
TM
2122 if (bbm_log_size) {
2123 struct bbm_log *log = (void *)mpb +
2124 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
2125 __u32 i;
2126
2127 for (i = 0; i < log->entry_count; i++) {
2128 struct bbm_log_entry *entry =
2129 &log->marked_block_entries[i];
2130
2131 __u8 count = entry->marked_count + 1;
2132 unsigned long long sector =
2133 __le48_to_cpu(&entry->defective_block_start);
2134
2135 entry->defective_block_start =
2136 __cpu_to_le48(sector*IMSM_4K_DIV);
2137 entry->marked_count = count*IMSM_4K_DIV - 1;
2138 }
2139 }
f36a9ecd
PB
2140
2141 mpb->check_sum = __gen_imsm_checksum(mpb);
2142}
2143
19482bcc
AK
2144/*******************************************************************************
2145 * function: imsm_check_attributes
2146 * Description: Function checks if features represented by attributes flags
1011e834 2147 * are supported by mdadm.
19482bcc
AK
2148 * Parameters:
2149 * attributes - Attributes read from metadata
2150 * Returns:
1011e834
N
2151 * 0 - passed attributes contains unsupported features flags
2152 * 1 - all features are supported
19482bcc
AK
2153 ******************************************************************************/
2154static int imsm_check_attributes(__u32 attributes)
2155{
2156 int ret_val = 1;
418f9b36
N
2157 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
2158
2159 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
2160
2161 not_supported &= attributes;
2162 if (not_supported) {
e7b84f9d 2163 pr_err("(IMSM): Unsupported attributes : %x\n",
418f9b36 2164 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
2165 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
2166 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
2167 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
2168 }
2169 if (not_supported & MPB_ATTRIB_2TB) {
2170 dprintf("\t\tMPB_ATTRIB_2TB\n");
2171 not_supported ^= MPB_ATTRIB_2TB;
2172 }
2173 if (not_supported & MPB_ATTRIB_RAID0) {
2174 dprintf("\t\tMPB_ATTRIB_RAID0\n");
2175 not_supported ^= MPB_ATTRIB_RAID0;
2176 }
2177 if (not_supported & MPB_ATTRIB_RAID1) {
2178 dprintf("\t\tMPB_ATTRIB_RAID1\n");
2179 not_supported ^= MPB_ATTRIB_RAID1;
2180 }
2181 if (not_supported & MPB_ATTRIB_RAID10) {
2182 dprintf("\t\tMPB_ATTRIB_RAID10\n");
2183 not_supported ^= MPB_ATTRIB_RAID10;
2184 }
2185 if (not_supported & MPB_ATTRIB_RAID1E) {
2186 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
2187 not_supported ^= MPB_ATTRIB_RAID1E;
2188 }
2189 if (not_supported & MPB_ATTRIB_RAID5) {
2190 dprintf("\t\tMPB_ATTRIB_RAID5\n");
2191 not_supported ^= MPB_ATTRIB_RAID5;
2192 }
2193 if (not_supported & MPB_ATTRIB_RAIDCNG) {
2194 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
2195 not_supported ^= MPB_ATTRIB_RAIDCNG;
2196 }
2197 if (not_supported & MPB_ATTRIB_BBM) {
2198 dprintf("\t\tMPB_ATTRIB_BBM\n");
2199 not_supported ^= MPB_ATTRIB_BBM;
2200 }
2201 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
2202 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
2203 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
2204 }
2205 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
2206 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
2207 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
2208 }
2209 if (not_supported & MPB_ATTRIB_2TB_DISK) {
2210 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
2211 not_supported ^= MPB_ATTRIB_2TB_DISK;
2212 }
2213 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
2214 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
2215 not_supported ^= MPB_ATTRIB_NEVER_USE2;
2216 }
2217 if (not_supported & MPB_ATTRIB_NEVER_USE) {
2218 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
2219 not_supported ^= MPB_ATTRIB_NEVER_USE;
2220 }
2221
2222 if (not_supported)
1ade5cc1 2223 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
19482bcc
AK
2224
2225 ret_val = 0;
2226 }
2227
2228 return ret_val;
2229}
2230
a5d85af7 2231static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 2232
cdddbdbc
DW
2233static void examine_super_imsm(struct supertype *st, char *homehost)
2234{
2235 struct intel_super *super = st->sb;
949c47a0 2236 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
2237 char str[MAX_SIGNATURE_LENGTH];
2238 int i;
27fd6274
DW
2239 struct mdinfo info;
2240 char nbuf[64];
cdddbdbc 2241 __u32 sum;
14e8215b 2242 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 2243 struct dl *dl;
e48aed3c 2244 time_t creation_time;
27fd6274 2245
618f4e6d
XN
2246 strncpy(str, (char *)mpb->sig, MPB_SIG_LEN);
2247 str[MPB_SIG_LEN-1] = '\0';
cdddbdbc 2248 printf(" Magic : %s\n", str);
cdddbdbc 2249 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 2250 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
2251 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
2252 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
e48aed3c
AP
2253 creation_time = __le64_to_cpu(mpb->creation_time);
2254 printf(" Creation Time : %.24s\n",
2255 creation_time ? ctime(&creation_time) : "Unknown");
19482bcc
AK
2256 printf(" Attributes : ");
2257 if (imsm_check_attributes(mpb->attributes))
2258 printf("All supported\n");
2259 else
2260 printf("not supported\n");
a5d85af7 2261 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2262 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 2263 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
2264 sum = __le32_to_cpu(mpb->check_sum);
2265 printf(" Checksum : %08x %s\n", sum,
949c47a0 2266 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
f36a9ecd 2267 printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
cdddbdbc
DW
2268 printf(" Disks : %d\n", mpb->num_disks);
2269 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
ef5c214e
MK
2270 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index),
2271 super->disks->index, reserved, super->sector_size);
8d67477f 2272 if (get_imsm_bbm_log_size(super->bbm_log)) {
604b746f
JD
2273 struct bbm_log *log = super->bbm_log;
2274
2275 printf("\n");
2276 printf("Bad Block Management Log:\n");
2277 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
2278 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
2279 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
604b746f 2280 }
44470971
DW
2281 for (i = 0; i < mpb->num_raid_devs; i++) {
2282 struct mdinfo info;
2283 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2284
2285 super->current_vol = i;
a5d85af7 2286 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2287 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 2288 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 2289 }
cdddbdbc
DW
2290 for (i = 0; i < mpb->num_disks; i++) {
2291 if (i == super->disks->index)
2292 continue;
ef5c214e
MK
2293 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved,
2294 super->sector_size);
cdddbdbc 2295 }
94827db3 2296
0ec1f4e8
DW
2297 for (dl = super->disks; dl; dl = dl->next)
2298 if (dl->index == -1)
ef5c214e
MK
2299 print_imsm_disk(&dl->disk, -1, reserved,
2300 super->sector_size);
520e69e2
AK
2301
2302 examine_migr_rec_imsm(super);
cdddbdbc
DW
2303}
2304
061f2c6a 2305static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 2306{
27fd6274 2307 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
2308 struct mdinfo info;
2309 char nbuf[64];
2310
a5d85af7 2311 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
2312 fname_from_uuid(st, &info, nbuf, ':');
2313 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
2314}
2315
2316static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
2317{
2318 /* We just write a generic IMSM ARRAY entry */
2319 struct mdinfo info;
2320 char nbuf[64];
2321 char nbuf1[64];
2322 struct intel_super *super = st->sb;
2323 int i;
2324
2325 if (!super->anchor->num_raid_devs)
2326 return;
2327
a5d85af7 2328 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2329 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
2330 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2331 struct imsm_dev *dev = get_imsm_dev(super, i);
2332
2333 super->current_vol = i;
a5d85af7 2334 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2335 fname_from_uuid(st, &info, nbuf1, ':');
b9ce7ab0 2336 printf("ARRAY " DEV_MD_DIR "%.16s container=%s member=%d UUID=%s\n",
cf8de691 2337 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 2338 }
cdddbdbc
DW
2339}
2340
9d84c8ea
DW
2341static void export_examine_super_imsm(struct supertype *st)
2342{
2343 struct intel_super *super = st->sb;
2344 struct imsm_super *mpb = super->anchor;
2345 struct mdinfo info;
2346 char nbuf[64];
2347
a5d85af7 2348 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
2349 fname_from_uuid(st, &info, nbuf, ':');
2350 printf("MD_METADATA=imsm\n");
2351 printf("MD_LEVEL=container\n");
2352 printf("MD_UUID=%s\n", nbuf+5);
2353 printf("MD_DEVICES=%u\n", mpb->num_disks);
e48aed3c 2354 printf("MD_CREATION_TIME=%llu\n", __le64_to_cpu(mpb->creation_time));
9d84c8ea
DW
2355}
2356
b771faef
BK
2357static void detail_super_imsm(struct supertype *st, char *homehost,
2358 char *subarray)
cdddbdbc 2359{
3ebe00a1
DW
2360 struct mdinfo info;
2361 char nbuf[64];
b771faef
BK
2362 struct intel_super *super = st->sb;
2363 int temp_vol = super->current_vol;
2364
2365 if (subarray)
2366 super->current_vol = strtoul(subarray, NULL, 10);
3ebe00a1 2367
a5d85af7 2368 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2369 fname_from_uuid(st, &info, nbuf, ':');
65884368 2370 printf("\n UUID : %s\n", nbuf + 5);
b771faef
BK
2371
2372 super->current_vol = temp_vol;
cdddbdbc
DW
2373}
2374
b771faef 2375static void brief_detail_super_imsm(struct supertype *st, char *subarray)
cdddbdbc 2376{
ff54de6e
N
2377 struct mdinfo info;
2378 char nbuf[64];
b771faef
BK
2379 struct intel_super *super = st->sb;
2380 int temp_vol = super->current_vol;
2381
2382 if (subarray)
2383 super->current_vol = strtoul(subarray, NULL, 10);
2384
a5d85af7 2385 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2386 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 2387 printf(" UUID=%s", nbuf + 5);
b771faef
BK
2388
2389 super->current_vol = temp_vol;
cdddbdbc 2390}
d665cc31 2391
6da53c0e
BK
2392static int imsm_read_serial(int fd, char *devname, __u8 *serial,
2393 size_t serial_buf_len);
d665cc31
DW
2394static void fd2devname(int fd, char *name);
2395
120dc887 2396static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 2397{
120dc887
LM
2398 /* dump an unsorted list of devices attached to AHCI Intel storage
2399 * controller, as well as non-connected ports
d665cc31
DW
2400 */
2401 int hba_len = strlen(hba_path) + 1;
2402 struct dirent *ent;
2403 DIR *dir;
2404 char *path = NULL;
2405 int err = 0;
2406 unsigned long port_mask = (1 << port_count) - 1;
2407
f21e18ca 2408 if (port_count > (int)sizeof(port_mask) * 8) {
ba728be7 2409 if (verbose > 0)
e7b84f9d 2410 pr_err("port_count %d out of range\n", port_count);
d665cc31
DW
2411 return 2;
2412 }
2413
2414 /* scroll through /sys/dev/block looking for devices attached to
2415 * this hba
2416 */
2417 dir = opendir("/sys/dev/block");
1a6dd6b9
PB
2418 if (!dir)
2419 return 1;
2420
2421 for (ent = readdir(dir); ent; ent = readdir(dir)) {
d665cc31
DW
2422 int fd;
2423 char model[64];
2424 char vendor[64];
2425 char buf[1024];
2426 int major, minor;
fcebeb77 2427 char device[PATH_MAX];
d665cc31
DW
2428 char *c;
2429 int port;
2430 int type;
2431
2432 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
2433 continue;
7c798f87 2434 path = devt_to_devpath(makedev(major, minor), 1, NULL);
d665cc31
DW
2435 if (!path)
2436 continue;
2437 if (!path_attached_to_hba(path, hba_path)) {
2438 free(path);
2439 path = NULL;
2440 continue;
2441 }
2442
fcebeb77
MT
2443 /* retrieve the scsi device */
2444 if (!devt_to_devpath(makedev(major, minor), 1, device)) {
ba728be7 2445 if (verbose > 0)
fcebeb77 2446 pr_err("failed to get device\n");
d665cc31
DW
2447 err = 2;
2448 break;
2449 }
fcebeb77 2450 if (devpath_to_char(device, "type", buf, sizeof(buf), 0)) {
d665cc31 2451 err = 2;
d665cc31
DW
2452 break;
2453 }
2454 type = strtoul(buf, NULL, 10);
2455
2456 /* if it's not a disk print the vendor and model */
2457 if (!(type == 0 || type == 7 || type == 14)) {
2458 vendor[0] = '\0';
2459 model[0] = '\0';
fcebeb77
MT
2460
2461 if (devpath_to_char(device, "vendor", buf,
2462 sizeof(buf), 0) == 0) {
d665cc31
DW
2463 strncpy(vendor, buf, sizeof(vendor));
2464 vendor[sizeof(vendor) - 1] = '\0';
2465 c = (char *) &vendor[sizeof(vendor) - 1];
2466 while (isspace(*c) || *c == '\0')
2467 *c-- = '\0';
2468
2469 }
fcebeb77
MT
2470
2471 if (devpath_to_char(device, "model", buf,
2472 sizeof(buf), 0) == 0) {
d665cc31
DW
2473 strncpy(model, buf, sizeof(model));
2474 model[sizeof(model) - 1] = '\0';
2475 c = (char *) &model[sizeof(model) - 1];
2476 while (isspace(*c) || *c == '\0')
2477 *c-- = '\0';
2478 }
2479
2480 if (vendor[0] && model[0])
2481 sprintf(buf, "%.64s %.64s", vendor, model);
2482 else
2483 switch (type) { /* numbers from hald/linux/device.c */
2484 case 1: sprintf(buf, "tape"); break;
2485 case 2: sprintf(buf, "printer"); break;
2486 case 3: sprintf(buf, "processor"); break;
2487 case 4:
2488 case 5: sprintf(buf, "cdrom"); break;
2489 case 6: sprintf(buf, "scanner"); break;
2490 case 8: sprintf(buf, "media_changer"); break;
2491 case 9: sprintf(buf, "comm"); break;
2492 case 12: sprintf(buf, "raid"); break;
2493 default: sprintf(buf, "unknown");
2494 }
2495 } else
2496 buf[0] = '\0';
d665cc31
DW
2497
2498 /* chop device path to 'host%d' and calculate the port number */
2499 c = strchr(&path[hba_len], '/');
4e5e717d 2500 if (!c) {
ba728be7 2501 if (verbose > 0)
e7b84f9d 2502 pr_err("%s - invalid path name\n", path + hba_len);
4e5e717d
AW
2503 err = 2;
2504 break;
2505 }
d665cc31 2506 *c = '\0';
0858eccf
AP
2507 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
2508 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
d665cc31
DW
2509 port -= host_base;
2510 else {
ba728be7 2511 if (verbose > 0) {
d665cc31 2512 *c = '/'; /* repair the full string */
e7b84f9d 2513 pr_err("failed to determine port number for %s\n",
d665cc31
DW
2514 path);
2515 }
2516 err = 2;
2517 break;
2518 }
2519
2520 /* mark this port as used */
2521 port_mask &= ~(1 << port);
2522
2523 /* print out the device information */
2524 if (buf[0]) {
2525 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
2526 continue;
2527 }
2528
2529 fd = dev_open(ent->d_name, O_RDONLY);
4389ce73 2530 if (!is_fd_valid(fd))
d665cc31
DW
2531 printf(" Port%d : - disk info unavailable -\n", port);
2532 else {
2533 fd2devname(fd, buf);
2534 printf(" Port%d : %s", port, buf);
6da53c0e
BK
2535 if (imsm_read_serial(fd, NULL, (__u8 *)buf,
2536 sizeof(buf)) == 0)
2537 printf(" (%s)\n", buf);
d665cc31 2538 else
664d5325 2539 printf(" ()\n");
4dab422a 2540 close(fd);
d665cc31 2541 }
d665cc31
DW
2542 free(path);
2543 path = NULL;
2544 }
2545 if (path)
2546 free(path);
2547 if (dir)
2548 closedir(dir);
2549 if (err == 0) {
2550 int i;
2551
2552 for (i = 0; i < port_count; i++)
2553 if (port_mask & (1 << i))
2554 printf(" Port%d : - no device attached -\n", i);
2555 }
2556
2557 return err;
2558}
2559
6da53c0e 2560static int print_nvme_info(struct sys_dev *hba)
60f0f54d
PB
2561{
2562 struct dirent *ent;
2563 DIR *dir;
60f0f54d 2564
6da53c0e 2565 dir = opendir("/sys/block/");
b9135011 2566 if (!dir)
b5eece69 2567 return 1;
b9135011
JS
2568
2569 for (ent = readdir(dir); ent; ent = readdir(dir)) {
8662f92d
MT
2570 char ns_path[PATH_MAX];
2571 char cntrl_path[PATH_MAX];
2572 char buf[PATH_MAX];
2573 int fd = -1;
60f0f54d 2574
8662f92d
MT
2575 if (!strstr(ent->d_name, "nvme"))
2576 goto skip;
d835518b 2577
8662f92d 2578 fd = open_dev(ent->d_name);
4389ce73 2579 if (!is_fd_valid(fd))
8662f92d 2580 goto skip;
d835518b 2581
8662f92d
MT
2582 if (!diskfd_to_devpath(fd, 0, ns_path) ||
2583 !diskfd_to_devpath(fd, 1, cntrl_path))
2584 goto skip;
2585
2586 if (!path_attached_to_hba(cntrl_path, hba->path))
2587 goto skip;
2588
2589 if (!imsm_is_nvme_namespace_supported(fd, 0))
2590 goto skip;
2591
2592 fd2devname(fd, buf);
2593 if (hba->type == SYS_DEV_VMD)
2594 printf(" NVMe under VMD : %s", buf);
2595 else if (hba->type == SYS_DEV_NVME)
2596 printf(" NVMe Device : %s", buf);
2597
2598 if (!imsm_read_serial(fd, NULL, (__u8 *)buf,
2599 sizeof(buf)))
2600 printf(" (%s)\n", buf);
2601 else
2602 printf("()\n");
2603
2604skip:
4389ce73 2605 close_fd(&fd);
60f0f54d
PB
2606 }
2607
b9135011 2608 closedir(dir);
b5eece69 2609 return 0;
60f0f54d
PB
2610}
2611
120dc887
LM
2612static void print_found_intel_controllers(struct sys_dev *elem)
2613{
2614 for (; elem; elem = elem->next) {
e7b84f9d 2615 pr_err("found Intel(R) ");
120dc887
LM
2616 if (elem->type == SYS_DEV_SATA)
2617 fprintf(stderr, "SATA ");
155cbb4c
LM
2618 else if (elem->type == SYS_DEV_SAS)
2619 fprintf(stderr, "SAS ");
0858eccf
AP
2620 else if (elem->type == SYS_DEV_NVME)
2621 fprintf(stderr, "NVMe ");
60f0f54d
PB
2622
2623 if (elem->type == SYS_DEV_VMD)
2624 fprintf(stderr, "VMD domain");
75350d87
KF
2625 else if (elem->type == SYS_DEV_SATA_VMD)
2626 fprintf(stderr, "SATA VMD domain");
60f0f54d
PB
2627 else
2628 fprintf(stderr, "RAID controller");
2629
120dc887
LM
2630 if (elem->pci_id)
2631 fprintf(stderr, " at %s", elem->pci_id);
2632 fprintf(stderr, ".\n");
2633 }
2634 fflush(stderr);
2635}
2636
120dc887
LM
2637static int ahci_get_port_count(const char *hba_path, int *port_count)
2638{
2639 struct dirent *ent;
2640 DIR *dir;
2641 int host_base = -1;
2642
2643 *port_count = 0;
2644 if ((dir = opendir(hba_path)) == NULL)
2645 return -1;
2646
2647 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2648 int host;
2649
0858eccf
AP
2650 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
2651 ((sscanf(ent->d_name, "host%d", &host) != 1)))
120dc887
LM
2652 continue;
2653 if (*port_count == 0)
2654 host_base = host;
2655 else if (host < host_base)
2656 host_base = host;
2657
2658 if (host + 1 > *port_count + host_base)
2659 *port_count = host + 1 - host_base;
2660 }
2661 closedir(dir);
2662 return host_base;
2663}
2664
a891a3c2
LM
2665static void print_imsm_capability(const struct imsm_orom *orom)
2666{
0858eccf
AP
2667 printf(" Platform : Intel(R) ");
2668 if (orom->capabilities == 0 && orom->driver_features == 0)
2669 printf("Matrix Storage Manager\n");
ab0c6bb9
AP
2670 else if (imsm_orom_is_enterprise(orom) && orom->major_ver >= 6)
2671 printf("Virtual RAID on CPU\n");
0858eccf
AP
2672 else
2673 printf("Rapid Storage Technology%s\n",
2674 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
2675 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2676 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
2677 orom->minor_ver, orom->hotfix_ver, orom->build);
a891a3c2
LM
2678 printf(" RAID Levels :%s%s%s%s%s\n",
2679 imsm_orom_has_raid0(orom) ? " raid0" : "",
2680 imsm_orom_has_raid1(orom) ? " raid1" : "",
2681 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
2682 imsm_orom_has_raid10(orom) ? " raid10" : "",
2683 imsm_orom_has_raid5(orom) ? " raid5" : "");
2684 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2685 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
2686 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
2687 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
2688 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
2689 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
2690 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
2691 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
2692 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
2693 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
2694 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
2695 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
2696 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
2697 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
2698 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
2699 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
2700 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
29cd0821
CA
2701 printf(" 2TB volumes :%s supported\n",
2702 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
2703 printf(" 2TB disks :%s supported\n",
2704 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
0e7f69a8 2705 printf(" Max Disks : %d\n", orom->tds);
0858eccf
AP
2706 printf(" Max Volumes : %d per array, %d per %s\n",
2707 orom->vpa, orom->vphba,
2708 imsm_orom_is_nvme(orom) ? "platform" : "controller");
a891a3c2
LM
2709 return;
2710}
2711
e50cf220
MN
2712static void print_imsm_capability_export(const struct imsm_orom *orom)
2713{
2714 printf("MD_FIRMWARE_TYPE=imsm\n");
0858eccf
AP
2715 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2716 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2717 orom->hotfix_ver, orom->build);
e50cf220
MN
2718 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
2719 imsm_orom_has_raid0(orom) ? "raid0 " : "",
2720 imsm_orom_has_raid1(orom) ? "raid1 " : "",
2721 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
2722 imsm_orom_has_raid5(orom) ? "raid10 " : "",
2723 imsm_orom_has_raid10(orom) ? "raid5 " : "");
2724 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2725 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2726 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2727 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2728 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2729 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2730 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2731 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2732 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2733 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2734 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2735 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2736 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2737 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2738 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2739 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2740 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2741 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2742 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2743 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2744 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2745 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2746}
2747
9eafa1de 2748static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
d665cc31
DW
2749{
2750 /* There are two components to imsm platform support, the ahci SATA
2751 * controller and the option-rom. To find the SATA controller we
2752 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2753 * controller with the Intel vendor id is present. This approach
2754 * allows mdadm to leverage the kernel's ahci detection logic, with the
2755 * caveat that if ahci.ko is not loaded mdadm will not be able to
2756 * detect platform raid capabilities. The option-rom resides in a
2757 * platform "Adapter ROM". We scan for its signature to retrieve the
2758 * platform capabilities. If raid support is disabled in the BIOS the
2759 * option-rom capability structure will not be available.
2760 */
d665cc31 2761 struct sys_dev *list, *hba;
d665cc31
DW
2762 int host_base = 0;
2763 int port_count = 0;
9eafa1de 2764 int result=1;
d665cc31 2765
5615172f 2766 if (enumerate_only) {
420dafcd 2767 if (check_no_platform())
5615172f 2768 return 0;
a891a3c2
LM
2769 list = find_intel_devices();
2770 if (!list)
2771 return 2;
2772 for (hba = list; hba; hba = hba->next) {
6b781d33
AP
2773 if (find_imsm_capability(hba)) {
2774 result = 0;
a891a3c2
LM
2775 break;
2776 }
9eafa1de 2777 else
6b781d33 2778 result = 2;
a891a3c2 2779 }
a891a3c2 2780 return result;
5615172f
DW
2781 }
2782
155cbb4c
LM
2783 list = find_intel_devices();
2784 if (!list) {
ba728be7 2785 if (verbose > 0)
7a862a02 2786 pr_err("no active Intel(R) RAID controller found.\n");
d665cc31 2787 return 2;
ba728be7 2788 } else if (verbose > 0)
155cbb4c 2789 print_found_intel_controllers(list);
d665cc31 2790
a891a3c2 2791 for (hba = list; hba; hba = hba->next) {
0858eccf 2792 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
9eafa1de 2793 continue;
0858eccf 2794 if (!find_imsm_capability(hba)) {
60f0f54d 2795 char buf[PATH_MAX];
e7b84f9d 2796 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
75350d87
KF
2797 hba->type == SYS_DEV_VMD || hba->type == SYS_DEV_SATA_VMD ?
2798 vmd_domain_to_controller(hba, buf) :
2799 hba->path, get_sys_dev_type(hba->type));
0858eccf
AP
2800 continue;
2801 }
2802 result = 0;
2803 }
2804
2805 if (controller_path && result == 1) {
2806 pr_err("no active Intel(R) RAID controller found under %s\n",
2807 controller_path);
2808 return result;
2809 }
2810
5e1d6128 2811 const struct orom_entry *entry;
0858eccf 2812
5e1d6128 2813 for (entry = orom_entries; entry; entry = entry->next) {
60f0f54d 2814 if (entry->type == SYS_DEV_VMD) {
07cb1e57 2815 print_imsm_capability(&entry->orom);
32716c51
PB
2816 printf(" 3rd party NVMe :%s supported\n",
2817 imsm_orom_has_tpv_support(&entry->orom)?"":" not");
60f0f54d
PB
2818 for (hba = list; hba; hba = hba->next) {
2819 if (hba->type == SYS_DEV_VMD) {
2820 char buf[PATH_MAX];
60f0f54d
PB
2821 printf(" I/O Controller : %s (%s)\n",
2822 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
6da53c0e 2823 if (print_nvme_info(hba)) {
b5eece69
PB
2824 if (verbose > 0)
2825 pr_err("failed to get devices attached to VMD domain.\n");
2826 result |= 2;
2827 }
60f0f54d
PB
2828 }
2829 }
07cb1e57 2830 printf("\n");
60f0f54d
PB
2831 continue;
2832 }
0858eccf 2833
60f0f54d
PB
2834 print_imsm_capability(&entry->orom);
2835 if (entry->type == SYS_DEV_NVME) {
0858eccf
AP
2836 for (hba = list; hba; hba = hba->next) {
2837 if (hba->type == SYS_DEV_NVME)
6da53c0e 2838 print_nvme_info(hba);
0858eccf 2839 }
60f0f54d 2840 printf("\n");
0858eccf
AP
2841 continue;
2842 }
2843
2844 struct devid_list *devid;
5e1d6128 2845 for (devid = entry->devid_list; devid; devid = devid->next) {
0858eccf
AP
2846 hba = device_by_id(devid->devid);
2847 if (!hba)
2848 continue;
2849
9eafa1de
MN
2850 printf(" I/O Controller : %s (%s)\n",
2851 hba->path, get_sys_dev_type(hba->type));
75350d87 2852 if (hba->type == SYS_DEV_SATA || hba->type == SYS_DEV_SATA_VMD) {
9eafa1de
MN
2853 host_base = ahci_get_port_count(hba->path, &port_count);
2854 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2855 if (verbose > 0)
75350d87
KF
2856 pr_err("failed to enumerate ports on %s controller at %s.\n",
2857 get_sys_dev_type(hba->type), hba->pci_id);
9eafa1de
MN
2858 result |= 2;
2859 }
120dc887
LM
2860 }
2861 }
0858eccf 2862 printf("\n");
d665cc31 2863 }
155cbb4c 2864
120dc887 2865 return result;
d665cc31 2866}
e50cf220 2867
9eafa1de 2868static int export_detail_platform_imsm(int verbose, char *controller_path)
e50cf220 2869{
e50cf220
MN
2870 struct sys_dev *list, *hba;
2871 int result=1;
2872
2873 list = find_intel_devices();
2874 if (!list) {
2875 if (verbose > 0)
2876 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2877 result = 2;
e50cf220
MN
2878 return result;
2879 }
2880
2881 for (hba = list; hba; hba = hba->next) {
9eafa1de
MN
2882 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2883 continue;
60f0f54d
PB
2884 if (!find_imsm_capability(hba) && verbose > 0) {
2885 char buf[PATH_MAX];
2886 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
75350d87
KF
2887 hba->type == SYS_DEV_VMD || hba->type == SYS_DEV_SATA_VMD ?
2888 vmd_domain_to_controller(hba, buf) : hba->path);
60f0f54d 2889 }
0858eccf 2890 else
e50cf220 2891 result = 0;
e50cf220
MN
2892 }
2893
5e1d6128 2894 const struct orom_entry *entry;
0858eccf 2895
60f0f54d 2896 for (entry = orom_entries; entry; entry = entry->next) {
75350d87 2897 if (entry->type == SYS_DEV_VMD || entry->type == SYS_DEV_SATA_VMD) {
60f0f54d
PB
2898 for (hba = list; hba; hba = hba->next)
2899 print_imsm_capability_export(&entry->orom);
2900 continue;
2901 }
5e1d6128 2902 print_imsm_capability_export(&entry->orom);
60f0f54d 2903 }
0858eccf 2904
e50cf220
MN
2905 return result;
2906}
2907
cdddbdbc
DW
2908static int match_home_imsm(struct supertype *st, char *homehost)
2909{
5115ca67
DW
2910 /* the imsm metadata format does not specify any host
2911 * identification information. We return -1 since we can never
2912 * confirm nor deny whether a given array is "meant" for this
148acb7b 2913 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
2914 * exclude member disks that do not belong, and we rely on
2915 * mdadm.conf to specify the arrays that should be assembled.
2916 * Auto-assembly may still pick up "foreign" arrays.
2917 */
cdddbdbc 2918
9362c1c8 2919 return -1;
cdddbdbc
DW
2920}
2921
2922static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2923{
51006d85
N
2924 /* The uuid returned here is used for:
2925 * uuid to put into bitmap file (Create, Grow)
2926 * uuid for backup header when saving critical section (Grow)
2927 * comparing uuids when re-adding a device into an array
2928 * In these cases the uuid required is that of the data-array,
2929 * not the device-set.
2930 * uuid to recognise same set when adding a missing device back
2931 * to an array. This is a uuid for the device-set.
1011e834 2932 *
51006d85
N
2933 * For each of these we can make do with a truncated
2934 * or hashed uuid rather than the original, as long as
2935 * everyone agrees.
2936 * In each case the uuid required is that of the data-array,
2937 * not the device-set.
43dad3d6 2938 */
51006d85
N
2939 /* imsm does not track uuid's so we synthesis one using sha1 on
2940 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 2941 * - the orig_family_num of the container
51006d85
N
2942 * - the index number of the volume
2943 * - the 'serial' number of the volume.
2944 * Hopefully these are all constant.
2945 */
2946 struct intel_super *super = st->sb;
43dad3d6 2947
51006d85
N
2948 char buf[20];
2949 struct sha1_ctx ctx;
2950 struct imsm_dev *dev = NULL;
148acb7b 2951 __u32 family_num;
51006d85 2952
148acb7b
DW
2953 /* some mdadm versions failed to set ->orig_family_num, in which
2954 * case fall back to ->family_num. orig_family_num will be
2955 * fixed up with the first metadata update.
2956 */
2957 family_num = super->anchor->orig_family_num;
2958 if (family_num == 0)
2959 family_num = super->anchor->family_num;
51006d85 2960 sha1_init_ctx(&ctx);
92bd8f8d 2961 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 2962 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
2963 if (super->current_vol >= 0)
2964 dev = get_imsm_dev(super, super->current_vol);
2965 if (dev) {
2966 __u32 vol = super->current_vol;
2967 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2968 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2969 }
2970 sha1_finish_ctx(&ctx, buf);
2971 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
2972}
2973
0d481d37 2974#if 0
4f5bc454
DW
2975static void
2976get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 2977{
cdddbdbc
DW
2978 __u8 *v = get_imsm_version(mpb);
2979 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2980 char major[] = { 0, 0, 0 };
2981 char minor[] = { 0 ,0, 0 };
2982 char patch[] = { 0, 0, 0 };
2983 char *ver_parse[] = { major, minor, patch };
2984 int i, j;
2985
2986 i = j = 0;
2987 while (*v != '\0' && v < end) {
2988 if (*v != '.' && j < 2)
2989 ver_parse[i][j++] = *v;
2990 else {
2991 i++;
2992 j = 0;
2993 }
2994 v++;
2995 }
2996
4f5bc454
DW
2997 *m = strtol(minor, NULL, 0);
2998 *p = strtol(patch, NULL, 0);
2999}
0d481d37 3000#endif
4f5bc454 3001
1e5c6983
DW
3002static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
3003{
3004 /* migr_strip_size when repairing or initializing parity */
238c0a71 3005 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
3006 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
3007
3008 switch (get_imsm_raid_level(map)) {
3009 case 5:
3010 case 10:
3011 return chunk;
3012 default:
3013 return 128*1024 >> 9;
3014 }
3015}
3016
3017static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
3018{
3019 /* migr_strip_size when rebuilding a degraded disk, no idea why
3020 * this is different than migr_strip_size_resync(), but it's good
3021 * to be compatible
3022 */
238c0a71 3023 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
3024 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
3025
3026 switch (get_imsm_raid_level(map)) {
3027 case 1:
3028 case 10:
3029 if (map->num_members % map->num_domains == 0)
3030 return 128*1024 >> 9;
3031 else
3032 return chunk;
3033 case 5:
3034 return max((__u32) 64*1024 >> 9, chunk);
3035 default:
3036 return 128*1024 >> 9;
3037 }
3038}
3039
3040static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
3041{
238c0a71
AK
3042 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
3043 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
3044 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
3045 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
3046
3047 return max((__u32) 1, hi_chunk / lo_chunk);
3048}
3049
3050static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
3051{
238c0a71 3052 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1e5c6983
DW
3053 int level = get_imsm_raid_level(lo);
3054
3055 if (level == 1 || level == 10) {
238c0a71 3056 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
3057
3058 return hi->num_domains;
3059 } else
3060 return num_stripes_per_unit_resync(dev);
3061}
3062
44490938
MD
3063static unsigned long long calc_component_size(struct imsm_map *map,
3064 struct imsm_dev *dev)
3065{
3066 unsigned long long component_size;
3067 unsigned long long dev_size = imsm_dev_size(dev);
a4f7290c 3068 long long calc_dev_size = 0;
44490938
MD
3069 unsigned int member_disks = imsm_num_data_members(map);
3070
3071 if (member_disks == 0)
3072 return 0;
3073
3074 component_size = per_dev_array_size(map);
3075 calc_dev_size = component_size * member_disks;
3076
3077 /* Component size is rounded to 1MB so difference between size from
3078 * metadata and size calculated from num_data_stripes equals up to
3079 * 2048 blocks per each device. If the difference is higher it means
3080 * that array size was expanded and num_data_stripes was not updated.
3081 */
a4f7290c 3082 if (llabs(calc_dev_size - (long long)dev_size) >
44490938
MD
3083 (1 << SECT_PER_MB_SHIFT) * member_disks) {
3084 component_size = dev_size / member_disks;
3085 dprintf("Invalid num_data_stripes in metadata; expected=%llu, found=%llu\n",
3086 component_size / map->blocks_per_strip,
3087 num_data_stripes(map));
3088 }
3089
3090 return component_size;
3091}
3092
1e5c6983
DW
3093static __u32 parity_segment_depth(struct imsm_dev *dev)
3094{
238c0a71 3095 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
3096 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
3097
3098 switch(get_imsm_raid_level(map)) {
3099 case 1:
3100 case 10:
3101 return chunk * map->num_domains;
3102 case 5:
3103 return chunk * map->num_members;
3104 default:
3105 return chunk;
3106 }
3107}
3108
3109static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
3110{
238c0a71 3111 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
3112 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
3113 __u32 strip = block / chunk;
3114
3115 switch (get_imsm_raid_level(map)) {
3116 case 1:
3117 case 10: {
3118 __u32 vol_strip = (strip * map->num_domains) + 1;
3119 __u32 vol_stripe = vol_strip / map->num_members;
3120
3121 return vol_stripe * chunk + block % chunk;
3122 } case 5: {
3123 __u32 stripe = strip / (map->num_members - 1);
3124
3125 return stripe * chunk + block % chunk;
3126 }
3127 default:
3128 return 0;
3129 }
3130}
3131
c47b0ff6
AK
3132static __u64 blocks_per_migr_unit(struct intel_super *super,
3133 struct imsm_dev *dev)
1e5c6983
DW
3134{
3135 /* calculate the conversion factor between per member 'blocks'
3136 * (md/{resync,rebuild}_start) and imsm migration units, return
3137 * 0 for the 'not migrating' and 'unsupported migration' cases
3138 */
3139 if (!dev->vol.migr_state)
3140 return 0;
3141
3142 switch (migr_type(dev)) {
c47b0ff6
AK
3143 case MIGR_GEN_MIGR: {
3144 struct migr_record *migr_rec = super->migr_rec;
3145 return __le32_to_cpu(migr_rec->blocks_per_unit);
3146 }
1e5c6983
DW
3147 case MIGR_VERIFY:
3148 case MIGR_REPAIR:
3149 case MIGR_INIT: {
238c0a71 3150 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
3151 __u32 stripes_per_unit;
3152 __u32 blocks_per_unit;
3153 __u32 parity_depth;
3154 __u32 migr_chunk;
3155 __u32 block_map;
3156 __u32 block_rel;
3157 __u32 segment;
3158 __u32 stripe;
3159 __u8 disks;
3160
3161 /* yes, this is really the translation of migr_units to
3162 * per-member blocks in the 'resync' case
3163 */
3164 stripes_per_unit = num_stripes_per_unit_resync(dev);
3165 migr_chunk = migr_strip_blocks_resync(dev);
9529d343 3166 disks = imsm_num_data_members(map);
1e5c6983 3167 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 3168 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
3169 segment = blocks_per_unit / stripe;
3170 block_rel = blocks_per_unit - segment * stripe;
3171 parity_depth = parity_segment_depth(dev);
3172 block_map = map_migr_block(dev, block_rel);
3173 return block_map + parity_depth * segment;
3174 }
3175 case MIGR_REBUILD: {
3176 __u32 stripes_per_unit;
3177 __u32 migr_chunk;
3178
3179 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
3180 migr_chunk = migr_strip_blocks_rebuild(dev);
3181 return migr_chunk * stripes_per_unit;
3182 }
1e5c6983
DW
3183 case MIGR_STATE_CHANGE:
3184 default:
3185 return 0;
3186 }
3187}
3188
c2c087e6
DW
3189static int imsm_level_to_layout(int level)
3190{
3191 switch (level) {
3192 case 0:
3193 case 1:
3194 return 0;
3195 case 5:
3196 case 6:
a380c027 3197 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 3198 case 10:
c92a2527 3199 return 0x102;
c2c087e6 3200 }
a18a888e 3201 return UnSet;
c2c087e6
DW
3202}
3203
8e59f3d8
AK
3204/*******************************************************************************
3205 * Function: read_imsm_migr_rec
3206 * Description: Function reads imsm migration record from last sector of disk
3207 * Parameters:
3208 * fd : disk descriptor
3209 * super : metadata info
3210 * Returns:
3211 * 0 : success,
3212 * -1 : fail
3213 ******************************************************************************/
3214static int read_imsm_migr_rec(int fd, struct intel_super *super)
3215{
3216 int ret_val = -1;
de44e46f 3217 unsigned int sector_size = super->sector_size;
8e59f3d8
AK
3218 unsigned long long dsize;
3219
3220 get_dev_size(fd, NULL, &dsize);
de44e46f
PB
3221 if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
3222 SEEK_SET) < 0) {
e7b84f9d
N
3223 pr_err("Cannot seek to anchor block: %s\n",
3224 strerror(errno));
8e59f3d8
AK
3225 goto out;
3226 }
466070ad 3227 if ((unsigned int)read(fd, super->migr_rec_buf,
de44e46f
PB
3228 MIGR_REC_BUF_SECTORS*sector_size) !=
3229 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
3230 pr_err("Cannot read migr record block: %s\n",
3231 strerror(errno));
8e59f3d8
AK
3232 goto out;
3233 }
3234 ret_val = 0;
de44e46f
PB
3235 if (sector_size == 4096)
3236 convert_from_4k_imsm_migr_rec(super);
8e59f3d8
AK
3237
3238out:
3239 return ret_val;
3240}
3241
3136abe5
AK
3242static struct imsm_dev *imsm_get_device_during_migration(
3243 struct intel_super *super)
3244{
3245
3246 struct intel_dev *dv;
3247
3248 for (dv = super->devlist; dv; dv = dv->next) {
3249 if (is_gen_migration(dv->dev))
3250 return dv->dev;
3251 }
3252 return NULL;
3253}
3254
8e59f3d8
AK
3255/*******************************************************************************
3256 * Function: load_imsm_migr_rec
3257 * Description: Function reads imsm migration record (it is stored at the last
3258 * sector of disk)
3259 * Parameters:
3260 * super : imsm internal array info
8e59f3d8
AK
3261 * Returns:
3262 * 0 : success
3263 * -1 : fail
4c965cc9 3264 * -2 : no migration in progress
8e59f3d8 3265 ******************************************************************************/
2f86fda3 3266static int load_imsm_migr_rec(struct intel_super *super)
8e59f3d8 3267{
594dc1b8 3268 struct dl *dl;
8e59f3d8
AK
3269 char nm[30];
3270 int retval = -1;
3271 int fd = -1;
3136abe5 3272 struct imsm_dev *dev;
594dc1b8 3273 struct imsm_map *map;
b4ab44d8 3274 int slot = -1;
2f86fda3 3275 int keep_fd = 1;
3136abe5
AK
3276
3277 /* find map under migration */
3278 dev = imsm_get_device_during_migration(super);
3279 /* nothing to load,no migration in progress?
3280 */
3281 if (dev == NULL)
4c965cc9 3282 return -2;
8e59f3d8 3283
2f86fda3
MT
3284 map = get_imsm_map(dev, MAP_0);
3285 if (!map)
3286 return -1;
3136abe5 3287
2f86fda3
MT
3288 for (dl = super->disks; dl; dl = dl->next) {
3289 /* skip spare and failed disks
3290 */
3291 if (dl->index < 0)
3292 continue;
3293 /* read only from one of the first two slots
3294 */
3295 slot = get_imsm_disk_slot(map, dl->index);
3296 if (slot > 1 || slot < 0)
3297 continue;
3298
4389ce73 3299 if (!is_fd_valid(dl->fd)) {
8e59f3d8
AK
3300 sprintf(nm, "%d:%d", dl->major, dl->minor);
3301 fd = dev_open(nm, O_RDONLY);
4389ce73
MT
3302
3303 if (is_fd_valid(fd)) {
2f86fda3 3304 keep_fd = 0;
8e59f3d8 3305 break;
2f86fda3
MT
3306 }
3307 } else {
3308 fd = dl->fd;
3309 break;
8e59f3d8
AK
3310 }
3311 }
2f86fda3 3312
4389ce73 3313 if (!is_fd_valid(fd))
2f86fda3 3314 return retval;
8e59f3d8 3315 retval = read_imsm_migr_rec(fd, super);
2f86fda3 3316 if (!keep_fd)
8e59f3d8 3317 close(fd);
2f86fda3 3318
8e59f3d8
AK
3319 return retval;
3320}
3321
c17608ea
AK
3322/*******************************************************************************
3323 * function: imsm_create_metadata_checkpoint_update
3324 * Description: It creates update for checkpoint change.
3325 * Parameters:
3326 * super : imsm internal array info
3327 * u : pointer to prepared update
3328 * Returns:
3329 * Uptate length.
3330 * If length is equal to 0, input pointer u contains no update
3331 ******************************************************************************/
3332static int imsm_create_metadata_checkpoint_update(
3333 struct intel_super *super,
3334 struct imsm_update_general_migration_checkpoint **u)
3335{
3336
3337 int update_memory_size = 0;
3338
1ade5cc1 3339 dprintf("(enter)\n");
c17608ea
AK
3340
3341 if (u == NULL)
3342 return 0;
3343 *u = NULL;
3344
3345 /* size of all update data without anchor */
3346 update_memory_size =
3347 sizeof(struct imsm_update_general_migration_checkpoint);
3348
503975b9 3349 *u = xcalloc(1, update_memory_size);
c17608ea 3350 if (*u == NULL) {
1ade5cc1 3351 dprintf("error: cannot get memory\n");
c17608ea
AK
3352 return 0;
3353 }
3354 (*u)->type = update_general_migration_checkpoint;
9f421827 3355 (*u)->curr_migr_unit = current_migr_unit(super->migr_rec);
83b3de77 3356 dprintf("prepared for %llu\n", (unsigned long long)(*u)->curr_migr_unit);
c17608ea
AK
3357
3358 return update_memory_size;
3359}
3360
c17608ea
AK
3361static void imsm_update_metadata_locally(struct supertype *st,
3362 void *buf, int len);
3363
687629c2
AK
3364/*******************************************************************************
3365 * Function: write_imsm_migr_rec
3366 * Description: Function writes imsm migration record
3367 * (at the last sector of disk)
3368 * Parameters:
3369 * super : imsm internal array info
3370 * Returns:
3371 * 0 : success
3372 * -1 : if fail
3373 ******************************************************************************/
3374static int write_imsm_migr_rec(struct supertype *st)
3375{
3376 struct intel_super *super = st->sb;
de44e46f 3377 unsigned int sector_size = super->sector_size;
687629c2 3378 unsigned long long dsize;
687629c2
AK
3379 int retval = -1;
3380 struct dl *sd;
c17608ea
AK
3381 int len;
3382 struct imsm_update_general_migration_checkpoint *u;
3136abe5 3383 struct imsm_dev *dev;
594dc1b8 3384 struct imsm_map *map;
3136abe5
AK
3385
3386 /* find map under migration */
3387 dev = imsm_get_device_during_migration(super);
3388 /* if no migration, write buffer anyway to clear migr_record
3389 * on disk based on first available device
3390 */
3391 if (dev == NULL)
3392 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
3393 super->current_vol);
3394
44bfe6df 3395 map = get_imsm_map(dev, MAP_0);
687629c2 3396
de44e46f
PB
3397 if (sector_size == 4096)
3398 convert_to_4k_imsm_migr_rec(super);
687629c2 3399 for (sd = super->disks ; sd ; sd = sd->next) {
b4ab44d8 3400 int slot = -1;
3136abe5
AK
3401
3402 /* skip failed and spare devices */
3403 if (sd->index < 0)
3404 continue;
687629c2 3405 /* write to 2 first slots only */
3136abe5
AK
3406 if (map)
3407 slot = get_imsm_disk_slot(map, sd->index);
089f9d79 3408 if (map == NULL || slot > 1 || slot < 0)
687629c2 3409 continue;
3136abe5 3410
2f86fda3
MT
3411 get_dev_size(sd->fd, NULL, &dsize);
3412 if (lseek64(sd->fd, dsize - (MIGR_REC_SECTOR_POSITION *
3413 sector_size),
de44e46f 3414 SEEK_SET) < 0) {
e7b84f9d
N
3415 pr_err("Cannot seek to anchor block: %s\n",
3416 strerror(errno));
687629c2
AK
3417 goto out;
3418 }
2f86fda3 3419 if ((unsigned int)write(sd->fd, super->migr_rec_buf,
de44e46f
PB
3420 MIGR_REC_BUF_SECTORS*sector_size) !=
3421 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
3422 pr_err("Cannot write migr record block: %s\n",
3423 strerror(errno));
687629c2
AK
3424 goto out;
3425 }
687629c2 3426 }
de44e46f
PB
3427 if (sector_size == 4096)
3428 convert_from_4k_imsm_migr_rec(super);
c17608ea
AK
3429 /* update checkpoint information in metadata */
3430 len = imsm_create_metadata_checkpoint_update(super, &u);
c17608ea
AK
3431 if (len <= 0) {
3432 dprintf("imsm: Cannot prepare update\n");
3433 goto out;
3434 }
3435 /* update metadata locally */
3436 imsm_update_metadata_locally(st, u, len);
3437 /* and possibly remotely */
3438 if (st->update_tail) {
3439 append_metadata_update(st, u, len);
3440 /* during reshape we do all work inside metadata handler
3441 * manage_reshape(), so metadata update has to be triggered
3442 * insida it
3443 */
3444 flush_metadata_updates(st);
3445 st->update_tail = &st->updates;
3446 } else
3447 free(u);
687629c2
AK
3448
3449 retval = 0;
3450 out:
687629c2
AK
3451 return retval;
3452}
3453
e2962bfc
AK
3454/* spare/missing disks activations are not allowe when
3455 * array/container performs reshape operation, because
3456 * all arrays in container works on the same disks set
3457 */
3458int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
3459{
3460 int rv = 0;
3461 struct intel_dev *i_dev;
3462 struct imsm_dev *dev;
3463
3464 /* check whole container
3465 */
3466 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
3467 dev = i_dev->dev;
3ad25638 3468 if (is_gen_migration(dev)) {
e2962bfc
AK
3469 /* No repair during any migration in container
3470 */
3471 rv = 1;
3472 break;
3473 }
3474 }
3475 return rv;
3476}
3e684231 3477static unsigned long long imsm_component_size_alignment_check(int level,
c41e00b2 3478 int chunk_size,
f36a9ecd 3479 unsigned int sector_size,
c41e00b2
AK
3480 unsigned long long component_size)
3481{
3e684231 3482 unsigned int component_size_alignment;
c41e00b2 3483
3e684231 3484 /* check component size alignment
c41e00b2 3485 */
3e684231 3486 component_size_alignment = component_size % (chunk_size/sector_size);
c41e00b2 3487
3e684231 3488 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alignment = %u\n",
c41e00b2 3489 level, chunk_size, component_size,
3e684231 3490 component_size_alignment);
c41e00b2 3491
3e684231
MZ
3492 if (component_size_alignment && (level != 1) && (level != UnSet)) {
3493 dprintf("imsm: reported component size aligned from %llu ",
c41e00b2 3494 component_size);
3e684231 3495 component_size -= component_size_alignment;
1ade5cc1 3496 dprintf_cont("to %llu (%i).\n",
3e684231 3497 component_size, component_size_alignment);
c41e00b2
AK
3498 }
3499
3500 return component_size;
3501}
e2962bfc 3502
fbc42556
JR
3503/*******************************************************************************
3504 * Function: get_bitmap_header_sector
3505 * Description: Returns the sector where the bitmap header is placed.
3506 * Parameters:
3507 * st : supertype information
3508 * dev_idx : index of the device with bitmap
3509 *
3510 * Returns:
3511 * The sector where the bitmap header is placed
3512 ******************************************************************************/
3513static unsigned long long get_bitmap_header_sector(struct intel_super *super,
3514 int dev_idx)
3515{
3516 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3517 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3518
3519 if (!super->sector_size) {
3520 dprintf("sector size is not set\n");
3521 return 0;
3522 }
3523
3524 return pba_of_lba0(map) + calc_component_size(map, dev) +
3525 (IMSM_BITMAP_HEADER_OFFSET / super->sector_size);
3526}
3527
3528/*******************************************************************************
3529 * Function: get_bitmap_sector
3530 * Description: Returns the sector where the bitmap is placed.
3531 * Parameters:
3532 * st : supertype information
3533 * dev_idx : index of the device with bitmap
3534 *
3535 * Returns:
3536 * The sector where the bitmap is placed
3537 ******************************************************************************/
3538static unsigned long long get_bitmap_sector(struct intel_super *super,
3539 int dev_idx)
3540{
3541 if (!super->sector_size) {
3542 dprintf("sector size is not set\n");
3543 return 0;
3544 }
3545
3546 return get_bitmap_header_sector(super, dev_idx) +
3547 (IMSM_BITMAP_HEADER_SIZE / super->sector_size);
3548}
3549
2432ce9b
AP
3550static unsigned long long get_ppl_sector(struct intel_super *super, int dev_idx)
3551{
3552 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3553 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3554
3555 return pba_of_lba0(map) +
3556 (num_data_stripes(map) * map->blocks_per_strip);
3557}
3558
a5d85af7 3559static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
3560{
3561 struct intel_super *super = st->sb;
c47b0ff6 3562 struct migr_record *migr_rec = super->migr_rec;
949c47a0 3563 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
238c0a71
AK
3564 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3565 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
b335e593 3566 struct imsm_map *map_to_analyse = map;
efb30e7f 3567 struct dl *dl;
a5d85af7 3568 int map_disks = info->array.raid_disks;
bf5a934a 3569
95eeceeb 3570 memset(info, 0, sizeof(*info));
b335e593
AK
3571 if (prev_map)
3572 map_to_analyse = prev_map;
3573
ca0748fa 3574 dl = super->current_disk;
9894ec0d 3575
bf5a934a 3576 info->container_member = super->current_vol;
cd0430a1 3577 info->array.raid_disks = map->num_members;
b335e593 3578 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
3579 info->array.layout = imsm_level_to_layout(info->array.level);
3580 info->array.md_minor = -1;
3581 info->array.ctime = 0;
3582 info->array.utime = 0;
b335e593
AK
3583 info->array.chunk_size =
3584 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2432ce9b 3585 info->array.state = !(dev->vol.dirty & RAIDVOL_DIRTY);
fcc2c9da 3586 info->custom_array_size = imsm_dev_size(dev);
3ad25638
AK
3587 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3588
3f510843 3589 if (is_gen_migration(dev)) {
195d1d76
PP
3590 /*
3591 * device prev_map should be added if it is in the middle
3592 * of migration
3593 */
3594 assert(prev_map);
3595
3f83228a 3596 info->reshape_active = 1;
b335e593
AK
3597 info->new_level = get_imsm_raid_level(map);
3598 info->new_layout = imsm_level_to_layout(info->new_level);
3599 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 3600 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
3601 if (info->delta_disks) {
3602 /* this needs to be applied to every array
3603 * in the container.
3604 */
81219e70 3605 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 3606 }
3f83228a
N
3607 /* We shape information that we give to md might have to be
3608 * modify to cope with md's requirement for reshaping arrays.
3609 * For example, when reshaping a RAID0, md requires it to be
3610 * presented as a degraded RAID4.
3611 * Also if a RAID0 is migrating to a RAID5 we need to specify
3612 * the array as already being RAID5, but the 'before' layout
3613 * is a RAID4-like layout.
3614 */
3615 switch (info->array.level) {
3616 case 0:
3617 switch(info->new_level) {
3618 case 0:
3619 /* conversion is happening as RAID4 */
3620 info->array.level = 4;
3621 info->array.raid_disks += 1;
3622 break;
3623 case 5:
3624 /* conversion is happening as RAID5 */
3625 info->array.level = 5;
3626 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
3627 info->delta_disks -= 1;
3628 break;
3629 default:
3630 /* FIXME error message */
3631 info->array.level = UnSet;
3632 break;
3633 }
3634 break;
3635 }
b335e593
AK
3636 } else {
3637 info->new_level = UnSet;
3638 info->new_layout = UnSet;
3639 info->new_chunk = info->array.chunk_size;
3f83228a 3640 info->delta_disks = 0;
b335e593 3641 }
ca0748fa 3642
efb30e7f
DW
3643 if (dl) {
3644 info->disk.major = dl->major;
3645 info->disk.minor = dl->minor;
ca0748fa 3646 info->disk.number = dl->index;
656b6b5a
N
3647 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
3648 dl->index);
efb30e7f 3649 }
bf5a934a 3650
5551b113 3651 info->data_offset = pba_of_lba0(map_to_analyse);
44490938 3652 info->component_size = calc_component_size(map, dev);
3e684231 3653 info->component_size = imsm_component_size_alignment_check(
c41e00b2
AK
3654 info->array.level,
3655 info->array.chunk_size,
f36a9ecd 3656 super->sector_size,
c41e00b2 3657 info->component_size);
5e46202e 3658 info->bb.supported = 1;
139dae11 3659
301406c9 3660 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 3661 info->recovery_start = MaxSector;
bf5a934a 3662
c2462068
PB
3663 if (info->array.level == 5 &&
3664 (dev->rwh_policy == RWH_DISTRIBUTED ||
3665 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)) {
2432ce9b
AP
3666 info->consistency_policy = CONSISTENCY_POLICY_PPL;
3667 info->ppl_sector = get_ppl_sector(super, super->current_vol);
c2462068
PB
3668 if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
3669 info->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
3670 else
3671 info->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE)
3672 >> 9;
2432ce9b
AP
3673 } else if (info->array.level <= 0) {
3674 info->consistency_policy = CONSISTENCY_POLICY_NONE;
3675 } else {
fbc42556
JR
3676 if (dev->rwh_policy == RWH_BITMAP) {
3677 info->bitmap_offset = get_bitmap_sector(super, super->current_vol);
3678 info->consistency_policy = CONSISTENCY_POLICY_BITMAP;
3679 } else {
3680 info->consistency_policy = CONSISTENCY_POLICY_RESYNC;
3681 }
2432ce9b
AP
3682 }
3683
d2e6d5d6 3684 info->reshape_progress = 0;
b6796ce1 3685 info->resync_start = MaxSector;
b9172665 3686 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2432ce9b 3687 !(info->array.state & 1)) &&
b9172665 3688 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 3689 info->resync_start = 0;
b6796ce1
AK
3690 }
3691 if (dev->vol.migr_state) {
1e5c6983
DW
3692 switch (migr_type(dev)) {
3693 case MIGR_REPAIR:
3694 case MIGR_INIT: {
c47b0ff6
AK
3695 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3696 dev);
4036e7ee 3697 __u64 units = vol_curr_migr_unit(dev);
1e5c6983
DW
3698
3699 info->resync_start = blocks_per_unit * units;
3700 break;
3701 }
d2e6d5d6 3702 case MIGR_GEN_MIGR: {
c47b0ff6
AK
3703 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3704 dev);
9f421827 3705 __u64 units = current_migr_unit(migr_rec);
04fa9523 3706 int used_disks;
d2e6d5d6 3707
befb629b
AK
3708 if (__le32_to_cpu(migr_rec->ascending_migr) &&
3709 (units <
9f421827 3710 (get_num_migr_units(migr_rec)-1)) &&
befb629b
AK
3711 (super->migr_rec->rec_status ==
3712 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
3713 units++;
3714
d2e6d5d6 3715 info->reshape_progress = blocks_per_unit * units;
6289d1e0 3716
7a862a02 3717 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
19986c72
MB
3718 (unsigned long long)units,
3719 (unsigned long long)blocks_per_unit,
3720 info->reshape_progress);
75156c46 3721
9529d343 3722 used_disks = imsm_num_data_members(prev_map);
75156c46 3723 if (used_disks > 0) {
895ffd99 3724 info->custom_array_size = per_dev_array_size(map) *
75156c46 3725 used_disks;
75156c46 3726 }
d2e6d5d6 3727 }
1e5c6983
DW
3728 case MIGR_VERIFY:
3729 /* we could emulate the checkpointing of
3730 * 'sync_action=check' migrations, but for now
3731 * we just immediately complete them
3732 */
3733 case MIGR_REBUILD:
3734 /* this is handled by container_content_imsm() */
1e5c6983
DW
3735 case MIGR_STATE_CHANGE:
3736 /* FIXME handle other migrations */
3737 default:
3738 /* we are not dirty, so... */
3739 info->resync_start = MaxSector;
3740 }
b6796ce1 3741 }
301406c9
DW
3742
3743 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
3744 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 3745
f35f2525
N
3746 info->array.major_version = -1;
3747 info->array.minor_version = -2;
4dd2df09 3748 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
a67dd8cc 3749 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 3750 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
3751
3752 if (dmap) {
3753 int i, j;
3754 for (i=0; i<map_disks; i++) {
3755 dmap[i] = 0;
3756 if (i < info->array.raid_disks) {
3757 struct imsm_disk *dsk;
238c0a71 3758 j = get_imsm_disk_idx(dev, i, MAP_X);
a5d85af7
N
3759 dsk = get_imsm_disk(super, j);
3760 if (dsk && (dsk->status & CONFIGURED_DISK))
3761 dmap[i] = 1;
3762 }
3763 }
3764 }
81ac8b4d 3765}
bf5a934a 3766
3b451610
AK
3767static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
3768 int failed, int look_in_map);
3769
3770static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
3771 int look_in_map);
3772
3773static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
3774{
3775 if (is_gen_migration(dev)) {
3776 int failed;
3777 __u8 map_state;
3778 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
3779
3780 failed = imsm_count_failed(super, dev, MAP_1);
238c0a71 3781 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3b451610
AK
3782 if (map2->map_state != map_state) {
3783 map2->map_state = map_state;
3784 super->updates_pending++;
3785 }
3786 }
3787}
97b4d0e9
DW
3788
3789static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3790{
3791 struct dl *d;
3792
3793 for (d = super->missing; d; d = d->next)
3794 if (d->index == index)
3795 return &d->disk;
3796 return NULL;
3797}
3798
a5d85af7 3799static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
3800{
3801 struct intel_super *super = st->sb;
4f5bc454 3802 struct imsm_disk *disk;
a5d85af7 3803 int map_disks = info->array.raid_disks;
ab3cb6b3
N
3804 int max_enough = -1;
3805 int i;
3806 struct imsm_super *mpb;
4f5bc454 3807
bf5a934a 3808 if (super->current_vol >= 0) {
a5d85af7 3809 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
3810 return;
3811 }
95eeceeb 3812 memset(info, 0, sizeof(*info));
d23fe947
DW
3813
3814 /* Set raid_disks to zero so that Assemble will always pull in valid
3815 * spares
3816 */
3817 info->array.raid_disks = 0;
cdddbdbc
DW
3818 info->array.level = LEVEL_CONTAINER;
3819 info->array.layout = 0;
3820 info->array.md_minor = -1;
1011e834 3821 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
3822 info->array.utime = 0;
3823 info->array.chunk_size = 0;
3824
3825 info->disk.major = 0;
3826 info->disk.minor = 0;
cdddbdbc 3827 info->disk.raid_disk = -1;
c2c087e6 3828 info->reshape_active = 0;
f35f2525
N
3829 info->array.major_version = -1;
3830 info->array.minor_version = -2;
c2c087e6 3831 strcpy(info->text_version, "imsm");
a67dd8cc 3832 info->safe_mode_delay = 0;
c2c087e6
DW
3833 info->disk.number = -1;
3834 info->disk.state = 0;
c5afc314 3835 info->name[0] = 0;
921d9e16 3836 info->recovery_start = MaxSector;
3ad25638 3837 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
5e46202e 3838 info->bb.supported = 1;
c2c087e6 3839
97b4d0e9 3840 /* do we have the all the insync disks that we expect? */
ab3cb6b3 3841 mpb = super->anchor;
b7d81a38 3842 info->events = __le32_to_cpu(mpb->generation_num);
97b4d0e9 3843
ab3cb6b3
N
3844 for (i = 0; i < mpb->num_raid_devs; i++) {
3845 struct imsm_dev *dev = get_imsm_dev(super, i);
3846 int failed, enough, j, missing = 0;
3847 struct imsm_map *map;
3848 __u8 state;
97b4d0e9 3849
3b451610
AK
3850 failed = imsm_count_failed(super, dev, MAP_0);
3851 state = imsm_check_degraded(super, dev, failed, MAP_0);
238c0a71 3852 map = get_imsm_map(dev, MAP_0);
ab3cb6b3
N
3853
3854 /* any newly missing disks?
3855 * (catches single-degraded vs double-degraded)
3856 */
3857 for (j = 0; j < map->num_members; j++) {
238c0a71 3858 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ab3cb6b3
N
3859 __u32 idx = ord_to_idx(ord);
3860
20dc76d1
MT
3861 if (super->disks && super->disks->index == (int)idx)
3862 info->disk.raid_disk = j;
3863
ab3cb6b3
N
3864 if (!(ord & IMSM_ORD_REBUILD) &&
3865 get_imsm_missing(super, idx)) {
3866 missing = 1;
3867 break;
3868 }
97b4d0e9 3869 }
ab3cb6b3
N
3870
3871 if (state == IMSM_T_STATE_FAILED)
3872 enough = -1;
3873 else if (state == IMSM_T_STATE_DEGRADED &&
3874 (state != map->map_state || missing))
3875 enough = 0;
3876 else /* we're normal, or already degraded */
3877 enough = 1;
d2bde6d3
AK
3878 if (is_gen_migration(dev) && missing) {
3879 /* during general migration we need all disks
3880 * that process is running on.
3881 * No new missing disk is allowed.
3882 */
3883 max_enough = -1;
3884 enough = -1;
3885 /* no more checks necessary
3886 */
3887 break;
3888 }
ab3cb6b3
N
3889 /* in the missing/failed disk case check to see
3890 * if at least one array is runnable
3891 */
3892 max_enough = max(max_enough, enough);
3893 }
1ade5cc1 3894 dprintf("enough: %d\n", max_enough);
ab3cb6b3 3895 info->container_enough = max_enough;
97b4d0e9 3896
4a04ec6c 3897 if (super->disks) {
14e8215b
DW
3898 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3899
b9f594fe 3900 disk = &super->disks->disk;
5551b113 3901 info->data_offset = total_blocks(&super->disks->disk) - reserved;
14e8215b 3902 info->component_size = reserved;
25ed7e59 3903 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
3904 /* we don't change info->disk.raid_disk here because
3905 * this state will be finalized in mdmon after we have
3906 * found the 'most fresh' version of the metadata
3907 */
25ed7e59 3908 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2432ce9b
AP
3909 info->disk.state |= (is_spare(disk) || is_journal(disk)) ?
3910 0 : (1 << MD_DISK_SYNC);
cdddbdbc 3911 }
a575e2a7
DW
3912
3913 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3914 * ->compare_super may have updated the 'num_raid_devs' field for spares
3915 */
3916 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 3917 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
3918 else
3919 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
3920
3921 /* I don't know how to compute 'map' on imsm, so use safe default */
3922 if (map) {
3923 int i;
3924 for (i = 0; i < map_disks; i++)
3925 map[i] = 1;
3926 }
3927
cdddbdbc
DW
3928}
3929
5c4cd5da
AC
3930/* allocates memory and fills disk in mdinfo structure
3931 * for each disk in array */
3932struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3933{
594dc1b8 3934 struct mdinfo *mddev;
5c4cd5da
AC
3935 struct intel_super *super = st->sb;
3936 struct imsm_disk *disk;
3937 int count = 0;
3938 struct dl *dl;
3939 if (!super || !super->disks)
3940 return NULL;
3941 dl = super->disks;
503975b9 3942 mddev = xcalloc(1, sizeof(*mddev));
5c4cd5da
AC
3943 while (dl) {
3944 struct mdinfo *tmp;
3945 disk = &dl->disk;
503975b9 3946 tmp = xcalloc(1, sizeof(*tmp));
5c4cd5da
AC
3947 if (mddev->devs)
3948 tmp->next = mddev->devs;
3949 mddev->devs = tmp;
3950 tmp->disk.number = count++;
3951 tmp->disk.major = dl->major;
3952 tmp->disk.minor = dl->minor;
3953 tmp->disk.state = is_configured(disk) ?
3954 (1 << MD_DISK_ACTIVE) : 0;
3955 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3956 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3957 tmp->disk.raid_disk = -1;
3958 dl = dl->next;
3959 }
3960 return mddev;
3961}
3962
cdddbdbc 3963static int update_super_imsm(struct supertype *st, struct mdinfo *info,
03312b52
MK
3964 enum update_opt update, char *devname,
3965 int verbose, int uuid_set, char *homehost)
cdddbdbc 3966{
f352c545
DW
3967 /* For 'assemble' and 'force' we need to return non-zero if any
3968 * change was made. For others, the return value is ignored.
3969 * Update options are:
3970 * force-one : This device looks a bit old but needs to be included,
3971 * update age info appropriately.
3972 * assemble: clear any 'faulty' flag to allow this device to
3973 * be assembled.
3974 * force-array: Array is degraded but being forced, mark it clean
3975 * if that will be needed to assemble it.
3976 *
3977 * newdev: not used ????
3978 * grow: Array has gained a new device - this is currently for
3979 * linear only
3980 * resync: mark as dirty so a resync will happen.
3981 * name: update the name - preserving the homehost
6e46bf34 3982 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
3983 *
3984 * Following are not relevant for this imsm:
3985 * sparc2.2 : update from old dodgey metadata
3986 * super-minor: change the preferred_minor number
3987 * summaries: update redundant counters.
f352c545
DW
3988 * homehost: update the recorded homehost
3989 * _reshape_progress: record new reshape_progress position.
3990 */
6e46bf34
DW
3991 int rv = 1;
3992 struct intel_super *super = st->sb;
3993 struct imsm_super *mpb;
f352c545 3994
6e46bf34
DW
3995 /* we can only update container info */
3996 if (!super || super->current_vol >= 0 || !super->anchor)
3997 return 1;
3998
3999 mpb = super->anchor;
4000
03312b52 4001 switch (update) {
4345e135 4002 case UOPT_UUID:
81a5b4f5
N
4003 /* We take this to mean that the family_num should be updated.
4004 * However that is much smaller than the uuid so we cannot really
4005 * allow an explicit uuid to be given. And it is hard to reliably
4006 * know if one was.
4007 * So if !uuid_set we know the current uuid is random and just used
4008 * the first 'int' and copy it to the other 3 positions.
4009 * Otherwise we require the 4 'int's to be the same as would be the
4010 * case if we are using a random uuid. So an explicit uuid will be
4011 * accepted as long as all for ints are the same... which shouldn't hurt
6e46bf34 4012 */
81a5b4f5
N
4013 if (!uuid_set) {
4014 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
6e46bf34 4015 rv = 0;
81a5b4f5
N
4016 } else {
4017 if (info->uuid[0] != info->uuid[1] ||
4018 info->uuid[1] != info->uuid[2] ||
4019 info->uuid[2] != info->uuid[3])
4020 rv = -1;
4021 else
4022 rv = 0;
6e46bf34 4023 }
81a5b4f5
N
4024 if (rv == 0)
4025 mpb->orig_family_num = info->uuid[0];
4345e135
MK
4026 break;
4027 case UOPT_SPEC_ASSEMBLE:
6e46bf34 4028 rv = 0;
4345e135
MK
4029 break;
4030 default:
1e2b2765 4031 rv = -1;
4345e135
MK
4032 break;
4033 }
f352c545 4034
6e46bf34
DW
4035 /* successful update? recompute checksum */
4036 if (rv == 0)
4037 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
4038
4039 return rv;
cdddbdbc
DW
4040}
4041
c2c087e6 4042static size_t disks_to_mpb_size(int disks)
cdddbdbc 4043{
c2c087e6 4044 size_t size;
cdddbdbc 4045
c2c087e6
DW
4046 size = sizeof(struct imsm_super);
4047 size += (disks - 1) * sizeof(struct imsm_disk);
4048 size += 2 * sizeof(struct imsm_dev);
4049 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
4050 size += (4 - 2) * sizeof(struct imsm_map);
4051 /* 4 possible disk_ord_tbl's */
4052 size += 4 * (disks - 1) * sizeof(__u32);
bbab0940
TM
4053 /* maximum bbm log */
4054 size += sizeof(struct bbm_log);
c2c087e6
DW
4055
4056 return size;
4057}
4058
387fcd59
N
4059static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
4060 unsigned long long data_offset)
c2c087e6
DW
4061{
4062 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
4063 return 0;
4064
4065 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
4066}
4067
ba2de7ba
DW
4068static void free_devlist(struct intel_super *super)
4069{
4070 struct intel_dev *dv;
4071
4072 while (super->devlist) {
4073 dv = super->devlist->next;
4074 free(super->devlist->dev);
4075 free(super->devlist);
4076 super->devlist = dv;
4077 }
4078}
4079
4080static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
4081{
4082 memcpy(dest, src, sizeof_imsm_dev(src, 0));
4083}
4084
c7b8547c
MT
4085static int compare_super_imsm(struct supertype *st, struct supertype *tst,
4086 int verbose)
cdddbdbc 4087{
601ffa78 4088 /* return:
cdddbdbc 4089 * 0 same, or first was empty, and second was copied
601ffa78 4090 * 1 sb are different
cdddbdbc
DW
4091 */
4092 struct intel_super *first = st->sb;
4093 struct intel_super *sec = tst->sb;
4094
5d500228
N
4095 if (!first) {
4096 st->sb = tst->sb;
4097 tst->sb = NULL;
4098 return 0;
4099 }
601ffa78 4100
8603ea6f
LM
4101 /* in platform dependent environment test if the disks
4102 * use the same Intel hba
601ffa78
OS
4103 * if not on Intel hba at all, allow anything.
4104 * doesn't check HBAs if num_raid_devs is not set, as it means
4105 * it is a free floating spare, and all spares regardless of HBA type
4106 * will fall into separate container during the assembly
8603ea6f 4107 */
601ffa78 4108 if (first->hba && sec->hba && first->anchor->num_raid_devs != 0) {
6b781d33 4109 if (first->hba->type != sec->hba->type) {
c7b8547c
MT
4110 if (verbose)
4111 pr_err("HBAs of devices do not match %s != %s\n",
4112 get_sys_dev_type(first->hba->type),
4113 get_sys_dev_type(sec->hba->type));
601ffa78 4114 return 1;
6b781d33
AP
4115 }
4116 if (first->orom != sec->orom) {
c7b8547c
MT
4117 if (verbose)
4118 pr_err("HBAs of devices do not match %s != %s\n",
4119 first->hba->pci_id, sec->hba->pci_id);
601ffa78 4120 return 1;
8603ea6f
LM
4121 }
4122 }
cdddbdbc 4123
d23fe947
DW
4124 if (first->anchor->num_raid_devs > 0 &&
4125 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
4126 /* Determine if these disks might ever have been
4127 * related. Further disambiguation can only take place
4128 * in load_super_imsm_all
4129 */
4130 __u32 first_family = first->anchor->orig_family_num;
4131 __u32 sec_family = sec->anchor->orig_family_num;
4132
f796af5d
DW
4133 if (memcmp(first->anchor->sig, sec->anchor->sig,
4134 MAX_SIGNATURE_LENGTH) != 0)
601ffa78 4135 return 1;
f796af5d 4136
a2b97981
DW
4137 if (first_family == 0)
4138 first_family = first->anchor->family_num;
4139 if (sec_family == 0)
4140 sec_family = sec->anchor->family_num;
4141
4142 if (first_family != sec_family)
601ffa78 4143 return 1;
f796af5d 4144
d23fe947 4145 }
cdddbdbc 4146
601ffa78
OS
4147 /* if an anchor does not have num_raid_devs set then it is a free
4148 * floating spare. don't assosiate spare with any array, as during assembly
4149 * spares shall fall into separate container, from which they can be moved
4150 * when necessary
4151 */
4152 if (first->anchor->num_raid_devs ^ sec->anchor->num_raid_devs)
4153 return 1;
3e372e5a 4154
cdddbdbc
DW
4155 return 0;
4156}
4157
0030e8d6
DW
4158static void fd2devname(int fd, char *name)
4159{
0030e8d6 4160 char *nm;
0030e8d6 4161
7c798f87
MT
4162 nm = fd2kname(fd);
4163 if (!nm)
0030e8d6 4164 return;
9587c373 4165
7c798f87 4166 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
0030e8d6
DW
4167}
4168
21e9380b
AP
4169static int nvme_get_serial(int fd, void *buf, size_t buf_len)
4170{
fcebeb77 4171 char path[PATH_MAX];
21e9380b
AP
4172 char *name = fd2kname(fd);
4173
4174 if (!name)
4175 return 1;
4176
4177 if (strncmp(name, "nvme", 4) != 0)
4178 return 1;
4179
fcebeb77
MT
4180 if (!diskfd_to_devpath(fd, 1, path))
4181 return 1;
21e9380b 4182
fcebeb77 4183 return devpath_to_char(path, "serial", buf, buf_len, 0);
21e9380b
AP
4184}
4185
cdddbdbc
DW
4186extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
4187
4188static int imsm_read_serial(int fd, char *devname,
6da53c0e 4189 __u8 *serial, size_t serial_buf_len)
cdddbdbc 4190{
21e9380b 4191 char buf[50];
cdddbdbc 4192 int rv;
6da53c0e 4193 size_t len;
316e2bf4
DW
4194 char *dest;
4195 char *src;
21e9380b
AP
4196 unsigned int i;
4197
4198 memset(buf, 0, sizeof(buf));
cdddbdbc 4199
21e9380b 4200 rv = nvme_get_serial(fd, buf, sizeof(buf));
cdddbdbc 4201
21e9380b
AP
4202 if (rv)
4203 rv = scsi_get_serial(fd, buf, sizeof(buf));
f9ba0ff1 4204
40ebbb9c 4205 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
4206 memset(serial, 0, MAX_RAID_SERIAL_LEN);
4207 fd2devname(fd, (char *) serial);
0030e8d6
DW
4208 return 0;
4209 }
4210
cdddbdbc
DW
4211 if (rv != 0) {
4212 if (devname)
e7b84f9d
N
4213 pr_err("Failed to retrieve serial for %s\n",
4214 devname);
cdddbdbc
DW
4215 return rv;
4216 }
4217
316e2bf4
DW
4218 /* trim all whitespace and non-printable characters and convert
4219 * ':' to ';'
4220 */
21e9380b
AP
4221 for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
4222 src = &buf[i];
316e2bf4
DW
4223 if (*src > 0x20) {
4224 /* ':' is reserved for use in placeholder serial
4225 * numbers for missing disks
4226 */
4227 if (*src == ':')
4228 *dest++ = ';';
4229 else
4230 *dest++ = *src;
4231 }
4232 }
21e9380b
AP
4233 len = dest - buf;
4234 dest = buf;
316e2bf4 4235
6da53c0e
BK
4236 if (len > serial_buf_len) {
4237 /* truncate leading characters */
4238 dest += len - serial_buf_len;
4239 len = serial_buf_len;
316e2bf4 4240 }
5c3db629 4241
6da53c0e 4242 memset(serial, 0, serial_buf_len);
316e2bf4 4243 memcpy(serial, dest, len);
cdddbdbc
DW
4244
4245 return 0;
4246}
4247
1f24f035
DW
4248static int serialcmp(__u8 *s1, __u8 *s2)
4249{
4250 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
4251}
4252
4253static void serialcpy(__u8 *dest, __u8 *src)
4254{
4255 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
4256}
4257
54c2c1ea
DW
4258static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
4259{
4260 struct dl *dl;
4261
4262 for (dl = super->disks; dl; dl = dl->next)
4263 if (serialcmp(dl->serial, serial) == 0)
4264 break;
4265
4266 return dl;
4267}
4268
a2b97981
DW
4269static struct imsm_disk *
4270__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
4271{
4272 int i;
4273
4274 for (i = 0; i < mpb->num_disks; i++) {
4275 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4276
4277 if (serialcmp(disk->serial, serial) == 0) {
4278 if (idx)
4279 *idx = i;
4280 return disk;
4281 }
4282 }
4283
4284 return NULL;
4285}
4286
cdddbdbc
DW
4287static int
4288load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
4289{
a2b97981 4290 struct imsm_disk *disk;
cdddbdbc
DW
4291 struct dl *dl;
4292 struct stat stb;
cdddbdbc 4293 int rv;
a2b97981 4294 char name[40];
d23fe947
DW
4295 __u8 serial[MAX_RAID_SERIAL_LEN];
4296
6da53c0e 4297 rv = imsm_read_serial(fd, devname, serial, MAX_RAID_SERIAL_LEN);
d23fe947
DW
4298
4299 if (rv != 0)
4300 return 2;
4301
503975b9 4302 dl = xcalloc(1, sizeof(*dl));
cdddbdbc 4303
a2b97981
DW
4304 fstat(fd, &stb);
4305 dl->major = major(stb.st_rdev);
4306 dl->minor = minor(stb.st_rdev);
4307 dl->next = super->disks;
4308 dl->fd = keep_fd ? fd : -1;
4309 assert(super->disks == NULL);
4310 super->disks = dl;
4311 serialcpy(dl->serial, serial);
4312 dl->index = -2;
4313 dl->e = NULL;
4314 fd2devname(fd, name);
4315 if (devname)
503975b9 4316 dl->devname = xstrdup(devname);
a2b97981 4317 else
503975b9 4318 dl->devname = xstrdup(name);
cdddbdbc 4319
d23fe947 4320 /* look up this disk's index in the current anchor */
a2b97981
DW
4321 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
4322 if (disk) {
4323 dl->disk = *disk;
4324 /* only set index on disks that are a member of a
4325 * populated contianer, i.e. one with raid_devs
4326 */
4327 if (is_failed(&dl->disk))
3f6efecc 4328 dl->index = -2;
2432ce9b 4329 else if (is_spare(&dl->disk) || is_journal(&dl->disk))
a2b97981 4330 dl->index = -1;
3f6efecc
DW
4331 }
4332
949c47a0
DW
4333 return 0;
4334}
4335
0c046afd
DW
4336/* When migrating map0 contains the 'destination' state while map1
4337 * contains the current state. When not migrating map0 contains the
4338 * current state. This routine assumes that map[0].map_state is set to
4339 * the current array state before being called.
4340 *
4341 * Migration is indicated by one of the following states
4342 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 4343 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 4344 * map1state=unitialized)
1484e727 4345 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 4346 * map1state=normal)
e3bba0e0 4347 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 4348 * map1state=degraded)
8e59f3d8
AK
4349 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
4350 * map1state=normal)
0c046afd 4351 */
8e59f3d8
AK
4352static void migrate(struct imsm_dev *dev, struct intel_super *super,
4353 __u8 to_state, int migr_type)
3393c6af 4354{
0c046afd 4355 struct imsm_map *dest;
238c0a71 4356 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3393c6af 4357
0c046afd 4358 dev->vol.migr_state = 1;
1484e727 4359 set_migr_type(dev, migr_type);
4036e7ee 4360 set_vol_curr_migr_unit(dev, 0);
238c0a71 4361 dest = get_imsm_map(dev, MAP_1);
0c046afd 4362
0556e1a2 4363 /* duplicate and then set the target end state in map[0] */
3393c6af 4364 memcpy(dest, src, sizeof_imsm_map(src));
fb12a745 4365 if (migr_type == MIGR_GEN_MIGR) {
0556e1a2
DW
4366 __u32 ord;
4367 int i;
4368
4369 for (i = 0; i < src->num_members; i++) {
4370 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
4371 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
4372 }
4373 }
4374
8e59f3d8
AK
4375 if (migr_type == MIGR_GEN_MIGR)
4376 /* Clear migration record */
4377 memset(super->migr_rec, 0, sizeof(struct migr_record));
4378
0c046afd 4379 src->map_state = to_state;
949c47a0 4380}
f8f603f1 4381
809da78e
AK
4382static void end_migration(struct imsm_dev *dev, struct intel_super *super,
4383 __u8 map_state)
f8f603f1 4384{
238c0a71
AK
4385 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4386 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
4387 MAP_0 : MAP_1);
28bce06f 4388 int i, j;
0556e1a2
DW
4389
4390 /* merge any IMSM_ORD_REBUILD bits that were not successfully
4391 * completed in the last migration.
4392 *
28bce06f 4393 * FIXME add support for raid-level-migration
0556e1a2 4394 */
195d1d76 4395 if (map_state != map->map_state && (is_gen_migration(dev) == false) &&
089f9d79 4396 prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
809da78e
AK
4397 /* when final map state is other than expected
4398 * merge maps (not for migration)
4399 */
4400 int failed;
4401
4402 for (i = 0; i < prev->num_members; i++)
4403 for (j = 0; j < map->num_members; j++)
4404 /* during online capacity expansion
4405 * disks position can be changed
4406 * if takeover is used
4407 */
4408 if (ord_to_idx(map->disk_ord_tbl[j]) ==
4409 ord_to_idx(prev->disk_ord_tbl[i])) {
4410 map->disk_ord_tbl[j] |=
4411 prev->disk_ord_tbl[i];
4412 break;
4413 }
4414 failed = imsm_count_failed(super, dev, MAP_0);
4415 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
4416 }
f8f603f1
DW
4417
4418 dev->vol.migr_state = 0;
ea672ee1 4419 set_migr_type(dev, 0);
4036e7ee 4420 set_vol_curr_migr_unit(dev, 0);
f8f603f1
DW
4421 map->map_state = map_state;
4422}
949c47a0
DW
4423
4424static int parse_raid_devices(struct intel_super *super)
4425{
4426 int i;
4427 struct imsm_dev *dev_new;
4d7b1503 4428 size_t len, len_migr;
401d313b 4429 size_t max_len = 0;
4d7b1503
DW
4430 size_t space_needed = 0;
4431 struct imsm_super *mpb = super->anchor;
949c47a0
DW
4432
4433 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4434 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 4435 struct intel_dev *dv;
949c47a0 4436
4d7b1503
DW
4437 len = sizeof_imsm_dev(dev_iter, 0);
4438 len_migr = sizeof_imsm_dev(dev_iter, 1);
4439 if (len_migr > len)
4440 space_needed += len_migr - len;
ca9de185 4441
503975b9 4442 dv = xmalloc(sizeof(*dv));
401d313b
AK
4443 if (max_len < len_migr)
4444 max_len = len_migr;
4445 if (max_len > len_migr)
4446 space_needed += max_len - len_migr;
503975b9 4447 dev_new = xmalloc(max_len);
949c47a0 4448 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
4449 dv->dev = dev_new;
4450 dv->index = i;
4451 dv->next = super->devlist;
4452 super->devlist = dv;
949c47a0 4453 }
cdddbdbc 4454
4d7b1503
DW
4455 /* ensure that super->buf is large enough when all raid devices
4456 * are migrating
4457 */
4458 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
4459 void *buf;
4460
f36a9ecd
PB
4461 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
4462 super->sector_size);
4463 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
4d7b1503
DW
4464 return 1;
4465
1f45a8ad
DW
4466 memcpy(buf, super->buf, super->len);
4467 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
4468 free(super->buf);
4469 super->buf = buf;
4470 super->len = len;
4471 }
ca9de185 4472
bbab0940
TM
4473 super->extra_space += space_needed;
4474
cdddbdbc
DW
4475 return 0;
4476}
4477
e2f41b2c
AK
4478/*******************************************************************************
4479 * Function: check_mpb_migr_compatibility
4480 * Description: Function checks for unsupported migration features:
4481 * - migration optimization area (pba_of_lba0)
4482 * - descending reshape (ascending_migr)
4483 * Parameters:
4484 * super : imsm metadata information
4485 * Returns:
4486 * 0 : migration is compatible
4487 * -1 : migration is not compatible
4488 ******************************************************************************/
4489int check_mpb_migr_compatibility(struct intel_super *super)
4490{
4491 struct imsm_map *map0, *map1;
4492 struct migr_record *migr_rec = super->migr_rec;
4493 int i;
4494
4495 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4496 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4497
756a15f3 4498 if (dev_iter->vol.migr_state == 1 &&
e2f41b2c
AK
4499 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
4500 /* This device is migrating */
238c0a71
AK
4501 map0 = get_imsm_map(dev_iter, MAP_0);
4502 map1 = get_imsm_map(dev_iter, MAP_1);
5551b113 4503 if (pba_of_lba0(map0) != pba_of_lba0(map1))
e2f41b2c
AK
4504 /* migration optimization area was used */
4505 return -1;
fc54fe7a
JS
4506 if (migr_rec->ascending_migr == 0 &&
4507 migr_rec->dest_depth_per_unit > 0)
e2f41b2c
AK
4508 /* descending reshape not supported yet */
4509 return -1;
4510 }
4511 }
4512 return 0;
4513}
4514
d23fe947 4515static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 4516
cdddbdbc 4517/* load_imsm_mpb - read matrix metadata
f2f5c343 4518 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
4519 */
4520static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
4521{
4522 unsigned long long dsize;
cdddbdbc 4523 unsigned long long sectors;
f36a9ecd 4524 unsigned int sector_size = super->sector_size;
cdddbdbc 4525 struct stat;
6416d527 4526 struct imsm_super *anchor;
cdddbdbc
DW
4527 __u32 check_sum;
4528
cdddbdbc 4529 get_dev_size(fd, NULL, &dsize);
f36a9ecd 4530 if (dsize < 2*sector_size) {
64436f06 4531 if (devname)
e7b84f9d
N
4532 pr_err("%s: device to small for imsm\n",
4533 devname);
64436f06
N
4534 return 1;
4535 }
cdddbdbc 4536
f36a9ecd 4537 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
cdddbdbc 4538 if (devname)
e7b84f9d
N
4539 pr_err("Cannot seek to anchor block on %s: %s\n",
4540 devname, strerror(errno));
cdddbdbc
DW
4541 return 1;
4542 }
4543
f36a9ecd 4544 if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
ad97895e 4545 if (devname)
7a862a02 4546 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
ad97895e
DW
4547 return 1;
4548 }
466070ad 4549 if ((unsigned int)read(fd, anchor, sector_size) != sector_size) {
cdddbdbc 4550 if (devname)
e7b84f9d
N
4551 pr_err("Cannot read anchor block on %s: %s\n",
4552 devname, strerror(errno));
6416d527 4553 free(anchor);
cdddbdbc
DW
4554 return 1;
4555 }
4556
6416d527 4557 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc 4558 if (devname)
e7b84f9d 4559 pr_err("no IMSM anchor on %s\n", devname);
6416d527 4560 free(anchor);
cdddbdbc
DW
4561 return 2;
4562 }
4563
d23fe947 4564 __free_imsm(super, 0);
f2f5c343
LM
4565 /* reload capability and hba */
4566
4567 /* capability and hba must be updated with new super allocation */
d424212e 4568 find_intel_hba_capability(fd, super, devname);
f36a9ecd
PB
4569 super->len = ROUND_UP(anchor->mpb_size, sector_size);
4570 if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
cdddbdbc 4571 if (devname)
e7b84f9d
N
4572 pr_err("unable to allocate %zu byte mpb buffer\n",
4573 super->len);
6416d527 4574 free(anchor);
cdddbdbc
DW
4575 return 2;
4576 }
f36a9ecd 4577 memcpy(super->buf, anchor, sector_size);
cdddbdbc 4578
f36a9ecd 4579 sectors = mpb_sectors(anchor, sector_size) - 1;
6416d527 4580 free(anchor);
8e59f3d8 4581
85337573
AO
4582 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
4583 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 4584 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8 4585 free(super->buf);
50cd06b4 4586 super->buf = NULL;
8e59f3d8
AK
4587 return 2;
4588 }
51d83f5d 4589 super->clean_migration_record_by_mdmon = 0;
8e59f3d8 4590
949c47a0 4591 if (!sectors) {
ecf45690
DW
4592 check_sum = __gen_imsm_checksum(super->anchor);
4593 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4594 if (devname)
e7b84f9d
N
4595 pr_err("IMSM checksum %x != %x on %s\n",
4596 check_sum,
4597 __le32_to_cpu(super->anchor->check_sum),
4598 devname);
ecf45690
DW
4599 return 2;
4600 }
4601
a2b97981 4602 return 0;
949c47a0 4603 }
cdddbdbc
DW
4604
4605 /* read the extended mpb */
f36a9ecd 4606 if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
cdddbdbc 4607 if (devname)
e7b84f9d
N
4608 pr_err("Cannot seek to extended mpb on %s: %s\n",
4609 devname, strerror(errno));
cdddbdbc
DW
4610 return 1;
4611 }
4612
f36a9ecd
PB
4613 if ((unsigned int)read(fd, super->buf + sector_size,
4614 super->len - sector_size) != super->len - sector_size) {
cdddbdbc 4615 if (devname)
e7b84f9d
N
4616 pr_err("Cannot read extended mpb on %s: %s\n",
4617 devname, strerror(errno));
cdddbdbc
DW
4618 return 2;
4619 }
4620
949c47a0
DW
4621 check_sum = __gen_imsm_checksum(super->anchor);
4622 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc 4623 if (devname)
e7b84f9d
N
4624 pr_err("IMSM checksum %x != %x on %s\n",
4625 check_sum, __le32_to_cpu(super->anchor->check_sum),
4626 devname);
db575f3b 4627 return 3;
cdddbdbc
DW
4628 }
4629
a2b97981
DW
4630 return 0;
4631}
4632
8e59f3d8
AK
4633static int read_imsm_migr_rec(int fd, struct intel_super *super);
4634
97f81ee2
CA
4635/* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
4636static void clear_hi(struct intel_super *super)
4637{
4638 struct imsm_super *mpb = super->anchor;
4639 int i, n;
4640 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
4641 return;
4642 for (i = 0; i < mpb->num_disks; ++i) {
4643 struct imsm_disk *disk = &mpb->disk[i];
4644 disk->total_blocks_hi = 0;
4645 }
4646 for (i = 0; i < mpb->num_raid_devs; ++i) {
4647 struct imsm_dev *dev = get_imsm_dev(super, i);
97f81ee2
CA
4648 for (n = 0; n < 2; ++n) {
4649 struct imsm_map *map = get_imsm_map(dev, n);
4650 if (!map)
4651 continue;
4652 map->pba_of_lba0_hi = 0;
4653 map->blocks_per_member_hi = 0;
4654 map->num_data_stripes_hi = 0;
4655 }
4656 }
4657}
4658
a2b97981
DW
4659static int
4660load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
4661{
4662 int err;
4663
4664 err = load_imsm_mpb(fd, super, devname);
4665 if (err)
4666 return err;
f36a9ecd
PB
4667 if (super->sector_size == 4096)
4668 convert_from_4k(super);
a2b97981
DW
4669 err = load_imsm_disk(fd, super, devname, keep_fd);
4670 if (err)
4671 return err;
4672 err = parse_raid_devices(super);
8d67477f
TM
4673 if (err)
4674 return err;
4675 err = load_bbm_log(super);
97f81ee2 4676 clear_hi(super);
a2b97981 4677 return err;
cdddbdbc
DW
4678}
4679
4389ce73 4680static void __free_imsm_disk(struct dl *d, int do_close)
ae6aad82 4681{
4389ce73
MT
4682 if (do_close)
4683 close_fd(&d->fd);
ae6aad82
DW
4684 if (d->devname)
4685 free(d->devname);
0dcecb2e
DW
4686 if (d->e)
4687 free(d->e);
ae6aad82
DW
4688 free(d);
4689
4690}
1a64be56 4691
cdddbdbc
DW
4692static void free_imsm_disks(struct intel_super *super)
4693{
47ee5a45 4694 struct dl *d;
cdddbdbc 4695
47ee5a45
DW
4696 while (super->disks) {
4697 d = super->disks;
cdddbdbc 4698 super->disks = d->next;
3a85bf0e 4699 __free_imsm_disk(d, 1);
cdddbdbc 4700 }
cb82edca
AK
4701 while (super->disk_mgmt_list) {
4702 d = super->disk_mgmt_list;
4703 super->disk_mgmt_list = d->next;
3a85bf0e 4704 __free_imsm_disk(d, 1);
cb82edca 4705 }
47ee5a45
DW
4706 while (super->missing) {
4707 d = super->missing;
4708 super->missing = d->next;
3a85bf0e 4709 __free_imsm_disk(d, 1);
47ee5a45
DW
4710 }
4711
cdddbdbc
DW
4712}
4713
9ca2c81c 4714/* free all the pieces hanging off of a super pointer */
d23fe947 4715static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 4716{
88654014
LM
4717 struct intel_hba *elem, *next;
4718
9ca2c81c 4719 if (super->buf) {
949c47a0 4720 free(super->buf);
9ca2c81c
DW
4721 super->buf = NULL;
4722 }
f2f5c343
LM
4723 /* unlink capability description */
4724 super->orom = NULL;
8e59f3d8
AK
4725 if (super->migr_rec_buf) {
4726 free(super->migr_rec_buf);
4727 super->migr_rec_buf = NULL;
4728 }
d23fe947
DW
4729 if (free_disks)
4730 free_imsm_disks(super);
ba2de7ba 4731 free_devlist(super);
88654014
LM
4732 elem = super->hba;
4733 while (elem) {
4734 if (elem->path)
4735 free((void *)elem->path);
4736 next = elem->next;
4737 free(elem);
4738 elem = next;
88c32bb1 4739 }
8d67477f
TM
4740 if (super->bbm_log)
4741 free(super->bbm_log);
88654014 4742 super->hba = NULL;
cdddbdbc
DW
4743}
4744
9ca2c81c
DW
4745static void free_imsm(struct intel_super *super)
4746{
d23fe947 4747 __free_imsm(super, 1);
928f1424 4748 free(super->bb.entries);
9ca2c81c
DW
4749 free(super);
4750}
cdddbdbc
DW
4751
4752static void free_super_imsm(struct supertype *st)
4753{
4754 struct intel_super *super = st->sb;
4755
4756 if (!super)
4757 return;
4758
4759 free_imsm(super);
4760 st->sb = NULL;
4761}
4762
49133e57 4763static struct intel_super *alloc_super(void)
c2c087e6 4764{
503975b9 4765 struct intel_super *super = xcalloc(1, sizeof(*super));
c2c087e6 4766
503975b9
N
4767 super->current_vol = -1;
4768 super->create_offset = ~((unsigned long long) 0);
928f1424
TM
4769
4770 super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES *
4771 sizeof(struct md_bb_entry));
4772 if (!super->bb.entries) {
4773 free(super);
4774 return NULL;
4775 }
4776
c2c087e6
DW
4777 return super;
4778}
4779
f0f5a016
LM
4780/*
4781 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4782 */
d424212e 4783static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
4784{
4785 struct sys_dev *hba_name;
4786 int rv = 0;
4787
4389ce73 4788 if (is_fd_valid(fd) && test_partition(fd)) {
3a30e28e
MT
4789 pr_err("imsm: %s is a partition, cannot be used in IMSM\n",
4790 devname);
4791 return 1;
4792 }
420dafcd 4793 if (!is_fd_valid(fd) || check_no_platform()) {
f2f5c343 4794 super->orom = NULL;
f0f5a016
LM
4795 super->hba = NULL;
4796 return 0;
4797 }
4798 hba_name = find_disk_attached_hba(fd, NULL);
4799 if (!hba_name) {
d424212e 4800 if (devname)
e7b84f9d
N
4801 pr_err("%s is not attached to Intel(R) RAID controller.\n",
4802 devname);
f0f5a016
LM
4803 return 1;
4804 }
4805 rv = attach_hba_to_super(super, hba_name);
4806 if (rv == 2) {
d424212e
N
4807 if (devname) {
4808 struct intel_hba *hba = super->hba;
f0f5a016 4809
60f0f54d
PB
4810 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4811 " but the container is assigned to Intel(R) %s %s (",
d424212e 4812 devname,
614902f6 4813 get_sys_dev_type(hba_name->type),
75350d87
KF
4814 hba_name->type == SYS_DEV_VMD || hba_name->type == SYS_DEV_SATA_VMD ?
4815 "domain" : "RAID controller",
f0f5a016 4816 hba_name->pci_id ? : "Err!",
60f0f54d 4817 get_sys_dev_type(super->hba->type),
75350d87
KF
4818 hba->type == SYS_DEV_VMD || hba_name->type == SYS_DEV_SATA_VMD ?
4819 "domain" : "RAID controller");
f0f5a016 4820
f0f5a016
LM
4821 while (hba) {
4822 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4823 if (hba->next)
4824 fprintf(stderr, ", ");
4825 hba = hba->next;
4826 }
6b781d33 4827 fprintf(stderr, ").\n"
cca67208 4828 " Mixing devices attached to different controllers is not allowed.\n");
f0f5a016 4829 }
f0f5a016
LM
4830 return 2;
4831 }
6b781d33 4832 super->orom = find_imsm_capability(hba_name);
f2f5c343
LM
4833 if (!super->orom)
4834 return 3;
614902f6 4835
f0f5a016
LM
4836 return 0;
4837}
4838
47ee5a45
DW
4839/* find_missing - helper routine for load_super_imsm_all that identifies
4840 * disks that have disappeared from the system. This routine relies on
4841 * the mpb being uptodate, which it is at load time.
4842 */
4843static int find_missing(struct intel_super *super)
4844{
4845 int i;
4846 struct imsm_super *mpb = super->anchor;
4847 struct dl *dl;
4848 struct imsm_disk *disk;
47ee5a45
DW
4849
4850 for (i = 0; i < mpb->num_disks; i++) {
4851 disk = __get_imsm_disk(mpb, i);
54c2c1ea 4852 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
4853 if (dl)
4854 continue;
47ee5a45 4855
503975b9 4856 dl = xmalloc(sizeof(*dl));
47ee5a45
DW
4857 dl->major = 0;
4858 dl->minor = 0;
4859 dl->fd = -1;
503975b9 4860 dl->devname = xstrdup("missing");
47ee5a45
DW
4861 dl->index = i;
4862 serialcpy(dl->serial, disk->serial);
4863 dl->disk = *disk;
689c9bf3 4864 dl->e = NULL;
47ee5a45
DW
4865 dl->next = super->missing;
4866 super->missing = dl;
4867 }
4868
4869 return 0;
4870}
4871
a2b97981
DW
4872static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4873{
4874 struct intel_disk *idisk = disk_list;
4875
4876 while (idisk) {
4877 if (serialcmp(idisk->disk.serial, serial) == 0)
4878 break;
4879 idisk = idisk->next;
4880 }
4881
4882 return idisk;
4883}
4884
4885static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4886 struct intel_super *super,
4887 struct intel_disk **disk_list)
4888{
4889 struct imsm_disk *d = &super->disks->disk;
4890 struct imsm_super *mpb = super->anchor;
4891 int i, j;
4892
4893 for (i = 0; i < tbl_size; i++) {
4894 struct imsm_super *tbl_mpb = table[i]->anchor;
4895 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4896
4897 if (tbl_mpb->family_num == mpb->family_num) {
4898 if (tbl_mpb->check_sum == mpb->check_sum) {
1ade5cc1
N
4899 dprintf("mpb from %d:%d matches %d:%d\n",
4900 super->disks->major,
a2b97981
DW
4901 super->disks->minor,
4902 table[i]->disks->major,
4903 table[i]->disks->minor);
4904 break;
4905 }
4906
4907 if (((is_configured(d) && !is_configured(tbl_d)) ||
4908 is_configured(d) == is_configured(tbl_d)) &&
4909 tbl_mpb->generation_num < mpb->generation_num) {
4910 /* current version of the mpb is a
4911 * better candidate than the one in
4912 * super_table, but copy over "cross
4913 * generational" status
4914 */
4915 struct intel_disk *idisk;
4916
1ade5cc1
N
4917 dprintf("mpb from %d:%d replaces %d:%d\n",
4918 super->disks->major,
a2b97981
DW
4919 super->disks->minor,
4920 table[i]->disks->major,
4921 table[i]->disks->minor);
4922
4923 idisk = disk_list_get(tbl_d->serial, *disk_list);
4924 if (idisk && is_failed(&idisk->disk))
4925 tbl_d->status |= FAILED_DISK;
4926 break;
4927 } else {
4928 struct intel_disk *idisk;
4929 struct imsm_disk *disk;
4930
4931 /* tbl_mpb is more up to date, but copy
4932 * over cross generational status before
4933 * returning
4934 */
4935 disk = __serial_to_disk(d->serial, mpb, NULL);
4936 if (disk && is_failed(disk))
4937 d->status |= FAILED_DISK;
4938
4939 idisk = disk_list_get(d->serial, *disk_list);
4940 if (idisk) {
4941 idisk->owner = i;
4942 if (disk && is_configured(disk))
4943 idisk->disk.status |= CONFIGURED_DISK;
4944 }
4945
1ade5cc1
N
4946 dprintf("mpb from %d:%d prefer %d:%d\n",
4947 super->disks->major,
a2b97981
DW
4948 super->disks->minor,
4949 table[i]->disks->major,
4950 table[i]->disks->minor);
4951
4952 return tbl_size;
4953 }
4954 }
4955 }
4956
4957 if (i >= tbl_size)
4958 table[tbl_size++] = super;
4959 else
4960 table[i] = super;
4961
4962 /* update/extend the merged list of imsm_disk records */
4963 for (j = 0; j < mpb->num_disks; j++) {
4964 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4965 struct intel_disk *idisk;
4966
4967 idisk = disk_list_get(disk->serial, *disk_list);
4968 if (idisk) {
4969 idisk->disk.status |= disk->status;
4970 if (is_configured(&idisk->disk) ||
4971 is_failed(&idisk->disk))
4972 idisk->disk.status &= ~(SPARE_DISK);
4973 } else {
503975b9 4974 idisk = xcalloc(1, sizeof(*idisk));
a2b97981
DW
4975 idisk->owner = IMSM_UNKNOWN_OWNER;
4976 idisk->disk = *disk;
4977 idisk->next = *disk_list;
4978 *disk_list = idisk;
4979 }
4980
4981 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4982 idisk->owner = i;
4983 }
4984
4985 return tbl_size;
4986}
4987
4988static struct intel_super *
4989validate_members(struct intel_super *super, struct intel_disk *disk_list,
4990 const int owner)
4991{
4992 struct imsm_super *mpb = super->anchor;
4993 int ok_count = 0;
4994 int i;
4995
4996 for (i = 0; i < mpb->num_disks; i++) {
4997 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4998 struct intel_disk *idisk;
4999
5000 idisk = disk_list_get(disk->serial, disk_list);
5001 if (idisk) {
5002 if (idisk->owner == owner ||
5003 idisk->owner == IMSM_UNKNOWN_OWNER)
5004 ok_count++;
5005 else
1ade5cc1
N
5006 dprintf("'%.16s' owner %d != %d\n",
5007 disk->serial, idisk->owner,
a2b97981
DW
5008 owner);
5009 } else {
1ade5cc1
N
5010 dprintf("unknown disk %x [%d]: %.16s\n",
5011 __le32_to_cpu(mpb->family_num), i,
a2b97981
DW
5012 disk->serial);
5013 break;
5014 }
5015 }
5016
5017 if (ok_count == mpb->num_disks)
5018 return super;
5019 return NULL;
5020}
5021
5022static void show_conflicts(__u32 family_num, struct intel_super *super_list)
5023{
5024 struct intel_super *s;
5025
5026 for (s = super_list; s; s = s->next) {
5027 if (family_num != s->anchor->family_num)
5028 continue;
e12b3daa 5029 pr_err("Conflict, offlining family %#x on '%s'\n",
a2b97981
DW
5030 __le32_to_cpu(family_num), s->disks->devname);
5031 }
5032}
5033
5034static struct intel_super *
5035imsm_thunderdome(struct intel_super **super_list, int len)
5036{
5037 struct intel_super *super_table[len];
5038 struct intel_disk *disk_list = NULL;
5039 struct intel_super *champion, *spare;
5040 struct intel_super *s, **del;
5041 int tbl_size = 0;
5042 int conflict;
5043 int i;
5044
5045 memset(super_table, 0, sizeof(super_table));
5046 for (s = *super_list; s; s = s->next)
5047 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
5048
5049 for (i = 0; i < tbl_size; i++) {
5050 struct imsm_disk *d;
5051 struct intel_disk *idisk;
5052 struct imsm_super *mpb = super_table[i]->anchor;
5053
5054 s = super_table[i];
5055 d = &s->disks->disk;
5056
5057 /* 'd' must appear in merged disk list for its
5058 * configuration to be valid
5059 */
5060 idisk = disk_list_get(d->serial, disk_list);
5061 if (idisk && idisk->owner == i)
5062 s = validate_members(s, disk_list, i);
5063 else
5064 s = NULL;
5065
5066 if (!s)
1ade5cc1
N
5067 dprintf("marking family: %#x from %d:%d offline\n",
5068 mpb->family_num,
a2b97981
DW
5069 super_table[i]->disks->major,
5070 super_table[i]->disks->minor);
5071 super_table[i] = s;
5072 }
5073
5074 /* This is where the mdadm implementation differs from the Windows
5075 * driver which has no strict concept of a container. We can only
5076 * assemble one family from a container, so when returning a prodigal
5077 * array member to this system the code will not be able to disambiguate
5078 * the container contents that should be assembled ("foreign" versus
5079 * "local"). It requires user intervention to set the orig_family_num
5080 * to a new value to establish a new container. The Windows driver in
5081 * this situation fixes up the volume name in place and manages the
5082 * foreign array as an independent entity.
5083 */
5084 s = NULL;
5085 spare = NULL;
5086 conflict = 0;
5087 for (i = 0; i < tbl_size; i++) {
5088 struct intel_super *tbl_ent = super_table[i];
5089 int is_spare = 0;
5090
5091 if (!tbl_ent)
5092 continue;
5093
5094 if (tbl_ent->anchor->num_raid_devs == 0) {
5095 spare = tbl_ent;
5096 is_spare = 1;
5097 }
5098
5099 if (s && !is_spare) {
5100 show_conflicts(tbl_ent->anchor->family_num, *super_list);
5101 conflict++;
5102 } else if (!s && !is_spare)
5103 s = tbl_ent;
5104 }
5105
5106 if (!s)
5107 s = spare;
5108 if (!s) {
5109 champion = NULL;
5110 goto out;
5111 }
5112 champion = s;
5113
5114 if (conflict)
7a862a02 5115 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
a2b97981
DW
5116 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
5117
5118 /* collect all dl's onto 'champion', and update them to
5119 * champion's version of the status
5120 */
5121 for (s = *super_list; s; s = s->next) {
5122 struct imsm_super *mpb = champion->anchor;
5123 struct dl *dl = s->disks;
5124
5125 if (s == champion)
5126 continue;
5127
5d7b407a
CA
5128 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
5129
a2b97981
DW
5130 for (i = 0; i < mpb->num_disks; i++) {
5131 struct imsm_disk *disk;
5132
5133 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
5134 if (disk) {
5135 dl->disk = *disk;
5136 /* only set index on disks that are a member of
5137 * a populated contianer, i.e. one with
5138 * raid_devs
5139 */
5140 if (is_failed(&dl->disk))
5141 dl->index = -2;
5142 else if (is_spare(&dl->disk))
5143 dl->index = -1;
5144 break;
5145 }
5146 }
5147
5148 if (i >= mpb->num_disks) {
5149 struct intel_disk *idisk;
5150
5151 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 5152 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
5153 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
5154 dl->index = -1;
5155 else {
5156 dl->index = -2;
5157 continue;
5158 }
5159 }
5160
5161 dl->next = champion->disks;
5162 champion->disks = dl;
5163 s->disks = NULL;
5164 }
5165
5166 /* delete 'champion' from super_list */
5167 for (del = super_list; *del; ) {
5168 if (*del == champion) {
5169 *del = (*del)->next;
5170 break;
5171 } else
5172 del = &(*del)->next;
5173 }
5174 champion->next = NULL;
5175
5176 out:
5177 while (disk_list) {
5178 struct intel_disk *idisk = disk_list;
5179
5180 disk_list = disk_list->next;
5181 free(idisk);
5182 }
5183
5184 return champion;
5185}
5186
9587c373
LM
5187static int
5188get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4dd2df09 5189static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373 5190 int major, int minor, int keep_fd);
ec50f7b6
LM
5191static int
5192get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5193 int *max, int keep_fd);
5194
cdddbdbc 5195static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
ec50f7b6
LM
5196 char *devname, struct md_list *devlist,
5197 int keep_fd)
cdddbdbc 5198{
a2b97981
DW
5199 struct intel_super *super_list = NULL;
5200 struct intel_super *super = NULL;
a2b97981 5201 int err = 0;
9587c373 5202 int i = 0;
dab4a513 5203
4389ce73 5204 if (is_fd_valid(fd))
9587c373
LM
5205 /* 'fd' is an opened container */
5206 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
5207 else
ec50f7b6
LM
5208 /* get super block from devlist devices */
5209 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
9587c373 5210 if (err)
1602d52c 5211 goto error;
a2b97981
DW
5212 /* all mpbs enter, maybe one leaves */
5213 super = imsm_thunderdome(&super_list, i);
5214 if (!super) {
5215 err = 1;
5216 goto error;
cdddbdbc
DW
5217 }
5218
47ee5a45
DW
5219 if (find_missing(super) != 0) {
5220 free_imsm(super);
a2b97981
DW
5221 err = 2;
5222 goto error;
47ee5a45 5223 }
8e59f3d8
AK
5224
5225 /* load migration record */
2f86fda3 5226 err = load_imsm_migr_rec(super);
4c965cc9
AK
5227 if (err == -1) {
5228 /* migration is in progress,
5229 * but migr_rec cannot be loaded,
5230 */
8e59f3d8
AK
5231 err = 4;
5232 goto error;
5233 }
e2f41b2c
AK
5234
5235 /* Check migration compatibility */
089f9d79 5236 if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 5237 pr_err("Unsupported migration detected");
e2f41b2c
AK
5238 if (devname)
5239 fprintf(stderr, " on %s\n", devname);
5240 else
5241 fprintf(stderr, " (IMSM).\n");
5242
5243 err = 5;
5244 goto error;
5245 }
5246
a2b97981
DW
5247 err = 0;
5248
5249 error:
5250 while (super_list) {
5251 struct intel_super *s = super_list;
5252
5253 super_list = super_list->next;
5254 free_imsm(s);
5255 }
9587c373 5256
a2b97981
DW
5257 if (err)
5258 return err;
f7e7067b 5259
cdddbdbc 5260 *sbp = super;
4389ce73 5261 if (is_fd_valid(fd))
4dd2df09 5262 strcpy(st->container_devnm, fd2devnm(fd));
9587c373 5263 else
4dd2df09 5264 st->container_devnm[0] = 0;
a2b97981 5265 if (err == 0 && st->ss == NULL) {
bf5a934a 5266 st->ss = &super_imsm;
cdddbdbc
DW
5267 st->minor_version = 0;
5268 st->max_devs = IMSM_MAX_DEVICES;
5269 }
cdddbdbc
DW
5270 return 0;
5271}
2b959fbf 5272
ec50f7b6
LM
5273static int
5274get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5275 int *max, int keep_fd)
5276{
5277 struct md_list *tmpdev;
5278 int err = 0;
5279 int i = 0;
9587c373 5280
ec50f7b6
LM
5281 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5282 if (tmpdev->used != 1)
5283 continue;
5284 if (tmpdev->container == 1) {
ca9de185 5285 int lmax = 0;
ec50f7b6 5286 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4389ce73 5287 if (!is_fd_valid(fd)) {
e7b84f9d 5288 pr_err("cannot open device %s: %s\n",
ec50f7b6
LM
5289 tmpdev->devname, strerror(errno));
5290 err = 8;
5291 goto error;
5292 }
5293 err = get_sra_super_block(fd, super_list,
5294 tmpdev->devname, &lmax,
5295 keep_fd);
5296 i += lmax;
5297 close(fd);
5298 if (err) {
5299 err = 7;
5300 goto error;
5301 }
5302 } else {
5303 int major = major(tmpdev->st_rdev);
5304 int minor = minor(tmpdev->st_rdev);
5305 err = get_super_block(super_list,
4dd2df09 5306 NULL,
ec50f7b6
LM
5307 tmpdev->devname,
5308 major, minor,
5309 keep_fd);
5310 i++;
5311 if (err) {
5312 err = 6;
5313 goto error;
5314 }
5315 }
5316 }
5317 error:
5318 *max = i;
5319 return err;
5320}
9587c373 5321
4dd2df09 5322static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373
LM
5323 int major, int minor, int keep_fd)
5324{
594dc1b8 5325 struct intel_super *s;
9587c373
LM
5326 char nm[32];
5327 int dfd = -1;
9587c373
LM
5328 int err = 0;
5329 int retry;
5330
5331 s = alloc_super();
5332 if (!s) {
5333 err = 1;
5334 goto error;
5335 }
5336
5337 sprintf(nm, "%d:%d", major, minor);
5338 dfd = dev_open(nm, O_RDWR);
4389ce73 5339 if (!is_fd_valid(dfd)) {
9587c373
LM
5340 err = 2;
5341 goto error;
5342 }
5343
aec01630
JS
5344 if (!get_dev_sector_size(dfd, NULL, &s->sector_size)) {
5345 err = 2;
5346 goto error;
5347 }
cb8f6859 5348 find_intel_hba_capability(dfd, s, devname);
9587c373
LM
5349 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5350
5351 /* retry the load if we might have raced against mdmon */
4dd2df09 5352 if (err == 3 && devnm && mdmon_running(devnm))
9587c373 5353 for (retry = 0; retry < 3; retry++) {
239b3cc0 5354 sleep_for(0, MSEC_TO_NSEC(3), true);
9587c373
LM
5355 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5356 if (err != 3)
5357 break;
5358 }
5359 error:
5360 if (!err) {
5361 s->next = *super_list;
5362 *super_list = s;
5363 } else {
5364 if (s)
8d67477f 5365 free_imsm(s);
4389ce73 5366 close_fd(&dfd);
9587c373 5367 }
4389ce73
MT
5368 if (!keep_fd)
5369 close_fd(&dfd);
9587c373
LM
5370 return err;
5371
5372}
5373
5374static int
5375get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
5376{
5377 struct mdinfo *sra;
4dd2df09 5378 char *devnm;
9587c373
LM
5379 struct mdinfo *sd;
5380 int err = 0;
5381 int i = 0;
4dd2df09 5382 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
9587c373
LM
5383 if (!sra)
5384 return 1;
5385
5386 if (sra->array.major_version != -1 ||
5387 sra->array.minor_version != -2 ||
5388 strcmp(sra->text_version, "imsm") != 0) {
5389 err = 1;
5390 goto error;
5391 }
5392 /* load all mpbs */
4dd2df09 5393 devnm = fd2devnm(fd);
9587c373 5394 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4dd2df09 5395 if (get_super_block(super_list, devnm, devname,
9587c373
LM
5396 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
5397 err = 7;
5398 goto error;
5399 }
5400 }
5401 error:
5402 sysfs_free(sra);
5403 *max = i;
5404 return err;
5405}
5406
2b959fbf
N
5407static int load_container_imsm(struct supertype *st, int fd, char *devname)
5408{
ec50f7b6 5409 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
2b959fbf 5410}
cdddbdbc
DW
5411
5412static int load_super_imsm(struct supertype *st, int fd, char *devname)
5413{
5414 struct intel_super *super;
5415 int rv;
8a3544f8 5416 int retry;
cdddbdbc 5417
357ac106 5418 if (test_partition(fd))
691c6ee1
N
5419 /* IMSM not allowed on partitions */
5420 return 1;
5421
37424f13
DW
5422 free_super_imsm(st);
5423
49133e57 5424 super = alloc_super();
8d67477f
TM
5425 if (!super)
5426 return 1;
3a85bf0e
MG
5427
5428 if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
5429 free_imsm(super);
5430 return 1;
5431 }
ea2bc72b
LM
5432 /* Load hba and capabilities if they exist.
5433 * But do not preclude loading metadata in case capabilities or hba are
5434 * non-compliant and ignore_hw_compat is set.
5435 */
d424212e 5436 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5437 /* no orom/efi or non-intel hba of the disk */
089f9d79 5438 if (rv != 0 && st->ignore_hw_compat == 0) {
f2f5c343 5439 if (devname)
e7b84f9d 5440 pr_err("No OROM/EFI properties for %s\n", devname);
f2f5c343
LM
5441 free_imsm(super);
5442 return 2;
5443 }
a2b97981 5444 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc 5445
8a3544f8
AP
5446 /* retry the load if we might have raced against mdmon */
5447 if (rv == 3) {
f96b1302
AP
5448 struct mdstat_ent *mdstat = NULL;
5449 char *name = fd2kname(fd);
5450
5451 if (name)
5452 mdstat = mdstat_by_component(name);
8a3544f8
AP
5453
5454 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
5455 for (retry = 0; retry < 3; retry++) {
239b3cc0 5456 sleep_for(0, MSEC_TO_NSEC(3), true);
8a3544f8
AP
5457 rv = load_and_parse_mpb(fd, super, devname, 0);
5458 if (rv != 3)
5459 break;
5460 }
5461 }
5462
5463 free_mdstat(mdstat);
5464 }
5465
cdddbdbc
DW
5466 if (rv) {
5467 if (devname)
7a862a02 5468 pr_err("Failed to load all information sections on %s\n", devname);
cdddbdbc
DW
5469 free_imsm(super);
5470 return rv;
5471 }
5472
5473 st->sb = super;
5474 if (st->ss == NULL) {
5475 st->ss = &super_imsm;
5476 st->minor_version = 0;
5477 st->max_devs = IMSM_MAX_DEVICES;
5478 }
8e59f3d8
AK
5479
5480 /* load migration record */
2f86fda3 5481 if (load_imsm_migr_rec(super) == 0) {
2e062e82
AK
5482 /* Check for unsupported migration features */
5483 if (check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 5484 pr_err("Unsupported migration detected");
2e062e82
AK
5485 if (devname)
5486 fprintf(stderr, " on %s\n", devname);
5487 else
5488 fprintf(stderr, " (IMSM).\n");
5489 return 3;
5490 }
e2f41b2c
AK
5491 }
5492
cdddbdbc
DW
5493 return 0;
5494}
5495
ef6ffade
DW
5496static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
5497{
5498 if (info->level == 1)
5499 return 128;
5500 return info->chunk_size >> 9;
5501}
5502
5551b113
CA
5503static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
5504 unsigned long long size)
fcfd9599 5505{
4025c288 5506 if (info->level == 1)
5551b113 5507 return size * 2;
4025c288 5508 else
5551b113 5509 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
5510}
5511
4d1313e9
DW
5512static void imsm_update_version_info(struct intel_super *super)
5513{
5514 /* update the version and attributes */
5515 struct imsm_super *mpb = super->anchor;
5516 char *version;
5517 struct imsm_dev *dev;
5518 struct imsm_map *map;
5519 int i;
5520
5521 for (i = 0; i < mpb->num_raid_devs; i++) {
5522 dev = get_imsm_dev(super, i);
238c0a71 5523 map = get_imsm_map(dev, MAP_0);
4d1313e9
DW
5524 if (__le32_to_cpu(dev->size_high) > 0)
5525 mpb->attributes |= MPB_ATTRIB_2TB;
5526
5527 /* FIXME detect when an array spans a port multiplier */
5528 #if 0
5529 mpb->attributes |= MPB_ATTRIB_PM;
5530 #endif
5531
5532 if (mpb->num_raid_devs > 1 ||
5533 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
5534 version = MPB_VERSION_ATTRIBS;
5535 switch (get_imsm_raid_level(map)) {
5536 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
5537 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
5538 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
5539 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
5540 }
5541 } else {
5542 if (map->num_members >= 5)
5543 version = MPB_VERSION_5OR6_DISK_ARRAY;
5544 else if (dev->status == DEV_CLONE_N_GO)
5545 version = MPB_VERSION_CNG;
5546 else if (get_imsm_raid_level(map) == 5)
5547 version = MPB_VERSION_RAID5;
5548 else if (map->num_members >= 3)
5549 version = MPB_VERSION_3OR4_DISK_ARRAY;
5550 else if (get_imsm_raid_level(map) == 1)
5551 version = MPB_VERSION_RAID1;
5552 else
5553 version = MPB_VERSION_RAID0;
5554 }
5555 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
5556 }
5557}
5558
aa534678
DW
5559static int check_name(struct intel_super *super, char *name, int quiet)
5560{
5561 struct imsm_super *mpb = super->anchor;
5562 char *reason = NULL;
9bd99a90
RS
5563 char *start = name;
5564 size_t len = strlen(name);
aa534678
DW
5565 int i;
5566
9bd99a90
RS
5567 if (len > 0) {
5568 while (isspace(start[len - 1]))
5569 start[--len] = 0;
5570 while (*start && isspace(*start))
5571 ++start, --len;
5572 memmove(name, start, len + 1);
5573 }
5574
5575 if (len > MAX_RAID_SERIAL_LEN)
aa534678 5576 reason = "must be 16 characters or less";
9bd99a90
RS
5577 else if (len == 0)
5578 reason = "must be a non-empty string";
aa534678
DW
5579
5580 for (i = 0; i < mpb->num_raid_devs; i++) {
5581 struct imsm_dev *dev = get_imsm_dev(super, i);
5582
5583 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
5584 reason = "already exists";
5585 break;
5586 }
5587 }
5588
5589 if (reason && !quiet)
e7b84f9d 5590 pr_err("imsm volume name %s\n", reason);
aa534678
DW
5591
5592 return !reason;
5593}
5594
8b353278 5595static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
5308f117 5596 struct shape *s, char *name,
83cd1e97
N
5597 char *homehost, int *uuid,
5598 long long data_offset)
cdddbdbc 5599{
c2c087e6
DW
5600 /* We are creating a volume inside a pre-existing container.
5601 * so st->sb is already set.
5602 */
5603 struct intel_super *super = st->sb;
f36a9ecd 5604 unsigned int sector_size = super->sector_size;
949c47a0 5605 struct imsm_super *mpb = super->anchor;
ba2de7ba 5606 struct intel_dev *dv;
c2c087e6
DW
5607 struct imsm_dev *dev;
5608 struct imsm_vol *vol;
5609 struct imsm_map *map;
5610 int idx = mpb->num_raid_devs;
5611 int i;
760365f9 5612 int namelen;
c2c087e6 5613 unsigned long long array_blocks;
2c092cad 5614 size_t size_old, size_new;
b53bfba6
TM
5615 unsigned int data_disks;
5616 unsigned long long size_per_member;
cdddbdbc 5617
88c32bb1 5618 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
7a862a02 5619 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
5620 return 0;
5621 }
5622
2c092cad
DW
5623 /* ensure the mpb is large enough for the new data */
5624 size_old = __le32_to_cpu(mpb->mpb_size);
5625 size_new = disks_to_mpb_size(info->nr_disks);
5626 if (size_new > size_old) {
5627 void *mpb_new;
f36a9ecd 5628 size_t size_round = ROUND_UP(size_new, sector_size);
2c092cad 5629
f36a9ecd 5630 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
e7b84f9d 5631 pr_err("could not allocate new mpb\n");
2c092cad
DW
5632 return 0;
5633 }
85337573
AO
5634 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5635 MIGR_REC_BUF_SECTORS*
5636 MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5637 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
5638 free(super->buf);
5639 free(super);
ea944c8f 5640 free(mpb_new);
8e59f3d8
AK
5641 return 0;
5642 }
2c092cad
DW
5643 memcpy(mpb_new, mpb, size_old);
5644 free(mpb);
5645 mpb = mpb_new;
949c47a0 5646 super->anchor = mpb_new;
2c092cad
DW
5647 mpb->mpb_size = __cpu_to_le32(size_new);
5648 memset(mpb_new + size_old, 0, size_round - size_old);
bbab0940 5649 super->len = size_round;
2c092cad 5650 }
bf5a934a 5651 super->current_vol = idx;
3960e579
DW
5652
5653 /* handle 'failed_disks' by either:
5654 * a) create dummy disk entries in the table if this the first
5655 * volume in the array. We add them here as this is the only
5656 * opportunity to add them. add_to_super_imsm_volume()
5657 * handles the non-failed disks and continues incrementing
5658 * mpb->num_disks.
5659 * b) validate that 'failed_disks' matches the current number
5660 * of missing disks if the container is populated
d23fe947 5661 */
3960e579 5662 if (super->current_vol == 0) {
d23fe947 5663 mpb->num_disks = 0;
3960e579
DW
5664 for (i = 0; i < info->failed_disks; i++) {
5665 struct imsm_disk *disk;
5666
5667 mpb->num_disks++;
5668 disk = __get_imsm_disk(mpb, i);
5669 disk->status = CONFIGURED_DISK | FAILED_DISK;
5670 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5671 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
5b975129 5672 "missing:%d", (__u8)i);
3960e579
DW
5673 }
5674 find_missing(super);
5675 } else {
5676 int missing = 0;
5677 struct dl *d;
5678
5679 for (d = super->missing; d; d = d->next)
5680 missing++;
5681 if (info->failed_disks > missing) {
e7b84f9d 5682 pr_err("unable to add 'missing' disk to container\n");
3960e579
DW
5683 return 0;
5684 }
5685 }
5a038140 5686
aa534678
DW
5687 if (!check_name(super, name, 0))
5688 return 0;
503975b9
N
5689 dv = xmalloc(sizeof(*dv));
5690 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
760365f9
JS
5691 /*
5692 * Explicitly allow truncating to not confuse gcc's
5693 * -Werror=stringop-truncation
5694 */
5695 namelen = min((int) strlen(name), MAX_RAID_SERIAL_LEN);
5696 memcpy(dev->volume, name, namelen);
e03640bd 5697 array_blocks = calc_array_size(info->level, info->raid_disks,
03bcbc65 5698 info->layout, info->chunk_size,
b53bfba6
TM
5699 s->size * BLOCKS_PER_KB);
5700 data_disks = get_data_disks(info->level, info->layout,
5701 info->raid_disks);
5702 array_blocks = round_size_to_mb(array_blocks, data_disks);
5703 size_per_member = array_blocks / data_disks;
979d38be 5704
fcc2c9da 5705 set_imsm_dev_size(dev, array_blocks);
1a2487c2 5706 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
5707 vol = &dev->vol;
5708 vol->migr_state = 0;
1484e727 5709 set_migr_type(dev, MIGR_INIT);
3960e579 5710 vol->dirty = !info->state;
4036e7ee 5711 set_vol_curr_migr_unit(dev, 0);
238c0a71 5712 map = get_imsm_map(dev, MAP_0);
5551b113 5713 set_pba_of_lba0(map, super->create_offset);
ef6ffade 5714 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 5715 map->failed_disk_num = ~0;
bf4442ab 5716 if (info->level > 0)
fffaf1ff
N
5717 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
5718 : IMSM_T_STATE_UNINITIALIZED);
bf4442ab
AK
5719 else
5720 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
5721 IMSM_T_STATE_NORMAL;
252d23c0 5722 map->ddf = 1;
ef6ffade
DW
5723
5724 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
5725 free(dev);
5726 free(dv);
7a862a02 5727 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
ef6ffade
DW
5728 return 0;
5729 }
81062a36
DW
5730
5731 map->raid_level = info->level;
1c275381 5732 if (info->level == 10)
c2c087e6 5733 map->raid_level = 1;
1c275381 5734 set_num_domains(map);
ef6ffade 5735
44490938
MD
5736 size_per_member += NUM_BLOCKS_DIRTY_STRIPE_REGION;
5737 set_blocks_per_member(map, info_to_blocks_per_member(info,
5738 size_per_member /
5739 BLOCKS_PER_KB));
5740
c2c087e6 5741 map->num_members = info->raid_disks;
1c275381 5742 update_num_data_stripes(map, array_blocks);
c2c087e6
DW
5743 for (i = 0; i < map->num_members; i++) {
5744 /* initialized in add_to_super */
4eb26970 5745 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 5746 }
949c47a0 5747 mpb->num_raid_devs++;
2a24dc1b
PB
5748 mpb->num_raid_devs_created++;
5749 dev->my_vol_raid_dev_num = mpb->num_raid_devs_created;
ba2de7ba 5750
b7580566 5751 if (s->consistency_policy <= CONSISTENCY_POLICY_RESYNC) {
c2462068 5752 dev->rwh_policy = RWH_MULTIPLE_OFF;
2432ce9b 5753 } else if (s->consistency_policy == CONSISTENCY_POLICY_PPL) {
c2462068 5754 dev->rwh_policy = RWH_MULTIPLE_DISTRIBUTED;
2432ce9b
AP
5755 } else {
5756 free(dev);
5757 free(dv);
5758 pr_err("imsm does not support consistency policy %s\n",
5f21d674 5759 map_num_s(consistency_policies, s->consistency_policy));
2432ce9b
AP
5760 return 0;
5761 }
5762
ba2de7ba
DW
5763 dv->dev = dev;
5764 dv->index = super->current_vol;
5765 dv->next = super->devlist;
5766 super->devlist = dv;
c2c087e6 5767
4d1313e9
DW
5768 imsm_update_version_info(super);
5769
c2c087e6 5770 return 1;
cdddbdbc
DW
5771}
5772
bf5a934a 5773static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
5308f117 5774 struct shape *s, char *name,
83cd1e97
N
5775 char *homehost, int *uuid,
5776 unsigned long long data_offset)
bf5a934a
DW
5777{
5778 /* This is primarily called by Create when creating a new array.
5779 * We will then get add_to_super called for each component, and then
5780 * write_init_super called to write it out to each device.
5781 * For IMSM, Create can create on fresh devices or on a pre-existing
5782 * array.
5783 * To create on a pre-existing array a different method will be called.
5784 * This one is just for fresh drives.
5785 */
5786 struct intel_super *super;
5787 struct imsm_super *mpb;
5788 size_t mpb_size;
4d1313e9 5789 char *version;
bf5a934a 5790
83cd1e97 5791 if (data_offset != INVALID_SECTORS) {
ed503f89 5792 pr_err("data-offset not supported by imsm\n");
83cd1e97
N
5793 return 0;
5794 }
5795
bf5a934a 5796 if (st->sb)
5308f117 5797 return init_super_imsm_volume(st, info, s, name, homehost, uuid,
83cd1e97 5798 data_offset);
e683ca88
DW
5799
5800 if (info)
5801 mpb_size = disks_to_mpb_size(info->nr_disks);
5802 else
f36a9ecd 5803 mpb_size = MAX_SECTOR_SIZE;
bf5a934a 5804
49133e57 5805 super = alloc_super();
f36a9ecd
PB
5806 if (super &&
5807 posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
8d67477f 5808 free_imsm(super);
e683ca88
DW
5809 super = NULL;
5810 }
5811 if (!super) {
1ade5cc1 5812 pr_err("could not allocate superblock\n");
bf5a934a
DW
5813 return 0;
5814 }
de44e46f
PB
5815 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5816 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5817 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8 5818 free(super->buf);
8d67477f 5819 free_imsm(super);
8e59f3d8
AK
5820 return 0;
5821 }
e683ca88 5822 memset(super->buf, 0, mpb_size);
ef649044 5823 mpb = super->buf;
e683ca88
DW
5824 mpb->mpb_size = __cpu_to_le32(mpb_size);
5825 st->sb = super;
5826
5827 if (info == NULL) {
5828 /* zeroing superblock */
5829 return 0;
5830 }
bf5a934a 5831
4d1313e9
DW
5832 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5833
5834 version = (char *) mpb->sig;
5835 strcpy(version, MPB_SIGNATURE);
5836 version += strlen(MPB_SIGNATURE);
5837 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 5838
bf5a934a
DW
5839 return 1;
5840}
5841
f2cc4f7d
AO
5842static int drive_validate_sector_size(struct intel_super *super, struct dl *dl)
5843{
5844 unsigned int member_sector_size;
5845
4389ce73 5846 if (!is_fd_valid(dl->fd)) {
f2cc4f7d
AO
5847 pr_err("Invalid file descriptor for %s\n", dl->devname);
5848 return 0;
5849 }
5850
5851 if (!get_dev_sector_size(dl->fd, dl->devname, &member_sector_size))
5852 return 0;
5853 if (member_sector_size != super->sector_size)
5854 return 0;
5855 return 1;
5856}
5857
f20c3968 5858static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
5859 int fd, char *devname)
5860{
5861 struct intel_super *super = st->sb;
d23fe947 5862 struct imsm_super *mpb = super->anchor;
3960e579 5863 struct imsm_disk *_disk;
bf5a934a
DW
5864 struct imsm_dev *dev;
5865 struct imsm_map *map;
3960e579 5866 struct dl *dl, *df;
4eb26970 5867 int slot;
9a7df595
MT
5868 int autolayout = 0;
5869
5870 if (!is_fd_valid(fd))
5871 autolayout = 1;
bf5a934a 5872
949c47a0 5873 dev = get_imsm_dev(super, super->current_vol);
238c0a71 5874 map = get_imsm_map(dev, MAP_0);
bf5a934a 5875
208933a7 5876 if (! (dk->state & (1<<MD_DISK_SYNC))) {
e7b84f9d 5877 pr_err("%s: Cannot add spare devices to IMSM volume\n",
208933a7
N
5878 devname);
5879 return 1;
5880 }
5881
9a7df595
MT
5882 for (dl = super->disks; dl ; dl = dl->next) {
5883 if (autolayout) {
efb30e7f
DW
5884 if (dl->raiddisk == dk->raid_disk)
5885 break;
9a7df595
MT
5886 } else if (dl->major == dk->major && dl->minor == dk->minor)
5887 break;
efb30e7f 5888 }
d23fe947 5889
208933a7 5890 if (!dl) {
9a7df595
MT
5891 if (!autolayout)
5892 pr_err("%s is not a member of the same container.\n",
5893 devname);
f20c3968 5894 return 1;
208933a7 5895 }
bf5a934a 5896
9a7df595
MT
5897 if (!autolayout && super->current_vol > 0) {
5898 int _slot = get_disk_slot_in_dev(super, 0, dl->index);
5899
5900 if (_slot != dk->raid_disk) {
5901 pr_err("Member %s is in %d slot for the first volume, but is in %d slot for a new volume.\n",
5902 dl->devname, _slot, dk->raid_disk);
5903 pr_err("Raid members are in different order than for the first volume, aborting.\n");
5904 return 1;
5905 }
5906 }
5907
59632db9
MZ
5908 if (mpb->num_disks == 0)
5909 if (!get_dev_sector_size(dl->fd, dl->devname,
5910 &super->sector_size))
5911 return 1;
5912
f2cc4f7d
AO
5913 if (!drive_validate_sector_size(super, dl)) {
5914 pr_err("Combining drives of different sector size in one volume is not allowed\n");
5915 return 1;
5916 }
5917
d23fe947
DW
5918 /* add a pristine spare to the metadata */
5919 if (dl->index < 0) {
5920 dl->index = super->anchor->num_disks;
5921 super->anchor->num_disks++;
5922 }
4eb26970
DW
5923 /* Check the device has not already been added */
5924 slot = get_imsm_disk_slot(map, dl->index);
5925 if (slot >= 0 &&
238c0a71 5926 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
e7b84f9d 5927 pr_err("%s has been included in this array twice\n",
4eb26970
DW
5928 devname);
5929 return 1;
5930 }
656b6b5a 5931 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 5932 dl->disk.status = CONFIGURED_DISK;
d23fe947 5933
3960e579
DW
5934 /* update size of 'missing' disks to be at least as large as the
5935 * largest acitve member (we only have dummy missing disks when
5936 * creating the first volume)
5937 */
5938 if (super->current_vol == 0) {
5939 for (df = super->missing; df; df = df->next) {
5551b113
CA
5940 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5941 set_total_blocks(&df->disk, total_blocks(&dl->disk));
3960e579
DW
5942 _disk = __get_imsm_disk(mpb, df->index);
5943 *_disk = df->disk;
5944 }
5945 }
5946
5947 /* refresh unset/failed slots to point to valid 'missing' entries */
5948 for (df = super->missing; df; df = df->next)
5949 for (slot = 0; slot < mpb->num_disks; slot++) {
238c0a71 5950 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
3960e579
DW
5951
5952 if ((ord & IMSM_ORD_REBUILD) == 0)
5953 continue;
5954 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
1ace8403 5955 if (is_gen_migration(dev)) {
238c0a71
AK
5956 struct imsm_map *map2 = get_imsm_map(dev,
5957 MAP_1);
0a108d63 5958 int slot2 = get_imsm_disk_slot(map2, df->index);
089f9d79 5959 if (slot2 < map2->num_members && slot2 >= 0) {
1ace8403 5960 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
238c0a71
AK
5961 slot2,
5962 MAP_1);
1ace8403
AK
5963 if ((unsigned)df->index ==
5964 ord_to_idx(ord2))
5965 set_imsm_ord_tbl_ent(map2,
0a108d63 5966 slot2,
1ace8403
AK
5967 df->index |
5968 IMSM_ORD_REBUILD);
5969 }
5970 }
3960e579
DW
5971 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5972 break;
5973 }
5974
d23fe947
DW
5975 /* if we are creating the first raid device update the family number */
5976 if (super->current_vol == 0) {
5977 __u32 sum;
5978 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 5979
3960e579 5980 _disk = __get_imsm_disk(mpb, dl->index);
756a15f3 5981 if (!_disk) {
e7b84f9d 5982 pr_err("BUG mpb setup error\n");
791b666a
AW
5983 return 1;
5984 }
d23fe947
DW
5985 *_dev = *dev;
5986 *_disk = dl->disk;
148acb7b
DW
5987 sum = random32();
5988 sum += __gen_imsm_checksum(mpb);
d23fe947 5989 mpb->family_num = __cpu_to_le32(sum);
148acb7b 5990 mpb->orig_family_num = mpb->family_num;
e48aed3c 5991 mpb->creation_time = __cpu_to_le64((__u64)time(NULL));
d23fe947 5992 }
ca0748fa 5993 super->current_disk = dl;
f20c3968 5994 return 0;
bf5a934a
DW
5995}
5996
a8619d23
AK
5997/* mark_spare()
5998 * Function marks disk as spare and restores disk serial
5999 * in case it was previously marked as failed by takeover operation
6000 * reruns:
6001 * -1 : critical error
6002 * 0 : disk is marked as spare but serial is not set
6003 * 1 : success
6004 */
6005int mark_spare(struct dl *disk)
6006{
6007 __u8 serial[MAX_RAID_SERIAL_LEN];
6008 int ret_val = -1;
6009
6010 if (!disk)
6011 return ret_val;
6012
6013 ret_val = 0;
6da53c0e 6014 if (!imsm_read_serial(disk->fd, NULL, serial, MAX_RAID_SERIAL_LEN)) {
a8619d23
AK
6015 /* Restore disk serial number, because takeover marks disk
6016 * as failed and adds to serial ':0' before it becomes
6017 * a spare disk.
6018 */
6019 serialcpy(disk->serial, serial);
6020 serialcpy(disk->disk.serial, serial);
6021 ret_val = 1;
6022 }
6023 disk->disk.status = SPARE_DISK;
6024 disk->index = -1;
6025
6026 return ret_val;
6027}
88654014 6028
12724c01
TM
6029
6030static int write_super_imsm_spare(struct intel_super *super, struct dl *d);
6031
f20c3968 6032static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
72ca9bcf
N
6033 int fd, char *devname,
6034 unsigned long long data_offset)
cdddbdbc 6035{
c2c087e6 6036 struct intel_super *super = st->sb;
c2c087e6
DW
6037 struct dl *dd;
6038 unsigned long long size;
fa7bb6f8 6039 unsigned int member_sector_size;
f2f27e63 6040 __u32 id;
c2c087e6
DW
6041 int rv;
6042 struct stat stb;
6043
88654014
LM
6044 /* If we are on an RAID enabled platform check that the disk is
6045 * attached to the raid controller.
6046 * We do not need to test disks attachment for container based additions,
6047 * they shall be already tested when container was created/assembled.
88c32bb1 6048 */
d424212e 6049 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 6050 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
6051 if (rv != 0) {
6052 dprintf("capability: %p fd: %d ret: %d\n",
6053 super->orom, fd, rv);
6054 return 1;
88c32bb1
DW
6055 }
6056
f20c3968
DW
6057 if (super->current_vol >= 0)
6058 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 6059
c2c087e6 6060 fstat(fd, &stb);
503975b9 6061 dd = xcalloc(sizeof(*dd), 1);
c2c087e6
DW
6062 dd->major = major(stb.st_rdev);
6063 dd->minor = minor(stb.st_rdev);
503975b9 6064 dd->devname = devname ? xstrdup(devname) : NULL;
c2c087e6 6065 dd->fd = fd;
689c9bf3 6066 dd->e = NULL;
1a64be56 6067 dd->action = DISK_ADD;
6da53c0e 6068 rv = imsm_read_serial(fd, devname, dd->serial, MAX_RAID_SERIAL_LEN);
32ba9157 6069 if (rv) {
e7b84f9d 6070 pr_err("failed to retrieve scsi serial, aborting\n");
3a85bf0e 6071 __free_imsm_disk(dd, 0);
0030e8d6 6072 abort();
c2c087e6 6073 }
7c798f87 6074
20bee0f8
PB
6075 if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
6076 (super->hba->type == SYS_DEV_VMD))) {
6077 int i;
7c798f87
MT
6078 char cntrl_path[PATH_MAX];
6079 char *cntrl_name;
6080 char pci_dev_path[PATH_MAX];
20bee0f8 6081
7c798f87
MT
6082 if (!diskfd_to_devpath(fd, 2, pci_dev_path) ||
6083 !diskfd_to_devpath(fd, 1, cntrl_path)) {
8662f92d 6084 pr_err("failed to get dev paths, aborting\n");
3a85bf0e 6085 __free_imsm_disk(dd, 0);
a8f3cfd5
MT
6086 return 1;
6087 }
6088
7c798f87
MT
6089 cntrl_name = basename(cntrl_path);
6090 if (is_multipath_nvme(fd))
6091 pr_err("%s controller supports Multi-Path I/O, Intel (R) VROC does not support multipathing\n",
6092 cntrl_name);
6093
6094 if (devpath_to_vendor(pci_dev_path) == 0x8086) {
20bee0f8
PB
6095 /*
6096 * If Intel's NVMe drive has serial ended with
6097 * "-A","-B","-1" or "-2" it means that this is "x8"
6098 * device (double drive on single PCIe card).
6099 * User should be warned about potential data loss.
6100 */
6101 for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
6102 /* Skip empty character at the end */
6103 if (dd->serial[i] == 0)
6104 continue;
6105
6106 if (((dd->serial[i] == 'A') ||
6107 (dd->serial[i] == 'B') ||
6108 (dd->serial[i] == '1') ||
6109 (dd->serial[i] == '2')) &&
6110 (dd->serial[i-1] == '-'))
6111 pr_err("\tThe action you are about to take may put your data at risk.\n"
6112 "\tPlease note that x8 devices may consist of two separate x4 devices "
6113 "located on a single PCIe port.\n"
6114 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
6115 break;
6116 }
32716c51
PB
6117 } else if (super->hba->type == SYS_DEV_VMD && super->orom &&
6118 !imsm_orom_has_tpv_support(super->orom)) {
6119 pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n"
8b751247 6120 "\tPlease refer to Intel(R) RSTe/VROC user guide.\n");
3a85bf0e 6121 __free_imsm_disk(dd, 0);
32716c51 6122 return 1;
20bee0f8
PB
6123 }
6124 }
c2c087e6 6125
c2c087e6 6126 get_dev_size(fd, NULL, &size);
3a85bf0e
MG
6127 if (!get_dev_sector_size(fd, NULL, &member_sector_size)) {
6128 __free_imsm_disk(dd, 0);
aec01630 6129 return 1;
3a85bf0e 6130 }
fa7bb6f8
PB
6131
6132 if (super->sector_size == 0) {
6133 /* this a first device, so sector_size is not set yet */
6134 super->sector_size = member_sector_size;
fa7bb6f8
PB
6135 }
6136
71e5411e 6137 /* clear migr_rec when adding disk to container */
85337573
AO
6138 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
6139 if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*member_sector_size,
de44e46f 6140 SEEK_SET) >= 0) {
466070ad 6141 if ((unsigned int)write(fd, super->migr_rec_buf,
85337573
AO
6142 MIGR_REC_BUF_SECTORS*member_sector_size) !=
6143 MIGR_REC_BUF_SECTORS*member_sector_size)
71e5411e
PB
6144 perror("Write migr_rec failed");
6145 }
6146
c2c087e6 6147 size /= 512;
1f24f035 6148 serialcpy(dd->disk.serial, dd->serial);
5551b113
CA
6149 set_total_blocks(&dd->disk, size);
6150 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
6151 struct imsm_super *mpb = super->anchor;
6152 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
6153 }
a8619d23 6154 mark_spare(dd);
c2c087e6 6155 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 6156 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 6157 else
b9f594fe 6158 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
6159
6160 if (st->update_tail) {
1a64be56
LM
6161 dd->next = super->disk_mgmt_list;
6162 super->disk_mgmt_list = dd;
43dad3d6 6163 } else {
12724c01
TM
6164 /* this is called outside of mdmon
6165 * write initial spare metadata
6166 * mdmon will overwrite it.
6167 */
43dad3d6
DW
6168 dd->next = super->disks;
6169 super->disks = dd;
12724c01 6170 write_super_imsm_spare(super, dd);
43dad3d6 6171 }
f20c3968
DW
6172
6173 return 0;
cdddbdbc
DW
6174}
6175
1a64be56
LM
6176static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
6177{
6178 struct intel_super *super = st->sb;
6179 struct dl *dd;
6180
6181 /* remove from super works only in mdmon - for communication
6182 * manager - monitor. Check if communication memory buffer
6183 * is prepared.
6184 */
6185 if (!st->update_tail) {
1ade5cc1 6186 pr_err("shall be used in mdmon context only\n");
1a64be56
LM
6187 return 1;
6188 }
503975b9 6189 dd = xcalloc(1, sizeof(*dd));
1a64be56
LM
6190 dd->major = dk->major;
6191 dd->minor = dk->minor;
1a64be56 6192 dd->fd = -1;
a8619d23 6193 mark_spare(dd);
1a64be56
LM
6194 dd->action = DISK_REMOVE;
6195
6196 dd->next = super->disk_mgmt_list;
6197 super->disk_mgmt_list = dd;
6198
1a64be56
LM
6199 return 0;
6200}
6201
f796af5d
DW
6202static int store_imsm_mpb(int fd, struct imsm_super *mpb);
6203
6204static union {
f36a9ecd 6205 char buf[MAX_SECTOR_SIZE];
f796af5d 6206 struct imsm_super anchor;
f36a9ecd 6207} spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
c2c087e6 6208
12724c01
TM
6209
6210static int write_super_imsm_spare(struct intel_super *super, struct dl *d)
d23fe947 6211{
d23fe947 6212 struct imsm_super *mpb = super->anchor;
f796af5d 6213 struct imsm_super *spare = &spare_record.anchor;
d23fe947 6214 __u32 sum;
12724c01
TM
6215
6216 if (d->index != -1)
6217 return 1;
d23fe947 6218
68641cdb
JS
6219 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
6220 spare->generation_num = __cpu_to_le32(1UL);
f796af5d 6221 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
68641cdb
JS
6222 spare->num_disks = 1;
6223 spare->num_raid_devs = 0;
6224 spare->cache_size = mpb->cache_size;
6225 spare->pwr_cycle_count = __cpu_to_le32(1);
f796af5d
DW
6226
6227 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
6228 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947 6229
12724c01
TM
6230 spare->disk[0] = d->disk;
6231 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
6232 spare->attributes |= MPB_ATTRIB_2TB_DISK;
6233
6234 if (super->sector_size == 4096)
6235 convert_to_4k_imsm_disk(&spare->disk[0]);
d23fe947 6236
12724c01
TM
6237 sum = __gen_imsm_checksum(spare);
6238 spare->family_num = __cpu_to_le32(sum);
6239 spare->orig_family_num = 0;
6240 sum = __gen_imsm_checksum(spare);
6241 spare->check_sum = __cpu_to_le32(sum);
027c374f 6242
12724c01
TM
6243 if (store_imsm_mpb(d->fd, spare)) {
6244 pr_err("failed for device %d:%d %s\n",
6245 d->major, d->minor, strerror(errno));
6246 return 1;
6247 }
6248
6249 return 0;
6250}
6251/* spare records have their own family number and do not have any defined raid
6252 * devices
6253 */
6254static int write_super_imsm_spares(struct intel_super *super, int doclose)
6255{
6256 struct dl *d;
f36a9ecd 6257
12724c01
TM
6258 for (d = super->disks; d; d = d->next) {
6259 if (d->index != -1)
6260 continue;
d23fe947 6261
12724c01 6262 if (write_super_imsm_spare(super, d))
e74255d9 6263 return 1;
12724c01 6264
4389ce73
MT
6265 if (doclose)
6266 close_fd(&d->fd);
d23fe947
DW
6267 }
6268
e74255d9 6269 return 0;
d23fe947
DW
6270}
6271
36988a3d 6272static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 6273{
36988a3d 6274 struct intel_super *super = st->sb;
f36a9ecd 6275 unsigned int sector_size = super->sector_size;
949c47a0 6276 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
6277 struct dl *d;
6278 __u32 generation;
6279 __u32 sum;
d23fe947 6280 int spares = 0;
949c47a0 6281 int i;
a48ac0a8 6282 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 6283 int num_disks = 0;
146c6260 6284 int clear_migration_record = 1;
bbab0940 6285 __u32 bbm_log_size;
cdddbdbc 6286
c2c087e6
DW
6287 /* 'generation' is incremented everytime the metadata is written */
6288 generation = __le32_to_cpu(mpb->generation_num);
6289 generation++;
6290 mpb->generation_num = __cpu_to_le32(generation);
6291
148acb7b
DW
6292 /* fix up cases where previous mdadm releases failed to set
6293 * orig_family_num
6294 */
6295 if (mpb->orig_family_num == 0)
6296 mpb->orig_family_num = mpb->family_num;
6297
d23fe947 6298 for (d = super->disks; d; d = d->next) {
8796fdc4 6299 if (d->index == -1)
d23fe947 6300 spares++;
36988a3d 6301 else {
d23fe947 6302 mpb->disk[d->index] = d->disk;
36988a3d
AK
6303 num_disks++;
6304 }
d23fe947 6305 }
36988a3d 6306 for (d = super->missing; d; d = d->next) {
47ee5a45 6307 mpb->disk[d->index] = d->disk;
36988a3d
AK
6308 num_disks++;
6309 }
6310 mpb->num_disks = num_disks;
6311 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 6312
949c47a0
DW
6313 for (i = 0; i < mpb->num_raid_devs; i++) {
6314 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d 6315 struct imsm_dev *dev2 = get_imsm_dev(super, i);
756a15f3
MG
6316
6317 imsm_copy_dev(dev, dev2);
6318 mpb_size += sizeof_imsm_dev(dev, 0);
6319
146c6260
AK
6320 if (is_gen_migration(dev2))
6321 clear_migration_record = 0;
949c47a0 6322 }
bbab0940
TM
6323
6324 bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
6325
6326 if (bbm_log_size) {
6327 memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
6328 mpb->attributes |= MPB_ATTRIB_BBM;
6329 } else
6330 mpb->attributes &= ~MPB_ATTRIB_BBM;
6331
6332 super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
6333 mpb_size += bbm_log_size;
a48ac0a8 6334 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 6335
bbab0940
TM
6336#ifdef DEBUG
6337 assert(super->len == 0 || mpb_size <= super->len);
6338#endif
6339
c2c087e6 6340 /* recalculate checksum */
949c47a0 6341 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
6342 mpb->check_sum = __cpu_to_le32(sum);
6343
51d83f5d
AK
6344 if (super->clean_migration_record_by_mdmon) {
6345 clear_migration_record = 1;
6346 super->clean_migration_record_by_mdmon = 0;
6347 }
146c6260 6348 if (clear_migration_record)
de44e46f 6349 memset(super->migr_rec_buf, 0,
85337573 6350 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
146c6260 6351
f36a9ecd
PB
6352 if (sector_size == 4096)
6353 convert_to_4k(super);
6354
d23fe947 6355 /* write the mpb for disks that compose raid devices */
c2c087e6 6356 for (d = super->disks; d ; d = d->next) {
86c54047 6357 if (d->index < 0 || is_failed(&d->disk))
d23fe947 6358 continue;
30602f53 6359
146c6260
AK
6360 if (clear_migration_record) {
6361 unsigned long long dsize;
6362
6363 get_dev_size(d->fd, NULL, &dsize);
de44e46f
PB
6364 if (lseek64(d->fd, dsize - sector_size,
6365 SEEK_SET) >= 0) {
466070ad
PB
6366 if ((unsigned int)write(d->fd,
6367 super->migr_rec_buf,
de44e46f
PB
6368 MIGR_REC_BUF_SECTORS*sector_size) !=
6369 MIGR_REC_BUF_SECTORS*sector_size)
9e2d750d 6370 perror("Write migr_rec failed");
146c6260
AK
6371 }
6372 }
51d83f5d
AK
6373
6374 if (store_imsm_mpb(d->fd, mpb))
6375 fprintf(stderr,
1ade5cc1
N
6376 "failed for device %d:%d (fd: %d)%s\n",
6377 d->major, d->minor,
51d83f5d
AK
6378 d->fd, strerror(errno));
6379
4389ce73
MT
6380 if (doclose)
6381 close_fd(&d->fd);
c2c087e6
DW
6382 }
6383
d23fe947
DW
6384 if (spares)
6385 return write_super_imsm_spares(super, doclose);
6386
e74255d9 6387 return 0;
c2c087e6
DW
6388}
6389
9b1fb677 6390static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
6391{
6392 size_t len;
6393 struct imsm_update_create_array *u;
6394 struct intel_super *super = st->sb;
9b1fb677 6395 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
238c0a71 6396 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
6397 struct disk_info *inf;
6398 struct imsm_disk *disk;
6399 int i;
43dad3d6 6400
54c2c1ea
DW
6401 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
6402 sizeof(*inf) * map->num_members;
503975b9 6403 u = xmalloc(len);
43dad3d6 6404 u->type = update_create_array;
9b1fb677 6405 u->dev_idx = dev_idx;
43dad3d6 6406 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
6407 inf = get_disk_info(u);
6408 for (i = 0; i < map->num_members; i++) {
238c0a71 6409 int idx = get_imsm_disk_idx(dev, i, MAP_X);
9b1fb677 6410
54c2c1ea 6411 disk = get_imsm_disk(super, idx);
1ca5c8e0
N
6412 if (!disk)
6413 disk = get_imsm_missing(super, idx);
54c2c1ea
DW
6414 serialcpy(inf[i].serial, disk->serial);
6415 }
43dad3d6
DW
6416 append_metadata_update(st, u, len);
6417
6418 return 0;
6419}
6420
1a64be56 6421static int mgmt_disk(struct supertype *st)
43dad3d6
DW
6422{
6423 struct intel_super *super = st->sb;
6424 size_t len;
1a64be56 6425 struct imsm_update_add_remove_disk *u;
43dad3d6 6426
1a64be56 6427 if (!super->disk_mgmt_list)
43dad3d6
DW
6428 return 0;
6429
6430 len = sizeof(*u);
503975b9 6431 u = xmalloc(len);
1a64be56 6432 u->type = update_add_remove_disk;
43dad3d6
DW
6433 append_metadata_update(st, u, len);
6434
6435 return 0;
6436}
2432ce9b
AP
6437
6438__u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len);
6439
e397cefe
AP
6440static int write_ppl_header(unsigned long long ppl_sector, int fd, void *buf)
6441{
6442 struct ppl_header *ppl_hdr = buf;
6443 int ret;
6444
6445 ppl_hdr->checksum = __cpu_to_le32(~crc32c_le(~0, buf, PPL_HEADER_SIZE));
6446
6447 if (lseek64(fd, ppl_sector * 512, SEEK_SET) < 0) {
6448 ret = -errno;
6449 perror("Failed to seek to PPL header location");
6450 return ret;
6451 }
6452
6453 if (write(fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6454 ret = -errno;
6455 perror("Write PPL header failed");
6456 return ret;
6457 }
6458
6459 fsync(fd);
6460
6461 return 0;
6462}
6463
2432ce9b
AP
6464static int write_init_ppl_imsm(struct supertype *st, struct mdinfo *info, int fd)
6465{
6466 struct intel_super *super = st->sb;
6467 void *buf;
6468 struct ppl_header *ppl_hdr;
6469 int ret;
6470
b2514242
PB
6471 /* first clear entire ppl space */
6472 ret = zero_disk_range(fd, info->ppl_sector, info->ppl_size);
6473 if (ret)
6474 return ret;
6475
6476 ret = posix_memalign(&buf, MAX_SECTOR_SIZE, PPL_HEADER_SIZE);
2432ce9b
AP
6477 if (ret) {
6478 pr_err("Failed to allocate PPL header buffer\n");
e397cefe 6479 return -ret;
2432ce9b
AP
6480 }
6481
6482 memset(buf, 0, PPL_HEADER_SIZE);
6483 ppl_hdr = buf;
6484 memset(ppl_hdr->reserved, 0xff, PPL_HDR_RESERVED);
6485 ppl_hdr->signature = __cpu_to_le32(super->anchor->orig_family_num);
b23d0750
AP
6486
6487 if (info->mismatch_cnt) {
6488 /*
6489 * We are overwriting an invalid ppl. Make one entry with wrong
6490 * checksum to prevent the kernel from skipping resync.
6491 */
6492 ppl_hdr->entries_count = __cpu_to_le32(1);
6493 ppl_hdr->entries[0].checksum = ~0;
6494 }
6495
e397cefe 6496 ret = write_ppl_header(info->ppl_sector, fd, buf);
2432ce9b
AP
6497
6498 free(buf);
6499 return ret;
6500}
6501
e397cefe
AP
6502static int is_rebuilding(struct imsm_dev *dev);
6503
2432ce9b
AP
6504static int validate_ppl_imsm(struct supertype *st, struct mdinfo *info,
6505 struct mdinfo *disk)
6506{
6507 struct intel_super *super = st->sb;
6508 struct dl *d;
e397cefe 6509 void *buf_orig, *buf, *buf_prev = NULL;
2432ce9b 6510 int ret = 0;
e397cefe 6511 struct ppl_header *ppl_hdr = NULL;
2432ce9b
AP
6512 __u32 crc;
6513 struct imsm_dev *dev;
2432ce9b 6514 __u32 idx;
44b6b876
PB
6515 unsigned int i;
6516 unsigned long long ppl_offset = 0;
6517 unsigned long long prev_gen_num = 0;
2432ce9b
AP
6518
6519 if (disk->disk.raid_disk < 0)
6520 return 0;
6521
2432ce9b 6522 dev = get_imsm_dev(super, info->container_member);
2fc0fc63 6523 idx = get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_0);
2432ce9b
AP
6524 d = get_imsm_dl_disk(super, idx);
6525
6526 if (!d || d->index < 0 || is_failed(&d->disk))
e397cefe
AP
6527 return 0;
6528
6529 if (posix_memalign(&buf_orig, MAX_SECTOR_SIZE, PPL_HEADER_SIZE * 2)) {
6530 pr_err("Failed to allocate PPL header buffer\n");
6531 return -1;
6532 }
6533 buf = buf_orig;
2432ce9b 6534
44b6b876
PB
6535 ret = 1;
6536 while (ppl_offset < MULTIPLE_PPL_AREA_SIZE_IMSM) {
e397cefe
AP
6537 void *tmp;
6538
44b6b876 6539 dprintf("Checking potential PPL at offset: %llu\n", ppl_offset);
2432ce9b 6540
44b6b876
PB
6541 if (lseek64(d->fd, info->ppl_sector * 512 + ppl_offset,
6542 SEEK_SET) < 0) {
6543 perror("Failed to seek to PPL header location");
6544 ret = -1;
e397cefe 6545 break;
44b6b876 6546 }
2432ce9b 6547
44b6b876
PB
6548 if (read(d->fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6549 perror("Read PPL header failed");
6550 ret = -1;
e397cefe 6551 break;
44b6b876 6552 }
2432ce9b 6553
44b6b876 6554 ppl_hdr = buf;
2432ce9b 6555
44b6b876
PB
6556 crc = __le32_to_cpu(ppl_hdr->checksum);
6557 ppl_hdr->checksum = 0;
6558
6559 if (crc != ~crc32c_le(~0, buf, PPL_HEADER_SIZE)) {
6560 dprintf("Wrong PPL header checksum on %s\n",
6561 d->devname);
e397cefe 6562 break;
44b6b876
PB
6563 }
6564
6565 if (prev_gen_num > __le64_to_cpu(ppl_hdr->generation)) {
6566 /* previous was newest, it was already checked */
e397cefe 6567 break;
44b6b876
PB
6568 }
6569
6570 if ((__le32_to_cpu(ppl_hdr->signature) !=
6571 super->anchor->orig_family_num)) {
6572 dprintf("Wrong PPL header signature on %s\n",
6573 d->devname);
6574 ret = 1;
e397cefe 6575 break;
44b6b876
PB
6576 }
6577
6578 ret = 0;
6579 prev_gen_num = __le64_to_cpu(ppl_hdr->generation);
2432ce9b 6580
44b6b876
PB
6581 ppl_offset += PPL_HEADER_SIZE;
6582 for (i = 0; i < __le32_to_cpu(ppl_hdr->entries_count); i++)
6583 ppl_offset +=
6584 __le32_to_cpu(ppl_hdr->entries[i].pp_size);
e397cefe
AP
6585
6586 if (!buf_prev)
6587 buf_prev = buf + PPL_HEADER_SIZE;
6588 tmp = buf_prev;
6589 buf_prev = buf;
6590 buf = tmp;
2432ce9b
AP
6591 }
6592
e397cefe
AP
6593 if (buf_prev) {
6594 buf = buf_prev;
6595 ppl_hdr = buf_prev;
6596 }
2432ce9b 6597
54148aba
PB
6598 /*
6599 * Update metadata to use mutliple PPLs area (1MB).
6600 * This is done once for all RAID members
6601 */
6602 if (info->consistency_policy == CONSISTENCY_POLICY_PPL &&
6603 info->ppl_size != (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9)) {
6604 char subarray[20];
6605 struct mdinfo *member_dev;
6606
6607 sprintf(subarray, "%d", info->container_member);
6608
6609 if (mdmon_running(st->container_devnm))
6610 st->update_tail = &st->updates;
6611
03312b52 6612 if (st->ss->update_subarray(st, subarray, UOPT_PPL, NULL)) {
54148aba
PB
6613 pr_err("Failed to update subarray %s\n",
6614 subarray);
6615 } else {
6616 if (st->update_tail)
6617 flush_metadata_updates(st);
6618 else
6619 st->ss->sync_metadata(st);
6620 info->ppl_size = (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6621 for (member_dev = info->devs; member_dev;
6622 member_dev = member_dev->next)
6623 member_dev->ppl_size =
6624 (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6625 }
6626 }
6627
b23d0750 6628 if (ret == 1) {
2fc0fc63
AP
6629 struct imsm_map *map = get_imsm_map(dev, MAP_X);
6630
50b9c10d
PB
6631 if (map->map_state == IMSM_T_STATE_UNINITIALIZED ||
6632 (map->map_state == IMSM_T_STATE_NORMAL &&
2ec9d182 6633 !(dev->vol.dirty & RAIDVOL_DIRTY)) ||
e397cefe 6634 (is_rebuilding(dev) &&
4036e7ee 6635 vol_curr_migr_unit(dev) == 0 &&
2ec9d182 6636 get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_1) != idx))
b23d0750
AP
6637 ret = st->ss->write_init_ppl(st, info, d->fd);
6638 else
6639 info->mismatch_cnt++;
e397cefe
AP
6640 } else if (ret == 0 &&
6641 ppl_hdr->entries_count == 0 &&
6642 is_rebuilding(dev) &&
6643 info->resync_start == 0) {
6644 /*
6645 * The header has no entries - add a single empty entry and
6646 * rewrite the header to prevent the kernel from going into
6647 * resync after an interrupted rebuild.
6648 */
6649 ppl_hdr->entries_count = __cpu_to_le32(1);
6650 ret = write_ppl_header(info->ppl_sector, d->fd, buf);
b23d0750 6651 }
2432ce9b 6652
e397cefe
AP
6653 free(buf_orig);
6654
2432ce9b
AP
6655 return ret;
6656}
6657
2432ce9b
AP
6658static int write_init_ppl_imsm_all(struct supertype *st, struct mdinfo *info)
6659{
6660 struct intel_super *super = st->sb;
6661 struct dl *d;
6662 int ret = 0;
6663
6664 if (info->consistency_policy != CONSISTENCY_POLICY_PPL ||
6665 info->array.level != 5)
6666 return 0;
6667
6668 for (d = super->disks; d ; d = d->next) {
6669 if (d->index < 0 || is_failed(&d->disk))
6670 continue;
6671
6672 ret = st->ss->write_init_ppl(st, info, d->fd);
6673 if (ret)
6674 break;
6675 }
6676
6677 return ret;
6678}
43dad3d6 6679
fbc42556
JR
6680/*******************************************************************************
6681 * Function: write_init_bitmap_imsm_vol
6682 * Description: Write a bitmap header and prepares the area for the bitmap.
6683 * Parameters:
6684 * st : supertype information
6685 * vol_idx : the volume index to use
6686 *
6687 * Returns:
6688 * 0 : success
6689 * -1 : fail
6690 ******************************************************************************/
6691static int write_init_bitmap_imsm_vol(struct supertype *st, int vol_idx)
6692{
6693 struct intel_super *super = st->sb;
6694 int prev_current_vol = super->current_vol;
6695 struct dl *d;
6696 int ret = 0;
6697
6698 super->current_vol = vol_idx;
6699 for (d = super->disks; d; d = d->next) {
6700 if (d->index < 0 || is_failed(&d->disk))
6701 continue;
6702 ret = st->ss->write_bitmap(st, d->fd, NoUpdate);
6703 if (ret)
6704 break;
6705 }
6706 super->current_vol = prev_current_vol;
6707 return ret;
6708}
6709
6710/*******************************************************************************
6711 * Function: write_init_bitmap_imsm_all
6712 * Description: Write a bitmap header and prepares the area for the bitmap.
6713 * Operation is executed for volumes with CONSISTENCY_POLICY_BITMAP.
6714 * Parameters:
6715 * st : supertype information
6716 * info : info about the volume where the bitmap should be written
6717 * vol_idx : the volume index to use
6718 *
6719 * Returns:
6720 * 0 : success
6721 * -1 : fail
6722 ******************************************************************************/
6723static int write_init_bitmap_imsm_all(struct supertype *st, struct mdinfo *info,
6724 int vol_idx)
6725{
6726 int ret = 0;
6727
6728 if (info && (info->consistency_policy == CONSISTENCY_POLICY_BITMAP))
6729 ret = write_init_bitmap_imsm_vol(st, vol_idx);
6730
6731 return ret;
6732}
6733
c2c087e6
DW
6734static int write_init_super_imsm(struct supertype *st)
6735{
9b1fb677
DW
6736 struct intel_super *super = st->sb;
6737 int current_vol = super->current_vol;
2432ce9b
AP
6738 int rv = 0;
6739 struct mdinfo info;
6740
6741 getinfo_super_imsm(st, &info, NULL);
9b1fb677
DW
6742
6743 /* we are done with current_vol reset it to point st at the container */
6744 super->current_vol = -1;
6745
8273f55e 6746 if (st->update_tail) {
43dad3d6
DW
6747 /* queue the recently created array / added disk
6748 * as a metadata update */
8273f55e 6749
43dad3d6 6750 /* determine if we are creating a volume or adding a disk */
9b1fb677 6751 if (current_vol < 0) {
1a64be56
LM
6752 /* in the mgmt (add/remove) disk case we are running
6753 * in mdmon context, so don't close fd's
43dad3d6 6754 */
2432ce9b
AP
6755 rv = mgmt_disk(st);
6756 } else {
fbc42556 6757 /* adding the second volume to the array */
2432ce9b 6758 rv = write_init_ppl_imsm_all(st, &info);
fbc42556
JR
6759 if (!rv)
6760 rv = write_init_bitmap_imsm_all(st, &info, current_vol);
2432ce9b
AP
6761 if (!rv)
6762 rv = create_array(st, current_vol);
6763 }
d682f344
N
6764 } else {
6765 struct dl *d;
6766 for (d = super->disks; d; d = d->next)
ba728be7 6767 Kill(d->devname, NULL, 0, -1, 1);
fbc42556 6768 if (current_vol >= 0) {
2432ce9b 6769 rv = write_init_ppl_imsm_all(st, &info);
fbc42556
JR
6770 if (!rv)
6771 rv = write_init_bitmap_imsm_all(st, &info, current_vol);
6772 }
6773
2432ce9b
AP
6774 if (!rv)
6775 rv = write_super_imsm(st, 1);
d682f344 6776 }
2432ce9b
AP
6777
6778 return rv;
cdddbdbc
DW
6779}
6780
e683ca88 6781static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 6782{
e683ca88
DW
6783 struct intel_super *super = st->sb;
6784 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 6785
e683ca88 6786 if (!mpb)
ad97895e
DW
6787 return 1;
6788
f36a9ecd
PB
6789 if (super->sector_size == 4096)
6790 convert_to_4k(super);
e683ca88 6791 return store_imsm_mpb(fd, mpb);
cdddbdbc
DW
6792}
6793
cdddbdbc 6794static int validate_geometry_imsm_container(struct supertype *st, int level,
1f5d54a0 6795 int raiddisks,
af4348dd
N
6796 unsigned long long data_offset,
6797 char *dev,
2c514b71
NB
6798 unsigned long long *freesize,
6799 int verbose)
cdddbdbc 6800{
c2c087e6
DW
6801 int fd;
6802 unsigned long long ldsize;
8662f92d 6803 struct intel_super *super = NULL;
f2f5c343 6804 int rv = 0;
cdddbdbc 6805
6f2af6a4 6806 if (!is_container(level))
c2c087e6
DW
6807 return 0;
6808 if (!dev)
6809 return 1;
6810
dca80fcd 6811 fd = dev_open(dev, O_RDONLY|O_EXCL);
4389ce73
MT
6812 if (!is_fd_valid(fd)) {
6813 pr_vrb("imsm: Cannot open %s: %s\n", dev, strerror(errno));
c2c087e6
DW
6814 return 0;
6815 }
8662f92d
MT
6816 if (!get_dev_size(fd, dev, &ldsize))
6817 goto exit;
f2f5c343
LM
6818
6819 /* capabilities retrieve could be possible
6820 * note that there is no fd for the disks in array.
6821 */
6822 super = alloc_super();
8662f92d
MT
6823 if (!super)
6824 goto exit;
6825
6826 if (!get_dev_sector_size(fd, NULL, &super->sector_size))
6827 goto exit;
fa7bb6f8 6828
ba728be7 6829 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
f2f5c343
LM
6830 if (rv != 0) {
6831#if DEBUG
6832 char str[256];
6833 fd2devname(fd, str);
1ade5cc1 6834 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
f2f5c343
LM
6835 fd, str, super->orom, rv, raiddisks);
6836#endif
6837 /* no orom/efi or non-intel hba of the disk */
8662f92d
MT
6838 rv = 0;
6839 goto exit;
f2f5c343 6840 }
9126b9a8
CA
6841 if (super->orom) {
6842 if (raiddisks > super->orom->tds) {
6843 if (verbose)
7a862a02 6844 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
9126b9a8 6845 raiddisks, super->orom->tds);
8662f92d 6846 goto exit;
9126b9a8
CA
6847 }
6848 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
6849 (ldsize >> 9) >> 32 > 0) {
6850 if (verbose)
e7b84f9d 6851 pr_err("%s exceeds maximum platform supported size\n", dev);
8662f92d
MT
6852 goto exit;
6853 }
6854
6855 if (super->hba->type == SYS_DEV_VMD ||
6856 super->hba->type == SYS_DEV_NVME) {
6857 if (!imsm_is_nvme_namespace_supported(fd, 1)) {
6858 if (verbose)
6859 pr_err("NVMe namespace %s is not supported by IMSM\n",
6860 basename(dev));
6861 goto exit;
6862 }
9126b9a8 6863 }
f2f5c343 6864 }
1f5d54a0
MT
6865 if (freesize)
6866 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
8662f92d
MT
6867 rv = 1;
6868exit:
6869 if (super)
6870 free_imsm(super);
6871 close(fd);
c2c087e6 6872
8662f92d 6873 return rv;
cdddbdbc
DW
6874}
6875
0dcecb2e
DW
6876static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
6877{
6878 const unsigned long long base_start = e[*idx].start;
6879 unsigned long long end = base_start + e[*idx].size;
6880 int i;
6881
6882 if (base_start == end)
6883 return 0;
6884
6885 *idx = *idx + 1;
6886 for (i = *idx; i < num_extents; i++) {
6887 /* extend overlapping extents */
6888 if (e[i].start >= base_start &&
6889 e[i].start <= end) {
6890 if (e[i].size == 0)
6891 return 0;
6892 if (e[i].start + e[i].size > end)
6893 end = e[i].start + e[i].size;
6894 } else if (e[i].start > end) {
6895 *idx = i;
6896 break;
6897 }
6898 }
6899
6900 return end - base_start;
6901}
6902
aa19fdd4 6903/** merge_extents() - analyze extents and get free size.
9bc426fa 6904 * @super: Intel metadata, not NULL.
aa19fdd4 6905 * @expanding: if set, we are expanding &super->current_vol.
9bc426fa 6906 *
aa19fdd4
MT
6907 * Build a composite disk with all known extents and generate a size given the
6908 * "all disks in an array must share a common start offset" constraint.
6909 * If a volume is expanded, then return free space after the volume.
9bc426fa 6910 *
aa19fdd4 6911 * Return: Free space or 0 on failure.
9bc426fa 6912 */
aa19fdd4 6913static unsigned long long merge_extents(struct intel_super *super, const bool expanding)
0dcecb2e 6914{
9bc426fa 6915 struct extent *e;
0dcecb2e 6916 struct dl *dl;
aa19fdd4
MT
6917 int i, j, pos_vol_idx = -1;
6918 int extent_idx = 0;
6919 int sum_extents = 0;
6920 unsigned long long pos = 0;
b9d77223 6921 unsigned long long start = 0;
aa19fdd4 6922 unsigned long long maxsize = 0;
0dcecb2e
DW
6923 unsigned long reserve;
6924
9bc426fa
MT
6925 for (dl = super->disks; dl; dl = dl->next)
6926 if (dl->e)
6927 sum_extents += dl->extent_cnt;
6928 e = xcalloc(sum_extents, sizeof(struct extent));
6929
0dcecb2e
DW
6930 /* coalesce and sort all extents. also, check to see if we need to
6931 * reserve space between member arrays
6932 */
6933 j = 0;
6934 for (dl = super->disks; dl; dl = dl->next) {
6935 if (!dl->e)
6936 continue;
6937 for (i = 0; i < dl->extent_cnt; i++)
6938 e[j++] = dl->e[i];
6939 }
6940 qsort(e, sum_extents, sizeof(*e), cmp_extent);
6941
6942 /* merge extents */
6943 i = 0;
6944 j = 0;
6945 while (i < sum_extents) {
6946 e[j].start = e[i].start;
aa19fdd4 6947 e[j].vol = e[i].vol;
0dcecb2e
DW
6948 e[j].size = find_size(e, &i, sum_extents);
6949 j++;
6950 if (e[j-1].size == 0)
6951 break;
6952 }
6953
0dcecb2e
DW
6954 i = 0;
6955 do {
aa19fdd4 6956 unsigned long long esize = e[i].start - pos;
0dcecb2e 6957
aa19fdd4 6958 if (expanding ? pos_vol_idx == super->current_vol : esize >= maxsize) {
0dcecb2e
DW
6959 maxsize = esize;
6960 start = pos;
aa19fdd4 6961 extent_idx = i;
0dcecb2e 6962 }
aa19fdd4 6963
0dcecb2e 6964 pos = e[i].start + e[i].size;
aa19fdd4
MT
6965 pos_vol_idx = e[i].vol;
6966
0dcecb2e
DW
6967 i++;
6968 } while (e[i-1].size);
6969 free(e);
6970
a7dd165b
DW
6971 if (maxsize == 0)
6972 return 0;
6973
6974 /* FIXME assumes volume at offset 0 is the first volume in a
6975 * container
6976 */
aa19fdd4 6977 if (extent_idx > 0)
0dcecb2e
DW
6978 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
6979 else
6980 reserve = 0;
6981
6982 if (maxsize < reserve)
a7dd165b 6983 return 0;
0dcecb2e 6984
5551b113 6985 super->create_offset = ~((unsigned long long) 0);
0dcecb2e 6986 if (start + reserve > super->create_offset)
a7dd165b 6987 return 0; /* start overflows create_offset */
0dcecb2e
DW
6988 super->create_offset = start + reserve;
6989
6990 return maxsize - reserve;
6991}
6992
88c32bb1
DW
6993static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
6994{
6995 if (level < 0 || level == 6 || level == 4)
6996 return 0;
6997
6998 /* if we have an orom prevent invalid raid levels */
6999 if (orom)
7000 switch (level) {
7001 case 0: return imsm_orom_has_raid0(orom);
7002 case 1:
7003 if (raiddisks > 2)
7004 return imsm_orom_has_raid1e(orom);
1c556e92
DW
7005 return imsm_orom_has_raid1(orom) && raiddisks == 2;
7006 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
7007 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
7008 }
7009 else
7010 return 1; /* not on an Intel RAID platform so anything goes */
7011
7012 return 0;
7013}
7014
ca9de185
LM
7015static int
7016active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
7017 int dpa, int verbose)
7018{
7019 struct mdstat_ent *mdstat = mdstat_read(0, 0);
594dc1b8 7020 struct mdstat_ent *memb;
ca9de185
LM
7021 int count = 0;
7022 int num = 0;
594dc1b8 7023 struct md_list *dv;
ca9de185
LM
7024 int found;
7025
7026 for (memb = mdstat ; memb ; memb = memb->next) {
7027 if (memb->metadata_version &&
fc54fe7a 7028 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
ca9de185
LM
7029 (strcmp(&memb->metadata_version[9], name) == 0) &&
7030 !is_subarray(memb->metadata_version+9) &&
7031 memb->members) {
7032 struct dev_member *dev = memb->members;
7033 int fd = -1;
4389ce73 7034 while (dev && !is_fd_valid(fd)) {
503975b9
N
7035 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
7036 num = sprintf(path, "%s%s", "/dev/", dev->name);
7037 if (num > 0)
7038 fd = open(path, O_RDONLY, 0);
4389ce73 7039 if (num <= 0 || !is_fd_valid(fd)) {
676e87a8 7040 pr_vrb("Cannot open %s: %s\n",
503975b9 7041 dev->name, strerror(errno));
ca9de185 7042 }
503975b9 7043 free(path);
ca9de185
LM
7044 dev = dev->next;
7045 }
7046 found = 0;
4389ce73 7047 if (is_fd_valid(fd) && disk_attached_to_hba(fd, hba)) {
ca9de185
LM
7048 struct mdstat_ent *vol;
7049 for (vol = mdstat ; vol ; vol = vol->next) {
089f9d79 7050 if (vol->active > 0 &&
ca9de185 7051 vol->metadata_version &&
9581efb1 7052 is_container_member(vol, memb->devnm)) {
ca9de185
LM
7053 found++;
7054 count++;
7055 }
7056 }
7057 if (*devlist && (found < dpa)) {
503975b9 7058 dv = xcalloc(1, sizeof(*dv));
9581efb1
N
7059 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
7060 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
503975b9
N
7061 dv->found = found;
7062 dv->used = 0;
7063 dv->next = *devlist;
7064 *devlist = dv;
ca9de185
LM
7065 }
7066 }
4389ce73 7067 close_fd(&fd);
ca9de185
LM
7068 }
7069 }
7070 free_mdstat(mdstat);
7071 return count;
7072}
7073
7074#ifdef DEBUG_LOOP
7075static struct md_list*
7076get_loop_devices(void)
7077{
7078 int i;
7079 struct md_list *devlist = NULL;
594dc1b8 7080 struct md_list *dv;
ca9de185
LM
7081
7082 for(i = 0; i < 12; i++) {
503975b9
N
7083 dv = xcalloc(1, sizeof(*dv));
7084 dv->devname = xmalloc(40);
ca9de185
LM
7085 sprintf(dv->devname, "/dev/loop%d", i);
7086 dv->next = devlist;
7087 devlist = dv;
7088 }
7089 return devlist;
7090}
7091#endif
7092
7093static struct md_list*
7094get_devices(const char *hba_path)
7095{
7096 struct md_list *devlist = NULL;
594dc1b8 7097 struct md_list *dv;
ca9de185
LM
7098 struct dirent *ent;
7099 DIR *dir;
7100 int err = 0;
7101
7102#if DEBUG_LOOP
7103 devlist = get_loop_devices();
7104 return devlist;
7105#endif
7106 /* scroll through /sys/dev/block looking for devices attached to
7107 * this hba
7108 */
7109 dir = opendir("/sys/dev/block");
7110 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
7111 int fd;
7112 char buf[1024];
7113 int major, minor;
7114 char *path = NULL;
7115 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
7116 continue;
7c798f87 7117 path = devt_to_devpath(makedev(major, minor), 1, NULL);
ca9de185
LM
7118 if (!path)
7119 continue;
7120 if (!path_attached_to_hba(path, hba_path)) {
7121 free(path);
7122 path = NULL;
7123 continue;
7124 }
7125 free(path);
7126 path = NULL;
7127 fd = dev_open(ent->d_name, O_RDONLY);
4389ce73 7128 if (is_fd_valid(fd)) {
ca9de185
LM
7129 fd2devname(fd, buf);
7130 close(fd);
7131 } else {
e7b84f9d 7132 pr_err("cannot open device: %s\n",
ca9de185
LM
7133 ent->d_name);
7134 continue;
7135 }
7136
503975b9
N
7137 dv = xcalloc(1, sizeof(*dv));
7138 dv->devname = xstrdup(buf);
ca9de185
LM
7139 dv->next = devlist;
7140 devlist = dv;
7141 }
7142 if (err) {
7143 while(devlist) {
7144 dv = devlist;
7145 devlist = devlist->next;
7146 free(dv->devname);
7147 free(dv);
7148 }
7149 }
562aa102 7150 closedir(dir);
ca9de185
LM
7151 return devlist;
7152}
7153
7154static int
7155count_volumes_list(struct md_list *devlist, char *homehost,
7156 int verbose, int *found)
7157{
7158 struct md_list *tmpdev;
7159 int count = 0;
594dc1b8 7160 struct supertype *st;
ca9de185
LM
7161
7162 /* first walk the list of devices to find a consistent set
7163 * that match the criterea, if that is possible.
7164 * We flag the ones we like with 'used'.
7165 */
7166 *found = 0;
7167 st = match_metadata_desc_imsm("imsm");
7168 if (st == NULL) {
676e87a8 7169 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
7170 return 0;
7171 }
7172
7173 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
7174 char *devname = tmpdev->devname;
0a6bff09 7175 dev_t rdev;
ca9de185
LM
7176 struct supertype *tst;
7177 int dfd;
7178 if (tmpdev->used > 1)
7179 continue;
7180 tst = dup_super(st);
7181 if (tst == NULL) {
676e87a8 7182 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
7183 goto err_1;
7184 }
7185 tmpdev->container = 0;
7186 dfd = dev_open(devname, O_RDONLY|O_EXCL);
4389ce73 7187 if (!is_fd_valid(dfd)) {
1ade5cc1 7188 dprintf("cannot open device %s: %s\n",
ca9de185
LM
7189 devname, strerror(errno));
7190 tmpdev->used = 2;
0a6bff09 7191 } else if (!fstat_is_blkdev(dfd, devname, &rdev)) {
ca9de185
LM
7192 tmpdev->used = 2;
7193 } else if (must_be_container(dfd)) {
7194 struct supertype *cst;
7195 cst = super_by_fd(dfd, NULL);
7196 if (cst == NULL) {
1ade5cc1 7197 dprintf("cannot recognize container type %s\n",
ca9de185
LM
7198 devname);
7199 tmpdev->used = 2;
7200 } else if (tst->ss != st->ss) {
1ade5cc1 7201 dprintf("non-imsm container - ignore it: %s\n",
ca9de185
LM
7202 devname);
7203 tmpdev->used = 2;
7204 } else if (!tst->ss->load_container ||
7205 tst->ss->load_container(tst, dfd, NULL))
7206 tmpdev->used = 2;
7207 else {
7208 tmpdev->container = 1;
7209 }
7210 if (cst)
7211 cst->ss->free_super(cst);
7212 } else {
0a6bff09 7213 tmpdev->st_rdev = rdev;
ca9de185 7214 if (tst->ss->load_super(tst,dfd, NULL)) {
1ade5cc1 7215 dprintf("no RAID superblock on %s\n",
ca9de185
LM
7216 devname);
7217 tmpdev->used = 2;
7218 } else if (tst->ss->compare_super == NULL) {
1ade5cc1 7219 dprintf("Cannot assemble %s metadata on %s\n",
ca9de185
LM
7220 tst->ss->name, devname);
7221 tmpdev->used = 2;
7222 }
7223 }
4389ce73
MT
7224 close_fd(&dfd);
7225
ca9de185
LM
7226 if (tmpdev->used == 2 || tmpdev->used == 4) {
7227 /* Ignore unrecognised devices during auto-assembly */
7228 goto loop;
7229 }
7230 else {
7231 struct mdinfo info;
7232 tst->ss->getinfo_super(tst, &info, NULL);
7233
7234 if (st->minor_version == -1)
7235 st->minor_version = tst->minor_version;
7236
7237 if (memcmp(info.uuid, uuid_zero,
7238 sizeof(int[4])) == 0) {
7239 /* this is a floating spare. It cannot define
7240 * an array unless there are no more arrays of
7241 * this type to be found. It can be included
7242 * in an array of this type though.
7243 */
7244 tmpdev->used = 3;
7245 goto loop;
7246 }
7247
7248 if (st->ss != tst->ss ||
7249 st->minor_version != tst->minor_version ||
c7b8547c 7250 st->ss->compare_super(st, tst, 1) != 0) {
ca9de185
LM
7251 /* Some mismatch. If exactly one array matches this host,
7252 * we can resolve on that one.
7253 * Or, if we are auto assembling, we just ignore the second
7254 * for now.
7255 */
1ade5cc1 7256 dprintf("superblock on %s doesn't match others - assembly aborted\n",
ca9de185
LM
7257 devname);
7258 goto loop;
7259 }
7260 tmpdev->used = 1;
7261 *found = 1;
7262 dprintf("found: devname: %s\n", devname);
7263 }
7264 loop:
7265 if (tst)
7266 tst->ss->free_super(tst);
7267 }
7268 if (*found != 0) {
7269 int err;
7270 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
7271 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
7272 for (iter = head; iter; iter = iter->next) {
7273 dprintf("content->text_version: %s vol\n",
7274 iter->text_version);
7275 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
7276 /* do not assemble arrays with unsupported
7277 configurations */
1ade5cc1 7278 dprintf("Cannot activate member %s.\n",
ca9de185
LM
7279 iter->text_version);
7280 } else
7281 count++;
7282 }
7283 sysfs_free(head);
7284
7285 } else {
1ade5cc1 7286 dprintf("No valid super block on device list: err: %d %p\n",
ca9de185
LM
7287 err, st->sb);
7288 }
7289 } else {
1ade5cc1 7290 dprintf("no more devices to examine\n");
ca9de185
LM
7291 }
7292
7293 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
089f9d79 7294 if (tmpdev->used == 1 && tmpdev->found) {
ca9de185
LM
7295 if (count) {
7296 if (count < tmpdev->found)
7297 count = 0;
7298 else
7299 count -= tmpdev->found;
7300 }
7301 }
7302 if (tmpdev->used == 1)
7303 tmpdev->used = 4;
7304 }
7305 err_1:
7306 if (st)
7307 st->ss->free_super(st);
7308 return count;
7309}
7310
d3c11416
AO
7311static int __count_volumes(char *hba_path, int dpa, int verbose,
7312 int cmp_hba_path)
ca9de185 7313{
72a45777 7314 struct sys_dev *idev, *intel_devices = find_intel_devices();
ca9de185 7315 int count = 0;
72a45777
PB
7316 const struct orom_entry *entry;
7317 struct devid_list *dv, *devid_list;
ca9de185 7318
d3c11416 7319 if (!hba_path)
ca9de185
LM
7320 return 0;
7321
72a45777 7322 for (idev = intel_devices; idev; idev = idev->next) {
d3c11416
AO
7323 if (strstr(idev->path, hba_path))
7324 break;
72a45777
PB
7325 }
7326
7327 if (!idev || !idev->dev_id)
ca9de185 7328 return 0;
72a45777
PB
7329
7330 entry = get_orom_entry_by_device_id(idev->dev_id);
7331
7332 if (!entry || !entry->devid_list)
7333 return 0;
7334
7335 devid_list = entry->devid_list;
7336 for (dv = devid_list; dv; dv = dv->next) {
594dc1b8 7337 struct md_list *devlist;
d3c11416
AO
7338 struct sys_dev *device = NULL;
7339 char *hpath;
72a45777
PB
7340 int found = 0;
7341
d3c11416
AO
7342 if (cmp_hba_path)
7343 device = device_by_id_and_path(dv->devid, hba_path);
7344 else
7345 device = device_by_id(dv->devid);
7346
72a45777 7347 if (device)
d3c11416 7348 hpath = device->path;
72a45777
PB
7349 else
7350 return 0;
7351
d3c11416 7352 devlist = get_devices(hpath);
72a45777
PB
7353 /* if no intel devices return zero volumes */
7354 if (devlist == NULL)
7355 return 0;
7356
d3c11416
AO
7357 count += active_arrays_by_format("imsm", hpath, &devlist, dpa,
7358 verbose);
7359 dprintf("path: %s active arrays: %d\n", hpath, count);
72a45777
PB
7360 if (devlist == NULL)
7361 return 0;
7362 do {
7363 found = 0;
7364 count += count_volumes_list(devlist,
7365 NULL,
7366 verbose,
7367 &found);
7368 dprintf("found %d count: %d\n", found, count);
7369 } while (found);
7370
d3c11416 7371 dprintf("path: %s total number of volumes: %d\n", hpath, count);
72a45777
PB
7372
7373 while (devlist) {
7374 struct md_list *dv = devlist;
7375 devlist = devlist->next;
7376 free(dv->devname);
7377 free(dv);
7378 }
ca9de185
LM
7379 }
7380 return count;
7381}
7382
d3c11416
AO
7383static int count_volumes(struct intel_hba *hba, int dpa, int verbose)
7384{
7385 if (!hba)
7386 return 0;
7387 if (hba->type == SYS_DEV_VMD) {
7388 struct sys_dev *dev;
7389 int count = 0;
7390
7391 for (dev = find_intel_devices(); dev; dev = dev->next) {
7392 if (dev->type == SYS_DEV_VMD)
7393 count += __count_volumes(dev->path, dpa,
7394 verbose, 1);
7395 }
7396 return count;
7397 }
7398 return __count_volumes(hba->path, dpa, verbose, 0);
7399}
7400
cd9d1ac7
DW
7401static int imsm_default_chunk(const struct imsm_orom *orom)
7402{
7403 /* up to 512 if the plaform supports it, otherwise the platform max.
7404 * 128 if no platform detected
7405 */
7406 int fs = max(7, orom ? fls(orom->sss) : 0);
7407
7408 return min(512, (1 << fs));
7409}
73408129 7410
6592ce37
DW
7411static int
7412validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
2cc699af 7413 int raiddisks, int *chunk, unsigned long long size, int verbose)
6592ce37 7414{
660260d0
DW
7415 /* check/set platform and metadata limits/defaults */
7416 if (super->orom && raiddisks > super->orom->dpa) {
676e87a8 7417 pr_vrb("platform supports a maximum of %d disks per array\n",
660260d0 7418 super->orom->dpa);
73408129
LM
7419 return 0;
7420 }
7421
5d500228 7422 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 7423 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
676e87a8 7424 pr_vrb("platform does not support raid%d with %d disk%s\n",
6592ce37
DW
7425 level, raiddisks, raiddisks > 1 ? "s" : "");
7426 return 0;
7427 }
cd9d1ac7 7428
7ccc4cc4 7429 if (*chunk == 0 || *chunk == UnSet)
cd9d1ac7
DW
7430 *chunk = imsm_default_chunk(super->orom);
7431
7ccc4cc4 7432 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
676e87a8 7433 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
cd9d1ac7 7434 return 0;
6592ce37 7435 }
cd9d1ac7 7436
6592ce37
DW
7437 if (layout != imsm_level_to_layout(level)) {
7438 if (level == 5)
676e87a8 7439 pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
6592ce37 7440 else if (level == 10)
676e87a8 7441 pr_vrb("imsm raid 10 only supports the n2 layout\n");
6592ce37 7442 else
676e87a8 7443 pr_vrb("imsm unknown layout %#x for this raid level %d\n",
6592ce37
DW
7444 layout, level);
7445 return 0;
7446 }
2cc699af 7447
7ccc4cc4 7448 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
2cc699af 7449 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
676e87a8 7450 pr_vrb("platform does not support a volume size over 2TB\n");
2cc699af
CA
7451 return 0;
7452 }
614902f6 7453
6592ce37
DW
7454 return 1;
7455}
7456
1011e834 7457/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
c2c087e6
DW
7458 * FIX ME add ahci details
7459 */
8b353278 7460static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 7461 int layout, int raiddisks, int *chunk,
af4348dd
N
7462 unsigned long long size,
7463 unsigned long long data_offset,
7464 char *dev,
2c514b71
NB
7465 unsigned long long *freesize,
7466 int verbose)
cdddbdbc 7467{
9e04ac1c 7468 dev_t rdev;
c2c087e6 7469 struct intel_super *super = st->sb;
b2916f25 7470 struct imsm_super *mpb;
c2c087e6
DW
7471 struct dl *dl;
7472 unsigned long long pos = 0;
7473 unsigned long long maxsize;
7474 struct extent *e;
7475 int i;
cdddbdbc 7476
88c32bb1
DW
7477 /* We must have the container info already read in. */
7478 if (!super)
c2c087e6
DW
7479 return 0;
7480
b2916f25
JS
7481 mpb = super->anchor;
7482
2cc699af 7483 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
3e684231 7484 pr_err("RAID geometry validation failed. Cannot proceed with the action(s).\n");
c2c087e6 7485 return 0;
d54559f0 7486 }
c2c087e6
DW
7487 if (!dev) {
7488 /* General test: make sure there is space for
2da8544a
DW
7489 * 'raiddisks' device extents of size 'size' at a given
7490 * offset
c2c087e6 7491 */
e46273eb 7492 unsigned long long minsize = size;
b7528a20 7493 unsigned long long start_offset = MaxSector;
c2c087e6
DW
7494 int dcnt = 0;
7495 if (minsize == 0)
7496 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
7497 for (dl = super->disks; dl ; dl = dl->next) {
7498 int found = 0;
7499
bf5a934a 7500 pos = 0;
c2c087e6 7501 i = 0;
05501181 7502 e = get_extents(super, dl, 0);
c2c087e6
DW
7503 if (!e) continue;
7504 do {
7505 unsigned long long esize;
7506 esize = e[i].start - pos;
7507 if (esize >= minsize)
7508 found = 1;
b7528a20 7509 if (found && start_offset == MaxSector) {
2da8544a
DW
7510 start_offset = pos;
7511 break;
7512 } else if (found && pos != start_offset) {
7513 found = 0;
7514 break;
7515 }
c2c087e6
DW
7516 pos = e[i].start + e[i].size;
7517 i++;
7518 } while (e[i-1].size);
7519 if (found)
7520 dcnt++;
7521 free(e);
7522 }
7523 if (dcnt < raiddisks) {
2c514b71 7524 if (verbose)
7a862a02 7525 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
2c514b71 7526 dcnt, raiddisks);
c2c087e6
DW
7527 return 0;
7528 }
7529 return 1;
7530 }
0dcecb2e 7531
c2c087e6 7532 /* This device must be a member of the set */
9e04ac1c 7533 if (!stat_is_blkdev(dev, &rdev))
c2c087e6
DW
7534 return 0;
7535 for (dl = super->disks ; dl ; dl = dl->next) {
9e04ac1c
ZL
7536 if (dl->major == (int)major(rdev) &&
7537 dl->minor == (int)minor(rdev))
c2c087e6
DW
7538 break;
7539 }
7540 if (!dl) {
2c514b71 7541 if (verbose)
7a862a02 7542 pr_err("%s is not in the same imsm set\n", dev);
c2c087e6 7543 return 0;
a20d2ba5
DW
7544 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
7545 /* If a volume is present then the current creation attempt
7546 * cannot incorporate new spares because the orom may not
7547 * understand this configuration (all member disks must be
7548 * members of each array in the container).
7549 */
7a862a02
N
7550 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
7551 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
a20d2ba5 7552 return 0;
5fe62b94
WD
7553 } else if (super->orom && mpb->num_raid_devs > 0 &&
7554 mpb->num_disks != raiddisks) {
7a862a02 7555 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
5fe62b94 7556 return 0;
c2c087e6 7557 }
0dcecb2e
DW
7558
7559 /* retrieve the largest free space block */
05501181 7560 e = get_extents(super, dl, 0);
c2c087e6
DW
7561 maxsize = 0;
7562 i = 0;
0dcecb2e
DW
7563 if (e) {
7564 do {
7565 unsigned long long esize;
7566
7567 esize = e[i].start - pos;
7568 if (esize >= maxsize)
7569 maxsize = esize;
7570 pos = e[i].start + e[i].size;
7571 i++;
7572 } while (e[i-1].size);
7573 dl->e = e;
7574 dl->extent_cnt = i;
7575 } else {
7576 if (verbose)
e7b84f9d 7577 pr_err("unable to determine free space for: %s\n",
0dcecb2e
DW
7578 dev);
7579 return 0;
7580 }
7581 if (maxsize < size) {
7582 if (verbose)
e7b84f9d 7583 pr_err("%s not enough space (%llu < %llu)\n",
0dcecb2e
DW
7584 dev, maxsize, size);
7585 return 0;
7586 }
7587
aa19fdd4 7588 maxsize = merge_extents(super, false);
3baa56ab 7589
1a1ced1e
KS
7590 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7591 pr_err("attempting to create a second volume with size less then remaining space.\n");
3baa56ab 7592
a7dd165b 7593 if (maxsize < size || maxsize == 0) {
b3071342
LD
7594 if (verbose) {
7595 if (maxsize == 0)
7a862a02 7596 pr_err("no free space left on device. Aborting...\n");
b3071342 7597 else
7a862a02 7598 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
b3071342
LD
7599 maxsize, size);
7600 }
0dcecb2e 7601 return 0;
0dcecb2e
DW
7602 }
7603
c2c087e6
DW
7604 *freesize = maxsize;
7605
ca9de185 7606 if (super->orom) {
72a45777 7607 int count = count_volumes(super->hba,
ca9de185
LM
7608 super->orom->dpa, verbose);
7609 if (super->orom->vphba <= count) {
676e87a8 7610 pr_vrb("platform does not support more than %d raid volumes.\n",
ca9de185
LM
7611 super->orom->vphba);
7612 return 0;
7613 }
7614 }
c2c087e6 7615 return 1;
cdddbdbc
DW
7616}
7617
6d4d9ab2
MT
7618/**
7619 * imsm_get_free_size() - get the biggest, common free space from members.
7620 * @super: &intel_super pointer, not NULL.
7621 * @raiddisks: number of raid disks.
7622 * @size: requested size, could be 0 (means max size).
5f027b93 7623 * @chunk: requested chunk size in KiB.
6d4d9ab2
MT
7624 * @freesize: pointer for returned size value.
7625 *
7626 * Return: &IMSM_STATUS_OK or &IMSM_STATUS_ERROR.
7627 *
7628 * @freesize is set to meaningful value, this can be @size, or calculated
7629 * max free size.
7630 * super->create_offset value is modified and set appropriately in
7631 * merge_extends() for further creation.
7632 */
7633static imsm_status_t imsm_get_free_size(struct intel_super *super,
7634 const int raiddisks,
7635 unsigned long long size,
7636 const int chunk,
aa19fdd4
MT
7637 unsigned long long *freesize,
7638 bool expanding)
efb30e7f 7639{
efb30e7f
DW
7640 struct imsm_super *mpb = super->anchor;
7641 struct dl *dl;
7642 int i;
efb30e7f 7643 struct extent *e;
5f027b93
MT
7644 int cnt = 0;
7645 int used = 0;
efb30e7f 7646 unsigned long long maxsize;
5f027b93
MT
7647 unsigned long long minsize = size;
7648
7649 if (minsize == 0)
7650 minsize = chunk * 2;
efb30e7f
DW
7651
7652 /* find the largest common start free region of the possible disks */
efb30e7f
DW
7653 for (dl = super->disks; dl; dl = dl->next) {
7654 dl->raiddisk = -1;
7655
7656 if (dl->index >= 0)
7657 used++;
7658
7659 /* don't activate new spares if we are orom constrained
7660 * and there is already a volume active in the container
7661 */
7662 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
7663 continue;
7664
05501181 7665 e = get_extents(super, dl, 0);
efb30e7f
DW
7666 if (!e)
7667 continue;
7668 for (i = 1; e[i-1].size; i++)
7669 ;
7670 dl->e = e;
7671 dl->extent_cnt = i;
efb30e7f
DW
7672 cnt++;
7673 }
7674
aa19fdd4 7675 maxsize = merge_extents(super, expanding);
5f027b93
MT
7676 if (maxsize < minsize) {
7677 pr_err("imsm: Free space is %llu but must be equal or larger than %llu.\n",
7678 maxsize, minsize);
7679 return IMSM_STATUS_ERROR;
7680 }
efb30e7f 7681
5f027b93
MT
7682 if (cnt < raiddisks || (super->orom && used && used != raiddisks)) {
7683 pr_err("imsm: Not enough devices with space to create array.\n");
6d4d9ab2 7684 return IMSM_STATUS_ERROR;
efb30e7f
DW
7685 }
7686
7687 if (size == 0) {
7688 size = maxsize;
7689 if (chunk) {
612e59d8
CA
7690 size /= 2 * chunk;
7691 size *= 2 * chunk;
efb30e7f 7692 }
f878b242
LM
7693 maxsize = size;
7694 }
1a1ced1e
KS
7695 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7696 pr_err("attempting to create a second volume with size less then remaining space.\n");
efb30e7f
DW
7697 *freesize = size;
7698
13bcac90
AK
7699 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
7700
6d4d9ab2 7701 return IMSM_STATUS_OK;
efb30e7f
DW
7702}
7703
6d4d9ab2
MT
7704/**
7705 * autolayout_imsm() - automatically layout a new volume.
7706 * @super: &intel_super pointer, not NULL.
7707 * @raiddisks: number of raid disks.
7708 * @size: requested size, could be 0 (means max size).
7709 * @chunk: requested chunk.
7710 * @freesize: pointer for returned size value.
7711 *
7712 * We are being asked to automatically layout a new volume based on the current
7713 * contents of the container. If the parameters can be satisfied autolayout_imsm
7714 * will record the disks, start offset, and will return size of the volume to
7715 * be created. See imsm_get_free_size() for details.
7716 * add_to_super() and getinfo_super() detect when autolayout is in progress.
7717 * If first volume exists, slots are set consistently to it.
7718 *
7719 * Return: &IMSM_STATUS_OK on success, &IMSM_STATUS_ERROR otherwise.
7720 *
7721 * Disks are marked for creation via dl->raiddisk.
7722 */
7723static imsm_status_t autolayout_imsm(struct intel_super *super,
7724 const int raiddisks,
7725 unsigned long long size, const int chunk,
7726 unsigned long long *freesize)
13bcac90 7727{
6d4d9ab2
MT
7728 int curr_slot = 0;
7729 struct dl *disk;
7730 int vol_cnt = super->anchor->num_raid_devs;
7731 imsm_status_t rv;
13bcac90 7732
aa19fdd4 7733 rv = imsm_get_free_size(super, raiddisks, size, chunk, freesize, false);
6d4d9ab2
MT
7734 if (rv != IMSM_STATUS_OK)
7735 return IMSM_STATUS_ERROR;
7736
7737 for (disk = super->disks; disk; disk = disk->next) {
7738 if (!disk->e)
7739 continue;
7740
7741 if (curr_slot == raiddisks)
7742 break;
7743
7744 if (vol_cnt == 0) {
7745 disk->raiddisk = curr_slot;
7746 } else {
7747 int _slot = get_disk_slot_in_dev(super, 0, disk->index);
7748
7749 if (_slot == -1) {
7750 pr_err("Disk %s is not used in first volume, aborting\n",
7751 disk->devname);
7752 return IMSM_STATUS_ERROR;
7753 }
7754 disk->raiddisk = _slot;
7755 }
7756 curr_slot++;
13bcac90
AK
7757 }
7758
6d4d9ab2 7759 return IMSM_STATUS_OK;
13bcac90
AK
7760}
7761
bf5a934a 7762static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 7763 int raiddisks, int *chunk, unsigned long long size,
af4348dd 7764 unsigned long long data_offset,
bf5a934a 7765 char *dev, unsigned long long *freesize,
5308f117 7766 int consistency_policy, int verbose)
bf5a934a
DW
7767{
7768 int fd, cfd;
7769 struct mdinfo *sra;
20cbe8d2 7770 int is_member = 0;
bf5a934a 7771
d54559f0
LM
7772 /* load capability
7773 * if given unused devices create a container
bf5a934a
DW
7774 * if given given devices in a container create a member volume
7775 */
6f2af6a4 7776 if (is_container(level))
bf5a934a 7777 /* Must be a fresh device to add to a container */
1f5d54a0
MT
7778 return validate_geometry_imsm_container(st, level, raiddisks,
7779 data_offset, dev,
7780 freesize, verbose);
9587c373 7781
06a6101c
BK
7782 /*
7783 * Size is given in sectors.
7784 */
7785 if (size && (size < 2048)) {
22dc741f 7786 pr_err("Given size must be greater than 1M.\n");
54865c30
RS
7787 /* Depends on algorithm in Create.c :
7788 * if container was given (dev == NULL) return -1,
7789 * if block device was given ( dev != NULL) return 0.
7790 */
7791 return dev ? -1 : 0;
7792 }
7793
8592f29d 7794 if (!dev) {
6d4d9ab2
MT
7795 struct intel_super *super = st->sb;
7796
7797 /*
071f839e 7798 * Autolayout mode, st->sb must be set.
6d4d9ab2 7799 */
071f839e
KT
7800 if (!super) {
7801 pr_vrb("superblock must be set for autolayout, aborting\n");
7802 return 0;
6d4d9ab2
MT
7803 }
7804
7805 if (!validate_geometry_imsm_orom(st->sb, level, layout,
7806 raiddisks, chunk, size,
7807 verbose))
7808 return 0;
7809
071f839e 7810 if (super->orom && freesize) {
6d4d9ab2
MT
7811 imsm_status_t rv;
7812 int count = count_volumes(super->hba, super->orom->dpa,
7813 verbose);
7814 if (super->orom->vphba <= count) {
7815 pr_vrb("platform does not support more than %d raid volumes.\n",
7816 super->orom->vphba);
e91a3bad 7817 return 0;
ca9de185 7818 }
6d4d9ab2
MT
7819
7820 rv = autolayout_imsm(super, raiddisks, size, *chunk,
7821 freesize);
7822 if (rv != IMSM_STATUS_OK)
7823 return 0;
8592f29d
N
7824 }
7825 return 1;
7826 }
bf5a934a
DW
7827 if (st->sb) {
7828 /* creating in a given container */
7829 return validate_geometry_imsm_volume(st, level, layout,
7830 raiddisks, chunk, size,
af4348dd 7831 data_offset,
bf5a934a
DW
7832 dev, freesize, verbose);
7833 }
7834
bf5a934a
DW
7835 /* This device needs to be a device in an 'imsm' container */
7836 fd = open(dev, O_RDONLY|O_EXCL, 0);
4389ce73
MT
7837
7838 if (is_fd_valid(fd)) {
7839 pr_vrb("Cannot create this array on device %s\n", dev);
bf5a934a
DW
7840 close(fd);
7841 return 0;
7842 }
4389ce73
MT
7843 if (errno == EBUSY)
7844 fd = open(dev, O_RDONLY, 0);
7845
7846 if (!is_fd_valid(fd)) {
7847 pr_vrb("Cannot open %s: %s\n", dev, strerror(errno));
bf5a934a
DW
7848 return 0;
7849 }
4389ce73 7850
bf5a934a
DW
7851 /* Well, it is in use by someone, maybe an 'imsm' container. */
7852 cfd = open_container(fd);
4389ce73
MT
7853 close_fd(&fd);
7854
7855 if (!is_fd_valid(cfd)) {
7856 pr_vrb("Cannot use %s: It is busy\n", dev);
bf5a934a
DW
7857 return 0;
7858 }
4dd2df09 7859 sra = sysfs_read(cfd, NULL, GET_VERSION);
bf5a934a 7860 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
7861 strcmp(sra->text_version, "imsm") == 0)
7862 is_member = 1;
7863 sysfs_free(sra);
7864 if (is_member) {
bf5a934a
DW
7865 /* This is a member of a imsm container. Load the container
7866 * and try to create a volume
7867 */
7868 struct intel_super *super;
7869
ec50f7b6 7870 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
bf5a934a 7871 st->sb = super;
4dd2df09 7872 strcpy(st->container_devnm, fd2devnm(cfd));
bf5a934a
DW
7873 close(cfd);
7874 return validate_geometry_imsm_volume(st, level, layout,
7875 raiddisks, chunk,
af4348dd 7876 size, data_offset, dev,
ecbd9e81
N
7877 freesize, 1)
7878 ? 1 : -1;
bf5a934a 7879 }
20cbe8d2 7880 }
bf5a934a 7881
20cbe8d2 7882 if (verbose)
e7b84f9d 7883 pr_err("failed container membership check\n");
20cbe8d2
AW
7884
7885 close(cfd);
7886 return 0;
bf5a934a 7887}
0bd16cf2 7888
30f58b22 7889static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
7890{
7891 struct intel_super *super = st->sb;
7892
30f58b22
DW
7893 if (level && *level == UnSet)
7894 *level = LEVEL_CONTAINER;
7895
7896 if (level && layout && *layout == UnSet)
7897 *layout = imsm_level_to_layout(*level);
0bd16cf2 7898
cd9d1ac7
DW
7899 if (chunk && (*chunk == UnSet || *chunk == 0))
7900 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
7901}
7902
33414a01
DW
7903static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
7904
3364781b 7905static int kill_subarray_imsm(struct supertype *st, char *subarray_id)
33414a01 7906{
3364781b 7907 /* remove the subarray currently referenced by subarray_id */
33414a01
DW
7908 __u8 i;
7909 struct intel_dev **dp;
7910 struct intel_super *super = st->sb;
3364781b 7911 __u8 current_vol = strtoul(subarray_id, NULL, 10);
33414a01
DW
7912 struct imsm_super *mpb = super->anchor;
7913
3364781b 7914 if (mpb->num_raid_devs == 0)
33414a01 7915 return 2;
33414a01
DW
7916
7917 /* block deletions that would change the uuid of active subarrays
7918 *
7919 * FIXME when immutable ids are available, but note that we'll
7920 * also need to fixup the invalidated/active subarray indexes in
7921 * mdstat
7922 */
7923 for (i = 0; i < mpb->num_raid_devs; i++) {
7924 char subarray[4];
7925
7926 if (i < current_vol)
7927 continue;
7928 sprintf(subarray, "%u", i);
4dd2df09 7929 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d
N
7930 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
7931 current_vol, i);
33414a01
DW
7932
7933 return 2;
7934 }
7935 }
7936
7937 if (st->update_tail) {
503975b9 7938 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
33414a01 7939
33414a01
DW
7940 u->type = update_kill_array;
7941 u->dev_idx = current_vol;
7942 append_metadata_update(st, u, sizeof(*u));
7943
7944 return 0;
7945 }
7946
7947 for (dp = &super->devlist; *dp;)
7948 if ((*dp)->index == current_vol) {
7949 *dp = (*dp)->next;
7950 } else {
7951 handle_missing(super, (*dp)->dev);
7952 if ((*dp)->index > current_vol)
7953 (*dp)->index--;
7954 dp = &(*dp)->next;
7955 }
7956
7957 /* no more raid devices, all active components are now spares,
7958 * but of course failed are still failed
7959 */
7960 if (--mpb->num_raid_devs == 0) {
7961 struct dl *d;
7962
7963 for (d = super->disks; d; d = d->next)
a8619d23
AK
7964 if (d->index > -2)
7965 mark_spare(d);
33414a01
DW
7966 }
7967
7968 super->updates_pending++;
7969
7970 return 0;
7971}
aa534678 7972
4345e135
MK
7973/**
7974 * get_rwh_policy_from_update() - Get the rwh policy for update option.
7975 * @update: Update option.
7976 */
7977static int get_rwh_policy_from_update(enum update_opt update)
19ad203e 7978{
4345e135
MK
7979 switch (update) {
7980 case UOPT_PPL:
19ad203e 7981 return RWH_MULTIPLE_DISTRIBUTED;
4345e135 7982 case UOPT_NO_PPL:
19ad203e 7983 return RWH_MULTIPLE_OFF;
4345e135 7984 case UOPT_BITMAP:
19ad203e 7985 return RWH_BITMAP;
4345e135 7986 case UOPT_NO_BITMAP:
19ad203e 7987 return RWH_OFF;
4345e135
MK
7988 default:
7989 break;
7990 }
7991 return UOPT_UNDEFINED;
19ad203e
JR
7992}
7993
a951a4f7 7994static int update_subarray_imsm(struct supertype *st, char *subarray,
03312b52 7995 enum update_opt update, struct mddev_ident *ident)
aa534678
DW
7996{
7997 /* update the subarray currently referenced by ->current_vol */
7998 struct intel_super *super = st->sb;
7999 struct imsm_super *mpb = super->anchor;
8000
03312b52 8001 if (update == UOPT_NAME) {
aa534678 8002 char *name = ident->name;
a951a4f7
N
8003 char *ep;
8004 int vol;
aa534678 8005
aa534678
DW
8006 if (!check_name(super, name, 0))
8007 return 2;
8008
a951a4f7
N
8009 vol = strtoul(subarray, &ep, 10);
8010 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
8011 return 2;
8012
aa534678 8013 if (st->update_tail) {
503975b9 8014 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
aa534678 8015
aa534678 8016 u->type = update_rename_array;
a951a4f7 8017 u->dev_idx = vol;
618f4e6d
XN
8018 strncpy((char *) u->name, name, MAX_RAID_SERIAL_LEN);
8019 u->name[MAX_RAID_SERIAL_LEN-1] = '\0';
aa534678
DW
8020 append_metadata_update(st, u, sizeof(*u));
8021 } else {
8022 struct imsm_dev *dev;
ebad3af2 8023 int i, namelen;
aa534678 8024
a951a4f7 8025 dev = get_imsm_dev(super, vol);
ebad3af2
JS
8026 memset(dev->volume, '\0', MAX_RAID_SERIAL_LEN);
8027 namelen = min((int)strlen(name), MAX_RAID_SERIAL_LEN);
8028 memcpy(dev->volume, name, namelen);
aa534678
DW
8029 for (i = 0; i < mpb->num_raid_devs; i++) {
8030 dev = get_imsm_dev(super, i);
8031 handle_missing(super, dev);
8032 }
8033 super->updates_pending++;
8034 }
03312b52 8035 } else if (get_rwh_policy_from_update(update) != UOPT_UNDEFINED) {
e6e9dd3f
AP
8036 int new_policy;
8037 char *ep;
8038 int vol = strtoul(subarray, &ep, 10);
8039
8040 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
8041 return 2;
8042
03312b52 8043 new_policy = get_rwh_policy_from_update(update);
e6e9dd3f
AP
8044
8045 if (st->update_tail) {
8046 struct imsm_update_rwh_policy *u = xmalloc(sizeof(*u));
8047
8048 u->type = update_rwh_policy;
8049 u->dev_idx = vol;
8050 u->new_policy = new_policy;
8051 append_metadata_update(st, u, sizeof(*u));
8052 } else {
8053 struct imsm_dev *dev;
8054
8055 dev = get_imsm_dev(super, vol);
8056 dev->rwh_policy = new_policy;
8057 super->updates_pending++;
8058 }
19ad203e
JR
8059 if (new_policy == RWH_BITMAP)
8060 return write_init_bitmap_imsm_vol(st, vol);
aa534678
DW
8061 } else
8062 return 2;
8063
8064 return 0;
8065}
bf5a934a 8066
195d1d76 8067static bool is_gen_migration(struct imsm_dev *dev)
28bce06f 8068{
195d1d76
PP
8069 if (dev && dev->vol.migr_state &&
8070 migr_type(dev) == MIGR_GEN_MIGR)
8071 return true;
28bce06f 8072
195d1d76 8073 return false;
28bce06f
AK
8074}
8075
1e5c6983
DW
8076static int is_rebuilding(struct imsm_dev *dev)
8077{
8078 struct imsm_map *migr_map;
8079
8080 if (!dev->vol.migr_state)
8081 return 0;
8082
8083 if (migr_type(dev) != MIGR_REBUILD)
8084 return 0;
8085
238c0a71 8086 migr_map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
8087
8088 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
8089 return 1;
8090 else
8091 return 0;
8092}
8093
6ce1fbf1
AK
8094static int is_initializing(struct imsm_dev *dev)
8095{
8096 struct imsm_map *migr_map;
8097
8098 if (!dev->vol.migr_state)
8099 return 0;
8100
8101 if (migr_type(dev) != MIGR_INIT)
8102 return 0;
8103
238c0a71 8104 migr_map = get_imsm_map(dev, MAP_1);
6ce1fbf1
AK
8105
8106 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
8107 return 1;
8108
8109 return 0;
6ce1fbf1
AK
8110}
8111
c47b0ff6
AK
8112static void update_recovery_start(struct intel_super *super,
8113 struct imsm_dev *dev,
8114 struct mdinfo *array)
1e5c6983
DW
8115{
8116 struct mdinfo *rebuild = NULL;
8117 struct mdinfo *d;
8118 __u32 units;
8119
8120 if (!is_rebuilding(dev))
8121 return;
8122
8123 /* Find the rebuild target, but punt on the dual rebuild case */
8124 for (d = array->devs; d; d = d->next)
8125 if (d->recovery_start == 0) {
8126 if (rebuild)
8127 return;
8128 rebuild = d;
8129 }
8130
4363fd80
DW
8131 if (!rebuild) {
8132 /* (?) none of the disks are marked with
8133 * IMSM_ORD_REBUILD, so assume they are missing and the
8134 * disk_ord_tbl was not correctly updated
8135 */
1ade5cc1 8136 dprintf("failed to locate out-of-sync disk\n");
4363fd80
DW
8137 return;
8138 }
8139
4036e7ee 8140 units = vol_curr_migr_unit(dev);
c47b0ff6 8141 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
8142}
8143
276d77db 8144static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
1e5c6983 8145
00bbdbda 8146static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 8147{
4f5bc454
DW
8148 /* Given a container loaded by load_super_imsm_all,
8149 * extract information about all the arrays into
8150 * an mdinfo tree.
00bbdbda 8151 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
8152 *
8153 * For each imsm_dev create an mdinfo, fill it in,
8154 * then look for matching devices in super->disks
8155 * and create appropriate device mdinfo.
8156 */
8157 struct intel_super *super = st->sb;
949c47a0 8158 struct imsm_super *mpb = super->anchor;
4f5bc454 8159 struct mdinfo *rest = NULL;
00bbdbda 8160 unsigned int i;
81219e70 8161 int sb_errors = 0;
abef11a3
AK
8162 struct dl *d;
8163 int spare_disks = 0;
b6180160 8164 int current_vol = super->current_vol;
cdddbdbc 8165
19482bcc
AK
8166 /* do not assemble arrays when not all attributes are supported */
8167 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70 8168 sb_errors = 1;
7a862a02 8169 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
19482bcc
AK
8170 }
8171
abef11a3
AK
8172 /* count spare devices, not used in maps
8173 */
8174 for (d = super->disks; d; d = d->next)
8175 if (d->index == -1)
8176 spare_disks++;
8177
4f5bc454 8178 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
8179 struct imsm_dev *dev;
8180 struct imsm_map *map;
86e3692b 8181 struct imsm_map *map2;
4f5bc454 8182 struct mdinfo *this;
a6482415 8183 int slot;
a6482415 8184 int chunk;
00bbdbda 8185 char *ep;
8b9cd157 8186 int level;
00bbdbda
N
8187
8188 if (subarray &&
8189 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
8190 continue;
8191
8192 dev = get_imsm_dev(super, i);
238c0a71
AK
8193 map = get_imsm_map(dev, MAP_0);
8194 map2 = get_imsm_map(dev, MAP_1);
8b9cd157 8195 level = get_imsm_raid_level(map);
4f5bc454 8196
1ce0101c
DW
8197 /* do not publish arrays that are in the middle of an
8198 * unsupported migration
8199 */
8200 if (dev->vol.migr_state &&
28bce06f 8201 (migr_type(dev) == MIGR_STATE_CHANGE)) {
7a862a02 8202 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
1ce0101c
DW
8203 dev->volume);
8204 continue;
8205 }
2db86302
LM
8206 /* do not publish arrays that are not support by controller's
8207 * OROM/EFI
8208 */
1ce0101c 8209
503975b9 8210 this = xmalloc(sizeof(*this));
4f5bc454 8211
301406c9 8212 super->current_vol = i;
a5d85af7 8213 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 8214 this->next = rest;
a6482415 8215 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
81219e70
LM
8216 /* mdadm does not support all metadata features- set the bit in all arrays state */
8217 if (!validate_geometry_imsm_orom(super,
8b9cd157
MK
8218 level, /* RAID level */
8219 imsm_level_to_layout(level),
81219e70 8220 map->num_members, /* raid disks */
fcc2c9da 8221 &chunk, imsm_dev_size(dev),
81219e70 8222 1 /* verbose */)) {
7a862a02 8223 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
81219e70
LM
8224 dev->volume);
8225 this->array.state |=
8226 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
8227 (1<<MD_SB_BLOCK_VOLUME);
8228 }
81219e70
LM
8229
8230 /* if array has bad blocks, set suitable bit in all arrays state */
8231 if (sb_errors)
8232 this->array.state |=
8233 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
8234 (1<<MD_SB_BLOCK_VOLUME);
8235
4f5bc454 8236 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 8237 unsigned long long recovery_start;
4f5bc454
DW
8238 struct mdinfo *info_d;
8239 struct dl *d;
8240 int idx;
9a1608e5 8241 int skip;
7eef0453 8242 __u32 ord;
8b9cd157 8243 int missing = 0;
4f5bc454 8244
9a1608e5 8245 skip = 0;
238c0a71
AK
8246 idx = get_imsm_disk_idx(dev, slot, MAP_0);
8247 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4f5bc454
DW
8248 for (d = super->disks; d ; d = d->next)
8249 if (d->index == idx)
0fbd635c 8250 break;
4f5bc454 8251
1e5c6983 8252 recovery_start = MaxSector;
4f5bc454 8253 if (d == NULL)
9a1608e5 8254 skip = 1;
25ed7e59 8255 if (d && is_failed(&d->disk))
9a1608e5 8256 skip = 1;
8b9cd157 8257 if (!skip && (ord & IMSM_ORD_REBUILD))
1e5c6983 8258 recovery_start = 0;
1e93d0d1
BK
8259 if (!(ord & IMSM_ORD_REBUILD))
8260 this->array.working_disks++;
1011e834 8261 /*
9a1608e5 8262 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
8263 * reset resync start to avoid a dirty-degraded
8264 * situation when performing the intial sync
9a1608e5 8265 */
8b9cd157
MK
8266 if (skip)
8267 missing++;
8268
8269 if (!(dev->vol.dirty & RAIDVOL_DIRTY)) {
8270 if ((!able_to_resync(level, missing) ||
8271 recovery_start == 0))
8272 this->resync_start = MaxSector;
8b9cd157
MK
8273 }
8274
9a1608e5
DW
8275 if (skip)
8276 continue;
4f5bc454 8277
503975b9 8278 info_d = xcalloc(1, sizeof(*info_d));
4f5bc454
DW
8279 info_d->next = this->devs;
8280 this->devs = info_d;
8281
4f5bc454
DW
8282 info_d->disk.number = d->index;
8283 info_d->disk.major = d->major;
8284 info_d->disk.minor = d->minor;
8285 info_d->disk.raid_disk = slot;
1e5c6983 8286 info_d->recovery_start = recovery_start;
86e3692b
AK
8287 if (map2) {
8288 if (slot < map2->num_members)
8289 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
8290 else
8291 this->array.spare_disks++;
86e3692b
AK
8292 } else {
8293 if (slot < map->num_members)
8294 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
8295 else
8296 this->array.spare_disks++;
86e3692b 8297 }
4f5bc454
DW
8298
8299 info_d->events = __le32_to_cpu(mpb->generation_num);
5551b113 8300 info_d->data_offset = pba_of_lba0(map);
44490938 8301 info_d->component_size = calc_component_size(map, dev);
06fb291a
PB
8302
8303 if (map->raid_level == 5) {
2432ce9b
AP
8304 info_d->ppl_sector = this->ppl_sector;
8305 info_d->ppl_size = this->ppl_size;
98e96bdb
AP
8306 if (this->consistency_policy == CONSISTENCY_POLICY_PPL &&
8307 recovery_start == 0)
8308 this->resync_start = 0;
06fb291a 8309 }
b12796be 8310
5e46202e 8311 info_d->bb.supported = 1;
b12796be
TM
8312 get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
8313 info_d->data_offset,
8314 info_d->component_size,
8315 &info_d->bb);
4f5bc454 8316 }
1e5c6983 8317 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 8318 update_recovery_start(super, dev, this);
abef11a3 8319 this->array.spare_disks += spare_disks;
276d77db
AK
8320
8321 /* check for reshape */
8322 if (this->reshape_active == 1)
8323 recover_backup_imsm(st, this);
9a1608e5 8324 rest = this;
4f5bc454
DW
8325 }
8326
b6180160 8327 super->current_vol = current_vol;
4f5bc454 8328 return rest;
cdddbdbc
DW
8329}
8330
3b451610
AK
8331static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
8332 int failed, int look_in_map)
c2a1e7da 8333{
3b451610
AK
8334 struct imsm_map *map;
8335
8336 map = get_imsm_map(dev, look_in_map);
c2a1e7da
DW
8337
8338 if (!failed)
1011e834 8339 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3393c6af 8340 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
8341
8342 switch (get_imsm_raid_level(map)) {
8343 case 0:
8344 return IMSM_T_STATE_FAILED;
8345 break;
8346 case 1:
8347 if (failed < map->num_members)
8348 return IMSM_T_STATE_DEGRADED;
8349 else
8350 return IMSM_T_STATE_FAILED;
8351 break;
8352 case 10:
8353 {
8354 /**
c92a2527
DW
8355 * check to see if any mirrors have failed, otherwise we
8356 * are degraded. Even numbered slots are mirrored on
8357 * slot+1
c2a1e7da 8358 */
c2a1e7da 8359 int i;
d9b420a5
N
8360 /* gcc -Os complains that this is unused */
8361 int insync = insync;
c2a1e7da
DW
8362
8363 for (i = 0; i < map->num_members; i++) {
238c0a71 8364 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
c92a2527
DW
8365 int idx = ord_to_idx(ord);
8366 struct imsm_disk *disk;
c2a1e7da 8367
c92a2527 8368 /* reset the potential in-sync count on even-numbered
1011e834 8369 * slots. num_copies is always 2 for imsm raid10
c92a2527
DW
8370 */
8371 if ((i & 1) == 0)
8372 insync = 2;
c2a1e7da 8373
c92a2527 8374 disk = get_imsm_disk(super, idx);
25ed7e59 8375 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 8376 insync--;
c2a1e7da 8377
c92a2527
DW
8378 /* no in-sync disks left in this mirror the
8379 * array has failed
8380 */
8381 if (insync == 0)
8382 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
8383 }
8384
8385 return IMSM_T_STATE_DEGRADED;
8386 }
8387 case 5:
8388 if (failed < 2)
8389 return IMSM_T_STATE_DEGRADED;
8390 else
8391 return IMSM_T_STATE_FAILED;
8392 break;
8393 default:
8394 break;
8395 }
8396
8397 return map->map_state;
8398}
8399
3b451610
AK
8400static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
8401 int look_in_map)
c2a1e7da
DW
8402{
8403 int i;
8404 int failed = 0;
8405 struct imsm_disk *disk;
d5985138
AK
8406 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8407 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
68fe4598 8408 struct imsm_map *map_for_loop;
0556e1a2
DW
8409 __u32 ord;
8410 int idx;
d5985138 8411 int idx_1;
c2a1e7da 8412
0556e1a2
DW
8413 /* at the beginning of migration we set IMSM_ORD_REBUILD on
8414 * disks that are being rebuilt. New failures are recorded to
8415 * map[0]. So we look through all the disks we started with and
8416 * see if any failures are still present, or if any new ones
8417 * have arrived
0556e1a2 8418 */
d5985138
AK
8419 map_for_loop = map;
8420 if (prev && (map->num_members < prev->num_members))
8421 map_for_loop = prev;
68fe4598
LD
8422
8423 for (i = 0; i < map_for_loop->num_members; i++) {
d5985138 8424 idx_1 = -255;
238c0a71
AK
8425 /* when MAP_X is passed both maps failures are counted
8426 */
d5985138 8427 if (prev &&
089f9d79
JS
8428 (look_in_map == MAP_1 || look_in_map == MAP_X) &&
8429 i < prev->num_members) {
d5985138
AK
8430 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
8431 idx_1 = ord_to_idx(ord);
c2a1e7da 8432
d5985138
AK
8433 disk = get_imsm_disk(super, idx_1);
8434 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
8435 failed++;
8436 }
089f9d79
JS
8437 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
8438 i < map->num_members) {
d5985138
AK
8439 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
8440 idx = ord_to_idx(ord);
8441
8442 if (idx != idx_1) {
8443 disk = get_imsm_disk(super, idx);
8444 if (!disk || is_failed(disk) ||
8445 ord & IMSM_ORD_REBUILD)
8446 failed++;
8447 }
8448 }
c2a1e7da
DW
8449 }
8450
8451 return failed;
845dea95
NB
8452}
8453
97b4d0e9 8454static int imsm_open_new(struct supertype *c, struct active_array *a,
60815698 8455 int inst)
97b4d0e9
DW
8456{
8457 struct intel_super *super = c->sb;
8458 struct imsm_super *mpb = super->anchor;
bbab0940 8459 struct imsm_update_prealloc_bb_mem u;
9587c373 8460
60815698
MG
8461 if (inst >= mpb->num_raid_devs) {
8462 pr_err("subarry index %d, out of range\n", inst);
97b4d0e9
DW
8463 return -ENODEV;
8464 }
8465
60815698
MG
8466 dprintf("imsm: open_new %d\n", inst);
8467 a->info.container_member = inst;
bbab0940
TM
8468
8469 u.type = update_prealloc_badblocks_mem;
8470 imsm_update_metadata_locally(c, &u, sizeof(u));
8471
97b4d0e9
DW
8472 return 0;
8473}
8474
0c046afd
DW
8475static int is_resyncing(struct imsm_dev *dev)
8476{
8477 struct imsm_map *migr_map;
8478
8479 if (!dev->vol.migr_state)
8480 return 0;
8481
1484e727
DW
8482 if (migr_type(dev) == MIGR_INIT ||
8483 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
8484 return 1;
8485
4c9bc37b
AK
8486 if (migr_type(dev) == MIGR_GEN_MIGR)
8487 return 0;
8488
238c0a71 8489 migr_map = get_imsm_map(dev, MAP_1);
0c046afd 8490
089f9d79
JS
8491 if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
8492 dev->vol.migr_type != MIGR_GEN_MIGR)
0c046afd
DW
8493 return 1;
8494 else
8495 return 0;
8496}
8497
0556e1a2 8498/* return true if we recorded new information */
4c9e8c1e
TM
8499static int mark_failure(struct intel_super *super,
8500 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 8501{
0556e1a2
DW
8502 __u32 ord;
8503 int slot;
8504 struct imsm_map *map;
86c54047
DW
8505 char buf[MAX_RAID_SERIAL_LEN+3];
8506 unsigned int len, shift = 0;
0556e1a2
DW
8507
8508 /* new failures are always set in map[0] */
238c0a71 8509 map = get_imsm_map(dev, MAP_0);
0556e1a2
DW
8510
8511 slot = get_imsm_disk_slot(map, idx);
8512 if (slot < 0)
8513 return 0;
8514
8515 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 8516 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
8517 return 0;
8518
7d0c5e24
LD
8519 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
8520 buf[MAX_RAID_SERIAL_LEN] = '\000';
8521 strcat(buf, ":0");
86c54047
DW
8522 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
8523 shift = len - MAX_RAID_SERIAL_LEN + 1;
167d8bb8 8524 memcpy(disk->serial, &buf[shift], len + 1 - shift);
86c54047 8525
f2f27e63 8526 disk->status |= FAILED_DISK;
0556e1a2 8527 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
17788994
AK
8528 /* mark failures in second map if second map exists and this disk
8529 * in this slot.
8530 * This is valid for migration, initialization and rebuild
8531 */
8532 if (dev->vol.migr_state) {
238c0a71 8533 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
0a108d63
AK
8534 int slot2 = get_imsm_disk_slot(map2, idx);
8535
089f9d79 8536 if (slot2 < map2->num_members && slot2 >= 0)
0a108d63 8537 set_imsm_ord_tbl_ent(map2, slot2,
1ace8403
AK
8538 idx | IMSM_ORD_REBUILD);
8539 }
d7a1fda2
MT
8540 if (map->failed_disk_num == 0xff ||
8541 (!is_rebuilding(dev) && map->failed_disk_num > slot))
0556e1a2 8542 map->failed_disk_num = slot;
4c9e8c1e
TM
8543
8544 clear_disk_badblocks(super->bbm_log, ord_to_idx(ord));
8545
0556e1a2
DW
8546 return 1;
8547}
8548
4c9e8c1e
TM
8549static void mark_missing(struct intel_super *super,
8550 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
0556e1a2 8551{
4c9e8c1e 8552 mark_failure(super, dev, disk, idx);
0556e1a2
DW
8553
8554 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
8555 return;
8556
47ee5a45
DW
8557 disk->scsi_id = __cpu_to_le32(~(__u32)0);
8558 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
8559}
8560
33414a01
DW
8561static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
8562{
33414a01 8563 struct dl *dl;
33414a01
DW
8564
8565 if (!super->missing)
8566 return;
33414a01 8567
79b68f1b
PC
8568 /* When orom adds replacement for missing disk it does
8569 * not remove entry of missing disk, but just updates map with
8570 * new added disk. So it is not enough just to test if there is
8571 * any missing disk, we have to look if there are any failed disks
8572 * in map to stop migration */
8573
33414a01 8574 dprintf("imsm: mark missing\n");
3d59f0c0
AK
8575 /* end process for initialization and rebuild only
8576 */
195d1d76 8577 if (is_gen_migration(dev) == false) {
fb12a745 8578 int failed = imsm_count_failed(super, dev, MAP_0);
3d59f0c0 8579
fb12a745
TM
8580 if (failed) {
8581 __u8 map_state;
8582 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8583 struct imsm_map *map1;
8584 int i, ord, ord_map1;
8585 int rebuilt = 1;
3d59f0c0 8586
fb12a745
TM
8587 for (i = 0; i < map->num_members; i++) {
8588 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8589 if (!(ord & IMSM_ORD_REBUILD))
8590 continue;
8591
8592 map1 = get_imsm_map(dev, MAP_1);
8593 if (!map1)
8594 continue;
8595
8596 ord_map1 = __le32_to_cpu(map1->disk_ord_tbl[i]);
8597 if (ord_map1 & IMSM_ORD_REBUILD)
8598 rebuilt = 0;
8599 }
8600
8601 if (rebuilt) {
8602 map_state = imsm_check_degraded(super, dev,
8603 failed, MAP_0);
8604 end_migration(dev, super, map_state);
8605 }
8606 }
3d59f0c0 8607 }
33414a01 8608 for (dl = super->missing; dl; dl = dl->next)
4c9e8c1e 8609 mark_missing(super, dev, &dl->disk, dl->index);
33414a01
DW
8610 super->updates_pending++;
8611}
8612
f3871fdc
AK
8613static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
8614 long long new_size)
70bdf0dc 8615{
70bdf0dc 8616 unsigned long long array_blocks;
9529d343
MD
8617 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8618 int used_disks = imsm_num_data_members(map);
70bdf0dc
AK
8619
8620 if (used_disks == 0) {
8621 /* when problems occures
8622 * return current array_blocks value
8623 */
fcc2c9da 8624 array_blocks = imsm_dev_size(dev);
70bdf0dc
AK
8625
8626 return array_blocks;
8627 }
8628
8629 /* set array size in metadata
8630 */
9529d343 8631 if (new_size <= 0)
f3871fdc
AK
8632 /* OLCE size change is caused by added disks
8633 */
44490938 8634 array_blocks = per_dev_array_size(map) * used_disks;
9529d343 8635 else
f3871fdc
AK
8636 /* Online Volume Size Change
8637 * Using available free space
8638 */
8639 array_blocks = new_size;
70bdf0dc 8640
b53bfba6 8641 array_blocks = round_size_to_mb(array_blocks, used_disks);
fcc2c9da 8642 set_imsm_dev_size(dev, array_blocks);
70bdf0dc
AK
8643
8644 return array_blocks;
8645}
8646
28bce06f
AK
8647static void imsm_set_disk(struct active_array *a, int n, int state);
8648
0e2d1a4e
AK
8649static void imsm_progress_container_reshape(struct intel_super *super)
8650{
8651 /* if no device has a migr_state, but some device has a
8652 * different number of members than the previous device, start
8653 * changing the number of devices in this device to match
8654 * previous.
8655 */
8656 struct imsm_super *mpb = super->anchor;
8657 int prev_disks = -1;
8658 int i;
1dfaa380 8659 int copy_map_size;
0e2d1a4e
AK
8660
8661 for (i = 0; i < mpb->num_raid_devs; i++) {
8662 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 8663 struct imsm_map *map = get_imsm_map(dev, MAP_0);
0e2d1a4e
AK
8664 struct imsm_map *map2;
8665 int prev_num_members;
0e2d1a4e
AK
8666
8667 if (dev->vol.migr_state)
8668 return;
8669
8670 if (prev_disks == -1)
8671 prev_disks = map->num_members;
8672 if (prev_disks == map->num_members)
8673 continue;
8674
8675 /* OK, this array needs to enter reshape mode.
8676 * i.e it needs a migr_state
8677 */
8678
1dfaa380 8679 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
8680 prev_num_members = map->num_members;
8681 map->num_members = prev_disks;
8682 dev->vol.migr_state = 1;
4036e7ee 8683 set_vol_curr_migr_unit(dev, 0);
ea672ee1 8684 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
8685 for (i = prev_num_members;
8686 i < map->num_members; i++)
8687 set_imsm_ord_tbl_ent(map, i, i);
238c0a71 8688 map2 = get_imsm_map(dev, MAP_1);
0e2d1a4e 8689 /* Copy the current map */
1dfaa380 8690 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
8691 map2->num_members = prev_num_members;
8692
f3871fdc 8693 imsm_set_array_size(dev, -1);
51d83f5d 8694 super->clean_migration_record_by_mdmon = 1;
0e2d1a4e
AK
8695 super->updates_pending++;
8696 }
8697}
8698
aad6f216 8699/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
8700 * states are handled in imsm_set_disk() with one exception, when a
8701 * resync is stopped due to a new failure this routine will set the
8702 * 'degraded' state for the array.
8703 */
01f157d7 8704static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
8705{
8706 int inst = a->info.container_member;
8707 struct intel_super *super = a->container->sb;
949c47a0 8708 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8709 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3b451610
AK
8710 int failed = imsm_count_failed(super, dev, MAP_0);
8711 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
1e5c6983 8712 __u32 blocks_per_unit;
a862209d 8713
1af97990
AK
8714 if (dev->vol.migr_state &&
8715 dev->vol.migr_type == MIGR_GEN_MIGR) {
8716 /* array state change is blocked due to reshape action
aad6f216
N
8717 * We might need to
8718 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
8719 * - finish the reshape (if last_checkpoint is big and action != reshape)
4036e7ee 8720 * - update vol_curr_migr_unit
1af97990 8721 */
aad6f216 8722 if (a->curr_action == reshape) {
4036e7ee 8723 /* still reshaping, maybe update vol_curr_migr_unit */
633b5610 8724 goto mark_checkpoint;
aad6f216
N
8725 } else {
8726 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
8727 /* for some reason we aborted the reshape.
b66e591b
AK
8728 *
8729 * disable automatic metadata rollback
8730 * user action is required to recover process
aad6f216 8731 */
b66e591b 8732 if (0) {
238c0a71
AK
8733 struct imsm_map *map2 =
8734 get_imsm_map(dev, MAP_1);
8735 dev->vol.migr_state = 0;
8736 set_migr_type(dev, 0);
4036e7ee 8737 set_vol_curr_migr_unit(dev, 0);
238c0a71
AK
8738 memcpy(map, map2,
8739 sizeof_imsm_map(map2));
8740 super->updates_pending++;
b66e591b 8741 }
aad6f216
N
8742 }
8743 if (a->last_checkpoint >= a->info.component_size) {
8744 unsigned long long array_blocks;
8745 int used_disks;
e154ced3 8746 struct mdinfo *mdi;
aad6f216 8747
9529d343 8748 used_disks = imsm_num_data_members(map);
d55adef9
AK
8749 if (used_disks > 0) {
8750 array_blocks =
44490938 8751 per_dev_array_size(map) *
d55adef9 8752 used_disks;
b53bfba6
TM
8753 array_blocks =
8754 round_size_to_mb(array_blocks,
8755 used_disks);
d55adef9
AK
8756 a->info.custom_array_size = array_blocks;
8757 /* encourage manager to update array
8758 * size
8759 */
e154ced3 8760
d55adef9 8761 a->check_reshape = 1;
633b5610 8762 }
e154ced3
AK
8763 /* finalize online capacity expansion/reshape */
8764 for (mdi = a->info.devs; mdi; mdi = mdi->next)
8765 imsm_set_disk(a,
8766 mdi->disk.raid_disk,
8767 mdi->curr_state);
8768
0e2d1a4e 8769 imsm_progress_container_reshape(super);
e154ced3 8770 }
aad6f216 8771 }
1af97990
AK
8772 }
8773
47ee5a45 8774 /* before we activate this array handle any missing disks */
33414a01
DW
8775 if (consistent == 2)
8776 handle_missing(super, dev);
1e5c6983 8777
0c046afd 8778 if (consistent == 2 &&
b7941fd6 8779 (!is_resync_complete(&a->info) ||
0c046afd
DW
8780 map_state != IMSM_T_STATE_NORMAL ||
8781 dev->vol.migr_state))
01f157d7 8782 consistent = 0;
272906ef 8783
b7941fd6 8784 if (is_resync_complete(&a->info)) {
0c046afd 8785 /* complete intialization / resync,
0556e1a2
DW
8786 * recovery and interrupted recovery is completed in
8787 * ->set_disk
0c046afd
DW
8788 */
8789 if (is_resyncing(dev)) {
8790 dprintf("imsm: mark resync done\n");
809da78e 8791 end_migration(dev, super, map_state);
115c3803 8792 super->updates_pending++;
484240d8 8793 a->last_checkpoint = 0;
115c3803 8794 }
b9172665
AK
8795 } else if ((!is_resyncing(dev) && !failed) &&
8796 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 8797 /* mark the start of the init process if nothing is failed */
b7941fd6 8798 dprintf("imsm: mark resync start\n");
1484e727 8799 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 8800 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 8801 else
8e59f3d8 8802 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 8803 super->updates_pending++;
115c3803 8804 }
a862209d 8805
633b5610 8806mark_checkpoint:
5b83bacf
AK
8807 /* skip checkpointing for general migration,
8808 * it is controlled in mdadm
8809 */
8810 if (is_gen_migration(dev))
8811 goto skip_mark_checkpoint;
8812
4036e7ee
MT
8813 /* check if we can update vol_curr_migr_unit from resync_start,
8814 * recovery_start
8815 */
c47b0ff6 8816 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 8817 if (blocks_per_unit) {
4036e7ee
MT
8818 set_vol_curr_migr_unit(dev,
8819 a->last_checkpoint / blocks_per_unit);
8820 dprintf("imsm: mark checkpoint (%llu)\n",
8821 vol_curr_migr_unit(dev));
8822 super->updates_pending++;
1e5c6983 8823 }
f8f603f1 8824
5b83bacf 8825skip_mark_checkpoint:
3393c6af 8826 /* mark dirty / clean */
2432ce9b
AP
8827 if (((dev->vol.dirty & RAIDVOL_DIRTY) && consistent) ||
8828 (!(dev->vol.dirty & RAIDVOL_DIRTY) && !consistent)) {
b7941fd6 8829 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
2432ce9b
AP
8830 if (consistent) {
8831 dev->vol.dirty = RAIDVOL_CLEAN;
8832 } else {
8833 dev->vol.dirty = RAIDVOL_DIRTY;
c2462068
PB
8834 if (dev->rwh_policy == RWH_DISTRIBUTED ||
8835 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
2432ce9b
AP
8836 dev->vol.dirty |= RAIDVOL_DSRECORD_VALID;
8837 }
a862209d
DW
8838 super->updates_pending++;
8839 }
28bce06f 8840
01f157d7 8841 return consistent;
a862209d
DW
8842}
8843
6f50473f
TM
8844static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
8845{
8846 int inst = a->info.container_member;
8847 struct intel_super *super = a->container->sb;
8848 struct imsm_dev *dev = get_imsm_dev(super, inst);
8849 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8850
8851 if (slot > map->num_members) {
8852 pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
8853 slot, map->num_members - 1);
8854 return -1;
8855 }
8856
8857 if (slot < 0)
8858 return -1;
8859
8860 return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
8861}
8862
8d45d196 8863static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 8864{
8d45d196
DW
8865 int inst = a->info.container_member;
8866 struct intel_super *super = a->container->sb;
949c47a0 8867 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8868 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8d45d196 8869 struct imsm_disk *disk;
7ce05701
LD
8870 struct mdinfo *mdi;
8871 int recovery_not_finished = 0;
0c046afd 8872 int failed;
6f50473f 8873 int ord;
0c046afd 8874 __u8 map_state;
fb12a745
TM
8875 int rebuild_done = 0;
8876 int i;
8d45d196 8877
fb12a745 8878 ord = get_imsm_ord_tbl_ent(dev, n, MAP_X);
6f50473f 8879 if (ord < 0)
8d45d196
DW
8880 return;
8881
4e6e574a 8882 dprintf("imsm: set_disk %d:%x\n", n, state);
b10b37b8 8883 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 8884
5802a811 8885 /* check for new failures */
ae7d61e3 8886 if (disk && (state & DS_FAULTY)) {
4c9e8c1e 8887 if (mark_failure(super, dev, disk, ord_to_idx(ord)))
0556e1a2 8888 super->updates_pending++;
8d45d196 8889 }
47ee5a45 8890
19859edc 8891 /* check if in_sync */
0556e1a2 8892 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
238c0a71 8893 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
b10b37b8
DW
8894
8895 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
fb12a745 8896 rebuild_done = 1;
19859edc
DW
8897 super->updates_pending++;
8898 }
8d45d196 8899
3b451610
AK
8900 failed = imsm_count_failed(super, dev, MAP_0);
8901 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
5802a811 8902
0c046afd 8903 /* check if recovery complete, newly degraded, or failed */
94002678
AK
8904 dprintf("imsm: Detected transition to state ");
8905 switch (map_state) {
8906 case IMSM_T_STATE_NORMAL: /* transition to normal state */
8907 dprintf("normal: ");
8908 if (is_rebuilding(dev)) {
1ade5cc1 8909 dprintf_cont("while rebuilding");
7ce05701
LD
8910 /* check if recovery is really finished */
8911 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8912 if (mdi->recovery_start != MaxSector) {
8913 recovery_not_finished = 1;
8914 break;
8915 }
8916 if (recovery_not_finished) {
1ade5cc1
N
8917 dprintf_cont("\n");
8918 dprintf("Rebuild has not finished yet, state not changed");
7ce05701
LD
8919 if (a->last_checkpoint < mdi->recovery_start) {
8920 a->last_checkpoint = mdi->recovery_start;
8921 super->updates_pending++;
8922 }
8923 break;
8924 }
94002678 8925 end_migration(dev, super, map_state);
94002678
AK
8926 map->failed_disk_num = ~0;
8927 super->updates_pending++;
8928 a->last_checkpoint = 0;
8929 break;
8930 }
8931 if (is_gen_migration(dev)) {
1ade5cc1 8932 dprintf_cont("while general migration");
bf2f0071 8933 if (a->last_checkpoint >= a->info.component_size)
809da78e 8934 end_migration(dev, super, map_state);
94002678
AK
8935 else
8936 map->map_state = map_state;
28bce06f 8937 map->failed_disk_num = ~0;
94002678 8938 super->updates_pending++;
bf2f0071 8939 break;
94002678
AK
8940 }
8941 break;
8942 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
1ade5cc1 8943 dprintf_cont("degraded: ");
089f9d79 8944 if (map->map_state != map_state && !dev->vol.migr_state) {
1ade5cc1 8945 dprintf_cont("mark degraded");
94002678
AK
8946 map->map_state = map_state;
8947 super->updates_pending++;
8948 a->last_checkpoint = 0;
8949 break;
8950 }
8951 if (is_rebuilding(dev)) {
d7a1fda2 8952 dprintf_cont("while rebuilding ");
a4e96fd8
MT
8953 if (state & DS_FAULTY) {
8954 dprintf_cont("removing failed drive ");
d7a1fda2
MT
8955 if (n == map->failed_disk_num) {
8956 dprintf_cont("end migration");
8957 end_migration(dev, super, map_state);
a4e96fd8 8958 a->last_checkpoint = 0;
d7a1fda2 8959 } else {
a4e96fd8 8960 dprintf_cont("fail detected during rebuild, changing map state");
d7a1fda2
MT
8961 map->map_state = map_state;
8962 }
94002678 8963 super->updates_pending++;
fb12a745
TM
8964 }
8965
a4e96fd8
MT
8966 if (!rebuild_done)
8967 break;
8968
fb12a745
TM
8969 /* check if recovery is really finished */
8970 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8971 if (mdi->recovery_start != MaxSector) {
8972 recovery_not_finished = 1;
8973 break;
8974 }
8975 if (recovery_not_finished) {
8976 dprintf_cont("\n");
a4e96fd8 8977 dprintf_cont("Rebuild has not finished yet");
fb12a745
TM
8978 if (a->last_checkpoint < mdi->recovery_start) {
8979 a->last_checkpoint =
8980 mdi->recovery_start;
8981 super->updates_pending++;
8982 }
8983 break;
94002678 8984 }
fb12a745
TM
8985
8986 dprintf_cont(" Rebuild done, still degraded");
a4e96fd8
MT
8987 end_migration(dev, super, map_state);
8988 a->last_checkpoint = 0;
8989 super->updates_pending++;
fb12a745
TM
8990
8991 for (i = 0; i < map->num_members; i++) {
8992 int idx = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8993
8994 if (idx & IMSM_ORD_REBUILD)
8995 map->failed_disk_num = i;
8996 }
8997 super->updates_pending++;
94002678
AK
8998 break;
8999 }
9000 if (is_gen_migration(dev)) {
1ade5cc1 9001 dprintf_cont("while general migration");
bf2f0071 9002 if (a->last_checkpoint >= a->info.component_size)
809da78e 9003 end_migration(dev, super, map_state);
94002678
AK
9004 else {
9005 map->map_state = map_state;
3b451610 9006 manage_second_map(super, dev);
94002678
AK
9007 }
9008 super->updates_pending++;
bf2f0071 9009 break;
28bce06f 9010 }
6ce1fbf1 9011 if (is_initializing(dev)) {
1ade5cc1 9012 dprintf_cont("while initialization.");
6ce1fbf1
AK
9013 map->map_state = map_state;
9014 super->updates_pending++;
9015 break;
9016 }
94002678
AK
9017 break;
9018 case IMSM_T_STATE_FAILED: /* transition to failed state */
1ade5cc1 9019 dprintf_cont("failed: ");
94002678 9020 if (is_gen_migration(dev)) {
1ade5cc1 9021 dprintf_cont("while general migration");
94002678
AK
9022 map->map_state = map_state;
9023 super->updates_pending++;
9024 break;
9025 }
9026 if (map->map_state != map_state) {
1ade5cc1 9027 dprintf_cont("mark failed");
94002678
AK
9028 end_migration(dev, super, map_state);
9029 super->updates_pending++;
9030 a->last_checkpoint = 0;
9031 break;
9032 }
9033 break;
9034 default:
1ade5cc1 9035 dprintf_cont("state %i\n", map_state);
5802a811 9036 }
1ade5cc1 9037 dprintf_cont("\n");
845dea95
NB
9038}
9039
f796af5d 9040static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 9041{
f796af5d 9042 void *buf = mpb;
c2a1e7da
DW
9043 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
9044 unsigned long long dsize;
9045 unsigned long long sectors;
f36a9ecd 9046 unsigned int sector_size;
c2a1e7da 9047
aec01630
JS
9048 if (!get_dev_sector_size(fd, NULL, &sector_size))
9049 return 1;
c2a1e7da
DW
9050 get_dev_size(fd, NULL, &dsize);
9051
f36a9ecd 9052 if (mpb_size > sector_size) {
272f648f 9053 /* -1 to account for anchor */
f36a9ecd 9054 sectors = mpb_sectors(mpb, sector_size) - 1;
c2a1e7da 9055
272f648f 9056 /* write the extended mpb to the sectors preceeding the anchor */
f36a9ecd
PB
9057 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
9058 SEEK_SET) < 0)
272f648f 9059 return 1;
c2a1e7da 9060
f36a9ecd
PB
9061 if ((unsigned long long)write(fd, buf + sector_size,
9062 sector_size * sectors) != sector_size * sectors)
272f648f
DW
9063 return 1;
9064 }
c2a1e7da 9065
272f648f 9066 /* first block is stored on second to last sector of the disk */
f36a9ecd 9067 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
c2a1e7da
DW
9068 return 1;
9069
466070ad 9070 if ((unsigned int)write(fd, buf, sector_size) != sector_size)
c2a1e7da
DW
9071 return 1;
9072
c2a1e7da
DW
9073 return 0;
9074}
9075
2e735d19 9076static void imsm_sync_metadata(struct supertype *container)
845dea95 9077{
2e735d19 9078 struct intel_super *super = container->sb;
c2a1e7da 9079
1a64be56 9080 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
9081 if (!super->updates_pending)
9082 return;
9083
36988a3d 9084 write_super_imsm(container, 0);
c2a1e7da
DW
9085
9086 super->updates_pending = 0;
845dea95
NB
9087}
9088
272906ef
DW
9089static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
9090{
9091 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 9092 int i = get_imsm_disk_idx(dev, idx, MAP_X);
272906ef
DW
9093 struct dl *dl;
9094
9095 for (dl = super->disks; dl; dl = dl->next)
9096 if (dl->index == i)
9097 break;
9098
25ed7e59 9099 if (dl && is_failed(&dl->disk))
272906ef
DW
9100 dl = NULL;
9101
9102 if (dl)
1ade5cc1 9103 dprintf("found %x:%x\n", dl->major, dl->minor);
272906ef
DW
9104
9105 return dl;
9106}
9107
a20d2ba5 9108static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
9109 struct active_array *a, int activate_new,
9110 struct mdinfo *additional_test_list)
272906ef
DW
9111{
9112 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 9113 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
a20d2ba5
DW
9114 struct imsm_super *mpb = super->anchor;
9115 struct imsm_map *map;
272906ef
DW
9116 unsigned long long pos;
9117 struct mdinfo *d;
9118 struct extent *ex;
a20d2ba5 9119 int i, j;
272906ef 9120 int found;
569cc43f
DW
9121 __u32 array_start = 0;
9122 __u32 array_end = 0;
272906ef 9123 struct dl *dl;
6c932028 9124 struct mdinfo *test_list;
272906ef
DW
9125
9126 for (dl = super->disks; dl; dl = dl->next) {
9127 /* If in this array, skip */
9128 for (d = a->info.devs ; d ; d = d->next)
4389ce73 9129 if (is_fd_valid(d->state_fd) &&
e553d2a4 9130 d->disk.major == dl->major &&
272906ef 9131 d->disk.minor == dl->minor) {
8ba77d32
AK
9132 dprintf("%x:%x already in array\n",
9133 dl->major, dl->minor);
272906ef
DW
9134 break;
9135 }
9136 if (d)
9137 continue;
6c932028
AK
9138 test_list = additional_test_list;
9139 while (test_list) {
9140 if (test_list->disk.major == dl->major &&
9141 test_list->disk.minor == dl->minor) {
8ba77d32
AK
9142 dprintf("%x:%x already in additional test list\n",
9143 dl->major, dl->minor);
9144 break;
9145 }
6c932028 9146 test_list = test_list->next;
8ba77d32 9147 }
6c932028 9148 if (test_list)
8ba77d32 9149 continue;
272906ef 9150
e553d2a4 9151 /* skip in use or failed drives */
25ed7e59 9152 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
9153 dl->index == -2) {
9154 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 9155 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
9156 continue;
9157 }
9158
a20d2ba5
DW
9159 /* skip pure spares when we are looking for partially
9160 * assimilated drives
9161 */
9162 if (dl->index == -1 && !activate_new)
9163 continue;
9164
f2cc4f7d
AO
9165 if (!drive_validate_sector_size(super, dl))
9166 continue;
9167
272906ef 9168 /* Does this unused device have the requisite free space?
a20d2ba5 9169 * It needs to be able to cover all member volumes
272906ef 9170 */
05501181 9171 ex = get_extents(super, dl, 1);
272906ef
DW
9172 if (!ex) {
9173 dprintf("cannot get extents\n");
9174 continue;
9175 }
a20d2ba5
DW
9176 for (i = 0; i < mpb->num_raid_devs; i++) {
9177 dev = get_imsm_dev(super, i);
238c0a71 9178 map = get_imsm_map(dev, MAP_0);
272906ef 9179
a20d2ba5
DW
9180 /* check if this disk is already a member of
9181 * this array
272906ef 9182 */
620b1713 9183 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
9184 continue;
9185
9186 found = 0;
9187 j = 0;
9188 pos = 0;
5551b113 9189 array_start = pba_of_lba0(map);
329c8278 9190 array_end = array_start +
44490938 9191 per_dev_array_size(map) - 1;
a20d2ba5
DW
9192
9193 do {
9194 /* check that we can start at pba_of_lba0 with
44490938 9195 * num_data_stripes*blocks_per_stripe of space
a20d2ba5 9196 */
329c8278 9197 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
9198 found = 1;
9199 break;
9200 }
9201 pos = ex[j].start + ex[j].size;
9202 j++;
9203 } while (ex[j-1].size);
9204
9205 if (!found)
272906ef 9206 break;
a20d2ba5 9207 }
272906ef
DW
9208
9209 free(ex);
a20d2ba5 9210 if (i < mpb->num_raid_devs) {
329c8278
DW
9211 dprintf("%x:%x does not have %u to %u available\n",
9212 dl->major, dl->minor, array_start, array_end);
272906ef
DW
9213 /* No room */
9214 continue;
a20d2ba5
DW
9215 }
9216 return dl;
272906ef
DW
9217 }
9218
9219 return dl;
9220}
9221
95d07a2c
LM
9222static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
9223{
9224 struct imsm_dev *dev2;
9225 struct imsm_map *map;
9226 struct dl *idisk;
9227 int slot;
9228 int idx;
9229 __u8 state;
9230
9231 dev2 = get_imsm_dev(cont->sb, dev_idx);
756a15f3
MG
9232
9233 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
9234 if (state == IMSM_T_STATE_FAILED) {
9235 map = get_imsm_map(dev2, MAP_0);
9236 for (slot = 0; slot < map->num_members; slot++) {
9237 /*
9238 * Check if failed disks are deleted from intel
9239 * disk list or are marked to be deleted
9240 */
9241 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
9242 idisk = get_imsm_dl_disk(cont->sb, idx);
9243 /*
9244 * Do not rebuild the array if failed disks
9245 * from failed sub-array are not removed from
9246 * container.
9247 */
9248 if (idisk &&
9249 is_failed(&idisk->disk) &&
9250 (idisk->action != DISK_REMOVE))
9251 return 0;
95d07a2c
LM
9252 }
9253 }
9254 return 1;
9255}
9256
88758e9d
DW
9257static struct mdinfo *imsm_activate_spare(struct active_array *a,
9258 struct metadata_update **updates)
9259{
9260 /**
d23fe947
DW
9261 * Find a device with unused free space and use it to replace a
9262 * failed/vacant region in an array. We replace failed regions one a
9263 * array at a time. The result is that a new spare disk will be added
9264 * to the first failed array and after the monitor has finished
9265 * propagating failures the remainder will be consumed.
88758e9d 9266 *
d23fe947
DW
9267 * FIXME add a capability for mdmon to request spares from another
9268 * container.
88758e9d
DW
9269 */
9270
9271 struct intel_super *super = a->container->sb;
88758e9d 9272 int inst = a->info.container_member;
949c47a0 9273 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 9274 struct imsm_map *map = get_imsm_map(dev, MAP_0);
88758e9d
DW
9275 int failed = a->info.array.raid_disks;
9276 struct mdinfo *rv = NULL;
9277 struct mdinfo *d;
9278 struct mdinfo *di;
9279 struct metadata_update *mu;
9280 struct dl *dl;
9281 struct imsm_update_activate_spare *u;
9282 int num_spares = 0;
9283 int i;
95d07a2c 9284 int allowed;
88758e9d 9285
4389ce73
MT
9286 for (d = a->info.devs ; d; d = d->next) {
9287 if (!is_fd_valid(d->state_fd))
9288 continue;
9289
9290 if (d->curr_state & DS_FAULTY)
88758e9d
DW
9291 /* wait for Removal to happen */
9292 return NULL;
4389ce73
MT
9293
9294 failed--;
88758e9d
DW
9295 }
9296
9297 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
9298 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 9299
e2962bfc
AK
9300 if (imsm_reshape_blocks_arrays_changes(super))
9301 return NULL;
1af97990 9302
fc8ca064
AK
9303 /* Cannot activate another spare if rebuild is in progress already
9304 */
9305 if (is_rebuilding(dev)) {
7a862a02 9306 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
fc8ca064
AK
9307 return NULL;
9308 }
9309
89c67882
AK
9310 if (a->info.array.level == 4)
9311 /* No repair for takeovered array
9312 * imsm doesn't support raid4
9313 */
9314 return NULL;
9315
3b451610
AK
9316 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
9317 IMSM_T_STATE_DEGRADED)
88758e9d
DW
9318 return NULL;
9319
83ca7d45
AP
9320 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
9321 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
9322 return NULL;
9323 }
9324
95d07a2c
LM
9325 /*
9326 * If there are any failed disks check state of the other volume.
9327 * Block rebuild if the another one is failed until failed disks
9328 * are removed from container.
9329 */
9330 if (failed) {
7a862a02 9331 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
c4acd1e5 9332 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
9333 /* check if states of the other volumes allow for rebuild */
9334 for (i = 0; i < super->anchor->num_raid_devs; i++) {
9335 if (i != inst) {
9336 allowed = imsm_rebuild_allowed(a->container,
9337 i, failed);
9338 if (!allowed)
9339 return NULL;
9340 }
9341 }
9342 }
9343
88758e9d 9344 /* For each slot, if it is not working, find a spare */
88758e9d
DW
9345 for (i = 0; i < a->info.array.raid_disks; i++) {
9346 for (d = a->info.devs ; d ; d = d->next)
9347 if (d->disk.raid_disk == i)
9348 break;
9349 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
4389ce73 9350 if (d && is_fd_valid(d->state_fd))
88758e9d
DW
9351 continue;
9352
272906ef 9353 /*
a20d2ba5
DW
9354 * OK, this device needs recovery. Try to re-add the
9355 * previous occupant of this slot, if this fails see if
9356 * we can continue the assimilation of a spare that was
9357 * partially assimilated, finally try to activate a new
9358 * spare.
272906ef
DW
9359 */
9360 dl = imsm_readd(super, i, a);
9361 if (!dl)
b303fe21 9362 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 9363 if (!dl)
b303fe21 9364 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
9365 if (!dl)
9366 continue;
1011e834 9367
272906ef 9368 /* found a usable disk with enough space */
503975b9 9369 di = xcalloc(1, sizeof(*di));
272906ef
DW
9370
9371 /* dl->index will be -1 in the case we are activating a
9372 * pristine spare. imsm_process_update() will create a
9373 * new index in this case. Once a disk is found to be
9374 * failed in all member arrays it is kicked from the
9375 * metadata
9376 */
9377 di->disk.number = dl->index;
d23fe947 9378
272906ef
DW
9379 /* (ab)use di->devs to store a pointer to the device
9380 * we chose
9381 */
9382 di->devs = (struct mdinfo *) dl;
9383
9384 di->disk.raid_disk = i;
9385 di->disk.major = dl->major;
9386 di->disk.minor = dl->minor;
9387 di->disk.state = 0;
d23534e4 9388 di->recovery_start = 0;
5551b113 9389 di->data_offset = pba_of_lba0(map);
272906ef
DW
9390 di->component_size = a->info.component_size;
9391 di->container_member = inst;
5e46202e 9392 di->bb.supported = 1;
2c8890e9 9393 if (a->info.consistency_policy == CONSISTENCY_POLICY_PPL) {
2432ce9b 9394 di->ppl_sector = get_ppl_sector(super, inst);
c2462068 9395 di->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
2432ce9b 9396 }
148acb7b 9397 super->random = random32();
272906ef
DW
9398 di->next = rv;
9399 rv = di;
9400 num_spares++;
9401 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
9402 i, di->data_offset);
88758e9d
DW
9403 }
9404
9405 if (!rv)
9406 /* No spares found */
9407 return rv;
9408 /* Now 'rv' has a list of devices to return.
9409 * Create a metadata_update record to update the
9410 * disk_ord_tbl for the array
9411 */
503975b9 9412 mu = xmalloc(sizeof(*mu));
1011e834 9413 mu->buf = xcalloc(num_spares,
503975b9 9414 sizeof(struct imsm_update_activate_spare));
88758e9d 9415 mu->space = NULL;
cb23f1f4 9416 mu->space_list = NULL;
88758e9d
DW
9417 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
9418 mu->next = *updates;
9419 u = (struct imsm_update_activate_spare *) mu->buf;
9420
9421 for (di = rv ; di ; di = di->next) {
9422 u->type = update_activate_spare;
d23fe947
DW
9423 u->dl = (struct dl *) di->devs;
9424 di->devs = NULL;
88758e9d
DW
9425 u->slot = di->disk.raid_disk;
9426 u->array = inst;
9427 u->next = u + 1;
9428 u++;
9429 }
9430 (u-1)->next = NULL;
9431 *updates = mu;
9432
9433 return rv;
9434}
9435
54c2c1ea 9436static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 9437{
54c2c1ea 9438 struct imsm_dev *dev = get_imsm_dev(super, idx);
238c0a71
AK
9439 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9440 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
54c2c1ea
DW
9441 struct disk_info *inf = get_disk_info(u);
9442 struct imsm_disk *disk;
8273f55e
DW
9443 int i;
9444 int j;
8273f55e 9445
54c2c1ea 9446 for (i = 0; i < map->num_members; i++) {
238c0a71 9447 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
54c2c1ea
DW
9448 for (j = 0; j < new_map->num_members; j++)
9449 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
9450 return 1;
9451 }
9452
9453 return 0;
9454}
9455
1a64be56
LM
9456static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
9457{
594dc1b8
JS
9458 struct dl *dl;
9459
1a64be56 9460 for (dl = super->disks; dl; dl = dl->next)
089f9d79 9461 if (dl->major == major && dl->minor == minor)
1a64be56
LM
9462 return dl;
9463 return NULL;
9464}
9465
9466static int remove_disk_super(struct intel_super *super, int major, int minor)
9467{
594dc1b8 9468 struct dl *prev;
1a64be56
LM
9469 struct dl *dl;
9470
9471 prev = NULL;
9472 for (dl = super->disks; dl; dl = dl->next) {
089f9d79 9473 if (dl->major == major && dl->minor == minor) {
1a64be56
LM
9474 /* remove */
9475 if (prev)
9476 prev->next = dl->next;
9477 else
9478 super->disks = dl->next;
9479 dl->next = NULL;
3a85bf0e 9480 __free_imsm_disk(dl, 1);
1ade5cc1 9481 dprintf("removed %x:%x\n", major, minor);
1a64be56
LM
9482 break;
9483 }
9484 prev = dl;
9485 }
9486 return 0;
9487}
9488
f21e18ca 9489static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 9490
1a64be56
LM
9491static int add_remove_disk_update(struct intel_super *super)
9492{
9493 int check_degraded = 0;
594dc1b8
JS
9494 struct dl *disk;
9495
1a64be56
LM
9496 /* add/remove some spares to/from the metadata/contrainer */
9497 while (super->disk_mgmt_list) {
9498 struct dl *disk_cfg;
9499
9500 disk_cfg = super->disk_mgmt_list;
9501 super->disk_mgmt_list = disk_cfg->next;
9502 disk_cfg->next = NULL;
9503
9504 if (disk_cfg->action == DISK_ADD) {
9505 disk_cfg->next = super->disks;
9506 super->disks = disk_cfg;
9507 check_degraded = 1;
1ade5cc1
N
9508 dprintf("added %x:%x\n",
9509 disk_cfg->major, disk_cfg->minor);
1a64be56
LM
9510 } else if (disk_cfg->action == DISK_REMOVE) {
9511 dprintf("Disk remove action processed: %x.%x\n",
9512 disk_cfg->major, disk_cfg->minor);
9513 disk = get_disk_super(super,
9514 disk_cfg->major,
9515 disk_cfg->minor);
9516 if (disk) {
9517 /* store action status */
9518 disk->action = DISK_REMOVE;
9519 /* remove spare disks only */
9520 if (disk->index == -1) {
9521 remove_disk_super(super,
9522 disk_cfg->major,
9523 disk_cfg->minor);
91c97c54
MT
9524 } else {
9525 disk_cfg->fd = disk->fd;
9526 disk->fd = -1;
1a64be56
LM
9527 }
9528 }
9529 /* release allocate disk structure */
3a85bf0e 9530 __free_imsm_disk(disk_cfg, 1);
1a64be56
LM
9531 }
9532 }
9533 return check_degraded;
9534}
9535
a29911da
PC
9536static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
9537 struct intel_super *super,
9538 void ***space_list)
9539{
9540 struct intel_dev *id;
9541 void **tofree = NULL;
9542 int ret_val = 0;
9543
1ade5cc1 9544 dprintf("(enter)\n");
089f9d79 9545 if (u->subdev < 0 || u->subdev > 1) {
a29911da
PC
9546 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9547 return ret_val;
9548 }
089f9d79 9549 if (space_list == NULL || *space_list == NULL) {
a29911da
PC
9550 dprintf("imsm: Error: Memory is not allocated\n");
9551 return ret_val;
9552 }
9553
9554 for (id = super->devlist ; id; id = id->next) {
9555 if (id->index == (unsigned)u->subdev) {
9556 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9557 struct imsm_map *map;
9558 struct imsm_dev *new_dev =
9559 (struct imsm_dev *)*space_list;
238c0a71 9560 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
a29911da
PC
9561 int to_state;
9562 struct dl *new_disk;
9563
9564 if (new_dev == NULL)
9565 return ret_val;
9566 *space_list = **space_list;
9567 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
238c0a71 9568 map = get_imsm_map(new_dev, MAP_0);
a29911da
PC
9569 if (migr_map) {
9570 dprintf("imsm: Error: migration in progress");
9571 return ret_val;
9572 }
9573
9574 to_state = map->map_state;
9575 if ((u->new_level == 5) && (map->raid_level == 0)) {
9576 map->num_members++;
9577 /* this should not happen */
9578 if (u->new_disks[0] < 0) {
9579 map->failed_disk_num =
9580 map->num_members - 1;
9581 to_state = IMSM_T_STATE_DEGRADED;
9582 } else
9583 to_state = IMSM_T_STATE_NORMAL;
9584 }
8e59f3d8 9585 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
9586 if (u->new_level > -1)
9587 map->raid_level = u->new_level;
238c0a71 9588 migr_map = get_imsm_map(new_dev, MAP_1);
a29911da
PC
9589 if ((u->new_level == 5) &&
9590 (migr_map->raid_level == 0)) {
9591 int ord = map->num_members - 1;
9592 migr_map->num_members--;
9593 if (u->new_disks[0] < 0)
9594 ord |= IMSM_ORD_REBUILD;
9595 set_imsm_ord_tbl_ent(map,
9596 map->num_members - 1,
9597 ord);
9598 }
9599 id->dev = new_dev;
9600 tofree = (void **)dev;
9601
4bba0439
PC
9602 /* update chunk size
9603 */
06fb291a 9604 if (u->new_chunksize > 0) {
9529d343
MD
9605 struct imsm_map *dest_map =
9606 get_imsm_map(dev, MAP_0);
06fb291a 9607 int used_disks =
9529d343 9608 imsm_num_data_members(dest_map);
06fb291a
PB
9609
9610 if (used_disks == 0)
9611 return ret_val;
9612
4bba0439
PC
9613 map->blocks_per_strip =
9614 __cpu_to_le16(u->new_chunksize * 2);
1c275381 9615 update_num_data_stripes(map, imsm_dev_size(dev));
06fb291a 9616 }
4bba0439 9617
44490938
MD
9618 /* ensure blocks_per_member has valid value
9619 */
9620 set_blocks_per_member(map,
9621 per_dev_array_size(map) +
9622 NUM_BLOCKS_DIRTY_STRIPE_REGION);
9623
a29911da
PC
9624 /* add disk
9625 */
089f9d79
JS
9626 if (u->new_level != 5 || migr_map->raid_level != 0 ||
9627 migr_map->raid_level == map->raid_level)
a29911da
PC
9628 goto skip_disk_add;
9629
9630 if (u->new_disks[0] >= 0) {
9631 /* use passes spare
9632 */
9633 new_disk = get_disk_super(super,
9634 major(u->new_disks[0]),
9635 minor(u->new_disks[0]));
7a862a02 9636 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
a29911da
PC
9637 major(u->new_disks[0]),
9638 minor(u->new_disks[0]),
9639 new_disk, new_disk->index);
9640 if (new_disk == NULL)
9641 goto error_disk_add;
9642
9643 new_disk->index = map->num_members - 1;
9644 /* slot to fill in autolayout
9645 */
9646 new_disk->raiddisk = new_disk->index;
9647 new_disk->disk.status |= CONFIGURED_DISK;
9648 new_disk->disk.status &= ~SPARE_DISK;
9649 } else
9650 goto error_disk_add;
9651
9652skip_disk_add:
9653 *tofree = *space_list;
9654 /* calculate new size
9655 */
f3871fdc 9656 imsm_set_array_size(new_dev, -1);
a29911da
PC
9657
9658 ret_val = 1;
9659 }
9660 }
9661
9662 if (tofree)
9663 *space_list = tofree;
9664 return ret_val;
9665
9666error_disk_add:
9667 dprintf("Error: imsm: Cannot find disk.\n");
9668 return ret_val;
9669}
9670
f3871fdc
AK
9671static int apply_size_change_update(struct imsm_update_size_change *u,
9672 struct intel_super *super)
9673{
9674 struct intel_dev *id;
9675 int ret_val = 0;
9676
1ade5cc1 9677 dprintf("(enter)\n");
089f9d79 9678 if (u->subdev < 0 || u->subdev > 1) {
f3871fdc
AK
9679 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9680 return ret_val;
9681 }
9682
9683 for (id = super->devlist ; id; id = id->next) {
9684 if (id->index == (unsigned)u->subdev) {
9685 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9686 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9529d343 9687 int used_disks = imsm_num_data_members(map);
f3871fdc 9688 unsigned long long blocks_per_member;
44490938
MD
9689 unsigned long long new_size_per_disk;
9690
9691 if (used_disks == 0)
9692 return 0;
f3871fdc
AK
9693
9694 /* calculate new size
9695 */
44490938
MD
9696 new_size_per_disk = u->new_size / used_disks;
9697 blocks_per_member = new_size_per_disk +
9698 NUM_BLOCKS_DIRTY_STRIPE_REGION;
f3871fdc 9699
1c275381
MT
9700 imsm_set_array_size(dev, u->new_size);
9701 set_blocks_per_member(map, blocks_per_member);
9702 update_num_data_stripes(map, u->new_size);
f3871fdc
AK
9703 ret_val = 1;
9704 break;
9705 }
9706 }
9707
9708 return ret_val;
9709}
9710
69d40de4
JR
9711static int prepare_spare_to_activate(struct supertype *st,
9712 struct imsm_update_activate_spare *u)
9713{
9714 struct intel_super *super = st->sb;
9715 int prev_current_vol = super->current_vol;
9716 struct active_array *a;
9717 int ret = 1;
9718
9719 for (a = st->arrays; a; a = a->next)
9720 /*
9721 * Additional initialization (adding bitmap header, filling
9722 * the bitmap area with '1's to force initial rebuild for a whole
9723 * data-area) is required when adding the spare to the volume
9724 * with write-intent bitmap.
9725 */
9726 if (a->info.container_member == u->array &&
9727 a->info.consistency_policy == CONSISTENCY_POLICY_BITMAP) {
9728 struct dl *dl;
9729
9730 for (dl = super->disks; dl; dl = dl->next)
9731 if (dl == u->dl)
9732 break;
9733 if (!dl)
9734 break;
9735
9736 super->current_vol = u->array;
9737 if (st->ss->write_bitmap(st, dl->fd, NoUpdate))
9738 ret = 0;
9739 super->current_vol = prev_current_vol;
9740 }
9741 return ret;
9742}
9743
061d7da3 9744static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
ca9de185 9745 struct intel_super *super,
061d7da3
LO
9746 struct active_array *active_array)
9747{
9748 struct imsm_super *mpb = super->anchor;
9749 struct imsm_dev *dev = get_imsm_dev(super, u->array);
238c0a71 9750 struct imsm_map *map = get_imsm_map(dev, MAP_0);
061d7da3
LO
9751 struct imsm_map *migr_map;
9752 struct active_array *a;
9753 struct imsm_disk *disk;
9754 __u8 to_state;
9755 struct dl *dl;
9756 unsigned int found;
9757 int failed;
5961eeec 9758 int victim;
061d7da3 9759 int i;
5961eeec 9760 int second_map_created = 0;
061d7da3 9761
5961eeec 9762 for (; u; u = u->next) {
238c0a71 9763 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
061d7da3 9764
5961eeec 9765 if (victim < 0)
9766 return 0;
061d7da3 9767
5961eeec 9768 for (dl = super->disks; dl; dl = dl->next)
9769 if (dl == u->dl)
9770 break;
061d7da3 9771
5961eeec 9772 if (!dl) {
7a862a02 9773 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
5961eeec 9774 u->dl->index);
9775 return 0;
9776 }
061d7da3 9777
5961eeec 9778 /* count failures (excluding rebuilds and the victim)
9779 * to determine map[0] state
9780 */
9781 failed = 0;
9782 for (i = 0; i < map->num_members; i++) {
9783 if (i == u->slot)
9784 continue;
9785 disk = get_imsm_disk(super,
238c0a71 9786 get_imsm_disk_idx(dev, i, MAP_X));
5961eeec 9787 if (!disk || is_failed(disk))
9788 failed++;
9789 }
061d7da3 9790
5961eeec 9791 /* adding a pristine spare, assign a new index */
9792 if (dl->index < 0) {
9793 dl->index = super->anchor->num_disks;
9794 super->anchor->num_disks++;
9795 }
9796 disk = &dl->disk;
9797 disk->status |= CONFIGURED_DISK;
9798 disk->status &= ~SPARE_DISK;
9799
9800 /* mark rebuild */
238c0a71 9801 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
5961eeec 9802 if (!second_map_created) {
9803 second_map_created = 1;
9804 map->map_state = IMSM_T_STATE_DEGRADED;
9805 migrate(dev, super, to_state, MIGR_REBUILD);
9806 } else
9807 map->map_state = to_state;
238c0a71 9808 migr_map = get_imsm_map(dev, MAP_1);
5961eeec 9809 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
9810 set_imsm_ord_tbl_ent(migr_map, u->slot,
9811 dl->index | IMSM_ORD_REBUILD);
9812
9813 /* update the family_num to mark a new container
9814 * generation, being careful to record the existing
9815 * family_num in orig_family_num to clean up after
9816 * earlier mdadm versions that neglected to set it.
9817 */
9818 if (mpb->orig_family_num == 0)
9819 mpb->orig_family_num = mpb->family_num;
9820 mpb->family_num += super->random;
9821
9822 /* count arrays using the victim in the metadata */
9823 found = 0;
9824 for (a = active_array; a ; a = a->next) {
76c152ca 9825 int dev_idx = a->info.container_member;
061d7da3 9826
76c152ca 9827 if (get_disk_slot_in_dev(super, dev_idx, victim) >= 0)
5961eeec 9828 found++;
9829 }
061d7da3 9830
5961eeec 9831 /* delete the victim if it is no longer being
9832 * utilized anywhere
061d7da3 9833 */
5961eeec 9834 if (!found) {
9835 struct dl **dlp;
061d7da3 9836
5961eeec 9837 /* We know that 'manager' isn't touching anything,
9838 * so it is safe to delete
9839 */
9840 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
9841 if ((*dlp)->index == victim)
9842 break;
5961eeec 9843
9844 /* victim may be on the missing list */
9845 if (!*dlp)
9846 for (dlp = &super->missing; *dlp;
9847 dlp = &(*dlp)->next)
9848 if ((*dlp)->index == victim)
9849 break;
9850 imsm_delete(super, dlp, victim);
9851 }
061d7da3
LO
9852 }
9853
9854 return 1;
9855}
a29911da 9856
2e5dc010
N
9857static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
9858 struct intel_super *super,
9859 void ***space_list)
9860{
9861 struct dl *new_disk;
9862 struct intel_dev *id;
9863 int i;
9864 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 9865 int disk_count = u->old_raid_disks;
2e5dc010
N
9866 void **tofree = NULL;
9867 int devices_to_reshape = 1;
9868 struct imsm_super *mpb = super->anchor;
9869 int ret_val = 0;
d098291a 9870 unsigned int dev_id;
2e5dc010 9871
1ade5cc1 9872 dprintf("(enter)\n");
2e5dc010
N
9873
9874 /* enable spares to use in array */
9875 for (i = 0; i < delta_disks; i++) {
9876 new_disk = get_disk_super(super,
9877 major(u->new_disks[i]),
9878 minor(u->new_disks[i]));
7a862a02 9879 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
2e5dc010
N
9880 major(u->new_disks[i]), minor(u->new_disks[i]),
9881 new_disk, new_disk->index);
089f9d79
JS
9882 if (new_disk == NULL ||
9883 (new_disk->index >= 0 &&
9884 new_disk->index < u->old_raid_disks))
2e5dc010 9885 goto update_reshape_exit;
ee4beede 9886 new_disk->index = disk_count++;
2e5dc010
N
9887 /* slot to fill in autolayout
9888 */
9889 new_disk->raiddisk = new_disk->index;
9890 new_disk->disk.status |=
9891 CONFIGURED_DISK;
9892 new_disk->disk.status &= ~SPARE_DISK;
9893 }
9894
ed7333bd
AK
9895 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
9896 mpb->num_raid_devs);
2e5dc010
N
9897 /* manage changes in volume
9898 */
d098291a 9899 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
9900 void **sp = *space_list;
9901 struct imsm_dev *newdev;
9902 struct imsm_map *newmap, *oldmap;
9903
d098291a
AK
9904 for (id = super->devlist ; id; id = id->next) {
9905 if (id->index == dev_id)
9906 break;
9907 }
9908 if (id == NULL)
9909 break;
2e5dc010
N
9910 if (!sp)
9911 continue;
9912 *space_list = *sp;
9913 newdev = (void*)sp;
9914 /* Copy the dev, but not (all of) the map */
9915 memcpy(newdev, id->dev, sizeof(*newdev));
238c0a71
AK
9916 oldmap = get_imsm_map(id->dev, MAP_0);
9917 newmap = get_imsm_map(newdev, MAP_0);
2e5dc010
N
9918 /* Copy the current map */
9919 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9920 /* update one device only
9921 */
9922 if (devices_to_reshape) {
ed7333bd
AK
9923 dprintf("imsm: modifying subdev: %i\n",
9924 id->index);
2e5dc010
N
9925 devices_to_reshape--;
9926 newdev->vol.migr_state = 1;
4036e7ee 9927 set_vol_curr_migr_unit(newdev, 0);
ea672ee1 9928 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
9929 newmap->num_members = u->new_raid_disks;
9930 for (i = 0; i < delta_disks; i++) {
9931 set_imsm_ord_tbl_ent(newmap,
9932 u->old_raid_disks + i,
9933 u->old_raid_disks + i);
9934 }
9935 /* New map is correct, now need to save old map
9936 */
238c0a71 9937 newmap = get_imsm_map(newdev, MAP_1);
2e5dc010
N
9938 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9939
f3871fdc 9940 imsm_set_array_size(newdev, -1);
2e5dc010
N
9941 }
9942
9943 sp = (void **)id->dev;
9944 id->dev = newdev;
9945 *sp = tofree;
9946 tofree = sp;
8e59f3d8
AK
9947
9948 /* Clear migration record */
9949 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 9950 }
819bc634
AK
9951 if (tofree)
9952 *space_list = tofree;
2e5dc010
N
9953 ret_val = 1;
9954
9955update_reshape_exit:
9956
9957 return ret_val;
9958}
9959
bb025c2f 9960static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
9961 struct intel_super *super,
9962 void ***space_list)
bb025c2f
KW
9963{
9964 struct imsm_dev *dev = NULL;
8ca6df95
KW
9965 struct intel_dev *dv;
9966 struct imsm_dev *dev_new;
bb025c2f
KW
9967 struct imsm_map *map;
9968 struct dl *dm, *du;
8ca6df95 9969 int i;
bb025c2f
KW
9970
9971 for (dv = super->devlist; dv; dv = dv->next)
9972 if (dv->index == (unsigned int)u->subarray) {
9973 dev = dv->dev;
9974 break;
9975 }
9976
9977 if (dev == NULL)
9978 return 0;
9979
238c0a71 9980 map = get_imsm_map(dev, MAP_0);
bb025c2f
KW
9981
9982 if (u->direction == R10_TO_R0) {
43d5ec18 9983 /* Number of failed disks must be half of initial disk number */
3b451610
AK
9984 if (imsm_count_failed(super, dev, MAP_0) !=
9985 (map->num_members / 2))
43d5ec18
KW
9986 return 0;
9987
bb025c2f
KW
9988 /* iterate through devices to mark removed disks as spare */
9989 for (dm = super->disks; dm; dm = dm->next) {
9990 if (dm->disk.status & FAILED_DISK) {
9991 int idx = dm->index;
9992 /* update indexes on the disk list */
9993/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
9994 the index values will end up being correct.... NB */
9995 for (du = super->disks; du; du = du->next)
9996 if (du->index > idx)
9997 du->index--;
9998 /* mark as spare disk */
a8619d23 9999 mark_spare(dm);
bb025c2f
KW
10000 }
10001 }
bb025c2f 10002 /* update map */
1c275381 10003 map->num_members /= map->num_domains;
bb025c2f 10004 map->map_state = IMSM_T_STATE_NORMAL;
bb025c2f 10005 map->raid_level = 0;
1c275381
MT
10006 set_num_domains(map);
10007 update_num_data_stripes(map, imsm_dev_size(dev));
bb025c2f
KW
10008 map->failed_disk_num = -1;
10009 }
10010
8ca6df95
KW
10011 if (u->direction == R0_TO_R10) {
10012 void **space;
4a353e6e 10013
8ca6df95
KW
10014 /* update slots in current disk list */
10015 for (dm = super->disks; dm; dm = dm->next) {
10016 if (dm->index >= 0)
10017 dm->index *= 2;
10018 }
10019 /* create new *missing* disks */
10020 for (i = 0; i < map->num_members; i++) {
10021 space = *space_list;
10022 if (!space)
10023 continue;
10024 *space_list = *space;
10025 du = (void *)space;
10026 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
10027 du->fd = -1;
10028 du->minor = 0;
10029 du->major = 0;
10030 du->index = (i * 2) + 1;
10031 sprintf((char *)du->disk.serial,
10032 " MISSING_%d", du->index);
10033 sprintf((char *)du->serial,
10034 "MISSING_%d", du->index);
10035 du->next = super->missing;
10036 super->missing = du;
10037 }
10038 /* create new dev and map */
10039 space = *space_list;
10040 if (!space)
10041 return 0;
10042 *space_list = *space;
10043 dev_new = (void *)space;
10044 memcpy(dev_new, dev, sizeof(*dev));
10045 /* update new map */
238c0a71 10046 map = get_imsm_map(dev_new, MAP_0);
1c275381 10047
1a2487c2 10048 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95 10049 map->raid_level = 1;
1c275381
MT
10050 set_num_domains(map);
10051 map->num_members = map->num_members * map->num_domains;
10052 update_num_data_stripes(map, imsm_dev_size(dev));
4a353e6e 10053
8ca6df95
KW
10054 /* replace dev<->dev_new */
10055 dv->dev = dev_new;
10056 }
bb025c2f
KW
10057 /* update disk order table */
10058 for (du = super->disks; du; du = du->next)
10059 if (du->index >= 0)
10060 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 10061 for (du = super->missing; du; du = du->next)
1a2487c2
KW
10062 if (du->index >= 0) {
10063 set_imsm_ord_tbl_ent(map, du->index, du->index);
4c9e8c1e 10064 mark_missing(super, dv->dev, &du->disk, du->index);
1a2487c2 10065 }
bb025c2f
KW
10066
10067 return 1;
10068}
10069
e8319a19
DW
10070static void imsm_process_update(struct supertype *st,
10071 struct metadata_update *update)
10072{
10073 /**
10074 * crack open the metadata_update envelope to find the update record
10075 * update can be one of:
d195167d
AK
10076 * update_reshape_container_disks - all the arrays in the container
10077 * are being reshaped to have more devices. We need to mark
10078 * the arrays for general migration and convert selected spares
10079 * into active devices.
10080 * update_activate_spare - a spare device has replaced a failed
1011e834
N
10081 * device in an array, update the disk_ord_tbl. If this disk is
10082 * present in all member arrays then also clear the SPARE_DISK
10083 * flag
d195167d
AK
10084 * update_create_array
10085 * update_kill_array
10086 * update_rename_array
10087 * update_add_remove_disk
e8319a19
DW
10088 */
10089 struct intel_super *super = st->sb;
4d7b1503 10090 struct imsm_super *mpb;
e8319a19
DW
10091 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
10092
4d7b1503
DW
10093 /* update requires a larger buf but the allocation failed */
10094 if (super->next_len && !super->next_buf) {
10095 super->next_len = 0;
10096 return;
10097 }
10098
10099 if (super->next_buf) {
10100 memcpy(super->next_buf, super->buf, super->len);
10101 free(super->buf);
10102 super->len = super->next_len;
10103 super->buf = super->next_buf;
10104
10105 super->next_len = 0;
10106 super->next_buf = NULL;
10107 }
10108
10109 mpb = super->anchor;
10110
e8319a19 10111 switch (type) {
0ec5d470
AK
10112 case update_general_migration_checkpoint: {
10113 struct intel_dev *id;
10114 struct imsm_update_general_migration_checkpoint *u =
10115 (void *)update->buf;
10116
1ade5cc1 10117 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470
AK
10118
10119 /* find device under general migration */
10120 for (id = super->devlist ; id; id = id->next) {
10121 if (is_gen_migration(id->dev)) {
4036e7ee
MT
10122 set_vol_curr_migr_unit(id->dev,
10123 u->curr_migr_unit);
0ec5d470
AK
10124 super->updates_pending++;
10125 }
10126 }
10127 break;
10128 }
bb025c2f
KW
10129 case update_takeover: {
10130 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
10131 if (apply_takeover_update(u, super, &update->space_list)) {
10132 imsm_update_version_info(super);
bb025c2f 10133 super->updates_pending++;
1a2487c2 10134 }
bb025c2f
KW
10135 break;
10136 }
10137
78b10e66 10138 case update_reshape_container_disks: {
d195167d 10139 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
10140 if (apply_reshape_container_disks_update(
10141 u, super, &update->space_list))
10142 super->updates_pending++;
78b10e66
N
10143 break;
10144 }
48c5303a 10145 case update_reshape_migration: {
a29911da
PC
10146 struct imsm_update_reshape_migration *u = (void *)update->buf;
10147 if (apply_reshape_migration_update(
10148 u, super, &update->space_list))
10149 super->updates_pending++;
48c5303a
PC
10150 break;
10151 }
f3871fdc
AK
10152 case update_size_change: {
10153 struct imsm_update_size_change *u = (void *)update->buf;
10154 if (apply_size_change_update(u, super))
10155 super->updates_pending++;
10156 break;
10157 }
e8319a19 10158 case update_activate_spare: {
1011e834 10159 struct imsm_update_activate_spare *u = (void *) update->buf;
69d40de4
JR
10160
10161 if (prepare_spare_to_activate(st, u) &&
10162 apply_update_activate_spare(u, super, st->arrays))
061d7da3 10163 super->updates_pending++;
8273f55e
DW
10164 break;
10165 }
10166 case update_create_array: {
10167 /* someone wants to create a new array, we need to be aware of
10168 * a few races/collisions:
10169 * 1/ 'Create' called by two separate instances of mdadm
10170 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
10171 * devices that have since been assimilated via
10172 * activate_spare.
10173 * In the event this update can not be carried out mdadm will
10174 * (FIX ME) notice that its update did not take hold.
10175 */
10176 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 10177 struct intel_dev *dv;
8273f55e
DW
10178 struct imsm_dev *dev;
10179 struct imsm_map *map, *new_map;
10180 unsigned long long start, end;
10181 unsigned long long new_start, new_end;
10182 int i;
54c2c1ea
DW
10183 struct disk_info *inf;
10184 struct dl *dl;
8273f55e
DW
10185
10186 /* handle racing creates: first come first serve */
10187 if (u->dev_idx < mpb->num_raid_devs) {
1ade5cc1 10188 dprintf("subarray %d already defined\n", u->dev_idx);
ba2de7ba 10189 goto create_error;
8273f55e
DW
10190 }
10191
10192 /* check update is next in sequence */
10193 if (u->dev_idx != mpb->num_raid_devs) {
1ade5cc1
N
10194 dprintf("can not create array %d expected index %d\n",
10195 u->dev_idx, mpb->num_raid_devs);
ba2de7ba 10196 goto create_error;
8273f55e
DW
10197 }
10198
238c0a71 10199 new_map = get_imsm_map(&u->dev, MAP_0);
5551b113 10200 new_start = pba_of_lba0(new_map);
44490938 10201 new_end = new_start + per_dev_array_size(new_map);
54c2c1ea 10202 inf = get_disk_info(u);
8273f55e
DW
10203
10204 /* handle activate_spare versus create race:
10205 * check to make sure that overlapping arrays do not include
10206 * overalpping disks
10207 */
10208 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 10209 dev = get_imsm_dev(super, i);
238c0a71 10210 map = get_imsm_map(dev, MAP_0);
5551b113 10211 start = pba_of_lba0(map);
44490938 10212 end = start + per_dev_array_size(map);
8273f55e
DW
10213 if ((new_start >= start && new_start <= end) ||
10214 (start >= new_start && start <= new_end))
54c2c1ea
DW
10215 /* overlap */;
10216 else
10217 continue;
10218
10219 if (disks_overlap(super, i, u)) {
1ade5cc1 10220 dprintf("arrays overlap\n");
ba2de7ba 10221 goto create_error;
8273f55e
DW
10222 }
10223 }
8273f55e 10224
949c47a0
DW
10225 /* check that prepare update was successful */
10226 if (!update->space) {
1ade5cc1 10227 dprintf("prepare update failed\n");
ba2de7ba 10228 goto create_error;
949c47a0
DW
10229 }
10230
54c2c1ea
DW
10231 /* check that all disks are still active before committing
10232 * changes. FIXME: could we instead handle this by creating a
10233 * degraded array? That's probably not what the user expects,
10234 * so better to drop this update on the floor.
10235 */
10236 for (i = 0; i < new_map->num_members; i++) {
10237 dl = serial_to_dl(inf[i].serial, super);
10238 if (!dl) {
1ade5cc1 10239 dprintf("disk disappeared\n");
ba2de7ba 10240 goto create_error;
54c2c1ea 10241 }
949c47a0
DW
10242 }
10243
8273f55e 10244 super->updates_pending++;
54c2c1ea
DW
10245
10246 /* convert spares to members and fixup ord_tbl */
10247 for (i = 0; i < new_map->num_members; i++) {
10248 dl = serial_to_dl(inf[i].serial, super);
10249 if (dl->index == -1) {
10250 dl->index = mpb->num_disks;
10251 mpb->num_disks++;
10252 dl->disk.status |= CONFIGURED_DISK;
10253 dl->disk.status &= ~SPARE_DISK;
10254 }
10255 set_imsm_ord_tbl_ent(new_map, i, dl->index);
10256 }
10257
ba2de7ba
DW
10258 dv = update->space;
10259 dev = dv->dev;
949c47a0
DW
10260 update->space = NULL;
10261 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
10262 dv->index = u->dev_idx;
10263 dv->next = super->devlist;
10264 super->devlist = dv;
8273f55e 10265 mpb->num_raid_devs++;
8273f55e 10266
4d1313e9 10267 imsm_update_version_info(super);
8273f55e 10268 break;
ba2de7ba
DW
10269 create_error:
10270 /* mdmon knows how to release update->space, but not
10271 * ((struct intel_dev *) update->space)->dev
10272 */
10273 if (update->space) {
10274 dv = update->space;
10275 free(dv->dev);
10276 }
8273f55e 10277 break;
e8319a19 10278 }
33414a01
DW
10279 case update_kill_array: {
10280 struct imsm_update_kill_array *u = (void *) update->buf;
10281 int victim = u->dev_idx;
10282 struct active_array *a;
10283 struct intel_dev **dp;
33414a01
DW
10284
10285 /* sanity check that we are not affecting the uuid of
10286 * active arrays, or deleting an active array
10287 *
10288 * FIXME when immutable ids are available, but note that
10289 * we'll also need to fixup the invalidated/active
10290 * subarray indexes in mdstat
10291 */
10292 for (a = st->arrays; a; a = a->next)
10293 if (a->info.container_member >= victim)
10294 break;
10295 /* by definition if mdmon is running at least one array
10296 * is active in the container, so checking
10297 * mpb->num_raid_devs is just extra paranoia
10298 */
756a15f3 10299 if (a || mpb->num_raid_devs == 1 || victim >= super->anchor->num_raid_devs) {
33414a01
DW
10300 dprintf("failed to delete subarray-%d\n", victim);
10301 break;
10302 }
10303
10304 for (dp = &super->devlist; *dp;)
f21e18ca 10305 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
10306 *dp = (*dp)->next;
10307 } else {
f21e18ca 10308 if ((*dp)->index > (unsigned)victim)
33414a01
DW
10309 (*dp)->index--;
10310 dp = &(*dp)->next;
10311 }
10312 mpb->num_raid_devs--;
10313 super->updates_pending++;
10314 break;
10315 }
aa534678
DW
10316 case update_rename_array: {
10317 struct imsm_update_rename_array *u = (void *) update->buf;
10318 char name[MAX_RAID_SERIAL_LEN+1];
10319 int target = u->dev_idx;
10320 struct active_array *a;
10321 struct imsm_dev *dev;
10322
10323 /* sanity check that we are not affecting the uuid of
10324 * an active array
10325 */
40659392 10326 memset(name, 0, sizeof(name));
aa534678
DW
10327 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
10328 name[MAX_RAID_SERIAL_LEN] = '\0';
10329 for (a = st->arrays; a; a = a->next)
10330 if (a->info.container_member == target)
10331 break;
10332 dev = get_imsm_dev(super, u->dev_idx);
756a15f3 10333 if (a || !check_name(super, name, 1)) {
aa534678
DW
10334 dprintf("failed to rename subarray-%d\n", target);
10335 break;
10336 }
10337
40659392 10338 memcpy(dev->volume, name, MAX_RAID_SERIAL_LEN);
aa534678
DW
10339 super->updates_pending++;
10340 break;
10341 }
1a64be56 10342 case update_add_remove_disk: {
43dad3d6 10343 /* we may be able to repair some arrays if disks are
095b8088 10344 * being added, check the status of add_remove_disk
1a64be56
LM
10345 * if discs has been added.
10346 */
10347 if (add_remove_disk_update(super)) {
43dad3d6 10348 struct active_array *a;
072b727f
DW
10349
10350 super->updates_pending++;
1a64be56 10351 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
10352 a->check_degraded = 1;
10353 }
43dad3d6 10354 break;
e8319a19 10355 }
bbab0940
TM
10356 case update_prealloc_badblocks_mem:
10357 break;
e6e9dd3f
AP
10358 case update_rwh_policy: {
10359 struct imsm_update_rwh_policy *u = (void *)update->buf;
10360 int target = u->dev_idx;
10361 struct imsm_dev *dev = get_imsm_dev(super, target);
e6e9dd3f
AP
10362
10363 if (dev->rwh_policy != u->new_policy) {
10364 dev->rwh_policy = u->new_policy;
10365 super->updates_pending++;
10366 }
10367 break;
10368 }
1a64be56 10369 default:
ebf3be99 10370 pr_err("error: unsupported process update type:(type: %d)\n", type);
1a64be56 10371 }
e8319a19 10372}
88758e9d 10373
bc0b9d34
PC
10374static struct mdinfo *get_spares_for_grow(struct supertype *st);
10375
5fe6f031
N
10376static int imsm_prepare_update(struct supertype *st,
10377 struct metadata_update *update)
8273f55e 10378{
949c47a0 10379 /**
4d7b1503
DW
10380 * Allocate space to hold new disk entries, raid-device entries or a new
10381 * mpb if necessary. The manager synchronously waits for updates to
10382 * complete in the monitor, so new mpb buffers allocated here can be
10383 * integrated by the monitor thread without worrying about live pointers
10384 * in the manager thread.
8273f55e 10385 */
095b8088 10386 enum imsm_update_type type;
4d7b1503 10387 struct intel_super *super = st->sb;
f36a9ecd 10388 unsigned int sector_size = super->sector_size;
4d7b1503
DW
10389 struct imsm_super *mpb = super->anchor;
10390 size_t buf_len;
10391 size_t len = 0;
949c47a0 10392
095b8088
N
10393 if (update->len < (int)sizeof(type))
10394 return 0;
10395
10396 type = *(enum imsm_update_type *) update->buf;
10397
949c47a0 10398 switch (type) {
0ec5d470 10399 case update_general_migration_checkpoint:
095b8088
N
10400 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
10401 return 0;
1ade5cc1 10402 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470 10403 break;
abedf5fc
KW
10404 case update_takeover: {
10405 struct imsm_update_takeover *u = (void *)update->buf;
095b8088
N
10406 if (update->len < (int)sizeof(*u))
10407 return 0;
abedf5fc
KW
10408 if (u->direction == R0_TO_R10) {
10409 void **tail = (void **)&update->space_list;
10410 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
238c0a71 10411 struct imsm_map *map = get_imsm_map(dev, MAP_0);
abedf5fc
KW
10412 int num_members = map->num_members;
10413 void *space;
10414 int size, i;
abedf5fc
KW
10415 /* allocate memory for added disks */
10416 for (i = 0; i < num_members; i++) {
10417 size = sizeof(struct dl);
503975b9 10418 space = xmalloc(size);
abedf5fc
KW
10419 *tail = space;
10420 tail = space;
10421 *tail = NULL;
10422 }
10423 /* allocate memory for new device */
10424 size = sizeof_imsm_dev(super->devlist->dev, 0) +
10425 (num_members * sizeof(__u32));
503975b9
N
10426 space = xmalloc(size);
10427 *tail = space;
10428 tail = space;
10429 *tail = NULL;
10430 len = disks_to_mpb_size(num_members * 2);
abedf5fc
KW
10431 }
10432
10433 break;
10434 }
78b10e66 10435 case update_reshape_container_disks: {
d195167d
AK
10436 /* Every raid device in the container is about to
10437 * gain some more devices, and we will enter a
10438 * reconfiguration.
10439 * So each 'imsm_map' will be bigger, and the imsm_vol
10440 * will now hold 2 of them.
10441 * Thus we need new 'struct imsm_dev' allocations sized
10442 * as sizeof_imsm_dev but with more devices in both maps.
10443 */
10444 struct imsm_update_reshape *u = (void *)update->buf;
10445 struct intel_dev *dl;
10446 void **space_tail = (void**)&update->space_list;
10447
095b8088
N
10448 if (update->len < (int)sizeof(*u))
10449 return 0;
10450
1ade5cc1 10451 dprintf("for update_reshape\n");
d195167d
AK
10452
10453 for (dl = super->devlist; dl; dl = dl->next) {
10454 int size = sizeof_imsm_dev(dl->dev, 1);
10455 void *s;
d677e0b8
AK
10456 if (u->new_raid_disks > u->old_raid_disks)
10457 size += sizeof(__u32)*2*
10458 (u->new_raid_disks - u->old_raid_disks);
503975b9 10459 s = xmalloc(size);
d195167d
AK
10460 *space_tail = s;
10461 space_tail = s;
10462 *space_tail = NULL;
10463 }
10464
10465 len = disks_to_mpb_size(u->new_raid_disks);
10466 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
10467 break;
10468 }
48c5303a 10469 case update_reshape_migration: {
bc0b9d34
PC
10470 /* for migration level 0->5 we need to add disks
10471 * so the same as for container operation we will copy
10472 * device to the bigger location.
10473 * in memory prepared device and new disk area are prepared
10474 * for usage in process update
10475 */
10476 struct imsm_update_reshape_migration *u = (void *)update->buf;
10477 struct intel_dev *id;
10478 void **space_tail = (void **)&update->space_list;
10479 int size;
10480 void *s;
10481 int current_level = -1;
10482
095b8088
N
10483 if (update->len < (int)sizeof(*u))
10484 return 0;
10485
1ade5cc1 10486 dprintf("for update_reshape\n");
bc0b9d34
PC
10487
10488 /* add space for bigger array in update
10489 */
10490 for (id = super->devlist; id; id = id->next) {
10491 if (id->index == (unsigned)u->subdev) {
10492 size = sizeof_imsm_dev(id->dev, 1);
10493 if (u->new_raid_disks > u->old_raid_disks)
10494 size += sizeof(__u32)*2*
10495 (u->new_raid_disks - u->old_raid_disks);
503975b9 10496 s = xmalloc(size);
bc0b9d34
PC
10497 *space_tail = s;
10498 space_tail = s;
10499 *space_tail = NULL;
10500 break;
10501 }
10502 }
10503 if (update->space_list == NULL)
10504 break;
10505
10506 /* add space for disk in update
10507 */
10508 size = sizeof(struct dl);
503975b9 10509 s = xmalloc(size);
bc0b9d34
PC
10510 *space_tail = s;
10511 space_tail = s;
10512 *space_tail = NULL;
10513
10514 /* add spare device to update
10515 */
10516 for (id = super->devlist ; id; id = id->next)
10517 if (id->index == (unsigned)u->subdev) {
10518 struct imsm_dev *dev;
10519 struct imsm_map *map;
10520
10521 dev = get_imsm_dev(super, u->subdev);
238c0a71 10522 map = get_imsm_map(dev, MAP_0);
bc0b9d34
PC
10523 current_level = map->raid_level;
10524 break;
10525 }
089f9d79 10526 if (u->new_level == 5 && u->new_level != current_level) {
bc0b9d34
PC
10527 struct mdinfo *spares;
10528
10529 spares = get_spares_for_grow(st);
10530 if (spares) {
10531 struct dl *dl;
10532 struct mdinfo *dev;
10533
10534 dev = spares->devs;
10535 if (dev) {
10536 u->new_disks[0] =
10537 makedev(dev->disk.major,
10538 dev->disk.minor);
10539 dl = get_disk_super(super,
10540 dev->disk.major,
10541 dev->disk.minor);
10542 dl->index = u->old_raid_disks;
10543 dev = dev->next;
10544 }
10545 sysfs_free(spares);
10546 }
10547 }
10548 len = disks_to_mpb_size(u->new_raid_disks);
10549 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
10550 break;
10551 }
f3871fdc 10552 case update_size_change: {
095b8088
N
10553 if (update->len < (int)sizeof(struct imsm_update_size_change))
10554 return 0;
10555 break;
10556 }
10557 case update_activate_spare: {
10558 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
10559 return 0;
f3871fdc
AK
10560 break;
10561 }
949c47a0
DW
10562 case update_create_array: {
10563 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 10564 struct intel_dev *dv;
54c2c1ea 10565 struct imsm_dev *dev = &u->dev;
238c0a71 10566 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
10567 struct dl *dl;
10568 struct disk_info *inf;
10569 int i;
10570 int activate = 0;
949c47a0 10571
095b8088
N
10572 if (update->len < (int)sizeof(*u))
10573 return 0;
10574
54c2c1ea
DW
10575 inf = get_disk_info(u);
10576 len = sizeof_imsm_dev(dev, 1);
ba2de7ba 10577 /* allocate a new super->devlist entry */
503975b9
N
10578 dv = xmalloc(sizeof(*dv));
10579 dv->dev = xmalloc(len);
10580 update->space = dv;
949c47a0 10581
54c2c1ea
DW
10582 /* count how many spares will be converted to members */
10583 for (i = 0; i < map->num_members; i++) {
10584 dl = serial_to_dl(inf[i].serial, super);
10585 if (!dl) {
10586 /* hmm maybe it failed?, nothing we can do about
10587 * it here
10588 */
10589 continue;
10590 }
10591 if (count_memberships(dl, super) == 0)
10592 activate++;
10593 }
10594 len += activate * sizeof(struct imsm_disk);
949c47a0 10595 break;
095b8088
N
10596 }
10597 case update_kill_array: {
10598 if (update->len < (int)sizeof(struct imsm_update_kill_array))
10599 return 0;
949c47a0
DW
10600 break;
10601 }
095b8088
N
10602 case update_rename_array: {
10603 if (update->len < (int)sizeof(struct imsm_update_rename_array))
10604 return 0;
10605 break;
10606 }
10607 case update_add_remove_disk:
10608 /* no update->len needed */
10609 break;
bbab0940
TM
10610 case update_prealloc_badblocks_mem:
10611 super->extra_space += sizeof(struct bbm_log) -
10612 get_imsm_bbm_log_size(super->bbm_log);
10613 break;
e6e9dd3f
AP
10614 case update_rwh_policy: {
10615 if (update->len < (int)sizeof(struct imsm_update_rwh_policy))
10616 return 0;
10617 break;
10618 }
095b8088
N
10619 default:
10620 return 0;
949c47a0 10621 }
8273f55e 10622
4d7b1503
DW
10623 /* check if we need a larger metadata buffer */
10624 if (super->next_buf)
10625 buf_len = super->next_len;
10626 else
10627 buf_len = super->len;
10628
bbab0940 10629 if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
4d7b1503
DW
10630 /* ok we need a larger buf than what is currently allocated
10631 * if this allocation fails process_update will notice that
10632 * ->next_len is set and ->next_buf is NULL
10633 */
bbab0940
TM
10634 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
10635 super->extra_space + len, sector_size);
4d7b1503
DW
10636 if (super->next_buf)
10637 free(super->next_buf);
10638
10639 super->next_len = buf_len;
f36a9ecd 10640 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
1f45a8ad
DW
10641 memset(super->next_buf, 0, buf_len);
10642 else
4d7b1503
DW
10643 super->next_buf = NULL;
10644 }
5fe6f031 10645 return 1;
8273f55e
DW
10646}
10647
ae6aad82 10648/* must be called while manager is quiesced */
f21e18ca 10649static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
10650{
10651 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
10652 struct dl *iter;
10653 struct imsm_dev *dev;
10654 struct imsm_map *map;
4c9e8c1e 10655 unsigned int i, j, num_members;
fb12a745 10656 __u32 ord, ord_map0;
4c9e8c1e 10657 struct bbm_log *log = super->bbm_log;
ae6aad82 10658
1ade5cc1 10659 dprintf("deleting device[%d] from imsm_super\n", index);
ae6aad82
DW
10660
10661 /* shift all indexes down one */
10662 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 10663 if (iter->index > (int)index)
ae6aad82 10664 iter->index--;
47ee5a45 10665 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 10666 if (iter->index > (int)index)
47ee5a45 10667 iter->index--;
ae6aad82
DW
10668
10669 for (i = 0; i < mpb->num_raid_devs; i++) {
10670 dev = get_imsm_dev(super, i);
238c0a71 10671 map = get_imsm_map(dev, MAP_0);
24565c9a
DW
10672 num_members = map->num_members;
10673 for (j = 0; j < num_members; j++) {
10674 /* update ord entries being careful not to propagate
10675 * ord-flags to the first map
10676 */
238c0a71 10677 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
fb12a745 10678 ord_map0 = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ae6aad82 10679
24565c9a
DW
10680 if (ord_to_idx(ord) <= index)
10681 continue;
ae6aad82 10682
238c0a71 10683 map = get_imsm_map(dev, MAP_0);
fb12a745 10684 set_imsm_ord_tbl_ent(map, j, ord_map0 - 1);
238c0a71 10685 map = get_imsm_map(dev, MAP_1);
24565c9a
DW
10686 if (map)
10687 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
10688 }
10689 }
10690
4c9e8c1e
TM
10691 for (i = 0; i < log->entry_count; i++) {
10692 struct bbm_log_entry *entry = &log->marked_block_entries[i];
10693
10694 if (entry->disk_ordinal <= index)
10695 continue;
10696 entry->disk_ordinal--;
10697 }
10698
ae6aad82
DW
10699 mpb->num_disks--;
10700 super->updates_pending++;
24565c9a
DW
10701 if (*dlp) {
10702 struct dl *dl = *dlp;
10703
10704 *dlp = (*dlp)->next;
3a85bf0e 10705 __free_imsm_disk(dl, 1);
24565c9a 10706 }
ae6aad82 10707}
9a717282 10708
9a717282
AK
10709static int imsm_get_allowed_degradation(int level, int raid_disks,
10710 struct intel_super *super,
10711 struct imsm_dev *dev)
10712{
10713 switch (level) {
bf5cf7c7 10714 case 1:
9a717282
AK
10715 case 10:{
10716 int ret_val = 0;
10717 struct imsm_map *map;
10718 int i;
10719
10720 ret_val = raid_disks/2;
10721 /* check map if all disks pairs not failed
10722 * in both maps
10723 */
238c0a71 10724 map = get_imsm_map(dev, MAP_0);
9a717282
AK
10725 for (i = 0; i < ret_val; i++) {
10726 int degradation = 0;
10727 if (get_imsm_disk(super, i) == NULL)
10728 degradation++;
10729 if (get_imsm_disk(super, i + 1) == NULL)
10730 degradation++;
10731 if (degradation == 2)
10732 return 0;
10733 }
238c0a71 10734 map = get_imsm_map(dev, MAP_1);
9a717282
AK
10735 /* if there is no second map
10736 * result can be returned
10737 */
10738 if (map == NULL)
10739 return ret_val;
10740 /* check degradation in second map
10741 */
10742 for (i = 0; i < ret_val; i++) {
10743 int degradation = 0;
10744 if (get_imsm_disk(super, i) == NULL)
10745 degradation++;
10746 if (get_imsm_disk(super, i + 1) == NULL)
10747 degradation++;
10748 if (degradation == 2)
10749 return 0;
10750 }
10751 return ret_val;
10752 }
10753 case 5:
10754 return 1;
10755 case 6:
10756 return 2;
10757 default:
10758 return 0;
10759 }
10760}
10761
d31ad643
PB
10762/*******************************************************************************
10763 * Function: validate_container_imsm
10764 * Description: This routine validates container after assemble,
10765 * eg. if devices in container are under the same controller.
10766 *
10767 * Parameters:
10768 * info : linked list with info about devices used in array
10769 * Returns:
10770 * 1 : HBA mismatch
10771 * 0 : Success
10772 ******************************************************************************/
10773int validate_container_imsm(struct mdinfo *info)
10774{
420dafcd 10775 if (check_no_platform())
6b781d33 10776 return 0;
d31ad643 10777
6b781d33
AP
10778 struct sys_dev *idev;
10779 struct sys_dev *hba = NULL;
10780 struct sys_dev *intel_devices = find_intel_devices();
10781 char *dev_path = devt_to_devpath(makedev(info->disk.major,
7c798f87 10782 info->disk.minor), 1, NULL);
6b781d33
AP
10783
10784 for (idev = intel_devices; idev; idev = idev->next) {
10785 if (dev_path && strstr(dev_path, idev->path)) {
10786 hba = idev;
10787 break;
d31ad643 10788 }
6b781d33
AP
10789 }
10790 if (dev_path)
d31ad643
PB
10791 free(dev_path);
10792
6b781d33
AP
10793 if (!hba) {
10794 pr_err("WARNING - Cannot detect HBA for device %s!\n",
10795 devid2kname(makedev(info->disk.major, info->disk.minor)));
10796 return 1;
10797 }
10798
10799 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
10800 struct mdinfo *dev;
10801
10802 for (dev = info->next; dev; dev = dev->next) {
7c798f87
MT
10803 dev_path = devt_to_devpath(makedev(dev->disk.major,
10804 dev->disk.minor), 1, NULL);
6b781d33
AP
10805
10806 struct sys_dev *hba2 = NULL;
10807 for (idev = intel_devices; idev; idev = idev->next) {
10808 if (dev_path && strstr(dev_path, idev->path)) {
10809 hba2 = idev;
10810 break;
d31ad643
PB
10811 }
10812 }
6b781d33
AP
10813 if (dev_path)
10814 free(dev_path);
10815
10816 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
10817 get_orom_by_device_id(hba2->dev_id);
10818
10819 if (hba2 && hba->type != hba2->type) {
10820 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
10821 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
10822 return 1;
10823 }
10824
07cb1e57 10825 if (orom != orom2) {
6b781d33
AP
10826 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
10827 " This operation is not supported and can lead to data loss.\n");
10828 return 1;
10829 }
10830
10831 if (!orom) {
10832 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
10833 " This operation is not supported and can lead to data loss.\n");
10834 return 1;
10835 }
d31ad643 10836 }
6b781d33 10837
d31ad643
PB
10838 return 0;
10839}
32141c17 10840
6f50473f
TM
10841/*******************************************************************************
10842* Function: imsm_record_badblock
10843* Description: This routine stores new bad block record in BBM log
10844*
10845* Parameters:
10846* a : array containing a bad block
10847* slot : disk number containing a bad block
10848* sector : bad block sector
10849* length : bad block sectors range
10850* Returns:
10851* 1 : Success
10852* 0 : Error
10853******************************************************************************/
10854static int imsm_record_badblock(struct active_array *a, int slot,
10855 unsigned long long sector, int length)
10856{
10857 struct intel_super *super = a->container->sb;
10858 int ord;
10859 int ret;
10860
10861 ord = imsm_disk_slot_to_ord(a, slot);
10862 if (ord < 0)
10863 return 0;
10864
10865 ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
10866 length);
10867 if (ret)
10868 super->updates_pending++;
10869
10870 return ret;
10871}
c07a5a4f
TM
10872/*******************************************************************************
10873* Function: imsm_clear_badblock
10874* Description: This routine clears bad block record from BBM log
10875*
10876* Parameters:
10877* a : array containing a bad block
10878* slot : disk number containing a bad block
10879* sector : bad block sector
10880* length : bad block sectors range
10881* Returns:
10882* 1 : Success
10883* 0 : Error
10884******************************************************************************/
10885static int imsm_clear_badblock(struct active_array *a, int slot,
10886 unsigned long long sector, int length)
10887{
10888 struct intel_super *super = a->container->sb;
10889 int ord;
10890 int ret;
10891
10892 ord = imsm_disk_slot_to_ord(a, slot);
10893 if (ord < 0)
10894 return 0;
10895
10896 ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
10897 if (ret)
10898 super->updates_pending++;
10899
10900 return ret;
10901}
928f1424
TM
10902/*******************************************************************************
10903* Function: imsm_get_badblocks
10904* Description: This routine get list of bad blocks for an array
10905*
10906* Parameters:
10907* a : array
10908* slot : disk number
10909* Returns:
10910* bb : structure containing bad blocks
10911* NULL : error
10912******************************************************************************/
10913static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot)
10914{
10915 int inst = a->info.container_member;
10916 struct intel_super *super = a->container->sb;
10917 struct imsm_dev *dev = get_imsm_dev(super, inst);
10918 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10919 int ord;
10920
10921 ord = imsm_disk_slot_to_ord(a, slot);
10922 if (ord < 0)
10923 return NULL;
10924
10925 get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map),
44490938 10926 per_dev_array_size(map), &super->bb);
928f1424
TM
10927
10928 return &super->bb;
10929}
27156a57
TM
10930/*******************************************************************************
10931* Function: examine_badblocks_imsm
10932* Description: Prints list of bad blocks on a disk to the standard output
10933*
10934* Parameters:
10935* st : metadata handler
10936* fd : open file descriptor for device
10937* devname : device name
10938* Returns:
10939* 0 : Success
10940* 1 : Error
10941******************************************************************************/
10942static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname)
10943{
10944 struct intel_super *super = st->sb;
10945 struct bbm_log *log = super->bbm_log;
10946 struct dl *d = NULL;
10947 int any = 0;
10948
10949 for (d = super->disks; d ; d = d->next) {
10950 if (strcmp(d->devname, devname) == 0)
10951 break;
10952 }
10953
10954 if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */
10955 pr_err("%s doesn't appear to be part of a raid array\n",
10956 devname);
10957 return 1;
10958 }
10959
10960 if (log != NULL) {
10961 unsigned int i;
10962 struct bbm_log_entry *entry = &log->marked_block_entries[0];
10963
10964 for (i = 0; i < log->entry_count; i++) {
10965 if (entry[i].disk_ordinal == d->index) {
10966 unsigned long long sector = __le48_to_cpu(
10967 &entry[i].defective_block_start);
10968 int cnt = entry[i].marked_count + 1;
10969
10970 if (!any) {
10971 printf("Bad-blocks on %s:\n", devname);
10972 any = 1;
10973 }
10974
10975 printf("%20llu for %d sectors\n", sector, cnt);
10976 }
10977 }
10978 }
10979
10980 if (!any)
10981 printf("No bad-blocks list configured on %s\n", devname);
10982
10983 return 0;
10984}
687629c2
AK
10985/*******************************************************************************
10986 * Function: init_migr_record_imsm
10987 * Description: Function inits imsm migration record
10988 * Parameters:
10989 * super : imsm internal array info
10990 * dev : device under migration
10991 * info : general array info to find the smallest device
10992 * Returns:
10993 * none
10994 ******************************************************************************/
10995void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
10996 struct mdinfo *info)
10997{
10998 struct intel_super *super = st->sb;
10999 struct migr_record *migr_rec = super->migr_rec;
11000 int new_data_disks;
11001 unsigned long long dsize, dev_sectors;
11002 long long unsigned min_dev_sectors = -1LLU;
238c0a71
AK
11003 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
11004 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
687629c2 11005 unsigned long long num_migr_units;
3ef4403c 11006 unsigned long long array_blocks;
2f86fda3 11007 struct dl *dl_disk = NULL;
687629c2
AK
11008
11009 memset(migr_rec, 0, sizeof(struct migr_record));
11010 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
11011
11012 /* only ascending reshape supported now */
11013 migr_rec->ascending_migr = __cpu_to_le32(1);
11014
11015 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
11016 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
e1742195
AK
11017 migr_rec->dest_depth_per_unit *=
11018 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9529d343 11019 new_data_disks = imsm_num_data_members(map_dest);
687629c2
AK
11020 migr_rec->blocks_per_unit =
11021 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
11022 migr_rec->dest_depth_per_unit =
11023 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 11024 array_blocks = info->component_size * new_data_disks;
687629c2
AK
11025 num_migr_units =
11026 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
11027
11028 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
11029 num_migr_units++;
9f421827 11030 set_num_migr_units(migr_rec, num_migr_units);
687629c2
AK
11031
11032 migr_rec->post_migr_vol_cap = dev->size_low;
11033 migr_rec->post_migr_vol_cap_hi = dev->size_high;
11034
687629c2 11035 /* Find the smallest dev */
2f86fda3
MT
11036 for (dl_disk = super->disks; dl_disk ; dl_disk = dl_disk->next) {
11037 /* ignore spares in container */
11038 if (dl_disk->index < 0)
687629c2 11039 continue;
2f86fda3 11040 get_dev_size(dl_disk->fd, NULL, &dsize);
687629c2
AK
11041 dev_sectors = dsize / 512;
11042 if (dev_sectors < min_dev_sectors)
11043 min_dev_sectors = dev_sectors;
687629c2 11044 }
9f421827 11045 set_migr_chkp_area_pba(migr_rec, min_dev_sectors -
687629c2
AK
11046 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
11047
11048 write_imsm_migr_rec(st);
11049
11050 return;
11051}
11052
11053/*******************************************************************************
11054 * Function: save_backup_imsm
11055 * Description: Function saves critical data stripes to Migration Copy Area
11056 * and updates the current migration unit status.
11057 * Use restore_stripes() to form a destination stripe,
11058 * and to write it to the Copy Area.
11059 * Parameters:
11060 * st : supertype information
aea93171 11061 * dev : imsm device that backup is saved for
687629c2
AK
11062 * info : general array info
11063 * buf : input buffer
687629c2
AK
11064 * length : length of data to backup (blocks_per_unit)
11065 * Returns:
11066 * 0 : success
11067 *, -1 : fail
11068 ******************************************************************************/
11069int save_backup_imsm(struct supertype *st,
11070 struct imsm_dev *dev,
11071 struct mdinfo *info,
11072 void *buf,
687629c2
AK
11073 int length)
11074{
11075 int rv = -1;
11076 struct intel_super *super = st->sb;
687629c2 11077 int i;
238c0a71 11078 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
687629c2 11079 int new_disks = map_dest->num_members;
ab724b98 11080 int dest_layout = 0;
4389ce73
MT
11081 int dest_chunk, targets[new_disks];
11082 unsigned long long start, target_offsets[new_disks];
9529d343 11083 int data_disks = imsm_num_data_members(map_dest);
687629c2 11084
2f86fda3
MT
11085 for (i = 0; i < new_disks; i++) {
11086 struct dl *dl_disk = get_imsm_dl_disk(super, i);
4389ce73
MT
11087 if (dl_disk && is_fd_valid(dl_disk->fd))
11088 targets[i] = dl_disk->fd;
11089 else
11090 goto abort;
2f86fda3 11091 }
7e45b550 11092
d1877f69 11093 start = info->reshape_progress * 512;
687629c2 11094 for (i = 0; i < new_disks; i++) {
9f421827 11095 target_offsets[i] = migr_chkp_area_pba(super->migr_rec) * 512;
d1877f69
AK
11096 /* move back copy area adderss, it will be moved forward
11097 * in restore_stripes() using start input variable
11098 */
11099 target_offsets[i] -= start/data_disks;
687629c2
AK
11100 }
11101
68eb8bc6 11102 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
11103 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
11104
687629c2
AK
11105 if (restore_stripes(targets, /* list of dest devices */
11106 target_offsets, /* migration record offsets */
11107 new_disks,
ab724b98
AK
11108 dest_chunk,
11109 map_dest->raid_level,
11110 dest_layout,
11111 -1, /* source backup file descriptor */
11112 0, /* input buf offset
11113 * always 0 buf is already offseted */
d1877f69 11114 start,
687629c2
AK
11115 length,
11116 buf) != 0) {
e7b84f9d 11117 pr_err("Error restoring stripes\n");
687629c2
AK
11118 goto abort;
11119 }
11120
11121 rv = 0;
11122
11123abort:
687629c2
AK
11124 return rv;
11125}
11126
11127/*******************************************************************************
11128 * Function: save_checkpoint_imsm
11129 * Description: Function called for current unit status update
11130 * in the migration record. It writes it to disk.
11131 * Parameters:
11132 * super : imsm internal array info
11133 * info : general array info
11134 * Returns:
11135 * 0: success
11136 * 1: failure
0228d92c
AK
11137 * 2: failure, means no valid migration record
11138 * / no general migration in progress /
687629c2
AK
11139 ******************************************************************************/
11140int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
11141{
11142 struct intel_super *super = st->sb;
f8b72ef5
AK
11143 unsigned long long blocks_per_unit;
11144 unsigned long long curr_migr_unit;
11145
2f86fda3 11146 if (load_imsm_migr_rec(super) != 0) {
7a862a02 11147 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
2e062e82
AK
11148 return 1;
11149 }
11150
f8b72ef5
AK
11151 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
11152 if (blocks_per_unit == 0) {
0228d92c
AK
11153 dprintf("imsm: no migration in progress.\n");
11154 return 2;
687629c2 11155 }
f8b72ef5
AK
11156 curr_migr_unit = info->reshape_progress / blocks_per_unit;
11157 /* check if array is alligned to copy area
11158 * if it is not alligned, add one to current migration unit value
11159 * this can happend on array reshape finish only
11160 */
11161 if (info->reshape_progress % blocks_per_unit)
11162 curr_migr_unit++;
687629c2 11163
9f421827 11164 set_current_migr_unit(super->migr_rec, curr_migr_unit);
687629c2 11165 super->migr_rec->rec_status = __cpu_to_le32(state);
9f421827
PB
11166 set_migr_dest_1st_member_lba(super->migr_rec,
11167 super->migr_rec->dest_depth_per_unit * curr_migr_unit);
11168
687629c2 11169 if (write_imsm_migr_rec(st) < 0) {
7a862a02 11170 dprintf("imsm: Cannot write migration record outside backup area\n");
687629c2
AK
11171 return 1;
11172 }
11173
11174 return 0;
11175}
11176
276d77db
AK
11177/*******************************************************************************
11178 * Function: recover_backup_imsm
11179 * Description: Function recovers critical data from the Migration Copy Area
11180 * while assembling an array.
11181 * Parameters:
11182 * super : imsm internal array info
11183 * info : general array info
11184 * Returns:
11185 * 0 : success (or there is no data to recover)
11186 * 1 : fail
11187 ******************************************************************************/
11188int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
11189{
11190 struct intel_super *super = st->sb;
11191 struct migr_record *migr_rec = super->migr_rec;
594dc1b8 11192 struct imsm_map *map_dest;
276d77db
AK
11193 struct intel_dev *id = NULL;
11194 unsigned long long read_offset;
11195 unsigned long long write_offset;
11196 unsigned unit_len;
2f86fda3 11197 int new_disks, err;
276d77db
AK
11198 char *buf = NULL;
11199 int retval = 1;
f36a9ecd 11200 unsigned int sector_size = super->sector_size;
4036e7ee
MT
11201 unsigned long long curr_migr_unit = current_migr_unit(migr_rec);
11202 unsigned long long num_migr_units = get_num_migr_units(migr_rec);
276d77db 11203 char buffer[20];
6c3560c0 11204 int skipped_disks = 0;
2f86fda3 11205 struct dl *dl_disk;
276d77db
AK
11206
11207 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
11208 if (err < 1)
11209 return 1;
11210
11211 /* recover data only during assemblation */
11212 if (strncmp(buffer, "inactive", 8) != 0)
11213 return 0;
11214 /* no data to recover */
11215 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
11216 return 0;
11217 if (curr_migr_unit >= num_migr_units)
11218 return 1;
11219
11220 /* find device during reshape */
11221 for (id = super->devlist; id; id = id->next)
11222 if (is_gen_migration(id->dev))
11223 break;
11224 if (id == NULL)
11225 return 1;
11226
238c0a71 11227 map_dest = get_imsm_map(id->dev, MAP_0);
276d77db
AK
11228 new_disks = map_dest->num_members;
11229
9f421827 11230 read_offset = migr_chkp_area_pba(migr_rec) * 512;
276d77db 11231
9f421827 11232 write_offset = (migr_dest_1st_member_lba(migr_rec) +
5551b113 11233 pba_of_lba0(map_dest)) * 512;
276d77db
AK
11234
11235 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
f36a9ecd 11236 if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
276d77db 11237 goto abort;
276d77db 11238
2f86fda3
MT
11239 for (dl_disk = super->disks; dl_disk; dl_disk = dl_disk->next) {
11240 if (dl_disk->index < 0)
11241 continue;
276d77db 11242
4389ce73 11243 if (!is_fd_valid(dl_disk->fd)) {
6c3560c0
AK
11244 skipped_disks++;
11245 continue;
11246 }
2f86fda3 11247 if (lseek64(dl_disk->fd, read_offset, SEEK_SET) < 0) {
e7b84f9d
N
11248 pr_err("Cannot seek to block: %s\n",
11249 strerror(errno));
137debce
AK
11250 skipped_disks++;
11251 continue;
276d77db 11252 }
83b3de77 11253 if (read(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) {
e7b84f9d
N
11254 pr_err("Cannot read copy area block: %s\n",
11255 strerror(errno));
137debce
AK
11256 skipped_disks++;
11257 continue;
276d77db 11258 }
2f86fda3 11259 if (lseek64(dl_disk->fd, write_offset, SEEK_SET) < 0) {
e7b84f9d
N
11260 pr_err("Cannot seek to block: %s\n",
11261 strerror(errno));
137debce
AK
11262 skipped_disks++;
11263 continue;
276d77db 11264 }
83b3de77 11265 if (write(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) {
e7b84f9d
N
11266 pr_err("Cannot restore block: %s\n",
11267 strerror(errno));
137debce
AK
11268 skipped_disks++;
11269 continue;
276d77db
AK
11270 }
11271 }
11272
137debce
AK
11273 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
11274 new_disks,
11275 super,
11276 id->dev)) {
7a862a02 11277 pr_err("Cannot restore data from backup. Too many failed disks\n");
6c3560c0
AK
11278 goto abort;
11279 }
11280
befb629b
AK
11281 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
11282 /* ignore error == 2, this can mean end of reshape here
11283 */
7a862a02 11284 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
befb629b 11285 } else
276d77db 11286 retval = 0;
276d77db
AK
11287
11288abort:
276d77db
AK
11289 free(buf);
11290 return retval;
11291}
11292
2cda7640
ML
11293static char disk_by_path[] = "/dev/disk/by-path/";
11294
11295static const char *imsm_get_disk_controller_domain(const char *path)
11296{
2cda7640 11297 char disk_path[PATH_MAX];
96234762
LM
11298 char *drv=NULL;
11299 struct stat st;
2cda7640 11300
6d8d290a 11301 strcpy(disk_path, disk_by_path);
96234762
LM
11302 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
11303 if (stat(disk_path, &st) == 0) {
11304 struct sys_dev* hba;
594dc1b8 11305 char *path;
96234762 11306
7c798f87 11307 path = devt_to_devpath(st.st_rdev, 1, NULL);
96234762
LM
11308 if (path == NULL)
11309 return "unknown";
11310 hba = find_disk_attached_hba(-1, path);
11311 if (hba && hba->type == SYS_DEV_SAS)
11312 drv = "isci";
75350d87 11313 else if (hba && (hba->type == SYS_DEV_SATA || hba->type == SYS_DEV_SATA_VMD))
96234762 11314 drv = "ahci";
c6839718
MT
11315 else if (hba && hba->type == SYS_DEV_VMD)
11316 drv = "vmd";
11317 else if (hba && hba->type == SYS_DEV_NVME)
11318 drv = "nvme";
1011e834 11319 else
96234762
LM
11320 drv = "unknown";
11321 dprintf("path: %s hba: %s attached: %s\n",
11322 path, (hba) ? hba->path : "NULL", drv);
11323 free(path);
2cda7640 11324 }
96234762 11325 return drv;
2cda7640
ML
11326}
11327
4dd2df09 11328static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
78b10e66 11329{
4dd2df09 11330 static char devnm[32];
78b10e66
N
11331 char subdev_name[20];
11332 struct mdstat_ent *mdstat;
11333
11334 sprintf(subdev_name, "%d", subdev);
11335 mdstat = mdstat_by_subdev(subdev_name, container);
11336 if (!mdstat)
4dd2df09 11337 return NULL;
78b10e66 11338
4dd2df09 11339 strcpy(devnm, mdstat->devnm);
78b10e66 11340 free_mdstat(mdstat);
4dd2df09 11341 return devnm;
78b10e66
N
11342}
11343
11344static int imsm_reshape_is_allowed_on_container(struct supertype *st,
11345 struct geo_params *geo,
fbf3d202
AK
11346 int *old_raid_disks,
11347 int direction)
78b10e66 11348{
694575e7
KW
11349 /* currently we only support increasing the number of devices
11350 * for a container. This increases the number of device for each
11351 * member array. They must all be RAID0 or RAID5.
11352 */
78b10e66
N
11353 int ret_val = 0;
11354 struct mdinfo *info, *member;
11355 int devices_that_can_grow = 0;
11356
7a862a02 11357 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
78b10e66 11358
d04f65f4 11359 if (geo->size > 0 ||
78b10e66
N
11360 geo->level != UnSet ||
11361 geo->layout != UnSet ||
11362 geo->chunksize != 0 ||
11363 geo->raid_disks == UnSet) {
7a862a02 11364 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
78b10e66
N
11365 return ret_val;
11366 }
11367
fbf3d202 11368 if (direction == ROLLBACK_METADATA_CHANGES) {
7a862a02 11369 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
fbf3d202
AK
11370 return ret_val;
11371 }
11372
78b10e66
N
11373 info = container_content_imsm(st, NULL);
11374 for (member = info; member; member = member->next) {
4dd2df09 11375 char *result;
78b10e66
N
11376
11377 dprintf("imsm: checking device_num: %i\n",
11378 member->container_member);
11379
d7d205bd 11380 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
11381 /* we work on container for Online Capacity Expansion
11382 * only so raid_disks has to grow
11383 */
7a862a02 11384 dprintf("imsm: for container operation raid disks increase is required\n");
78b10e66
N
11385 break;
11386 }
11387
089f9d79 11388 if (info->array.level != 0 && info->array.level != 5) {
78b10e66
N
11389 /* we cannot use this container with other raid level
11390 */
7a862a02 11391 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
78b10e66
N
11392 info->array.level);
11393 break;
11394 } else {
11395 /* check for platform support
11396 * for this raid level configuration
11397 */
11398 struct intel_super *super = st->sb;
11399 if (!is_raid_level_supported(super->orom,
11400 member->array.level,
11401 geo->raid_disks)) {
7a862a02 11402 dprintf("platform does not support raid%d with %d disk%s\n",
78b10e66
N
11403 info->array.level,
11404 geo->raid_disks,
11405 geo->raid_disks > 1 ? "s" : "");
11406 break;
11407 }
2a4a08e7
AK
11408 /* check if component size is aligned to chunk size
11409 */
11410 if (info->component_size %
11411 (info->array.chunk_size/512)) {
7a862a02 11412 dprintf("Component size is not aligned to chunk size\n");
2a4a08e7
AK
11413 break;
11414 }
78b10e66
N
11415 }
11416
11417 if (*old_raid_disks &&
11418 info->array.raid_disks != *old_raid_disks)
11419 break;
11420 *old_raid_disks = info->array.raid_disks;
11421
11422 /* All raid5 and raid0 volumes in container
11423 * have to be ready for Online Capacity Expansion
11424 * so they need to be assembled. We have already
11425 * checked that no recovery etc is happening.
11426 */
4dd2df09
N
11427 result = imsm_find_array_devnm_by_subdev(member->container_member,
11428 st->container_devnm);
11429 if (result == NULL) {
78b10e66
N
11430 dprintf("imsm: cannot find array\n");
11431 break;
11432 }
11433 devices_that_can_grow++;
11434 }
11435 sysfs_free(info);
11436 if (!member && devices_that_can_grow)
11437 ret_val = 1;
11438
11439 if (ret_val)
1ade5cc1 11440 dprintf("Container operation allowed\n");
78b10e66 11441 else
1ade5cc1 11442 dprintf("Error: %i\n", ret_val);
78b10e66
N
11443
11444 return ret_val;
11445}
11446
11447/* Function: get_spares_for_grow
11448 * Description: Allocates memory and creates list of spare devices
1011e834 11449 * avaliable in container. Checks if spare drive size is acceptable.
78b10e66
N
11450 * Parameters: Pointer to the supertype structure
11451 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
1011e834 11452 * NULL if fail
78b10e66
N
11453 */
11454static struct mdinfo *get_spares_for_grow(struct supertype *st)
11455{
fbfdcb06
AO
11456 struct spare_criteria sc;
11457
11458 get_spare_criteria_imsm(st, &sc);
11459 return container_choose_spares(st, &sc, NULL, NULL, NULL, 0);
78b10e66
N
11460}
11461
11462/******************************************************************************
11463 * function: imsm_create_metadata_update_for_reshape
11464 * Function creates update for whole IMSM container.
11465 *
11466 ******************************************************************************/
11467static int imsm_create_metadata_update_for_reshape(
11468 struct supertype *st,
11469 struct geo_params *geo,
11470 int old_raid_disks,
11471 struct imsm_update_reshape **updatep)
11472{
11473 struct intel_super *super = st->sb;
11474 struct imsm_super *mpb = super->anchor;
594dc1b8
JS
11475 int update_memory_size;
11476 struct imsm_update_reshape *u;
11477 struct mdinfo *spares;
78b10e66 11478 int i;
594dc1b8 11479 int delta_disks;
bbd24d86 11480 struct mdinfo *dev;
78b10e66 11481
1ade5cc1 11482 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
78b10e66
N
11483
11484 delta_disks = geo->raid_disks - old_raid_disks;
11485
11486 /* size of all update data without anchor */
11487 update_memory_size = sizeof(struct imsm_update_reshape);
11488
11489 /* now add space for spare disks that we need to add. */
11490 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
11491
503975b9 11492 u = xcalloc(1, update_memory_size);
78b10e66
N
11493 u->type = update_reshape_container_disks;
11494 u->old_raid_disks = old_raid_disks;
11495 u->new_raid_disks = geo->raid_disks;
11496
11497 /* now get spare disks list
11498 */
11499 spares = get_spares_for_grow(st);
11500
d7be7d87 11501 if (spares == NULL || delta_disks > spares->array.spare_disks) {
7a862a02 11502 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
e4c72d1d 11503 i = -1;
78b10e66
N
11504 goto abort;
11505 }
11506
11507 /* we have got spares
11508 * update disk list in imsm_disk list table in anchor
11509 */
11510 dprintf("imsm: %i spares are available.\n\n",
11511 spares->array.spare_disks);
11512
bbd24d86 11513 dev = spares->devs;
78b10e66 11514 for (i = 0; i < delta_disks; i++) {
78b10e66
N
11515 struct dl *dl;
11516
bbd24d86
AK
11517 if (dev == NULL)
11518 break;
78b10e66
N
11519 u->new_disks[i] = makedev(dev->disk.major,
11520 dev->disk.minor);
11521 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
11522 dl->index = mpb->num_disks;
11523 mpb->num_disks++;
bbd24d86 11524 dev = dev->next;
78b10e66 11525 }
78b10e66
N
11526
11527abort:
11528 /* free spares
11529 */
11530 sysfs_free(spares);
11531
d677e0b8 11532 dprintf("imsm: reshape update preparation :");
78b10e66 11533 if (i == delta_disks) {
1ade5cc1 11534 dprintf_cont(" OK\n");
78b10e66
N
11535 *updatep = u;
11536 return update_memory_size;
11537 }
11538 free(u);
1ade5cc1 11539 dprintf_cont(" Error\n");
78b10e66
N
11540
11541 return 0;
11542}
11543
f3871fdc
AK
11544/******************************************************************************
11545 * function: imsm_create_metadata_update_for_size_change()
11546 * Creates update for IMSM array for array size change.
11547 *
11548 ******************************************************************************/
11549static int imsm_create_metadata_update_for_size_change(
11550 struct supertype *st,
11551 struct geo_params *geo,
11552 struct imsm_update_size_change **updatep)
11553{
11554 struct intel_super *super = st->sb;
594dc1b8
JS
11555 int update_memory_size;
11556 struct imsm_update_size_change *u;
f3871fdc 11557
1ade5cc1 11558 dprintf("(enter) New size = %llu\n", geo->size);
f3871fdc
AK
11559
11560 /* size of all update data without anchor */
11561 update_memory_size = sizeof(struct imsm_update_size_change);
11562
503975b9 11563 u = xcalloc(1, update_memory_size);
f3871fdc
AK
11564 u->type = update_size_change;
11565 u->subdev = super->current_vol;
11566 u->new_size = geo->size;
11567
11568 dprintf("imsm: reshape update preparation : OK\n");
11569 *updatep = u;
11570
11571 return update_memory_size;
11572}
11573
48c5303a
PC
11574/******************************************************************************
11575 * function: imsm_create_metadata_update_for_migration()
11576 * Creates update for IMSM array.
11577 *
11578 ******************************************************************************/
11579static int imsm_create_metadata_update_for_migration(
11580 struct supertype *st,
11581 struct geo_params *geo,
11582 struct imsm_update_reshape_migration **updatep)
11583{
11584 struct intel_super *super = st->sb;
594dc1b8 11585 int update_memory_size;
756a15f3 11586 int current_chunk_size;
594dc1b8 11587 struct imsm_update_reshape_migration *u;
756a15f3
MG
11588 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11589 struct imsm_map *map = get_imsm_map(dev, MAP_0);
48c5303a
PC
11590 int previous_level = -1;
11591
1ade5cc1 11592 dprintf("(enter) New Level = %i\n", geo->level);
48c5303a
PC
11593
11594 /* size of all update data without anchor */
11595 update_memory_size = sizeof(struct imsm_update_reshape_migration);
11596
503975b9 11597 u = xcalloc(1, update_memory_size);
48c5303a
PC
11598 u->type = update_reshape_migration;
11599 u->subdev = super->current_vol;
11600 u->new_level = geo->level;
11601 u->new_layout = geo->layout;
11602 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
11603 u->new_disks[0] = -1;
4bba0439 11604 u->new_chunksize = -1;
48c5303a 11605
756a15f3 11606 current_chunk_size = __le16_to_cpu(map->blocks_per_strip) / 2;
48c5303a 11607
756a15f3
MG
11608 if (geo->chunksize != current_chunk_size) {
11609 u->new_chunksize = geo->chunksize / 1024;
11610 dprintf("imsm: chunk size change from %i to %i\n",
11611 current_chunk_size, u->new_chunksize);
48c5303a 11612 }
756a15f3
MG
11613 previous_level = map->raid_level;
11614
089f9d79 11615 if (geo->level == 5 && previous_level == 0) {
48c5303a
PC
11616 struct mdinfo *spares = NULL;
11617
11618 u->new_raid_disks++;
11619 spares = get_spares_for_grow(st);
089f9d79 11620 if (spares == NULL || spares->array.spare_disks < 1) {
48c5303a
PC
11621 free(u);
11622 sysfs_free(spares);
11623 update_memory_size = 0;
565cc99e 11624 pr_err("cannot get spare device for requested migration\n");
48c5303a
PC
11625 return 0;
11626 }
11627 sysfs_free(spares);
11628 }
11629 dprintf("imsm: reshape update preparation : OK\n");
11630 *updatep = u;
11631
11632 return update_memory_size;
11633}
11634
8dd70bce
AK
11635static void imsm_update_metadata_locally(struct supertype *st,
11636 void *buf, int len)
11637{
11638 struct metadata_update mu;
11639
11640 mu.buf = buf;
11641 mu.len = len;
11642 mu.space = NULL;
11643 mu.space_list = NULL;
11644 mu.next = NULL;
5fe6f031
N
11645 if (imsm_prepare_update(st, &mu))
11646 imsm_process_update(st, &mu);
8dd70bce
AK
11647
11648 while (mu.space_list) {
11649 void **space = mu.space_list;
11650 mu.space_list = *space;
11651 free(space);
11652 }
11653}
78b10e66 11654
cbaa7904
MT
11655/**
11656 * imsm_analyze_expand() - check expand properties and calculate new size.
11657 * @st: imsm supertype.
11658 * @geo: new geometry params.
11659 * @array: array info.
11660 * @direction: reshape direction.
11661 *
11662 * Obtain free space after the &array and verify if expand to requested size is
11663 * possible. If geo->size is set to %MAX_SIZE, assume that max free size is
11664 * requested.
11665 *
11666 * Return:
11667 * On success %IMSM_STATUS_OK is returned, geo->size and geo->raid_disks are
11668 * updated.
11669 * On error, %IMSM_STATUS_ERROR is returned.
11670 */
11671static imsm_status_t imsm_analyze_expand(struct supertype *st,
11672 struct geo_params *geo,
11673 struct mdinfo *array,
11674 int direction)
11675{
11676 struct intel_super *super = st->sb;
11677 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11678 struct imsm_map *map = get_imsm_map(dev, MAP_0);
11679 int data_disks = imsm_num_data_members(map);
11680
11681 unsigned long long current_size;
11682 unsigned long long free_size;
11683 unsigned long long new_size;
11684 unsigned long long max_size;
11685
11686 const int chunk_kib = geo->chunksize / 1024;
11687 imsm_status_t rv;
11688
11689 if (direction == ROLLBACK_METADATA_CHANGES) {
11690 /**
11691 * Accept size for rollback only.
11692 */
11693 new_size = geo->size * 2;
11694 goto success;
11695 }
11696
cbaa7904
MT
11697 if (data_disks == 0) {
11698 pr_err("imsm: Cannot retrieve data disks.\n");
11699 return IMSM_STATUS_ERROR;
11700 }
11701 current_size = array->custom_array_size / data_disks;
11702
aa19fdd4 11703 rv = imsm_get_free_size(super, dev->vol.map->num_members, 0, chunk_kib, &free_size, true);
cbaa7904
MT
11704 if (rv != IMSM_STATUS_OK) {
11705 pr_err("imsm: Cannot find free space for expand.\n");
11706 return IMSM_STATUS_ERROR;
11707 }
11708 max_size = round_member_size_to_mb(free_size + current_size);
11709
11710 if (geo->size == MAX_SIZE)
11711 new_size = max_size;
11712 else
11713 new_size = round_member_size_to_mb(geo->size * 2);
11714
11715 if (new_size == 0) {
11716 pr_err("imsm: Rounded requested size is 0.\n");
11717 return IMSM_STATUS_ERROR;
11718 }
11719
11720 if (new_size > max_size) {
11721 pr_err("imsm: Rounded requested size (%llu) is larger than free space available (%llu).\n",
11722 new_size, max_size);
11723 return IMSM_STATUS_ERROR;
11724 }
11725
11726 if (new_size == current_size) {
11727 pr_err("imsm: Rounded requested size (%llu) is same as current size (%llu).\n",
11728 new_size, current_size);
11729 return IMSM_STATUS_ERROR;
11730 }
11731
11732 if (new_size < current_size) {
11733 pr_err("imsm: Size reduction is not supported, rounded requested size (%llu) is smaller than current (%llu).\n",
11734 new_size, current_size);
11735 return IMSM_STATUS_ERROR;
11736 }
11737
11738success:
11739 dprintf("imsm: New size per member is %llu.\n", new_size);
11740 geo->size = data_disks * new_size;
11741 geo->raid_disks = dev->vol.map->num_members;
11742 return IMSM_STATUS_OK;
11743}
11744
471bceb6 11745/***************************************************************************
694575e7 11746* Function: imsm_analyze_change
471bceb6 11747* Description: Function analyze change for single volume
1011e834 11748* and validate if transition is supported
fbf3d202
AK
11749* Parameters: Geometry parameters, supertype structure,
11750* metadata change direction (apply/rollback)
694575e7 11751* Returns: Operation type code on success, -1 if fail
471bceb6
KW
11752****************************************************************************/
11753enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
fbf3d202
AK
11754 struct geo_params *geo,
11755 int direction)
694575e7 11756{
471bceb6
KW
11757 struct mdinfo info;
11758 int change = -1;
11759 int check_devs = 0;
c21e737b 11760 int chunk;
67a2db32
AK
11761 /* number of added/removed disks in operation result */
11762 int devNumChange = 0;
11763 /* imsm compatible layout value for array geometry verification */
11764 int imsm_layout = -1;
6d4d9ab2 11765 imsm_status_t rv;
471bceb6
KW
11766
11767 getinfo_super_imsm_volume(st, &info, NULL);
089f9d79
JS
11768 if (geo->level != info.array.level && geo->level >= 0 &&
11769 geo->level != UnSet) {
471bceb6
KW
11770 switch (info.array.level) {
11771 case 0:
11772 if (geo->level == 5) {
b5347799 11773 change = CH_MIGRATION;
e13ce846 11774 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
7a862a02 11775 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
e13ce846
AK
11776 change = -1;
11777 goto analyse_change_exit;
11778 }
67a2db32 11779 imsm_layout = geo->layout;
471bceb6 11780 check_devs = 1;
e91a3bad
LM
11781 devNumChange = 1; /* parity disk added */
11782 } else if (geo->level == 10) {
471bceb6
KW
11783 change = CH_TAKEOVER;
11784 check_devs = 1;
e91a3bad 11785 devNumChange = 2; /* two mirrors added */
67a2db32 11786 imsm_layout = 0x102; /* imsm supported layout */
471bceb6 11787 }
dfe77a9e
KW
11788 break;
11789 case 1:
471bceb6
KW
11790 case 10:
11791 if (geo->level == 0) {
11792 change = CH_TAKEOVER;
11793 check_devs = 1;
e91a3bad 11794 devNumChange = -(geo->raid_disks/2);
67a2db32 11795 imsm_layout = 0; /* imsm raid0 layout */
471bceb6
KW
11796 }
11797 break;
11798 }
11799 if (change == -1) {
7a862a02 11800 pr_err("Error. Level Migration from %d to %d not supported!\n",
e7b84f9d 11801 info.array.level, geo->level);
471bceb6
KW
11802 goto analyse_change_exit;
11803 }
11804 } else
11805 geo->level = info.array.level;
11806
089f9d79
JS
11807 if (geo->layout != info.array.layout &&
11808 (geo->layout != UnSet && geo->layout != -1)) {
b5347799 11809 change = CH_MIGRATION;
089f9d79
JS
11810 if (info.array.layout == 0 && info.array.level == 5 &&
11811 geo->layout == 5) {
471bceb6 11812 /* reshape 5 -> 4 */
089f9d79
JS
11813 } else if (info.array.layout == 5 && info.array.level == 5 &&
11814 geo->layout == 0) {
471bceb6
KW
11815 /* reshape 4 -> 5 */
11816 geo->layout = 0;
11817 geo->level = 5;
11818 } else {
7a862a02 11819 pr_err("Error. Layout Migration from %d to %d not supported!\n",
e7b84f9d 11820 info.array.layout, geo->layout);
471bceb6
KW
11821 change = -1;
11822 goto analyse_change_exit;
11823 }
67a2db32 11824 } else {
471bceb6 11825 geo->layout = info.array.layout;
67a2db32
AK
11826 if (imsm_layout == -1)
11827 imsm_layout = info.array.layout;
11828 }
471bceb6 11829
089f9d79
JS
11830 if (geo->chunksize > 0 && geo->chunksize != UnSet &&
11831 geo->chunksize != info.array.chunk_size) {
2d2b0eb7
MD
11832 if (info.array.level == 10) {
11833 pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
11834 change = -1;
11835 goto analyse_change_exit;
1e9b2c3f
PB
11836 } else if (info.component_size % (geo->chunksize/512)) {
11837 pr_err("New chunk size (%dK) does not evenly divide device size (%lluk). Aborting...\n",
11838 geo->chunksize/1024, info.component_size/2);
11839 change = -1;
11840 goto analyse_change_exit;
2d2b0eb7 11841 }
b5347799 11842 change = CH_MIGRATION;
2d2b0eb7 11843 } else {
471bceb6 11844 geo->chunksize = info.array.chunk_size;
2d2b0eb7 11845 }
471bceb6 11846
cbaa7904 11847 if (geo->size > 0) {
7abc9871 11848 if (change != -1) {
7a862a02 11849 pr_err("Error. Size change should be the only one at a time.\n");
7abc9871
AK
11850 change = -1;
11851 goto analyse_change_exit;
11852 }
6d4d9ab2 11853
cbaa7904 11854 rv = imsm_analyze_expand(st, geo, &info, direction);
6d4d9ab2 11855 if (rv != IMSM_STATUS_OK)
cbaa7904 11856 goto analyse_change_exit;
7abc9871
AK
11857 change = CH_ARRAY_SIZE;
11858 }
cbaa7904
MT
11859
11860 chunk = geo->chunksize / 1024;
471bceb6
KW
11861 if (!validate_geometry_imsm(st,
11862 geo->level,
67a2db32 11863 imsm_layout,
e91a3bad 11864 geo->raid_disks + devNumChange,
c21e737b 11865 &chunk,
af4348dd 11866 geo->size, INVALID_SECTORS,
5308f117 11867 0, 0, info.consistency_policy, 1))
471bceb6
KW
11868 change = -1;
11869
11870 if (check_devs) {
11871 struct intel_super *super = st->sb;
11872 struct imsm_super *mpb = super->anchor;
11873
11874 if (mpb->num_raid_devs > 1) {
f1cc8ab9
LF
11875 pr_err("Error. Cannot perform operation on %s- for this operation "
11876 "it MUST be single array in container\n", geo->dev_name);
471bceb6
KW
11877 change = -1;
11878 }
11879 }
11880
11881analyse_change_exit:
089f9d79
JS
11882 if (direction == ROLLBACK_METADATA_CHANGES &&
11883 (change == CH_MIGRATION || change == CH_TAKEOVER)) {
7a862a02 11884 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
fbf3d202
AK
11885 change = -1;
11886 }
471bceb6 11887 return change;
694575e7
KW
11888}
11889
bb025c2f
KW
11890int imsm_takeover(struct supertype *st, struct geo_params *geo)
11891{
11892 struct intel_super *super = st->sb;
11893 struct imsm_update_takeover *u;
11894
503975b9 11895 u = xmalloc(sizeof(struct imsm_update_takeover));
bb025c2f
KW
11896
11897 u->type = update_takeover;
11898 u->subarray = super->current_vol;
11899
11900 /* 10->0 transition */
11901 if (geo->level == 0)
11902 u->direction = R10_TO_R0;
11903
0529c688
KW
11904 /* 0->10 transition */
11905 if (geo->level == 10)
11906 u->direction = R0_TO_R10;
11907
bb025c2f
KW
11908 /* update metadata locally */
11909 imsm_update_metadata_locally(st, u,
11910 sizeof(struct imsm_update_takeover));
11911 /* and possibly remotely */
11912 if (st->update_tail)
11913 append_metadata_update(st, u,
11914 sizeof(struct imsm_update_takeover));
11915 else
11916 free(u);
11917
11918 return 0;
11919}
11920
895ffd99
MT
11921/* Flush size update if size calculated by num_data_stripes is higher than
11922 * imsm_dev_size to eliminate differences during reshape.
11923 * Mdmon will recalculate them correctly.
11924 * If subarray index is not set then check whole container.
11925 * Returns:
11926 * 0 - no error occurred
11927 * 1 - error detected
11928 */
11929static int imsm_fix_size_mismatch(struct supertype *st, int subarray_index)
11930{
11931 struct intel_super *super = st->sb;
11932 int tmp = super->current_vol;
11933 int ret_val = 1;
11934 int i;
11935
11936 for (i = 0; i < super->anchor->num_raid_devs; i++) {
11937 if (subarray_index >= 0 && i != subarray_index)
11938 continue;
11939 super->current_vol = i;
11940 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11941 struct imsm_map *map = get_imsm_map(dev, MAP_0);
11942 unsigned int disc_count = imsm_num_data_members(map);
11943 struct geo_params geo;
11944 struct imsm_update_size_change *update;
11945 unsigned long long calc_size = per_dev_array_size(map) * disc_count;
11946 unsigned long long d_size = imsm_dev_size(dev);
11947 int u_size;
11948
42e02e61 11949 if (calc_size == d_size)
895ffd99
MT
11950 continue;
11951
ff904202
MT
11952 /* There is a difference, confirm that imsm_dev_size is
11953 * smaller and push update.
895ffd99 11954 */
ff904202
MT
11955 if (d_size > calc_size) {
11956 pr_err("imsm: dev size of subarray %d is incorrect\n",
11957 i);
895ffd99
MT
11958 goto exit;
11959 }
11960 memset(&geo, 0, sizeof(struct geo_params));
11961 geo.size = d_size;
11962 u_size = imsm_create_metadata_update_for_size_change(st, &geo,
11963 &update);
895ffd99
MT
11964 imsm_update_metadata_locally(st, update, u_size);
11965 if (st->update_tail) {
11966 append_metadata_update(st, update, u_size);
11967 flush_metadata_updates(st);
11968 st->update_tail = &st->updates;
11969 } else {
11970 imsm_sync_metadata(st);
5ce5a15f 11971 free(update);
895ffd99
MT
11972 }
11973 }
11974 ret_val = 0;
11975exit:
11976 super->current_vol = tmp;
11977 return ret_val;
11978}
11979
d04f65f4
N
11980static int imsm_reshape_super(struct supertype *st, unsigned long long size,
11981 int level,
78b10e66 11982 int layout, int chunksize, int raid_disks,
41784c88 11983 int delta_disks, char *backup, char *dev,
016e00f5 11984 int direction, int verbose)
78b10e66 11985{
78b10e66
N
11986 int ret_val = 1;
11987 struct geo_params geo;
11988
1ade5cc1 11989 dprintf("(enter)\n");
78b10e66 11990
71204a50 11991 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
11992
11993 geo.dev_name = dev;
4dd2df09 11994 strcpy(geo.devnm, st->devnm);
78b10e66
N
11995 geo.size = size;
11996 geo.level = level;
11997 geo.layout = layout;
11998 geo.chunksize = chunksize;
11999 geo.raid_disks = raid_disks;
41784c88
AK
12000 if (delta_disks != UnSet)
12001 geo.raid_disks += delta_disks;
78b10e66 12002
1ade5cc1
N
12003 dprintf("for level : %i\n", geo.level);
12004 dprintf("for raid_disks : %i\n", geo.raid_disks);
78b10e66 12005
4dd2df09 12006 if (strcmp(st->container_devnm, st->devnm) == 0) {
694575e7
KW
12007 /* On container level we can only increase number of devices. */
12008 dprintf("imsm: info: Container operation\n");
78b10e66 12009 int old_raid_disks = 0;
6dc0be30 12010
78b10e66 12011 if (imsm_reshape_is_allowed_on_container(
fbf3d202 12012 st, &geo, &old_raid_disks, direction)) {
78b10e66
N
12013 struct imsm_update_reshape *u = NULL;
12014 int len;
12015
895ffd99
MT
12016 if (imsm_fix_size_mismatch(st, -1)) {
12017 dprintf("imsm: Cannot fix size mismatch\n");
12018 goto exit_imsm_reshape_super;
12019 }
12020
78b10e66
N
12021 len = imsm_create_metadata_update_for_reshape(
12022 st, &geo, old_raid_disks, &u);
12023
ed08d51c
AK
12024 if (len <= 0) {
12025 dprintf("imsm: Cannot prepare update\n");
12026 goto exit_imsm_reshape_super;
12027 }
12028
8dd70bce
AK
12029 ret_val = 0;
12030 /* update metadata locally */
12031 imsm_update_metadata_locally(st, u, len);
12032 /* and possibly remotely */
12033 if (st->update_tail)
12034 append_metadata_update(st, u, len);
12035 else
ed08d51c 12036 free(u);
8dd70bce 12037
694575e7 12038 } else {
7a862a02 12039 pr_err("(imsm) Operation is not allowed on this container\n");
694575e7
KW
12040 }
12041 } else {
12042 /* On volume level we support following operations
471bceb6
KW
12043 * - takeover: raid10 -> raid0; raid0 -> raid10
12044 * - chunk size migration
12045 * - migration: raid5 -> raid0; raid0 -> raid5
12046 */
12047 struct intel_super *super = st->sb;
12048 struct intel_dev *dev = super->devlist;
4dd2df09 12049 int change;
694575e7 12050 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
12051 /* find requested device */
12052 while (dev) {
1011e834 12053 char *devnm =
4dd2df09
N
12054 imsm_find_array_devnm_by_subdev(
12055 dev->index, st->container_devnm);
12056 if (devnm && strcmp(devnm, geo.devnm) == 0)
471bceb6
KW
12057 break;
12058 dev = dev->next;
12059 }
12060 if (dev == NULL) {
4dd2df09
N
12061 pr_err("Cannot find %s (%s) subarray\n",
12062 geo.dev_name, geo.devnm);
471bceb6
KW
12063 goto exit_imsm_reshape_super;
12064 }
12065 super->current_vol = dev->index;
fbf3d202 12066 change = imsm_analyze_change(st, &geo, direction);
694575e7 12067 switch (change) {
471bceb6 12068 case CH_TAKEOVER:
bb025c2f 12069 ret_val = imsm_takeover(st, &geo);
694575e7 12070 break;
48c5303a
PC
12071 case CH_MIGRATION: {
12072 struct imsm_update_reshape_migration *u = NULL;
12073 int len =
12074 imsm_create_metadata_update_for_migration(
12075 st, &geo, &u);
12076 if (len < 1) {
7a862a02 12077 dprintf("imsm: Cannot prepare update\n");
48c5303a
PC
12078 break;
12079 }
471bceb6 12080 ret_val = 0;
48c5303a
PC
12081 /* update metadata locally */
12082 imsm_update_metadata_locally(st, u, len);
12083 /* and possibly remotely */
12084 if (st->update_tail)
12085 append_metadata_update(st, u, len);
12086 else
12087 free(u);
12088 }
12089 break;
7abc9871 12090 case CH_ARRAY_SIZE: {
f3871fdc
AK
12091 struct imsm_update_size_change *u = NULL;
12092 int len =
12093 imsm_create_metadata_update_for_size_change(
12094 st, &geo, &u);
12095 if (len < 1) {
7a862a02 12096 dprintf("imsm: Cannot prepare update\n");
f3871fdc
AK
12097 break;
12098 }
12099 ret_val = 0;
12100 /* update metadata locally */
12101 imsm_update_metadata_locally(st, u, len);
12102 /* and possibly remotely */
12103 if (st->update_tail)
12104 append_metadata_update(st, u, len);
12105 else
12106 free(u);
7abc9871
AK
12107 }
12108 break;
471bceb6
KW
12109 default:
12110 ret_val = 1;
694575e7 12111 }
694575e7 12112 }
78b10e66 12113
ed08d51c 12114exit_imsm_reshape_super:
78b10e66
N
12115 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
12116 return ret_val;
12117}
2cda7640 12118
0febb20c
AO
12119#define COMPLETED_OK 0
12120#define COMPLETED_NONE 1
12121#define COMPLETED_DELAYED 2
12122
12123static int read_completed(int fd, unsigned long long *val)
12124{
12125 int ret;
12126 char buf[50];
12127
12128 ret = sysfs_fd_get_str(fd, buf, 50);
12129 if (ret < 0)
12130 return ret;
12131
12132 ret = COMPLETED_OK;
12133 if (strncmp(buf, "none", 4) == 0) {
12134 ret = COMPLETED_NONE;
12135 } else if (strncmp(buf, "delayed", 7) == 0) {
12136 ret = COMPLETED_DELAYED;
12137 } else {
12138 char *ep;
12139 *val = strtoull(buf, &ep, 0);
12140 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
12141 ret = -1;
12142 }
12143 return ret;
12144}
12145
eee67a47
AK
12146/*******************************************************************************
12147 * Function: wait_for_reshape_imsm
12148 * Description: Function writes new sync_max value and waits until
12149 * reshape process reach new position
12150 * Parameters:
12151 * sra : general array info
eee67a47
AK
12152 * ndata : number of disks in new array's layout
12153 * Returns:
12154 * 0 : success,
12155 * 1 : there is no reshape in progress,
12156 * -1 : fail
12157 ******************************************************************************/
ae9f01f8 12158int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47 12159{
85ca499c 12160 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
df2647fa 12161 int retry = 3;
eee67a47 12162 unsigned long long completed;
ae9f01f8
AK
12163 /* to_complete : new sync_max position */
12164 unsigned long long to_complete = sra->reshape_progress;
12165 unsigned long long position_to_set = to_complete / ndata;
eee67a47 12166
4389ce73 12167 if (!is_fd_valid(fd)) {
1ade5cc1 12168 dprintf("cannot open reshape_position\n");
eee67a47 12169 return 1;
ae9f01f8 12170 }
eee67a47 12171
df2647fa
PB
12172 do {
12173 if (sysfs_fd_get_ll(fd, &completed) < 0) {
12174 if (!retry) {
12175 dprintf("cannot read reshape_position (no reshape in progres)\n");
12176 close(fd);
12177 return 1;
12178 }
239b3cc0 12179 sleep_for(0, MSEC_TO_NSEC(30), true);
df2647fa
PB
12180 } else
12181 break;
12182 } while (retry--);
eee67a47 12183
85ca499c 12184 if (completed > position_to_set) {
1ade5cc1 12185 dprintf("wrong next position to set %llu (%llu)\n",
85ca499c 12186 to_complete, position_to_set);
ae9f01f8
AK
12187 close(fd);
12188 return -1;
12189 }
12190 dprintf("Position set: %llu\n", position_to_set);
12191 if (sysfs_set_num(sra, NULL, "sync_max",
12192 position_to_set) != 0) {
1ade5cc1 12193 dprintf("cannot set reshape position to %llu\n",
ae9f01f8
AK
12194 position_to_set);
12195 close(fd);
12196 return -1;
eee67a47
AK
12197 }
12198
eee67a47 12199 do {
0febb20c 12200 int rc;
eee67a47 12201 char action[20];
5ff3a780 12202 int timeout = 3000;
0febb20c 12203
5ff3a780 12204 sysfs_wait(fd, &timeout);
a47e44fb
AK
12205 if (sysfs_get_str(sra, NULL, "sync_action",
12206 action, 20) > 0 &&
d7d3809a 12207 strncmp(action, "reshape", 7) != 0) {
b2be2b62
AO
12208 if (strncmp(action, "idle", 4) == 0)
12209 break;
d7d3809a
AP
12210 close(fd);
12211 return -1;
12212 }
0febb20c
AO
12213
12214 rc = read_completed(fd, &completed);
12215 if (rc < 0) {
1ade5cc1 12216 dprintf("cannot read reshape_position (in loop)\n");
eee67a47
AK
12217 close(fd);
12218 return 1;
0febb20c
AO
12219 } else if (rc == COMPLETED_NONE)
12220 break;
85ca499c 12221 } while (completed < position_to_set);
b2be2b62 12222
eee67a47
AK
12223 close(fd);
12224 return 0;
eee67a47
AK
12225}
12226
b915c95f
AK
12227/*******************************************************************************
12228 * Function: check_degradation_change
12229 * Description: Check that array hasn't become failed.
12230 * Parameters:
12231 * info : for sysfs access
12232 * sources : source disks descriptors
12233 * degraded: previous degradation level
12234 * Returns:
12235 * degradation level
12236 ******************************************************************************/
12237int check_degradation_change(struct mdinfo *info,
12238 int *sources,
12239 int degraded)
12240{
12241 unsigned long long new_degraded;
e1993023
LD
12242 int rv;
12243
12244 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
089f9d79 12245 if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
b915c95f
AK
12246 /* check each device to ensure it is still working */
12247 struct mdinfo *sd;
12248 new_degraded = 0;
12249 for (sd = info->devs ; sd ; sd = sd->next) {
12250 if (sd->disk.state & (1<<MD_DISK_FAULTY))
12251 continue;
12252 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
cf52eff5 12253 char sbuf[100];
4389ce73 12254 int raid_disk = sd->disk.raid_disk;
cf52eff5 12255
b915c95f 12256 if (sysfs_get_str(info,
cf52eff5 12257 sd, "state", sbuf, sizeof(sbuf)) < 0 ||
b915c95f
AK
12258 strstr(sbuf, "faulty") ||
12259 strstr(sbuf, "in_sync") == NULL) {
12260 /* this device is dead */
12261 sd->disk.state = (1<<MD_DISK_FAULTY);
4389ce73
MT
12262 if (raid_disk >= 0)
12263 close_fd(&sources[raid_disk]);
b915c95f
AK
12264 new_degraded++;
12265 }
12266 }
12267 }
12268 }
12269
12270 return new_degraded;
12271}
12272
10f22854
AK
12273/*******************************************************************************
12274 * Function: imsm_manage_reshape
12275 * Description: Function finds array under reshape and it manages reshape
12276 * process. It creates stripes backups (if required) and sets
942e1cdb 12277 * checkpoints.
10f22854
AK
12278 * Parameters:
12279 * afd : Backup handle (nattive) - not used
12280 * sra : general array info
12281 * reshape : reshape parameters - not used
12282 * st : supertype structure
12283 * blocks : size of critical section [blocks]
12284 * fds : table of source device descriptor
12285 * offsets : start of array (offest per devices)
12286 * dests : not used
12287 * destfd : table of destination device descriptor
12288 * destoffsets : table of destination offsets (per device)
12289 * Returns:
12290 * 1 : success, reshape is done
12291 * 0 : fail
12292 ******************************************************************************/
999b4972
N
12293static int imsm_manage_reshape(
12294 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 12295 struct supertype *st, unsigned long backup_blocks,
999b4972
N
12296 int *fds, unsigned long long *offsets,
12297 int dests, int *destfd, unsigned long long *destoffsets)
12298{
10f22854
AK
12299 int ret_val = 0;
12300 struct intel_super *super = st->sb;
594dc1b8 12301 struct intel_dev *dv;
de44e46f 12302 unsigned int sector_size = super->sector_size;
10f22854 12303 struct imsm_dev *dev = NULL;
9529d343 12304 struct imsm_map *map_src, *map_dest;
10f22854
AK
12305 int migr_vol_qan = 0;
12306 int ndata, odata; /* [bytes] */
12307 int chunk; /* [bytes] */
12308 struct migr_record *migr_rec;
12309 char *buf = NULL;
12310 unsigned int buf_size; /* [bytes] */
12311 unsigned long long max_position; /* array size [bytes] */
12312 unsigned long long next_step; /* [blocks]/[bytes] */
12313 unsigned long long old_data_stripe_length;
10f22854
AK
12314 unsigned long long start_src; /* [bytes] */
12315 unsigned long long start; /* [bytes] */
12316 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 12317 int degraded = 0;
ab724b98 12318 int source_layout = 0;
895ffd99 12319 int subarray_index = -1;
10f22854 12320
79a16a9b
JS
12321 if (!sra)
12322 return ret_val;
12323
12324 if (!fds || !offsets)
10f22854
AK
12325 goto abort;
12326
12327 /* Find volume during the reshape */
12328 for (dv = super->devlist; dv; dv = dv->next) {
fc54fe7a
JS
12329 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR &&
12330 dv->dev->vol.migr_state == 1) {
10f22854
AK
12331 dev = dv->dev;
12332 migr_vol_qan++;
895ffd99 12333 subarray_index = dv->index;
10f22854
AK
12334 }
12335 }
12336 /* Only one volume can migrate at the same time */
12337 if (migr_vol_qan != 1) {
676e87a8 12338 pr_err("%s", migr_vol_qan ?
10f22854
AK
12339 "Number of migrating volumes greater than 1\n" :
12340 "There is no volume during migrationg\n");
12341 goto abort;
12342 }
12343
9529d343 12344 map_dest = get_imsm_map(dev, MAP_0);
238c0a71 12345 map_src = get_imsm_map(dev, MAP_1);
10f22854
AK
12346 if (map_src == NULL)
12347 goto abort;
10f22854 12348
9529d343
MD
12349 ndata = imsm_num_data_members(map_dest);
12350 odata = imsm_num_data_members(map_src);
10f22854 12351
7b1ab482 12352 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
12353 old_data_stripe_length = odata * chunk;
12354
12355 migr_rec = super->migr_rec;
12356
10f22854
AK
12357 /* initialize migration record for start condition */
12358 if (sra->reshape_progress == 0)
12359 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
12360 else {
12361 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
7a862a02 12362 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
b2c59438
AK
12363 goto abort;
12364 }
6a75c8ca
AK
12365 /* Save checkpoint to update migration record for current
12366 * reshape position (in md). It can be farther than current
12367 * reshape position in metadata.
12368 */
12369 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12370 /* ignore error == 2, this can mean end of reshape here
12371 */
7a862a02 12372 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
6a75c8ca
AK
12373 goto abort;
12374 }
b2c59438 12375 }
10f22854
AK
12376
12377 /* size for data */
12378 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
12379 /* extend buffer size for parity disk */
12380 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
3e684231 12381 /* add space for stripe alignment */
10f22854 12382 buf_size += old_data_stripe_length;
de44e46f
PB
12383 if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
12384 dprintf("imsm: Cannot allocate checkpoint buffer\n");
10f22854
AK
12385 goto abort;
12386 }
12387
3ef4403c 12388 max_position = sra->component_size * ndata;
68eb8bc6 12389 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854 12390
9f421827
PB
12391 while (current_migr_unit(migr_rec) <
12392 get_num_migr_units(migr_rec)) {
10f22854
AK
12393 /* current reshape position [blocks] */
12394 unsigned long long current_position =
12395 __le32_to_cpu(migr_rec->blocks_per_unit)
9f421827 12396 * current_migr_unit(migr_rec);
10f22854
AK
12397 unsigned long long border;
12398
b915c95f
AK
12399 /* Check that array hasn't become failed.
12400 */
12401 degraded = check_degradation_change(sra, fds, degraded);
12402 if (degraded > 1) {
7a862a02 12403 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
b915c95f
AK
12404 goto abort;
12405 }
12406
10f22854
AK
12407 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
12408
12409 if ((current_position + next_step) > max_position)
12410 next_step = max_position - current_position;
12411
92144abf 12412 start = current_position * 512;
10f22854 12413
942e1cdb 12414 /* align reading start to old geometry */
10f22854
AK
12415 start_buf_shift = start % old_data_stripe_length;
12416 start_src = start - start_buf_shift;
12417
12418 border = (start_src / odata) - (start / ndata);
12419 border /= 512;
12420 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
12421 /* save critical stripes to buf
12422 * start - start address of current unit
12423 * to backup [bytes]
12424 * start_src - start address of current unit
12425 * to backup alligned to source array
12426 * [bytes]
12427 */
594dc1b8 12428 unsigned long long next_step_filler;
10f22854
AK
12429 unsigned long long copy_length = next_step * 512;
12430
12431 /* allign copy area length to stripe in old geometry */
12432 next_step_filler = ((copy_length + start_buf_shift)
12433 % old_data_stripe_length);
12434 if (next_step_filler)
12435 next_step_filler = (old_data_stripe_length
12436 - next_step_filler);
7a862a02 12437 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
10f22854
AK
12438 start, start_src, copy_length,
12439 start_buf_shift, next_step_filler);
12440
12441 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
12442 chunk, map_src->raid_level,
12443 source_layout, 0, NULL, start_src,
10f22854
AK
12444 copy_length +
12445 next_step_filler + start_buf_shift,
12446 buf)) {
7a862a02 12447 dprintf("imsm: Cannot save stripes to buffer\n");
10f22854
AK
12448 goto abort;
12449 }
12450 /* Convert data to destination format and store it
12451 * in backup general migration area
12452 */
12453 if (save_backup_imsm(st, dev, sra,
aea93171 12454 buf + start_buf_shift, copy_length)) {
7a862a02 12455 dprintf("imsm: Cannot save stripes to target devices\n");
10f22854
AK
12456 goto abort;
12457 }
12458 if (save_checkpoint_imsm(st, sra,
12459 UNIT_SRC_IN_CP_AREA)) {
7a862a02 12460 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
10f22854
AK
12461 goto abort;
12462 }
8016a6d4
AK
12463 } else {
12464 /* set next step to use whole border area */
12465 border /= next_step;
12466 if (border > 1)
12467 next_step *= border;
10f22854
AK
12468 }
12469 /* When data backed up, checkpoint stored,
12470 * kick the kernel to reshape unit of data
12471 */
12472 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
12473 /* limit next step to array max position */
12474 if (next_step > max_position)
12475 next_step = max_position;
10f22854
AK
12476 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
12477 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 12478 sra->reshape_progress = next_step;
10f22854
AK
12479
12480 /* wait until reshape finish */
c85338c6 12481 if (wait_for_reshape_imsm(sra, ndata)) {
c47b0ff6
AK
12482 dprintf("wait_for_reshape_imsm returned error!\n");
12483 goto abort;
12484 }
84d11e6c
N
12485 if (sigterm)
12486 goto abort;
10f22854 12487
0228d92c
AK
12488 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12489 /* ignore error == 2, this can mean end of reshape here
12490 */
7a862a02 12491 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
10f22854
AK
12492 goto abort;
12493 }
12494
12495 }
12496
71e5411e
PB
12497 /* clear migr_rec on disks after successful migration */
12498 struct dl *d;
12499
85337573 12500 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
71e5411e
PB
12501 for (d = super->disks; d; d = d->next) {
12502 if (d->index < 0 || is_failed(&d->disk))
12503 continue;
12504 unsigned long long dsize;
12505
12506 get_dev_size(d->fd, NULL, &dsize);
de44e46f 12507 if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
71e5411e 12508 SEEK_SET) >= 0) {
466070ad 12509 if ((unsigned int)write(d->fd, super->migr_rec_buf,
de44e46f
PB
12510 MIGR_REC_BUF_SECTORS*sector_size) !=
12511 MIGR_REC_BUF_SECTORS*sector_size)
71e5411e
PB
12512 perror("Write migr_rec failed");
12513 }
12514 }
12515
10f22854
AK
12516 /* return '1' if done */
12517 ret_val = 1;
895ffd99
MT
12518
12519 /* After the reshape eliminate size mismatch in metadata.
12520 * Don't update md/component_size here, volume hasn't
12521 * to take whole space. It is allowed by kernel.
12522 * md/component_size will be set propoperly after next assembly.
12523 */
12524 imsm_fix_size_mismatch(st, subarray_index);
12525
10f22854
AK
12526abort:
12527 free(buf);
942e1cdb
N
12528 /* See Grow.c: abort_reshape() for further explanation */
12529 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
12530 sysfs_set_num(sra, NULL, "suspend_hi", 0);
12531 sysfs_set_num(sra, NULL, "suspend_lo", 0);
10f22854
AK
12532
12533 return ret_val;
999b4972 12534}
0c21b485 12535
fbc42556
JR
12536/*******************************************************************************
12537 * Function: calculate_bitmap_min_chunksize
12538 * Description: Calculates the minimal valid bitmap chunk size
12539 * Parameters:
12540 * max_bits : indicate how many bits can be used for the bitmap
12541 * data_area_size : the size of the data area covered by the bitmap
12542 *
12543 * Returns:
12544 * The bitmap chunk size
12545 ******************************************************************************/
12546static unsigned long long
12547calculate_bitmap_min_chunksize(unsigned long long max_bits,
12548 unsigned long long data_area_size)
12549{
12550 unsigned long long min_chunk =
12551 4096; /* sub-page chunks don't work yet.. */
12552 unsigned long long bits = data_area_size / min_chunk + 1;
12553
12554 while (bits > max_bits) {
12555 min_chunk *= 2;
12556 bits = (bits + 1) / 2;
12557 }
12558 return min_chunk;
12559}
12560
12561/*******************************************************************************
12562 * Function: calculate_bitmap_chunksize
12563 * Description: Calculates the bitmap chunk size for the given device
12564 * Parameters:
12565 * st : supertype information
12566 * dev : device for the bitmap
12567 *
12568 * Returns:
12569 * The bitmap chunk size
12570 ******************************************************************************/
12571static unsigned long long calculate_bitmap_chunksize(struct supertype *st,
12572 struct imsm_dev *dev)
12573{
12574 struct intel_super *super = st->sb;
12575 unsigned long long min_chunksize;
12576 unsigned long long result = IMSM_DEFAULT_BITMAP_CHUNKSIZE;
12577 size_t dev_size = imsm_dev_size(dev);
12578
12579 min_chunksize = calculate_bitmap_min_chunksize(
12580 IMSM_BITMAP_AREA_SIZE * super->sector_size, dev_size);
12581
12582 if (result < min_chunksize)
12583 result = min_chunksize;
12584
12585 return result;
12586}
12587
12588/*******************************************************************************
12589 * Function: init_bitmap_header
12590 * Description: Initialize the bitmap header structure
12591 * Parameters:
12592 * st : supertype information
12593 * bms : bitmap header struct to initialize
12594 * dev : device for the bitmap
12595 *
12596 * Returns:
12597 * 0 : success
12598 * -1 : fail
12599 ******************************************************************************/
12600static int init_bitmap_header(struct supertype *st, struct bitmap_super_s *bms,
12601 struct imsm_dev *dev)
12602{
12603 int vol_uuid[4];
12604
12605 if (!bms || !dev)
12606 return -1;
12607
12608 bms->magic = __cpu_to_le32(BITMAP_MAGIC);
12609 bms->version = __cpu_to_le32(BITMAP_MAJOR_HI);
12610 bms->daemon_sleep = __cpu_to_le32(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP);
12611 bms->sync_size = __cpu_to_le64(IMSM_BITMAP_AREA_SIZE);
12612 bms->write_behind = __cpu_to_le32(0);
12613
12614 uuid_from_super_imsm(st, vol_uuid);
12615 memcpy(bms->uuid, vol_uuid, 16);
12616
12617 bms->chunksize = calculate_bitmap_chunksize(st, dev);
12618
12619 return 0;
12620}
12621
12622/*******************************************************************************
12623 * Function: validate_internal_bitmap_for_drive
12624 * Description: Verify if the bitmap header for a given drive.
12625 * Parameters:
12626 * st : supertype information
12627 * offset : The offset from the beginning of the drive where to look for
12628 * the bitmap header.
12629 * d : the drive info
12630 *
12631 * Returns:
12632 * 0 : success
12633 * -1 : fail
12634 ******************************************************************************/
12635static int validate_internal_bitmap_for_drive(struct supertype *st,
12636 unsigned long long offset,
12637 struct dl *d)
12638{
12639 struct intel_super *super = st->sb;
12640 int ret = -1;
12641 int vol_uuid[4];
12642 bitmap_super_t *bms;
12643 int fd;
12644
12645 if (!d)
12646 return -1;
12647
12648 void *read_buf;
12649
12650 if (posix_memalign(&read_buf, MAX_SECTOR_SIZE, IMSM_BITMAP_HEADER_SIZE))
12651 return -1;
12652
12653 fd = d->fd;
4389ce73 12654 if (!is_fd_valid(fd)) {
fbc42556 12655 fd = open(d->devname, O_RDONLY, 0);
4389ce73
MT
12656
12657 if (!is_fd_valid(fd)) {
fbc42556
JR
12658 dprintf("cannot open the device %s\n", d->devname);
12659 goto abort;
12660 }
12661 }
12662
12663 if (lseek64(fd, offset * super->sector_size, SEEK_SET) < 0)
12664 goto abort;
12665 if (read(fd, read_buf, IMSM_BITMAP_HEADER_SIZE) !=
12666 IMSM_BITMAP_HEADER_SIZE)
12667 goto abort;
12668
12669 uuid_from_super_imsm(st, vol_uuid);
12670
12671 bms = read_buf;
12672 if ((bms->magic != __cpu_to_le32(BITMAP_MAGIC)) ||
12673 (bms->version != __cpu_to_le32(BITMAP_MAJOR_HI)) ||
12674 (!same_uuid((int *)bms->uuid, vol_uuid, st->ss->swapuuid))) {
12675 dprintf("wrong bitmap header detected\n");
12676 goto abort;
12677 }
12678
12679 ret = 0;
12680abort:
4389ce73
MT
12681 if (!is_fd_valid(d->fd))
12682 close_fd(&fd);
12683
fbc42556
JR
12684 if (read_buf)
12685 free(read_buf);
12686
12687 return ret;
12688}
12689
12690/*******************************************************************************
12691 * Function: validate_internal_bitmap_imsm
12692 * Description: Verify if the bitmap header is in place and with proper data.
12693 * Parameters:
12694 * st : supertype information
12695 *
12696 * Returns:
12697 * 0 : success or device w/o RWH_BITMAP
12698 * -1 : fail
12699 ******************************************************************************/
12700static int validate_internal_bitmap_imsm(struct supertype *st)
12701{
12702 struct intel_super *super = st->sb;
12703 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
12704 unsigned long long offset;
12705 struct dl *d;
12706
fbc42556
JR
12707 if (dev->rwh_policy != RWH_BITMAP)
12708 return 0;
12709
12710 offset = get_bitmap_header_sector(super, super->current_vol);
12711 for (d = super->disks; d; d = d->next) {
12712 if (d->index < 0 || is_failed(&d->disk))
12713 continue;
12714
12715 if (validate_internal_bitmap_for_drive(st, offset, d)) {
12716 pr_err("imsm: bitmap validation failed\n");
12717 return -1;
12718 }
12719 }
12720 return 0;
12721}
12722
12723/*******************************************************************************
12724 * Function: add_internal_bitmap_imsm
12725 * Description: Mark the volume to use the bitmap and updates the chunk size value.
12726 * Parameters:
12727 * st : supertype information
12728 * chunkp : bitmap chunk size
12729 * delay : not used for imsm
12730 * write_behind : not used for imsm
12731 * size : not used for imsm
12732 * may_change : not used for imsm
12733 * amajor : not used for imsm
12734 *
12735 * Returns:
12736 * 0 : success
12737 * -1 : fail
12738 ******************************************************************************/
12739static int add_internal_bitmap_imsm(struct supertype *st, int *chunkp,
12740 int delay, int write_behind,
12741 unsigned long long size, int may_change,
12742 int amajor)
12743{
12744 struct intel_super *super = st->sb;
12745 int vol_idx = super->current_vol;
12746 struct imsm_dev *dev;
12747
12748 if (!super->devlist || vol_idx == -1 || !chunkp)
12749 return -1;
12750
12751 dev = get_imsm_dev(super, vol_idx);
fbc42556 12752 dev->rwh_policy = RWH_BITMAP;
fbc42556 12753 *chunkp = calculate_bitmap_chunksize(st, dev);
fbc42556
JR
12754 return 0;
12755}
12756
12757/*******************************************************************************
12758 * Function: locate_bitmap_imsm
12759 * Description: Seek 'fd' to start of write-intent-bitmap.
12760 * Parameters:
12761 * st : supertype information
12762 * fd : file descriptor for the device
12763 * node_num : not used for imsm
12764 *
12765 * Returns:
12766 * 0 : success
12767 * -1 : fail
12768 ******************************************************************************/
12769static int locate_bitmap_imsm(struct supertype *st, int fd, int node_num)
12770{
12771 struct intel_super *super = st->sb;
12772 unsigned long long offset;
12773 int vol_idx = super->current_vol;
12774
12775 if (!super->devlist || vol_idx == -1)
12776 return -1;
12777
12778 offset = get_bitmap_header_sector(super, super->current_vol);
12779 dprintf("bitmap header offset is %llu\n", offset);
12780
12781 lseek64(fd, offset << 9, 0);
12782
12783 return 0;
12784}
12785
12786/*******************************************************************************
12787 * Function: write_init_bitmap_imsm
12788 * Description: Write a bitmap header and prepares the area for the bitmap.
12789 * Parameters:
12790 * st : supertype information
12791 * fd : file descriptor for the device
12792 * update : not used for imsm
12793 *
12794 * Returns:
12795 * 0 : success
12796 * -1 : fail
12797 ******************************************************************************/
12798static int write_init_bitmap_imsm(struct supertype *st, int fd,
12799 enum bitmap_update update)
12800{
12801 struct intel_super *super = st->sb;
12802 int vol_idx = super->current_vol;
12803 int ret = 0;
12804 unsigned long long offset;
12805 bitmap_super_t bms = { 0 };
12806 size_t written = 0;
12807 size_t to_write;
12808 ssize_t rv_num;
12809 void *buf;
12810
12811 if (!super->devlist || !super->sector_size || vol_idx == -1)
12812 return -1;
12813
12814 struct imsm_dev *dev = get_imsm_dev(super, vol_idx);
12815
12816 /* first clear the space for bitmap header */
12817 unsigned long long bitmap_area_start =
12818 get_bitmap_header_sector(super, vol_idx);
12819
12820 dprintf("zeroing area start (%llu) and size (%u)\n", bitmap_area_start,
12821 IMSM_BITMAP_AND_HEADER_SIZE / super->sector_size);
12822 if (zero_disk_range(fd, bitmap_area_start,
12823 IMSM_BITMAP_HEADER_SIZE / super->sector_size)) {
12824 pr_err("imsm: cannot zeroing the space for the bitmap\n");
12825 return -1;
12826 }
12827
12828 /* The bitmap area should be filled with "1"s to perform initial
12829 * synchronization.
12830 */
12831 if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE))
12832 return -1;
12833 memset(buf, 0xFF, MAX_SECTOR_SIZE);
12834 offset = get_bitmap_sector(super, vol_idx);
12835 lseek64(fd, offset << 9, 0);
12836 while (written < IMSM_BITMAP_AREA_SIZE) {
12837 to_write = IMSM_BITMAP_AREA_SIZE - written;
12838 if (to_write > MAX_SECTOR_SIZE)
12839 to_write = MAX_SECTOR_SIZE;
12840 rv_num = write(fd, buf, MAX_SECTOR_SIZE);
12841 if (rv_num != MAX_SECTOR_SIZE) {
12842 ret = -1;
12843 dprintf("cannot initialize bitmap area\n");
12844 goto abort;
12845 }
12846 written += rv_num;
12847 }
12848
12849 /* write a bitmap header */
12850 init_bitmap_header(st, &bms, dev);
12851 memset(buf, 0, MAX_SECTOR_SIZE);
12852 memcpy(buf, &bms, sizeof(bitmap_super_t));
12853 if (locate_bitmap_imsm(st, fd, 0)) {
12854 ret = -1;
12855 dprintf("cannot locate the bitmap\n");
12856 goto abort;
12857 }
12858 if (write(fd, buf, MAX_SECTOR_SIZE) != MAX_SECTOR_SIZE) {
12859 ret = -1;
12860 dprintf("cannot write the bitmap header\n");
12861 goto abort;
12862 }
12863 fsync(fd);
12864
12865abort:
12866 free(buf);
12867
12868 return ret;
12869}
12870
12871/*******************************************************************************
12872 * Function: is_vol_to_setup_bitmap
12873 * Description: Checks if a bitmap should be activated on the dev.
12874 * Parameters:
12875 * info : info about the volume to setup the bitmap
12876 * dev : the device to check against bitmap creation
12877 *
12878 * Returns:
12879 * 0 : bitmap should be set up on the device
12880 * -1 : otherwise
12881 ******************************************************************************/
12882static int is_vol_to_setup_bitmap(struct mdinfo *info, struct imsm_dev *dev)
12883{
12884 if (!dev || !info)
12885 return -1;
12886
12887 if ((strcmp((char *)dev->volume, info->name) == 0) &&
12888 (dev->rwh_policy == RWH_BITMAP))
12889 return -1;
12890
12891 return 0;
12892}
12893
12894/*******************************************************************************
12895 * Function: set_bitmap_sysfs
12896 * Description: Set the sysfs atributes of a given volume to activate the bitmap.
12897 * Parameters:
12898 * info : info about the volume where the bitmap should be setup
12899 * chunksize : bitmap chunk size
12900 * location : location of the bitmap
12901 *
12902 * Returns:
12903 * 0 : success
12904 * -1 : fail
12905 ******************************************************************************/
12906static int set_bitmap_sysfs(struct mdinfo *info, unsigned long long chunksize,
12907 char *location)
12908{
12909 /* The bitmap/metadata is set to external to allow changing of value for
12910 * bitmap/location. When external is used, the kernel will treat an offset
12911 * related to the device's first lba (in opposition to the "internal" case
12912 * when this value is related to the beginning of the superblock).
12913 */
12914 if (sysfs_set_str(info, NULL, "bitmap/metadata", "external")) {
12915 dprintf("failed to set bitmap/metadata\n");
12916 return -1;
12917 }
12918
12919 /* It can only be changed when no bitmap is active.
12920 * Should be bigger than 512 and must be power of 2.
12921 * It is expecting the value in bytes.
12922 */
12923 if (sysfs_set_num(info, NULL, "bitmap/chunksize",
12924 __cpu_to_le32(chunksize))) {
12925 dprintf("failed to set bitmap/chunksize\n");
12926 return -1;
12927 }
12928
12929 /* It is expecting the value in sectors. */
12930 if (sysfs_set_num(info, NULL, "bitmap/space",
12931 __cpu_to_le64(IMSM_BITMAP_AREA_SIZE))) {
12932 dprintf("failed to set bitmap/space\n");
12933 return -1;
12934 }
12935
12936 /* Determines the delay between the bitmap updates.
12937 * It is expecting the value in seconds.
12938 */
12939 if (sysfs_set_num(info, NULL, "bitmap/time_base",
12940 __cpu_to_le64(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP))) {
12941 dprintf("failed to set bitmap/time_base\n");
12942 return -1;
12943 }
12944
12945 /* It is expecting the value in sectors with a sign at the beginning. */
12946 if (sysfs_set_str(info, NULL, "bitmap/location", location)) {
12947 dprintf("failed to set bitmap/location\n");
12948 return -1;
12949 }
12950
12951 return 0;
12952}
12953
12954/*******************************************************************************
12955 * Function: set_bitmap_imsm
12956 * Description: Setup the bitmap for the given volume
12957 * Parameters:
12958 * st : supertype information
12959 * info : info about the volume where the bitmap should be setup
12960 *
12961 * Returns:
12962 * 0 : success
12963 * -1 : fail
12964 ******************************************************************************/
12965static int set_bitmap_imsm(struct supertype *st, struct mdinfo *info)
12966{
12967 struct intel_super *super = st->sb;
12968 int prev_current_vol = super->current_vol;
12969 struct imsm_dev *dev;
12970 int ret = -1;
12971 char location[16] = "";
12972 unsigned long long chunksize;
12973 struct intel_dev *dev_it;
12974
12975 for (dev_it = super->devlist; dev_it; dev_it = dev_it->next) {
12976 super->current_vol = dev_it->index;
12977 dev = get_imsm_dev(super, super->current_vol);
12978
12979 if (is_vol_to_setup_bitmap(info, dev)) {
12980 if (validate_internal_bitmap_imsm(st)) {
12981 dprintf("bitmap header validation failed\n");
12982 goto abort;
12983 }
12984
12985 chunksize = calculate_bitmap_chunksize(st, dev);
12986 dprintf("chunk size is %llu\n", chunksize);
12987
12988 snprintf(location, sizeof(location), "+%llu",
12989 get_bitmap_sector(super, super->current_vol));
12990 dprintf("bitmap offset is %s\n", location);
12991
12992 if (set_bitmap_sysfs(info, chunksize, location)) {
12993 dprintf("cannot setup the bitmap\n");
12994 goto abort;
12995 }
12996 }
12997 }
12998 ret = 0;
12999abort:
13000 super->current_vol = prev_current_vol;
13001 return ret;
13002}
13003
cdddbdbc 13004struct superswitch super_imsm = {
cdddbdbc
DW
13005 .examine_super = examine_super_imsm,
13006 .brief_examine_super = brief_examine_super_imsm,
4737ae25 13007 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 13008 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
13009 .detail_super = detail_super_imsm,
13010 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 13011 .write_init_super = write_init_super_imsm,
0e600426
N
13012 .validate_geometry = validate_geometry_imsm,
13013 .add_to_super = add_to_super_imsm,
1a64be56 13014 .remove_from_super = remove_from_super_imsm,
d665cc31 13015 .detail_platform = detail_platform_imsm,
e50cf220 13016 .export_detail_platform = export_detail_platform_imsm,
33414a01 13017 .kill_subarray = kill_subarray_imsm,
aa534678 13018 .update_subarray = update_subarray_imsm,
2b959fbf 13019 .load_container = load_container_imsm,
71204a50
N
13020 .default_geometry = default_geometry_imsm,
13021 .get_disk_controller_domain = imsm_get_disk_controller_domain,
13022 .reshape_super = imsm_reshape_super,
13023 .manage_reshape = imsm_manage_reshape,
9e2d750d 13024 .recover_backup = recover_backup_imsm,
27156a57 13025 .examine_badblocks = examine_badblocks_imsm,
cdddbdbc
DW
13026 .match_home = match_home_imsm,
13027 .uuid_from_super= uuid_from_super_imsm,
13028 .getinfo_super = getinfo_super_imsm,
5c4cd5da 13029 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
13030 .update_super = update_super_imsm,
13031
13032 .avail_size = avail_size_imsm,
fbfdcb06 13033 .get_spare_criteria = get_spare_criteria_imsm,
cdddbdbc
DW
13034
13035 .compare_super = compare_super_imsm,
13036
13037 .load_super = load_super_imsm,
bf5a934a 13038 .init_super = init_super_imsm,
e683ca88 13039 .store_super = store_super_imsm,
cdddbdbc
DW
13040 .free_super = free_super_imsm,
13041 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 13042 .container_content = container_content_imsm,
0c21b485 13043 .validate_container = validate_container_imsm,
cdddbdbc 13044
fbc42556
JR
13045 .add_internal_bitmap = add_internal_bitmap_imsm,
13046 .locate_bitmap = locate_bitmap_imsm,
13047 .write_bitmap = write_init_bitmap_imsm,
13048 .set_bitmap = set_bitmap_imsm,
13049
2432ce9b
AP
13050 .write_init_ppl = write_init_ppl_imsm,
13051 .validate_ppl = validate_ppl_imsm,
13052
cdddbdbc 13053 .external = 1,
4cce4069 13054 .name = "imsm",
845dea95
NB
13055
13056/* for mdmon */
13057 .open_new = imsm_open_new,
ed9d66aa 13058 .set_array_state= imsm_set_array_state,
845dea95
NB
13059 .set_disk = imsm_set_disk,
13060 .sync_metadata = imsm_sync_metadata,
88758e9d 13061 .activate_spare = imsm_activate_spare,
e8319a19 13062 .process_update = imsm_process_update,
8273f55e 13063 .prepare_update = imsm_prepare_update,
6f50473f 13064 .record_bad_block = imsm_record_badblock,
c07a5a4f 13065 .clear_bad_block = imsm_clear_badblock,
928f1424 13066 .get_bad_blocks = imsm_get_badblocks,
cdddbdbc 13067};