]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
[PATCH 14/57][Arm][GAS] Add support for MVE instructions: vcadd, vcmla and vcmul
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
82704155 2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
b99bd4ef
NC
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
ec2655a6 13 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
b99bd4ef 25
42a68e18 26#include "as.h"
5287ad62 27#include <limits.h>
037e8744 28#include <stdarg.h>
c19d1205 29#define NO_RELOC 0
3882b010 30#include "safe-ctype.h"
b99bd4ef
NC
31#include "subsegs.h"
32#include "obstack.h"
3da1d841 33#include "libiberty.h"
f263249b
RE
34#include "opcode/arm.h"
35
b99bd4ef
NC
36#ifdef OBJ_ELF
37#include "elf/arm.h"
a394c00f 38#include "dw2gencfi.h"
b99bd4ef
NC
39#endif
40
f0927246
NC
41#include "dwarf2dbg.h"
42
7ed4c4c5
NC
43#ifdef OBJ_ELF
44/* Must be at least the size of the largest unwind opcode (currently two). */
45#define ARM_OPCODE_CHUNK_SIZE 8
46
47/* This structure holds the unwinding state. */
48
49static struct
50{
c19d1205
ZW
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
7ed4c4c5 55 /* The segment containing the function. */
c19d1205
ZW
56 segT saved_seg;
57 subsegT saved_subseg;
7ed4c4c5
NC
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
c19d1205
ZW
60 int opcode_count;
61 int opcode_alloc;
7ed4c4c5 62 /* The number of bytes pushed to the stack. */
c19d1205 63 offsetT frame_size;
7ed4c4c5
NC
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
c19d1205 67 offsetT pending_offset;
7ed4c4c5 68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
7ed4c4c5 72 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 73 unsigned fp_used:1;
7ed4c4c5 74 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 75 unsigned sp_restored:1;
7ed4c4c5
NC
76} unwind;
77
18a20338
CL
78/* Whether --fdpic was given. */
79static int arm_fdpic;
80
8b1ad454
NC
81#endif /* OBJ_ELF */
82
4962c51a
MS
83/* Results from operand parsing worker functions. */
84
85typedef enum
86{
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90} parse_operand_result;
91
33a392fb
PB
92enum arm_float_abi
93{
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97};
98
c19d1205 99/* Types of processor to assemble for. */
b99bd4ef 100#ifndef CPU_DEFAULT
8a59fff3 101/* The code that was here used to select a default CPU depending on compiler
fa94de6b 102 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
b99bd4ef
NC
107#endif
108
109#ifndef FPU_DEFAULT
c820d418
MM
110# ifdef TE_LINUX
111# define FPU_DEFAULT FPU_ARCH_FPA
112# elif defined (TE_NetBSD)
113# ifdef OBJ_ELF
114# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115# else
116 /* Legacy a.out format. */
117# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118# endif
4e7fd91e
PB
119# elif defined (TE_VXWORKS)
120# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
121# else
122 /* For backwards compatibility, default to FPA. */
123# define FPU_DEFAULT FPU_ARCH_FPA
124# endif
125#endif /* ifndef FPU_DEFAULT */
b99bd4ef 126
c19d1205 127#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 128
4d354d8b
TP
129/* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
e74cfd16 132static arm_feature_set cpu_variant;
4d354d8b
TP
133/* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
e74cfd16
PB
135static arm_feature_set arm_arch_used;
136static arm_feature_set thumb_arch_used;
b99bd4ef 137
b99bd4ef 138/* Flags stored in private area of BFD structure. */
c19d1205
ZW
139static int uses_apcs_26 = FALSE;
140static int atpcs = FALSE;
b34976b6
AM
141static int support_interwork = FALSE;
142static int uses_apcs_float = FALSE;
c19d1205 143static int pic_code = FALSE;
845b51d6 144static int fix_v4bx = FALSE;
278df34e
NS
145/* Warn on using deprecated features. */
146static int warn_on_deprecated = TRUE;
147
2e6976a8
DG
148/* Understand CodeComposer Studio assembly syntax. */
149bfd_boolean codecomposer_syntax = FALSE;
03b1477f
RE
150
151/* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
4d354d8b
TP
154
155/* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157static const arm_feature_set *legacy_cpu = NULL;
158static const arm_feature_set *legacy_fpu = NULL;
159
160/* CPU, extension and FPU feature bits selected by -mcpu. */
161static const arm_feature_set *mcpu_cpu_opt = NULL;
162static arm_feature_set *mcpu_ext_opt = NULL;
163static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165/* CPU, extension and FPU feature bits selected by -march. */
166static const arm_feature_set *march_cpu_opt = NULL;
167static arm_feature_set *march_ext_opt = NULL;
168static const arm_feature_set *march_fpu_opt = NULL;
169
170/* Feature bits selected by -mfpu. */
171static const arm_feature_set *mfpu_opt = NULL;
e74cfd16
PB
172
173/* Constants for known architecture features. */
174static const arm_feature_set fpu_default = FPU_DEFAULT;
f85d59c3 175static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
e74cfd16 176static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
f85d59c3
KT
177static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
e74cfd16
PB
179static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
69c9e028 181#ifdef OBJ_ELF
e74cfd16 182static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
69c9e028 183#endif
e74cfd16
PB
184static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186#ifdef CPU_DEFAULT
187static const arm_feature_set cpu_default = CPU_DEFAULT;
188#endif
189
823d2571 190static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
4070243b 191static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
823d2571
TG
192static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
e74cfd16 198static const arm_feature_set arm_ext_v4t_5 =
823d2571
TG
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
55e8aae7
SP
207/* Only for compatability of hint instructions. */
208static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
823d2571
TG
210static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
69c9e028 222#ifdef OBJ_ELF
e7d39ed3 223static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
69c9e028 224#endif
823d2571 225static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
7e806470 226static const arm_feature_set arm_ext_m =
173205ca 227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
16a1fa25 228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
823d2571
TG
229static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
ddfded2f 234static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
4ed7ed8d 235static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
16a1fa25
TP
236static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
e12437dc
AV
238static const arm_feature_set arm_ext_v8_1m_main =
239ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
16a1fa25
TP
240/* Instructions in ARMv8-M only found in M profile architectures. */
241static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
ff8646ee
TP
243static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
4ed7ed8d
TP
245/* Instructions shared between ARMv8-A and ARMv8-M. */
246static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
69c9e028 248#ifdef OBJ_ELF
15afaa63
TP
249/* DSP instructions Tag_DSP_extension refers to. */
250static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
69c9e028 252#endif
4d1464f2
MW
253static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
b8ec4e87
JW
255/* FP16 instructions. */
256static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
01f48020
TC
258static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
dec41383
JW
260static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
49e8a725
SN
262static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
7fadb25d
SD
264static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
dad0c3bf
SD
266static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
e74cfd16
PB
268
269static const arm_feature_set arm_arch_any = ARM_ANY;
49fa50ef 270#ifdef OBJ_ELF
2c6b98ea 271static const arm_feature_set fpu_any = FPU_ANY;
49fa50ef 272#endif
f85d59c3 273static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
e74cfd16
PB
274static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
2d447fca 277static const arm_feature_set arm_cext_iwmmxt2 =
823d2571 278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
e74cfd16 279static const arm_feature_set arm_cext_iwmmxt =
823d2571 280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
e74cfd16 281static const arm_feature_set arm_cext_xscale =
823d2571 282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
e74cfd16 283static const arm_feature_set arm_cext_maverick =
823d2571
TG
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
e74cfd16 289static const arm_feature_set fpu_vfp_ext_v1xd =
823d2571
TG
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
b1cc4aeb 299static const arm_feature_set fpu_vfp_ext_d32 =
823d2571
TG
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
5287ad62 303static const arm_feature_set fpu_vfp_v3_or_neon_ext =
823d2571 304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
a7ad558c
AV
305static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
69c9e028 309#ifdef OBJ_ELF
823d2571
TG
310static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
69c9e028 314#endif
823d2571
TG
315static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
bca38921 317static const arm_feature_set fpu_vfp_ext_armv8 =
823d2571 318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
a715796b 319static const arm_feature_set fpu_vfp_ext_armv8xd =
823d2571 320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
bca38921 321static const arm_feature_set fpu_neon_ext_armv8 =
823d2571 322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
bca38921 323static const arm_feature_set fpu_crypto_ext_armv8 =
823d2571 324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
dd5181d5 325static const arm_feature_set crc_ext_armv8 =
823d2571 326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
d6b4b13e 327static const arm_feature_set fpu_neon_ext_v8_1 =
643afb90 328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
c604a79a
JW
329static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
e74cfd16 331
33a392fb 332static int mfloat_abi_opt = -1;
4d354d8b
TP
333/* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335static arm_feature_set selected_arch = ARM_ARCH_NONE;
336/* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338static arm_feature_set selected_ext = ARM_ARCH_NONE;
339/* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
e74cfd16 342static arm_feature_set selected_cpu = ARM_ARCH_NONE;
4d354d8b
TP
343/* FPU feature bits selected by the last -mfpu or .fpu directive. */
344static arm_feature_set selected_fpu = FPU_NONE;
345/* Feature bits selected by the last .object_arch directive. */
346static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
ee065d83 347/* Must be long enough to hold any of the names in arm_cpus. */
ef8e6722 348static char selected_cpu_name[20];
8d67f500 349
aacf0b33
KT
350extern FLONUM_TYPE generic_floating_point_number;
351
8d67f500
NC
352/* Return if no cpu was selected on command-line. */
353static bfd_boolean
354no_cpu_selected (void)
355{
823d2571 356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
8d67f500
NC
357}
358
7cc69913 359#ifdef OBJ_ELF
deeaaff8
DJ
360# ifdef EABI_DEFAULT
361static int meabi_flags = EABI_DEFAULT;
362# else
d507cf36 363static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 364# endif
e1da3f5b 365
ee3c0378
AS
366static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
e1da3f5b 368bfd_boolean
5f4273c7 369arm_is_eabi (void)
e1da3f5b
PB
370{
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372}
7cc69913 373#endif
b99bd4ef 374
b99bd4ef 375#ifdef OBJ_ELF
c19d1205 376/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
377symbolS * GOT_symbol;
378#endif
379
b99bd4ef
NC
380/* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384static int thumb_mode = 0;
8dc2430f
NC
385/* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388#define MODE_RECORDED (1 << 4)
b99bd4ef 389
e07e6e58
NC
390/* Specifies the intrinsic IT insn behavior mode. */
391enum implicit_it_mode
392{
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397};
398static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
c19d1205
ZW
400/* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423static bfd_boolean unified_syntax = FALSE;
b99bd4ef 424
bacebabc
RM
425/* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
477330fc
RM
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429const char arm_symbol_chars[] = "#[]{}";
bacebabc 430
5287ad62
JB
431enum neon_el_type
432{
dcbf9037 433 NT_invtype,
5287ad62
JB
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
dcbf9037 439 NT_unsigned
5287ad62
JB
440};
441
442struct neon_type_el
443{
444 enum neon_el_type type;
445 unsigned size;
446};
447
448#define NEON_MAX_TYPE_ELS 4
449
450struct neon_type
451{
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454};
455
5ee91343 456enum pred_instruction_type
e07e6e58 457{
5ee91343
AV
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
e07e6e58
NC
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
477330fc 463 if inside, should be the last one. */
e07e6e58 464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
477330fc 465 i.e. BKPT and NOP. */
5ee91343
AV
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
35c228db 468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
5ee91343 469 a predication code. */
35c228db 470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
e07e6e58
NC
471};
472
ad6cec43
MGD
473/* The maximum number of operands we need. */
474#define ARM_IT_MAX_OPERANDS 6
e2b0ab59 475#define ARM_IT_MAX_RELOCS 3
ad6cec43 476
b99bd4ef
NC
477struct arm_it
478{
c19d1205 479 const char * error;
b99bd4ef 480 unsigned long instruction;
c19d1205
ZW
481 int size;
482 int size_req;
483 int cond;
037e8744
JB
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
5287ad62 488 struct neon_type vectype;
88714cb8
DG
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
0110f2b8
PB
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
b99bd4ef
NC
495 struct
496 {
497 bfd_reloc_code_real_type type;
c19d1205
ZW
498 expressionS exp;
499 int pc_rel;
e2b0ab59 500 } relocs[ARM_IT_MAX_RELOCS];
b99bd4ef 501
5ee91343 502 enum pred_instruction_type pred_insn_type;
e07e6e58 503
c19d1205
ZW
504 struct
505 {
506 unsigned reg;
ca3f61f7 507 signed int imm;
dcbf9037 508 struct neon_type_el vectype;
ca3f61f7
NC
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
f5f10c66
AV
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
57785aa2
AV
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
5287ad62 517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5ee91343 523 unsigned isquad : 1; /* Operand is SIMD quad register. */
037e8744 524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
1b883319 525 unsigned iszr : 1; /* Operand is ZR register. */
ca3f61f7
NC
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 533 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
534};
535
c19d1205 536static struct arm_it inst;
b99bd4ef
NC
537
538#define NUM_FLOAT_VALS 8
539
05d2d07e 540const char * fp_const[] =
b99bd4ef
NC
541{
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543};
544
b99bd4ef
NC
545LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547#define FAIL (-1)
548#define SUCCESS (0)
549
550#define SUFF_S 1
551#define SUFF_D 2
552#define SUFF_E 3
553#define SUFF_P 4
554
c19d1205
ZW
555#define CP_T_X 0x00008000
556#define CP_T_Y 0x00400000
b99bd4ef 557
c19d1205
ZW
558#define CONDS_BIT 0x00100000
559#define LOAD_BIT 0x00100000
b99bd4ef
NC
560
561#define DOUBLE_LOAD_FLAG 0x00000001
562
563struct asm_cond
564{
d3ce72d0 565 const char * template_name;
c921be7d 566 unsigned long value;
b99bd4ef
NC
567};
568
c19d1205 569#define COND_ALWAYS 0xE
b99bd4ef 570
b99bd4ef
NC
571struct asm_psr
572{
d3ce72d0 573 const char * template_name;
c921be7d 574 unsigned long field;
b99bd4ef
NC
575};
576
62b3e311
PB
577struct asm_barrier_opt
578{
e797f7e0
MGD
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
62b3e311
PB
582};
583
2d2255b5 584/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
585#define SPSR_BIT (1 << 22)
586
c19d1205
ZW
587/* The individual PSR flag bits. */
588#define PSR_c (1 << 16)
589#define PSR_x (1 << 17)
590#define PSR_s (1 << 18)
591#define PSR_f (1 << 19)
b99bd4ef 592
c19d1205 593struct reloc_entry
bfae80f2 594{
0198d5e6 595 const char * name;
c921be7d 596 bfd_reloc_code_real_type reloc;
bfae80f2
RE
597};
598
5287ad62 599enum vfp_reg_pos
bfae80f2 600{
5287ad62
JB
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
603};
604
605enum vfp_ldstm_type
606{
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608};
609
dcbf9037
JB
610/* Bits for DEFINED field in neon_typed_alias. */
611#define NTA_HASTYPE 1
612#define NTA_HASINDEX 2
613
614struct neon_typed_alias
615{
c921be7d
NC
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
dcbf9037
JB
619};
620
c19d1205 621/* ARM register categories. This includes coprocessor numbers and various
5aa75429
TP
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
c19d1205 624enum arm_reg_type
bfae80f2 625{
c19d1205
ZW
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
5287ad62 632 REG_TYPE_NQ,
037e8744 633 REG_TYPE_VFSD,
5287ad62 634 REG_TYPE_NDQ,
dec41383 635 REG_TYPE_NSD,
037e8744 636 REG_TYPE_NSDQ,
c19d1205
ZW
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
5ee91343 643 REG_TYPE_MQ,
c19d1205
ZW
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
5ee91343 649 REG_TYPE_RNB,
1b883319 650 REG_TYPE_ZR
bfae80f2
RE
651};
652
dcbf9037
JB
653/* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
657struct reg_entry
658{
c921be7d 659 const char * name;
90ec0d68 660 unsigned int number;
c921be7d
NC
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
6c43fab6
RE
664};
665
c19d1205 666/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 667const char * const reg_expected_msgs[] =
c19d1205 668{
5aa75429
TP
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
5ee91343 692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
5aa75429 693 [REG_TYPE_RNB] = N_("")
6c43fab6
RE
694};
695
c19d1205 696/* Some well known registers that we refer to directly elsewhere. */
bd340a04 697#define REG_R12 12
c19d1205
ZW
698#define REG_SP 13
699#define REG_LR 14
700#define REG_PC 15
404ff6b5 701
b99bd4ef
NC
702/* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
c19d1205 704#define INSN_SIZE 4
b99bd4ef
NC
705
706struct asm_opcode
707{
708 /* Basic string to match. */
d3ce72d0 709 const char * template_name;
c19d1205
ZW
710
711 /* Parameters to instruction. */
5be8be5d 712 unsigned int operands[8];
c19d1205
ZW
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
b99bd4ef
NC
716
717 /* Basic instruction code. */
a302e574 718 unsigned int avalue;
b99bd4ef 719
c19d1205
ZW
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
b99bd4ef 722
90e4755a 723 /* Which architecture variant provides this instruction. */
c921be7d
NC
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
c19d1205
ZW
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
b99bd4ef 729
c19d1205
ZW
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
5ee91343
AV
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
b99bd4ef
NC
735};
736
a737bd4d
NC
737/* Defines for various bits that we will want to toggle. */
738#define INST_IMMEDIATE 0x02000000
739#define OFFSET_REG 0x02000000
c19d1205 740#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
741#define SHIFT_BY_REG 0x00000010
742#define PRE_INDEX 0x01000000
743#define INDEX_UP 0x00800000
744#define WRITE_BACK 0x00200000
745#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 746#define CPSI_MMOD 0x00020000
90e4755a 747
a737bd4d
NC
748#define LITERAL_MASK 0xf000f000
749#define OPCODE_MASK 0xfe1fffff
750#define V4_STR_BIT 0x00000020
8335d6aa 751#define VLDR_VMOV_SAME 0x0040f000
90e4755a 752
efd81785
PB
753#define T2_SUBS_PC_LR 0xf3de8f00
754
a737bd4d 755#define DATA_OP_SHIFT 21
bada4342 756#define SBIT_SHIFT 20
90e4755a 757
ef8d22e6
PB
758#define T2_OPCODE_MASK 0xfe1fffff
759#define T2_DATA_OP_SHIFT 21
bada4342 760#define T2_SBIT_SHIFT 20
ef8d22e6 761
6530b175
NC
762#define A_COND_MASK 0xf0000000
763#define A_PUSH_POP_OP_MASK 0x0fff0000
764
765/* Opcodes for pushing/poping registers to/from the stack. */
766#define A1_OPCODE_PUSH 0x092d0000
767#define A2_OPCODE_PUSH 0x052d0004
768#define A2_OPCODE_POP 0x049d0004
769
a737bd4d
NC
770/* Codes to distinguish the arithmetic instructions. */
771#define OPCODE_AND 0
772#define OPCODE_EOR 1
773#define OPCODE_SUB 2
774#define OPCODE_RSB 3
775#define OPCODE_ADD 4
776#define OPCODE_ADC 5
777#define OPCODE_SBC 6
778#define OPCODE_RSC 7
779#define OPCODE_TST 8
780#define OPCODE_TEQ 9
781#define OPCODE_CMP 10
782#define OPCODE_CMN 11
783#define OPCODE_ORR 12
784#define OPCODE_MOV 13
785#define OPCODE_BIC 14
786#define OPCODE_MVN 15
90e4755a 787
ef8d22e6
PB
788#define T2_OPCODE_AND 0
789#define T2_OPCODE_BIC 1
790#define T2_OPCODE_ORR 2
791#define T2_OPCODE_ORN 3
792#define T2_OPCODE_EOR 4
793#define T2_OPCODE_ADD 8
794#define T2_OPCODE_ADC 10
795#define T2_OPCODE_SBC 11
796#define T2_OPCODE_SUB 13
797#define T2_OPCODE_RSB 14
798
a737bd4d
NC
799#define T_OPCODE_MUL 0x4340
800#define T_OPCODE_TST 0x4200
801#define T_OPCODE_CMN 0x42c0
802#define T_OPCODE_NEG 0x4240
803#define T_OPCODE_MVN 0x43c0
90e4755a 804
a737bd4d
NC
805#define T_OPCODE_ADD_R3 0x1800
806#define T_OPCODE_SUB_R3 0x1a00
807#define T_OPCODE_ADD_HI 0x4400
808#define T_OPCODE_ADD_ST 0xb000
809#define T_OPCODE_SUB_ST 0xb080
810#define T_OPCODE_ADD_SP 0xa800
811#define T_OPCODE_ADD_PC 0xa000
812#define T_OPCODE_ADD_I8 0x3000
813#define T_OPCODE_SUB_I8 0x3800
814#define T_OPCODE_ADD_I3 0x1c00
815#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 816
a737bd4d
NC
817#define T_OPCODE_ASR_R 0x4100
818#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
819#define T_OPCODE_LSR_R 0x40c0
820#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
821#define T_OPCODE_ASR_I 0x1000
822#define T_OPCODE_LSL_I 0x0000
823#define T_OPCODE_LSR_I 0x0800
b99bd4ef 824
a737bd4d
NC
825#define T_OPCODE_MOV_I8 0x2000
826#define T_OPCODE_CMP_I8 0x2800
827#define T_OPCODE_CMP_LR 0x4280
828#define T_OPCODE_MOV_HR 0x4600
829#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 830
a737bd4d
NC
831#define T_OPCODE_LDR_PC 0x4800
832#define T_OPCODE_LDR_SP 0x9800
833#define T_OPCODE_STR_SP 0x9000
834#define T_OPCODE_LDR_IW 0x6800
835#define T_OPCODE_STR_IW 0x6000
836#define T_OPCODE_LDR_IH 0x8800
837#define T_OPCODE_STR_IH 0x8000
838#define T_OPCODE_LDR_IB 0x7800
839#define T_OPCODE_STR_IB 0x7000
840#define T_OPCODE_LDR_RW 0x5800
841#define T_OPCODE_STR_RW 0x5000
842#define T_OPCODE_LDR_RH 0x5a00
843#define T_OPCODE_STR_RH 0x5200
844#define T_OPCODE_LDR_RB 0x5c00
845#define T_OPCODE_STR_RB 0x5400
c9b604bd 846
a737bd4d
NC
847#define T_OPCODE_PUSH 0xb400
848#define T_OPCODE_POP 0xbc00
b99bd4ef 849
2fc8bdac 850#define T_OPCODE_BRANCH 0xe000
b99bd4ef 851
a737bd4d 852#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 853#define THUMB_PP_PC_LR 0x0100
c19d1205 854#define THUMB_LOAD_BIT 0x0800
53365c0d 855#define THUMB2_LOAD_BIT 0x00100000
c19d1205 856
5ee91343 857#define BAD_SYNTAX _("syntax error")
c19d1205 858#define BAD_ARGS _("bad arguments to instruction")
fdfde340 859#define BAD_SP _("r13 not allowed here")
c19d1205 860#define BAD_PC _("r15 not allowed here")
a302e574
AV
861#define BAD_ODD _("Odd register not allowed here")
862#define BAD_EVEN _("Even register not allowed here")
c19d1205
ZW
863#define BAD_COND _("instruction cannot be conditional")
864#define BAD_OVERLAP _("registers may not be the same")
865#define BAD_HIREG _("lo register required")
866#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
35c228db 867#define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
dfa9f0d5 868#define BAD_BRANCH _("branch must be last instruction in IT block")
e12437dc 869#define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
dfa9f0d5 870#define BAD_NOT_IT _("instruction not allowed in IT block")
5ee91343 871#define BAD_NOT_VPT _("instruction missing MVE vector predication code")
037e8744 872#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58 873#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
5ee91343
AV
874#define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
e07e6e58 876#define BAD_IT_COND _("incorrect condition in IT block")
5ee91343 877#define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
e07e6e58 878#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 879#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
880#define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882#define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
9db2f6b4
RL
884#define BAD_RANGE _("branch out of range")
885#define BAD_FP16 _("selected processor does not support fp16 instruction")
dd5181d5 886#define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
a9f02af8 887#define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
5ee91343
AV
888#define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890#define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892#define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894#define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
a302e574 896#define BAD_SIMD_TYPE _("bad type in SIMD instruction")
886e1c73
AV
897#define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900#define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
35c228db 902#define BAD_EL_TYPE _("bad element type for instruction")
1b883319 903#define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
c19d1205 904
c921be7d
NC
905static struct hash_control * arm_ops_hsh;
906static struct hash_control * arm_cond_hsh;
5ee91343 907static struct hash_control * arm_vcond_hsh;
c921be7d
NC
908static struct hash_control * arm_shift_hsh;
909static struct hash_control * arm_psr_hsh;
910static struct hash_control * arm_v7m_psr_hsh;
911static struct hash_control * arm_reg_hsh;
912static struct hash_control * arm_reloc_hsh;
913static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 914
b99bd4ef
NC
915/* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
5f4273c7 922 <insn> */
b99bd4ef
NC
923
924symbolS * last_label_seen;
b34976b6 925static int label_is_thumb_function_name = FALSE;
e07e6e58 926
3d0c9500
NC
927/* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
a737bd4d 929
c19d1205 930#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 931typedef struct literal_pool
b99bd4ef 932{
c921be7d
NC
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
a8040cf2
NC
939#ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941#endif
c921be7d 942 struct literal_pool * next;
8335d6aa 943 unsigned int alignment;
3d0c9500 944} literal_pool;
b99bd4ef 945
3d0c9500
NC
946/* Pointer to a linked list of literal pools. */
947literal_pool * list_of_pools = NULL;
e27ec89e 948
2e6976a8
DG
949typedef enum asmfunc_states
950{
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954} asmfunc_states;
955
956static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
e07e6e58 958#ifdef OBJ_ELF
5ee91343 959# define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
e07e6e58 960#else
5ee91343 961static struct current_pred now_pred;
e07e6e58
NC
962#endif
963
964static inline int
5ee91343 965now_pred_compatible (int cond)
e07e6e58 966{
5ee91343 967 return (cond & ~1) == (now_pred.cc & ~1);
e07e6e58
NC
968}
969
970static inline int
971conditional_insn (void)
972{
973 return inst.cond != COND_ALWAYS;
974}
975
5ee91343 976static int in_pred_block (void);
e07e6e58 977
5ee91343 978static int handle_pred_state (void);
e07e6e58
NC
979
980static void force_automatic_it_block_close (void);
981
c921be7d
NC
982static void it_fsm_post_encode (void);
983
5ee91343 984#define set_pred_insn_type(type) \
e07e6e58
NC
985 do \
986 { \
5ee91343
AV
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
477330fc 989 return; \
e07e6e58
NC
990 } \
991 while (0)
992
5ee91343 993#define set_pred_insn_type_nonvoid(type, failret) \
c921be7d
NC
994 do \
995 { \
5ee91343
AV
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
477330fc 998 return failret; \
c921be7d
NC
999 } \
1000 while(0)
1001
5ee91343 1002#define set_pred_insn_type_last() \
e07e6e58
NC
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
5ee91343 1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
e07e6e58 1007 else \
5ee91343 1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
e07e6e58
NC
1009 } \
1010 while (0)
1011
c19d1205 1012/* Pure syntax. */
b99bd4ef 1013
c19d1205
ZW
1014/* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
2e6976a8 1016char arm_comment_chars[] = "@";
3d0c9500 1017
c19d1205
ZW
1018/* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021/* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024/* Also note that comments like this one will always work. */
1025const char line_comment_chars[] = "#";
3d0c9500 1026
2e6976a8 1027char arm_line_separator_chars[] = ";";
b99bd4ef 1028
c19d1205
ZW
1029/* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031const char EXP_CHARS[] = "eE";
3d0c9500 1032
c19d1205
ZW
1033/* Chars that mean this number is a floating point constant. */
1034/* As in 0f12.456 */
1035/* or 0d1.2345e12 */
b99bd4ef 1036
c19d1205 1037const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 1038
c19d1205
ZW
1039/* Prefix characters that indicate the start of an immediate
1040 value. */
1041#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 1042
c19d1205
ZW
1043/* Separator character handling. */
1044
1045#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047static inline int
1048skip_past_char (char ** str, char c)
1049{
8ab8155f
NC
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
427d0db6 1052
c19d1205
ZW
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
3d0c9500 1057 }
c19d1205
ZW
1058 else
1059 return FAIL;
1060}
c921be7d 1061
c19d1205 1062#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 1063
c19d1205
ZW
1064/* Arithmetic expressions (possibly involving symbols). */
1065
1066/* Return TRUE if anything in the expression is a bignum. */
1067
0198d5e6 1068static bfd_boolean
c19d1205
ZW
1069walk_no_bignums (symbolS * sp)
1070{
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
0198d5e6 1072 return TRUE;
c19d1205
ZW
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 1075 {
c19d1205
ZW
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
1079 }
1080
0198d5e6 1081 return FALSE;
3d0c9500
NC
1082}
1083
0198d5e6 1084static bfd_boolean in_my_get_expression = FALSE;
c19d1205
ZW
1085
1086/* Third argument to my_get_expression. */
1087#define GE_NO_PREFIX 0
1088#define GE_IMM_PREFIX 1
1089#define GE_OPT_PREFIX 2
5287ad62
JB
1090/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092#define GE_OPT_PREFIX_BIG 3
a737bd4d 1093
b99bd4ef 1094static int
c19d1205 1095my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 1096{
c19d1205 1097 char * save_in;
b99bd4ef 1098
c19d1205
ZW
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
5287ad62 1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
477330fc 1102 : GE_OPT_PREFIX;
b99bd4ef 1103
c19d1205 1104 switch (prefix_mode)
b99bd4ef 1105 {
c19d1205
ZW
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
5287ad62 1116 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
0198d5e6
TC
1120 default:
1121 abort ();
c19d1205 1122 }
b99bd4ef 1123
c19d1205 1124 memset (ep, 0, sizeof (expressionS));
b99bd4ef 1125
c19d1205
ZW
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
0198d5e6 1128 in_my_get_expression = TRUE;
2ac93be7 1129 expression (ep);
0198d5e6 1130 in_my_get_expression = FALSE;
c19d1205 1131
f86adc07 1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 1133 {
f86adc07 1134 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
f86adc07
NS
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
1140 return 1;
1141 }
b99bd4ef 1142
c19d1205
ZW
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
5287ad62
JB
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
477330fc 1148 || (ep->X_add_symbol
5287ad62 1149 && (walk_no_bignums (ep->X_add_symbol)
477330fc 1150 || (ep->X_op_symbol
5287ad62 1151 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
b99bd4ef 1158
c19d1205
ZW
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
0198d5e6 1161 return SUCCESS;
b99bd4ef
NC
1162}
1163
c19d1205
ZW
1164/* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
b99bd4ef 1168
c19d1205
ZW
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1175
c19d1205 1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1177
6d4af3c2 1178const char *
c19d1205
ZW
1179md_atof (int type, char * litP, int * sizeP)
1180{
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
b99bd4ef 1185
c19d1205
ZW
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
b99bd4ef 1194
c19d1205
ZW
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
b99bd4ef 1201
c19d1205
ZW
1202 case 'x':
1203 case 'X':
499ac353 1204 prec = 5;
c19d1205 1205 break;
b99bd4ef 1206
c19d1205
ZW
1207 case 'p':
1208 case 'P':
499ac353 1209 prec = 5;
c19d1205 1210 break;
a737bd4d 1211
c19d1205
ZW
1212 default:
1213 *sizeP = 0;
499ac353 1214 return _("Unrecognized or unsupported floating point constant");
c19d1205 1215 }
b99bd4ef 1216
c19d1205
ZW
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
499ac353 1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1221
c19d1205
ZW
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
499ac353
NC
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1228 }
1229 }
1230 else
1231 {
e74cfd16 1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1233 for (i = prec - 1; i >= 0; i--)
1234 {
499ac353
NC
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
499ac353
NC
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1248 }
1249 }
b99bd4ef 1250
499ac353 1251 return NULL;
c19d1205 1252}
b99bd4ef 1253
c19d1205
ZW
1254/* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
0198d5e6 1256
c19d1205 1257void
91d6fa6a 1258md_operand (expressionS * exp)
c19d1205
ZW
1259{
1260 if (in_my_get_expression)
91d6fa6a 1261 exp->X_op = O_illegal;
b99bd4ef
NC
1262}
1263
c19d1205 1264/* Immediate values. */
b99bd4ef 1265
0198d5e6 1266#ifdef OBJ_ELF
c19d1205
ZW
1267/* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
0198d5e6 1270
c19d1205
ZW
1271static int
1272immediate_for_directive (int *val)
b99bd4ef 1273{
c19d1205
ZW
1274 expressionS exp;
1275 exp.X_op = O_illegal;
b99bd4ef 1276
c19d1205
ZW
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
b99bd4ef 1282
c19d1205
ZW
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
b99bd4ef 1291}
c19d1205 1292#endif
b99bd4ef 1293
c19d1205 1294/* Register parsing. */
b99bd4ef 1295
c19d1205
ZW
1296/* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301static struct reg_entry *
1302arm_reg_parse_multi (char **ccp)
b99bd4ef 1303{
c19d1205
ZW
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
b99bd4ef 1307
477330fc
RM
1308 skip_whitespace (start);
1309
c19d1205
ZW
1310#ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
01cfc07f 1312 return NULL;
c19d1205
ZW
1313 start++;
1314#endif
1315#ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318#endif
b99bd4ef 1319
c19d1205
ZW
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
b99bd4ef 1323
c19d1205
ZW
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
b99bd4ef
NC
1335}
1336
1337static int
dcbf9037 1338arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
477330fc 1339 enum arm_reg_type type)
b99bd4ef 1340{
c19d1205
ZW
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
79134647 1349 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1350 return reg->number;
1351 break;
69b97547 1352
c19d1205
ZW
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1a0670f3 1360 /* Fall through. */
6057a28f 1361
c19d1205
ZW
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
79134647 1365 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1366 return reg->number;
6057a28f 1367 break;
c19d1205 1368
6057a28f 1369 default:
c19d1205 1370 break;
6057a28f
NC
1371 }
1372
dcbf9037
JB
1373 return FAIL;
1374}
1375
1376/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379static int
1380arm_reg_parse (char **ccp, enum arm_reg_type type)
1381{
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
c19d1205
ZW
1396 *ccp = start;
1397 return FAIL;
1398}
69b97547 1399
dcbf9037
JB
1400/* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414static int
1415parse_neon_type (struct neon_type *type, char **str)
1416{
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
477330fc
RM
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
dcbf9037
JB
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
477330fc
RM
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
dcbf9037
JB
1467 return FAIL;
1468 }
1469 }
1470
037e8744 1471 done:
dcbf9037 1472 if (type)
477330fc
RM
1473 {
1474 type->el[type->elems].type = thistype;
dcbf9037
JB
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487}
1488
1489/* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494static void
1495first_error (const char *err)
1496{
1497 if (!inst.error)
1498 inst.error = err;
1499}
1500
1501/* Parse a single type, e.g. ".s32", leading period included. */
1502static int
1503parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504{
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
477330fc
RM
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
dcbf9037 1520 else
477330fc
RM
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
dcbf9037
JB
1525 }
1526 else
1527 return FAIL;
5f4273c7 1528
dcbf9037 1529 *ccp = str;
5f4273c7 1530
dcbf9037
JB
1531 return SUCCESS;
1532}
1533
1534/* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537#define NEON_ALL_LANES 15
1538#define NEON_INTERLEAVE_LANES 14
1539
5ee91343
AV
1540/* Record a use of the given feature. */
1541static void
1542record_feature_use (const arm_feature_set *feature)
1543{
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548}
1549
1550/* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552static bfd_boolean
1553mark_feature_used (const arm_feature_set *feature)
1554{
886e1c73
AV
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
5ee91343
AV
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573}
1574
dcbf9037
JB
1575/* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580static int
1581parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
477330fc
RM
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
dcbf9037
JB
1584{
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
477330fc 1601 *ccp = str;
dcbf9037 1602 if (typeinfo)
477330fc 1603 *typeinfo = atype;
dcbf9037
JB
1604 return altreg;
1605 }
1606
037e8744
JB
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
477330fc 1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
037e8744 1612 || (type == REG_TYPE_NSDQ
477330fc
RM
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
dec41383
JW
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
f512f76f
NC
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1619 type = (enum arm_reg_type) reg->type;
dcbf9037 1620
5ee91343
AV
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
dcbf9037
JB
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
5f4273c7 1646
dcbf9037
JB
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
477330fc
RM
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
dcbf9037
JB
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
5f4273c7 1657
dcbf9037
JB
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
dec41383
JW
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
57785aa2
AV
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
477330fc 1665 {
57785aa2
AV
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
477330fc
RM
1670 return FAIL;
1671 }
5f4273c7 1672
dcbf9037 1673 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
dcbf9037
JB
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
477330fc 1682 atype.index = NEON_ALL_LANES;
dcbf9037 1683 else
477330fc
RM
1684 {
1685 expressionS exp;
dcbf9037 1686
477330fc 1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
dcbf9037 1688
477330fc
RM
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
dcbf9037 1694
477330fc
RM
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
dcbf9037 1697
477330fc
RM
1698 atype.index = exp.X_add_number;
1699 }
dcbf9037 1700 }
5f4273c7 1701
dcbf9037
JB
1702 if (typeinfo)
1703 *typeinfo = atype;
5f4273c7 1704
dcbf9037
JB
1705 if (rtype)
1706 *rtype = type;
5f4273c7 1707
dcbf9037 1708 *ccp = str;
5f4273c7 1709
dcbf9037
JB
1710 return reg->number;
1711}
1712
efd6b359 1713/* Like arm_reg_parse, but also allow the following extra features:
dcbf9037
JB
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1718 This function will fault on encountering a scalar. */
dcbf9037
JB
1719
1720static int
1721arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
477330fc 1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
dcbf9037
JB
1723{
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
0855e32b
NS
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
dcbf9037
JB
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748}
1749
1750#define NEON_SCALAR_REG(X) ((X) >> 4)
1751#define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
5287ad62
JB
1753/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757static int
57785aa2
AV
1758parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
5287ad62 1760{
dcbf9037 1761 int reg;
5287ad62 1762 char *str = *ccp;
dcbf9037 1763 struct neon_typed_alias atype;
57785aa2 1764 unsigned reg_size;
5f4273c7 1765
dec41383 1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
5f4273c7 1767
57785aa2
AV
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
dcbf9037 1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1785 return FAIL;
5f4273c7 1786
57785aa2 1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
5287ad62 1788 {
dcbf9037 1789 first_error (_("scalar must have an index"));
5287ad62
JB
1790 return FAIL;
1791 }
57785aa2 1792 else if (atype.index >= reg_size / elsize)
5287ad62 1793 {
dcbf9037 1794 first_error (_("scalar index out of range"));
5287ad62
JB
1795 return FAIL;
1796 }
5f4273c7 1797
dcbf9037
JB
1798 if (type)
1799 *type = atype.eltype;
5f4273c7 1800
5287ad62 1801 *ccp = str;
5f4273c7 1802
dcbf9037 1803 return reg * 16 + atype.index;
5287ad62
JB
1804}
1805
4b5a202f
AV
1806/* Types of registers in a list. */
1807
1808enum reg_list_els
1809{
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
efd6b359 1813 REGLIST_VFP_S_VPR,
4b5a202f 1814 REGLIST_VFP_D,
efd6b359 1815 REGLIST_VFP_D_VPR,
4b5a202f
AV
1816 REGLIST_NEON_D
1817};
1818
c19d1205 1819/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1820
c19d1205 1821static long
4b5a202f 1822parse_reg_list (char ** strp, enum reg_list_els etype)
c19d1205 1823{
4b5a202f
AV
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
a737bd4d 1829
c19d1205
ZW
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
6057a28f 1832 {
477330fc
RM
1833 skip_whitespace (str);
1834
c19d1205 1835 another_range = 0;
a737bd4d 1836
c19d1205
ZW
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
a737bd4d 1841
c19d1205
ZW
1842 str++;
1843 do
1844 {
1845 int reg;
4b5a202f
AV
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
6057a28f 1848
4b5a202f
AV
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
c19d1205 1851 {
4b5a202f
AV
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
c19d1205 1875 }
a737bd4d 1876
c19d1205
ZW
1877 if (in_range)
1878 {
1879 int i;
a737bd4d 1880
c19d1205
ZW
1881 if (reg <= cur_reg)
1882 {
dcbf9037 1883 first_error (_("bad range in register list"));
c19d1205
ZW
1884 return FAIL;
1885 }
40a18ebd 1886
c19d1205
ZW
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
a737bd4d 1898
c19d1205
ZW
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1904
c19d1205
ZW
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
a737bd4d 1911
d996d970 1912 if (skip_past_char (&str, '}') == FAIL)
c19d1205 1913 {
dcbf9037 1914 first_error (_("missing `}'"));
c19d1205
ZW
1915 return FAIL;
1916 }
1917 }
4b5a202f 1918 else if (etype == REGLIST_RN)
c19d1205 1919 {
91d6fa6a 1920 expressionS exp;
40a18ebd 1921
91d6fa6a 1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1923 return FAIL;
40a18ebd 1924
91d6fa6a 1925 if (exp.X_op == O_constant)
c19d1205 1926 {
91d6fa6a
NC
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
a737bd4d 1933
91d6fa6a 1934 if ((range & exp.X_add_number) != 0)
c19d1205 1935 {
91d6fa6a 1936 int regno = range & exp.X_add_number;
a737bd4d 1937
c19d1205
ZW
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
a737bd4d 1944
91d6fa6a 1945 range |= exp.X_add_number;
c19d1205
ZW
1946 }
1947 else
1948 {
e2b0ab59 1949 if (inst.relocs[0].type != 0)
c19d1205
ZW
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
a737bd4d 1954
e2b0ab59
AV
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
c19d1205
ZW
1958 }
1959 }
a737bd4d 1960
c19d1205
ZW
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
a737bd4d 1966 }
c19d1205 1967 while (another_range);
a737bd4d 1968
c19d1205
ZW
1969 *strp = str;
1970 return range;
a737bd4d
NC
1971}
1972
c19d1205
ZW
1973/* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
477330fc
RM
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
dcbf9037
JB
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
6057a28f 1987
c19d1205 1988static int
efd6b359
AV
1989parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
6057a28f 1991{
037e8744 1992 char *str = *ccp;
c19d1205
ZW
1993 int base_reg;
1994 int new_base;
21d799b5 1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1996 int max_regs = 0;
c19d1205
ZW
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
a737bd4d 2000 int i;
efd6b359
AV
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
6057a28f 2004
477330fc 2005 if (skip_past_char (&str, '{') == FAIL)
5287ad62
JB
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
6057a28f 2010
5287ad62 2011 switch (etype)
c19d1205 2012 {
5287ad62 2013 case REGLIST_VFP_S:
efd6b359 2014 case REGLIST_VFP_S_VPR:
c19d1205
ZW
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
5287ad62 2017 break;
5f4273c7 2018
5287ad62 2019 case REGLIST_VFP_D:
efd6b359 2020 case REGLIST_VFP_D_VPR:
5287ad62 2021 regtype = REG_TYPE_VFD;
b7fc2769 2022 break;
5f4273c7 2023
b7fc2769
JB
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
4b5a202f
AV
2027
2028 default:
2029 gas_assert (0);
b7fc2769
JB
2030 }
2031
efd6b359 2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
b7fc2769 2033 {
b1cc4aeb
PB
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
5287ad62 2045 else
477330fc 2046 max_regs = 16;
c19d1205 2047 }
6057a28f 2048
c19d1205 2049 base_reg = max_regs;
efd6b359 2050 *partial_match = FALSE;
a737bd4d 2051
c19d1205
ZW
2052 do
2053 {
5287ad62 2054 int setmask = 1, addregs = 1;
efd6b359
AV
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
dcbf9037 2057
037e8744 2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 2059
efd6b359
AV
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
a737bd4d 2089 {
dcbf9037 2090 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
2091 return FAIL;
2092 }
5f4273c7 2093
efd6b359
AV
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
b7fc2769 2098 if (new_base >= max_regs)
477330fc
RM
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
5f4273c7 2103
5287ad62
JB
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
477330fc
RM
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
5287ad62 2110
c19d1205
ZW
2111 if (new_base < base_reg)
2112 base_reg = new_base;
a737bd4d 2113
5287ad62 2114 if (mask & (setmask << new_base))
c19d1205 2115 {
dcbf9037 2116 first_error (_("invalid register list"));
c19d1205 2117 return FAIL;
a737bd4d 2118 }
a737bd4d 2119
efd6b359 2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
c19d1205
ZW
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
0bbf2aa4 2125
5287ad62
JB
2126 mask |= setmask << new_base;
2127 count += addregs;
0bbf2aa4 2128
037e8744 2129 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
2130 {
2131 int high_range;
0bbf2aa4 2132
037e8744 2133 str++;
0bbf2aa4 2134
037e8744 2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
477330fc 2136 == FAIL)
c19d1205
ZW
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
0bbf2aa4 2141
477330fc
RM
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
b7fc2769 2147
477330fc
RM
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
5287ad62 2150
c19d1205
ZW
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
0bbf2aa4 2156
5287ad62 2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 2158 {
5287ad62 2159 if (mask & (setmask << new_base))
0bbf2aa4 2160 {
c19d1205
ZW
2161 inst.error = _("invalid register list");
2162 return FAIL;
0bbf2aa4 2163 }
c19d1205 2164
5287ad62
JB
2165 mask |= setmask << new_base;
2166 count += addregs;
0bbf2aa4 2167 }
0bbf2aa4 2168 }
0bbf2aa4 2169 }
037e8744 2170 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 2171
037e8744 2172 str++;
0bbf2aa4 2173
c19d1205 2174 /* Sanity check -- should have raised a parse error above. */
efd6b359 2175 if ((!vpr_seen && count == 0) || count > max_regs)
c19d1205
ZW
2176 abort ();
2177
2178 *pbase = base_reg;
2179
efd6b359
AV
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
c19d1205
ZW
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
037e8744
JB
2197 *ccp = str;
2198
c19d1205 2199 return count;
b99bd4ef
NC
2200}
2201
dcbf9037
JB
2202/* True if two alias types are the same. */
2203
c921be7d 2204static bfd_boolean
dcbf9037
JB
2205neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206{
2207 if (!a && !b)
c921be7d 2208 return TRUE;
5f4273c7 2209
dcbf9037 2210 if (!a || !b)
c921be7d 2211 return FALSE;
dcbf9037
JB
2212
2213 if (a->defined != b->defined)
c921be7d 2214 return FALSE;
5f4273c7 2215
dcbf9037
JB
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
477330fc 2218 || a->eltype.size != b->eltype.size))
c921be7d 2219 return FALSE;
dcbf9037
JB
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
c921be7d 2223 return FALSE;
5f4273c7 2224
c921be7d 2225 return TRUE;
dcbf9037
JB
2226}
2227
5287ad62
JB
2228/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
dcbf9037 2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 2235
5287ad62 2236#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 2237#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
2238#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240static int
dcbf9037 2241parse_neon_el_struct_list (char **str, unsigned *pbase,
35c228db 2242 int mve,
477330fc 2243 struct neon_type_el *eltype)
5287ad62
JB
2244{
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
35c228db
AV
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
20203fb9 2254 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 2255 struct neon_typed_alias firsttype;
f85d59c3
KT
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
5f4273c7 2260
5287ad62
JB
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
5f4273c7 2263
5287ad62
JB
2264 do
2265 {
dcbf9037 2266 struct neon_typed_alias atype;
35c228db
AV
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
dcbf9037
JB
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
5287ad62 2271 if (getreg == FAIL)
477330fc
RM
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
5f4273c7 2276
5287ad62 2277 if (base_reg == -1)
477330fc
RM
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
5287ad62 2286 else if (reg_incr == -1)
477330fc
RM
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
5287ad62 2295 else if (getreg != base_reg + reg_incr * count)
477330fc
RM
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
dcbf9037 2300
c921be7d 2301 if (! neon_alias_types_same (&atype, &firsttype))
477330fc
RM
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
5f4273c7 2306
5287ad62 2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
477330fc 2308 modes. */
5287ad62 2309 if (ptr[0] == '-')
477330fc
RM
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
5f4273c7 2342
5287ad62
JB
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
477330fc
RM
2345 {
2346 count += 2;
2347 continue;
2348 }
5f4273c7 2349
dcbf9037 2350 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
5287ad62 2360 else if (lane == -1)
477330fc 2361 lane = NEON_INTERLEAVE_LANES;
5287ad62 2362 else if (lane != NEON_INTERLEAVE_LANES)
477330fc
RM
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
5287ad62
JB
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2370
5287ad62
JB
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2374
5287ad62 2375 /* Sanity check. */
35c228db 2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
5287ad62
JB
2377 || (count > 1 && reg_incr == -1))
2378 {
dcbf9037 2379 first_error (_("error parsing element/structure list"));
5287ad62
JB
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
dcbf9037 2385 first_error (_("expected }"));
5287ad62
JB
2386 return FAIL;
2387 }
5f4273c7 2388
5287ad62
JB
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
dcbf9037
JB
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
5287ad62
JB
2395 *pbase = base_reg;
2396 *str = ptr;
5f4273c7 2397
5287ad62
JB
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399}
2400
c19d1205
ZW
2401/* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2406
c19d1205
ZW
2407static int
2408parse_reloc (char **str)
b99bd4ef 2409{
c19d1205
ZW
2410 struct reloc_entry *r;
2411 char *p, *q;
b99bd4ef 2412
c19d1205
ZW
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
b99bd4ef 2415
c19d1205
ZW
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
21d799b5
NC
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
b99bd4ef
NC
2430}
2431
c19d1205
ZW
2432/* Directives: register aliases. */
2433
dcbf9037 2434static struct reg_entry *
90ec0d68 2435insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2436{
d3ce72d0 2437 struct reg_entry *new_reg;
c19d1205 2438 const char *name;
b99bd4ef 2439
d3ce72d0 2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2441 {
d3ce72d0 2442 if (new_reg->builtin)
c19d1205 2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2444
c19d1205
ZW
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
d3ce72d0 2447 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2449
d929913e 2450 return NULL;
c19d1205 2451 }
b99bd4ef 2452
c19d1205 2453 name = xstrdup (str);
325801bd 2454 new_reg = XNEW (struct reg_entry);
b99bd4ef 2455
d3ce72d0
NC
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
b99bd4ef 2461
d3ce72d0 2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2463 abort ();
5f4273c7 2464
d3ce72d0 2465 return new_reg;
dcbf9037
JB
2466}
2467
2468static void
2469insert_neon_reg_alias (char *str, int number, int type,
477330fc 2470 struct neon_typed_alias *atype)
dcbf9037
JB
2471{
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2473
dcbf9037
JB
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
5f4273c7 2479
dcbf9037
JB
2480 if (atype)
2481 {
325801bd 2482 reg->neon = XNEW (struct neon_typed_alias);
dcbf9037
JB
2483 *reg->neon = *atype;
2484 }
c19d1205 2485}
b99bd4ef 2486
c19d1205 2487/* Look for the .req directive. This is of the form:
b99bd4ef 2488
c19d1205 2489 new_register_name .req existing_register_name
b99bd4ef 2490
c19d1205 2491 If we find one, or if it looks sufficiently like one that we want to
d929913e 2492 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2493
d929913e 2494static bfd_boolean
c19d1205
ZW
2495create_register_alias (char * newname, char *p)
2496{
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
b99bd4ef 2500
c19d1205
ZW
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2505 return FALSE;
b99bd4ef 2506
c19d1205
ZW
2507 oldname += 6;
2508 if (*oldname == '\0')
d929913e 2509 return FALSE;
b99bd4ef 2510
21d799b5 2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2512 if (!old)
b99bd4ef 2513 {
c19d1205 2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2515 return TRUE;
b99bd4ef
NC
2516 }
2517
c19d1205
ZW
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521#ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523#else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526#endif
b99bd4ef 2527
29a2809e 2528 nbuf = xmemdup0 (newname, nlen);
b99bd4ef 2529
c19d1205
ZW
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
d929913e
NC
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
c19d1205 2537
d929913e
NC
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2547 the artificial FOO alias because it has already been created by the
d929913e
NC
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
d929913e 2554 }
c19d1205 2555
d929913e
NC
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
c19d1205 2558
d929913e
NC
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
c19d1205 2562
e1fa0163 2563 free (nbuf);
d929913e 2564 return TRUE;
b99bd4ef
NC
2565}
2566
dcbf9037
JB
2567/* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
5f4273c7 2575 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2576
c921be7d 2577static bfd_boolean
dcbf9037
JB
2578create_neon_reg_alias (char *newname, char *p)
2579{
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
12d6b0b7 2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2586 int namelen;
5f4273c7 2587
dcbf9037
JB
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
5f4273c7 2592
dcbf9037 2593 nameend = p;
5f4273c7 2594
dcbf9037
JB
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
c921be7d 2600 return FALSE;
5f4273c7 2601
dcbf9037 2602 p += 5;
5f4273c7 2603
dcbf9037 2604 if (*p == '\0')
c921be7d 2605 return FALSE;
5f4273c7 2606
dcbf9037
JB
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
c921be7d 2612 return FALSE;
dcbf9037
JB
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
477330fc
RM
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
dcbf9037
JB
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
477330fc 2627 : exp.X_add_number;
dcbf9037
JB
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
477330fc
RM
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
5f4273c7 2642
dcbf9037
JB
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
477330fc
RM
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
dcbf9037
JB
2649 typeinfo.eltype = ntype.el[0];
2650 }
5f4273c7 2651
dcbf9037
JB
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
5f4273c7 2656
dcbf9037 2657 if (typeinfo.defined & NTA_HASINDEX)
477330fc
RM
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
5f4273c7 2662
dcbf9037 2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2664
dcbf9037 2665 if (exp.X_op != O_constant)
477330fc
RM
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
5f4273c7 2670
dcbf9037
JB
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
5f4273c7 2673
dcbf9037 2674 if (skip_past_char (&p, ']') == FAIL)
477330fc
RM
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
dcbf9037
JB
2679 }
2680
15735687
NS
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684#ifdef TC_CASE_SENSITIVE
dcbf9037 2685 namelen = nameend - newname;
15735687
NS
2686#else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689#endif
2690
29a2809e 2691 namebuf = xmemdup0 (newname, namelen);
5f4273c7 2692
dcbf9037 2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2694 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2695
dcbf9037
JB
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
5f4273c7 2699
dcbf9037
JB
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2702 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2703
dcbf9037
JB
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
5f4273c7 2707
dcbf9037
JB
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2710 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2711
e1fa0163 2712 free (namebuf);
c921be7d 2713 return TRUE;
dcbf9037
JB
2714}
2715
c19d1205
ZW
2716/* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
c921be7d 2718
b99bd4ef 2719static void
c19d1205 2720s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2721{
c19d1205
ZW
2722 as_bad (_("invalid syntax for .req directive"));
2723}
b99bd4ef 2724
dcbf9037
JB
2725static void
2726s_dn (int a ATTRIBUTE_UNUSED)
2727{
2728 as_bad (_("invalid syntax for .dn directive"));
2729}
2730
2731static void
2732s_qn (int a ATTRIBUTE_UNUSED)
2733{
2734 as_bad (_("invalid syntax for .qn directive"));
2735}
2736
c19d1205
ZW
2737/* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
b99bd4ef 2739
c19d1205
ZW
2740 my_alias .req r11
2741 .unreq my_alias */
b99bd4ef
NC
2742
2743static void
c19d1205 2744s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2745{
c19d1205
ZW
2746 char * name;
2747 char saved_char;
b99bd4ef 2748
c19d1205
ZW
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
21d799b5 2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
477330fc 2764 name);
c19d1205
ZW
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
a1727c1a 2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2770 name);
2771 else
2772 {
d929913e
NC
2773 char * p;
2774 char * nbuf;
2775
db0bc284 2776 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2777 free ((char *) reg->name);
477330fc
RM
2778 if (reg->neon)
2779 free (reg->neon);
c19d1205 2780 free (reg);
d929913e
NC
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
5f4273c7 2785
d929913e
NC
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
21d799b5 2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2790 if (reg)
2791 {
db0bc284 2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
21d799b5 2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2802 if (reg)
2803 {
db0bc284 2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
c19d1205
ZW
2812 }
2813 }
b99bd4ef 2814
c19d1205 2815 *input_line_pointer = saved_char;
b99bd4ef
NC
2816 demand_empty_rest_of_line ();
2817}
2818
c19d1205
ZW
2819/* Directives: Instruction set selection. */
2820
2821#ifdef OBJ_ELF
2822/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
cd000bff
DJ
2827/* Create a new mapping symbol for the transition to STATE. */
2828
2829static void
2830make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2831{
a737bd4d 2832 symbolS * symbolP;
c19d1205
ZW
2833 const char * symname;
2834 int type;
b99bd4ef 2835
c19d1205 2836 switch (state)
b99bd4ef 2837 {
c19d1205
ZW
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
c19d1205
ZW
2850 default:
2851 abort ();
2852 }
2853
cd000bff 2854 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
cd000bff
DJ
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2de7820f
JZ
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2885 if (value == 0)
2886 {
2de7820f
JZ
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
cd000bff
DJ
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
cd000bff
DJ
2900 frag->tc_frag_data.last_map = symbolP;
2901}
2902
2903/* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907static void
2908insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910{
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2924 }
cd000bff
DJ
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928}
2929
2930static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932/* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
4e9aaefb 2935#define TRANSITION(from, to) (mapstate == (from) && state == (to))
cd000bff
DJ
2936void
2937mapping_state (enum mstate state)
2938{
940b5ce0
DJ
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
cd000bff
DJ
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
49c62a33
NC
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
33eaf5de 2956 PC- relative forms. However, these cases will involve implicit
49c62a33
NC
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
4e9aaefb 2963 /* This case will be evaluated later. */
cd000bff 2964 return;
cd000bff
DJ
2965
2966 mapping_state_2 (state, 0);
cd000bff
DJ
2967}
2968
2969/* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972static void
2973mapping_state_2 (enum mstate state, int max_chars)
2974{
940b5ce0
DJ
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
cd000bff
DJ
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
4e9aaefb
SA
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
cd000bff
DJ
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205 2997}
4e9aaefb 2998#undef TRANSITION
c19d1205 2999#else
d3106081
NS
3000#define mapping_state(x) ((void)0)
3001#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
3002#endif
3003
3004/* Find the real, Thumb encoded start of a Thumb function. */
3005
4343666d 3006#ifdef OBJ_COFF
c19d1205
ZW
3007static symbolS *
3008find_real_start (symbolS * symbolP)
3009{
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015#define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
37f6032b
ZW
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
3026 return symbolP;
3027
e1fa0163 3028 real_start = concat (STUB_NAME, name, NULL);
c19d1205 3029 new_target = symbol_find (real_start);
e1fa0163 3030 free (real_start);
c19d1205
ZW
3031
3032 if (new_target == NULL)
3033 {
bd3ba5d1 3034 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
3035 new_target = symbolP;
3036 }
3037
c19d1205
ZW
3038 return new_target;
3039}
4343666d 3040#endif
c19d1205
ZW
3041
3042static void
3043opcode_select (int width)
3044{
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
e74cfd16 3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
c19d1205
ZW
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
e74cfd16 3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
c19d1205
ZW
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078}
3079
3080static void
3081s_arm (int ignore ATTRIBUTE_UNUSED)
3082{
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085}
3086
3087static void
3088s_thumb (int ignore ATTRIBUTE_UNUSED)
3089{
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092}
3093
3094static void
3095s_code (int unused ATTRIBUTE_UNUSED)
3096{
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110}
3111
3112static void
3113s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114{
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127}
3128
3129static void
3130s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131{
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137}
3138
3139/* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142static void
3143s_thumb_set (int equiv)
3144{
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
d02603dc 3156 delim = get_symbol_name (& name);
c19d1205 3157 end_name = input_line_pointer;
d02603dc 3158 (void) restore_line_pointer (delim);
c19d1205
ZW
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181#ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
c19d1205 3184 for this symbol. */
b99bd4ef
NC
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
21d799b5 3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197#endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200#ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203#endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
c19d1205 3219 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223#if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225#endif
3226}
3227
c19d1205 3228/* Directives: Mode selection. */
b99bd4ef 3229
c19d1205
ZW
3230/* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 3233static void
c19d1205 3234s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 3235{
c19d1205
ZW
3236 char *name, delim;
3237
d02603dc 3238 delim = get_symbol_name (& name);
c19d1205
ZW
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
d02603dc 3249 (void) restore_line_pointer (delim);
b99bd4ef
NC
3250 demand_empty_rest_of_line ();
3251}
3252
c19d1205
ZW
3253/* Directives: sectioning and alignment. */
3254
c19d1205
ZW
3255static void
3256s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 3257{
c19d1205
ZW
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
cd000bff
DJ
3262
3263#ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265#endif
c19d1205 3266}
b99bd4ef 3267
c19d1205
ZW
3268static void
3269s_even (int ignore ATTRIBUTE_UNUSED)
3270{
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
b99bd4ef 3274
c19d1205 3275 record_alignment (now_seg, 1);
b99bd4ef 3276
c19d1205 3277 demand_empty_rest_of_line ();
b99bd4ef
NC
3278}
3279
2e6976a8
DG
3280/* Directives: CodeComposer Studio. */
3281
3282/* .ref (for CodeComposer Studio syntax only). */
3283static void
3284s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285{
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290}
3291
3292/* If name is not NULL, then it is used for marking the beginning of a
2b0f3761 3293 function, whereas if it is NULL then it means the function end. */
2e6976a8
DG
3294static void
3295asmfunc_debug (const char * name)
3296{
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316}
3317
3318static void
3319s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320{
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341}
3342
3343static void
3344s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345{
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367}
3368
3369static void
3370s_ccs_def (int name)
3371{
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376}
3377
c19d1205 3378/* Directives: Literal pools. */
a737bd4d 3379
c19d1205
ZW
3380static literal_pool *
3381find_literal_pool (void)
a737bd4d 3382{
c19d1205 3383 literal_pool * pool;
a737bd4d 3384
c19d1205 3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3386 {
c19d1205
ZW
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
a737bd4d
NC
3390 }
3391
c19d1205 3392 return pool;
a737bd4d
NC
3393}
3394
c19d1205
ZW
3395static literal_pool *
3396find_or_make_literal_pool (void)
a737bd4d 3397{
c19d1205
ZW
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
a737bd4d 3401
c19d1205 3402 pool = find_literal_pool ();
a737bd4d 3403
c19d1205 3404 if (pool == NULL)
a737bd4d 3405 {
c19d1205 3406 /* Create a new pool. */
325801bd 3407 pool = XNEW (literal_pool);
c19d1205
ZW
3408 if (! pool)
3409 return NULL;
a737bd4d 3410
c19d1205
ZW
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
8335d6aa 3416 pool->alignment = 2;
c19d1205
ZW
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
a737bd4d 3420 }
a737bd4d 3421
c19d1205
ZW
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
a737bd4d 3424 {
c19d1205
ZW
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
a737bd4d
NC
3428 }
3429
c19d1205
ZW
3430 /* Done. */
3431 return pool;
a737bd4d
NC
3432}
3433
c19d1205 3434/* Add the literal in the global 'inst'
5f4273c7 3435 structure to the relevant literal pool. */
b99bd4ef
NC
3436
3437static int
8335d6aa 3438add_to_lit_pool (unsigned int nbytes)
b99bd4ef 3439{
8335d6aa
JW
3440#define PADDING_SLOT 0x1
3441#define LIT_ENTRY_SIZE_MASK 0xFF
c19d1205 3442 literal_pool * pool;
8335d6aa
JW
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
e56c722b 3445 unsigned imm1 = 0;
8335d6aa
JW
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
e2b0ab59 3452 : inst.relocs[0].exp.X_unsigned ? 0
2569ceb0 3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
8335d6aa
JW
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
b99bd4ef 3460
c19d1205
ZW
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3465 {
8335d6aa
JW
3466 if (nbytes == 4)
3467 {
e2b0ab59
AV
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
8335d6aa 3470 && (pool->literals[entry].X_add_number
e2b0ab59 3471 == inst.relocs[0].exp.X_add_number)
8335d6aa
JW
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
e2b0ab59 3474 == inst.relocs[0].exp.X_unsigned))
8335d6aa
JW
3475 break;
3476
e2b0ab59
AV
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
8335d6aa 3479 && (pool->literals[entry].X_add_number
e2b0ab59 3480 == inst.relocs[0].exp.X_add_number)
8335d6aa 3481 && (pool->literals[entry].X_add_symbol
e2b0ab59 3482 == inst.relocs[0].exp.X_add_symbol)
8335d6aa 3483 && (pool->literals[entry].X_op_symbol
e2b0ab59 3484 == inst.relocs[0].exp.X_op_symbol)
8335d6aa
JW
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
19f2f6a9 3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
8335d6aa 3493 && (pool->literals[entry].X_unsigned
e2b0ab59 3494 == inst.relocs[0].exp.X_unsigned)
8335d6aa 3495 && (pool->literals[entry + 1].X_op == O_constant)
19f2f6a9 3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
8335d6aa 3497 && (pool->literals[entry + 1].X_unsigned
e2b0ab59 3498 == inst.relocs[0].exp.X_unsigned))
c19d1205
ZW
3499 break;
3500
8335d6aa
JW
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
c19d1205 3503 break;
8335d6aa
JW
3504
3505 pool_size += 4;
b99bd4ef
NC
3506 }
3507
c19d1205
ZW
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
8335d6aa
JW
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
e2b0ab59
AV
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
8335d6aa
JW
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
e2b0ab59 3544 pool->literals[entry] = inst.relocs[0].exp;
a6684f0d 3545 pool->literals[entry].X_op = O_constant;
8335d6aa
JW
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
e2b0ab59 3557 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
e2b0ab59 3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa 3561 pool->literals[entry++].X_md = 4;
e2b0ab59 3562 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
e2b0ab59 3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa
JW
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
e2b0ab59 3572 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3573 pool->literals[entry].X_md = 4;
3574 }
3575
a8040cf2
NC
3576#ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583#endif
c19d1205
ZW
3584 pool->next_free_entry += 1;
3585 }
8335d6aa
JW
3586 else if (padding_slot_p)
3587 {
e2b0ab59 3588 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3589 pool->literals[entry].X_md = nbytes;
3590 }
b99bd4ef 3591
e2b0ab59
AV
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
b99bd4ef 3595
c19d1205 3596 return SUCCESS;
b99bd4ef
NC
3597}
3598
2e6976a8 3599bfd_boolean
2e57ce7b 3600tc_start_label_without_colon (void)
2e6976a8
DG
3601{
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
2e57ce7b 3606 const char *label = input_line_pointer;
2e6976a8
DG
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623}
3624
c19d1205 3625/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 3626 a later date assign it a value. That's what these functions do. */
e16bb312 3627
c19d1205
ZW
3628static void
3629symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634{
e57e6ddc 3635 size_t name_length;
c19d1205 3636 char * preserved_copy_of_name;
e16bb312 3637
c19d1205
ZW
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
21d799b5 3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3641
c19d1205
ZW
3642#ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645#endif
b99bd4ef 3646
c19d1205 3647 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3648
c19d1205
ZW
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
b99bd4ef 3652
c19d1205 3653 symbol_set_frag (symbolP, frag);
b99bd4ef 3654
c19d1205
ZW
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
b99bd4ef 3658
c19d1205
ZW
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
b99bd4ef 3662
c19d1205 3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3664
c19d1205 3665 obj_symbol_new_hook (symbolP);
b99bd4ef 3666
c19d1205
ZW
3667#ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669#endif
3670
3671#ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673#endif /* DEBUG_SYMS */
b99bd4ef
NC
3674}
3675
c19d1205
ZW
3676static void
3677s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3678{
c19d1205
ZW
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
b99bd4ef 3682
c19d1205
ZW
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
b99bd4ef 3688
c19d1205
ZW
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
8335d6aa 3692 frag_align (pool->alignment, 0, 0);
b99bd4ef 3693
c19d1205 3694 record_alignment (now_seg, 2);
b99bd4ef 3695
aaca88ef 3696#ifdef OBJ_ELF
47fc6e36
WN
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
aaca88ef 3699#endif
c19d1205 3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3701
c19d1205
ZW
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
b99bd4ef 3705
c19d1205 3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3707
c19d1205
ZW
3708#if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710#endif
6c43fab6 3711
c19d1205 3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3713 {
3714#ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717#endif
3718 /* First output the expression in the instruction to the pool. */
8335d6aa
JW
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
a8040cf2 3721 }
b99bd4ef 3722
c19d1205
ZW
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
b99bd4ef
NC
3726}
3727
c19d1205
ZW
3728#ifdef OBJ_ELF
3729/* Forward declarations for functions below, in the MD interface
3730 section. */
3731static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732static valueT create_unwind_entry (int);
3733static void start_unwind_section (const segT, int);
3734static void add_unwind_opcode (valueT, int);
3735static void flush_pending_unwind (void);
b99bd4ef 3736
c19d1205 3737/* Directives: Data. */
b99bd4ef 3738
c19d1205
ZW
3739static void
3740s_arm_elf_cons (int nbytes)
3741{
3742 expressionS exp;
b99bd4ef 3743
c19d1205
ZW
3744#ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746#endif
b99bd4ef 3747
c19d1205 3748 if (is_it_end_of_statement ())
b99bd4ef 3749 {
c19d1205
ZW
3750 demand_empty_rest_of_line ();
3751 return;
b99bd4ef
NC
3752 }
3753
c19d1205
ZW
3754#ifdef md_cons_align
3755 md_cons_align (nbytes);
3756#endif
b99bd4ef 3757
c19d1205
ZW
3758 mapping_state (MAP_DATA);
3759 do
b99bd4ef 3760 {
c19d1205
ZW
3761 int reloc;
3762 char *base = input_line_pointer;
b99bd4ef 3763
c19d1205 3764 expression (& exp);
b99bd4ef 3765
c19d1205
ZW
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
21d799b5 3782 reloc_howto_type *howto = (reloc_howto_type *)
477330fc
RM
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
c19d1205 3785 int size = bfd_get_reloc_size (howto);
b99bd4ef 3786
2fc8bdac
ZW
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
c19d1205 3794 if (size > nbytes)
992a06ee
AM
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
c19d1205
ZW
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
325801bd 3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
e1fa0163 3808
c19d1205
ZW
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
4b1a927e
AM
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
c19d1205 3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
e1fa0163 3822 free (save_buf);
c19d1205
ZW
3823 }
3824 }
3825 }
b99bd4ef 3826 }
c19d1205 3827 while (*input_line_pointer++ == ',');
b99bd4ef 3828
c19d1205
ZW
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
b99bd4ef
NC
3832}
3833
c921be7d
NC
3834/* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837static void
3838emit_thumb32_expr (expressionS * exp)
3839{
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846}
3847
3848/* Guess the instruction size based on the opcode. */
3849
3850static int
3851thumb_insn_size (int opcode)
3852{
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859}
3860
3861static bfd_boolean
3862emit_insn (expressionS *exp, int nbytes)
3863{
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
5ee91343
AV
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
c921be7d 3885 else
5ee91343 3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
c921be7d
NC
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904}
3905
3906/* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909static void
3910s_arm_elf_inst (int nbytes)
3911{
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954}
b99bd4ef 3955
c19d1205 3956/* Parse a .rel31 directive. */
b99bd4ef 3957
c19d1205
ZW
3958static void
3959s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960{
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
b99bd4ef 3964
c19d1205
ZW
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
b99bd4ef 3970
c19d1205
ZW
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
b99bd4ef 3975
c19d1205
ZW
3976#ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978#endif
b99bd4ef 3979
c19d1205
ZW
3980#ifdef md_cons_align
3981 md_cons_align (4);
3982#endif
b99bd4ef 3983
c19d1205 3984 mapping_state (MAP_DATA);
b99bd4ef 3985
c19d1205 3986 expression (&exp);
b99bd4ef 3987
c19d1205
ZW
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
b99bd4ef 3992
c19d1205 3993 demand_empty_rest_of_line ();
b99bd4ef
NC
3994}
3995
c19d1205 3996/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3997
c19d1205 3998/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3999
c19d1205
ZW
4000static void
4001s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002{
4003 demand_empty_rest_of_line ();
921e5f0a
PB
4004 if (unwind.proc_start)
4005 {
c921be7d 4006 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
4007 return;
4008 }
4009
c19d1205
ZW
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
b99bd4ef 4012
c19d1205
ZW
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
fdfde340 4020 unwind.fp_reg = REG_SP;
c19d1205
ZW
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023}
b99bd4ef 4024
b99bd4ef 4025
c19d1205
ZW
4026/* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
b99bd4ef 4028
c19d1205
ZW
4029static void
4030s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031{
4032 demand_empty_rest_of_line ();
921e5f0a 4033 if (!unwind.proc_start)
c921be7d 4034 as_bad (MISSING_FNSTART);
921e5f0a 4035
c19d1205 4036 if (unwind.table_entry)
6decc662 4037 as_bad (_("duplicate .handlerdata directive"));
f02232aa 4038
c19d1205
ZW
4039 create_unwind_entry (1);
4040}
a737bd4d 4041
c19d1205 4042/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 4043
c19d1205
ZW
4044static void
4045s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046{
4047 long where;
4048 char *ptr;
4049 valueT val;
940b5ce0 4050 unsigned int marked_pr_dependency;
f02232aa 4051
c19d1205 4052 demand_empty_rest_of_line ();
f02232aa 4053
921e5f0a
PB
4054 if (!unwind.proc_start)
4055 {
c921be7d 4056 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
4057 return;
4058 }
4059
c19d1205
ZW
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
f02232aa 4065
c19d1205
ZW
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
b99bd4ef 4070
c19d1205 4071 ptr = frag_more (8);
5011093d 4072 memset (ptr, 0, 8);
c19d1205 4073 where = frag_now_fix () - 8;
f02232aa 4074
c19d1205
ZW
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
f02232aa 4078
c19d1205
ZW
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
940b5ce0
DJ
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
5f4273c7
NC
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
c19d1205
ZW
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 4095 |= 1 << unwind.personality_index;
c19d1205 4096 }
f02232aa 4097
c19d1205
ZW
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
f02232aa 4105
c19d1205
ZW
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
4108
4109 unwind.proc_start = NULL;
c19d1205 4110}
f02232aa 4111
f02232aa 4112
c19d1205 4113/* Parse an unwind_cantunwind directive. */
b99bd4ef 4114
c19d1205
ZW
4115static void
4116s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117{
4118 demand_empty_rest_of_line ();
921e5f0a 4119 if (!unwind.proc_start)
c921be7d 4120 as_bad (MISSING_FNSTART);
921e5f0a 4121
c19d1205
ZW
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 4124
c19d1205
ZW
4125 unwind.personality_index = -2;
4126}
b99bd4ef 4127
b99bd4ef 4128
c19d1205 4129/* Parse a personalityindex directive. */
b99bd4ef 4130
c19d1205
ZW
4131static void
4132s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133{
4134 expressionS exp;
b99bd4ef 4135
921e5f0a 4136 if (!unwind.proc_start)
c921be7d 4137 as_bad (MISSING_FNSTART);
921e5f0a 4138
c19d1205
ZW
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 4141
c19d1205 4142 expression (&exp);
b99bd4ef 4143
c19d1205
ZW
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 4146 {
c19d1205
ZW
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
b99bd4ef
NC
4150 }
4151
c19d1205 4152 unwind.personality_index = exp.X_add_number;
b99bd4ef 4153
c19d1205
ZW
4154 demand_empty_rest_of_line ();
4155}
e16bb312 4156
e16bb312 4157
c19d1205 4158/* Parse a personality directive. */
e16bb312 4159
c19d1205
ZW
4160static void
4161s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162{
4163 char *name, *p, c;
a737bd4d 4164
921e5f0a 4165 if (!unwind.proc_start)
c921be7d 4166 as_bad (MISSING_FNSTART);
921e5f0a 4167
c19d1205
ZW
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
a737bd4d 4170
d02603dc 4171 c = get_symbol_name (& name);
c19d1205 4172 p = input_line_pointer;
d02603dc
NC
4173 if (c == '"')
4174 ++ input_line_pointer;
c19d1205
ZW
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178}
e16bb312 4179
e16bb312 4180
c19d1205 4181/* Parse a directive saving core registers. */
e16bb312 4182
c19d1205
ZW
4183static void
4184s_arm_unwind_save_core (void)
e16bb312 4185{
c19d1205
ZW
4186 valueT op;
4187 long range;
4188 int n;
e16bb312 4189
4b5a202f 4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
c19d1205 4191 if (range == FAIL)
e16bb312 4192 {
c19d1205
ZW
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
e16bb312 4197
c19d1205 4198 demand_empty_rest_of_line ();
e16bb312 4199
c19d1205
ZW
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
e16bb312 4211
01ae4198
DJ
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
c19d1205 4214 {
01ae4198
DJ
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
0dd132b6 4230 else
01ae4198
DJ
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
c19d1205 4240 }
0dd132b6 4241
c19d1205
ZW
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
0dd132b6
NC
4247 }
4248
c19d1205
ZW
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
0dd132b6
NC
4255}
4256
c19d1205
ZW
4257
4258/* Parse a directive saving FPA registers. */
b99bd4ef
NC
4259
4260static void
c19d1205 4261s_arm_unwind_save_fpa (int reg)
b99bd4ef 4262{
c19d1205
ZW
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
b99bd4ef 4266
c19d1205
ZW
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
b99bd4ef 4272
c19d1205 4273 if (exp.X_op != O_constant)
b99bd4ef 4274 {
c19d1205
ZW
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
b99bd4ef
NC
4277 return;
4278 }
4279
c19d1205
ZW
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
b99bd4ef 4283 {
c19d1205
ZW
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
b99bd4ef
NC
4286 return;
4287 }
4288
c19d1205 4289 demand_empty_rest_of_line ();
b99bd4ef 4290
c19d1205
ZW
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
b99bd4ef
NC
4297 else
4298 {
c19d1205
ZW
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
b99bd4ef 4302 }
c19d1205 4303 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
4304}
4305
c19d1205 4306
fa073d69
MS
4307/* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309static void
4310s_arm_unwind_save_vfp_armv6 (void)
4311{
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
efd6b359 4317 bfd_boolean partial_match;
fa073d69 4318
efd6b359
AV
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
fa073d69
MS
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356}
4357
4358
4359/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
4360
4361static void
c19d1205 4362s_arm_unwind_save_vfp (void)
b99bd4ef 4363{
c19d1205 4364 int count;
ca3f61f7 4365 unsigned int reg;
c19d1205 4366 valueT op;
efd6b359 4367 bfd_boolean partial_match;
b99bd4ef 4368
efd6b359
AV
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
c19d1205 4371 if (count == FAIL)
b99bd4ef 4372 {
c19d1205
ZW
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
b99bd4ef
NC
4375 return;
4376 }
4377
c19d1205 4378 demand_empty_rest_of_line ();
b99bd4ef 4379
c19d1205 4380 if (reg == 8)
b99bd4ef 4381 {
c19d1205
ZW
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
b99bd4ef 4385 }
c19d1205 4386 else
b99bd4ef 4387 {
c19d1205
ZW
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
b99bd4ef 4391 }
c19d1205
ZW
4392 unwind.frame_size += count * 8 + 4;
4393}
b99bd4ef 4394
b99bd4ef 4395
c19d1205
ZW
4396/* Parse a directive saving iWMMXt data registers. */
4397
4398static void
4399s_arm_unwind_save_mmxwr (void)
4400{
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
b99bd4ef 4406
c19d1205
ZW
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
b99bd4ef 4409
c19d1205 4410 do
b99bd4ef 4411 {
dcbf9037 4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 4413
c19d1205 4414 if (reg == FAIL)
b99bd4ef 4415 {
9b7132d3 4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 4417 goto error;
b99bd4ef
NC
4418 }
4419
c19d1205
ZW
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
b99bd4ef 4423
c19d1205
ZW
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
dcbf9037 4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
4428 if (hi_reg == FAIL)
4429 {
9b7132d3 4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4443
d996d970 4444 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4445
c19d1205 4446 demand_empty_rest_of_line ();
b99bd4ef 4447
708587a4 4448 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4449 the list. */
4450 flush_pending_unwind ();
b99bd4ef 4451
c19d1205 4452 for (i = 0; i < 16; i++)
b99bd4ef 4453 {
c19d1205
ZW
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
b99bd4ef
NC
4456 }
4457
c19d1205
ZW
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
b99bd4ef 4462 {
c19d1205
ZW
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
b99bd4ef 4481
c19d1205
ZW
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
87a1fd79 4484 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
b99bd4ef
NC
4493 }
4494
c19d1205
ZW
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
b99bd4ef 4499 {
c19d1205
ZW
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 4505 preceding block. */
c19d1205
ZW
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
b99bd4ef
NC
4523 }
4524
c19d1205
ZW
4525 return;
4526error:
4527 ignore_rest_of_line ();
b99bd4ef
NC
4528}
4529
4530static void
c19d1205 4531s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4532{
c19d1205
ZW
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
b99bd4ef 4537
c19d1205
ZW
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
b99bd4ef 4540
477330fc
RM
4541 skip_whitespace (input_line_pointer);
4542
c19d1205 4543 do
b99bd4ef 4544 {
dcbf9037 4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4546
c19d1205
ZW
4547 if (reg == FAIL)
4548 {
9b7132d3 4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4550 goto error;
4551 }
b99bd4ef 4552
c19d1205
ZW
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
b99bd4ef 4557
c19d1205
ZW
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
dcbf9037 4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4562 if (hi_reg == FAIL)
4563 {
9b7132d3 4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
b99bd4ef 4575 }
c19d1205 4576 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4577
d996d970 4578 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4579
c19d1205
ZW
4580 demand_empty_rest_of_line ();
4581
708587a4 4582 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4583 the list. */
4584 flush_pending_unwind ();
b99bd4ef 4585
c19d1205 4586 for (reg = 0; reg < 16; reg++)
b99bd4ef 4587 {
c19d1205
ZW
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
b99bd4ef 4590 }
c19d1205
ZW
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594error:
4595 ignore_rest_of_line ();
b99bd4ef
NC
4596}
4597
c19d1205 4598
fa073d69
MS
4599/* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4601
b99bd4ef 4602static void
fa073d69 4603s_arm_unwind_save (int arch_v6)
b99bd4ef 4604{
c19d1205
ZW
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
b99bd4ef 4608
921e5f0a 4609 if (!unwind.proc_start)
c921be7d 4610 as_bad (MISSING_FNSTART);
921e5f0a 4611
c19d1205
ZW
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
b99bd4ef 4614
c19d1205 4615 if (*peek == '{')
b99bd4ef 4616 {
c19d1205
ZW
4617 had_brace = TRUE;
4618 peek++;
b99bd4ef
NC
4619 }
4620
c19d1205 4621 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4622
c19d1205 4623 if (!reg)
b99bd4ef 4624 {
c19d1205
ZW
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
b99bd4ef
NC
4627 return;
4628 }
4629
c19d1205 4630 switch (reg->type)
b99bd4ef 4631 {
c19d1205
ZW
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
93ac2687 4639 input_line_pointer = peek;
c19d1205 4640 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4641 return;
c19d1205 4642
1f5afe1c
NC
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
fa073d69
MS
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
477330fc 4649 s_arm_unwind_save_vfp_armv6 ();
fa073d69 4650 else
477330fc 4651 s_arm_unwind_save_vfp ();
fa073d69 4652 return;
1f5afe1c
NC
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
c19d1205
ZW
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
b99bd4ef 4665 }
c19d1205 4666}
b99bd4ef 4667
b99bd4ef 4668
c19d1205
ZW
4669/* Parse an unwind_movsp directive. */
4670
4671static void
4672s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673{
4674 int reg;
4675 valueT op;
4fa3602b 4676 int offset;
c19d1205 4677
921e5f0a 4678 if (!unwind.proc_start)
c921be7d 4679 as_bad (MISSING_FNSTART);
921e5f0a 4680
dcbf9037 4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4682 if (reg == FAIL)
b99bd4ef 4683 {
9b7132d3 4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4685 ignore_rest_of_line ();
b99bd4ef
NC
4686 return;
4687 }
4fa3602b
PB
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
c19d1205 4698 demand_empty_rest_of_line ();
b99bd4ef 4699
c19d1205 4700 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4701 {
c19d1205 4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4703 return;
4704 }
4705
c19d1205
ZW
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4708
c19d1205
ZW
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4fa3602b 4715 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4716 unwind.sp_restored = 1;
b05fe5cf
ZW
4717}
4718
c19d1205
ZW
4719/* Parse an unwind_pad directive. */
4720
b05fe5cf 4721static void
c19d1205 4722s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4723{
c19d1205 4724 int offset;
b05fe5cf 4725
921e5f0a 4726 if (!unwind.proc_start)
c921be7d 4727 as_bad (MISSING_FNSTART);
921e5f0a 4728
c19d1205
ZW
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
b99bd4ef 4731
c19d1205
ZW
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
b99bd4ef 4738
c19d1205
ZW
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744}
4745
4746/* Parse an unwind_setfp directive. */
4747
4748static void
4749s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4750{
c19d1205
ZW
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
921e5f0a 4755 if (!unwind.proc_start)
c921be7d 4756 as_bad (MISSING_FNSTART);
921e5f0a 4757
dcbf9037 4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
dcbf9037 4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4763
c19d1205
ZW
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
b99bd4ef 4770
c19d1205
ZW
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
a737bd4d 4779
c19d1205 4780 demand_empty_rest_of_line ();
a737bd4d 4781
fdfde340 4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4783 {
c19d1205
ZW
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
a737bd4d
NC
4787 }
4788
c19d1205
ZW
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
fdfde340 4792 if (sp_reg == REG_SP)
c19d1205
ZW
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
a737bd4d
NC
4796}
4797
c19d1205
ZW
4798/* Parse an unwind_raw directive. */
4799
4800static void
4801s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4802{
c19d1205 4803 expressionS exp;
708587a4 4804 /* This is an arbitrary limit. */
c19d1205
ZW
4805 unsigned char op[16];
4806 int count;
a737bd4d 4807
921e5f0a 4808 if (!unwind.proc_start)
c921be7d 4809 as_bad (MISSING_FNSTART);
921e5f0a 4810
c19d1205
ZW
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4814 {
c19d1205
ZW
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
a737bd4d 4820
c19d1205
ZW
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
a737bd4d 4827
c19d1205 4828 count = 0;
a737bd4d 4829
c19d1205
ZW
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
a737bd4d 4837 }
c19d1205 4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4839 {
c19d1205
ZW
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
a737bd4d 4843 }
c19d1205 4844 op[count++] = exp.X_add_number;
a737bd4d 4845
c19d1205
ZW
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
a737bd4d 4849
c19d1205
ZW
4850 expression (&exp);
4851 }
b99bd4ef 4852
c19d1205
ZW
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
b99bd4ef 4856
c19d1205 4857 demand_empty_rest_of_line ();
b99bd4ef 4858}
ee065d83
PB
4859
4860
4861/* Parse a .eabi_attribute directive. */
4862
4863static void
4864s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865{
0420f52b 4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
ee3c0378 4867
3076e594 4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
ee3c0378 4869 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4870}
4871
0855e32b
NS
4872/* Emit a tls fix for the symbol. */
4873
4874static void
4875s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876{
4877 char *p;
4878 expressionS exp;
4879#ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881#endif
4882
4883#ifdef md_cons_align
4884 md_cons_align (4);
4885#endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894}
cdf9ccec 4895#endif /* OBJ_ELF */
0855e32b 4896
ee065d83 4897static void s_arm_arch (int);
7a1d4c38 4898static void s_arm_object_arch (int);
ee065d83
PB
4899static void s_arm_cpu (int);
4900static void s_arm_fpu (int);
69133863 4901static void s_arm_arch_extension (int);
b99bd4ef 4902
f0927246
NC
4903#ifdef TE_PE
4904
4905static void
5f4273c7 4906pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4907{
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922}
4923#endif /* TE_PE */
4924
c19d1205
ZW
4925/* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
b99bd4ef 4930
c19d1205 4931const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4932{
c19d1205
ZW
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
dcbf9037
JB
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
c19d1205
ZW
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
db2ed2e0 4940 { "align", s_align_ptwo, 2 },
c19d1205
ZW
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
8463be01
PB
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
7a1d4c38 4953 { "object_arch", s_arm_object_arch, 0 },
8463be01 4954 { "fpu", s_arm_fpu, 0 },
69133863 4955 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4956#ifdef OBJ_ELF
c921be7d
NC
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
fa073d69 4970 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4977#else
4978 { "word", cons, 4},
f0927246
NC
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
68d20676 4985 { "file", dwarf2_directive_file, 0 },
f0927246
NC
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4988#endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
f0927246
NC
4992#ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994#endif
2e6976a8
DG
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
c19d1205
ZW
5002 { 0, 0, 0 }
5003};
5004\f
5005/* Parser functions used exclusively in instruction operands. */
b99bd4ef 5006
c19d1205
ZW
5007/* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
b99bd4ef 5012
c19d1205
ZW
5013static int
5014parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016{
5017 expressionS exp;
0198d5e6 5018
c19d1205
ZW
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
b99bd4ef 5021 {
c19d1205
ZW
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
b99bd4ef 5025
c19d1205
ZW
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
b99bd4ef 5031
c19d1205
ZW
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034}
b99bd4ef 5035
5287ad62 5036/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040static int
8335d6aa
JW
5041parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5287ad62
JB
5043{
5044 expressionS exp;
8335d6aa 5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5287ad62
JB
5046 char *ptr = *str;
5047
8335d6aa 5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5287ad62 5049
8335d6aa 5050 if (exp_p->X_op == O_constant)
036dc3f7 5051 {
8335d6aa 5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
036dc3f7
PB
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
8335d6aa 5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7 5057 {
8335d6aa
JW
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
036dc3f7
PB
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
8335d6aa
JW
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5287ad62
JB
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 5068
5287ad62 5069 /* Bignums have their least significant bits in
477330fc
RM
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 5072 gas_assert (parts != 0);
95b75c01
NC
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
8335d6aa 5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
95b75c01
NC
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
8335d6aa 5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
95b75c01
NC
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5287ad62
JB
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5099 inst.operands[i].regisimm = 1;
5100 }
8335d6aa 5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5287ad62 5102 return FAIL;
5f4273c7 5103
5287ad62
JB
5104 *str = ptr;
5105
5106 return SUCCESS;
5107}
5108
c19d1205
ZW
5109/* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
b99bd4ef 5111
c19d1205
ZW
5112static int
5113parse_fpa_immediate (char ** str)
5114{
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
b99bd4ef 5120
c19d1205
ZW
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
b99bd4ef 5123
c19d1205
ZW
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 5127 {
c19d1205 5128 char *start = *str;
b99bd4ef 5129
c19d1205
ZW
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
b99bd4ef 5136
c19d1205
ZW
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
b99bd4ef 5141
c19d1205 5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 5143
c19d1205
ZW
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 5151 {
c19d1205
ZW
5152 if (words[j] != fp_values[i][j])
5153 break;
b99bd4ef
NC
5154 }
5155
c19d1205 5156 if (j == MAX_LITTLENUMS)
b99bd4ef 5157 {
c19d1205
ZW
5158 *str = save_in;
5159 return i + 8;
b99bd4ef
NC
5160 }
5161 }
5162 }
b99bd4ef 5163
c19d1205
ZW
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
ba592044
AM
5174#define X_PRECISION 5
5175#define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
c19d1205
ZW
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
b99bd4ef 5185
c19d1205
ZW
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
b99bd4ef
NC
5194 }
5195
c19d1205
ZW
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
b99bd4ef
NC
5200}
5201
136da414
JB
5202/* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205static int
5206is_quarter_float (unsigned imm)
5207{
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210}
5211
aacf0b33
KT
5212
5213/* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216static bfd_boolean
5217parse_ifimm_zero (char **in)
5218{
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
3c6452ae
TP
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
0900a05b
JW
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
aacf0b33
KT
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249}
5250
136da414
JB
5251/* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
136da414
JB
5256
5257static unsigned
5258parse_qfloat_immediate (char **ccp, int *immed)
5259{
5260 char *str = *ccp;
c96612cc 5261 char *fpnum;
136da414 5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 5263 int found_fpchar = 0;
5f4273c7 5264
136da414 5265 skip_past_char (&str, '#');
5f4273c7 5266
c96612cc
JB
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
477330fc
RM
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
c96612cc
JB
5285
5286 if (!found_fpchar)
477330fc 5287 return FAIL;
c96612cc 5288 }
5f4273c7 5289
136da414
JB
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5f4273c7 5294
136da414
JB
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
477330fc
RM
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5f4273c7 5301
c96612cc 5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
477330fc 5303 *immed = fpword;
136da414 5304 else
477330fc 5305 return FAIL;
136da414
JB
5306
5307 *ccp = str;
5f4273c7 5308
136da414
JB
5309 return SUCCESS;
5310 }
5f4273c7 5311
136da414
JB
5312 return FAIL;
5313}
5314
c19d1205
ZW
5315/* Shift operands. */
5316enum shift_kind
b99bd4ef 5317{
f5f10c66 5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
c19d1205 5319};
b99bd4ef 5320
c19d1205
ZW
5321struct asm_shift_name
5322{
5323 const char *name;
5324 enum shift_kind kind;
5325};
b99bd4ef 5326
c19d1205
ZW
5327/* Third argument to parse_shift. */
5328enum parse_shift_mode
5329{
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
f5f10c66 5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
c19d1205 5336};
b99bd4ef 5337
c19d1205
ZW
5338/* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
b99bd4ef 5340
c19d1205
ZW
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
b99bd4ef 5344
c19d1205
ZW
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 5347
c19d1205
ZW
5348static int
5349parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 5350{
c19d1205
ZW
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
b99bd4ef 5356
c19d1205
ZW
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
b99bd4ef 5359
c19d1205 5360 if (p == *str)
b99bd4ef 5361 {
c19d1205
ZW
5362 inst.error = _("shift expression expected");
5363 return FAIL;
b99bd4ef
NC
5364 }
5365
21d799b5 5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
477330fc 5367 p - *str);
c19d1205
ZW
5368
5369 if (shift_name == NULL)
b99bd4ef 5370 {
c19d1205
ZW
5371 inst.error = _("shift expression expected");
5372 return FAIL;
b99bd4ef
NC
5373 }
5374
c19d1205 5375 shift = shift_name->kind;
b99bd4ef 5376
c19d1205
ZW
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
f5f10c66
AV
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
b99bd4ef 5387
c19d1205
ZW
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
b99bd4ef 5395
c19d1205
ZW
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
b99bd4ef 5403
c19d1205
ZW
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
f5f10c66
AV
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
b99bd4ef 5418
c19d1205
ZW
5419 default: abort ();
5420 }
b99bd4ef 5421
c19d1205
ZW
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
b99bd4ef 5426
c19d1205 5427 if (mode == NO_SHIFT_RESTRICT
dcbf9037 5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
e2b0ab59 5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
c19d1205
ZW
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
b99bd4ef
NC
5440}
5441
c19d1205 5442/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 5443
c19d1205
ZW
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
b99bd4ef 5448
c19d1205
ZW
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 5451 is deferred to md_apply_fix. */
b99bd4ef 5452
c19d1205
ZW
5453static int
5454parse_shifter_operand (char **str, int i)
5455{
5456 int value;
91d6fa6a 5457 expressionS exp;
b99bd4ef 5458
dcbf9037 5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
b99bd4ef 5463
c19d1205 5464 /* parse_shift will override this if appropriate */
e2b0ab59
AV
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
b99bd4ef 5467
c19d1205
ZW
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
b99bd4ef 5470
c19d1205
ZW
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
5473 }
5474
e2b0ab59 5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
c19d1205 5476 return FAIL;
b99bd4ef 5477
c19d1205 5478 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 5479 {
c19d1205 5480 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 5482 return FAIL;
b99bd4ef 5483
e2b0ab59 5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
c19d1205
ZW
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
b99bd4ef 5489
91d6fa6a 5490 value = exp.X_add_number;
c19d1205
ZW
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
e2b0ab59
AV
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
c19d1205
ZW
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
09d92015 5502
a415b1cd 5503 /* Encode as specified. */
e2b0ab59 5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
a415b1cd 5505 return SUCCESS;
09d92015
MM
5506 }
5507
e2b0ab59
AV
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
c19d1205 5510 return SUCCESS;
09d92015
MM
5511}
5512
4962c51a
MS
5513/* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520struct group_reloc_table_entry
5521{
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527};
5528
5529typedef enum
5530{
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
35c228db
AV
5535 GROUP_LDC,
5536 GROUP_MVE
4962c51a
MS
5537} group_reloc_type;
5538
5539static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
72d98d16
MG
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
4962c51a
MS
5613
5614/* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621static int
5622find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623{
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5f4273c7
NC
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
477330fc
RM
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
4962c51a
MS
5636 }
5637
5638 return FAIL;
5639}
5640
5641/* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655static parse_operand_result
5656parse_shifter_operand_group_reloc (char **str, int i)
5657{
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
477330fc 5668 (*str) += 2;
4962c51a 5669 else
477330fc 5670 (*str)++;
4962c51a
MS
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
477330fc
RM
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
4962c51a
MS
5678
5679 /* We now have the group relocation table entry corresponding to
477330fc 5680 the name in the assembler source. Next, we parse the expression. */
e2b0ab59 5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
477330fc 5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4962c51a
MS
5683
5684 /* Record the relocation type (always the ALU variant here). */
e2b0ab59
AV
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
4962c51a
MS
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
477330fc 5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4962c51a
MS
5693
5694 /* Never reached. */
5695}
5696
8e560766
MGD
5697/* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5699
8e560766
MGD
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701static parse_operand_result
5702parse_neon_alignment (char **str, int i)
5703{
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722}
5723
c19d1205 5724/* Parse all forms of an ARM address expression. Information is written
e2b0ab59 5725 to inst.operands[i] and/or inst.relocs[0].
09d92015 5726
c19d1205 5727 Preindexed addressing (.preind=1):
09d92015 5728
e2b0ab59 5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5732 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5733
c19d1205 5734 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5735
c19d1205 5736 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5737
e2b0ab59 5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5741 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5742
c19d1205 5743 Unindexed addressing (.preind=0, .postind=0):
09d92015 5744
c19d1205 5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5746
c19d1205 5747 Other:
09d92015 5748
c19d1205 5749 [Rn]{!} shorthand for [Rn,#0]{!}
e2b0ab59
AV
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
09d92015 5752
c19d1205 5753 It is the caller's responsibility to check for addressing modes not
e2b0ab59 5754 supported by the instruction, and to set inst.relocs[0].type. */
c19d1205 5755
4962c51a
MS
5756static parse_operand_result
5757parse_address_main (char **str, int i, int group_relocations,
477330fc 5758 group_reloc_type group_type)
09d92015 5759{
c19d1205
ZW
5760 char *p = *str;
5761 int reg;
09d92015 5762
c19d1205 5763 if (skip_past_char (&p, '[') == FAIL)
09d92015 5764 {
c19d1205
ZW
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
974da60d 5767 /* Bare address - translate to PC-relative offset. */
e2b0ab59 5768 inst.relocs[0].pc_rel = 1;
c19d1205
ZW
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
09d92015 5772
e2b0ab59 5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
8335d6aa
JW
5774 return PARSE_OPERAND_FAIL;
5775 }
e2b0ab59 5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
8335d6aa 5777 /*allow_symbol_p=*/TRUE))
4962c51a 5778 return PARSE_OPERAND_FAIL;
09d92015 5779
c19d1205 5780 *str = p;
4962c51a 5781 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5782 }
5783
8ab8155f
NC
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
f5f10c66
AV
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5802 {
35c228db
AV
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5807 return PARSE_OPERAND_FAIL;
09d92015 5808 }
c19d1205
ZW
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
09d92015 5811
c19d1205 5812 if (skip_past_comma (&p) == SUCCESS)
09d92015 5813 {
c19d1205 5814 inst.operands[i].preind = 1;
09d92015 5815
c19d1205
ZW
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
f5f10c66
AV
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5839 {
c19d1205
ZW
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5845 return PARSE_OPERAND_FAIL;
c19d1205 5846 }
5287ad62 5847 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5853
8e560766
MGD
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
c19d1205
ZW
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
4962c51a 5864
5f4273c7
NC
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5867 {
5868 struct group_reloc_table_entry *entry;
5869
477330fc
RM
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
4962c51a
MS
5875
5876 /* Try to parse a group relocation. Anything else is an
477330fc 5877 error. */
4962c51a
MS
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
477330fc 5886 expression. */
e2b0ab59 5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
4962c51a
MS
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
477330fc
RM
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
e2b0ab59
AV
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
477330fc 5896 break;
4962c51a 5897
477330fc 5898 case GROUP_LDRS:
e2b0ab59
AV
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
477330fc 5901 break;
4962c51a 5902
477330fc 5903 case GROUP_LDC:
e2b0ab59
AV
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
477330fc 5906 break;
4962c51a 5907
477330fc
RM
5908 default:
5909 gas_assert (0);
5910 }
4962c51a 5911
e2b0ab59 5912 if (inst.relocs[0].type == 0)
4962c51a
MS
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
477330fc
RM
5917 }
5918 else
26d97720
NS
5919 {
5920 char *q = p;
0198d5e6 5921
e2b0ab59 5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
26d97720
NS
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
09d92015
MM
5938 }
5939 }
8e560766
MGD
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5945
8e560766
MGD
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
09d92015 5949
c19d1205 5950 if (skip_past_char (&p, ']') == FAIL)
09d92015 5951 {
c19d1205 5952 inst.error = _("']' expected");
4962c51a 5953 return PARSE_OPERAND_FAIL;
09d92015
MM
5954 }
5955
c19d1205
ZW
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
09d92015 5958
c19d1205 5959 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5960 {
c19d1205
ZW
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5965 0, 255, TRUE) == FAIL)
4962c51a 5966 return PARSE_OPERAND_FAIL;
09d92015 5967
c19d1205
ZW
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5971 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
4962c51a 5976 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5977 }
5978 *str = p;
4962c51a 5979 return PARSE_OPERAND_SUCCESS;
09d92015 5980 }
c19d1205
ZW
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
09d92015 5985
c19d1205
ZW
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5989 return PARSE_OPERAND_FAIL;
c19d1205 5990 }
09d92015 5991
c19d1205
ZW
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5994
f5f10c66
AV
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 6004 {
477330fc
RM
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
c19d1205 6011 inst.operands[i].immisreg = 1;
a737bd4d 6012
c19d1205
ZW
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 6015 return PARSE_OPERAND_FAIL;
c19d1205
ZW
6016 }
6017 else
6018 {
26d97720 6019 char *q = p;
0198d5e6 6020
c19d1205
ZW
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
e2b0ab59 6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
4962c51a 6027 return PARSE_OPERAND_FAIL;
26d97720 6028 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
c19d1205
ZW
6041 }
6042 }
a737bd4d
NC
6043 }
6044
c19d1205
ZW
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
e2b0ab59
AV
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
c19d1205
ZW
6052 }
6053 *str = p;
4962c51a
MS
6054 return PARSE_OPERAND_SUCCESS;
6055}
6056
6057static int
6058parse_address (char **str, int i)
6059{
21d799b5 6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
477330fc 6061 ? SUCCESS : FAIL;
4962c51a
MS
6062}
6063
6064static parse_operand_result
6065parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066{
6067 return parse_address_main (str, i, 1, type);
a737bd4d
NC
6068}
6069
b6895b4f
PB
6070/* Parse an operand for a MOVW or MOVT instruction. */
6071static int
6072parse_half (char **str)
6073{
6074 char * p;
5f4273c7 6075
b6895b4f
PB
6076 p = *str;
6077 skip_past_char (&p, '#');
5f4273c7 6078 if (strncasecmp (p, ":lower16:", 9) == 0)
e2b0ab59 6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
b6895b4f 6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
e2b0ab59 6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
b6895b4f 6082
e2b0ab59 6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
b6895b4f
PB
6084 {
6085 p += 9;
5f4273c7 6086 skip_whitespace (p);
b6895b4f
PB
6087 }
6088
e2b0ab59 6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
b6895b4f
PB
6090 return FAIL;
6091
e2b0ab59 6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 6093 {
e2b0ab59 6094 if (inst.relocs[0].exp.X_op != O_constant)
b6895b4f
PB
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
e2b0ab59
AV
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
b6895b4f
PB
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108}
6109
c19d1205 6110/* Miscellaneous. */
a737bd4d 6111
c19d1205
ZW
6112/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114static int
d2cd1205 6115parse_psr (char **str, bfd_boolean lhs)
09d92015 6116{
c19d1205
ZW
6117 char *p;
6118 unsigned long psr_field;
62b3e311
PB
6119 const struct asm_psr *psr;
6120 char *start;
d2cd1205 6121 bfd_boolean is_apsr = FALSE;
ac7f631b 6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 6123
a4482bb6
NC
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
823d2571 6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
a4482bb6
NC
6128 m_profile = FALSE;
6129
c19d1205
ZW
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
62b3e311 6133 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
fa94de6b 6137
d2cd1205
JB
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
62b3e311
PB
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
d2cd1205
JB
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
21d799b5 6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
477330fc 6168 p - start);
d2cd1205 6169
62b3e311
PB
6170 if (!psr)
6171 return FAIL;
09d92015 6172
d2cd1205
JB
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
62b3e311 6182 *str = p;
d2cd1205
JB
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
62b3e311 6188 }
d2cd1205
JB
6189 else
6190 goto unsupported_psr;
09d92015 6191
62b3e311 6192 p += 4;
d2cd1205 6193check_suffix:
c19d1205
ZW
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
c19d1205
ZW
6197 p++;
6198 start = p;
a737bd4d 6199
c19d1205
ZW
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
a737bd4d 6203
d2cd1205
JB
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
fa94de6b 6210
d2cd1205
JB
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
477330fc 6214 {
d2cd1205
JB
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
fa94de6b 6230
d2cd1205
JB
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
fa94de6b 6234
d2cd1205
JB
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
fa94de6b 6238
d2cd1205
JB
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
fa94de6b 6244
d2cd1205
JB
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
fa94de6b 6247
d2cd1205
JB
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
477330fc 6251 {
d2cd1205
JB
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
fa94de6b 6259
d2cd1205
JB
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
477330fc 6269 {
d2cd1205 6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
477330fc 6271 p - start);
d2cd1205 6272 if (!psr)
477330fc 6273 goto error;
a737bd4d 6274
d2cd1205
JB
6275 psr_field |= psr->field;
6276 }
a737bd4d 6277 }
c19d1205 6278 else
a737bd4d 6279 {
c19d1205
ZW
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
d2cd1205 6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
477330fc 6284 is deprecated, but allow it anyway. */
d2cd1205
JB
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
a737bd4d 6295 }
c19d1205
ZW
6296 *str = p;
6297 return psr_field;
a737bd4d 6298
d2cd1205
JB
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
c19d1205
ZW
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
a737bd4d
NC
6307}
6308
32c36c3c
AV
6309static int
6310parse_sys_vldr_vstr (char **str)
6311{
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340}
6341
c19d1205
ZW
6342/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 6344
c19d1205
ZW
6345static int
6346parse_cps_flags (char **str)
a737bd4d 6347{
c19d1205
ZW
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
a737bd4d 6351
c19d1205
ZW
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
a737bd4d 6357
c19d1205
ZW
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 6361
c19d1205
ZW
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
a737bd4d 6366
c19d1205
ZW
6367 done:
6368 if (saw_a_flag == 0)
a737bd4d 6369 {
c19d1205
ZW
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
a737bd4d 6372 }
a737bd4d 6373
c19d1205
ZW
6374 *str = s - 1;
6375 return val;
a737bd4d
NC
6376}
6377
c19d1205
ZW
6378/* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
6380
6381static int
c19d1205 6382parse_endian_specifier (char **str)
a737bd4d 6383{
c19d1205
ZW
6384 int little_endian;
6385 char *s = *str;
a737bd4d 6386
c19d1205
ZW
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
a737bd4d 6392 {
c19d1205 6393 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6394 return FAIL;
6395 }
6396
c19d1205 6397 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 6398 {
c19d1205 6399 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6400 return FAIL;
6401 }
6402
c19d1205
ZW
6403 *str = s + 2;
6404 return little_endian;
6405}
a737bd4d 6406
c19d1205
ZW
6407/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411static int
6412parse_ror (char **str)
6413{
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
a737bd4d 6420 {
c19d1205 6421 inst.error = _("missing rotation field after comma");
a737bd4d
NC
6422 return FAIL;
6423 }
c19d1205
ZW
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
a737bd4d 6429 {
c19d1205
ZW
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
6437 return FAIL;
6438 }
c19d1205 6439}
a737bd4d 6440
c19d1205
ZW
6441/* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443static int
6444parse_cond (char **str)
6445{
c462b453 6446 char *q;
c19d1205 6447 const struct asm_cond *c;
c462b453
PB
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
a737bd4d 6452
c462b453
PB
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
e07e6e58 6457 cond[n] = TOLOWER (*q);
c462b453
PB
6458 q++;
6459 n++;
6460 }
a737bd4d 6461
21d799b5 6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 6463 if (!c)
a737bd4d 6464 {
c19d1205 6465 inst.error = _("condition required");
a737bd4d
NC
6466 return FAIL;
6467 }
6468
c19d1205
ZW
6469 *str = q;
6470 return c->value;
6471}
6472
62b3e311
PB
6473/* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475static int
6476parse_barrier (char **str)
6477{
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
21d799b5 6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
477330fc 6486 q - p);
62b3e311
PB
6487 if (!o)
6488 return FAIL;
6489
e797f7e0
MGD
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
62b3e311
PB
6493 *str = q;
6494 return o->value;
6495}
6496
92e90b6e
PB
6497/* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499static int
6500parse_tb (char **str)
6501{
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
92e90b6e 6510
dcbf9037 6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
5f4273c7 6523
dcbf9037 6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
e2b0ab59 6535 if (inst.relocs[0].exp.X_add_number != 1)
92e90b6e
PB
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550}
6551
5287ad62
JB
6552/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
037e8744
JB
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
5287ad62
JB
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559static int
6560parse_neon_mov (char **str, int *which_operand)
6561{
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
dcbf9037 6565 struct neon_type_el optype;
5f4273c7 6566
57785aa2
AV
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
5287ad62
JB
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
dcbf9037 6626 inst.operands[i].vectype = optype;
5287ad62
JB
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
477330fc 6630 goto wanted_comma;
5f4273c7 6631
dcbf9037 6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
477330fc 6633 goto wanted_arm;
5f4273c7 6634
5287ad62
JB
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
57785aa2
AV
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
5287ad62
JB
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
477330fc 6646 goto wanted_comma;
5f4273c7 6647
5287ad62
JB
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
dcbf9037 6653 inst.operands[i].vectype = optype;
5287ad62
JB
6654 inst.operands[i++].present = 1;
6655
dcbf9037 6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
037e8744 6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
477330fc
RM
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
4641781c 6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
477330fc
RM
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
8335d6aa
JW
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
477330fc
RM
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
5287ad62 6731 else
477330fc
RM
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
5287ad62 6736 }
dcbf9037 6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 6738 {
57785aa2 6739 /* Cases 6, 7, 16, 18. */
5287ad62
JB
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
5f4273c7 6743
5287ad62 6744 if (skip_past_comma (&ptr) == FAIL)
477330fc 6745 goto wanted_comma;
5f4273c7 6746
57785aa2
AV
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
477330fc
RM
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
dcbf9037 6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc 6764 {
477330fc
RM
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
57785aa2 6773 != FAIL)
477330fc 6774 {
57785aa2 6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
477330fc 6776
477330fc
RM
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
57785aa2 6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
477330fc
RM
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
57785aa2
AV
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
477330fc
RM
6837 }
6838 }
037e8744 6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
477330fc
RM
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
5287ad62
JB
6850 }
6851 else
6852 {
dcbf9037 6853 first_error (_("parse error"));
5287ad62
JB
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
5f4273c7 6862 wanted_comma:
dcbf9037 6863 first_error (_("expected comma"));
5287ad62 6864 return FAIL;
5f4273c7
NC
6865
6866 wanted_arm:
dcbf9037 6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6868 return FAIL;
5287ad62
JB
6869}
6870
5be8be5d
DG
6871/* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
c19d1205
ZW
6876/* Matcher codes for parse_operands. */
6877enum operand_parse_code
6878{
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6886 optional trailing ! */
c19d1205
ZW
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
5287ad62
JB
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
5ee91343
AV
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
5287ad62 6897 OP_RNQ, /* Neon quad precision register */
5ee91343 6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
037e8744 6899 OP_RVSD, /* VFP single or double precision register */
1b883319 6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
dd9634d9 6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
dec41383 6902 OP_RNSD, /* Neon single or double precision register */
5287ad62 6903 OP_RNDQ, /* Neon double or quad precision register */
5ee91343 6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
037e8744 6905 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6906 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6907 OP_RVC, /* VFP control register */
6908 OP_RMF, /* Maverick F register */
6909 OP_RMD, /* Maverick D register */
6910 OP_RMFX, /* Maverick FX register */
6911 OP_RMDX, /* Maverick DX register */
6912 OP_RMAX, /* Maverick AX register */
6913 OP_RMDS, /* Maverick DSPSC register */
6914 OP_RIWR, /* iWMMXt wR register */
6915 OP_RIWC, /* iWMMXt wC register */
6916 OP_RIWG, /* iWMMXt wCG register */
6917 OP_RXA, /* XScale accumulator register */
6918
5ee91343
AV
6919 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6920 */
6921 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6922 GPR (no SP/SP) */
a302e574 6923 OP_RMQ, /* MVE vector register. */
1b883319 6924 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
a302e574 6925
60f993ce
AV
6926 /* New operands for Armv8.1-M Mainline. */
6927 OP_LR, /* ARM LR register */
a302e574
AV
6928 OP_RRe, /* ARM register, only even numbered. */
6929 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
60f993ce
AV
6930 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6931
c19d1205 6932 OP_REGLST, /* ARM register list */
4b5a202f 6933 OP_CLRMLST, /* CLRM register list */
c19d1205
ZW
6934 OP_VRSLST, /* VFP single-precision register list */
6935 OP_VRDLST, /* VFP double-precision register list */
037e8744 6936 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6937 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6938 OP_NSTRLST, /* Neon element/structure list */
efd6b359 6939 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
35c228db
AV
6940 OP_MSTRLST2, /* MVE vector list with two elements. */
6941 OP_MSTRLST4, /* MVE vector list with four elements. */
5287ad62 6942
5287ad62 6943 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6944 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
aacf0b33 6945 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
1b883319
AV
6946 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6947 zero. */
5287ad62 6948 OP_RR_RNSC, /* ARM reg or Neon scalar. */
dec41383 6949 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
037e8744 6950 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
886e1c73
AV
6951 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6952 */
5287ad62 6953 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5d281bf0 6954 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
5287ad62
JB
6955 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6956 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6957 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
f601a00c
AV
6958 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6959 OP_RNDQMQ_Ibig,
5287ad62 6960 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6961 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
32c36c3c 6962 OP_VLDR, /* VLDR operand. */
5287ad62
JB
6963
6964 OP_I0, /* immediate zero */
c19d1205
ZW
6965 OP_I7, /* immediate value 0 .. 7 */
6966 OP_I15, /* 0 .. 15 */
6967 OP_I16, /* 1 .. 16 */
5287ad62 6968 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6969 OP_I31, /* 0 .. 31 */
6970 OP_I31w, /* 0 .. 31, optional trailing ! */
6971 OP_I32, /* 1 .. 32 */
5287ad62
JB
6972 OP_I32z, /* 0 .. 32 */
6973 OP_I63, /* 0 .. 63 */
c19d1205 6974 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6975 OP_I64, /* 1 .. 64 */
6976 OP_I64z, /* 0 .. 64 */
c19d1205 6977 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6978
6979 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6980 OP_I7b, /* 0 .. 7 */
6981 OP_I15b, /* 0 .. 15 */
6982 OP_I31b, /* 0 .. 31 */
6983
6984 OP_SH, /* shifter operand */
4962c51a 6985 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6986 OP_ADDR, /* Memory address expression (any mode) */
35c228db 6987 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
4962c51a
MS
6988 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6989 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6990 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6991 OP_EXP, /* arbitrary expression */
6992 OP_EXPi, /* same, with optional immediate prefix */
6993 OP_EXPr, /* same, with optional relocation suffix */
e2b0ab59 6994 OP_EXPs, /* same, with optional non-first operand relocation suffix */
b6895b4f 6995 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c28eeff2
SN
6996 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6997 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
c19d1205
ZW
6998
6999 OP_CPSF, /* CPS flags */
7000 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
7001 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7002 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 7003 OP_COND, /* conditional code */
92e90b6e 7004 OP_TB, /* Table branch. */
c19d1205 7005
037e8744
JB
7006 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7007
c19d1205 7008 OP_RRnpc_I0, /* ARM register or literal 0 */
33eaf5de 7009 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
c19d1205
ZW
7010 OP_RR_EXi, /* ARM register or expression with imm prefix */
7011 OP_RF_IF, /* FPA register or immediate */
7012 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 7013 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
7014
7015 /* Optional operands. */
7016 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7017 OP_oI31b, /* 0 .. 31 */
5287ad62 7018 OP_oI32b, /* 1 .. 32 */
5f1af56b 7019 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
7020 OP_oIffffb, /* 0 .. 65535 */
7021 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7022
7023 OP_oRR, /* ARM register */
60f993ce 7024 OP_oLR, /* ARM LR register */
c19d1205 7025 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 7026 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 7027 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
7028 OP_oRND, /* Optional Neon double precision register */
7029 OP_oRNQ, /* Optional Neon quad precision register */
5ee91343 7030 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
5287ad62 7031 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 7032 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5ee91343
AV
7033 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7034 register. */
c19d1205
ZW
7035 OP_oSHll, /* LSL immediate */
7036 OP_oSHar, /* ASR immediate */
7037 OP_oSHllar, /* LSL or ASR immediate */
7038 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 7039 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 7040
1b883319
AV
7041 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7042
5be8be5d
DG
7043 /* Some pre-defined mixed (ARM/THUMB) operands. */
7044 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7045 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7046 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7047
c19d1205
ZW
7048 OP_FIRST_OPTIONAL = OP_oI7b
7049};
a737bd4d 7050
c19d1205
ZW
7051/* Generic instruction operand parser. This does no encoding and no
7052 semantic validation; it merely squirrels values away in the inst
7053 structure. Returns SUCCESS or FAIL depending on whether the
7054 specified grammar matched. */
7055static int
5be8be5d 7056parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 7057{
5be8be5d 7058 unsigned const int *upat = pattern;
c19d1205
ZW
7059 char *backtrack_pos = 0;
7060 const char *backtrack_error = 0;
99aad254 7061 int i, val = 0, backtrack_index = 0;
5287ad62 7062 enum arm_reg_type rtype;
4962c51a 7063 parse_operand_result result;
5be8be5d 7064 unsigned int op_parse_code;
efd6b359 7065 bfd_boolean partial_match;
c19d1205 7066
e07e6e58
NC
7067#define po_char_or_fail(chr) \
7068 do \
7069 { \
7070 if (skip_past_char (&str, chr) == FAIL) \
477330fc 7071 goto bad_args; \
e07e6e58
NC
7072 } \
7073 while (0)
c19d1205 7074
e07e6e58
NC
7075#define po_reg_or_fail(regtype) \
7076 do \
dcbf9037 7077 { \
e07e6e58 7078 val = arm_typed_reg_parse (& str, regtype, & rtype, \
477330fc 7079 & inst.operands[i].vectype); \
e07e6e58 7080 if (val == FAIL) \
477330fc
RM
7081 { \
7082 first_error (_(reg_expected_msgs[regtype])); \
7083 goto failure; \
7084 } \
e07e6e58
NC
7085 inst.operands[i].reg = val; \
7086 inst.operands[i].isreg = 1; \
7087 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7088 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7089 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc
RM
7090 || rtype == REG_TYPE_VFD \
7091 || rtype == REG_TYPE_NQ); \
1b883319 7092 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
dcbf9037 7093 } \
e07e6e58
NC
7094 while (0)
7095
7096#define po_reg_or_goto(regtype, label) \
7097 do \
7098 { \
7099 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7100 & inst.operands[i].vectype); \
7101 if (val == FAIL) \
7102 goto label; \
dcbf9037 7103 \
e07e6e58
NC
7104 inst.operands[i].reg = val; \
7105 inst.operands[i].isreg = 1; \
7106 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7107 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7108 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc 7109 || rtype == REG_TYPE_VFD \
e07e6e58 7110 || rtype == REG_TYPE_NQ); \
1b883319 7111 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
e07e6e58
NC
7112 } \
7113 while (0)
7114
7115#define po_imm_or_fail(min, max, popt) \
7116 do \
7117 { \
7118 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7119 goto failure; \
7120 inst.operands[i].imm = val; \
7121 } \
7122 while (0)
7123
57785aa2 7124#define po_scalar_or_goto(elsz, label, reg_type) \
e07e6e58
NC
7125 do \
7126 { \
57785aa2
AV
7127 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7128 reg_type); \
e07e6e58
NC
7129 if (val == FAIL) \
7130 goto label; \
7131 inst.operands[i].reg = val; \
7132 inst.operands[i].isscalar = 1; \
7133 } \
7134 while (0)
7135
7136#define po_misc_or_fail(expr) \
7137 do \
7138 { \
7139 if (expr) \
7140 goto failure; \
7141 } \
7142 while (0)
7143
7144#define po_misc_or_fail_no_backtrack(expr) \
7145 do \
7146 { \
7147 result = expr; \
7148 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7149 backtrack_pos = 0; \
7150 if (result != PARSE_OPERAND_SUCCESS) \
7151 goto failure; \
7152 } \
7153 while (0)
4962c51a 7154
52e7f43d
RE
7155#define po_barrier_or_imm(str) \
7156 do \
7157 { \
7158 val = parse_barrier (&str); \
ccb84d65
JB
7159 if (val == FAIL && ! ISALPHA (*str)) \
7160 goto immediate; \
7161 if (val == FAIL \
7162 /* ISB can only take SY as an option. */ \
7163 || ((inst.instruction & 0xf0) == 0x60 \
7164 && val != 0xf)) \
52e7f43d 7165 { \
ccb84d65
JB
7166 inst.error = _("invalid barrier type"); \
7167 backtrack_pos = 0; \
7168 goto failure; \
52e7f43d
RE
7169 } \
7170 } \
7171 while (0)
7172
c19d1205
ZW
7173 skip_whitespace (str);
7174
7175 for (i = 0; upat[i] != OP_stop; i++)
7176 {
5be8be5d
DG
7177 op_parse_code = upat[i];
7178 if (op_parse_code >= 1<<16)
7179 op_parse_code = thumb ? (op_parse_code >> 16)
7180 : (op_parse_code & ((1<<16)-1));
7181
7182 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
7183 {
7184 /* Remember where we are in case we need to backtrack. */
c19d1205
ZW
7185 backtrack_pos = str;
7186 backtrack_error = inst.error;
7187 backtrack_index = i;
7188 }
7189
b6702015 7190 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
7191 po_char_or_fail (',');
7192
5be8be5d 7193 switch (op_parse_code)
c19d1205
ZW
7194 {
7195 /* Registers */
7196 case OP_oRRnpc:
5be8be5d 7197 case OP_oRRnpcsp:
c19d1205 7198 case OP_RRnpc:
5be8be5d 7199 case OP_RRnpcsp:
c19d1205 7200 case OP_oRR:
a302e574
AV
7201 case OP_RRe:
7202 case OP_RRo:
60f993ce
AV
7203 case OP_LR:
7204 case OP_oLR:
c19d1205
ZW
7205 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7206 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7207 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7208 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7209 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7210 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
477330fc 7211 case OP_oRND:
5ee91343
AV
7212 case OP_RNDMQR:
7213 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7214 break;
7215 try_rndmq:
7216 case OP_RNDMQ:
7217 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7218 break;
7219 try_rnd:
5287ad62 7220 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
7221 case OP_RVC:
7222 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7223 break;
7224 /* Also accept generic coprocessor regs for unknown registers. */
7225 coproc_reg:
7226 po_reg_or_fail (REG_TYPE_CN);
7227 break;
c19d1205
ZW
7228 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7229 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7230 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7231 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7232 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7233 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7234 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7235 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7236 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7237 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
477330fc 7238 case OP_oRNQ:
5ee91343
AV
7239 case OP_RNQMQ:
7240 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7241 break;
7242 try_nq:
5287ad62 7243 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
dec41383 7244 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
5ee91343
AV
7245 case OP_oRNDQMQ:
7246 case OP_RNDQMQ:
7247 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7248 break;
7249 try_rndq:
477330fc 7250 case OP_oRNDQ:
5287ad62 7251 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
dd9634d9
AV
7252 case OP_RVSDMQ:
7253 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7254 break;
7255 try_rvsd:
477330fc 7256 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
1b883319
AV
7257 case OP_RVSD_COND:
7258 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7259 break;
477330fc
RM
7260 case OP_oRNSDQ:
7261 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5ee91343
AV
7262 case OP_RNSDQMQR:
7263 po_reg_or_goto (REG_TYPE_RN, try_mq);
7264 break;
7265 try_mq:
7266 case OP_oRNSDQMQ:
7267 case OP_RNSDQMQ:
7268 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7269 break;
7270 try_nsdq2:
7271 po_reg_or_fail (REG_TYPE_NSDQ);
7272 inst.error = 0;
7273 break;
a302e574
AV
7274 case OP_RMQ:
7275 po_reg_or_fail (REG_TYPE_MQ);
7276 break;
477330fc
RM
7277 /* Neon scalar. Using an element size of 8 means that some invalid
7278 scalars are accepted here, so deal with those in later code. */
57785aa2 7279 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
477330fc
RM
7280
7281 case OP_RNDQ_I0:
7282 {
7283 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7284 break;
7285 try_imm0:
7286 po_imm_or_fail (0, 0, TRUE);
7287 }
7288 break;
7289
7290 case OP_RVSD_I0:
7291 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7292 break;
7293
1b883319
AV
7294 case OP_RSVDMQ_FI0:
7295 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7296 break;
7297 try_rsvd_fi0:
aacf0b33
KT
7298 case OP_RSVD_FI0:
7299 {
7300 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7301 break;
7302 try_ifimm0:
7303 if (parse_ifimm_zero (&str))
7304 inst.operands[i].imm = 0;
7305 else
7306 {
7307 inst.error
7308 = _("only floating point zero is allowed as immediate value");
7309 goto failure;
7310 }
7311 }
7312 break;
7313
477330fc
RM
7314 case OP_RR_RNSC:
7315 {
57785aa2 7316 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
477330fc
RM
7317 break;
7318 try_rr:
7319 po_reg_or_fail (REG_TYPE_RN);
7320 }
7321 break;
7322
886e1c73
AV
7323 case OP_RNSDQ_RNSC_MQ:
7324 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7325 break;
7326 try_rnsdq_rnsc:
477330fc
RM
7327 case OP_RNSDQ_RNSC:
7328 {
57785aa2
AV
7329 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7330 inst.error = 0;
477330fc
RM
7331 break;
7332 try_nsdq:
7333 po_reg_or_fail (REG_TYPE_NSDQ);
57785aa2 7334 inst.error = 0;
477330fc
RM
7335 }
7336 break;
7337
dec41383
JW
7338 case OP_RNSD_RNSC:
7339 {
57785aa2 7340 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
dec41383
JW
7341 break;
7342 try_s_scalar:
57785aa2 7343 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
dec41383
JW
7344 break;
7345 try_nsd:
7346 po_reg_or_fail (REG_TYPE_NSD);
7347 }
7348 break;
7349
5d281bf0
AV
7350 case OP_RNDQMQ_RNSC:
7351 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7352 break;
7353 try_rndq_rnsc:
477330fc
RM
7354 case OP_RNDQ_RNSC:
7355 {
57785aa2 7356 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
477330fc
RM
7357 break;
7358 try_ndq:
7359 po_reg_or_fail (REG_TYPE_NDQ);
7360 }
7361 break;
7362
7363 case OP_RND_RNSC:
7364 {
57785aa2 7365 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
477330fc
RM
7366 break;
7367 try_vfd:
7368 po_reg_or_fail (REG_TYPE_VFD);
7369 }
7370 break;
7371
7372 case OP_VMOV:
7373 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7374 not careful then bad things might happen. */
7375 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7376 break;
7377
f601a00c
AV
7378 case OP_RNDQMQ_Ibig:
7379 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7380 break;
7381 try_rndq_ibig:
477330fc
RM
7382 case OP_RNDQ_Ibig:
7383 {
7384 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7385 break;
7386 try_immbig:
7387 /* There's a possibility of getting a 64-bit immediate here, so
7388 we need special handling. */
8335d6aa
JW
7389 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7390 == FAIL)
477330fc
RM
7391 {
7392 inst.error = _("immediate value is out of range");
7393 goto failure;
7394 }
7395 }
7396 break;
7397
7398 case OP_RNDQ_I63b:
7399 {
7400 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7401 break;
7402 try_shimm:
7403 po_imm_or_fail (0, 63, TRUE);
7404 }
7405 break;
c19d1205
ZW
7406
7407 case OP_RRnpcb:
7408 po_char_or_fail ('[');
7409 po_reg_or_fail (REG_TYPE_RN);
7410 po_char_or_fail (']');
7411 break;
a737bd4d 7412
55881a11 7413 case OP_RRnpctw:
c19d1205 7414 case OP_RRw:
b6702015 7415 case OP_oRRw:
c19d1205
ZW
7416 po_reg_or_fail (REG_TYPE_RN);
7417 if (skip_past_char (&str, '!') == SUCCESS)
7418 inst.operands[i].writeback = 1;
7419 break;
7420
7421 /* Immediates */
7422 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7423 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7424 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
477330fc 7425 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
7426 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7427 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
477330fc 7428 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 7429 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
477330fc
RM
7430 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7431 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7432 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 7433 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
7434
7435 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7436 case OP_oI7b:
7437 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7438 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7439 case OP_oI31b:
7440 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
477330fc
RM
7441 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7442 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
7443 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7444
7445 /* Immediate variants */
7446 case OP_oI255c:
7447 po_char_or_fail ('{');
7448 po_imm_or_fail (0, 255, TRUE);
7449 po_char_or_fail ('}');
7450 break;
7451
7452 case OP_I31w:
7453 /* The expression parser chokes on a trailing !, so we have
7454 to find it first and zap it. */
7455 {
7456 char *s = str;
7457 while (*s && *s != ',')
7458 s++;
7459 if (s[-1] == '!')
7460 {
7461 s[-1] = '\0';
7462 inst.operands[i].writeback = 1;
7463 }
7464 po_imm_or_fail (0, 31, TRUE);
7465 if (str == s - 1)
7466 str = s;
7467 }
7468 break;
7469
7470 /* Expressions */
7471 case OP_EXPi: EXPi:
e2b0ab59 7472 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7473 GE_OPT_PREFIX));
7474 break;
7475
7476 case OP_EXP:
e2b0ab59 7477 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7478 GE_NO_PREFIX));
7479 break;
7480
7481 case OP_EXPr: EXPr:
e2b0ab59 7482 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205 7483 GE_NO_PREFIX));
e2b0ab59 7484 if (inst.relocs[0].exp.X_op == O_symbol)
a737bd4d 7485 {
c19d1205
ZW
7486 val = parse_reloc (&str);
7487 if (val == -1)
7488 {
7489 inst.error = _("unrecognized relocation suffix");
7490 goto failure;
7491 }
7492 else if (val != BFD_RELOC_UNUSED)
7493 {
7494 inst.operands[i].imm = val;
7495 inst.operands[i].hasreloc = 1;
7496 }
a737bd4d 7497 }
c19d1205 7498 break;
a737bd4d 7499
e2b0ab59
AV
7500 case OP_EXPs:
7501 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7502 GE_NO_PREFIX));
7503 if (inst.relocs[i].exp.X_op == O_symbol)
7504 {
7505 inst.operands[i].hasreloc = 1;
7506 }
7507 else if (inst.relocs[i].exp.X_op == O_constant)
7508 {
7509 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7510 inst.operands[i].hasreloc = 0;
7511 }
7512 break;
7513
b6895b4f
PB
7514 /* Operand for MOVW or MOVT. */
7515 case OP_HALF:
7516 po_misc_or_fail (parse_half (&str));
7517 break;
7518
e07e6e58 7519 /* Register or expression. */
c19d1205
ZW
7520 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7521 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 7522
e07e6e58 7523 /* Register or immediate. */
c19d1205
ZW
7524 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7525 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 7526
c19d1205
ZW
7527 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7528 IF:
7529 if (!is_immediate_prefix (*str))
7530 goto bad_args;
7531 str++;
7532 val = parse_fpa_immediate (&str);
7533 if (val == FAIL)
7534 goto failure;
7535 /* FPA immediates are encoded as registers 8-15.
7536 parse_fpa_immediate has already applied the offset. */
7537 inst.operands[i].reg = val;
7538 inst.operands[i].isreg = 1;
7539 break;
09d92015 7540
2d447fca
JM
7541 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7542 I32z: po_imm_or_fail (0, 32, FALSE); break;
7543
e07e6e58 7544 /* Two kinds of register. */
c19d1205
ZW
7545 case OP_RIWR_RIWC:
7546 {
7547 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
7548 if (!rege
7549 || (rege->type != REG_TYPE_MMXWR
7550 && rege->type != REG_TYPE_MMXWC
7551 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
7552 {
7553 inst.error = _("iWMMXt data or control register expected");
7554 goto failure;
7555 }
7556 inst.operands[i].reg = rege->number;
7557 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7558 }
7559 break;
09d92015 7560
41adaa5c
JM
7561 case OP_RIWC_RIWG:
7562 {
7563 struct reg_entry *rege = arm_reg_parse_multi (&str);
7564 if (!rege
7565 || (rege->type != REG_TYPE_MMXWC
7566 && rege->type != REG_TYPE_MMXWCG))
7567 {
7568 inst.error = _("iWMMXt control register expected");
7569 goto failure;
7570 }
7571 inst.operands[i].reg = rege->number;
7572 inst.operands[i].isreg = 1;
7573 }
7574 break;
7575
c19d1205
ZW
7576 /* Misc */
7577 case OP_CPSF: val = parse_cps_flags (&str); break;
7578 case OP_ENDI: val = parse_endian_specifier (&str); break;
7579 case OP_oROR: val = parse_ror (&str); break;
1b883319 7580 try_cond:
c19d1205 7581 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
7582 case OP_oBARRIER_I15:
7583 po_barrier_or_imm (str); break;
7584 immediate:
7585 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
477330fc 7586 goto failure;
52e7f43d 7587 break;
c19d1205 7588
fa94de6b 7589 case OP_wPSR:
d2cd1205 7590 case OP_rPSR:
90ec0d68
MGD
7591 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7592 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7593 {
7594 inst.error = _("Banked registers are not available with this "
7595 "architecture.");
7596 goto failure;
7597 }
7598 break;
d2cd1205
JB
7599 try_psr:
7600 val = parse_psr (&str, op_parse_code == OP_wPSR);
7601 break;
037e8744 7602
32c36c3c
AV
7603 case OP_VLDR:
7604 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7605 break;
7606 try_sysreg:
7607 val = parse_sys_vldr_vstr (&str);
7608 break;
7609
477330fc
RM
7610 case OP_APSR_RR:
7611 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7612 break;
7613 try_apsr:
7614 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7615 instruction). */
7616 if (strncasecmp (str, "APSR_", 5) == 0)
7617 {
7618 unsigned found = 0;
7619 str += 5;
7620 while (found < 15)
7621 switch (*str++)
7622 {
7623 case 'c': found = (found & 1) ? 16 : found | 1; break;
7624 case 'n': found = (found & 2) ? 16 : found | 2; break;
7625 case 'z': found = (found & 4) ? 16 : found | 4; break;
7626 case 'v': found = (found & 8) ? 16 : found | 8; break;
7627 default: found = 16;
7628 }
7629 if (found != 15)
7630 goto failure;
7631 inst.operands[i].isvec = 1;
f7c21dc7
NC
7632 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7633 inst.operands[i].reg = REG_PC;
477330fc
RM
7634 }
7635 else
7636 goto failure;
7637 break;
037e8744 7638
92e90b6e
PB
7639 case OP_TB:
7640 po_misc_or_fail (parse_tb (&str));
7641 break;
7642
e07e6e58 7643 /* Register lists. */
c19d1205 7644 case OP_REGLST:
4b5a202f 7645 val = parse_reg_list (&str, REGLIST_RN);
c19d1205
ZW
7646 if (*str == '^')
7647 {
5e0d7f77 7648 inst.operands[i].writeback = 1;
c19d1205
ZW
7649 str++;
7650 }
7651 break;
09d92015 7652
4b5a202f
AV
7653 case OP_CLRMLST:
7654 val = parse_reg_list (&str, REGLIST_CLRM);
7655 break;
7656
c19d1205 7657 case OP_VRSLST:
efd6b359
AV
7658 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7659 &partial_match);
c19d1205 7660 break;
09d92015 7661
c19d1205 7662 case OP_VRDLST:
efd6b359
AV
7663 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7664 &partial_match);
c19d1205 7665 break;
a737bd4d 7666
477330fc
RM
7667 case OP_VRSDLST:
7668 /* Allow Q registers too. */
7669 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7670 REGLIST_NEON_D, &partial_match);
477330fc
RM
7671 if (val == FAIL)
7672 {
7673 inst.error = NULL;
7674 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359
AV
7675 REGLIST_VFP_S, &partial_match);
7676 inst.operands[i].issingle = 1;
7677 }
7678 break;
7679
7680 case OP_VRSDVLST:
7681 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7682 REGLIST_VFP_D_VPR, &partial_match);
7683 if (val == FAIL && !partial_match)
7684 {
7685 inst.error = NULL;
7686 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7687 REGLIST_VFP_S_VPR, &partial_match);
477330fc
RM
7688 inst.operands[i].issingle = 1;
7689 }
7690 break;
7691
7692 case OP_NRDLST:
7693 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7694 REGLIST_NEON_D, &partial_match);
477330fc 7695 break;
5287ad62 7696
35c228db
AV
7697 case OP_MSTRLST4:
7698 case OP_MSTRLST2:
7699 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7700 1, &inst.operands[i].vectype);
7701 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7702 goto failure;
7703 break;
5287ad62 7704 case OP_NSTRLST:
477330fc 7705 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
35c228db 7706 0, &inst.operands[i].vectype);
477330fc 7707 break;
5287ad62 7708
c19d1205 7709 /* Addressing modes */
35c228db
AV
7710 case OP_ADDRMVE:
7711 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7712 break;
7713
c19d1205
ZW
7714 case OP_ADDR:
7715 po_misc_or_fail (parse_address (&str, i));
7716 break;
09d92015 7717
4962c51a
MS
7718 case OP_ADDRGLDR:
7719 po_misc_or_fail_no_backtrack (
477330fc 7720 parse_address_group_reloc (&str, i, GROUP_LDR));
4962c51a
MS
7721 break;
7722
7723 case OP_ADDRGLDRS:
7724 po_misc_or_fail_no_backtrack (
477330fc 7725 parse_address_group_reloc (&str, i, GROUP_LDRS));
4962c51a
MS
7726 break;
7727
7728 case OP_ADDRGLDC:
7729 po_misc_or_fail_no_backtrack (
477330fc 7730 parse_address_group_reloc (&str, i, GROUP_LDC));
4962c51a
MS
7731 break;
7732
c19d1205
ZW
7733 case OP_SH:
7734 po_misc_or_fail (parse_shifter_operand (&str, i));
7735 break;
09d92015 7736
4962c51a
MS
7737 case OP_SHG:
7738 po_misc_or_fail_no_backtrack (
477330fc 7739 parse_shifter_operand_group_reloc (&str, i));
4962c51a
MS
7740 break;
7741
c19d1205
ZW
7742 case OP_oSHll:
7743 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7744 break;
09d92015 7745
c19d1205
ZW
7746 case OP_oSHar:
7747 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7748 break;
09d92015 7749
c19d1205
ZW
7750 case OP_oSHllar:
7751 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7752 break;
09d92015 7753
1b883319
AV
7754 case OP_RMQRZ:
7755 case OP_oRMQRZ:
7756 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7757 break;
7758 try_rr_zr:
7759 po_reg_or_goto (REG_TYPE_RN, ZR);
7760 break;
7761 ZR:
7762 po_reg_or_fail (REG_TYPE_ZR);
7763 break;
7764
c19d1205 7765 default:
5be8be5d 7766 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 7767 }
09d92015 7768
c19d1205
ZW
7769 /* Various value-based sanity checks and shared operations. We
7770 do not signal immediate failures for the register constraints;
7771 this allows a syntax error to take precedence. */
5be8be5d 7772 switch (op_parse_code)
c19d1205
ZW
7773 {
7774 case OP_oRRnpc:
7775 case OP_RRnpc:
7776 case OP_RRnpcb:
7777 case OP_RRw:
b6702015 7778 case OP_oRRw:
c19d1205
ZW
7779 case OP_RRnpc_I0:
7780 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7781 inst.error = BAD_PC;
7782 break;
09d92015 7783
5be8be5d
DG
7784 case OP_oRRnpcsp:
7785 case OP_RRnpcsp:
7786 if (inst.operands[i].isreg)
7787 {
7788 if (inst.operands[i].reg == REG_PC)
7789 inst.error = BAD_PC;
5c8ed6a4
JW
7790 else if (inst.operands[i].reg == REG_SP
7791 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7792 relaxed since ARMv8-A. */
7793 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7794 {
7795 gas_assert (thumb);
7796 inst.error = BAD_SP;
7797 }
5be8be5d
DG
7798 }
7799 break;
7800
55881a11 7801 case OP_RRnpctw:
fa94de6b
RM
7802 if (inst.operands[i].isreg
7803 && inst.operands[i].reg == REG_PC
55881a11
MGD
7804 && (inst.operands[i].writeback || thumb))
7805 inst.error = BAD_PC;
7806 break;
7807
1b883319 7808 case OP_RVSD_COND:
32c36c3c
AV
7809 case OP_VLDR:
7810 if (inst.operands[i].isreg)
7811 break;
7812 /* fall through. */
1b883319 7813
c19d1205
ZW
7814 case OP_CPSF:
7815 case OP_ENDI:
7816 case OP_oROR:
d2cd1205
JB
7817 case OP_wPSR:
7818 case OP_rPSR:
c19d1205 7819 case OP_COND:
52e7f43d 7820 case OP_oBARRIER_I15:
c19d1205 7821 case OP_REGLST:
4b5a202f 7822 case OP_CLRMLST:
c19d1205
ZW
7823 case OP_VRSLST:
7824 case OP_VRDLST:
477330fc 7825 case OP_VRSDLST:
efd6b359 7826 case OP_VRSDVLST:
477330fc
RM
7827 case OP_NRDLST:
7828 case OP_NSTRLST:
35c228db
AV
7829 case OP_MSTRLST2:
7830 case OP_MSTRLST4:
c19d1205
ZW
7831 if (val == FAIL)
7832 goto failure;
7833 inst.operands[i].imm = val;
7834 break;
a737bd4d 7835
60f993ce
AV
7836 case OP_LR:
7837 case OP_oLR:
7838 if (inst.operands[i].reg != REG_LR)
7839 inst.error = _("operand must be LR register");
7840 break;
7841
1b883319
AV
7842 case OP_RMQRZ:
7843 case OP_oRMQRZ:
7844 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7845 inst.error = BAD_PC;
7846 break;
7847
a302e574
AV
7848 case OP_RRe:
7849 if (inst.operands[i].isreg
7850 && (inst.operands[i].reg & 0x00000001) != 0)
7851 inst.error = BAD_ODD;
7852 break;
7853
7854 case OP_RRo:
7855 if (inst.operands[i].isreg)
7856 {
7857 if ((inst.operands[i].reg & 0x00000001) != 1)
7858 inst.error = BAD_EVEN;
7859 else if (inst.operands[i].reg == REG_SP)
7860 as_tsktsk (MVE_BAD_SP);
7861 else if (inst.operands[i].reg == REG_PC)
7862 inst.error = BAD_PC;
7863 }
7864 break;
7865
c19d1205
ZW
7866 default:
7867 break;
7868 }
09d92015 7869
c19d1205
ZW
7870 /* If we get here, this operand was successfully parsed. */
7871 inst.operands[i].present = 1;
7872 continue;
09d92015 7873
c19d1205 7874 bad_args:
09d92015 7875 inst.error = BAD_ARGS;
c19d1205
ZW
7876
7877 failure:
7878 if (!backtrack_pos)
d252fdde
PB
7879 {
7880 /* The parse routine should already have set inst.error, but set a
5f4273c7 7881 default here just in case. */
d252fdde 7882 if (!inst.error)
5ee91343 7883 inst.error = BAD_SYNTAX;
d252fdde
PB
7884 return FAIL;
7885 }
c19d1205
ZW
7886
7887 /* Do not backtrack over a trailing optional argument that
7888 absorbed some text. We will only fail again, with the
7889 'garbage following instruction' error message, which is
7890 probably less helpful than the current one. */
7891 if (backtrack_index == i && backtrack_pos != str
7892 && upat[i+1] == OP_stop)
d252fdde
PB
7893 {
7894 if (!inst.error)
5ee91343 7895 inst.error = BAD_SYNTAX;
d252fdde
PB
7896 return FAIL;
7897 }
c19d1205
ZW
7898
7899 /* Try again, skipping the optional argument at backtrack_pos. */
7900 str = backtrack_pos;
7901 inst.error = backtrack_error;
7902 inst.operands[backtrack_index].present = 0;
7903 i = backtrack_index;
7904 backtrack_pos = 0;
09d92015 7905 }
09d92015 7906
c19d1205
ZW
7907 /* Check that we have parsed all the arguments. */
7908 if (*str != '\0' && !inst.error)
7909 inst.error = _("garbage following instruction");
09d92015 7910
c19d1205 7911 return inst.error ? FAIL : SUCCESS;
09d92015
MM
7912}
7913
c19d1205
ZW
7914#undef po_char_or_fail
7915#undef po_reg_or_fail
7916#undef po_reg_or_goto
7917#undef po_imm_or_fail
5287ad62 7918#undef po_scalar_or_fail
52e7f43d 7919#undef po_barrier_or_imm
e07e6e58 7920
c19d1205 7921/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
7922#define constraint(expr, err) \
7923 do \
c19d1205 7924 { \
e07e6e58
NC
7925 if (expr) \
7926 { \
7927 inst.error = err; \
7928 return; \
7929 } \
c19d1205 7930 } \
e07e6e58 7931 while (0)
c19d1205 7932
fdfde340
JM
7933/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7934 instructions are unpredictable if these registers are used. This
5c8ed6a4
JW
7935 is the BadReg predicate in ARM's Thumb-2 documentation.
7936
7937 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7938 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7939#define reject_bad_reg(reg) \
7940 do \
7941 if (reg == REG_PC) \
7942 { \
7943 inst.error = BAD_PC; \
7944 return; \
7945 } \
7946 else if (reg == REG_SP \
7947 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7948 { \
7949 inst.error = BAD_SP; \
7950 return; \
7951 } \
fdfde340
JM
7952 while (0)
7953
94206790
MM
7954/* If REG is R13 (the stack pointer), warn that its use is
7955 deprecated. */
7956#define warn_deprecated_sp(reg) \
7957 do \
7958 if (warn_on_deprecated && reg == REG_SP) \
5c3696f8 7959 as_tsktsk (_("use of r13 is deprecated")); \
94206790
MM
7960 while (0)
7961
c19d1205
ZW
7962/* Functions for operand encoding. ARM, then Thumb. */
7963
d840c081 7964#define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
c19d1205 7965
9db2f6b4
RL
7966/* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7967
7968 The only binary encoding difference is the Coprocessor number. Coprocessor
7969 9 is used for half-precision calculations or conversions. The format of the
2b0f3761 7970 instruction is the same as the equivalent Coprocessor 10 instruction that
9db2f6b4
RL
7971 exists for Single-Precision operation. */
7972
7973static void
7974do_scalar_fp16_v82_encode (void)
7975{
5ee91343 7976 if (inst.cond < COND_ALWAYS)
9db2f6b4
RL
7977 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7978 " the behaviour is UNPREDICTABLE"));
7979 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7980 _(BAD_FP16));
7981
7982 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7983 mark_feature_used (&arm_ext_fp16);
7984}
7985
c19d1205
ZW
7986/* If VAL can be encoded in the immediate field of an ARM instruction,
7987 return the encoded form. Otherwise, return FAIL. */
7988
7989static unsigned int
7990encode_arm_immediate (unsigned int val)
09d92015 7991{
c19d1205
ZW
7992 unsigned int a, i;
7993
4f1d6205
L
7994 if (val <= 0xff)
7995 return val;
7996
7997 for (i = 2; i < 32; i += 2)
c19d1205
ZW
7998 if ((a = rotate_left (val, i)) <= 0xff)
7999 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8000
8001 return FAIL;
09d92015
MM
8002}
8003
c19d1205
ZW
8004/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8005 return the encoded form. Otherwise, return FAIL. */
8006static unsigned int
8007encode_thumb32_immediate (unsigned int val)
09d92015 8008{
c19d1205 8009 unsigned int a, i;
09d92015 8010
9c3c69f2 8011 if (val <= 0xff)
c19d1205 8012 return val;
a737bd4d 8013
9c3c69f2 8014 for (i = 1; i <= 24; i++)
09d92015 8015 {
9c3c69f2
PB
8016 a = val >> i;
8017 if ((val & ~(0xff << i)) == 0)
8018 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 8019 }
a737bd4d 8020
c19d1205
ZW
8021 a = val & 0xff;
8022 if (val == ((a << 16) | a))
8023 return 0x100 | a;
8024 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8025 return 0x300 | a;
09d92015 8026
c19d1205
ZW
8027 a = val & 0xff00;
8028 if (val == ((a << 16) | a))
8029 return 0x200 | (a >> 8);
a737bd4d 8030
c19d1205 8031 return FAIL;
09d92015 8032}
5287ad62 8033/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
8034
8035static void
5287ad62
JB
8036encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8037{
8038 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8039 && reg > 15)
8040 {
b1cc4aeb 8041 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
8042 {
8043 if (thumb_mode)
8044 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8045 fpu_vfp_ext_d32);
8046 else
8047 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8048 fpu_vfp_ext_d32);
8049 }
5287ad62 8050 else
477330fc
RM
8051 {
8052 first_error (_("D register out of range for selected VFP version"));
8053 return;
8054 }
5287ad62
JB
8055 }
8056
c19d1205 8057 switch (pos)
09d92015 8058 {
c19d1205
ZW
8059 case VFP_REG_Sd:
8060 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8061 break;
8062
8063 case VFP_REG_Sn:
8064 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8065 break;
8066
8067 case VFP_REG_Sm:
8068 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8069 break;
8070
5287ad62
JB
8071 case VFP_REG_Dd:
8072 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8073 break;
5f4273c7 8074
5287ad62
JB
8075 case VFP_REG_Dn:
8076 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8077 break;
5f4273c7 8078
5287ad62
JB
8079 case VFP_REG_Dm:
8080 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8081 break;
8082
c19d1205
ZW
8083 default:
8084 abort ();
09d92015 8085 }
09d92015
MM
8086}
8087
c19d1205 8088/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 8089 if any, is handled by md_apply_fix. */
09d92015 8090static void
c19d1205 8091encode_arm_shift (int i)
09d92015 8092{
008a97ef
RL
8093 /* register-shifted register. */
8094 if (inst.operands[i].immisreg)
8095 {
bf355b69
MR
8096 int op_index;
8097 for (op_index = 0; op_index <= i; ++op_index)
008a97ef 8098 {
5689c942
RL
8099 /* Check the operand only when it's presented. In pre-UAL syntax,
8100 if the destination register is the same as the first operand, two
8101 register form of the instruction can be used. */
bf355b69
MR
8102 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8103 && inst.operands[op_index].reg == REG_PC)
008a97ef
RL
8104 as_warn (UNPRED_REG ("r15"));
8105 }
8106
8107 if (inst.operands[i].imm == REG_PC)
8108 as_warn (UNPRED_REG ("r15"));
8109 }
8110
c19d1205
ZW
8111 if (inst.operands[i].shift_kind == SHIFT_RRX)
8112 inst.instruction |= SHIFT_ROR << 5;
8113 else
09d92015 8114 {
c19d1205
ZW
8115 inst.instruction |= inst.operands[i].shift_kind << 5;
8116 if (inst.operands[i].immisreg)
8117 {
8118 inst.instruction |= SHIFT_BY_REG;
8119 inst.instruction |= inst.operands[i].imm << 8;
8120 }
8121 else
e2b0ab59 8122 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 8123 }
c19d1205 8124}
09d92015 8125
c19d1205
ZW
8126static void
8127encode_arm_shifter_operand (int i)
8128{
8129 if (inst.operands[i].isreg)
09d92015 8130 {
c19d1205
ZW
8131 inst.instruction |= inst.operands[i].reg;
8132 encode_arm_shift (i);
09d92015 8133 }
c19d1205 8134 else
a415b1cd
JB
8135 {
8136 inst.instruction |= INST_IMMEDIATE;
e2b0ab59 8137 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
a415b1cd
JB
8138 inst.instruction |= inst.operands[i].imm;
8139 }
09d92015
MM
8140}
8141
c19d1205 8142/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 8143static void
c19d1205 8144encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 8145{
2b2f5df9
NC
8146 /* PR 14260:
8147 Generate an error if the operand is not a register. */
8148 constraint (!inst.operands[i].isreg,
8149 _("Instruction does not support =N addresses"));
8150
c19d1205 8151 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 8152
c19d1205 8153 if (inst.operands[i].preind)
09d92015 8154 {
c19d1205
ZW
8155 if (is_t)
8156 {
8157 inst.error = _("instruction does not accept preindexed addressing");
8158 return;
8159 }
8160 inst.instruction |= PRE_INDEX;
8161 if (inst.operands[i].writeback)
8162 inst.instruction |= WRITE_BACK;
09d92015 8163
c19d1205
ZW
8164 }
8165 else if (inst.operands[i].postind)
8166 {
9c2799c2 8167 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
8168 if (is_t)
8169 inst.instruction |= WRITE_BACK;
8170 }
8171 else /* unindexed - only for coprocessor */
09d92015 8172 {
c19d1205 8173 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
8174 return;
8175 }
8176
c19d1205
ZW
8177 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8178 && (((inst.instruction & 0x000f0000) >> 16)
8179 == ((inst.instruction & 0x0000f000) >> 12)))
8180 as_warn ((inst.instruction & LOAD_BIT)
8181 ? _("destination register same as write-back base")
8182 : _("source register same as write-back base"));
09d92015
MM
8183}
8184
c19d1205
ZW
8185/* inst.operands[i] was set up by parse_address. Encode it into an
8186 ARM-format mode 2 load or store instruction. If is_t is true,
8187 reject forms that cannot be used with a T instruction (i.e. not
8188 post-indexed). */
a737bd4d 8189static void
c19d1205 8190encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 8191{
5be8be5d
DG
8192 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8193
c19d1205 8194 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8195
c19d1205 8196 if (inst.operands[i].immisreg)
09d92015 8197 {
5be8be5d
DG
8198 constraint ((inst.operands[i].imm == REG_PC
8199 || (is_pc && inst.operands[i].writeback)),
8200 BAD_PC_ADDRESSING);
c19d1205
ZW
8201 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8202 inst.instruction |= inst.operands[i].imm;
8203 if (!inst.operands[i].negative)
8204 inst.instruction |= INDEX_UP;
8205 if (inst.operands[i].shifted)
8206 {
8207 if (inst.operands[i].shift_kind == SHIFT_RRX)
8208 inst.instruction |= SHIFT_ROR << 5;
8209 else
8210 {
8211 inst.instruction |= inst.operands[i].shift_kind << 5;
e2b0ab59 8212 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
c19d1205
ZW
8213 }
8214 }
09d92015 8215 }
e2b0ab59 8216 else /* immediate offset in inst.relocs[0] */
09d92015 8217 {
e2b0ab59 8218 if (is_pc && !inst.relocs[0].pc_rel)
5be8be5d
DG
8219 {
8220 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
8221
8222 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8223 cannot use PC in addressing.
8224 PC cannot be used in writeback addressing, either. */
8225 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 8226 BAD_PC_ADDRESSING);
23a10334 8227
dc5ec521 8228 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
8229 if (warn_on_deprecated
8230 && !is_load
8231 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
5c3696f8 8232 as_tsktsk (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
8233 }
8234
e2b0ab59 8235 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8236 {
8237 /* Prefer + for zero encoded value. */
8238 if (!inst.operands[i].negative)
8239 inst.instruction |= INDEX_UP;
e2b0ab59 8240 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
26d97720 8241 }
09d92015 8242 }
09d92015
MM
8243}
8244
c19d1205
ZW
8245/* inst.operands[i] was set up by parse_address. Encode it into an
8246 ARM-format mode 3 load or store instruction. Reject forms that
8247 cannot be used with such instructions. If is_t is true, reject
8248 forms that cannot be used with a T instruction (i.e. not
8249 post-indexed). */
8250static void
8251encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 8252{
c19d1205 8253 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 8254 {
c19d1205
ZW
8255 inst.error = _("instruction does not accept scaled register index");
8256 return;
09d92015 8257 }
a737bd4d 8258
c19d1205 8259 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8260
c19d1205
ZW
8261 if (inst.operands[i].immisreg)
8262 {
5be8be5d 8263 constraint ((inst.operands[i].imm == REG_PC
eb9f3f00 8264 || (is_t && inst.operands[i].reg == REG_PC)),
5be8be5d 8265 BAD_PC_ADDRESSING);
eb9f3f00
JB
8266 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8267 BAD_PC_WRITEBACK);
c19d1205
ZW
8268 inst.instruction |= inst.operands[i].imm;
8269 if (!inst.operands[i].negative)
8270 inst.instruction |= INDEX_UP;
8271 }
e2b0ab59 8272 else /* immediate offset in inst.relocs[0] */
c19d1205 8273 {
e2b0ab59 8274 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
5be8be5d
DG
8275 && inst.operands[i].writeback),
8276 BAD_PC_WRITEBACK);
c19d1205 8277 inst.instruction |= HWOFFSET_IMM;
e2b0ab59 8278 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8279 {
8280 /* Prefer + for zero encoded value. */
8281 if (!inst.operands[i].negative)
8282 inst.instruction |= INDEX_UP;
8283
e2b0ab59 8284 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
26d97720 8285 }
c19d1205 8286 }
a737bd4d
NC
8287}
8288
8335d6aa
JW
8289/* Write immediate bits [7:0] to the following locations:
8290
8291 |28/24|23 19|18 16|15 4|3 0|
8292 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8293
8294 This function is used by VMOV/VMVN/VORR/VBIC. */
8295
8296static void
8297neon_write_immbits (unsigned immbits)
8298{
8299 inst.instruction |= immbits & 0xf;
8300 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8301 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8302}
8303
8304/* Invert low-order SIZE bits of XHI:XLO. */
8305
8306static void
8307neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8308{
8309 unsigned immlo = xlo ? *xlo : 0;
8310 unsigned immhi = xhi ? *xhi : 0;
8311
8312 switch (size)
8313 {
8314 case 8:
8315 immlo = (~immlo) & 0xff;
8316 break;
8317
8318 case 16:
8319 immlo = (~immlo) & 0xffff;
8320 break;
8321
8322 case 64:
8323 immhi = (~immhi) & 0xffffffff;
8324 /* fall through. */
8325
8326 case 32:
8327 immlo = (~immlo) & 0xffffffff;
8328 break;
8329
8330 default:
8331 abort ();
8332 }
8333
8334 if (xlo)
8335 *xlo = immlo;
8336
8337 if (xhi)
8338 *xhi = immhi;
8339}
8340
8341/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8342 A, B, C, D. */
09d92015 8343
c19d1205 8344static int
8335d6aa 8345neon_bits_same_in_bytes (unsigned imm)
09d92015 8346{
8335d6aa
JW
8347 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8348 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8349 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8350 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8351}
a737bd4d 8352
8335d6aa 8353/* For immediate of above form, return 0bABCD. */
09d92015 8354
8335d6aa
JW
8355static unsigned
8356neon_squash_bits (unsigned imm)
8357{
8358 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8359 | ((imm & 0x01000000) >> 21);
8360}
8361
8362/* Compress quarter-float representation to 0b...000 abcdefgh. */
8363
8364static unsigned
8365neon_qfloat_bits (unsigned imm)
8366{
8367 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8368}
8369
8370/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8371 the instruction. *OP is passed as the initial value of the op field, and
8372 may be set to a different value depending on the constant (i.e.
8373 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8374 MVN). If the immediate looks like a repeated pattern then also
8375 try smaller element sizes. */
8376
8377static int
8378neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8379 unsigned *immbits, int *op, int size,
8380 enum neon_el_type type)
8381{
8382 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8383 float. */
8384 if (type == NT_float && !float_p)
8385 return FAIL;
8386
8387 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
09d92015 8388 {
8335d6aa
JW
8389 if (size != 32 || *op == 1)
8390 return FAIL;
8391 *immbits = neon_qfloat_bits (immlo);
8392 return 0xf;
8393 }
8394
8395 if (size == 64)
8396 {
8397 if (neon_bits_same_in_bytes (immhi)
8398 && neon_bits_same_in_bytes (immlo))
c19d1205 8399 {
8335d6aa
JW
8400 if (*op == 1)
8401 return FAIL;
8402 *immbits = (neon_squash_bits (immhi) << 4)
8403 | neon_squash_bits (immlo);
8404 *op = 1;
8405 return 0xe;
c19d1205 8406 }
a737bd4d 8407
8335d6aa
JW
8408 if (immhi != immlo)
8409 return FAIL;
8410 }
a737bd4d 8411
8335d6aa 8412 if (size >= 32)
09d92015 8413 {
8335d6aa 8414 if (immlo == (immlo & 0x000000ff))
c19d1205 8415 {
8335d6aa
JW
8416 *immbits = immlo;
8417 return 0x0;
c19d1205 8418 }
8335d6aa 8419 else if (immlo == (immlo & 0x0000ff00))
c19d1205 8420 {
8335d6aa
JW
8421 *immbits = immlo >> 8;
8422 return 0x2;
c19d1205 8423 }
8335d6aa
JW
8424 else if (immlo == (immlo & 0x00ff0000))
8425 {
8426 *immbits = immlo >> 16;
8427 return 0x4;
8428 }
8429 else if (immlo == (immlo & 0xff000000))
8430 {
8431 *immbits = immlo >> 24;
8432 return 0x6;
8433 }
8434 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8435 {
8436 *immbits = (immlo >> 8) & 0xff;
8437 return 0xc;
8438 }
8439 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8440 {
8441 *immbits = (immlo >> 16) & 0xff;
8442 return 0xd;
8443 }
8444
8445 if ((immlo & 0xffff) != (immlo >> 16))
8446 return FAIL;
8447 immlo &= 0xffff;
09d92015 8448 }
a737bd4d 8449
8335d6aa 8450 if (size >= 16)
4962c51a 8451 {
8335d6aa
JW
8452 if (immlo == (immlo & 0x000000ff))
8453 {
8454 *immbits = immlo;
8455 return 0x8;
8456 }
8457 else if (immlo == (immlo & 0x0000ff00))
8458 {
8459 *immbits = immlo >> 8;
8460 return 0xa;
8461 }
8462
8463 if ((immlo & 0xff) != (immlo >> 8))
8464 return FAIL;
8465 immlo &= 0xff;
4962c51a
MS
8466 }
8467
8335d6aa
JW
8468 if (immlo == (immlo & 0x000000ff))
8469 {
8470 /* Don't allow MVN with 8-bit immediate. */
8471 if (*op == 1)
8472 return FAIL;
8473 *immbits = immlo;
8474 return 0xe;
8475 }
26d97720 8476
8335d6aa 8477 return FAIL;
c19d1205 8478}
a737bd4d 8479
5fc177c8 8480#if defined BFD_HOST_64_BIT
ba592044
AM
8481/* Returns TRUE if double precision value V may be cast
8482 to single precision without loss of accuracy. */
8483
8484static bfd_boolean
5fc177c8 8485is_double_a_single (bfd_int64_t v)
ba592044 8486{
5fc177c8 8487 int exp = (int)((v >> 52) & 0x7FF);
8fe3f3d6 8488 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8489
8490 return (exp == 0 || exp == 0x7FF
8491 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8492 && (mantissa & 0x1FFFFFFFl) == 0;
8493}
8494
3739860c 8495/* Returns a double precision value casted to single precision
ba592044
AM
8496 (ignoring the least significant bits in exponent and mantissa). */
8497
8498static int
5fc177c8 8499double_to_single (bfd_int64_t v)
ba592044
AM
8500{
8501 int sign = (int) ((v >> 63) & 1l);
5fc177c8 8502 int exp = (int) ((v >> 52) & 0x7FF);
8fe3f3d6 8503 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8504
8505 if (exp == 0x7FF)
8506 exp = 0xFF;
8507 else
8508 {
8509 exp = exp - 1023 + 127;
8510 if (exp >= 0xFF)
8511 {
8512 /* Infinity. */
8513 exp = 0x7F;
8514 mantissa = 0;
8515 }
8516 else if (exp < 0)
8517 {
8518 /* No denormalized numbers. */
8519 exp = 0;
8520 mantissa = 0;
8521 }
8522 }
8523 mantissa >>= 29;
8524 return (sign << 31) | (exp << 23) | mantissa;
8525}
5fc177c8 8526#endif /* BFD_HOST_64_BIT */
ba592044 8527
8335d6aa
JW
8528enum lit_type
8529{
8530 CONST_THUMB,
8531 CONST_ARM,
8532 CONST_VEC
8533};
8534
ba592044
AM
8535static void do_vfp_nsyn_opcode (const char *);
8536
e2b0ab59 8537/* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
c19d1205
ZW
8538 Determine whether it can be performed with a move instruction; if
8539 it can, convert inst.instruction to that move instruction and
c921be7d
NC
8540 return TRUE; if it can't, convert inst.instruction to a literal-pool
8541 load and return FALSE. If this is not a valid thing to do in the
8542 current context, set inst.error and return TRUE.
a737bd4d 8543
c19d1205
ZW
8544 inst.operands[i] describes the destination register. */
8545
c921be7d 8546static bfd_boolean
8335d6aa 8547move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
c19d1205 8548{
53365c0d 8549 unsigned long tbit;
8335d6aa
JW
8550 bfd_boolean thumb_p = (t == CONST_THUMB);
8551 bfd_boolean arm_p = (t == CONST_ARM);
53365c0d
PB
8552
8553 if (thumb_p)
8554 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8555 else
8556 tbit = LOAD_BIT;
8557
8558 if ((inst.instruction & tbit) == 0)
09d92015 8559 {
c19d1205 8560 inst.error = _("invalid pseudo operation");
c921be7d 8561 return TRUE;
09d92015 8562 }
ba592044 8563
e2b0ab59
AV
8564 if (inst.relocs[0].exp.X_op != O_constant
8565 && inst.relocs[0].exp.X_op != O_symbol
8566 && inst.relocs[0].exp.X_op != O_big)
09d92015
MM
8567 {
8568 inst.error = _("constant expression expected");
c921be7d 8569 return TRUE;
09d92015 8570 }
ba592044 8571
e2b0ab59
AV
8572 if (inst.relocs[0].exp.X_op == O_constant
8573 || inst.relocs[0].exp.X_op == O_big)
8335d6aa 8574 {
5fc177c8
NC
8575#if defined BFD_HOST_64_BIT
8576 bfd_int64_t v;
8577#else
ba592044 8578 offsetT v;
5fc177c8 8579#endif
e2b0ab59 8580 if (inst.relocs[0].exp.X_op == O_big)
8335d6aa 8581 {
ba592044
AM
8582 LITTLENUM_TYPE w[X_PRECISION];
8583 LITTLENUM_TYPE * l;
8584
e2b0ab59 8585 if (inst.relocs[0].exp.X_add_number == -1)
8335d6aa 8586 {
ba592044
AM
8587 gen_to_words (w, X_PRECISION, E_PRECISION);
8588 l = w;
8589 /* FIXME: Should we check words w[2..5] ? */
8335d6aa 8590 }
ba592044
AM
8591 else
8592 l = generic_bignum;
3739860c 8593
5fc177c8
NC
8594#if defined BFD_HOST_64_BIT
8595 v =
8596 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8597 << LITTLENUM_NUMBER_OF_BITS)
8598 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8599 << LITTLENUM_NUMBER_OF_BITS)
8600 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8601 << LITTLENUM_NUMBER_OF_BITS)
8602 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8603#else
ba592044
AM
8604 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8605 | (l[0] & LITTLENUM_MASK);
5fc177c8 8606#endif
8335d6aa 8607 }
ba592044 8608 else
e2b0ab59 8609 v = inst.relocs[0].exp.X_add_number;
ba592044
AM
8610
8611 if (!inst.operands[i].issingle)
8335d6aa 8612 {
12569877 8613 if (thumb_p)
8335d6aa 8614 {
53445554
TP
8615 /* LDR should not use lead in a flag-setting instruction being
8616 chosen so we do not check whether movs can be used. */
12569877 8617
53445554 8618 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
ff8646ee 8619 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
53445554
TP
8620 && inst.operands[i].reg != 13
8621 && inst.operands[i].reg != 15)
12569877 8622 {
fc289b0a
TP
8623 /* Check if on thumb2 it can be done with a mov.w, mvn or
8624 movw instruction. */
12569877
AM
8625 unsigned int newimm;
8626 bfd_boolean isNegated;
8627
8628 newimm = encode_thumb32_immediate (v);
8629 if (newimm != (unsigned int) FAIL)
8630 isNegated = FALSE;
8631 else
8632 {
582cfe03 8633 newimm = encode_thumb32_immediate (~v);
12569877
AM
8634 if (newimm != (unsigned int) FAIL)
8635 isNegated = TRUE;
8636 }
8637
fc289b0a
TP
8638 /* The number can be loaded with a mov.w or mvn
8639 instruction. */
ff8646ee
TP
8640 if (newimm != (unsigned int) FAIL
8641 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
12569877 8642 {
fc289b0a 8643 inst.instruction = (0xf04f0000 /* MOV.W. */
582cfe03 8644 | (inst.operands[i].reg << 8));
fc289b0a 8645 /* Change to MOVN. */
582cfe03 8646 inst.instruction |= (isNegated ? 0x200000 : 0);
12569877
AM
8647 inst.instruction |= (newimm & 0x800) << 15;
8648 inst.instruction |= (newimm & 0x700) << 4;
8649 inst.instruction |= (newimm & 0x0ff);
8650 return TRUE;
8651 }
fc289b0a 8652 /* The number can be loaded with a movw instruction. */
ff8646ee
TP
8653 else if ((v & ~0xFFFF) == 0
8654 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
3739860c 8655 {
582cfe03 8656 int imm = v & 0xFFFF;
12569877 8657
582cfe03 8658 inst.instruction = 0xf2400000; /* MOVW. */
12569877
AM
8659 inst.instruction |= (inst.operands[i].reg << 8);
8660 inst.instruction |= (imm & 0xf000) << 4;
8661 inst.instruction |= (imm & 0x0800) << 15;
8662 inst.instruction |= (imm & 0x0700) << 4;
8663 inst.instruction |= (imm & 0x00ff);
8664 return TRUE;
8665 }
8666 }
8335d6aa 8667 }
12569877 8668 else if (arm_p)
ba592044
AM
8669 {
8670 int value = encode_arm_immediate (v);
12569877 8671
ba592044
AM
8672 if (value != FAIL)
8673 {
8674 /* This can be done with a mov instruction. */
8675 inst.instruction &= LITERAL_MASK;
8676 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8677 inst.instruction |= value & 0xfff;
8678 return TRUE;
8679 }
8335d6aa 8680
ba592044
AM
8681 value = encode_arm_immediate (~ v);
8682 if (value != FAIL)
8683 {
8684 /* This can be done with a mvn instruction. */
8685 inst.instruction &= LITERAL_MASK;
8686 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8687 inst.instruction |= value & 0xfff;
8688 return TRUE;
8689 }
8690 }
934c2632 8691 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8335d6aa 8692 {
ba592044
AM
8693 int op = 0;
8694 unsigned immbits = 0;
8695 unsigned immlo = inst.operands[1].imm;
8696 unsigned immhi = inst.operands[1].regisimm
8697 ? inst.operands[1].reg
e2b0ab59 8698 : inst.relocs[0].exp.X_unsigned
ba592044
AM
8699 ? 0
8700 : ((bfd_int64_t)((int) immlo)) >> 32;
8701 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8702 &op, 64, NT_invtype);
8703
8704 if (cmode == FAIL)
8705 {
8706 neon_invert_size (&immlo, &immhi, 64);
8707 op = !op;
8708 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8709 &op, 64, NT_invtype);
8710 }
8711
8712 if (cmode != FAIL)
8713 {
8714 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8715 | (1 << 23)
8716 | (cmode << 8)
8717 | (op << 5)
8718 | (1 << 4);
8719
8720 /* Fill other bits in vmov encoding for both thumb and arm. */
8721 if (thumb_mode)
eff0bc54 8722 inst.instruction |= (0x7U << 29) | (0xF << 24);
ba592044 8723 else
eff0bc54 8724 inst.instruction |= (0xFU << 28) | (0x1 << 25);
ba592044
AM
8725 neon_write_immbits (immbits);
8726 return TRUE;
8727 }
8335d6aa
JW
8728 }
8729 }
8335d6aa 8730
ba592044
AM
8731 if (t == CONST_VEC)
8732 {
8733 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8734 if (inst.operands[i].issingle
8735 && is_quarter_float (inst.operands[1].imm)
8736 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8335d6aa 8737 {
ba592044
AM
8738 inst.operands[1].imm =
8739 neon_qfloat_bits (v);
8740 do_vfp_nsyn_opcode ("fconsts");
8741 return TRUE;
8335d6aa 8742 }
5fc177c8
NC
8743
8744 /* If our host does not support a 64-bit type then we cannot perform
8745 the following optimization. This mean that there will be a
8746 discrepancy between the output produced by an assembler built for
8747 a 32-bit-only host and the output produced from a 64-bit host, but
8748 this cannot be helped. */
8749#if defined BFD_HOST_64_BIT
ba592044
AM
8750 else if (!inst.operands[1].issingle
8751 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8335d6aa 8752 {
ba592044
AM
8753 if (is_double_a_single (v)
8754 && is_quarter_float (double_to_single (v)))
8755 {
8756 inst.operands[1].imm =
8757 neon_qfloat_bits (double_to_single (v));
8758 do_vfp_nsyn_opcode ("fconstd");
8759 return TRUE;
8760 }
8335d6aa 8761 }
5fc177c8 8762#endif
8335d6aa
JW
8763 }
8764 }
8765
8766 if (add_to_lit_pool ((!inst.operands[i].isvec
8767 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8768 return TRUE;
8769
8770 inst.operands[1].reg = REG_PC;
8771 inst.operands[1].isreg = 1;
8772 inst.operands[1].preind = 1;
e2b0ab59
AV
8773 inst.relocs[0].pc_rel = 1;
8774 inst.relocs[0].type = (thumb_p
8335d6aa
JW
8775 ? BFD_RELOC_ARM_THUMB_OFFSET
8776 : (mode_3
8777 ? BFD_RELOC_ARM_HWLITERAL
8778 : BFD_RELOC_ARM_LITERAL));
8779 return FALSE;
8780}
8781
8782/* inst.operands[i] was set up by parse_address. Encode it into an
8783 ARM-format instruction. Reject all forms which cannot be encoded
8784 into a coprocessor load/store instruction. If wb_ok is false,
8785 reject use of writeback; if unind_ok is false, reject use of
8786 unindexed addressing. If reloc_override is not 0, use it instead
8787 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8788 (in which case it is preserved). */
8789
8790static int
8791encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8792{
8793 if (!inst.operands[i].isreg)
8794 {
99b2a2dd
NC
8795 /* PR 18256 */
8796 if (! inst.operands[0].isvec)
8797 {
8798 inst.error = _("invalid co-processor operand");
8799 return FAIL;
8800 }
8335d6aa
JW
8801 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8802 return SUCCESS;
8803 }
8804
8805 inst.instruction |= inst.operands[i].reg << 16;
8806
8807 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8808
8809 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8810 {
8811 gas_assert (!inst.operands[i].writeback);
8812 if (!unind_ok)
8813 {
8814 inst.error = _("instruction does not support unindexed addressing");
8815 return FAIL;
8816 }
8817 inst.instruction |= inst.operands[i].imm;
8818 inst.instruction |= INDEX_UP;
8819 return SUCCESS;
8820 }
8821
8822 if (inst.operands[i].preind)
8823 inst.instruction |= PRE_INDEX;
8824
8825 if (inst.operands[i].writeback)
09d92015 8826 {
8335d6aa 8827 if (inst.operands[i].reg == REG_PC)
c19d1205 8828 {
8335d6aa
JW
8829 inst.error = _("pc may not be used with write-back");
8830 return FAIL;
c19d1205 8831 }
8335d6aa 8832 if (!wb_ok)
c19d1205 8833 {
8335d6aa
JW
8834 inst.error = _("instruction does not support writeback");
8835 return FAIL;
c19d1205 8836 }
8335d6aa 8837 inst.instruction |= WRITE_BACK;
09d92015
MM
8838 }
8839
8335d6aa 8840 if (reloc_override)
e2b0ab59
AV
8841 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8842 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8843 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8844 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
c19d1205 8845 {
8335d6aa 8846 if (thumb_mode)
e2b0ab59 8847 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8335d6aa 8848 else
e2b0ab59 8849 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
c19d1205 8850 }
8335d6aa
JW
8851
8852 /* Prefer + for zero encoded value. */
8853 if (!inst.operands[i].negative)
8854 inst.instruction |= INDEX_UP;
8855
8856 return SUCCESS;
09d92015
MM
8857}
8858
5f4273c7 8859/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
8860 First some generics; their names are taken from the conventional
8861 bit positions for register arguments in ARM format instructions. */
09d92015 8862
a737bd4d 8863static void
c19d1205 8864do_noargs (void)
09d92015 8865{
c19d1205 8866}
a737bd4d 8867
c19d1205
ZW
8868static void
8869do_rd (void)
8870{
8871 inst.instruction |= inst.operands[0].reg << 12;
8872}
a737bd4d 8873
16a1fa25
TP
8874static void
8875do_rn (void)
8876{
8877 inst.instruction |= inst.operands[0].reg << 16;
8878}
8879
c19d1205
ZW
8880static void
8881do_rd_rm (void)
8882{
8883 inst.instruction |= inst.operands[0].reg << 12;
8884 inst.instruction |= inst.operands[1].reg;
8885}
09d92015 8886
9eb6c0f1
MGD
8887static void
8888do_rm_rn (void)
8889{
8890 inst.instruction |= inst.operands[0].reg;
8891 inst.instruction |= inst.operands[1].reg << 16;
8892}
8893
c19d1205
ZW
8894static void
8895do_rd_rn (void)
8896{
8897 inst.instruction |= inst.operands[0].reg << 12;
8898 inst.instruction |= inst.operands[1].reg << 16;
8899}
a737bd4d 8900
c19d1205
ZW
8901static void
8902do_rn_rd (void)
8903{
8904 inst.instruction |= inst.operands[0].reg << 16;
8905 inst.instruction |= inst.operands[1].reg << 12;
8906}
09d92015 8907
4ed7ed8d
TP
8908static void
8909do_tt (void)
8910{
8911 inst.instruction |= inst.operands[0].reg << 8;
8912 inst.instruction |= inst.operands[1].reg << 16;
8913}
8914
59d09be6
MGD
8915static bfd_boolean
8916check_obsolete (const arm_feature_set *feature, const char *msg)
8917{
8918 if (ARM_CPU_IS_ANY (cpu_variant))
8919 {
5c3696f8 8920 as_tsktsk ("%s", msg);
59d09be6
MGD
8921 return TRUE;
8922 }
8923 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8924 {
8925 as_bad ("%s", msg);
8926 return TRUE;
8927 }
8928
8929 return FALSE;
8930}
8931
c19d1205
ZW
8932static void
8933do_rd_rm_rn (void)
8934{
9a64e435 8935 unsigned Rn = inst.operands[2].reg;
708587a4 8936 /* Enforce restrictions on SWP instruction. */
9a64e435 8937 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
8938 {
8939 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8940 _("Rn must not overlap other operands"));
8941
59d09be6
MGD
8942 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8943 */
8944 if (!check_obsolete (&arm_ext_v8,
8945 _("swp{b} use is obsoleted for ARMv8 and later"))
8946 && warn_on_deprecated
8947 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
5c3696f8 8948 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 8949 }
59d09be6 8950
c19d1205
ZW
8951 inst.instruction |= inst.operands[0].reg << 12;
8952 inst.instruction |= inst.operands[1].reg;
9a64e435 8953 inst.instruction |= Rn << 16;
c19d1205 8954}
09d92015 8955
c19d1205
ZW
8956static void
8957do_rd_rn_rm (void)
8958{
8959 inst.instruction |= inst.operands[0].reg << 12;
8960 inst.instruction |= inst.operands[1].reg << 16;
8961 inst.instruction |= inst.operands[2].reg;
8962}
a737bd4d 8963
c19d1205
ZW
8964static void
8965do_rm_rd_rn (void)
8966{
5be8be5d 8967 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
e2b0ab59
AV
8968 constraint (((inst.relocs[0].exp.X_op != O_constant
8969 && inst.relocs[0].exp.X_op != O_illegal)
8970 || inst.relocs[0].exp.X_add_number != 0),
5be8be5d 8971 BAD_ADDR_MODE);
c19d1205
ZW
8972 inst.instruction |= inst.operands[0].reg;
8973 inst.instruction |= inst.operands[1].reg << 12;
8974 inst.instruction |= inst.operands[2].reg << 16;
8975}
09d92015 8976
c19d1205
ZW
8977static void
8978do_imm0 (void)
8979{
8980 inst.instruction |= inst.operands[0].imm;
8981}
09d92015 8982
c19d1205
ZW
8983static void
8984do_rd_cpaddr (void)
8985{
8986 inst.instruction |= inst.operands[0].reg << 12;
8987 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 8988}
a737bd4d 8989
c19d1205
ZW
8990/* ARM instructions, in alphabetical order by function name (except
8991 that wrapper functions appear immediately after the function they
8992 wrap). */
09d92015 8993
c19d1205
ZW
8994/* This is a pseudo-op of the form "adr rd, label" to be converted
8995 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
8996
8997static void
c19d1205 8998do_adr (void)
09d92015 8999{
c19d1205 9000 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9001
c19d1205
ZW
9002 /* Frag hacking will turn this into a sub instruction if the offset turns
9003 out to be negative. */
e2b0ab59
AV
9004 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9005 inst.relocs[0].pc_rel = 1;
9006 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9007
fc6141f0 9008 if (support_interwork
e2b0ab59
AV
9009 && inst.relocs[0].exp.X_op == O_symbol
9010 && inst.relocs[0].exp.X_add_symbol != NULL
9011 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9012 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9013 inst.relocs[0].exp.X_add_number |= 1;
c19d1205 9014}
b99bd4ef 9015
c19d1205
ZW
9016/* This is a pseudo-op of the form "adrl rd, label" to be converted
9017 into a relative address of the form:
9018 add rd, pc, #low(label-.-8)"
9019 add rd, rd, #high(label-.-8)" */
b99bd4ef 9020
c19d1205
ZW
9021static void
9022do_adrl (void)
9023{
9024 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9025
c19d1205
ZW
9026 /* Frag hacking will turn this into a sub instruction if the offset turns
9027 out to be negative. */
e2b0ab59
AV
9028 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9029 inst.relocs[0].pc_rel = 1;
c19d1205 9030 inst.size = INSN_SIZE * 2;
e2b0ab59 9031 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9032
fc6141f0 9033 if (support_interwork
e2b0ab59
AV
9034 && inst.relocs[0].exp.X_op == O_symbol
9035 && inst.relocs[0].exp.X_add_symbol != NULL
9036 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9037 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9038 inst.relocs[0].exp.X_add_number |= 1;
b99bd4ef
NC
9039}
9040
b99bd4ef 9041static void
c19d1205 9042do_arit (void)
b99bd4ef 9043{
e2b0ab59
AV
9044 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9045 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9046 THUMB1_RELOC_ONLY);
c19d1205
ZW
9047 if (!inst.operands[1].present)
9048 inst.operands[1].reg = inst.operands[0].reg;
9049 inst.instruction |= inst.operands[0].reg << 12;
9050 inst.instruction |= inst.operands[1].reg << 16;
9051 encode_arm_shifter_operand (2);
9052}
b99bd4ef 9053
62b3e311
PB
9054static void
9055do_barrier (void)
9056{
9057 if (inst.operands[0].present)
ccb84d65 9058 inst.instruction |= inst.operands[0].imm;
62b3e311
PB
9059 else
9060 inst.instruction |= 0xf;
9061}
9062
c19d1205
ZW
9063static void
9064do_bfc (void)
9065{
9066 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9067 constraint (msb > 32, _("bit-field extends past end of register"));
9068 /* The instruction encoding stores the LSB and MSB,
9069 not the LSB and width. */
9070 inst.instruction |= inst.operands[0].reg << 12;
9071 inst.instruction |= inst.operands[1].imm << 7;
9072 inst.instruction |= (msb - 1) << 16;
9073}
b99bd4ef 9074
c19d1205
ZW
9075static void
9076do_bfi (void)
9077{
9078 unsigned int msb;
b99bd4ef 9079
c19d1205
ZW
9080 /* #0 in second position is alternative syntax for bfc, which is
9081 the same instruction but with REG_PC in the Rm field. */
9082 if (!inst.operands[1].isreg)
9083 inst.operands[1].reg = REG_PC;
b99bd4ef 9084
c19d1205
ZW
9085 msb = inst.operands[2].imm + inst.operands[3].imm;
9086 constraint (msb > 32, _("bit-field extends past end of register"));
9087 /* The instruction encoding stores the LSB and MSB,
9088 not the LSB and width. */
9089 inst.instruction |= inst.operands[0].reg << 12;
9090 inst.instruction |= inst.operands[1].reg;
9091 inst.instruction |= inst.operands[2].imm << 7;
9092 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
9093}
9094
b99bd4ef 9095static void
c19d1205 9096do_bfx (void)
b99bd4ef 9097{
c19d1205
ZW
9098 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9099 _("bit-field extends past end of register"));
9100 inst.instruction |= inst.operands[0].reg << 12;
9101 inst.instruction |= inst.operands[1].reg;
9102 inst.instruction |= inst.operands[2].imm << 7;
9103 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9104}
09d92015 9105
c19d1205
ZW
9106/* ARM V5 breakpoint instruction (argument parse)
9107 BKPT <16 bit unsigned immediate>
9108 Instruction is not conditional.
9109 The bit pattern given in insns[] has the COND_ALWAYS condition,
9110 and it is an error if the caller tried to override that. */
b99bd4ef 9111
c19d1205
ZW
9112static void
9113do_bkpt (void)
9114{
9115 /* Top 12 of 16 bits to bits 19:8. */
9116 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 9117
c19d1205
ZW
9118 /* Bottom 4 of 16 bits to bits 3:0. */
9119 inst.instruction |= inst.operands[0].imm & 0xf;
9120}
09d92015 9121
c19d1205
ZW
9122static void
9123encode_branch (int default_reloc)
9124{
9125 if (inst.operands[0].hasreloc)
9126 {
0855e32b
NS
9127 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9128 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9129 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
e2b0ab59 9130 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
0855e32b
NS
9131 ? BFD_RELOC_ARM_PLT32
9132 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 9133 }
b99bd4ef 9134 else
e2b0ab59
AV
9135 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9136 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
9137}
9138
b99bd4ef 9139static void
c19d1205 9140do_branch (void)
b99bd4ef 9141{
39b41c9c
PB
9142#ifdef OBJ_ELF
9143 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9144 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9145 else
9146#endif
9147 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9148}
9149
9150static void
9151do_bl (void)
9152{
9153#ifdef OBJ_ELF
9154 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9155 {
9156 if (inst.cond == COND_ALWAYS)
9157 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9158 else
9159 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9160 }
9161 else
9162#endif
9163 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 9164}
b99bd4ef 9165
c19d1205
ZW
9166/* ARM V5 branch-link-exchange instruction (argument parse)
9167 BLX <target_addr> ie BLX(1)
9168 BLX{<condition>} <Rm> ie BLX(2)
9169 Unfortunately, there are two different opcodes for this mnemonic.
9170 So, the insns[].value is not used, and the code here zaps values
9171 into inst.instruction.
9172 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 9173
c19d1205
ZW
9174static void
9175do_blx (void)
9176{
9177 if (inst.operands[0].isreg)
b99bd4ef 9178 {
c19d1205
ZW
9179 /* Arg is a register; the opcode provided by insns[] is correct.
9180 It is not illegal to do "blx pc", just useless. */
9181 if (inst.operands[0].reg == REG_PC)
9182 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 9183
c19d1205
ZW
9184 inst.instruction |= inst.operands[0].reg;
9185 }
9186 else
b99bd4ef 9187 {
c19d1205 9188 /* Arg is an address; this instruction cannot be executed
267bf995
RR
9189 conditionally, and the opcode must be adjusted.
9190 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9191 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 9192 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 9193 inst.instruction = 0xfa000000;
267bf995 9194 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 9195 }
c19d1205
ZW
9196}
9197
9198static void
9199do_bx (void)
9200{
845b51d6
PB
9201 bfd_boolean want_reloc;
9202
c19d1205
ZW
9203 if (inst.operands[0].reg == REG_PC)
9204 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 9205
c19d1205 9206 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
9207 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9208 it is for ARMv4t or earlier. */
9209 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
4d354d8b
TP
9210 if (!ARM_FEATURE_ZERO (selected_object_arch)
9211 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
845b51d6
PB
9212 want_reloc = TRUE;
9213
5ad34203 9214#ifdef OBJ_ELF
845b51d6 9215 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 9216#endif
584206db 9217 want_reloc = FALSE;
845b51d6
PB
9218
9219 if (want_reloc)
e2b0ab59 9220 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
09d92015
MM
9221}
9222
c19d1205
ZW
9223
9224/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
9225
9226static void
c19d1205 9227do_bxj (void)
a737bd4d 9228{
c19d1205
ZW
9229 if (inst.operands[0].reg == REG_PC)
9230 as_tsktsk (_("use of r15 in bxj is not really useful"));
9231
9232 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
9233}
9234
c19d1205
ZW
9235/* Co-processor data operation:
9236 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9237 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9238static void
9239do_cdp (void)
9240{
9241 inst.instruction |= inst.operands[0].reg << 8;
9242 inst.instruction |= inst.operands[1].imm << 20;
9243 inst.instruction |= inst.operands[2].reg << 12;
9244 inst.instruction |= inst.operands[3].reg << 16;
9245 inst.instruction |= inst.operands[4].reg;
9246 inst.instruction |= inst.operands[5].imm << 5;
9247}
a737bd4d
NC
9248
9249static void
c19d1205 9250do_cmp (void)
a737bd4d 9251{
c19d1205
ZW
9252 inst.instruction |= inst.operands[0].reg << 16;
9253 encode_arm_shifter_operand (1);
a737bd4d
NC
9254}
9255
c19d1205
ZW
9256/* Transfer between coprocessor and ARM registers.
9257 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9258 MRC2
9259 MCR{cond}
9260 MCR2
9261
9262 No special properties. */
09d92015 9263
dcbd0d71
MGD
9264struct deprecated_coproc_regs_s
9265{
9266 unsigned cp;
9267 int opc1;
9268 unsigned crn;
9269 unsigned crm;
9270 int opc2;
9271 arm_feature_set deprecated;
9272 arm_feature_set obsoleted;
9273 const char *dep_msg;
9274 const char *obs_msg;
9275};
9276
9277#define DEPR_ACCESS_V8 \
9278 N_("This coprocessor register access is deprecated in ARMv8")
9279
9280/* Table of all deprecated coprocessor registers. */
9281static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9282{
9283 {15, 0, 7, 10, 5, /* CP15DMB. */
823d2571 9284 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9285 DEPR_ACCESS_V8, NULL},
9286 {15, 0, 7, 10, 4, /* CP15DSB. */
823d2571 9287 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9288 DEPR_ACCESS_V8, NULL},
9289 {15, 0, 7, 5, 4, /* CP15ISB. */
823d2571 9290 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9291 DEPR_ACCESS_V8, NULL},
9292 {14, 6, 1, 0, 0, /* TEEHBR. */
823d2571 9293 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9294 DEPR_ACCESS_V8, NULL},
9295 {14, 6, 0, 0, 0, /* TEECR. */
823d2571 9296 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9297 DEPR_ACCESS_V8, NULL},
9298};
9299
9300#undef DEPR_ACCESS_V8
9301
9302static const size_t deprecated_coproc_reg_count =
9303 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9304
09d92015 9305static void
c19d1205 9306do_co_reg (void)
09d92015 9307{
fdfde340 9308 unsigned Rd;
dcbd0d71 9309 size_t i;
fdfde340
JM
9310
9311 Rd = inst.operands[2].reg;
9312 if (thumb_mode)
9313 {
9314 if (inst.instruction == 0xee000010
9315 || inst.instruction == 0xfe000010)
9316 /* MCR, MCR2 */
9317 reject_bad_reg (Rd);
5c8ed6a4 9318 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
fdfde340
JM
9319 /* MRC, MRC2 */
9320 constraint (Rd == REG_SP, BAD_SP);
9321 }
9322 else
9323 {
9324 /* MCR */
9325 if (inst.instruction == 0xe000010)
9326 constraint (Rd == REG_PC, BAD_PC);
9327 }
9328
dcbd0d71
MGD
9329 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9330 {
9331 const struct deprecated_coproc_regs_s *r =
9332 deprecated_coproc_regs + i;
9333
9334 if (inst.operands[0].reg == r->cp
9335 && inst.operands[1].imm == r->opc1
9336 && inst.operands[3].reg == r->crn
9337 && inst.operands[4].reg == r->crm
9338 && inst.operands[5].imm == r->opc2)
9339 {
b10bf8c5 9340 if (! ARM_CPU_IS_ANY (cpu_variant)
477330fc 9341 && warn_on_deprecated
dcbd0d71 9342 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
5c3696f8 9343 as_tsktsk ("%s", r->dep_msg);
dcbd0d71
MGD
9344 }
9345 }
fdfde340 9346
c19d1205
ZW
9347 inst.instruction |= inst.operands[0].reg << 8;
9348 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 9349 inst.instruction |= Rd << 12;
c19d1205
ZW
9350 inst.instruction |= inst.operands[3].reg << 16;
9351 inst.instruction |= inst.operands[4].reg;
9352 inst.instruction |= inst.operands[5].imm << 5;
9353}
09d92015 9354
c19d1205
ZW
9355/* Transfer between coprocessor register and pair of ARM registers.
9356 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9357 MCRR2
9358 MRRC{cond}
9359 MRRC2
b99bd4ef 9360
c19d1205 9361 Two XScale instructions are special cases of these:
09d92015 9362
c19d1205
ZW
9363 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9364 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 9365
5f4273c7 9366 Result unpredictable if Rd or Rn is R15. */
a737bd4d 9367
c19d1205
ZW
9368static void
9369do_co_reg2c (void)
9370{
fdfde340
JM
9371 unsigned Rd, Rn;
9372
9373 Rd = inst.operands[2].reg;
9374 Rn = inst.operands[3].reg;
9375
9376 if (thumb_mode)
9377 {
9378 reject_bad_reg (Rd);
9379 reject_bad_reg (Rn);
9380 }
9381 else
9382 {
9383 constraint (Rd == REG_PC, BAD_PC);
9384 constraint (Rn == REG_PC, BAD_PC);
9385 }
9386
873f10f0
TC
9387 /* Only check the MRRC{2} variants. */
9388 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9389 {
9390 /* If Rd == Rn, error that the operation is
9391 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9392 constraint (Rd == Rn, BAD_OVERLAP);
9393 }
9394
c19d1205
ZW
9395 inst.instruction |= inst.operands[0].reg << 8;
9396 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
9397 inst.instruction |= Rd << 12;
9398 inst.instruction |= Rn << 16;
c19d1205 9399 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
9400}
9401
c19d1205
ZW
9402static void
9403do_cpsi (void)
9404{
9405 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
9406 if (inst.operands[1].present)
9407 {
9408 inst.instruction |= CPSI_MMOD;
9409 inst.instruction |= inst.operands[1].imm;
9410 }
c19d1205 9411}
b99bd4ef 9412
62b3e311
PB
9413static void
9414do_dbg (void)
9415{
9416 inst.instruction |= inst.operands[0].imm;
9417}
9418
eea54501
MGD
9419static void
9420do_div (void)
9421{
9422 unsigned Rd, Rn, Rm;
9423
9424 Rd = inst.operands[0].reg;
9425 Rn = (inst.operands[1].present
9426 ? inst.operands[1].reg : Rd);
9427 Rm = inst.operands[2].reg;
9428
9429 constraint ((Rd == REG_PC), BAD_PC);
9430 constraint ((Rn == REG_PC), BAD_PC);
9431 constraint ((Rm == REG_PC), BAD_PC);
9432
9433 inst.instruction |= Rd << 16;
9434 inst.instruction |= Rn << 0;
9435 inst.instruction |= Rm << 8;
9436}
9437
b99bd4ef 9438static void
c19d1205 9439do_it (void)
b99bd4ef 9440{
c19d1205 9441 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
9442 process it to do the validation as if in
9443 thumb mode, just in case the code gets
9444 assembled for thumb using the unified syntax. */
9445
c19d1205 9446 inst.size = 0;
e07e6e58
NC
9447 if (unified_syntax)
9448 {
5ee91343
AV
9449 set_pred_insn_type (IT_INSN);
9450 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9451 now_pred.cc = inst.operands[0].imm;
e07e6e58 9452 }
09d92015 9453}
b99bd4ef 9454
6530b175
NC
9455/* If there is only one register in the register list,
9456 then return its register number. Otherwise return -1. */
9457static int
9458only_one_reg_in_list (int range)
9459{
9460 int i = ffs (range) - 1;
9461 return (i > 15 || range != (1 << i)) ? -1 : i;
9462}
9463
09d92015 9464static void
6530b175 9465encode_ldmstm(int from_push_pop_mnem)
ea6ef066 9466{
c19d1205
ZW
9467 int base_reg = inst.operands[0].reg;
9468 int range = inst.operands[1].imm;
6530b175 9469 int one_reg;
ea6ef066 9470
c19d1205
ZW
9471 inst.instruction |= base_reg << 16;
9472 inst.instruction |= range;
ea6ef066 9473
c19d1205
ZW
9474 if (inst.operands[1].writeback)
9475 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 9476
c19d1205 9477 if (inst.operands[0].writeback)
ea6ef066 9478 {
c19d1205
ZW
9479 inst.instruction |= WRITE_BACK;
9480 /* Check for unpredictable uses of writeback. */
9481 if (inst.instruction & LOAD_BIT)
09d92015 9482 {
c19d1205
ZW
9483 /* Not allowed in LDM type 2. */
9484 if ((inst.instruction & LDM_TYPE_2_OR_3)
9485 && ((range & (1 << REG_PC)) == 0))
9486 as_warn (_("writeback of base register is UNPREDICTABLE"));
9487 /* Only allowed if base reg not in list for other types. */
9488 else if (range & (1 << base_reg))
9489 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9490 }
9491 else /* STM. */
9492 {
9493 /* Not allowed for type 2. */
9494 if (inst.instruction & LDM_TYPE_2_OR_3)
9495 as_warn (_("writeback of base register is UNPREDICTABLE"));
9496 /* Only allowed if base reg not in list, or first in list. */
9497 else if ((range & (1 << base_reg))
9498 && (range & ((1 << base_reg) - 1)))
9499 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 9500 }
ea6ef066 9501 }
6530b175
NC
9502
9503 /* If PUSH/POP has only one register, then use the A2 encoding. */
9504 one_reg = only_one_reg_in_list (range);
9505 if (from_push_pop_mnem && one_reg >= 0)
9506 {
9507 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9508
4f588891
NC
9509 if (is_push && one_reg == 13 /* SP */)
9510 /* PR 22483: The A2 encoding cannot be used when
9511 pushing the stack pointer as this is UNPREDICTABLE. */
9512 return;
9513
6530b175
NC
9514 inst.instruction &= A_COND_MASK;
9515 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9516 inst.instruction |= one_reg << 12;
9517 }
9518}
9519
9520static void
9521do_ldmstm (void)
9522{
9523 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
9524}
9525
c19d1205
ZW
9526/* ARMv5TE load-consecutive (argument parse)
9527 Mode is like LDRH.
9528
9529 LDRccD R, mode
9530 STRccD R, mode. */
9531
a737bd4d 9532static void
c19d1205 9533do_ldrd (void)
a737bd4d 9534{
c19d1205 9535 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 9536 _("first transfer register must be even"));
c19d1205
ZW
9537 constraint (inst.operands[1].present
9538 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 9539 _("can only transfer two consecutive registers"));
c19d1205
ZW
9540 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9541 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 9542
c19d1205
ZW
9543 if (!inst.operands[1].present)
9544 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 9545
c56791bb
RE
9546 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9547 register and the first register written; we have to diagnose
9548 overlap between the base and the second register written here. */
ea6ef066 9549
c56791bb
RE
9550 if (inst.operands[2].reg == inst.operands[1].reg
9551 && (inst.operands[2].writeback || inst.operands[2].postind))
9552 as_warn (_("base register written back, and overlaps "
9553 "second transfer register"));
b05fe5cf 9554
c56791bb
RE
9555 if (!(inst.instruction & V4_STR_BIT))
9556 {
c19d1205 9557 /* For an index-register load, the index register must not overlap the
c56791bb
RE
9558 destination (even if not write-back). */
9559 if (inst.operands[2].immisreg
9560 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9561 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9562 as_warn (_("index register overlaps transfer register"));
b05fe5cf 9563 }
c19d1205
ZW
9564 inst.instruction |= inst.operands[0].reg << 12;
9565 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
9566}
9567
9568static void
c19d1205 9569do_ldrex (void)
b05fe5cf 9570{
c19d1205
ZW
9571 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9572 || inst.operands[1].postind || inst.operands[1].writeback
9573 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
9574 || inst.operands[1].negative
9575 /* This can arise if the programmer has written
9576 strex rN, rM, foo
9577 or if they have mistakenly used a register name as the last
9578 operand, eg:
9579 strex rN, rM, rX
9580 It is very difficult to distinguish between these two cases
9581 because "rX" might actually be a label. ie the register
9582 name has been occluded by a symbol of the same name. So we
9583 just generate a general 'bad addressing mode' type error
9584 message and leave it up to the programmer to discover the
9585 true cause and fix their mistake. */
9586 || (inst.operands[1].reg == REG_PC),
9587 BAD_ADDR_MODE);
b05fe5cf 9588
e2b0ab59
AV
9589 constraint (inst.relocs[0].exp.X_op != O_constant
9590 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9591 _("offset must be zero in ARM encoding"));
b05fe5cf 9592
5be8be5d
DG
9593 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9594
c19d1205
ZW
9595 inst.instruction |= inst.operands[0].reg << 12;
9596 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 9597 inst.relocs[0].type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
9598}
9599
9600static void
c19d1205 9601do_ldrexd (void)
b05fe5cf 9602{
c19d1205
ZW
9603 constraint (inst.operands[0].reg % 2 != 0,
9604 _("even register required"));
9605 constraint (inst.operands[1].present
9606 && inst.operands[1].reg != inst.operands[0].reg + 1,
9607 _("can only load two consecutive registers"));
9608 /* If op 1 were present and equal to PC, this function wouldn't
9609 have been called in the first place. */
9610 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 9611
c19d1205
ZW
9612 inst.instruction |= inst.operands[0].reg << 12;
9613 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
9614}
9615
1be5fd2e
NC
9616/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9617 which is not a multiple of four is UNPREDICTABLE. */
9618static void
9619check_ldr_r15_aligned (void)
9620{
9621 constraint (!(inst.operands[1].immisreg)
9622 && (inst.operands[0].reg == REG_PC
9623 && inst.operands[1].reg == REG_PC
e2b0ab59 9624 && (inst.relocs[0].exp.X_add_number & 0x3)),
de194d85 9625 _("ldr to register 15 must be 4-byte aligned"));
1be5fd2e
NC
9626}
9627
b05fe5cf 9628static void
c19d1205 9629do_ldst (void)
b05fe5cf 9630{
c19d1205
ZW
9631 inst.instruction |= inst.operands[0].reg << 12;
9632 if (!inst.operands[1].isreg)
8335d6aa 9633 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
b05fe5cf 9634 return;
c19d1205 9635 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 9636 check_ldr_r15_aligned ();
b05fe5cf
ZW
9637}
9638
9639static void
c19d1205 9640do_ldstt (void)
b05fe5cf 9641{
c19d1205
ZW
9642 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9643 reject [Rn,...]. */
9644 if (inst.operands[1].preind)
b05fe5cf 9645 {
e2b0ab59
AV
9646 constraint (inst.relocs[0].exp.X_op != O_constant
9647 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9648 _("this instruction requires a post-indexed address"));
b05fe5cf 9649
c19d1205
ZW
9650 inst.operands[1].preind = 0;
9651 inst.operands[1].postind = 1;
9652 inst.operands[1].writeback = 1;
b05fe5cf 9653 }
c19d1205
ZW
9654 inst.instruction |= inst.operands[0].reg << 12;
9655 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9656}
b05fe5cf 9657
c19d1205 9658/* Halfword and signed-byte load/store operations. */
b05fe5cf 9659
c19d1205
ZW
9660static void
9661do_ldstv4 (void)
9662{
ff4a8d2b 9663 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
9664 inst.instruction |= inst.operands[0].reg << 12;
9665 if (!inst.operands[1].isreg)
8335d6aa 9666 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
b05fe5cf 9667 return;
c19d1205 9668 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
9669}
9670
9671static void
c19d1205 9672do_ldsttv4 (void)
b05fe5cf 9673{
c19d1205
ZW
9674 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9675 reject [Rn,...]. */
9676 if (inst.operands[1].preind)
b05fe5cf 9677 {
e2b0ab59
AV
9678 constraint (inst.relocs[0].exp.X_op != O_constant
9679 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9680 _("this instruction requires a post-indexed address"));
b05fe5cf 9681
c19d1205
ZW
9682 inst.operands[1].preind = 0;
9683 inst.operands[1].postind = 1;
9684 inst.operands[1].writeback = 1;
b05fe5cf 9685 }
c19d1205
ZW
9686 inst.instruction |= inst.operands[0].reg << 12;
9687 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9688}
b05fe5cf 9689
c19d1205
ZW
9690/* Co-processor register load/store.
9691 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9692static void
9693do_lstc (void)
9694{
9695 inst.instruction |= inst.operands[0].reg << 8;
9696 inst.instruction |= inst.operands[1].reg << 12;
9697 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
9698}
9699
b05fe5cf 9700static void
c19d1205 9701do_mlas (void)
b05fe5cf 9702{
8fb9d7b9 9703 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 9704 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 9705 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 9706 && !(inst.instruction & 0x00400000))
8fb9d7b9 9707 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 9708
c19d1205
ZW
9709 inst.instruction |= inst.operands[0].reg << 16;
9710 inst.instruction |= inst.operands[1].reg;
9711 inst.instruction |= inst.operands[2].reg << 8;
9712 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 9713}
b05fe5cf 9714
c19d1205
ZW
9715static void
9716do_mov (void)
9717{
e2b0ab59
AV
9718 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9719 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9720 THUMB1_RELOC_ONLY);
c19d1205
ZW
9721 inst.instruction |= inst.operands[0].reg << 12;
9722 encode_arm_shifter_operand (1);
9723}
b05fe5cf 9724
c19d1205
ZW
9725/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9726static void
9727do_mov16 (void)
9728{
b6895b4f
PB
9729 bfd_vma imm;
9730 bfd_boolean top;
9731
9732 top = (inst.instruction & 0x00400000) != 0;
e2b0ab59 9733 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
33eaf5de 9734 _(":lower16: not allowed in this instruction"));
e2b0ab59 9735 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
33eaf5de 9736 _(":upper16: not allowed in this instruction"));
c19d1205 9737 inst.instruction |= inst.operands[0].reg << 12;
e2b0ab59 9738 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 9739 {
e2b0ab59 9740 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
9741 /* The value is in two pieces: 0:11, 16:19. */
9742 inst.instruction |= (imm & 0x00000fff);
9743 inst.instruction |= (imm & 0x0000f000) << 4;
9744 }
b05fe5cf 9745}
b99bd4ef 9746
037e8744
JB
9747static int
9748do_vfp_nsyn_mrs (void)
9749{
9750 if (inst.operands[0].isvec)
9751 {
9752 if (inst.operands[1].reg != 1)
477330fc 9753 first_error (_("operand 1 must be FPSCR"));
037e8744
JB
9754 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9755 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9756 do_vfp_nsyn_opcode ("fmstat");
9757 }
9758 else if (inst.operands[1].isvec)
9759 do_vfp_nsyn_opcode ("fmrx");
9760 else
9761 return FAIL;
5f4273c7 9762
037e8744
JB
9763 return SUCCESS;
9764}
9765
9766static int
9767do_vfp_nsyn_msr (void)
9768{
9769 if (inst.operands[0].isvec)
9770 do_vfp_nsyn_opcode ("fmxr");
9771 else
9772 return FAIL;
9773
9774 return SUCCESS;
9775}
9776
f7c21dc7
NC
9777static void
9778do_vmrs (void)
9779{
9780 unsigned Rt = inst.operands[0].reg;
fa94de6b 9781
16d02dc9 9782 if (thumb_mode && Rt == REG_SP)
f7c21dc7
NC
9783 {
9784 inst.error = BAD_SP;
9785 return;
9786 }
9787
40c7d507
RR
9788 /* MVFR2 is only valid at ARMv8-A. */
9789 if (inst.operands[1].reg == 5)
9790 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9791 _(BAD_FPU));
9792
f7c21dc7 9793 /* APSR_ sets isvec. All other refs to PC are illegal. */
16d02dc9 9794 if (!inst.operands[0].isvec && Rt == REG_PC)
f7c21dc7
NC
9795 {
9796 inst.error = BAD_PC;
9797 return;
9798 }
9799
16d02dc9
JB
9800 /* If we get through parsing the register name, we just insert the number
9801 generated into the instruction without further validation. */
9802 inst.instruction |= (inst.operands[1].reg << 16);
f7c21dc7
NC
9803 inst.instruction |= (Rt << 12);
9804}
9805
9806static void
9807do_vmsr (void)
9808{
9809 unsigned Rt = inst.operands[1].reg;
fa94de6b 9810
f7c21dc7
NC
9811 if (thumb_mode)
9812 reject_bad_reg (Rt);
9813 else if (Rt == REG_PC)
9814 {
9815 inst.error = BAD_PC;
9816 return;
9817 }
9818
40c7d507
RR
9819 /* MVFR2 is only valid for ARMv8-A. */
9820 if (inst.operands[0].reg == 5)
9821 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9822 _(BAD_FPU));
9823
16d02dc9
JB
9824 /* If we get through parsing the register name, we just insert the number
9825 generated into the instruction without further validation. */
9826 inst.instruction |= (inst.operands[0].reg << 16);
f7c21dc7
NC
9827 inst.instruction |= (Rt << 12);
9828}
9829
b99bd4ef 9830static void
c19d1205 9831do_mrs (void)
b99bd4ef 9832{
90ec0d68
MGD
9833 unsigned br;
9834
037e8744
JB
9835 if (do_vfp_nsyn_mrs () == SUCCESS)
9836 return;
9837
ff4a8d2b 9838 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 9839 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
9840
9841 if (inst.operands[1].isreg)
9842 {
9843 br = inst.operands[1].reg;
806ab1c0 9844 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
90ec0d68
MGD
9845 as_bad (_("bad register for mrs"));
9846 }
9847 else
9848 {
9849 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9850 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9851 != (PSR_c|PSR_f),
d2cd1205 9852 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
9853 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9854 }
9855
9856 inst.instruction |= br;
c19d1205 9857}
b99bd4ef 9858
c19d1205
ZW
9859/* Two possible forms:
9860 "{C|S}PSR_<field>, Rm",
9861 "{C|S}PSR_f, #expression". */
b99bd4ef 9862
c19d1205
ZW
9863static void
9864do_msr (void)
9865{
037e8744
JB
9866 if (do_vfp_nsyn_msr () == SUCCESS)
9867 return;
9868
c19d1205
ZW
9869 inst.instruction |= inst.operands[0].imm;
9870 if (inst.operands[1].isreg)
9871 inst.instruction |= inst.operands[1].reg;
9872 else
b99bd4ef 9873 {
c19d1205 9874 inst.instruction |= INST_IMMEDIATE;
e2b0ab59
AV
9875 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9876 inst.relocs[0].pc_rel = 0;
b99bd4ef 9877 }
b99bd4ef
NC
9878}
9879
c19d1205
ZW
9880static void
9881do_mul (void)
a737bd4d 9882{
ff4a8d2b
NC
9883 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9884
c19d1205
ZW
9885 if (!inst.operands[2].present)
9886 inst.operands[2].reg = inst.operands[0].reg;
9887 inst.instruction |= inst.operands[0].reg << 16;
9888 inst.instruction |= inst.operands[1].reg;
9889 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 9890
8fb9d7b9
MS
9891 if (inst.operands[0].reg == inst.operands[1].reg
9892 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9893 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
9894}
9895
c19d1205
ZW
9896/* Long Multiply Parser
9897 UMULL RdLo, RdHi, Rm, Rs
9898 SMULL RdLo, RdHi, Rm, Rs
9899 UMLAL RdLo, RdHi, Rm, Rs
9900 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
9901
9902static void
c19d1205 9903do_mull (void)
b99bd4ef 9904{
c19d1205
ZW
9905 inst.instruction |= inst.operands[0].reg << 12;
9906 inst.instruction |= inst.operands[1].reg << 16;
9907 inst.instruction |= inst.operands[2].reg;
9908 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 9909
682b27ad
PB
9910 /* rdhi and rdlo must be different. */
9911 if (inst.operands[0].reg == inst.operands[1].reg)
9912 as_tsktsk (_("rdhi and rdlo must be different"));
9913
9914 /* rdhi, rdlo and rm must all be different before armv6. */
9915 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 9916 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 9917 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
9918 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9919}
b99bd4ef 9920
c19d1205
ZW
9921static void
9922do_nop (void)
9923{
e7495e45
NS
9924 if (inst.operands[0].present
9925 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
9926 {
9927 /* Architectural NOP hints are CPSR sets with no bits selected. */
9928 inst.instruction &= 0xf0000000;
e7495e45
NS
9929 inst.instruction |= 0x0320f000;
9930 if (inst.operands[0].present)
9931 inst.instruction |= inst.operands[0].imm;
c19d1205 9932 }
b99bd4ef
NC
9933}
9934
c19d1205
ZW
9935/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9936 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9937 Condition defaults to COND_ALWAYS.
9938 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
9939
9940static void
c19d1205 9941do_pkhbt (void)
b99bd4ef 9942{
c19d1205
ZW
9943 inst.instruction |= inst.operands[0].reg << 12;
9944 inst.instruction |= inst.operands[1].reg << 16;
9945 inst.instruction |= inst.operands[2].reg;
9946 if (inst.operands[3].present)
9947 encode_arm_shift (3);
9948}
b99bd4ef 9949
c19d1205 9950/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 9951
c19d1205
ZW
9952static void
9953do_pkhtb (void)
9954{
9955 if (!inst.operands[3].present)
b99bd4ef 9956 {
c19d1205
ZW
9957 /* If the shift specifier is omitted, turn the instruction
9958 into pkhbt rd, rm, rn. */
9959 inst.instruction &= 0xfff00010;
9960 inst.instruction |= inst.operands[0].reg << 12;
9961 inst.instruction |= inst.operands[1].reg;
9962 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9963 }
9964 else
9965 {
c19d1205
ZW
9966 inst.instruction |= inst.operands[0].reg << 12;
9967 inst.instruction |= inst.operands[1].reg << 16;
9968 inst.instruction |= inst.operands[2].reg;
9969 encode_arm_shift (3);
b99bd4ef
NC
9970 }
9971}
9972
c19d1205 9973/* ARMv5TE: Preload-Cache
60e5ef9f 9974 MP Extensions: Preload for write
c19d1205 9975
60e5ef9f 9976 PLD(W) <addr_mode>
c19d1205
ZW
9977
9978 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
9979
9980static void
c19d1205 9981do_pld (void)
b99bd4ef 9982{
c19d1205
ZW
9983 constraint (!inst.operands[0].isreg,
9984 _("'[' expected after PLD mnemonic"));
9985 constraint (inst.operands[0].postind,
9986 _("post-indexed expression used in preload instruction"));
9987 constraint (inst.operands[0].writeback,
9988 _("writeback used in preload instruction"));
9989 constraint (!inst.operands[0].preind,
9990 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
9991 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9992}
b99bd4ef 9993
62b3e311
PB
9994/* ARMv7: PLI <addr_mode> */
9995static void
9996do_pli (void)
9997{
9998 constraint (!inst.operands[0].isreg,
9999 _("'[' expected after PLI mnemonic"));
10000 constraint (inst.operands[0].postind,
10001 _("post-indexed expression used in preload instruction"));
10002 constraint (inst.operands[0].writeback,
10003 _("writeback used in preload instruction"));
10004 constraint (!inst.operands[0].preind,
10005 _("unindexed addressing used in preload instruction"));
10006 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10007 inst.instruction &= ~PRE_INDEX;
10008}
10009
c19d1205
ZW
10010static void
10011do_push_pop (void)
10012{
5e0d7f77
MP
10013 constraint (inst.operands[0].writeback,
10014 _("push/pop do not support {reglist}^"));
c19d1205
ZW
10015 inst.operands[1] = inst.operands[0];
10016 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10017 inst.operands[0].isreg = 1;
10018 inst.operands[0].writeback = 1;
10019 inst.operands[0].reg = REG_SP;
6530b175 10020 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 10021}
b99bd4ef 10022
c19d1205
ZW
10023/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10024 word at the specified address and the following word
10025 respectively.
10026 Unconditionally executed.
10027 Error if Rn is R15. */
b99bd4ef 10028
c19d1205
ZW
10029static void
10030do_rfe (void)
10031{
10032 inst.instruction |= inst.operands[0].reg << 16;
10033 if (inst.operands[0].writeback)
10034 inst.instruction |= WRITE_BACK;
10035}
b99bd4ef 10036
c19d1205 10037/* ARM V6 ssat (argument parse). */
b99bd4ef 10038
c19d1205
ZW
10039static void
10040do_ssat (void)
10041{
10042 inst.instruction |= inst.operands[0].reg << 12;
10043 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10044 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10045
c19d1205
ZW
10046 if (inst.operands[3].present)
10047 encode_arm_shift (3);
b99bd4ef
NC
10048}
10049
c19d1205 10050/* ARM V6 usat (argument parse). */
b99bd4ef
NC
10051
10052static void
c19d1205 10053do_usat (void)
b99bd4ef 10054{
c19d1205
ZW
10055 inst.instruction |= inst.operands[0].reg << 12;
10056 inst.instruction |= inst.operands[1].imm << 16;
10057 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10058
c19d1205
ZW
10059 if (inst.operands[3].present)
10060 encode_arm_shift (3);
b99bd4ef
NC
10061}
10062
c19d1205 10063/* ARM V6 ssat16 (argument parse). */
09d92015
MM
10064
10065static void
c19d1205 10066do_ssat16 (void)
09d92015 10067{
c19d1205
ZW
10068 inst.instruction |= inst.operands[0].reg << 12;
10069 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10070 inst.instruction |= inst.operands[2].reg;
09d92015
MM
10071}
10072
c19d1205
ZW
10073static void
10074do_usat16 (void)
a737bd4d 10075{
c19d1205
ZW
10076 inst.instruction |= inst.operands[0].reg << 12;
10077 inst.instruction |= inst.operands[1].imm << 16;
10078 inst.instruction |= inst.operands[2].reg;
10079}
a737bd4d 10080
c19d1205
ZW
10081/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10082 preserving the other bits.
a737bd4d 10083
c19d1205
ZW
10084 setend <endian_specifier>, where <endian_specifier> is either
10085 BE or LE. */
a737bd4d 10086
c19d1205
ZW
10087static void
10088do_setend (void)
10089{
12e37cbc
MGD
10090 if (warn_on_deprecated
10091 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 10092 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 10093
c19d1205
ZW
10094 if (inst.operands[0].imm)
10095 inst.instruction |= 0x200;
a737bd4d
NC
10096}
10097
10098static void
c19d1205 10099do_shift (void)
a737bd4d 10100{
c19d1205
ZW
10101 unsigned int Rm = (inst.operands[1].present
10102 ? inst.operands[1].reg
10103 : inst.operands[0].reg);
a737bd4d 10104
c19d1205
ZW
10105 inst.instruction |= inst.operands[0].reg << 12;
10106 inst.instruction |= Rm;
10107 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 10108 {
c19d1205
ZW
10109 inst.instruction |= inst.operands[2].reg << 8;
10110 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
10111 /* PR 12854: Error on extraneous shifts. */
10112 constraint (inst.operands[2].shifted,
10113 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
10114 }
10115 else
e2b0ab59 10116 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
10117}
10118
09d92015 10119static void
3eb17e6b 10120do_smc (void)
09d92015 10121{
e2b0ab59
AV
10122 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10123 inst.relocs[0].pc_rel = 0;
09d92015
MM
10124}
10125
90ec0d68
MGD
10126static void
10127do_hvc (void)
10128{
e2b0ab59
AV
10129 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10130 inst.relocs[0].pc_rel = 0;
90ec0d68
MGD
10131}
10132
09d92015 10133static void
c19d1205 10134do_swi (void)
09d92015 10135{
e2b0ab59
AV
10136 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10137 inst.relocs[0].pc_rel = 0;
09d92015
MM
10138}
10139
ddfded2f
MW
10140static void
10141do_setpan (void)
10142{
10143 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10144 _("selected processor does not support SETPAN instruction"));
10145
10146 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10147}
10148
10149static void
10150do_t_setpan (void)
10151{
10152 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10153 _("selected processor does not support SETPAN instruction"));
10154
10155 inst.instruction |= (inst.operands[0].imm << 3);
10156}
10157
c19d1205
ZW
10158/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10159 SMLAxy{cond} Rd,Rm,Rs,Rn
10160 SMLAWy{cond} Rd,Rm,Rs,Rn
10161 Error if any register is R15. */
e16bb312 10162
c19d1205
ZW
10163static void
10164do_smla (void)
e16bb312 10165{
c19d1205
ZW
10166 inst.instruction |= inst.operands[0].reg << 16;
10167 inst.instruction |= inst.operands[1].reg;
10168 inst.instruction |= inst.operands[2].reg << 8;
10169 inst.instruction |= inst.operands[3].reg << 12;
10170}
a737bd4d 10171
c19d1205
ZW
10172/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10173 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10174 Error if any register is R15.
10175 Warning if Rdlo == Rdhi. */
a737bd4d 10176
c19d1205
ZW
10177static void
10178do_smlal (void)
10179{
10180 inst.instruction |= inst.operands[0].reg << 12;
10181 inst.instruction |= inst.operands[1].reg << 16;
10182 inst.instruction |= inst.operands[2].reg;
10183 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 10184
c19d1205
ZW
10185 if (inst.operands[0].reg == inst.operands[1].reg)
10186 as_tsktsk (_("rdhi and rdlo must be different"));
10187}
a737bd4d 10188
c19d1205
ZW
10189/* ARM V5E (El Segundo) signed-multiply (argument parse)
10190 SMULxy{cond} Rd,Rm,Rs
10191 Error if any register is R15. */
a737bd4d 10192
c19d1205
ZW
10193static void
10194do_smul (void)
10195{
10196 inst.instruction |= inst.operands[0].reg << 16;
10197 inst.instruction |= inst.operands[1].reg;
10198 inst.instruction |= inst.operands[2].reg << 8;
10199}
a737bd4d 10200
b6702015
PB
10201/* ARM V6 srs (argument parse). The variable fields in the encoding are
10202 the same for both ARM and Thumb-2. */
a737bd4d 10203
c19d1205
ZW
10204static void
10205do_srs (void)
10206{
b6702015
PB
10207 int reg;
10208
10209 if (inst.operands[0].present)
10210 {
10211 reg = inst.operands[0].reg;
fdfde340 10212 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
10213 }
10214 else
fdfde340 10215 reg = REG_SP;
b6702015
PB
10216
10217 inst.instruction |= reg << 16;
10218 inst.instruction |= inst.operands[1].imm;
10219 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
10220 inst.instruction |= WRITE_BACK;
10221}
a737bd4d 10222
c19d1205 10223/* ARM V6 strex (argument parse). */
a737bd4d 10224
c19d1205
ZW
10225static void
10226do_strex (void)
10227{
10228 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10229 || inst.operands[2].postind || inst.operands[2].writeback
10230 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
10231 || inst.operands[2].negative
10232 /* See comment in do_ldrex(). */
10233 || (inst.operands[2].reg == REG_PC),
10234 BAD_ADDR_MODE);
a737bd4d 10235
c19d1205
ZW
10236 constraint (inst.operands[0].reg == inst.operands[1].reg
10237 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 10238
e2b0ab59
AV
10239 constraint (inst.relocs[0].exp.X_op != O_constant
10240 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10241 _("offset must be zero in ARM encoding"));
a737bd4d 10242
c19d1205
ZW
10243 inst.instruction |= inst.operands[0].reg << 12;
10244 inst.instruction |= inst.operands[1].reg;
10245 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 10246 inst.relocs[0].type = BFD_RELOC_UNUSED;
e16bb312
NC
10247}
10248
877807f8
NC
10249static void
10250do_t_strexbh (void)
10251{
10252 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10253 || inst.operands[2].postind || inst.operands[2].writeback
10254 || inst.operands[2].immisreg || inst.operands[2].shifted
10255 || inst.operands[2].negative,
10256 BAD_ADDR_MODE);
10257
10258 constraint (inst.operands[0].reg == inst.operands[1].reg
10259 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10260
10261 do_rm_rd_rn ();
10262}
10263
e16bb312 10264static void
c19d1205 10265do_strexd (void)
e16bb312 10266{
c19d1205
ZW
10267 constraint (inst.operands[1].reg % 2 != 0,
10268 _("even register required"));
10269 constraint (inst.operands[2].present
10270 && inst.operands[2].reg != inst.operands[1].reg + 1,
10271 _("can only store two consecutive registers"));
10272 /* If op 2 were present and equal to PC, this function wouldn't
10273 have been called in the first place. */
10274 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 10275
c19d1205
ZW
10276 constraint (inst.operands[0].reg == inst.operands[1].reg
10277 || inst.operands[0].reg == inst.operands[1].reg + 1
10278 || inst.operands[0].reg == inst.operands[3].reg,
10279 BAD_OVERLAP);
e16bb312 10280
c19d1205
ZW
10281 inst.instruction |= inst.operands[0].reg << 12;
10282 inst.instruction |= inst.operands[1].reg;
10283 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
10284}
10285
9eb6c0f1
MGD
10286/* ARM V8 STRL. */
10287static void
4b8c8c02 10288do_stlex (void)
9eb6c0f1
MGD
10289{
10290 constraint (inst.operands[0].reg == inst.operands[1].reg
10291 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10292
10293 do_rd_rm_rn ();
10294}
10295
10296static void
4b8c8c02 10297do_t_stlex (void)
9eb6c0f1
MGD
10298{
10299 constraint (inst.operands[0].reg == inst.operands[1].reg
10300 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10301
10302 do_rm_rd_rn ();
10303}
10304
c19d1205
ZW
10305/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10306 extends it to 32-bits, and adds the result to a value in another
10307 register. You can specify a rotation by 0, 8, 16, or 24 bits
10308 before extracting the 16-bit value.
10309 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10310 Condition defaults to COND_ALWAYS.
10311 Error if any register uses R15. */
10312
e16bb312 10313static void
c19d1205 10314do_sxtah (void)
e16bb312 10315{
c19d1205
ZW
10316 inst.instruction |= inst.operands[0].reg << 12;
10317 inst.instruction |= inst.operands[1].reg << 16;
10318 inst.instruction |= inst.operands[2].reg;
10319 inst.instruction |= inst.operands[3].imm << 10;
10320}
e16bb312 10321
c19d1205 10322/* ARM V6 SXTH.
e16bb312 10323
c19d1205
ZW
10324 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10325 Condition defaults to COND_ALWAYS.
10326 Error if any register uses R15. */
e16bb312
NC
10327
10328static void
c19d1205 10329do_sxth (void)
e16bb312 10330{
c19d1205
ZW
10331 inst.instruction |= inst.operands[0].reg << 12;
10332 inst.instruction |= inst.operands[1].reg;
10333 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 10334}
c19d1205
ZW
10335\f
10336/* VFP instructions. In a logical order: SP variant first, monad
10337 before dyad, arithmetic then move then load/store. */
e16bb312
NC
10338
10339static void
c19d1205 10340do_vfp_sp_monadic (void)
e16bb312 10341{
57785aa2
AV
10342 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10343 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10344 _(BAD_FPU));
10345
5287ad62
JB
10346 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10347 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10348}
10349
10350static void
c19d1205 10351do_vfp_sp_dyadic (void)
e16bb312 10352{
5287ad62
JB
10353 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10354 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10355 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10356}
10357
10358static void
c19d1205 10359do_vfp_sp_compare_z (void)
e16bb312 10360{
5287ad62 10361 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
10362}
10363
10364static void
c19d1205 10365do_vfp_dp_sp_cvt (void)
e16bb312 10366{
5287ad62
JB
10367 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10368 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10369}
10370
10371static void
c19d1205 10372do_vfp_sp_dp_cvt (void)
e16bb312 10373{
5287ad62
JB
10374 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10375 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
10376}
10377
10378static void
c19d1205 10379do_vfp_reg_from_sp (void)
e16bb312 10380{
57785aa2
AV
10381 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10382 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10383 _(BAD_FPU));
10384
c19d1205 10385 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 10386 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
10387}
10388
10389static void
c19d1205 10390do_vfp_reg2_from_sp2 (void)
e16bb312 10391{
c19d1205
ZW
10392 constraint (inst.operands[2].imm != 2,
10393 _("only two consecutive VFP SP registers allowed here"));
10394 inst.instruction |= inst.operands[0].reg << 12;
10395 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 10396 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10397}
10398
10399static void
c19d1205 10400do_vfp_sp_from_reg (void)
e16bb312 10401{
57785aa2
AV
10402 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10403 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10404 _(BAD_FPU));
10405
5287ad62 10406 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 10407 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
10408}
10409
10410static void
c19d1205 10411do_vfp_sp2_from_reg2 (void)
e16bb312 10412{
c19d1205
ZW
10413 constraint (inst.operands[0].imm != 2,
10414 _("only two consecutive VFP SP registers allowed here"));
5287ad62 10415 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
10416 inst.instruction |= inst.operands[1].reg << 12;
10417 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
10418}
10419
10420static void
c19d1205 10421do_vfp_sp_ldst (void)
e16bb312 10422{
5287ad62 10423 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 10424 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10425}
10426
10427static void
c19d1205 10428do_vfp_dp_ldst (void)
e16bb312 10429{
5287ad62 10430 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 10431 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10432}
10433
c19d1205 10434
e16bb312 10435static void
c19d1205 10436vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10437{
c19d1205
ZW
10438 if (inst.operands[0].writeback)
10439 inst.instruction |= WRITE_BACK;
10440 else
10441 constraint (ldstm_type != VFP_LDSTMIA,
10442 _("this addressing mode requires base-register writeback"));
10443 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10444 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 10445 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
10446}
10447
10448static void
c19d1205 10449vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10450{
c19d1205 10451 int count;
e16bb312 10452
c19d1205
ZW
10453 if (inst.operands[0].writeback)
10454 inst.instruction |= WRITE_BACK;
10455 else
10456 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10457 _("this addressing mode requires base-register writeback"));
e16bb312 10458
c19d1205 10459 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10460 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 10461
c19d1205
ZW
10462 count = inst.operands[1].imm << 1;
10463 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10464 count += 1;
e16bb312 10465
c19d1205 10466 inst.instruction |= count;
e16bb312
NC
10467}
10468
10469static void
c19d1205 10470do_vfp_sp_ldstmia (void)
e16bb312 10471{
c19d1205 10472 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10473}
10474
10475static void
c19d1205 10476do_vfp_sp_ldstmdb (void)
e16bb312 10477{
c19d1205 10478 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10479}
10480
10481static void
c19d1205 10482do_vfp_dp_ldstmia (void)
e16bb312 10483{
c19d1205 10484 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10485}
10486
10487static void
c19d1205 10488do_vfp_dp_ldstmdb (void)
e16bb312 10489{
c19d1205 10490 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10491}
10492
10493static void
c19d1205 10494do_vfp_xp_ldstmia (void)
e16bb312 10495{
c19d1205
ZW
10496 vfp_dp_ldstm (VFP_LDSTMIAX);
10497}
e16bb312 10498
c19d1205
ZW
10499static void
10500do_vfp_xp_ldstmdb (void)
10501{
10502 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 10503}
5287ad62
JB
10504
10505static void
10506do_vfp_dp_rd_rm (void)
10507{
57785aa2
AV
10508 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10509 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10510 _(BAD_FPU));
10511
5287ad62
JB
10512 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10513 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10514}
10515
10516static void
10517do_vfp_dp_rn_rd (void)
10518{
10519 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10520 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10521}
10522
10523static void
10524do_vfp_dp_rd_rn (void)
10525{
10526 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10527 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10528}
10529
10530static void
10531do_vfp_dp_rd_rn_rm (void)
10532{
57785aa2
AV
10533 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10534 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10535 _(BAD_FPU));
10536
5287ad62
JB
10537 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10538 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10539 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10540}
10541
10542static void
10543do_vfp_dp_rd (void)
10544{
10545 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10546}
10547
10548static void
10549do_vfp_dp_rm_rd_rn (void)
10550{
57785aa2
AV
10551 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10552 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10553 _(BAD_FPU));
10554
5287ad62
JB
10555 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10556 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10557 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10558}
10559
10560/* VFPv3 instructions. */
10561static void
10562do_vfp_sp_const (void)
10563{
10564 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
10565 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10566 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10567}
10568
10569static void
10570do_vfp_dp_const (void)
10571{
10572 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
10573 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10574 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10575}
10576
10577static void
10578vfp_conv (int srcsize)
10579{
5f1af56b
MGD
10580 int immbits = srcsize - inst.operands[1].imm;
10581
fa94de6b
RM
10582 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10583 {
5f1af56b 10584 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
477330fc 10585 i.e. immbits must be in range 0 - 16. */
5f1af56b
MGD
10586 inst.error = _("immediate value out of range, expected range [0, 16]");
10587 return;
10588 }
fa94de6b 10589 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
10590 {
10591 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
477330fc 10592 i.e. immbits must be in range 0 - 31. */
5f1af56b
MGD
10593 inst.error = _("immediate value out of range, expected range [1, 32]");
10594 return;
10595 }
10596
5287ad62
JB
10597 inst.instruction |= (immbits & 1) << 5;
10598 inst.instruction |= (immbits >> 1);
10599}
10600
10601static void
10602do_vfp_sp_conv_16 (void)
10603{
10604 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10605 vfp_conv (16);
10606}
10607
10608static void
10609do_vfp_dp_conv_16 (void)
10610{
10611 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10612 vfp_conv (16);
10613}
10614
10615static void
10616do_vfp_sp_conv_32 (void)
10617{
10618 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10619 vfp_conv (32);
10620}
10621
10622static void
10623do_vfp_dp_conv_32 (void)
10624{
10625 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10626 vfp_conv (32);
10627}
c19d1205
ZW
10628\f
10629/* FPA instructions. Also in a logical order. */
e16bb312 10630
c19d1205
ZW
10631static void
10632do_fpa_cmp (void)
10633{
10634 inst.instruction |= inst.operands[0].reg << 16;
10635 inst.instruction |= inst.operands[1].reg;
10636}
b99bd4ef
NC
10637
10638static void
c19d1205 10639do_fpa_ldmstm (void)
b99bd4ef 10640{
c19d1205
ZW
10641 inst.instruction |= inst.operands[0].reg << 12;
10642 switch (inst.operands[1].imm)
10643 {
10644 case 1: inst.instruction |= CP_T_X; break;
10645 case 2: inst.instruction |= CP_T_Y; break;
10646 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10647 case 4: break;
10648 default: abort ();
10649 }
b99bd4ef 10650
c19d1205
ZW
10651 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10652 {
10653 /* The instruction specified "ea" or "fd", so we can only accept
10654 [Rn]{!}. The instruction does not really support stacking or
10655 unstacking, so we have to emulate these by setting appropriate
10656 bits and offsets. */
e2b0ab59
AV
10657 constraint (inst.relocs[0].exp.X_op != O_constant
10658 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10659 _("this instruction does not support indexing"));
b99bd4ef 10660
c19d1205 10661 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
e2b0ab59 10662 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 10663
c19d1205 10664 if (!(inst.instruction & INDEX_UP))
e2b0ab59 10665 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
b99bd4ef 10666
c19d1205
ZW
10667 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10668 {
10669 inst.operands[2].preind = 0;
10670 inst.operands[2].postind = 1;
10671 }
10672 }
b99bd4ef 10673
c19d1205 10674 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 10675}
c19d1205
ZW
10676\f
10677/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 10678
c19d1205
ZW
10679static void
10680do_iwmmxt_tandorc (void)
10681{
10682 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10683}
b99bd4ef 10684
c19d1205
ZW
10685static void
10686do_iwmmxt_textrc (void)
10687{
10688 inst.instruction |= inst.operands[0].reg << 12;
10689 inst.instruction |= inst.operands[1].imm;
10690}
b99bd4ef
NC
10691
10692static void
c19d1205 10693do_iwmmxt_textrm (void)
b99bd4ef 10694{
c19d1205
ZW
10695 inst.instruction |= inst.operands[0].reg << 12;
10696 inst.instruction |= inst.operands[1].reg << 16;
10697 inst.instruction |= inst.operands[2].imm;
10698}
b99bd4ef 10699
c19d1205
ZW
10700static void
10701do_iwmmxt_tinsr (void)
10702{
10703 inst.instruction |= inst.operands[0].reg << 16;
10704 inst.instruction |= inst.operands[1].reg << 12;
10705 inst.instruction |= inst.operands[2].imm;
10706}
b99bd4ef 10707
c19d1205
ZW
10708static void
10709do_iwmmxt_tmia (void)
10710{
10711 inst.instruction |= inst.operands[0].reg << 5;
10712 inst.instruction |= inst.operands[1].reg;
10713 inst.instruction |= inst.operands[2].reg << 12;
10714}
b99bd4ef 10715
c19d1205
ZW
10716static void
10717do_iwmmxt_waligni (void)
10718{
10719 inst.instruction |= inst.operands[0].reg << 12;
10720 inst.instruction |= inst.operands[1].reg << 16;
10721 inst.instruction |= inst.operands[2].reg;
10722 inst.instruction |= inst.operands[3].imm << 20;
10723}
b99bd4ef 10724
2d447fca
JM
10725static void
10726do_iwmmxt_wmerge (void)
10727{
10728 inst.instruction |= inst.operands[0].reg << 12;
10729 inst.instruction |= inst.operands[1].reg << 16;
10730 inst.instruction |= inst.operands[2].reg;
10731 inst.instruction |= inst.operands[3].imm << 21;
10732}
10733
c19d1205
ZW
10734static void
10735do_iwmmxt_wmov (void)
10736{
10737 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10738 inst.instruction |= inst.operands[0].reg << 12;
10739 inst.instruction |= inst.operands[1].reg << 16;
10740 inst.instruction |= inst.operands[1].reg;
10741}
b99bd4ef 10742
c19d1205
ZW
10743static void
10744do_iwmmxt_wldstbh (void)
10745{
8f06b2d8 10746 int reloc;
c19d1205 10747 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
10748 if (thumb_mode)
10749 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10750 else
10751 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10752 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
10753}
10754
c19d1205
ZW
10755static void
10756do_iwmmxt_wldstw (void)
10757{
10758 /* RIWR_RIWC clears .isreg for a control register. */
10759 if (!inst.operands[0].isreg)
10760 {
10761 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10762 inst.instruction |= 0xf0000000;
10763 }
b99bd4ef 10764
c19d1205
ZW
10765 inst.instruction |= inst.operands[0].reg << 12;
10766 encode_arm_cp_address (1, TRUE, TRUE, 0);
10767}
b99bd4ef
NC
10768
10769static void
c19d1205 10770do_iwmmxt_wldstd (void)
b99bd4ef 10771{
c19d1205 10772 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
10773 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10774 && inst.operands[1].immisreg)
10775 {
10776 inst.instruction &= ~0x1a000ff;
eff0bc54 10777 inst.instruction |= (0xfU << 28);
2d447fca
JM
10778 if (inst.operands[1].preind)
10779 inst.instruction |= PRE_INDEX;
10780 if (!inst.operands[1].negative)
10781 inst.instruction |= INDEX_UP;
10782 if (inst.operands[1].writeback)
10783 inst.instruction |= WRITE_BACK;
10784 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 10785 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
2d447fca
JM
10786 inst.instruction |= inst.operands[1].imm;
10787 }
10788 else
10789 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 10790}
b99bd4ef 10791
c19d1205
ZW
10792static void
10793do_iwmmxt_wshufh (void)
10794{
10795 inst.instruction |= inst.operands[0].reg << 12;
10796 inst.instruction |= inst.operands[1].reg << 16;
10797 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10798 inst.instruction |= (inst.operands[2].imm & 0x0f);
10799}
b99bd4ef 10800
c19d1205
ZW
10801static void
10802do_iwmmxt_wzero (void)
10803{
10804 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10805 inst.instruction |= inst.operands[0].reg;
10806 inst.instruction |= inst.operands[0].reg << 12;
10807 inst.instruction |= inst.operands[0].reg << 16;
10808}
2d447fca
JM
10809
10810static void
10811do_iwmmxt_wrwrwr_or_imm5 (void)
10812{
10813 if (inst.operands[2].isreg)
10814 do_rd_rn_rm ();
10815 else {
10816 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10817 _("immediate operand requires iWMMXt2"));
10818 do_rd_rn ();
10819 if (inst.operands[2].imm == 0)
10820 {
10821 switch ((inst.instruction >> 20) & 0xf)
10822 {
10823 case 4:
10824 case 5:
10825 case 6:
5f4273c7 10826 case 7:
2d447fca
JM
10827 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10828 inst.operands[2].imm = 16;
10829 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10830 break;
10831 case 8:
10832 case 9:
10833 case 10:
10834 case 11:
10835 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10836 inst.operands[2].imm = 32;
10837 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10838 break;
10839 case 12:
10840 case 13:
10841 case 14:
10842 case 15:
10843 {
10844 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10845 unsigned long wrn;
10846 wrn = (inst.instruction >> 16) & 0xf;
10847 inst.instruction &= 0xff0fff0f;
10848 inst.instruction |= wrn;
10849 /* Bail out here; the instruction is now assembled. */
10850 return;
10851 }
10852 }
10853 }
10854 /* Map 32 -> 0, etc. */
10855 inst.operands[2].imm &= 0x1f;
eff0bc54 10856 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
2d447fca
JM
10857 }
10858}
c19d1205
ZW
10859\f
10860/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10861 operations first, then control, shift, and load/store. */
b99bd4ef 10862
c19d1205 10863/* Insns like "foo X,Y,Z". */
b99bd4ef 10864
c19d1205
ZW
10865static void
10866do_mav_triple (void)
10867{
10868 inst.instruction |= inst.operands[0].reg << 16;
10869 inst.instruction |= inst.operands[1].reg;
10870 inst.instruction |= inst.operands[2].reg << 12;
10871}
b99bd4ef 10872
c19d1205
ZW
10873/* Insns like "foo W,X,Y,Z".
10874 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 10875
c19d1205
ZW
10876static void
10877do_mav_quad (void)
10878{
10879 inst.instruction |= inst.operands[0].reg << 5;
10880 inst.instruction |= inst.operands[1].reg << 12;
10881 inst.instruction |= inst.operands[2].reg << 16;
10882 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
10883}
10884
c19d1205
ZW
10885/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10886static void
10887do_mav_dspsc (void)
a737bd4d 10888{
c19d1205
ZW
10889 inst.instruction |= inst.operands[1].reg << 12;
10890}
a737bd4d 10891
c19d1205
ZW
10892/* Maverick shift immediate instructions.
10893 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10894 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 10895
c19d1205
ZW
10896static void
10897do_mav_shift (void)
10898{
10899 int imm = inst.operands[2].imm;
a737bd4d 10900
c19d1205
ZW
10901 inst.instruction |= inst.operands[0].reg << 12;
10902 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 10903
c19d1205
ZW
10904 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10905 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10906 Bit 4 should be 0. */
10907 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 10908
c19d1205
ZW
10909 inst.instruction |= imm;
10910}
10911\f
10912/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 10913
c19d1205
ZW
10914/* Xscale multiply-accumulate (argument parse)
10915 MIAcc acc0,Rm,Rs
10916 MIAPHcc acc0,Rm,Rs
10917 MIAxycc acc0,Rm,Rs. */
a737bd4d 10918
c19d1205
ZW
10919static void
10920do_xsc_mia (void)
10921{
10922 inst.instruction |= inst.operands[1].reg;
10923 inst.instruction |= inst.operands[2].reg << 12;
10924}
a737bd4d 10925
c19d1205 10926/* Xscale move-accumulator-register (argument parse)
a737bd4d 10927
c19d1205 10928 MARcc acc0,RdLo,RdHi. */
b99bd4ef 10929
c19d1205
ZW
10930static void
10931do_xsc_mar (void)
10932{
10933 inst.instruction |= inst.operands[1].reg << 12;
10934 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10935}
10936
c19d1205 10937/* Xscale move-register-accumulator (argument parse)
b99bd4ef 10938
c19d1205 10939 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
10940
10941static void
c19d1205 10942do_xsc_mra (void)
b99bd4ef 10943{
c19d1205
ZW
10944 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10945 inst.instruction |= inst.operands[0].reg << 12;
10946 inst.instruction |= inst.operands[1].reg << 16;
10947}
10948\f
10949/* Encoding functions relevant only to Thumb. */
b99bd4ef 10950
c19d1205
ZW
10951/* inst.operands[i] is a shifted-register operand; encode
10952 it into inst.instruction in the format used by Thumb32. */
10953
10954static void
10955encode_thumb32_shifted_operand (int i)
10956{
e2b0ab59 10957 unsigned int value = inst.relocs[0].exp.X_add_number;
c19d1205 10958 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 10959
9c3c69f2
PB
10960 constraint (inst.operands[i].immisreg,
10961 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
10962 inst.instruction |= inst.operands[i].reg;
10963 if (shift == SHIFT_RRX)
10964 inst.instruction |= SHIFT_ROR << 4;
10965 else
b99bd4ef 10966 {
e2b0ab59 10967 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
10968 _("expression too complex"));
10969
10970 constraint (value > 32
10971 || (value == 32 && (shift == SHIFT_LSL
10972 || shift == SHIFT_ROR)),
10973 _("shift expression is too large"));
10974
10975 if (value == 0)
10976 shift = SHIFT_LSL;
10977 else if (value == 32)
10978 value = 0;
10979
10980 inst.instruction |= shift << 4;
10981 inst.instruction |= (value & 0x1c) << 10;
10982 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 10983 }
c19d1205 10984}
b99bd4ef 10985
b99bd4ef 10986
c19d1205
ZW
10987/* inst.operands[i] was set up by parse_address. Encode it into a
10988 Thumb32 format load or store instruction. Reject forms that cannot
10989 be used with such instructions. If is_t is true, reject forms that
10990 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
10991 that cannot be used with a D instruction. If it is a store insn,
10992 reject PC in Rn. */
b99bd4ef 10993
c19d1205
ZW
10994static void
10995encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10996{
5be8be5d 10997 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
10998
10999 constraint (!inst.operands[i].isreg,
53365c0d 11000 _("Instruction does not support =N addresses"));
b99bd4ef 11001
c19d1205
ZW
11002 inst.instruction |= inst.operands[i].reg << 16;
11003 if (inst.operands[i].immisreg)
b99bd4ef 11004 {
5be8be5d 11005 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
11006 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11007 constraint (inst.operands[i].negative,
11008 _("Thumb does not support negative register indexing"));
11009 constraint (inst.operands[i].postind,
11010 _("Thumb does not support register post-indexing"));
11011 constraint (inst.operands[i].writeback,
11012 _("Thumb does not support register indexing with writeback"));
11013 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11014 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 11015
f40d1643 11016 inst.instruction |= inst.operands[i].imm;
c19d1205 11017 if (inst.operands[i].shifted)
b99bd4ef 11018 {
e2b0ab59 11019 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 11020 _("expression too complex"));
e2b0ab59
AV
11021 constraint (inst.relocs[0].exp.X_add_number < 0
11022 || inst.relocs[0].exp.X_add_number > 3,
c19d1205 11023 _("shift out of range"));
e2b0ab59 11024 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
c19d1205 11025 }
e2b0ab59 11026 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
11027 }
11028 else if (inst.operands[i].preind)
11029 {
5be8be5d 11030 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 11031 constraint (is_t && inst.operands[i].writeback,
c19d1205 11032 _("cannot use writeback with this instruction"));
4755303e
WN
11033 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11034 BAD_PC_ADDRESSING);
c19d1205
ZW
11035
11036 if (is_d)
11037 {
11038 inst.instruction |= 0x01000000;
11039 if (inst.operands[i].writeback)
11040 inst.instruction |= 0x00200000;
b99bd4ef 11041 }
c19d1205 11042 else
b99bd4ef 11043 {
c19d1205
ZW
11044 inst.instruction |= 0x00000c00;
11045 if (inst.operands[i].writeback)
11046 inst.instruction |= 0x00000100;
b99bd4ef 11047 }
e2b0ab59 11048 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 11049 }
c19d1205 11050 else if (inst.operands[i].postind)
b99bd4ef 11051 {
9c2799c2 11052 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
11053 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11054 constraint (is_t, _("cannot use post-indexing with this instruction"));
11055
11056 if (is_d)
11057 inst.instruction |= 0x00200000;
11058 else
11059 inst.instruction |= 0x00000900;
e2b0ab59 11060 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
c19d1205
ZW
11061 }
11062 else /* unindexed - only for coprocessor */
11063 inst.error = _("instruction does not accept unindexed addressing");
11064}
11065
11066/* Table of Thumb instructions which exist in both 16- and 32-bit
11067 encodings (the latter only in post-V6T2 cores). The index is the
11068 value used in the insns table below. When there is more than one
11069 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
11070 holds variant (1).
11071 Also contains several pseudo-instructions used during relaxation. */
c19d1205 11072#define T16_32_TAB \
21d799b5
NC
11073 X(_adc, 4140, eb400000), \
11074 X(_adcs, 4140, eb500000), \
11075 X(_add, 1c00, eb000000), \
11076 X(_adds, 1c00, eb100000), \
11077 X(_addi, 0000, f1000000), \
11078 X(_addis, 0000, f1100000), \
11079 X(_add_pc,000f, f20f0000), \
11080 X(_add_sp,000d, f10d0000), \
11081 X(_adr, 000f, f20f0000), \
11082 X(_and, 4000, ea000000), \
11083 X(_ands, 4000, ea100000), \
11084 X(_asr, 1000, fa40f000), \
11085 X(_asrs, 1000, fa50f000), \
11086 X(_b, e000, f000b000), \
11087 X(_bcond, d000, f0008000), \
4389b29a 11088 X(_bf, 0000, f040e001), \
f6b2b12d 11089 X(_bfcsel,0000, f000e001), \
f1c7f421 11090 X(_bfx, 0000, f060e001), \
65d1bc05 11091 X(_bfl, 0000, f000c001), \
f1c7f421 11092 X(_bflx, 0000, f070e001), \
21d799b5
NC
11093 X(_bic, 4380, ea200000), \
11094 X(_bics, 4380, ea300000), \
11095 X(_cmn, 42c0, eb100f00), \
11096 X(_cmp, 2800, ebb00f00), \
11097 X(_cpsie, b660, f3af8400), \
11098 X(_cpsid, b670, f3af8600), \
11099 X(_cpy, 4600, ea4f0000), \
11100 X(_dec_sp,80dd, f1ad0d00), \
60f993ce 11101 X(_dls, 0000, f040e001), \
21d799b5
NC
11102 X(_eor, 4040, ea800000), \
11103 X(_eors, 4040, ea900000), \
11104 X(_inc_sp,00dd, f10d0d00), \
11105 X(_ldmia, c800, e8900000), \
11106 X(_ldr, 6800, f8500000), \
11107 X(_ldrb, 7800, f8100000), \
11108 X(_ldrh, 8800, f8300000), \
11109 X(_ldrsb, 5600, f9100000), \
11110 X(_ldrsh, 5e00, f9300000), \
11111 X(_ldr_pc,4800, f85f0000), \
11112 X(_ldr_pc2,4800, f85f0000), \
11113 X(_ldr_sp,9800, f85d0000), \
60f993ce 11114 X(_le, 0000, f00fc001), \
21d799b5
NC
11115 X(_lsl, 0000, fa00f000), \
11116 X(_lsls, 0000, fa10f000), \
11117 X(_lsr, 0800, fa20f000), \
11118 X(_lsrs, 0800, fa30f000), \
11119 X(_mov, 2000, ea4f0000), \
11120 X(_movs, 2000, ea5f0000), \
11121 X(_mul, 4340, fb00f000), \
11122 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11123 X(_mvn, 43c0, ea6f0000), \
11124 X(_mvns, 43c0, ea7f0000), \
11125 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11126 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11127 X(_orr, 4300, ea400000), \
11128 X(_orrs, 4300, ea500000), \
11129 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11130 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11131 X(_rev, ba00, fa90f080), \
11132 X(_rev16, ba40, fa90f090), \
11133 X(_revsh, bac0, fa90f0b0), \
11134 X(_ror, 41c0, fa60f000), \
11135 X(_rors, 41c0, fa70f000), \
11136 X(_sbc, 4180, eb600000), \
11137 X(_sbcs, 4180, eb700000), \
11138 X(_stmia, c000, e8800000), \
11139 X(_str, 6000, f8400000), \
11140 X(_strb, 7000, f8000000), \
11141 X(_strh, 8000, f8200000), \
11142 X(_str_sp,9000, f84d0000), \
11143 X(_sub, 1e00, eba00000), \
11144 X(_subs, 1e00, ebb00000), \
11145 X(_subi, 8000, f1a00000), \
11146 X(_subis, 8000, f1b00000), \
11147 X(_sxtb, b240, fa4ff080), \
11148 X(_sxth, b200, fa0ff080), \
11149 X(_tst, 4200, ea100f00), \
11150 X(_uxtb, b2c0, fa5ff080), \
11151 X(_uxth, b280, fa1ff080), \
11152 X(_nop, bf00, f3af8000), \
11153 X(_yield, bf10, f3af8001), \
11154 X(_wfe, bf20, f3af8002), \
11155 X(_wfi, bf30, f3af8003), \
60f993ce 11156 X(_wls, 0000, f040c001), \
53c4b28b 11157 X(_sev, bf40, f3af8004), \
74db7efb
NC
11158 X(_sevl, bf50, f3af8005), \
11159 X(_udf, de00, f7f0a000)
c19d1205
ZW
11160
11161/* To catch errors in encoding functions, the codes are all offset by
11162 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11163 as 16-bit instructions. */
21d799b5 11164#define X(a,b,c) T_MNEM##a
c19d1205
ZW
11165enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11166#undef X
11167
11168#define X(a,b,c) 0x##b
11169static const unsigned short thumb_op16[] = { T16_32_TAB };
11170#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11171#undef X
11172
11173#define X(a,b,c) 0x##c
11174static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
11175#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11176#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
11177#undef X
11178#undef T16_32_TAB
11179
11180/* Thumb instruction encoders, in alphabetical order. */
11181
92e90b6e 11182/* ADDW or SUBW. */
c921be7d 11183
92e90b6e
PB
11184static void
11185do_t_add_sub_w (void)
11186{
11187 int Rd, Rn;
11188
11189 Rd = inst.operands[0].reg;
11190 Rn = inst.operands[1].reg;
11191
539d4391
NC
11192 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11193 is the SP-{plus,minus}-immediate form of the instruction. */
11194 if (Rn == REG_SP)
11195 constraint (Rd == REG_PC, BAD_PC);
11196 else
11197 reject_bad_reg (Rd);
fdfde340 11198
92e90b6e 11199 inst.instruction |= (Rn << 16) | (Rd << 8);
e2b0ab59 11200 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
92e90b6e
PB
11201}
11202
c19d1205 11203/* Parse an add or subtract instruction. We get here with inst.instruction
33eaf5de 11204 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
c19d1205
ZW
11205
11206static void
11207do_t_add_sub (void)
11208{
11209 int Rd, Rs, Rn;
11210
11211 Rd = inst.operands[0].reg;
11212 Rs = (inst.operands[1].present
11213 ? inst.operands[1].reg /* Rd, Rs, foo */
11214 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11215
e07e6e58 11216 if (Rd == REG_PC)
5ee91343 11217 set_pred_insn_type_last ();
e07e6e58 11218
c19d1205
ZW
11219 if (unified_syntax)
11220 {
0110f2b8
PB
11221 bfd_boolean flags;
11222 bfd_boolean narrow;
11223 int opcode;
11224
11225 flags = (inst.instruction == T_MNEM_adds
11226 || inst.instruction == T_MNEM_subs);
11227 if (flags)
5ee91343 11228 narrow = !in_pred_block ();
0110f2b8 11229 else
5ee91343 11230 narrow = in_pred_block ();
c19d1205 11231 if (!inst.operands[2].isreg)
b99bd4ef 11232 {
16805f35
PB
11233 int add;
11234
5c8ed6a4
JW
11235 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11236 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340 11237
16805f35
PB
11238 add = (inst.instruction == T_MNEM_add
11239 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
11240 opcode = 0;
11241 if (inst.size_req != 4)
11242 {
0110f2b8 11243 /* Attempt to use a narrow opcode, with relaxation if
477330fc 11244 appropriate. */
0110f2b8
PB
11245 if (Rd == REG_SP && Rs == REG_SP && !flags)
11246 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11247 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11248 opcode = T_MNEM_add_sp;
11249 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11250 opcode = T_MNEM_add_pc;
11251 else if (Rd <= 7 && Rs <= 7 && narrow)
11252 {
11253 if (flags)
11254 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11255 else
11256 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11257 }
11258 if (opcode)
11259 {
11260 inst.instruction = THUMB_OP16(opcode);
11261 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59
AV
11262 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11263 || (inst.relocs[0].type
11264 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
a9f02af8
MG
11265 {
11266 if (inst.size_req == 2)
e2b0ab59 11267 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
a9f02af8
MG
11268 else
11269 inst.relax = opcode;
11270 }
0110f2b8
PB
11271 }
11272 else
11273 constraint (inst.size_req == 2, BAD_HIREG);
11274 }
11275 if (inst.size_req == 4
11276 || (inst.size_req != 2 && !opcode))
11277 {
e2b0ab59
AV
11278 constraint ((inst.relocs[0].type
11279 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11280 && (inst.relocs[0].type
11281 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8 11282 THUMB1_RELOC_ONLY);
efd81785
PB
11283 if (Rd == REG_PC)
11284 {
fdfde340 11285 constraint (add, BAD_PC);
efd81785
PB
11286 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11287 _("only SUBS PC, LR, #const allowed"));
e2b0ab59 11288 constraint (inst.relocs[0].exp.X_op != O_constant,
efd81785 11289 _("expression too complex"));
e2b0ab59
AV
11290 constraint (inst.relocs[0].exp.X_add_number < 0
11291 || inst.relocs[0].exp.X_add_number > 0xff,
efd81785
PB
11292 _("immediate value out of range"));
11293 inst.instruction = T2_SUBS_PC_LR
e2b0ab59
AV
11294 | inst.relocs[0].exp.X_add_number;
11295 inst.relocs[0].type = BFD_RELOC_UNUSED;
efd81785
PB
11296 return;
11297 }
11298 else if (Rs == REG_PC)
16805f35
PB
11299 {
11300 /* Always use addw/subw. */
11301 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
e2b0ab59 11302 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
16805f35
PB
11303 }
11304 else
11305 {
11306 inst.instruction = THUMB_OP32 (inst.instruction);
11307 inst.instruction = (inst.instruction & 0xe1ffffff)
11308 | 0x10000000;
11309 if (flags)
e2b0ab59 11310 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
16805f35 11311 else
e2b0ab59 11312 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
16805f35 11313 }
dc4503c6
PB
11314 inst.instruction |= Rd << 8;
11315 inst.instruction |= Rs << 16;
0110f2b8 11316 }
b99bd4ef 11317 }
c19d1205
ZW
11318 else
11319 {
e2b0ab59 11320 unsigned int value = inst.relocs[0].exp.X_add_number;
5f4cb198
NC
11321 unsigned int shift = inst.operands[2].shift_kind;
11322
c19d1205
ZW
11323 Rn = inst.operands[2].reg;
11324 /* See if we can do this with a 16-bit instruction. */
11325 if (!inst.operands[2].shifted && inst.size_req != 4)
11326 {
e27ec89e
PB
11327 if (Rd > 7 || Rs > 7 || Rn > 7)
11328 narrow = FALSE;
11329
11330 if (narrow)
c19d1205 11331 {
e27ec89e
PB
11332 inst.instruction = ((inst.instruction == T_MNEM_adds
11333 || inst.instruction == T_MNEM_add)
c19d1205
ZW
11334 ? T_OPCODE_ADD_R3
11335 : T_OPCODE_SUB_R3);
11336 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11337 return;
11338 }
b99bd4ef 11339
7e806470 11340 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 11341 {
7e806470
PB
11342 /* Thumb-1 cores (except v6-M) require at least one high
11343 register in a narrow non flag setting add. */
11344 if (Rd > 7 || Rn > 7
11345 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11346 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 11347 {
7e806470
PB
11348 if (Rd == Rn)
11349 {
11350 Rn = Rs;
11351 Rs = Rd;
11352 }
c19d1205
ZW
11353 inst.instruction = T_OPCODE_ADD_HI;
11354 inst.instruction |= (Rd & 8) << 4;
11355 inst.instruction |= (Rd & 7);
11356 inst.instruction |= Rn << 3;
11357 return;
11358 }
c19d1205
ZW
11359 }
11360 }
c921be7d 11361
fdfde340 11362 constraint (Rd == REG_PC, BAD_PC);
5c8ed6a4
JW
11363 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11364 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340
JM
11365 constraint (Rs == REG_PC, BAD_PC);
11366 reject_bad_reg (Rn);
11367
c19d1205
ZW
11368 /* If we get here, it can't be done in 16 bits. */
11369 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11370 _("shift must be constant"));
11371 inst.instruction = THUMB_OP32 (inst.instruction);
11372 inst.instruction |= Rd << 8;
11373 inst.instruction |= Rs << 16;
5f4cb198
NC
11374 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11375 _("shift value over 3 not allowed in thumb mode"));
11376 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11377 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
11378 encode_thumb32_shifted_operand (2);
11379 }
11380 }
11381 else
11382 {
11383 constraint (inst.instruction == T_MNEM_adds
11384 || inst.instruction == T_MNEM_subs,
11385 BAD_THUMB32);
b99bd4ef 11386
c19d1205 11387 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 11388 {
c19d1205
ZW
11389 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11390 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11391 BAD_HIREG);
11392
11393 inst.instruction = (inst.instruction == T_MNEM_add
11394 ? 0x0000 : 0x8000);
11395 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59 11396 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
11397 return;
11398 }
11399
c19d1205
ZW
11400 Rn = inst.operands[2].reg;
11401 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 11402
c19d1205
ZW
11403 /* We now have Rd, Rs, and Rn set to registers. */
11404 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 11405 {
c19d1205
ZW
11406 /* Can't do this for SUB. */
11407 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11408 inst.instruction = T_OPCODE_ADD_HI;
11409 inst.instruction |= (Rd & 8) << 4;
11410 inst.instruction |= (Rd & 7);
11411 if (Rs == Rd)
11412 inst.instruction |= Rn << 3;
11413 else if (Rn == Rd)
11414 inst.instruction |= Rs << 3;
11415 else
11416 constraint (1, _("dest must overlap one source register"));
11417 }
11418 else
11419 {
11420 inst.instruction = (inst.instruction == T_MNEM_add
11421 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11422 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 11423 }
b99bd4ef 11424 }
b99bd4ef
NC
11425}
11426
c19d1205
ZW
11427static void
11428do_t_adr (void)
11429{
fdfde340
JM
11430 unsigned Rd;
11431
11432 Rd = inst.operands[0].reg;
11433 reject_bad_reg (Rd);
11434
11435 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
11436 {
11437 /* Defer to section relaxation. */
11438 inst.relax = inst.instruction;
11439 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11440 inst.instruction |= Rd << 4;
0110f2b8
PB
11441 }
11442 else if (unified_syntax && inst.size_req != 2)
e9f89963 11443 {
0110f2b8 11444 /* Generate a 32-bit opcode. */
e9f89963 11445 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11446 inst.instruction |= Rd << 8;
e2b0ab59
AV
11447 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11448 inst.relocs[0].pc_rel = 1;
e9f89963
PB
11449 }
11450 else
11451 {
0110f2b8 11452 /* Generate a 16-bit opcode. */
e9f89963 11453 inst.instruction = THUMB_OP16 (inst.instruction);
e2b0ab59
AV
11454 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11455 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11456 inst.relocs[0].pc_rel = 1;
fdfde340 11457 inst.instruction |= Rd << 4;
e9f89963 11458 }
52a86f84 11459
e2b0ab59
AV
11460 if (inst.relocs[0].exp.X_op == O_symbol
11461 && inst.relocs[0].exp.X_add_symbol != NULL
11462 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11463 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11464 inst.relocs[0].exp.X_add_number += 1;
c19d1205 11465}
b99bd4ef 11466
c19d1205
ZW
11467/* Arithmetic instructions for which there is just one 16-bit
11468 instruction encoding, and it allows only two low registers.
11469 For maximal compatibility with ARM syntax, we allow three register
11470 operands even when Thumb-32 instructions are not available, as long
11471 as the first two are identical. For instance, both "sbc r0,r1" and
11472 "sbc r0,r0,r1" are allowed. */
b99bd4ef 11473static void
c19d1205 11474do_t_arit3 (void)
b99bd4ef 11475{
c19d1205 11476 int Rd, Rs, Rn;
b99bd4ef 11477
c19d1205
ZW
11478 Rd = inst.operands[0].reg;
11479 Rs = (inst.operands[1].present
11480 ? inst.operands[1].reg /* Rd, Rs, foo */
11481 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11482 Rn = inst.operands[2].reg;
b99bd4ef 11483
fdfde340
JM
11484 reject_bad_reg (Rd);
11485 reject_bad_reg (Rs);
11486 if (inst.operands[2].isreg)
11487 reject_bad_reg (Rn);
11488
c19d1205 11489 if (unified_syntax)
b99bd4ef 11490 {
c19d1205
ZW
11491 if (!inst.operands[2].isreg)
11492 {
11493 /* For an immediate, we always generate a 32-bit opcode;
11494 section relaxation will shrink it later if possible. */
11495 inst.instruction = THUMB_OP32 (inst.instruction);
11496 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11497 inst.instruction |= Rd << 8;
11498 inst.instruction |= Rs << 16;
e2b0ab59 11499 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
c19d1205
ZW
11500 }
11501 else
11502 {
e27ec89e
PB
11503 bfd_boolean narrow;
11504
c19d1205 11505 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11506 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11507 narrow = !in_pred_block ();
e27ec89e 11508 else
5ee91343 11509 narrow = in_pred_block ();
e27ec89e
PB
11510
11511 if (Rd > 7 || Rn > 7 || Rs > 7)
11512 narrow = FALSE;
11513 if (inst.operands[2].shifted)
11514 narrow = FALSE;
11515 if (inst.size_req == 4)
11516 narrow = FALSE;
11517
11518 if (narrow
c19d1205
ZW
11519 && Rd == Rs)
11520 {
11521 inst.instruction = THUMB_OP16 (inst.instruction);
11522 inst.instruction |= Rd;
11523 inst.instruction |= Rn << 3;
11524 return;
11525 }
b99bd4ef 11526
c19d1205
ZW
11527 /* If we get here, it can't be done in 16 bits. */
11528 constraint (inst.operands[2].shifted
11529 && inst.operands[2].immisreg,
11530 _("shift must be constant"));
11531 inst.instruction = THUMB_OP32 (inst.instruction);
11532 inst.instruction |= Rd << 8;
11533 inst.instruction |= Rs << 16;
11534 encode_thumb32_shifted_operand (2);
11535 }
a737bd4d 11536 }
c19d1205 11537 else
b99bd4ef 11538 {
c19d1205
ZW
11539 /* On its face this is a lie - the instruction does set the
11540 flags. However, the only supported mnemonic in this mode
11541 says it doesn't. */
11542 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11543
c19d1205
ZW
11544 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11545 _("unshifted register required"));
11546 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11547 constraint (Rd != Rs,
11548 _("dest and source1 must be the same register"));
a737bd4d 11549
c19d1205
ZW
11550 inst.instruction = THUMB_OP16 (inst.instruction);
11551 inst.instruction |= Rd;
11552 inst.instruction |= Rn << 3;
b99bd4ef 11553 }
a737bd4d 11554}
b99bd4ef 11555
c19d1205
ZW
11556/* Similarly, but for instructions where the arithmetic operation is
11557 commutative, so we can allow either of them to be different from
11558 the destination operand in a 16-bit instruction. For instance, all
11559 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11560 accepted. */
11561static void
11562do_t_arit3c (void)
a737bd4d 11563{
c19d1205 11564 int Rd, Rs, Rn;
b99bd4ef 11565
c19d1205
ZW
11566 Rd = inst.operands[0].reg;
11567 Rs = (inst.operands[1].present
11568 ? inst.operands[1].reg /* Rd, Rs, foo */
11569 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11570 Rn = inst.operands[2].reg;
c921be7d 11571
fdfde340
JM
11572 reject_bad_reg (Rd);
11573 reject_bad_reg (Rs);
11574 if (inst.operands[2].isreg)
11575 reject_bad_reg (Rn);
a737bd4d 11576
c19d1205 11577 if (unified_syntax)
a737bd4d 11578 {
c19d1205 11579 if (!inst.operands[2].isreg)
b99bd4ef 11580 {
c19d1205
ZW
11581 /* For an immediate, we always generate a 32-bit opcode;
11582 section relaxation will shrink it later if possible. */
11583 inst.instruction = THUMB_OP32 (inst.instruction);
11584 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11585 inst.instruction |= Rd << 8;
11586 inst.instruction |= Rs << 16;
e2b0ab59 11587 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11588 }
c19d1205 11589 else
a737bd4d 11590 {
e27ec89e
PB
11591 bfd_boolean narrow;
11592
c19d1205 11593 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11594 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11595 narrow = !in_pred_block ();
e27ec89e 11596 else
5ee91343 11597 narrow = in_pred_block ();
e27ec89e
PB
11598
11599 if (Rd > 7 || Rn > 7 || Rs > 7)
11600 narrow = FALSE;
11601 if (inst.operands[2].shifted)
11602 narrow = FALSE;
11603 if (inst.size_req == 4)
11604 narrow = FALSE;
11605
11606 if (narrow)
a737bd4d 11607 {
c19d1205 11608 if (Rd == Rs)
a737bd4d 11609 {
c19d1205
ZW
11610 inst.instruction = THUMB_OP16 (inst.instruction);
11611 inst.instruction |= Rd;
11612 inst.instruction |= Rn << 3;
11613 return;
a737bd4d 11614 }
c19d1205 11615 if (Rd == Rn)
a737bd4d 11616 {
c19d1205
ZW
11617 inst.instruction = THUMB_OP16 (inst.instruction);
11618 inst.instruction |= Rd;
11619 inst.instruction |= Rs << 3;
11620 return;
a737bd4d
NC
11621 }
11622 }
c19d1205
ZW
11623
11624 /* If we get here, it can't be done in 16 bits. */
11625 constraint (inst.operands[2].shifted
11626 && inst.operands[2].immisreg,
11627 _("shift must be constant"));
11628 inst.instruction = THUMB_OP32 (inst.instruction);
11629 inst.instruction |= Rd << 8;
11630 inst.instruction |= Rs << 16;
11631 encode_thumb32_shifted_operand (2);
a737bd4d 11632 }
b99bd4ef 11633 }
c19d1205
ZW
11634 else
11635 {
11636 /* On its face this is a lie - the instruction does set the
11637 flags. However, the only supported mnemonic in this mode
11638 says it doesn't. */
11639 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11640
c19d1205
ZW
11641 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11642 _("unshifted register required"));
11643 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11644
11645 inst.instruction = THUMB_OP16 (inst.instruction);
11646 inst.instruction |= Rd;
11647
11648 if (Rd == Rs)
11649 inst.instruction |= Rn << 3;
11650 else if (Rd == Rn)
11651 inst.instruction |= Rs << 3;
11652 else
11653 constraint (1, _("dest must overlap one source register"));
11654 }
a737bd4d
NC
11655}
11656
c19d1205
ZW
11657static void
11658do_t_bfc (void)
a737bd4d 11659{
fdfde340 11660 unsigned Rd;
c19d1205
ZW
11661 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11662 constraint (msb > 32, _("bit-field extends past end of register"));
11663 /* The instruction encoding stores the LSB and MSB,
11664 not the LSB and width. */
fdfde340
JM
11665 Rd = inst.operands[0].reg;
11666 reject_bad_reg (Rd);
11667 inst.instruction |= Rd << 8;
c19d1205
ZW
11668 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11669 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11670 inst.instruction |= msb - 1;
b99bd4ef
NC
11671}
11672
c19d1205
ZW
11673static void
11674do_t_bfi (void)
b99bd4ef 11675{
fdfde340 11676 int Rd, Rn;
c19d1205 11677 unsigned int msb;
b99bd4ef 11678
fdfde340
JM
11679 Rd = inst.operands[0].reg;
11680 reject_bad_reg (Rd);
11681
c19d1205
ZW
11682 /* #0 in second position is alternative syntax for bfc, which is
11683 the same instruction but with REG_PC in the Rm field. */
11684 if (!inst.operands[1].isreg)
fdfde340
JM
11685 Rn = REG_PC;
11686 else
11687 {
11688 Rn = inst.operands[1].reg;
11689 reject_bad_reg (Rn);
11690 }
b99bd4ef 11691
c19d1205
ZW
11692 msb = inst.operands[2].imm + inst.operands[3].imm;
11693 constraint (msb > 32, _("bit-field extends past end of register"));
11694 /* The instruction encoding stores the LSB and MSB,
11695 not the LSB and width. */
fdfde340
JM
11696 inst.instruction |= Rd << 8;
11697 inst.instruction |= Rn << 16;
c19d1205
ZW
11698 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11699 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11700 inst.instruction |= msb - 1;
b99bd4ef
NC
11701}
11702
c19d1205
ZW
11703static void
11704do_t_bfx (void)
b99bd4ef 11705{
fdfde340
JM
11706 unsigned Rd, Rn;
11707
11708 Rd = inst.operands[0].reg;
11709 Rn = inst.operands[1].reg;
11710
11711 reject_bad_reg (Rd);
11712 reject_bad_reg (Rn);
11713
c19d1205
ZW
11714 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11715 _("bit-field extends past end of register"));
fdfde340
JM
11716 inst.instruction |= Rd << 8;
11717 inst.instruction |= Rn << 16;
c19d1205
ZW
11718 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11719 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11720 inst.instruction |= inst.operands[3].imm - 1;
11721}
b99bd4ef 11722
c19d1205
ZW
11723/* ARM V5 Thumb BLX (argument parse)
11724 BLX <target_addr> which is BLX(1)
11725 BLX <Rm> which is BLX(2)
11726 Unfortunately, there are two different opcodes for this mnemonic.
11727 So, the insns[].value is not used, and the code here zaps values
11728 into inst.instruction.
b99bd4ef 11729
c19d1205
ZW
11730 ??? How to take advantage of the additional two bits of displacement
11731 available in Thumb32 mode? Need new relocation? */
b99bd4ef 11732
c19d1205
ZW
11733static void
11734do_t_blx (void)
11735{
5ee91343 11736 set_pred_insn_type_last ();
e07e6e58 11737
c19d1205 11738 if (inst.operands[0].isreg)
fdfde340
JM
11739 {
11740 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11741 /* We have a register, so this is BLX(2). */
11742 inst.instruction |= inst.operands[0].reg << 3;
11743 }
b99bd4ef
NC
11744 else
11745 {
c19d1205 11746 /* No register. This must be BLX(1). */
2fc8bdac 11747 inst.instruction = 0xf000e800;
0855e32b 11748 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
11749 }
11750}
11751
c19d1205
ZW
11752static void
11753do_t_branch (void)
b99bd4ef 11754{
0110f2b8 11755 int opcode;
dfa9f0d5 11756 int cond;
2fe88214 11757 bfd_reloc_code_real_type reloc;
dfa9f0d5 11758
e07e6e58 11759 cond = inst.cond;
5ee91343 11760 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
e07e6e58 11761
5ee91343 11762 if (in_pred_block ())
dfa9f0d5
PB
11763 {
11764 /* Conditional branches inside IT blocks are encoded as unconditional
477330fc 11765 branches. */
dfa9f0d5 11766 cond = COND_ALWAYS;
dfa9f0d5
PB
11767 }
11768 else
11769 cond = inst.cond;
11770
11771 if (cond != COND_ALWAYS)
0110f2b8
PB
11772 opcode = T_MNEM_bcond;
11773 else
11774 opcode = inst.instruction;
11775
12d6b0b7
RS
11776 if (unified_syntax
11777 && (inst.size_req == 4
10960bfb
PB
11778 || (inst.size_req != 2
11779 && (inst.operands[0].hasreloc
e2b0ab59 11780 || inst.relocs[0].exp.X_op == O_constant))))
c19d1205 11781 {
0110f2b8 11782 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 11783 if (cond == COND_ALWAYS)
9ae92b05 11784 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
11785 else
11786 {
ff8646ee
TP
11787 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11788 _("selected architecture does not support "
11789 "wide conditional branch instruction"));
11790
9c2799c2 11791 gas_assert (cond != 0xF);
dfa9f0d5 11792 inst.instruction |= cond << 22;
9ae92b05 11793 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
11794 }
11795 }
b99bd4ef
NC
11796 else
11797 {
0110f2b8 11798 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 11799 if (cond == COND_ALWAYS)
9ae92b05 11800 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 11801 else
b99bd4ef 11802 {
dfa9f0d5 11803 inst.instruction |= cond << 8;
9ae92b05 11804 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 11805 }
0110f2b8
PB
11806 /* Allow section relaxation. */
11807 if (unified_syntax && inst.size_req != 2)
11808 inst.relax = opcode;
b99bd4ef 11809 }
e2b0ab59
AV
11810 inst.relocs[0].type = reloc;
11811 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
11812}
11813
8884b720 11814/* Actually do the work for Thumb state bkpt and hlt. The only difference
bacebabc 11815 between the two is the maximum immediate allowed - which is passed in
8884b720 11816 RANGE. */
b99bd4ef 11817static void
8884b720 11818do_t_bkpt_hlt1 (int range)
b99bd4ef 11819{
dfa9f0d5
PB
11820 constraint (inst.cond != COND_ALWAYS,
11821 _("instruction is always unconditional"));
c19d1205 11822 if (inst.operands[0].present)
b99bd4ef 11823 {
8884b720 11824 constraint (inst.operands[0].imm > range,
c19d1205
ZW
11825 _("immediate value out of range"));
11826 inst.instruction |= inst.operands[0].imm;
b99bd4ef 11827 }
8884b720 11828
5ee91343 11829 set_pred_insn_type (NEUTRAL_IT_INSN);
8884b720
MGD
11830}
11831
11832static void
11833do_t_hlt (void)
11834{
11835 do_t_bkpt_hlt1 (63);
11836}
11837
11838static void
11839do_t_bkpt (void)
11840{
11841 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
11842}
11843
11844static void
c19d1205 11845do_t_branch23 (void)
b99bd4ef 11846{
5ee91343 11847 set_pred_insn_type_last ();
0855e32b 11848 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 11849
0855e32b
NS
11850 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11851 this file. We used to simply ignore the PLT reloc type here --
11852 the branch encoding is now needed to deal with TLSCALL relocs.
11853 So if we see a PLT reloc now, put it back to how it used to be to
11854 keep the preexisting behaviour. */
e2b0ab59
AV
11855 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11856 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 11857
4343666d 11858#if defined(OBJ_COFF)
c19d1205
ZW
11859 /* If the destination of the branch is a defined symbol which does not have
11860 the THUMB_FUNC attribute, then we must be calling a function which has
11861 the (interfacearm) attribute. We look for the Thumb entry point to that
11862 function and change the branch to refer to that function instead. */
e2b0ab59
AV
11863 if ( inst.relocs[0].exp.X_op == O_symbol
11864 && inst.relocs[0].exp.X_add_symbol != NULL
11865 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11866 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11867 inst.relocs[0].exp.X_add_symbol
11868 = find_real_start (inst.relocs[0].exp.X_add_symbol);
4343666d 11869#endif
90e4755a
RE
11870}
11871
11872static void
c19d1205 11873do_t_bx (void)
90e4755a 11874{
5ee91343 11875 set_pred_insn_type_last ();
c19d1205
ZW
11876 inst.instruction |= inst.operands[0].reg << 3;
11877 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11878 should cause the alignment to be checked once it is known. This is
11879 because BX PC only works if the instruction is word aligned. */
11880}
90e4755a 11881
c19d1205
ZW
11882static void
11883do_t_bxj (void)
11884{
fdfde340 11885 int Rm;
90e4755a 11886
5ee91343 11887 set_pred_insn_type_last ();
fdfde340
JM
11888 Rm = inst.operands[0].reg;
11889 reject_bad_reg (Rm);
11890 inst.instruction |= Rm << 16;
90e4755a
RE
11891}
11892
11893static void
c19d1205 11894do_t_clz (void)
90e4755a 11895{
fdfde340
JM
11896 unsigned Rd;
11897 unsigned Rm;
11898
11899 Rd = inst.operands[0].reg;
11900 Rm = inst.operands[1].reg;
11901
11902 reject_bad_reg (Rd);
11903 reject_bad_reg (Rm);
11904
11905 inst.instruction |= Rd << 8;
11906 inst.instruction |= Rm << 16;
11907 inst.instruction |= Rm;
c19d1205 11908}
90e4755a 11909
91d8b670
JG
11910static void
11911do_t_csdb (void)
11912{
5ee91343 11913 set_pred_insn_type (OUTSIDE_PRED_INSN);
91d8b670
JG
11914}
11915
dfa9f0d5
PB
11916static void
11917do_t_cps (void)
11918{
5ee91343 11919 set_pred_insn_type (OUTSIDE_PRED_INSN);
dfa9f0d5
PB
11920 inst.instruction |= inst.operands[0].imm;
11921}
11922
c19d1205
ZW
11923static void
11924do_t_cpsi (void)
11925{
5ee91343 11926 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205 11927 if (unified_syntax
62b3e311
PB
11928 && (inst.operands[1].present || inst.size_req == 4)
11929 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 11930 {
c19d1205
ZW
11931 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11932 inst.instruction = 0xf3af8000;
11933 inst.instruction |= imod << 9;
11934 inst.instruction |= inst.operands[0].imm << 5;
11935 if (inst.operands[1].present)
11936 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 11937 }
c19d1205 11938 else
90e4755a 11939 {
62b3e311
PB
11940 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11941 && (inst.operands[0].imm & 4),
11942 _("selected processor does not support 'A' form "
11943 "of this instruction"));
11944 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
11945 _("Thumb does not support the 2-argument "
11946 "form of this instruction"));
11947 inst.instruction |= inst.operands[0].imm;
90e4755a 11948 }
90e4755a
RE
11949}
11950
c19d1205
ZW
11951/* THUMB CPY instruction (argument parse). */
11952
90e4755a 11953static void
c19d1205 11954do_t_cpy (void)
90e4755a 11955{
c19d1205 11956 if (inst.size_req == 4)
90e4755a 11957 {
c19d1205
ZW
11958 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11959 inst.instruction |= inst.operands[0].reg << 8;
11960 inst.instruction |= inst.operands[1].reg;
90e4755a 11961 }
c19d1205 11962 else
90e4755a 11963 {
c19d1205
ZW
11964 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11965 inst.instruction |= (inst.operands[0].reg & 0x7);
11966 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 11967 }
90e4755a
RE
11968}
11969
90e4755a 11970static void
25fe350b 11971do_t_cbz (void)
90e4755a 11972{
5ee91343 11973 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
11974 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11975 inst.instruction |= inst.operands[0].reg;
e2b0ab59
AV
11976 inst.relocs[0].pc_rel = 1;
11977 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
c19d1205 11978}
90e4755a 11979
62b3e311
PB
11980static void
11981do_t_dbg (void)
11982{
11983 inst.instruction |= inst.operands[0].imm;
11984}
11985
11986static void
11987do_t_div (void)
11988{
fdfde340
JM
11989 unsigned Rd, Rn, Rm;
11990
11991 Rd = inst.operands[0].reg;
11992 Rn = (inst.operands[1].present
11993 ? inst.operands[1].reg : Rd);
11994 Rm = inst.operands[2].reg;
11995
11996 reject_bad_reg (Rd);
11997 reject_bad_reg (Rn);
11998 reject_bad_reg (Rm);
11999
12000 inst.instruction |= Rd << 8;
12001 inst.instruction |= Rn << 16;
12002 inst.instruction |= Rm;
62b3e311
PB
12003}
12004
c19d1205
ZW
12005static void
12006do_t_hint (void)
12007{
12008 if (unified_syntax && inst.size_req == 4)
12009 inst.instruction = THUMB_OP32 (inst.instruction);
12010 else
12011 inst.instruction = THUMB_OP16 (inst.instruction);
12012}
90e4755a 12013
c19d1205
ZW
12014static void
12015do_t_it (void)
12016{
12017 unsigned int cond = inst.operands[0].imm;
e27ec89e 12018
5ee91343
AV
12019 set_pred_insn_type (IT_INSN);
12020 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12021 now_pred.cc = cond;
12022 now_pred.warn_deprecated = FALSE;
12023 now_pred.type = SCALAR_PRED;
e27ec89e
PB
12024
12025 /* If the condition is a negative condition, invert the mask. */
c19d1205 12026 if ((cond & 0x1) == 0x0)
90e4755a 12027 {
c19d1205 12028 unsigned int mask = inst.instruction & 0x000f;
90e4755a 12029
c19d1205 12030 if ((mask & 0x7) == 0)
5a01bb1d
MGD
12031 {
12032 /* No conversion needed. */
5ee91343 12033 now_pred.block_length = 1;
5a01bb1d 12034 }
c19d1205 12035 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
12036 {
12037 mask ^= 0x8;
5ee91343 12038 now_pred.block_length = 2;
5a01bb1d 12039 }
e27ec89e 12040 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
12041 {
12042 mask ^= 0xC;
5ee91343 12043 now_pred.block_length = 3;
5a01bb1d 12044 }
c19d1205 12045 else
5a01bb1d
MGD
12046 {
12047 mask ^= 0xE;
5ee91343 12048 now_pred.block_length = 4;
5a01bb1d 12049 }
90e4755a 12050
e27ec89e
PB
12051 inst.instruction &= 0xfff0;
12052 inst.instruction |= mask;
c19d1205 12053 }
90e4755a 12054
c19d1205
ZW
12055 inst.instruction |= cond << 4;
12056}
90e4755a 12057
3c707909
PB
12058/* Helper function used for both push/pop and ldm/stm. */
12059static void
4b5a202f
AV
12060encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12061 bfd_boolean writeback)
3c707909 12062{
4b5a202f 12063 bfd_boolean load, store;
3c707909 12064
4b5a202f
AV
12065 gas_assert (base != -1 || !do_io);
12066 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12067 store = do_io && !load;
3c707909
PB
12068
12069 if (mask & (1 << 13))
12070 inst.error = _("SP not allowed in register list");
1e5b0379 12071
4b5a202f 12072 if (do_io && (mask & (1 << base)) != 0
1e5b0379
NC
12073 && writeback)
12074 inst.error = _("having the base register in the register list when "
12075 "using write back is UNPREDICTABLE");
12076
3c707909
PB
12077 if (load)
12078 {
e07e6e58 12079 if (mask & (1 << 15))
477330fc
RM
12080 {
12081 if (mask & (1 << 14))
12082 inst.error = _("LR and PC should not both be in register list");
12083 else
5ee91343 12084 set_pred_insn_type_last ();
477330fc 12085 }
3c707909 12086 }
4b5a202f 12087 else if (store)
3c707909
PB
12088 {
12089 if (mask & (1 << 15))
12090 inst.error = _("PC not allowed in register list");
3c707909
PB
12091 }
12092
4b5a202f 12093 if (do_io && ((mask & (mask - 1)) == 0))
3c707909
PB
12094 {
12095 /* Single register transfers implemented as str/ldr. */
12096 if (writeback)
12097 {
12098 if (inst.instruction & (1 << 23))
12099 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12100 else
12101 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12102 }
12103 else
12104 {
12105 if (inst.instruction & (1 << 23))
12106 inst.instruction = 0x00800000; /* ia -> [base] */
12107 else
12108 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12109 }
12110
12111 inst.instruction |= 0xf8400000;
12112 if (load)
12113 inst.instruction |= 0x00100000;
12114
5f4273c7 12115 mask = ffs (mask) - 1;
3c707909
PB
12116 mask <<= 12;
12117 }
12118 else if (writeback)
12119 inst.instruction |= WRITE_BACK;
12120
12121 inst.instruction |= mask;
4b5a202f
AV
12122 if (do_io)
12123 inst.instruction |= base << 16;
3c707909
PB
12124}
12125
c19d1205
ZW
12126static void
12127do_t_ldmstm (void)
12128{
12129 /* This really doesn't seem worth it. */
e2b0ab59 12130 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205
ZW
12131 _("expression too complex"));
12132 constraint (inst.operands[1].writeback,
12133 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 12134
c19d1205
ZW
12135 if (unified_syntax)
12136 {
3c707909
PB
12137 bfd_boolean narrow;
12138 unsigned mask;
12139
12140 narrow = FALSE;
c19d1205
ZW
12141 /* See if we can use a 16-bit instruction. */
12142 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12143 && inst.size_req != 4
3c707909 12144 && !(inst.operands[1].imm & ~0xff))
90e4755a 12145 {
3c707909 12146 mask = 1 << inst.operands[0].reg;
90e4755a 12147
eab4f823 12148 if (inst.operands[0].reg <= 7)
90e4755a 12149 {
3c707909 12150 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
12151 ? inst.operands[0].writeback
12152 : (inst.operands[0].writeback
12153 == !(inst.operands[1].imm & mask)))
477330fc 12154 {
eab4f823
MGD
12155 if (inst.instruction == T_MNEM_stmia
12156 && (inst.operands[1].imm & mask)
12157 && (inst.operands[1].imm & (mask - 1)))
12158 as_warn (_("value stored for r%d is UNKNOWN"),
12159 inst.operands[0].reg);
3c707909 12160
eab4f823
MGD
12161 inst.instruction = THUMB_OP16 (inst.instruction);
12162 inst.instruction |= inst.operands[0].reg << 8;
12163 inst.instruction |= inst.operands[1].imm;
12164 narrow = TRUE;
12165 }
12166 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12167 {
12168 /* This means 1 register in reg list one of 3 situations:
12169 1. Instruction is stmia, but without writeback.
12170 2. lmdia without writeback, but with Rn not in
477330fc 12171 reglist.
eab4f823
MGD
12172 3. ldmia with writeback, but with Rn in reglist.
12173 Case 3 is UNPREDICTABLE behaviour, so we handle
12174 case 1 and 2 which can be converted into a 16-bit
12175 str or ldr. The SP cases are handled below. */
12176 unsigned long opcode;
12177 /* First, record an error for Case 3. */
12178 if (inst.operands[1].imm & mask
12179 && inst.operands[0].writeback)
fa94de6b 12180 inst.error =
eab4f823
MGD
12181 _("having the base register in the register list when "
12182 "using write back is UNPREDICTABLE");
fa94de6b
RM
12183
12184 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
12185 : T_MNEM_ldr);
12186 inst.instruction = THUMB_OP16 (opcode);
12187 inst.instruction |= inst.operands[0].reg << 3;
12188 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12189 narrow = TRUE;
12190 }
90e4755a 12191 }
eab4f823 12192 else if (inst.operands[0] .reg == REG_SP)
90e4755a 12193 {
eab4f823
MGD
12194 if (inst.operands[0].writeback)
12195 {
fa94de6b 12196 inst.instruction =
eab4f823 12197 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12198 ? T_MNEM_push : T_MNEM_pop);
eab4f823 12199 inst.instruction |= inst.operands[1].imm;
477330fc 12200 narrow = TRUE;
eab4f823
MGD
12201 }
12202 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12203 {
fa94de6b 12204 inst.instruction =
eab4f823 12205 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12206 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
eab4f823 12207 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
477330fc 12208 narrow = TRUE;
eab4f823 12209 }
90e4755a 12210 }
3c707909
PB
12211 }
12212
12213 if (!narrow)
12214 {
c19d1205
ZW
12215 if (inst.instruction < 0xffff)
12216 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 12217
4b5a202f
AV
12218 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12219 inst.operands[1].imm,
12220 inst.operands[0].writeback);
90e4755a
RE
12221 }
12222 }
c19d1205 12223 else
90e4755a 12224 {
c19d1205
ZW
12225 constraint (inst.operands[0].reg > 7
12226 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
12227 constraint (inst.instruction != T_MNEM_ldmia
12228 && inst.instruction != T_MNEM_stmia,
12229 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 12230 if (inst.instruction == T_MNEM_stmia)
f03698e6 12231 {
c19d1205
ZW
12232 if (!inst.operands[0].writeback)
12233 as_warn (_("this instruction will write back the base register"));
12234 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12235 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 12236 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 12237 inst.operands[0].reg);
f03698e6 12238 }
c19d1205 12239 else
90e4755a 12240 {
c19d1205
ZW
12241 if (!inst.operands[0].writeback
12242 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12243 as_warn (_("this instruction will write back the base register"));
12244 else if (inst.operands[0].writeback
12245 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12246 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
12247 }
12248
c19d1205
ZW
12249 inst.instruction = THUMB_OP16 (inst.instruction);
12250 inst.instruction |= inst.operands[0].reg << 8;
12251 inst.instruction |= inst.operands[1].imm;
12252 }
12253}
e28cd48c 12254
c19d1205
ZW
12255static void
12256do_t_ldrex (void)
12257{
12258 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12259 || inst.operands[1].postind || inst.operands[1].writeback
12260 || inst.operands[1].immisreg || inst.operands[1].shifted
12261 || inst.operands[1].negative,
01cfc07f 12262 BAD_ADDR_MODE);
e28cd48c 12263
5be8be5d
DG
12264 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12265
c19d1205
ZW
12266 inst.instruction |= inst.operands[0].reg << 12;
12267 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 12268 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
c19d1205 12269}
e28cd48c 12270
c19d1205
ZW
12271static void
12272do_t_ldrexd (void)
12273{
12274 if (!inst.operands[1].present)
1cac9012 12275 {
c19d1205
ZW
12276 constraint (inst.operands[0].reg == REG_LR,
12277 _("r14 not allowed as first register "
12278 "when second register is omitted"));
12279 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 12280 }
c19d1205
ZW
12281 constraint (inst.operands[0].reg == inst.operands[1].reg,
12282 BAD_OVERLAP);
b99bd4ef 12283
c19d1205
ZW
12284 inst.instruction |= inst.operands[0].reg << 12;
12285 inst.instruction |= inst.operands[1].reg << 8;
12286 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
12287}
12288
12289static void
c19d1205 12290do_t_ldst (void)
b99bd4ef 12291{
0110f2b8
PB
12292 unsigned long opcode;
12293 int Rn;
12294
e07e6e58
NC
12295 if (inst.operands[0].isreg
12296 && !inst.operands[0].preind
12297 && inst.operands[0].reg == REG_PC)
5ee91343 12298 set_pred_insn_type_last ();
e07e6e58 12299
0110f2b8 12300 opcode = inst.instruction;
c19d1205 12301 if (unified_syntax)
b99bd4ef 12302 {
53365c0d
PB
12303 if (!inst.operands[1].isreg)
12304 {
12305 if (opcode <= 0xffff)
12306 inst.instruction = THUMB_OP32 (opcode);
8335d6aa 12307 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
53365c0d
PB
12308 return;
12309 }
0110f2b8
PB
12310 if (inst.operands[1].isreg
12311 && !inst.operands[1].writeback
c19d1205
ZW
12312 && !inst.operands[1].shifted && !inst.operands[1].postind
12313 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
12314 && opcode <= 0xffff
12315 && inst.size_req != 4)
c19d1205 12316 {
0110f2b8
PB
12317 /* Insn may have a 16-bit form. */
12318 Rn = inst.operands[1].reg;
12319 if (inst.operands[1].immisreg)
12320 {
12321 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 12322 /* [Rn, Rik] */
0110f2b8
PB
12323 if (Rn <= 7 && inst.operands[1].imm <= 7)
12324 goto op16;
5be8be5d
DG
12325 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12326 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
12327 }
12328 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12329 && opcode != T_MNEM_ldrsb)
12330 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12331 || (Rn == REG_SP && opcode == T_MNEM_str))
12332 {
12333 /* [Rn, #const] */
12334 if (Rn > 7)
12335 {
12336 if (Rn == REG_PC)
12337 {
e2b0ab59 12338 if (inst.relocs[0].pc_rel)
0110f2b8
PB
12339 opcode = T_MNEM_ldr_pc2;
12340 else
12341 opcode = T_MNEM_ldr_pc;
12342 }
12343 else
12344 {
12345 if (opcode == T_MNEM_ldr)
12346 opcode = T_MNEM_ldr_sp;
12347 else
12348 opcode = T_MNEM_str_sp;
12349 }
12350 inst.instruction = inst.operands[0].reg << 8;
12351 }
12352 else
12353 {
12354 inst.instruction = inst.operands[0].reg;
12355 inst.instruction |= inst.operands[1].reg << 3;
12356 }
12357 inst.instruction |= THUMB_OP16 (opcode);
12358 if (inst.size_req == 2)
e2b0ab59 12359 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
0110f2b8
PB
12360 else
12361 inst.relax = opcode;
12362 return;
12363 }
c19d1205 12364 }
0110f2b8 12365 /* Definitely a 32-bit variant. */
5be8be5d 12366
8d67f500
NC
12367 /* Warning for Erratum 752419. */
12368 if (opcode == T_MNEM_ldr
12369 && inst.operands[0].reg == REG_SP
12370 && inst.operands[1].writeback == 1
12371 && !inst.operands[1].immisreg)
12372 {
12373 if (no_cpu_selected ()
12374 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
477330fc
RM
12375 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12376 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
8d67f500
NC
12377 as_warn (_("This instruction may be unpredictable "
12378 "if executed on M-profile cores "
12379 "with interrupts enabled."));
12380 }
12381
5be8be5d 12382 /* Do some validations regarding addressing modes. */
1be5fd2e 12383 if (inst.operands[1].immisreg)
5be8be5d
DG
12384 reject_bad_reg (inst.operands[1].imm);
12385
1be5fd2e
NC
12386 constraint (inst.operands[1].writeback == 1
12387 && inst.operands[0].reg == inst.operands[1].reg,
12388 BAD_OVERLAP);
12389
0110f2b8 12390 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
12391 inst.instruction |= inst.operands[0].reg << 12;
12392 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 12393 check_ldr_r15_aligned ();
b99bd4ef
NC
12394 return;
12395 }
12396
c19d1205
ZW
12397 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12398
12399 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 12400 {
c19d1205
ZW
12401 /* Only [Rn,Rm] is acceptable. */
12402 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12403 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12404 || inst.operands[1].postind || inst.operands[1].shifted
12405 || inst.operands[1].negative,
12406 _("Thumb does not support this addressing mode"));
12407 inst.instruction = THUMB_OP16 (inst.instruction);
12408 goto op16;
b99bd4ef 12409 }
5f4273c7 12410
c19d1205
ZW
12411 inst.instruction = THUMB_OP16 (inst.instruction);
12412 if (!inst.operands[1].isreg)
8335d6aa 12413 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
c19d1205 12414 return;
b99bd4ef 12415
c19d1205
ZW
12416 constraint (!inst.operands[1].preind
12417 || inst.operands[1].shifted
12418 || inst.operands[1].writeback,
12419 _("Thumb does not support this addressing mode"));
12420 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 12421 {
c19d1205
ZW
12422 constraint (inst.instruction & 0x0600,
12423 _("byte or halfword not valid for base register"));
12424 constraint (inst.operands[1].reg == REG_PC
12425 && !(inst.instruction & THUMB_LOAD_BIT),
12426 _("r15 based store not allowed"));
12427 constraint (inst.operands[1].immisreg,
12428 _("invalid base register for register offset"));
b99bd4ef 12429
c19d1205
ZW
12430 if (inst.operands[1].reg == REG_PC)
12431 inst.instruction = T_OPCODE_LDR_PC;
12432 else if (inst.instruction & THUMB_LOAD_BIT)
12433 inst.instruction = T_OPCODE_LDR_SP;
12434 else
12435 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 12436
c19d1205 12437 inst.instruction |= inst.operands[0].reg << 8;
e2b0ab59 12438 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12439 return;
12440 }
90e4755a 12441
c19d1205
ZW
12442 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12443 if (!inst.operands[1].immisreg)
12444 {
12445 /* Immediate offset. */
12446 inst.instruction |= inst.operands[0].reg;
12447 inst.instruction |= inst.operands[1].reg << 3;
e2b0ab59 12448 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12449 return;
12450 }
90e4755a 12451
c19d1205
ZW
12452 /* Register offset. */
12453 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12454 constraint (inst.operands[1].negative,
12455 _("Thumb does not support this addressing mode"));
90e4755a 12456
c19d1205
ZW
12457 op16:
12458 switch (inst.instruction)
12459 {
12460 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12461 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12462 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12463 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12464 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12465 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12466 case 0x5600 /* ldrsb */:
12467 case 0x5e00 /* ldrsh */: break;
12468 default: abort ();
12469 }
90e4755a 12470
c19d1205
ZW
12471 inst.instruction |= inst.operands[0].reg;
12472 inst.instruction |= inst.operands[1].reg << 3;
12473 inst.instruction |= inst.operands[1].imm << 6;
12474}
90e4755a 12475
c19d1205
ZW
12476static void
12477do_t_ldstd (void)
12478{
12479 if (!inst.operands[1].present)
b99bd4ef 12480 {
c19d1205
ZW
12481 inst.operands[1].reg = inst.operands[0].reg + 1;
12482 constraint (inst.operands[0].reg == REG_LR,
12483 _("r14 not allowed here"));
bd340a04 12484 constraint (inst.operands[0].reg == REG_R12,
477330fc 12485 _("r12 not allowed here"));
b99bd4ef 12486 }
bd340a04
MGD
12487
12488 if (inst.operands[2].writeback
12489 && (inst.operands[0].reg == inst.operands[2].reg
12490 || inst.operands[1].reg == inst.operands[2].reg))
12491 as_warn (_("base register written back, and overlaps "
477330fc 12492 "one of transfer registers"));
bd340a04 12493
c19d1205
ZW
12494 inst.instruction |= inst.operands[0].reg << 12;
12495 inst.instruction |= inst.operands[1].reg << 8;
12496 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
12497}
12498
c19d1205
ZW
12499static void
12500do_t_ldstt (void)
12501{
12502 inst.instruction |= inst.operands[0].reg << 12;
12503 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12504}
a737bd4d 12505
b99bd4ef 12506static void
c19d1205 12507do_t_mla (void)
b99bd4ef 12508{
fdfde340 12509 unsigned Rd, Rn, Rm, Ra;
c921be7d 12510
fdfde340
JM
12511 Rd = inst.operands[0].reg;
12512 Rn = inst.operands[1].reg;
12513 Rm = inst.operands[2].reg;
12514 Ra = inst.operands[3].reg;
12515
12516 reject_bad_reg (Rd);
12517 reject_bad_reg (Rn);
12518 reject_bad_reg (Rm);
12519 reject_bad_reg (Ra);
12520
12521 inst.instruction |= Rd << 8;
12522 inst.instruction |= Rn << 16;
12523 inst.instruction |= Rm;
12524 inst.instruction |= Ra << 12;
c19d1205 12525}
b99bd4ef 12526
c19d1205
ZW
12527static void
12528do_t_mlal (void)
12529{
fdfde340
JM
12530 unsigned RdLo, RdHi, Rn, Rm;
12531
12532 RdLo = inst.operands[0].reg;
12533 RdHi = inst.operands[1].reg;
12534 Rn = inst.operands[2].reg;
12535 Rm = inst.operands[3].reg;
12536
12537 reject_bad_reg (RdLo);
12538 reject_bad_reg (RdHi);
12539 reject_bad_reg (Rn);
12540 reject_bad_reg (Rm);
12541
12542 inst.instruction |= RdLo << 12;
12543 inst.instruction |= RdHi << 8;
12544 inst.instruction |= Rn << 16;
12545 inst.instruction |= Rm;
c19d1205 12546}
b99bd4ef 12547
c19d1205
ZW
12548static void
12549do_t_mov_cmp (void)
12550{
fdfde340
JM
12551 unsigned Rn, Rm;
12552
12553 Rn = inst.operands[0].reg;
12554 Rm = inst.operands[1].reg;
12555
e07e6e58 12556 if (Rn == REG_PC)
5ee91343 12557 set_pred_insn_type_last ();
e07e6e58 12558
c19d1205 12559 if (unified_syntax)
b99bd4ef 12560 {
c19d1205
ZW
12561 int r0off = (inst.instruction == T_MNEM_mov
12562 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 12563 unsigned long opcode;
3d388997
PB
12564 bfd_boolean narrow;
12565 bfd_boolean low_regs;
12566
fdfde340 12567 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 12568 opcode = inst.instruction;
5ee91343 12569 if (in_pred_block ())
0110f2b8 12570 narrow = opcode != T_MNEM_movs;
3d388997 12571 else
0110f2b8 12572 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
12573 if (inst.size_req == 4
12574 || inst.operands[1].shifted)
12575 narrow = FALSE;
12576
efd81785
PB
12577 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12578 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12579 && !inst.operands[1].shifted
fdfde340
JM
12580 && Rn == REG_PC
12581 && Rm == REG_LR)
efd81785
PB
12582 {
12583 inst.instruction = T2_SUBS_PC_LR;
12584 return;
12585 }
12586
fdfde340
JM
12587 if (opcode == T_MNEM_cmp)
12588 {
12589 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
12590 if (narrow)
12591 {
12592 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12593 but valid. */
12594 warn_deprecated_sp (Rm);
12595 /* R15 was documented as a valid choice for Rm in ARMv6,
12596 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12597 tools reject R15, so we do too. */
12598 constraint (Rm == REG_PC, BAD_PC);
12599 }
12600 else
12601 reject_bad_reg (Rm);
fdfde340
JM
12602 }
12603 else if (opcode == T_MNEM_mov
12604 || opcode == T_MNEM_movs)
12605 {
12606 if (inst.operands[1].isreg)
12607 {
12608 if (opcode == T_MNEM_movs)
12609 {
12610 reject_bad_reg (Rn);
12611 reject_bad_reg (Rm);
12612 }
76fa04a4
MGD
12613 else if (narrow)
12614 {
12615 /* This is mov.n. */
12616 if ((Rn == REG_SP || Rn == REG_PC)
12617 && (Rm == REG_SP || Rm == REG_PC))
12618 {
5c3696f8 12619 as_tsktsk (_("Use of r%u as a source register is "
76fa04a4
MGD
12620 "deprecated when r%u is the destination "
12621 "register."), Rm, Rn);
12622 }
12623 }
12624 else
12625 {
12626 /* This is mov.w. */
12627 constraint (Rn == REG_PC, BAD_PC);
12628 constraint (Rm == REG_PC, BAD_PC);
5c8ed6a4
JW
12629 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12630 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
76fa04a4 12631 }
fdfde340
JM
12632 }
12633 else
12634 reject_bad_reg (Rn);
12635 }
12636
c19d1205
ZW
12637 if (!inst.operands[1].isreg)
12638 {
0110f2b8 12639 /* Immediate operand. */
5ee91343 12640 if (!in_pred_block () && opcode == T_MNEM_mov)
0110f2b8
PB
12641 narrow = 0;
12642 if (low_regs && narrow)
12643 {
12644 inst.instruction = THUMB_OP16 (opcode);
fdfde340 12645 inst.instruction |= Rn << 8;
e2b0ab59
AV
12646 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12647 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
72d98d16 12648 {
a9f02af8 12649 if (inst.size_req == 2)
e2b0ab59 12650 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
a9f02af8
MG
12651 else
12652 inst.relax = opcode;
72d98d16 12653 }
0110f2b8
PB
12654 }
12655 else
12656 {
e2b0ab59
AV
12657 constraint ((inst.relocs[0].type
12658 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12659 && (inst.relocs[0].type
12660 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8
MG
12661 THUMB1_RELOC_ONLY);
12662
0110f2b8
PB
12663 inst.instruction = THUMB_OP32 (inst.instruction);
12664 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12665 inst.instruction |= Rn << r0off;
e2b0ab59 12666 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8 12667 }
c19d1205 12668 }
728ca7c9
PB
12669 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12670 && (inst.instruction == T_MNEM_mov
12671 || inst.instruction == T_MNEM_movs))
12672 {
12673 /* Register shifts are encoded as separate shift instructions. */
12674 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12675
5ee91343 12676 if (in_pred_block ())
728ca7c9
PB
12677 narrow = !flags;
12678 else
12679 narrow = flags;
12680
12681 if (inst.size_req == 4)
12682 narrow = FALSE;
12683
12684 if (!low_regs || inst.operands[1].imm > 7)
12685 narrow = FALSE;
12686
fdfde340 12687 if (Rn != Rm)
728ca7c9
PB
12688 narrow = FALSE;
12689
12690 switch (inst.operands[1].shift_kind)
12691 {
12692 case SHIFT_LSL:
12693 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12694 break;
12695 case SHIFT_ASR:
12696 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12697 break;
12698 case SHIFT_LSR:
12699 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12700 break;
12701 case SHIFT_ROR:
12702 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12703 break;
12704 default:
5f4273c7 12705 abort ();
728ca7c9
PB
12706 }
12707
12708 inst.instruction = opcode;
12709 if (narrow)
12710 {
fdfde340 12711 inst.instruction |= Rn;
728ca7c9
PB
12712 inst.instruction |= inst.operands[1].imm << 3;
12713 }
12714 else
12715 {
12716 if (flags)
12717 inst.instruction |= CONDS_BIT;
12718
fdfde340
JM
12719 inst.instruction |= Rn << 8;
12720 inst.instruction |= Rm << 16;
728ca7c9
PB
12721 inst.instruction |= inst.operands[1].imm;
12722 }
12723 }
3d388997 12724 else if (!narrow)
c19d1205 12725 {
728ca7c9
PB
12726 /* Some mov with immediate shift have narrow variants.
12727 Register shifts are handled above. */
12728 if (low_regs && inst.operands[1].shifted
12729 && (inst.instruction == T_MNEM_mov
12730 || inst.instruction == T_MNEM_movs))
12731 {
5ee91343 12732 if (in_pred_block ())
728ca7c9
PB
12733 narrow = (inst.instruction == T_MNEM_mov);
12734 else
12735 narrow = (inst.instruction == T_MNEM_movs);
12736 }
12737
12738 if (narrow)
12739 {
12740 switch (inst.operands[1].shift_kind)
12741 {
12742 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12743 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12744 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12745 default: narrow = FALSE; break;
12746 }
12747 }
12748
12749 if (narrow)
12750 {
fdfde340
JM
12751 inst.instruction |= Rn;
12752 inst.instruction |= Rm << 3;
e2b0ab59 12753 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
728ca7c9
PB
12754 }
12755 else
12756 {
12757 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12758 inst.instruction |= Rn << r0off;
728ca7c9
PB
12759 encode_thumb32_shifted_operand (1);
12760 }
c19d1205
ZW
12761 }
12762 else
12763 switch (inst.instruction)
12764 {
12765 case T_MNEM_mov:
837b3435 12766 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
12767 results. Don't allow this. */
12768 if (low_regs)
12769 {
12770 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12771 "MOV Rd, Rs with two low registers is not "
12772 "permitted on this architecture");
fa94de6b 12773 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
12774 arm_ext_v6);
12775 }
12776
c19d1205 12777 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
12778 inst.instruction |= (Rn & 0x8) << 4;
12779 inst.instruction |= (Rn & 0x7);
12780 inst.instruction |= Rm << 3;
c19d1205 12781 break;
b99bd4ef 12782
c19d1205
ZW
12783 case T_MNEM_movs:
12784 /* We know we have low registers at this point.
941a8a52
MGD
12785 Generate LSLS Rd, Rs, #0. */
12786 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
12787 inst.instruction |= Rn;
12788 inst.instruction |= Rm << 3;
c19d1205
ZW
12789 break;
12790
12791 case T_MNEM_cmp:
3d388997 12792 if (low_regs)
c19d1205
ZW
12793 {
12794 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
12795 inst.instruction |= Rn;
12796 inst.instruction |= Rm << 3;
c19d1205
ZW
12797 }
12798 else
12799 {
12800 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
12801 inst.instruction |= (Rn & 0x8) << 4;
12802 inst.instruction |= (Rn & 0x7);
12803 inst.instruction |= Rm << 3;
c19d1205
ZW
12804 }
12805 break;
12806 }
b99bd4ef
NC
12807 return;
12808 }
12809
c19d1205 12810 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
12811
12812 /* PR 10443: Do not silently ignore shifted operands. */
12813 constraint (inst.operands[1].shifted,
12814 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12815
c19d1205 12816 if (inst.operands[1].isreg)
b99bd4ef 12817 {
fdfde340 12818 if (Rn < 8 && Rm < 8)
b99bd4ef 12819 {
c19d1205
ZW
12820 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12821 since a MOV instruction produces unpredictable results. */
12822 if (inst.instruction == T_OPCODE_MOV_I8)
12823 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 12824 else
c19d1205 12825 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 12826
fdfde340
JM
12827 inst.instruction |= Rn;
12828 inst.instruction |= Rm << 3;
b99bd4ef
NC
12829 }
12830 else
12831 {
c19d1205
ZW
12832 if (inst.instruction == T_OPCODE_MOV_I8)
12833 inst.instruction = T_OPCODE_MOV_HR;
12834 else
12835 inst.instruction = T_OPCODE_CMP_HR;
12836 do_t_cpy ();
b99bd4ef
NC
12837 }
12838 }
c19d1205 12839 else
b99bd4ef 12840 {
fdfde340 12841 constraint (Rn > 7,
c19d1205 12842 _("only lo regs allowed with immediate"));
fdfde340 12843 inst.instruction |= Rn << 8;
e2b0ab59 12844 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
c19d1205
ZW
12845 }
12846}
b99bd4ef 12847
c19d1205
ZW
12848static void
12849do_t_mov16 (void)
12850{
fdfde340 12851 unsigned Rd;
b6895b4f
PB
12852 bfd_vma imm;
12853 bfd_boolean top;
12854
12855 top = (inst.instruction & 0x00800000) != 0;
e2b0ab59 12856 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
b6895b4f 12857 {
33eaf5de 12858 constraint (top, _(":lower16: not allowed in this instruction"));
e2b0ab59 12859 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
b6895b4f 12860 }
e2b0ab59 12861 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
b6895b4f 12862 {
33eaf5de 12863 constraint (!top, _(":upper16: not allowed in this instruction"));
e2b0ab59 12864 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
b6895b4f
PB
12865 }
12866
fdfde340
JM
12867 Rd = inst.operands[0].reg;
12868 reject_bad_reg (Rd);
12869
12870 inst.instruction |= Rd << 8;
e2b0ab59 12871 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 12872 {
e2b0ab59 12873 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
12874 inst.instruction |= (imm & 0xf000) << 4;
12875 inst.instruction |= (imm & 0x0800) << 15;
12876 inst.instruction |= (imm & 0x0700) << 4;
12877 inst.instruction |= (imm & 0x00ff);
12878 }
c19d1205 12879}
b99bd4ef 12880
c19d1205
ZW
12881static void
12882do_t_mvn_tst (void)
12883{
fdfde340 12884 unsigned Rn, Rm;
c921be7d 12885
fdfde340
JM
12886 Rn = inst.operands[0].reg;
12887 Rm = inst.operands[1].reg;
12888
12889 if (inst.instruction == T_MNEM_cmp
12890 || inst.instruction == T_MNEM_cmn)
12891 constraint (Rn == REG_PC, BAD_PC);
12892 else
12893 reject_bad_reg (Rn);
12894 reject_bad_reg (Rm);
12895
c19d1205
ZW
12896 if (unified_syntax)
12897 {
12898 int r0off = (inst.instruction == T_MNEM_mvn
12899 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
12900 bfd_boolean narrow;
12901
12902 if (inst.size_req == 4
12903 || inst.instruction > 0xffff
12904 || inst.operands[1].shifted
fdfde340 12905 || Rn > 7 || Rm > 7)
3d388997 12906 narrow = FALSE;
fe8b4cc3
KT
12907 else if (inst.instruction == T_MNEM_cmn
12908 || inst.instruction == T_MNEM_tst)
3d388997
PB
12909 narrow = TRUE;
12910 else if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 12911 narrow = !in_pred_block ();
3d388997 12912 else
5ee91343 12913 narrow = in_pred_block ();
3d388997 12914
c19d1205 12915 if (!inst.operands[1].isreg)
b99bd4ef 12916 {
c19d1205
ZW
12917 /* For an immediate, we always generate a 32-bit opcode;
12918 section relaxation will shrink it later if possible. */
12919 if (inst.instruction < 0xffff)
12920 inst.instruction = THUMB_OP32 (inst.instruction);
12921 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12922 inst.instruction |= Rn << r0off;
e2b0ab59 12923 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 12924 }
c19d1205 12925 else
b99bd4ef 12926 {
c19d1205 12927 /* See if we can do this with a 16-bit instruction. */
3d388997 12928 if (narrow)
b99bd4ef 12929 {
c19d1205 12930 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12931 inst.instruction |= Rn;
12932 inst.instruction |= Rm << 3;
b99bd4ef 12933 }
c19d1205 12934 else
b99bd4ef 12935 {
c19d1205
ZW
12936 constraint (inst.operands[1].shifted
12937 && inst.operands[1].immisreg,
12938 _("shift must be constant"));
12939 if (inst.instruction < 0xffff)
12940 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12941 inst.instruction |= Rn << r0off;
c19d1205 12942 encode_thumb32_shifted_operand (1);
b99bd4ef 12943 }
b99bd4ef
NC
12944 }
12945 }
12946 else
12947 {
c19d1205
ZW
12948 constraint (inst.instruction > 0xffff
12949 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12950 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12951 _("unshifted register required"));
fdfde340 12952 constraint (Rn > 7 || Rm > 7,
c19d1205 12953 BAD_HIREG);
b99bd4ef 12954
c19d1205 12955 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12956 inst.instruction |= Rn;
12957 inst.instruction |= Rm << 3;
b99bd4ef 12958 }
b99bd4ef
NC
12959}
12960
b05fe5cf 12961static void
c19d1205 12962do_t_mrs (void)
b05fe5cf 12963{
fdfde340 12964 unsigned Rd;
037e8744
JB
12965
12966 if (do_vfp_nsyn_mrs () == SUCCESS)
12967 return;
12968
90ec0d68
MGD
12969 Rd = inst.operands[0].reg;
12970 reject_bad_reg (Rd);
12971 inst.instruction |= Rd << 8;
12972
12973 if (inst.operands[1].isreg)
62b3e311 12974 {
90ec0d68
MGD
12975 unsigned br = inst.operands[1].reg;
12976 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12977 as_bad (_("bad register for mrs"));
12978
12979 inst.instruction |= br & (0xf << 16);
12980 inst.instruction |= (br & 0x300) >> 4;
12981 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
12982 }
12983 else
12984 {
90ec0d68 12985 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 12986
d2cd1205 12987 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
12988 {
12989 /* PR gas/12698: The constraint is only applied for m_profile.
12990 If the user has specified -march=all, we want to ignore it as
12991 we are building for any CPU type, including non-m variants. */
823d2571
TG
12992 bfd_boolean m_profile =
12993 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf
NC
12994 constraint ((flags != 0) && m_profile, _("selected processor does "
12995 "not support requested special purpose register"));
12996 }
90ec0d68 12997 else
d2cd1205
JB
12998 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12999 devices). */
13000 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13001 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 13002
90ec0d68
MGD
13003 inst.instruction |= (flags & SPSR_BIT) >> 2;
13004 inst.instruction |= inst.operands[1].imm & 0xff;
13005 inst.instruction |= 0xf0000;
13006 }
c19d1205 13007}
b05fe5cf 13008
c19d1205
ZW
13009static void
13010do_t_msr (void)
13011{
62b3e311 13012 int flags;
fdfde340 13013 unsigned Rn;
62b3e311 13014
037e8744
JB
13015 if (do_vfp_nsyn_msr () == SUCCESS)
13016 return;
13017
c19d1205
ZW
13018 constraint (!inst.operands[1].isreg,
13019 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
13020
13021 if (inst.operands[0].isreg)
13022 flags = (int)(inst.operands[0].reg);
13023 else
13024 flags = inst.operands[0].imm;
13025
d2cd1205 13026 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 13027 {
d2cd1205
JB
13028 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13029
1a43faaf 13030 /* PR gas/12698: The constraint is only applied for m_profile.
477330fc
RM
13031 If the user has specified -march=all, we want to ignore it as
13032 we are building for any CPU type, including non-m variants. */
823d2571
TG
13033 bfd_boolean m_profile =
13034 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf 13035 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
477330fc
RM
13036 && (bits & ~(PSR_s | PSR_f)) != 0)
13037 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13038 && bits != PSR_f)) && m_profile,
13039 _("selected processor does not support requested special "
13040 "purpose register"));
62b3e311
PB
13041 }
13042 else
d2cd1205
JB
13043 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13044 "requested special purpose register"));
c921be7d 13045
fdfde340
JM
13046 Rn = inst.operands[1].reg;
13047 reject_bad_reg (Rn);
13048
62b3e311 13049 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
13050 inst.instruction |= (flags & 0xf0000) >> 8;
13051 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 13052 inst.instruction |= (flags & 0xff);
fdfde340 13053 inst.instruction |= Rn << 16;
c19d1205 13054}
b05fe5cf 13055
c19d1205
ZW
13056static void
13057do_t_mul (void)
13058{
17828f45 13059 bfd_boolean narrow;
fdfde340 13060 unsigned Rd, Rn, Rm;
17828f45 13061
c19d1205
ZW
13062 if (!inst.operands[2].present)
13063 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 13064
fdfde340
JM
13065 Rd = inst.operands[0].reg;
13066 Rn = inst.operands[1].reg;
13067 Rm = inst.operands[2].reg;
13068
17828f45 13069 if (unified_syntax)
b05fe5cf 13070 {
17828f45 13071 if (inst.size_req == 4
fdfde340
JM
13072 || (Rd != Rn
13073 && Rd != Rm)
13074 || Rn > 7
13075 || Rm > 7)
17828f45
JM
13076 narrow = FALSE;
13077 else if (inst.instruction == T_MNEM_muls)
5ee91343 13078 narrow = !in_pred_block ();
17828f45 13079 else
5ee91343 13080 narrow = in_pred_block ();
b05fe5cf 13081 }
c19d1205 13082 else
b05fe5cf 13083 {
17828f45 13084 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 13085 constraint (Rn > 7 || Rm > 7,
c19d1205 13086 BAD_HIREG);
17828f45
JM
13087 narrow = TRUE;
13088 }
b05fe5cf 13089
17828f45
JM
13090 if (narrow)
13091 {
13092 /* 16-bit MULS/Conditional MUL. */
c19d1205 13093 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 13094 inst.instruction |= Rd;
b05fe5cf 13095
fdfde340
JM
13096 if (Rd == Rn)
13097 inst.instruction |= Rm << 3;
13098 else if (Rd == Rm)
13099 inst.instruction |= Rn << 3;
c19d1205
ZW
13100 else
13101 constraint (1, _("dest must overlap one source register"));
13102 }
17828f45
JM
13103 else
13104 {
e07e6e58
NC
13105 constraint (inst.instruction != T_MNEM_mul,
13106 _("Thumb-2 MUL must not set flags"));
17828f45
JM
13107 /* 32-bit MUL. */
13108 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13109 inst.instruction |= Rd << 8;
13110 inst.instruction |= Rn << 16;
13111 inst.instruction |= Rm << 0;
13112
13113 reject_bad_reg (Rd);
13114 reject_bad_reg (Rn);
13115 reject_bad_reg (Rm);
17828f45 13116 }
c19d1205 13117}
b05fe5cf 13118
c19d1205
ZW
13119static void
13120do_t_mull (void)
13121{
fdfde340 13122 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 13123
fdfde340
JM
13124 RdLo = inst.operands[0].reg;
13125 RdHi = inst.operands[1].reg;
13126 Rn = inst.operands[2].reg;
13127 Rm = inst.operands[3].reg;
13128
13129 reject_bad_reg (RdLo);
13130 reject_bad_reg (RdHi);
13131 reject_bad_reg (Rn);
13132 reject_bad_reg (Rm);
13133
13134 inst.instruction |= RdLo << 12;
13135 inst.instruction |= RdHi << 8;
13136 inst.instruction |= Rn << 16;
13137 inst.instruction |= Rm;
13138
13139 if (RdLo == RdHi)
c19d1205
ZW
13140 as_tsktsk (_("rdhi and rdlo must be different"));
13141}
b05fe5cf 13142
c19d1205
ZW
13143static void
13144do_t_nop (void)
13145{
5ee91343 13146 set_pred_insn_type (NEUTRAL_IT_INSN);
e07e6e58 13147
c19d1205
ZW
13148 if (unified_syntax)
13149 {
13150 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 13151 {
c19d1205
ZW
13152 inst.instruction = THUMB_OP32 (inst.instruction);
13153 inst.instruction |= inst.operands[0].imm;
13154 }
13155 else
13156 {
bc2d1808
NC
13157 /* PR9722: Check for Thumb2 availability before
13158 generating a thumb2 nop instruction. */
afa62d5e 13159 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
13160 {
13161 inst.instruction = THUMB_OP16 (inst.instruction);
13162 inst.instruction |= inst.operands[0].imm << 4;
13163 }
13164 else
13165 inst.instruction = 0x46c0;
c19d1205
ZW
13166 }
13167 }
13168 else
13169 {
13170 constraint (inst.operands[0].present,
13171 _("Thumb does not support NOP with hints"));
13172 inst.instruction = 0x46c0;
13173 }
13174}
b05fe5cf 13175
c19d1205
ZW
13176static void
13177do_t_neg (void)
13178{
13179 if (unified_syntax)
13180 {
3d388997
PB
13181 bfd_boolean narrow;
13182
13183 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13184 narrow = !in_pred_block ();
3d388997 13185 else
5ee91343 13186 narrow = in_pred_block ();
3d388997
PB
13187 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13188 narrow = FALSE;
13189 if (inst.size_req == 4)
13190 narrow = FALSE;
13191
13192 if (!narrow)
c19d1205
ZW
13193 {
13194 inst.instruction = THUMB_OP32 (inst.instruction);
13195 inst.instruction |= inst.operands[0].reg << 8;
13196 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
13197 }
13198 else
13199 {
c19d1205
ZW
13200 inst.instruction = THUMB_OP16 (inst.instruction);
13201 inst.instruction |= inst.operands[0].reg;
13202 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
13203 }
13204 }
13205 else
13206 {
c19d1205
ZW
13207 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13208 BAD_HIREG);
13209 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13210
13211 inst.instruction = THUMB_OP16 (inst.instruction);
13212 inst.instruction |= inst.operands[0].reg;
13213 inst.instruction |= inst.operands[1].reg << 3;
13214 }
13215}
13216
1c444d06
JM
13217static void
13218do_t_orn (void)
13219{
13220 unsigned Rd, Rn;
13221
13222 Rd = inst.operands[0].reg;
13223 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13224
fdfde340
JM
13225 reject_bad_reg (Rd);
13226 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13227 reject_bad_reg (Rn);
13228
1c444d06
JM
13229 inst.instruction |= Rd << 8;
13230 inst.instruction |= Rn << 16;
13231
13232 if (!inst.operands[2].isreg)
13233 {
13234 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13235 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
1c444d06
JM
13236 }
13237 else
13238 {
13239 unsigned Rm;
13240
13241 Rm = inst.operands[2].reg;
fdfde340 13242 reject_bad_reg (Rm);
1c444d06
JM
13243
13244 constraint (inst.operands[2].shifted
13245 && inst.operands[2].immisreg,
13246 _("shift must be constant"));
13247 encode_thumb32_shifted_operand (2);
13248 }
13249}
13250
c19d1205
ZW
13251static void
13252do_t_pkhbt (void)
13253{
fdfde340
JM
13254 unsigned Rd, Rn, Rm;
13255
13256 Rd = inst.operands[0].reg;
13257 Rn = inst.operands[1].reg;
13258 Rm = inst.operands[2].reg;
13259
13260 reject_bad_reg (Rd);
13261 reject_bad_reg (Rn);
13262 reject_bad_reg (Rm);
13263
13264 inst.instruction |= Rd << 8;
13265 inst.instruction |= Rn << 16;
13266 inst.instruction |= Rm;
c19d1205
ZW
13267 if (inst.operands[3].present)
13268 {
e2b0ab59
AV
13269 unsigned int val = inst.relocs[0].exp.X_add_number;
13270 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
13271 _("expression too complex"));
13272 inst.instruction |= (val & 0x1c) << 10;
13273 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 13274 }
c19d1205 13275}
b05fe5cf 13276
c19d1205
ZW
13277static void
13278do_t_pkhtb (void)
13279{
13280 if (!inst.operands[3].present)
1ef52f49
NC
13281 {
13282 unsigned Rtmp;
13283
13284 inst.instruction &= ~0x00000020;
13285
13286 /* PR 10168. Swap the Rm and Rn registers. */
13287 Rtmp = inst.operands[1].reg;
13288 inst.operands[1].reg = inst.operands[2].reg;
13289 inst.operands[2].reg = Rtmp;
13290 }
c19d1205 13291 do_t_pkhbt ();
b05fe5cf
ZW
13292}
13293
c19d1205
ZW
13294static void
13295do_t_pld (void)
13296{
fdfde340
JM
13297 if (inst.operands[0].immisreg)
13298 reject_bad_reg (inst.operands[0].imm);
13299
c19d1205
ZW
13300 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13301}
b05fe5cf 13302
c19d1205
ZW
13303static void
13304do_t_push_pop (void)
b99bd4ef 13305{
e9f89963 13306 unsigned mask;
5f4273c7 13307
c19d1205
ZW
13308 constraint (inst.operands[0].writeback,
13309 _("push/pop do not support {reglist}^"));
e2b0ab59 13310 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205 13311 _("expression too complex"));
b99bd4ef 13312
e9f89963 13313 mask = inst.operands[0].imm;
d3bfe16e 13314 if (inst.size_req != 4 && (mask & ~0xff) == 0)
3c707909 13315 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
d3bfe16e 13316 else if (inst.size_req != 4
c6025a80 13317 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
d3bfe16e 13318 ? REG_LR : REG_PC)))
b99bd4ef 13319 {
c19d1205
ZW
13320 inst.instruction = THUMB_OP16 (inst.instruction);
13321 inst.instruction |= THUMB_PP_PC_LR;
3c707909 13322 inst.instruction |= mask & 0xff;
c19d1205
ZW
13323 }
13324 else if (unified_syntax)
13325 {
3c707909 13326 inst.instruction = THUMB_OP32 (inst.instruction);
4b5a202f
AV
13327 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13328 }
13329 else
13330 {
13331 inst.error = _("invalid register list to push/pop instruction");
13332 return;
c19d1205 13333 }
4b5a202f
AV
13334}
13335
13336static void
13337do_t_clrm (void)
13338{
13339 if (unified_syntax)
13340 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
c19d1205
ZW
13341 else
13342 {
13343 inst.error = _("invalid register list to push/pop instruction");
13344 return;
13345 }
c19d1205 13346}
b99bd4ef 13347
efd6b359
AV
13348static void
13349do_t_vscclrm (void)
13350{
13351 if (inst.operands[0].issingle)
13352 {
13353 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13354 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13355 inst.instruction |= inst.operands[0].imm;
13356 }
13357 else
13358 {
13359 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13360 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13361 inst.instruction |= 1 << 8;
13362 inst.instruction |= inst.operands[0].imm << 1;
13363 }
13364}
13365
c19d1205
ZW
13366static void
13367do_t_rbit (void)
13368{
fdfde340
JM
13369 unsigned Rd, Rm;
13370
13371 Rd = inst.operands[0].reg;
13372 Rm = inst.operands[1].reg;
13373
13374 reject_bad_reg (Rd);
13375 reject_bad_reg (Rm);
13376
13377 inst.instruction |= Rd << 8;
13378 inst.instruction |= Rm << 16;
13379 inst.instruction |= Rm;
c19d1205 13380}
b99bd4ef 13381
c19d1205
ZW
13382static void
13383do_t_rev (void)
13384{
fdfde340
JM
13385 unsigned Rd, Rm;
13386
13387 Rd = inst.operands[0].reg;
13388 Rm = inst.operands[1].reg;
13389
13390 reject_bad_reg (Rd);
13391 reject_bad_reg (Rm);
13392
13393 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
13394 && inst.size_req != 4)
13395 {
13396 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13397 inst.instruction |= Rd;
13398 inst.instruction |= Rm << 3;
c19d1205
ZW
13399 }
13400 else if (unified_syntax)
13401 {
13402 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13403 inst.instruction |= Rd << 8;
13404 inst.instruction |= Rm << 16;
13405 inst.instruction |= Rm;
c19d1205
ZW
13406 }
13407 else
13408 inst.error = BAD_HIREG;
13409}
b99bd4ef 13410
1c444d06
JM
13411static void
13412do_t_rrx (void)
13413{
13414 unsigned Rd, Rm;
13415
13416 Rd = inst.operands[0].reg;
13417 Rm = inst.operands[1].reg;
13418
fdfde340
JM
13419 reject_bad_reg (Rd);
13420 reject_bad_reg (Rm);
c921be7d 13421
1c444d06
JM
13422 inst.instruction |= Rd << 8;
13423 inst.instruction |= Rm;
13424}
13425
c19d1205
ZW
13426static void
13427do_t_rsb (void)
13428{
fdfde340 13429 unsigned Rd, Rs;
b99bd4ef 13430
c19d1205
ZW
13431 Rd = inst.operands[0].reg;
13432 Rs = (inst.operands[1].present
13433 ? inst.operands[1].reg /* Rd, Rs, foo */
13434 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 13435
fdfde340
JM
13436 reject_bad_reg (Rd);
13437 reject_bad_reg (Rs);
13438 if (inst.operands[2].isreg)
13439 reject_bad_reg (inst.operands[2].reg);
13440
c19d1205
ZW
13441 inst.instruction |= Rd << 8;
13442 inst.instruction |= Rs << 16;
13443 if (!inst.operands[2].isreg)
13444 {
026d3abb
PB
13445 bfd_boolean narrow;
13446
13447 if ((inst.instruction & 0x00100000) != 0)
5ee91343 13448 narrow = !in_pred_block ();
026d3abb 13449 else
5ee91343 13450 narrow = in_pred_block ();
026d3abb
PB
13451
13452 if (Rd > 7 || Rs > 7)
13453 narrow = FALSE;
13454
13455 if (inst.size_req == 4 || !unified_syntax)
13456 narrow = FALSE;
13457
e2b0ab59
AV
13458 if (inst.relocs[0].exp.X_op != O_constant
13459 || inst.relocs[0].exp.X_add_number != 0)
026d3abb
PB
13460 narrow = FALSE;
13461
13462 /* Turn rsb #0 into 16-bit neg. We should probably do this via
477330fc 13463 relaxation, but it doesn't seem worth the hassle. */
026d3abb
PB
13464 if (narrow)
13465 {
e2b0ab59 13466 inst.relocs[0].type = BFD_RELOC_UNUSED;
026d3abb
PB
13467 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13468 inst.instruction |= Rs << 3;
13469 inst.instruction |= Rd;
13470 }
13471 else
13472 {
13473 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13474 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
026d3abb 13475 }
c19d1205
ZW
13476 }
13477 else
13478 encode_thumb32_shifted_operand (2);
13479}
b99bd4ef 13480
c19d1205
ZW
13481static void
13482do_t_setend (void)
13483{
12e37cbc
MGD
13484 if (warn_on_deprecated
13485 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 13486 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 13487
5ee91343 13488 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
13489 if (inst.operands[0].imm)
13490 inst.instruction |= 0x8;
13491}
b99bd4ef 13492
c19d1205
ZW
13493static void
13494do_t_shift (void)
13495{
13496 if (!inst.operands[1].present)
13497 inst.operands[1].reg = inst.operands[0].reg;
13498
13499 if (unified_syntax)
13500 {
3d388997
PB
13501 bfd_boolean narrow;
13502 int shift_kind;
13503
13504 switch (inst.instruction)
13505 {
13506 case T_MNEM_asr:
13507 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13508 case T_MNEM_lsl:
13509 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13510 case T_MNEM_lsr:
13511 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13512 case T_MNEM_ror:
13513 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13514 default: abort ();
13515 }
13516
13517 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13518 narrow = !in_pred_block ();
3d388997 13519 else
5ee91343 13520 narrow = in_pred_block ();
3d388997
PB
13521 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13522 narrow = FALSE;
13523 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13524 narrow = FALSE;
13525 if (inst.operands[2].isreg
13526 && (inst.operands[1].reg != inst.operands[0].reg
13527 || inst.operands[2].reg > 7))
13528 narrow = FALSE;
13529 if (inst.size_req == 4)
13530 narrow = FALSE;
13531
fdfde340
JM
13532 reject_bad_reg (inst.operands[0].reg);
13533 reject_bad_reg (inst.operands[1].reg);
c921be7d 13534
3d388997 13535 if (!narrow)
c19d1205
ZW
13536 {
13537 if (inst.operands[2].isreg)
b99bd4ef 13538 {
fdfde340 13539 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
13540 inst.instruction = THUMB_OP32 (inst.instruction);
13541 inst.instruction |= inst.operands[0].reg << 8;
13542 inst.instruction |= inst.operands[1].reg << 16;
13543 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
13544
13545 /* PR 12854: Error on extraneous shifts. */
13546 constraint (inst.operands[2].shifted,
13547 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13548 }
13549 else
13550 {
13551 inst.operands[1].shifted = 1;
3d388997 13552 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
13553 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13554 ? T_MNEM_movs : T_MNEM_mov);
13555 inst.instruction |= inst.operands[0].reg << 8;
13556 encode_thumb32_shifted_operand (1);
13557 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
e2b0ab59 13558 inst.relocs[0].type = BFD_RELOC_UNUSED;
b99bd4ef
NC
13559 }
13560 }
13561 else
13562 {
c19d1205 13563 if (inst.operands[2].isreg)
b99bd4ef 13564 {
3d388997 13565 switch (shift_kind)
b99bd4ef 13566 {
3d388997
PB
13567 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13568 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13569 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13570 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 13571 default: abort ();
b99bd4ef 13572 }
5f4273c7 13573
c19d1205
ZW
13574 inst.instruction |= inst.operands[0].reg;
13575 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13576
13577 /* PR 12854: Error on extraneous shifts. */
13578 constraint (inst.operands[2].shifted,
13579 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
13580 }
13581 else
13582 {
3d388997 13583 switch (shift_kind)
b99bd4ef 13584 {
3d388997
PB
13585 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13586 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13587 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 13588 default: abort ();
b99bd4ef 13589 }
e2b0ab59 13590 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13591 inst.instruction |= inst.operands[0].reg;
13592 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13593 }
13594 }
c19d1205
ZW
13595 }
13596 else
13597 {
13598 constraint (inst.operands[0].reg > 7
13599 || inst.operands[1].reg > 7, BAD_HIREG);
13600 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 13601
c19d1205
ZW
13602 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13603 {
13604 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13605 constraint (inst.operands[0].reg != inst.operands[1].reg,
13606 _("source1 and dest must be same register"));
b99bd4ef 13607
c19d1205
ZW
13608 switch (inst.instruction)
13609 {
13610 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13611 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13612 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13613 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13614 default: abort ();
13615 }
5f4273c7 13616
c19d1205
ZW
13617 inst.instruction |= inst.operands[0].reg;
13618 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13619
13620 /* PR 12854: Error on extraneous shifts. */
13621 constraint (inst.operands[2].shifted,
13622 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13623 }
13624 else
b99bd4ef 13625 {
c19d1205
ZW
13626 switch (inst.instruction)
13627 {
13628 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13629 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13630 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13631 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13632 default: abort ();
13633 }
e2b0ab59 13634 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13635 inst.instruction |= inst.operands[0].reg;
13636 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13637 }
13638 }
b99bd4ef
NC
13639}
13640
13641static void
c19d1205 13642do_t_simd (void)
b99bd4ef 13643{
fdfde340
JM
13644 unsigned Rd, Rn, Rm;
13645
13646 Rd = inst.operands[0].reg;
13647 Rn = inst.operands[1].reg;
13648 Rm = inst.operands[2].reg;
13649
13650 reject_bad_reg (Rd);
13651 reject_bad_reg (Rn);
13652 reject_bad_reg (Rm);
13653
13654 inst.instruction |= Rd << 8;
13655 inst.instruction |= Rn << 16;
13656 inst.instruction |= Rm;
c19d1205 13657}
b99bd4ef 13658
03ee1b7f
NC
13659static void
13660do_t_simd2 (void)
13661{
13662 unsigned Rd, Rn, Rm;
13663
13664 Rd = inst.operands[0].reg;
13665 Rm = inst.operands[1].reg;
13666 Rn = inst.operands[2].reg;
13667
13668 reject_bad_reg (Rd);
13669 reject_bad_reg (Rn);
13670 reject_bad_reg (Rm);
13671
13672 inst.instruction |= Rd << 8;
13673 inst.instruction |= Rn << 16;
13674 inst.instruction |= Rm;
13675}
13676
c19d1205 13677static void
3eb17e6b 13678do_t_smc (void)
c19d1205 13679{
e2b0ab59 13680 unsigned int value = inst.relocs[0].exp.X_add_number;
f4c65163
MGD
13681 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13682 _("SMC is not permitted on this architecture"));
e2b0ab59 13683 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13684 _("expression too complex"));
e2b0ab59 13685 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
13686 inst.instruction |= (value & 0xf000) >> 12;
13687 inst.instruction |= (value & 0x0ff0);
13688 inst.instruction |= (value & 0x000f) << 16;
24382199 13689 /* PR gas/15623: SMC instructions must be last in an IT block. */
5ee91343 13690 set_pred_insn_type_last ();
c19d1205 13691}
b99bd4ef 13692
90ec0d68
MGD
13693static void
13694do_t_hvc (void)
13695{
e2b0ab59 13696 unsigned int value = inst.relocs[0].exp.X_add_number;
90ec0d68 13697
e2b0ab59 13698 inst.relocs[0].type = BFD_RELOC_UNUSED;
90ec0d68
MGD
13699 inst.instruction |= (value & 0x0fff);
13700 inst.instruction |= (value & 0xf000) << 4;
13701}
13702
c19d1205 13703static void
3a21c15a 13704do_t_ssat_usat (int bias)
c19d1205 13705{
fdfde340
JM
13706 unsigned Rd, Rn;
13707
13708 Rd = inst.operands[0].reg;
13709 Rn = inst.operands[2].reg;
13710
13711 reject_bad_reg (Rd);
13712 reject_bad_reg (Rn);
13713
13714 inst.instruction |= Rd << 8;
3a21c15a 13715 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 13716 inst.instruction |= Rn << 16;
b99bd4ef 13717
c19d1205 13718 if (inst.operands[3].present)
b99bd4ef 13719 {
e2b0ab59 13720 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
3a21c15a 13721
e2b0ab59 13722 inst.relocs[0].type = BFD_RELOC_UNUSED;
3a21c15a 13723
e2b0ab59 13724 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13725 _("expression too complex"));
b99bd4ef 13726
3a21c15a 13727 if (shift_amount != 0)
6189168b 13728 {
3a21c15a
NC
13729 constraint (shift_amount > 31,
13730 _("shift expression is too large"));
13731
c19d1205 13732 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
13733 inst.instruction |= 0x00200000; /* sh bit. */
13734
13735 inst.instruction |= (shift_amount & 0x1c) << 10;
13736 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
13737 }
13738 }
b99bd4ef 13739}
c921be7d 13740
3a21c15a
NC
13741static void
13742do_t_ssat (void)
13743{
13744 do_t_ssat_usat (1);
13745}
b99bd4ef 13746
0dd132b6 13747static void
c19d1205 13748do_t_ssat16 (void)
0dd132b6 13749{
fdfde340
JM
13750 unsigned Rd, Rn;
13751
13752 Rd = inst.operands[0].reg;
13753 Rn = inst.operands[2].reg;
13754
13755 reject_bad_reg (Rd);
13756 reject_bad_reg (Rn);
13757
13758 inst.instruction |= Rd << 8;
c19d1205 13759 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 13760 inst.instruction |= Rn << 16;
c19d1205 13761}
0dd132b6 13762
c19d1205
ZW
13763static void
13764do_t_strex (void)
13765{
13766 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13767 || inst.operands[2].postind || inst.operands[2].writeback
13768 || inst.operands[2].immisreg || inst.operands[2].shifted
13769 || inst.operands[2].negative,
01cfc07f 13770 BAD_ADDR_MODE);
0dd132b6 13771
5be8be5d
DG
13772 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13773
c19d1205
ZW
13774 inst.instruction |= inst.operands[0].reg << 8;
13775 inst.instruction |= inst.operands[1].reg << 12;
13776 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 13777 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
13778}
13779
b99bd4ef 13780static void
c19d1205 13781do_t_strexd (void)
b99bd4ef 13782{
c19d1205
ZW
13783 if (!inst.operands[2].present)
13784 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 13785
c19d1205
ZW
13786 constraint (inst.operands[0].reg == inst.operands[1].reg
13787 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 13788 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 13789 BAD_OVERLAP);
b99bd4ef 13790
c19d1205
ZW
13791 inst.instruction |= inst.operands[0].reg;
13792 inst.instruction |= inst.operands[1].reg << 12;
13793 inst.instruction |= inst.operands[2].reg << 8;
13794 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
13795}
13796
13797static void
c19d1205 13798do_t_sxtah (void)
b99bd4ef 13799{
fdfde340
JM
13800 unsigned Rd, Rn, Rm;
13801
13802 Rd = inst.operands[0].reg;
13803 Rn = inst.operands[1].reg;
13804 Rm = inst.operands[2].reg;
13805
13806 reject_bad_reg (Rd);
13807 reject_bad_reg (Rn);
13808 reject_bad_reg (Rm);
13809
13810 inst.instruction |= Rd << 8;
13811 inst.instruction |= Rn << 16;
13812 inst.instruction |= Rm;
c19d1205
ZW
13813 inst.instruction |= inst.operands[3].imm << 4;
13814}
b99bd4ef 13815
c19d1205
ZW
13816static void
13817do_t_sxth (void)
13818{
fdfde340
JM
13819 unsigned Rd, Rm;
13820
13821 Rd = inst.operands[0].reg;
13822 Rm = inst.operands[1].reg;
13823
13824 reject_bad_reg (Rd);
13825 reject_bad_reg (Rm);
c921be7d
NC
13826
13827 if (inst.instruction <= 0xffff
13828 && inst.size_req != 4
fdfde340 13829 && Rd <= 7 && Rm <= 7
c19d1205 13830 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 13831 {
c19d1205 13832 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13833 inst.instruction |= Rd;
13834 inst.instruction |= Rm << 3;
b99bd4ef 13835 }
c19d1205 13836 else if (unified_syntax)
b99bd4ef 13837 {
c19d1205
ZW
13838 if (inst.instruction <= 0xffff)
13839 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13840 inst.instruction |= Rd << 8;
13841 inst.instruction |= Rm;
c19d1205 13842 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 13843 }
c19d1205 13844 else
b99bd4ef 13845 {
c19d1205
ZW
13846 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13847 _("Thumb encoding does not support rotation"));
13848 constraint (1, BAD_HIREG);
b99bd4ef 13849 }
c19d1205 13850}
b99bd4ef 13851
c19d1205
ZW
13852static void
13853do_t_swi (void)
13854{
e2b0ab59 13855 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
c19d1205 13856}
b99bd4ef 13857
92e90b6e
PB
13858static void
13859do_t_tb (void)
13860{
fdfde340 13861 unsigned Rn, Rm;
92e90b6e
PB
13862 int half;
13863
13864 half = (inst.instruction & 0x10) != 0;
5ee91343 13865 set_pred_insn_type_last ();
dfa9f0d5
PB
13866 constraint (inst.operands[0].immisreg,
13867 _("instruction requires register index"));
fdfde340
JM
13868
13869 Rn = inst.operands[0].reg;
13870 Rm = inst.operands[0].imm;
c921be7d 13871
5c8ed6a4
JW
13872 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13873 constraint (Rn == REG_SP, BAD_SP);
fdfde340
JM
13874 reject_bad_reg (Rm);
13875
92e90b6e
PB
13876 constraint (!half && inst.operands[0].shifted,
13877 _("instruction does not allow shifted index"));
fdfde340 13878 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
13879}
13880
74db7efb
NC
13881static void
13882do_t_udf (void)
13883{
13884 if (!inst.operands[0].present)
13885 inst.operands[0].imm = 0;
13886
13887 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13888 {
13889 constraint (inst.size_req == 2,
13890 _("immediate value out of range"));
13891 inst.instruction = THUMB_OP32 (inst.instruction);
13892 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13893 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13894 }
13895 else
13896 {
13897 inst.instruction = THUMB_OP16 (inst.instruction);
13898 inst.instruction |= inst.operands[0].imm;
13899 }
13900
5ee91343 13901 set_pred_insn_type (NEUTRAL_IT_INSN);
74db7efb
NC
13902}
13903
13904
c19d1205
ZW
13905static void
13906do_t_usat (void)
13907{
3a21c15a 13908 do_t_ssat_usat (0);
b99bd4ef
NC
13909}
13910
13911static void
c19d1205 13912do_t_usat16 (void)
b99bd4ef 13913{
fdfde340
JM
13914 unsigned Rd, Rn;
13915
13916 Rd = inst.operands[0].reg;
13917 Rn = inst.operands[2].reg;
13918
13919 reject_bad_reg (Rd);
13920 reject_bad_reg (Rn);
13921
13922 inst.instruction |= Rd << 8;
c19d1205 13923 inst.instruction |= inst.operands[1].imm;
fdfde340 13924 inst.instruction |= Rn << 16;
b99bd4ef 13925}
c19d1205 13926
e12437dc
AV
13927/* Checking the range of the branch offset (VAL) with NBITS bits
13928 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13929static int
13930v8_1_branch_value_check (int val, int nbits, int is_signed)
13931{
13932 gas_assert (nbits > 0 && nbits <= 32);
13933 if (is_signed)
13934 {
13935 int cmp = (1 << (nbits - 1));
13936 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13937 return FAIL;
13938 }
13939 else
13940 {
13941 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13942 return FAIL;
13943 }
13944 return SUCCESS;
13945}
13946
4389b29a
AV
13947/* For branches in Armv8.1-M Mainline. */
13948static void
13949do_t_branch_future (void)
13950{
13951 unsigned long insn = inst.instruction;
13952
13953 inst.instruction = THUMB_OP32 (inst.instruction);
13954 if (inst.operands[0].hasreloc == 0)
13955 {
13956 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13957 as_bad (BAD_BRANCH_OFF);
13958
13959 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13960 }
13961 else
13962 {
13963 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13964 inst.relocs[0].pc_rel = 1;
13965 }
13966
13967 switch (insn)
13968 {
13969 case T_MNEM_bf:
13970 if (inst.operands[1].hasreloc == 0)
13971 {
13972 int val = inst.operands[1].imm;
13973 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
13974 as_bad (BAD_BRANCH_OFF);
13975
13976 int immA = (val & 0x0001f000) >> 12;
13977 int immB = (val & 0x00000ffc) >> 2;
13978 int immC = (val & 0x00000002) >> 1;
13979 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13980 }
13981 else
13982 {
13983 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
13984 inst.relocs[1].pc_rel = 1;
13985 }
13986 break;
13987
65d1bc05
AV
13988 case T_MNEM_bfl:
13989 if (inst.operands[1].hasreloc == 0)
13990 {
13991 int val = inst.operands[1].imm;
13992 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
13993 as_bad (BAD_BRANCH_OFF);
13994
13995 int immA = (val & 0x0007f000) >> 12;
13996 int immB = (val & 0x00000ffc) >> 2;
13997 int immC = (val & 0x00000002) >> 1;
13998 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13999 }
14000 else
14001 {
14002 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14003 inst.relocs[1].pc_rel = 1;
14004 }
14005 break;
14006
f6b2b12d
AV
14007 case T_MNEM_bfcsel:
14008 /* Operand 1. */
14009 if (inst.operands[1].hasreloc == 0)
14010 {
14011 int val = inst.operands[1].imm;
14012 int immA = (val & 0x00001000) >> 12;
14013 int immB = (val & 0x00000ffc) >> 2;
14014 int immC = (val & 0x00000002) >> 1;
14015 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14016 }
14017 else
14018 {
14019 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14020 inst.relocs[1].pc_rel = 1;
14021 }
14022
14023 /* Operand 2. */
14024 if (inst.operands[2].hasreloc == 0)
14025 {
14026 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14027 int val2 = inst.operands[2].imm;
14028 int val0 = inst.operands[0].imm & 0x1f;
14029 int diff = val2 - val0;
14030 if (diff == 4)
14031 inst.instruction |= 1 << 17; /* T bit. */
14032 else if (diff != 2)
14033 as_bad (_("out of range label-relative fixup value"));
14034 }
14035 else
14036 {
14037 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14038 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14039 inst.relocs[2].pc_rel = 1;
14040 }
14041
14042 /* Operand 3. */
14043 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14044 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14045 break;
14046
f1c7f421
AV
14047 case T_MNEM_bfx:
14048 case T_MNEM_bflx:
14049 inst.instruction |= inst.operands[1].reg << 16;
14050 break;
14051
4389b29a
AV
14052 default: abort ();
14053 }
14054}
14055
60f993ce
AV
14056/* Helper function for do_t_loloop to handle relocations. */
14057static void
14058v8_1_loop_reloc (int is_le)
14059{
14060 if (inst.relocs[0].exp.X_op == O_constant)
14061 {
14062 int value = inst.relocs[0].exp.X_add_number;
14063 value = (is_le) ? -value : value;
14064
14065 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14066 as_bad (BAD_BRANCH_OFF);
14067
14068 int imml, immh;
14069
14070 immh = (value & 0x00000ffc) >> 2;
14071 imml = (value & 0x00000002) >> 1;
14072
14073 inst.instruction |= (imml << 11) | (immh << 1);
14074 }
14075 else
14076 {
14077 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14078 inst.relocs[0].pc_rel = 1;
14079 }
14080}
14081
14082/* To handle the Scalar Low Overhead Loop instructions
14083 in Armv8.1-M Mainline. */
14084static void
14085do_t_loloop (void)
14086{
14087 unsigned long insn = inst.instruction;
14088
5ee91343 14089 set_pred_insn_type (OUTSIDE_PRED_INSN);
60f993ce
AV
14090 inst.instruction = THUMB_OP32 (inst.instruction);
14091
14092 switch (insn)
14093 {
14094 case T_MNEM_le:
14095 /* le <label>. */
14096 if (!inst.operands[0].present)
14097 inst.instruction |= 1 << 21;
14098
14099 v8_1_loop_reloc (TRUE);
14100 break;
14101
14102 case T_MNEM_wls:
14103 v8_1_loop_reloc (FALSE);
14104 /* Fall through. */
14105 case T_MNEM_dls:
14106 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14107 inst.instruction |= (inst.operands[1].reg << 16);
14108 break;
14109
14110 default: abort();
14111 }
14112}
14113
a302e574
AV
14114/* MVE instruction encoder helpers. */
14115#define M_MNEM_vabav 0xee800f01
14116#define M_MNEM_vmladav 0xeef00e00
14117#define M_MNEM_vmladava 0xeef00e20
14118#define M_MNEM_vmladavx 0xeef01e00
14119#define M_MNEM_vmladavax 0xeef01e20
14120#define M_MNEM_vmlsdav 0xeef00e01
14121#define M_MNEM_vmlsdava 0xeef00e21
14122#define M_MNEM_vmlsdavx 0xeef01e01
14123#define M_MNEM_vmlsdavax 0xeef01e21
886e1c73
AV
14124#define M_MNEM_vmullt 0xee011e00
14125#define M_MNEM_vmullb 0xee010e00
35c228db
AV
14126#define M_MNEM_vst20 0xfc801e00
14127#define M_MNEM_vst21 0xfc801e20
14128#define M_MNEM_vst40 0xfc801e01
14129#define M_MNEM_vst41 0xfc801e21
14130#define M_MNEM_vst42 0xfc801e41
14131#define M_MNEM_vst43 0xfc801e61
14132#define M_MNEM_vld20 0xfc901e00
14133#define M_MNEM_vld21 0xfc901e20
14134#define M_MNEM_vld40 0xfc901e01
14135#define M_MNEM_vld41 0xfc901e21
14136#define M_MNEM_vld42 0xfc901e41
14137#define M_MNEM_vld43 0xfc901e61
f5f10c66
AV
14138#define M_MNEM_vstrb 0xec000e00
14139#define M_MNEM_vstrh 0xec000e10
14140#define M_MNEM_vstrw 0xec000e40
14141#define M_MNEM_vstrd 0xec000e50
14142#define M_MNEM_vldrb 0xec100e00
14143#define M_MNEM_vldrh 0xec100e10
14144#define M_MNEM_vldrw 0xec100e40
14145#define M_MNEM_vldrd 0xec100e50
57785aa2
AV
14146#define M_MNEM_vmovlt 0xeea01f40
14147#define M_MNEM_vmovlb 0xeea00f40
14148#define M_MNEM_vmovnt 0xfe311e81
14149#define M_MNEM_vmovnb 0xfe310e81
c2dafc2a
AV
14150#define M_MNEM_vadc 0xee300f00
14151#define M_MNEM_vadci 0xee301f00
14152#define M_MNEM_vbrsr 0xfe011e60
26c1e780
AV
14153#define M_MNEM_vaddlv 0xee890f00
14154#define M_MNEM_vaddlva 0xee890f20
14155#define M_MNEM_vaddv 0xeef10f00
14156#define M_MNEM_vaddva 0xeef10f20
a302e574 14157
5287ad62 14158/* Neon instruction encoder helpers. */
5f4273c7 14159
5287ad62 14160/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 14161
5287ad62
JB
14162/* An "invalid" code for the following tables. */
14163#define N_INV -1u
14164
14165struct neon_tab_entry
b99bd4ef 14166{
5287ad62
JB
14167 unsigned integer;
14168 unsigned float_or_poly;
14169 unsigned scalar_or_imm;
14170};
5f4273c7 14171
5287ad62
JB
14172/* Map overloaded Neon opcodes to their respective encodings. */
14173#define NEON_ENC_TAB \
14174 X(vabd, 0x0000700, 0x1200d00, N_INV), \
5ee91343 14175 X(vabdl, 0x0800700, N_INV, N_INV), \
5287ad62
JB
14176 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14177 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14178 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14179 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14180 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14181 X(vadd, 0x0000800, 0x0000d00, N_INV), \
5ee91343 14182 X(vaddl, 0x0800000, N_INV, N_INV), \
5287ad62 14183 X(vsub, 0x1000800, 0x0200d00, N_INV), \
5ee91343 14184 X(vsubl, 0x0800200, N_INV, N_INV), \
5287ad62
JB
14185 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14186 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14187 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14188 /* Register variants of the following two instructions are encoded as
e07e6e58 14189 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
14190 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14191 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
14192 X(vfma, N_INV, 0x0000c10, N_INV), \
14193 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
14194 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14195 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14196 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14197 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14198 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14199 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14200 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14201 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14202 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14203 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14204 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
d6b4b13e
MW
14205 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14206 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
5287ad62
JB
14207 X(vshl, 0x0000400, N_INV, 0x0800510), \
14208 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14209 X(vand, 0x0000110, N_INV, 0x0800030), \
14210 X(vbic, 0x0100110, N_INV, 0x0800030), \
14211 X(veor, 0x1000110, N_INV, N_INV), \
14212 X(vorn, 0x0300110, N_INV, 0x0800010), \
14213 X(vorr, 0x0200110, N_INV, 0x0800010), \
14214 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14215 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14216 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14217 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14218 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14219 X(vst1, 0x0000000, 0x0800000, N_INV), \
14220 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14221 X(vst2, 0x0000100, 0x0800100, N_INV), \
14222 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14223 X(vst3, 0x0000200, 0x0800200, N_INV), \
14224 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14225 X(vst4, 0x0000300, 0x0800300, N_INV), \
14226 X(vmovn, 0x1b20200, N_INV, N_INV), \
14227 X(vtrn, 0x1b20080, N_INV, N_INV), \
14228 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
14229 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14230 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
14231 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14232 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
14233 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14234 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
14235 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14236 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14237 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
14238 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14239 X(vseleq, 0xe000a00, N_INV, N_INV), \
14240 X(vselvs, 0xe100a00, N_INV, N_INV), \
14241 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
14242 X(vselgt, 0xe300a00, N_INV, N_INV), \
14243 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
7e8e6784 14244 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
30bdf752
MGD
14245 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14246 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
91ff7894 14247 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
48adcd8e 14248 X(aes, 0x3b00300, N_INV, N_INV), \
3c9017d2
MGD
14249 X(sha3op, 0x2000c00, N_INV, N_INV), \
14250 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14251 X(sha2op, 0x3ba0380, N_INV, N_INV)
5287ad62
JB
14252
14253enum neon_opc
14254{
14255#define X(OPC,I,F,S) N_MNEM_##OPC
14256NEON_ENC_TAB
14257#undef X
14258};
b99bd4ef 14259
5287ad62
JB
14260static const struct neon_tab_entry neon_enc_tab[] =
14261{
14262#define X(OPC,I,F,S) { (I), (F), (S) }
14263NEON_ENC_TAB
14264#undef X
14265};
b99bd4ef 14266
88714cb8
DG
14267/* Do not use these macros; instead, use NEON_ENCODE defined below. */
14268#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14269#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14270#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14271#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14272#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14273#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14274#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14275#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14276#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14277#define NEON_ENC_SINGLE_(X) \
037e8744 14278 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 14279#define NEON_ENC_DOUBLE_(X) \
037e8744 14280 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
14281#define NEON_ENC_FPV8_(X) \
14282 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 14283
88714cb8
DG
14284#define NEON_ENCODE(type, inst) \
14285 do \
14286 { \
14287 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14288 inst.is_neon = 1; \
14289 } \
14290 while (0)
14291
14292#define check_neon_suffixes \
14293 do \
14294 { \
14295 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14296 { \
14297 as_bad (_("invalid neon suffix for non neon instruction")); \
14298 return; \
14299 } \
14300 } \
14301 while (0)
14302
037e8744
JB
14303/* Define shapes for instruction operands. The following mnemonic characters
14304 are used in this table:
5287ad62 14305
037e8744 14306 F - VFP S<n> register
5287ad62
JB
14307 D - Neon D<n> register
14308 Q - Neon Q<n> register
14309 I - Immediate
14310 S - Scalar
14311 R - ARM register
14312 L - D<n> register list
5f4273c7 14313
037e8744
JB
14314 This table is used to generate various data:
14315 - enumerations of the form NS_DDR to be used as arguments to
14316 neon_select_shape.
14317 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 14318 - a table used to drive neon_select_shape. */
b99bd4ef 14319
037e8744 14320#define NEON_SHAPE_DEF \
57785aa2
AV
14321 X(4, (R, R, S, S), QUAD), \
14322 X(4, (S, S, R, R), QUAD), \
1b883319
AV
14323 X(3, (I, Q, Q), QUAD), \
14324 X(3, (I, Q, R), QUAD), \
a302e574 14325 X(3, (R, Q, Q), QUAD), \
037e8744
JB
14326 X(3, (D, D, D), DOUBLE), \
14327 X(3, (Q, Q, Q), QUAD), \
14328 X(3, (D, D, I), DOUBLE), \
14329 X(3, (Q, Q, I), QUAD), \
14330 X(3, (D, D, S), DOUBLE), \
14331 X(3, (Q, Q, S), QUAD), \
5ee91343 14332 X(3, (Q, Q, R), QUAD), \
26c1e780
AV
14333 X(3, (R, R, Q), QUAD), \
14334 X(2, (R, Q), QUAD), \
037e8744
JB
14335 X(2, (D, D), DOUBLE), \
14336 X(2, (Q, Q), QUAD), \
14337 X(2, (D, S), DOUBLE), \
14338 X(2, (Q, S), QUAD), \
14339 X(2, (D, R), DOUBLE), \
14340 X(2, (Q, R), QUAD), \
14341 X(2, (D, I), DOUBLE), \
14342 X(2, (Q, I), QUAD), \
14343 X(3, (D, L, D), DOUBLE), \
14344 X(2, (D, Q), MIXED), \
14345 X(2, (Q, D), MIXED), \
14346 X(3, (D, Q, I), MIXED), \
14347 X(3, (Q, D, I), MIXED), \
14348 X(3, (Q, D, D), MIXED), \
14349 X(3, (D, Q, Q), MIXED), \
14350 X(3, (Q, Q, D), MIXED), \
14351 X(3, (Q, D, S), MIXED), \
14352 X(3, (D, Q, S), MIXED), \
14353 X(4, (D, D, D, I), DOUBLE), \
14354 X(4, (Q, Q, Q, I), QUAD), \
c28eeff2
SN
14355 X(4, (D, D, S, I), DOUBLE), \
14356 X(4, (Q, Q, S, I), QUAD), \
037e8744
JB
14357 X(2, (F, F), SINGLE), \
14358 X(3, (F, F, F), SINGLE), \
14359 X(2, (F, I), SINGLE), \
14360 X(2, (F, D), MIXED), \
14361 X(2, (D, F), MIXED), \
14362 X(3, (F, F, I), MIXED), \
14363 X(4, (R, R, F, F), SINGLE), \
14364 X(4, (F, F, R, R), SINGLE), \
14365 X(3, (D, R, R), DOUBLE), \
14366 X(3, (R, R, D), DOUBLE), \
14367 X(2, (S, R), SINGLE), \
14368 X(2, (R, S), SINGLE), \
14369 X(2, (F, R), SINGLE), \
d54af2d0
RL
14370 X(2, (R, F), SINGLE), \
14371/* Half float shape supported so far. */\
14372 X (2, (H, D), MIXED), \
14373 X (2, (D, H), MIXED), \
14374 X (2, (H, F), MIXED), \
14375 X (2, (F, H), MIXED), \
14376 X (2, (H, H), HALF), \
14377 X (2, (H, R), HALF), \
14378 X (2, (R, H), HALF), \
14379 X (2, (H, I), HALF), \
14380 X (3, (H, H, H), HALF), \
14381 X (3, (H, F, I), MIXED), \
dec41383
JW
14382 X (3, (F, H, I), MIXED), \
14383 X (3, (D, H, H), MIXED), \
14384 X (3, (D, H, S), MIXED)
037e8744
JB
14385
14386#define S2(A,B) NS_##A##B
14387#define S3(A,B,C) NS_##A##B##C
14388#define S4(A,B,C,D) NS_##A##B##C##D
14389
14390#define X(N, L, C) S##N L
14391
5287ad62
JB
14392enum neon_shape
14393{
037e8744
JB
14394 NEON_SHAPE_DEF,
14395 NS_NULL
5287ad62 14396};
b99bd4ef 14397
037e8744
JB
14398#undef X
14399#undef S2
14400#undef S3
14401#undef S4
14402
14403enum neon_shape_class
14404{
d54af2d0 14405 SC_HALF,
037e8744
JB
14406 SC_SINGLE,
14407 SC_DOUBLE,
14408 SC_QUAD,
14409 SC_MIXED
14410};
14411
14412#define X(N, L, C) SC_##C
14413
14414static enum neon_shape_class neon_shape_class[] =
14415{
14416 NEON_SHAPE_DEF
14417};
14418
14419#undef X
14420
14421enum neon_shape_el
14422{
d54af2d0 14423 SE_H,
037e8744
JB
14424 SE_F,
14425 SE_D,
14426 SE_Q,
14427 SE_I,
14428 SE_S,
14429 SE_R,
14430 SE_L
14431};
14432
14433/* Register widths of above. */
14434static unsigned neon_shape_el_size[] =
14435{
d54af2d0 14436 16,
037e8744
JB
14437 32,
14438 64,
14439 128,
14440 0,
14441 32,
14442 32,
14443 0
14444};
14445
14446struct neon_shape_info
14447{
14448 unsigned els;
14449 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14450};
14451
14452#define S2(A,B) { SE_##A, SE_##B }
14453#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14454#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14455
14456#define X(N, L, C) { N, S##N L }
14457
14458static struct neon_shape_info neon_shape_tab[] =
14459{
14460 NEON_SHAPE_DEF
14461};
14462
14463#undef X
14464#undef S2
14465#undef S3
14466#undef S4
14467
5287ad62
JB
14468/* Bit masks used in type checking given instructions.
14469 'N_EQK' means the type must be the same as (or based on in some way) the key
14470 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14471 set, various other bits can be set as well in order to modify the meaning of
14472 the type constraint. */
14473
14474enum neon_type_mask
14475{
8e79c3df
CM
14476 N_S8 = 0x0000001,
14477 N_S16 = 0x0000002,
14478 N_S32 = 0x0000004,
14479 N_S64 = 0x0000008,
14480 N_U8 = 0x0000010,
14481 N_U16 = 0x0000020,
14482 N_U32 = 0x0000040,
14483 N_U64 = 0x0000080,
14484 N_I8 = 0x0000100,
14485 N_I16 = 0x0000200,
14486 N_I32 = 0x0000400,
14487 N_I64 = 0x0000800,
14488 N_8 = 0x0001000,
14489 N_16 = 0x0002000,
14490 N_32 = 0x0004000,
14491 N_64 = 0x0008000,
14492 N_P8 = 0x0010000,
14493 N_P16 = 0x0020000,
14494 N_F16 = 0x0040000,
14495 N_F32 = 0x0080000,
14496 N_F64 = 0x0100000,
4f51b4bd 14497 N_P64 = 0x0200000,
c921be7d
NC
14498 N_KEY = 0x1000000, /* Key element (main type specifier). */
14499 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 14500 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
91ff7894 14501 N_UNT = 0x8000000, /* Must be explicitly untyped. */
c921be7d
NC
14502 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14503 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14504 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14505 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14506 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14507 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14508 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 14509 N_UTYP = 0,
4f51b4bd 14510 N_MAX_NONSPECIAL = N_P64
5287ad62
JB
14511};
14512
dcbf9037
JB
14513#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14514
5287ad62
JB
14515#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14516#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14517#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
cc933301
JW
14518#define N_S_32 (N_S8 | N_S16 | N_S32)
14519#define N_F_16_32 (N_F16 | N_F32)
14520#define N_SUF_32 (N_SU_32 | N_F_16_32)
5287ad62 14521#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
cc933301 14522#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
d54af2d0 14523#define N_F_ALL (N_F16 | N_F32 | N_F64)
5ee91343
AV
14524#define N_I_MVE (N_I8 | N_I16 | N_I32)
14525#define N_F_MVE (N_F16 | N_F32)
14526#define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
5287ad62
JB
14527
14528/* Pass this as the first type argument to neon_check_type to ignore types
14529 altogether. */
14530#define N_IGNORE_TYPE (N_KEY | N_EQK)
14531
037e8744
JB
14532/* Select a "shape" for the current instruction (describing register types or
14533 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14534 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14535 function of operand parsing, so this function doesn't need to be called.
14536 Shapes should be listed in order of decreasing length. */
5287ad62
JB
14537
14538static enum neon_shape
037e8744 14539neon_select_shape (enum neon_shape shape, ...)
5287ad62 14540{
037e8744
JB
14541 va_list ap;
14542 enum neon_shape first_shape = shape;
5287ad62
JB
14543
14544 /* Fix missing optional operands. FIXME: we don't know at this point how
14545 many arguments we should have, so this makes the assumption that we have
14546 > 1. This is true of all current Neon opcodes, I think, but may not be
14547 true in the future. */
14548 if (!inst.operands[1].present)
14549 inst.operands[1] = inst.operands[0];
14550
037e8744 14551 va_start (ap, shape);
5f4273c7 14552
21d799b5 14553 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
14554 {
14555 unsigned j;
14556 int matches = 1;
14557
14558 for (j = 0; j < neon_shape_tab[shape].els; j++)
477330fc
RM
14559 {
14560 if (!inst.operands[j].present)
14561 {
14562 matches = 0;
14563 break;
14564 }
14565
14566 switch (neon_shape_tab[shape].el[j])
14567 {
d54af2d0
RL
14568 /* If a .f16, .16, .u16, .s16 type specifier is given over
14569 a VFP single precision register operand, it's essentially
14570 means only half of the register is used.
14571
14572 If the type specifier is given after the mnemonics, the
14573 information is stored in inst.vectype. If the type specifier
14574 is given after register operand, the information is stored
14575 in inst.operands[].vectype.
14576
14577 When there is only one type specifier, and all the register
14578 operands are the same type of hardware register, the type
14579 specifier applies to all register operands.
14580
14581 If no type specifier is given, the shape is inferred from
14582 operand information.
14583
14584 for example:
14585 vadd.f16 s0, s1, s2: NS_HHH
14586 vabs.f16 s0, s1: NS_HH
14587 vmov.f16 s0, r1: NS_HR
14588 vmov.f16 r0, s1: NS_RH
14589 vcvt.f16 r0, s1: NS_RH
14590 vcvt.f16.s32 s2, s2, #29: NS_HFI
14591 vcvt.f16.s32 s2, s2: NS_HF
14592 */
14593 case SE_H:
14594 if (!(inst.operands[j].isreg
14595 && inst.operands[j].isvec
14596 && inst.operands[j].issingle
14597 && !inst.operands[j].isquad
14598 && ((inst.vectype.elems == 1
14599 && inst.vectype.el[0].size == 16)
14600 || (inst.vectype.elems > 1
14601 && inst.vectype.el[j].size == 16)
14602 || (inst.vectype.elems == 0
14603 && inst.operands[j].vectype.type != NT_invtype
14604 && inst.operands[j].vectype.size == 16))))
14605 matches = 0;
14606 break;
14607
477330fc
RM
14608 case SE_F:
14609 if (!(inst.operands[j].isreg
14610 && inst.operands[j].isvec
14611 && inst.operands[j].issingle
d54af2d0
RL
14612 && !inst.operands[j].isquad
14613 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14614 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14615 || (inst.vectype.elems == 0
14616 && (inst.operands[j].vectype.size == 32
14617 || inst.operands[j].vectype.type == NT_invtype)))))
477330fc
RM
14618 matches = 0;
14619 break;
14620
14621 case SE_D:
14622 if (!(inst.operands[j].isreg
14623 && inst.operands[j].isvec
14624 && !inst.operands[j].isquad
14625 && !inst.operands[j].issingle))
14626 matches = 0;
14627 break;
14628
14629 case SE_R:
14630 if (!(inst.operands[j].isreg
14631 && !inst.operands[j].isvec))
14632 matches = 0;
14633 break;
14634
14635 case SE_Q:
14636 if (!(inst.operands[j].isreg
14637 && inst.operands[j].isvec
14638 && inst.operands[j].isquad
14639 && !inst.operands[j].issingle))
14640 matches = 0;
14641 break;
14642
14643 case SE_I:
14644 if (!(!inst.operands[j].isreg
14645 && !inst.operands[j].isscalar))
14646 matches = 0;
14647 break;
14648
14649 case SE_S:
14650 if (!(!inst.operands[j].isreg
14651 && inst.operands[j].isscalar))
14652 matches = 0;
14653 break;
14654
14655 case SE_L:
14656 break;
14657 }
3fde54a2
JZ
14658 if (!matches)
14659 break;
477330fc 14660 }
ad6cec43
MGD
14661 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14662 /* We've matched all the entries in the shape table, and we don't
14663 have any left over operands which have not been matched. */
477330fc 14664 break;
037e8744 14665 }
5f4273c7 14666
037e8744 14667 va_end (ap);
5287ad62 14668
037e8744
JB
14669 if (shape == NS_NULL && first_shape != NS_NULL)
14670 first_error (_("invalid instruction shape"));
5287ad62 14671
037e8744
JB
14672 return shape;
14673}
5287ad62 14674
037e8744
JB
14675/* True if SHAPE is predominantly a quadword operation (most of the time, this
14676 means the Q bit should be set). */
14677
14678static int
14679neon_quad (enum neon_shape shape)
14680{
14681 return neon_shape_class[shape] == SC_QUAD;
5287ad62 14682}
037e8744 14683
5287ad62
JB
14684static void
14685neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
477330fc 14686 unsigned *g_size)
5287ad62
JB
14687{
14688 /* Allow modification to be made to types which are constrained to be
14689 based on the key element, based on bits set alongside N_EQK. */
14690 if ((typebits & N_EQK) != 0)
14691 {
14692 if ((typebits & N_HLF) != 0)
14693 *g_size /= 2;
14694 else if ((typebits & N_DBL) != 0)
14695 *g_size *= 2;
14696 if ((typebits & N_SGN) != 0)
14697 *g_type = NT_signed;
14698 else if ((typebits & N_UNS) != 0)
477330fc 14699 *g_type = NT_unsigned;
5287ad62 14700 else if ((typebits & N_INT) != 0)
477330fc 14701 *g_type = NT_integer;
5287ad62 14702 else if ((typebits & N_FLT) != 0)
477330fc 14703 *g_type = NT_float;
dcbf9037 14704 else if ((typebits & N_SIZ) != 0)
477330fc 14705 *g_type = NT_untyped;
5287ad62
JB
14706 }
14707}
5f4273c7 14708
5287ad62
JB
14709/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14710 operand type, i.e. the single type specified in a Neon instruction when it
14711 is the only one given. */
14712
14713static struct neon_type_el
14714neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14715{
14716 struct neon_type_el dest = *key;
5f4273c7 14717
9c2799c2 14718 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 14719
5287ad62
JB
14720 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14721
14722 return dest;
14723}
14724
14725/* Convert Neon type and size into compact bitmask representation. */
14726
14727static enum neon_type_mask
14728type_chk_of_el_type (enum neon_el_type type, unsigned size)
14729{
14730 switch (type)
14731 {
14732 case NT_untyped:
14733 switch (size)
477330fc
RM
14734 {
14735 case 8: return N_8;
14736 case 16: return N_16;
14737 case 32: return N_32;
14738 case 64: return N_64;
14739 default: ;
14740 }
5287ad62
JB
14741 break;
14742
14743 case NT_integer:
14744 switch (size)
477330fc
RM
14745 {
14746 case 8: return N_I8;
14747 case 16: return N_I16;
14748 case 32: return N_I32;
14749 case 64: return N_I64;
14750 default: ;
14751 }
5287ad62
JB
14752 break;
14753
14754 case NT_float:
037e8744 14755 switch (size)
477330fc 14756 {
8e79c3df 14757 case 16: return N_F16;
477330fc
RM
14758 case 32: return N_F32;
14759 case 64: return N_F64;
14760 default: ;
14761 }
5287ad62
JB
14762 break;
14763
14764 case NT_poly:
14765 switch (size)
477330fc
RM
14766 {
14767 case 8: return N_P8;
14768 case 16: return N_P16;
4f51b4bd 14769 case 64: return N_P64;
477330fc
RM
14770 default: ;
14771 }
5287ad62
JB
14772 break;
14773
14774 case NT_signed:
14775 switch (size)
477330fc
RM
14776 {
14777 case 8: return N_S8;
14778 case 16: return N_S16;
14779 case 32: return N_S32;
14780 case 64: return N_S64;
14781 default: ;
14782 }
5287ad62
JB
14783 break;
14784
14785 case NT_unsigned:
14786 switch (size)
477330fc
RM
14787 {
14788 case 8: return N_U8;
14789 case 16: return N_U16;
14790 case 32: return N_U32;
14791 case 64: return N_U64;
14792 default: ;
14793 }
5287ad62
JB
14794 break;
14795
14796 default: ;
14797 }
5f4273c7 14798
5287ad62
JB
14799 return N_UTYP;
14800}
14801
14802/* Convert compact Neon bitmask type representation to a type and size. Only
14803 handles the case where a single bit is set in the mask. */
14804
dcbf9037 14805static int
5287ad62 14806el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
477330fc 14807 enum neon_type_mask mask)
5287ad62 14808{
dcbf9037
JB
14809 if ((mask & N_EQK) != 0)
14810 return FAIL;
14811
5287ad62
JB
14812 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14813 *size = 8;
c70a8987 14814 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
5287ad62 14815 *size = 16;
dcbf9037 14816 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 14817 *size = 32;
4f51b4bd 14818 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
5287ad62 14819 *size = 64;
dcbf9037
JB
14820 else
14821 return FAIL;
14822
5287ad62
JB
14823 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14824 *type = NT_signed;
dcbf9037 14825 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 14826 *type = NT_unsigned;
dcbf9037 14827 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 14828 *type = NT_integer;
dcbf9037 14829 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 14830 *type = NT_untyped;
4f51b4bd 14831 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
5287ad62 14832 *type = NT_poly;
d54af2d0 14833 else if ((mask & (N_F_ALL)) != 0)
5287ad62 14834 *type = NT_float;
dcbf9037
JB
14835 else
14836 return FAIL;
5f4273c7 14837
dcbf9037 14838 return SUCCESS;
5287ad62
JB
14839}
14840
14841/* Modify a bitmask of allowed types. This is only needed for type
14842 relaxation. */
14843
14844static unsigned
14845modify_types_allowed (unsigned allowed, unsigned mods)
14846{
14847 unsigned size;
14848 enum neon_el_type type;
14849 unsigned destmask;
14850 int i;
5f4273c7 14851
5287ad62 14852 destmask = 0;
5f4273c7 14853
5287ad62
JB
14854 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14855 {
21d799b5 14856 if (el_type_of_type_chk (&type, &size,
477330fc
RM
14857 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14858 {
14859 neon_modify_type_size (mods, &type, &size);
14860 destmask |= type_chk_of_el_type (type, size);
14861 }
5287ad62 14862 }
5f4273c7 14863
5287ad62
JB
14864 return destmask;
14865}
14866
14867/* Check type and return type classification.
14868 The manual states (paraphrase): If one datatype is given, it indicates the
14869 type given in:
14870 - the second operand, if there is one
14871 - the operand, if there is no second operand
14872 - the result, if there are no operands.
14873 This isn't quite good enough though, so we use a concept of a "key" datatype
14874 which is set on a per-instruction basis, which is the one which matters when
14875 only one data type is written.
14876 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 14877 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
14878
14879static struct neon_type_el
14880neon_check_type (unsigned els, enum neon_shape ns, ...)
14881{
14882 va_list ap;
14883 unsigned i, pass, key_el = 0;
14884 unsigned types[NEON_MAX_TYPE_ELS];
14885 enum neon_el_type k_type = NT_invtype;
14886 unsigned k_size = -1u;
14887 struct neon_type_el badtype = {NT_invtype, -1};
14888 unsigned key_allowed = 0;
14889
14890 /* Optional registers in Neon instructions are always (not) in operand 1.
14891 Fill in the missing operand here, if it was omitted. */
14892 if (els > 1 && !inst.operands[1].present)
14893 inst.operands[1] = inst.operands[0];
14894
14895 /* Suck up all the varargs. */
14896 va_start (ap, ns);
14897 for (i = 0; i < els; i++)
14898 {
14899 unsigned thisarg = va_arg (ap, unsigned);
14900 if (thisarg == N_IGNORE_TYPE)
477330fc
RM
14901 {
14902 va_end (ap);
14903 return badtype;
14904 }
5287ad62
JB
14905 types[i] = thisarg;
14906 if ((thisarg & N_KEY) != 0)
477330fc 14907 key_el = i;
5287ad62
JB
14908 }
14909 va_end (ap);
14910
dcbf9037
JB
14911 if (inst.vectype.elems > 0)
14912 for (i = 0; i < els; i++)
14913 if (inst.operands[i].vectype.type != NT_invtype)
477330fc
RM
14914 {
14915 first_error (_("types specified in both the mnemonic and operands"));
14916 return badtype;
14917 }
dcbf9037 14918
5287ad62
JB
14919 /* Duplicate inst.vectype elements here as necessary.
14920 FIXME: No idea if this is exactly the same as the ARM assembler,
14921 particularly when an insn takes one register and one non-register
14922 operand. */
14923 if (inst.vectype.elems == 1 && els > 1)
14924 {
14925 unsigned j;
14926 inst.vectype.elems = els;
14927 inst.vectype.el[key_el] = inst.vectype.el[0];
14928 for (j = 0; j < els; j++)
477330fc
RM
14929 if (j != key_el)
14930 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14931 types[j]);
dcbf9037
JB
14932 }
14933 else if (inst.vectype.elems == 0 && els > 0)
14934 {
14935 unsigned j;
14936 /* No types were given after the mnemonic, so look for types specified
477330fc
RM
14937 after each operand. We allow some flexibility here; as long as the
14938 "key" operand has a type, we can infer the others. */
dcbf9037 14939 for (j = 0; j < els; j++)
477330fc
RM
14940 if (inst.operands[j].vectype.type != NT_invtype)
14941 inst.vectype.el[j] = inst.operands[j].vectype;
dcbf9037
JB
14942
14943 if (inst.operands[key_el].vectype.type != NT_invtype)
477330fc
RM
14944 {
14945 for (j = 0; j < els; j++)
14946 if (inst.operands[j].vectype.type == NT_invtype)
14947 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14948 types[j]);
14949 }
dcbf9037 14950 else
477330fc
RM
14951 {
14952 first_error (_("operand types can't be inferred"));
14953 return badtype;
14954 }
5287ad62
JB
14955 }
14956 else if (inst.vectype.elems != els)
14957 {
dcbf9037 14958 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
14959 return badtype;
14960 }
14961
14962 for (pass = 0; pass < 2; pass++)
14963 {
14964 for (i = 0; i < els; i++)
477330fc
RM
14965 {
14966 unsigned thisarg = types[i];
14967 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14968 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14969 enum neon_el_type g_type = inst.vectype.el[i].type;
14970 unsigned g_size = inst.vectype.el[i].size;
14971
14972 /* Decay more-specific signed & unsigned types to sign-insensitive
5287ad62 14973 integer types if sign-specific variants are unavailable. */
477330fc 14974 if ((g_type == NT_signed || g_type == NT_unsigned)
5287ad62
JB
14975 && (types_allowed & N_SU_ALL) == 0)
14976 g_type = NT_integer;
14977
477330fc 14978 /* If only untyped args are allowed, decay any more specific types to
5287ad62
JB
14979 them. Some instructions only care about signs for some element
14980 sizes, so handle that properly. */
477330fc 14981 if (((types_allowed & N_UNT) == 0)
91ff7894
MGD
14982 && ((g_size == 8 && (types_allowed & N_8) != 0)
14983 || (g_size == 16 && (types_allowed & N_16) != 0)
14984 || (g_size == 32 && (types_allowed & N_32) != 0)
14985 || (g_size == 64 && (types_allowed & N_64) != 0)))
5287ad62
JB
14986 g_type = NT_untyped;
14987
477330fc
RM
14988 if (pass == 0)
14989 {
14990 if ((thisarg & N_KEY) != 0)
14991 {
14992 k_type = g_type;
14993 k_size = g_size;
14994 key_allowed = thisarg & ~N_KEY;
cc933301
JW
14995
14996 /* Check architecture constraint on FP16 extension. */
14997 if (k_size == 16
14998 && k_type == NT_float
14999 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15000 {
15001 inst.error = _(BAD_FP16);
15002 return badtype;
15003 }
477330fc
RM
15004 }
15005 }
15006 else
15007 {
15008 if ((thisarg & N_VFP) != 0)
15009 {
15010 enum neon_shape_el regshape;
15011 unsigned regwidth, match;
99b253c5
NC
15012
15013 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15014 if (ns == NS_NULL)
15015 {
15016 first_error (_("invalid instruction shape"));
15017 return badtype;
15018 }
477330fc
RM
15019 regshape = neon_shape_tab[ns].el[i];
15020 regwidth = neon_shape_el_size[regshape];
15021
15022 /* In VFP mode, operands must match register widths. If we
15023 have a key operand, use its width, else use the width of
15024 the current operand. */
15025 if (k_size != -1u)
15026 match = k_size;
15027 else
15028 match = g_size;
15029
9db2f6b4
RL
15030 /* FP16 will use a single precision register. */
15031 if (regwidth == 32 && match == 16)
15032 {
15033 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15034 match = regwidth;
15035 else
15036 {
15037 inst.error = _(BAD_FP16);
15038 return badtype;
15039 }
15040 }
15041
477330fc
RM
15042 if (regwidth != match)
15043 {
15044 first_error (_("operand size must match register width"));
15045 return badtype;
15046 }
15047 }
15048
15049 if ((thisarg & N_EQK) == 0)
15050 {
15051 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15052
15053 if ((given_type & types_allowed) == 0)
15054 {
a302e574 15055 first_error (BAD_SIMD_TYPE);
477330fc
RM
15056 return badtype;
15057 }
15058 }
15059 else
15060 {
15061 enum neon_el_type mod_k_type = k_type;
15062 unsigned mod_k_size = k_size;
15063 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15064 if (g_type != mod_k_type || g_size != mod_k_size)
15065 {
15066 first_error (_("inconsistent types in Neon instruction"));
15067 return badtype;
15068 }
15069 }
15070 }
15071 }
5287ad62
JB
15072 }
15073
15074 return inst.vectype.el[key_el];
15075}
15076
037e8744 15077/* Neon-style VFP instruction forwarding. */
5287ad62 15078
037e8744
JB
15079/* Thumb VFP instructions have 0xE in the condition field. */
15080
15081static void
15082do_vfp_cond_or_thumb (void)
5287ad62 15083{
88714cb8
DG
15084 inst.is_neon = 1;
15085
5287ad62 15086 if (thumb_mode)
037e8744 15087 inst.instruction |= 0xe0000000;
5287ad62 15088 else
037e8744 15089 inst.instruction |= inst.cond << 28;
5287ad62
JB
15090}
15091
037e8744
JB
15092/* Look up and encode a simple mnemonic, for use as a helper function for the
15093 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15094 etc. It is assumed that operand parsing has already been done, and that the
15095 operands are in the form expected by the given opcode (this isn't necessarily
15096 the same as the form in which they were parsed, hence some massaging must
15097 take place before this function is called).
15098 Checks current arch version against that in the looked-up opcode. */
5287ad62 15099
037e8744
JB
15100static void
15101do_vfp_nsyn_opcode (const char *opname)
5287ad62 15102{
037e8744 15103 const struct asm_opcode *opcode;
5f4273c7 15104
21d799b5 15105 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 15106
037e8744
JB
15107 if (!opcode)
15108 abort ();
5287ad62 15109
037e8744 15110 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
477330fc
RM
15111 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15112 _(BAD_FPU));
5287ad62 15113
88714cb8
DG
15114 inst.is_neon = 1;
15115
037e8744
JB
15116 if (thumb_mode)
15117 {
15118 inst.instruction = opcode->tvalue;
15119 opcode->tencode ();
15120 }
15121 else
15122 {
15123 inst.instruction = (inst.cond << 28) | opcode->avalue;
15124 opcode->aencode ();
15125 }
15126}
5287ad62
JB
15127
15128static void
037e8744 15129do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 15130{
037e8744
JB
15131 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15132
9db2f6b4 15133 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15134 {
15135 if (is_add)
477330fc 15136 do_vfp_nsyn_opcode ("fadds");
037e8744 15137 else
477330fc 15138 do_vfp_nsyn_opcode ("fsubs");
9db2f6b4
RL
15139
15140 /* ARMv8.2 fp16 instruction. */
15141 if (rs == NS_HHH)
15142 do_scalar_fp16_v82_encode ();
037e8744
JB
15143 }
15144 else
15145 {
15146 if (is_add)
477330fc 15147 do_vfp_nsyn_opcode ("faddd");
037e8744 15148 else
477330fc 15149 do_vfp_nsyn_opcode ("fsubd");
037e8744
JB
15150 }
15151}
15152
15153/* Check operand types to see if this is a VFP instruction, and if so call
15154 PFN (). */
15155
15156static int
15157try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15158{
15159 enum neon_shape rs;
15160 struct neon_type_el et;
15161
15162 switch (args)
15163 {
15164 case 2:
9db2f6b4
RL
15165 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15166 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
037e8744 15167 break;
5f4273c7 15168
037e8744 15169 case 3:
9db2f6b4
RL
15170 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15171 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15172 N_F_ALL | N_KEY | N_VFP);
037e8744
JB
15173 break;
15174
15175 default:
15176 abort ();
15177 }
15178
15179 if (et.type != NT_invtype)
15180 {
15181 pfn (rs);
15182 return SUCCESS;
15183 }
037e8744 15184
99b253c5 15185 inst.error = NULL;
037e8744
JB
15186 return FAIL;
15187}
15188
15189static void
15190do_vfp_nsyn_mla_mls (enum neon_shape rs)
15191{
15192 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 15193
9db2f6b4 15194 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15195 {
15196 if (is_mla)
477330fc 15197 do_vfp_nsyn_opcode ("fmacs");
037e8744 15198 else
477330fc 15199 do_vfp_nsyn_opcode ("fnmacs");
9db2f6b4
RL
15200
15201 /* ARMv8.2 fp16 instruction. */
15202 if (rs == NS_HHH)
15203 do_scalar_fp16_v82_encode ();
037e8744
JB
15204 }
15205 else
15206 {
15207 if (is_mla)
477330fc 15208 do_vfp_nsyn_opcode ("fmacd");
037e8744 15209 else
477330fc 15210 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
15211 }
15212}
15213
62f3b8c8
PB
15214static void
15215do_vfp_nsyn_fma_fms (enum neon_shape rs)
15216{
15217 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15218
9db2f6b4 15219 if (rs == NS_FFF || rs == NS_HHH)
62f3b8c8
PB
15220 {
15221 if (is_fma)
477330fc 15222 do_vfp_nsyn_opcode ("ffmas");
62f3b8c8 15223 else
477330fc 15224 do_vfp_nsyn_opcode ("ffnmas");
9db2f6b4
RL
15225
15226 /* ARMv8.2 fp16 instruction. */
15227 if (rs == NS_HHH)
15228 do_scalar_fp16_v82_encode ();
62f3b8c8
PB
15229 }
15230 else
15231 {
15232 if (is_fma)
477330fc 15233 do_vfp_nsyn_opcode ("ffmad");
62f3b8c8 15234 else
477330fc 15235 do_vfp_nsyn_opcode ("ffnmad");
62f3b8c8
PB
15236 }
15237}
15238
037e8744
JB
15239static void
15240do_vfp_nsyn_mul (enum neon_shape rs)
15241{
9db2f6b4
RL
15242 if (rs == NS_FFF || rs == NS_HHH)
15243 {
15244 do_vfp_nsyn_opcode ("fmuls");
15245
15246 /* ARMv8.2 fp16 instruction. */
15247 if (rs == NS_HHH)
15248 do_scalar_fp16_v82_encode ();
15249 }
037e8744
JB
15250 else
15251 do_vfp_nsyn_opcode ("fmuld");
15252}
15253
15254static void
15255do_vfp_nsyn_abs_neg (enum neon_shape rs)
15256{
15257 int is_neg = (inst.instruction & 0x80) != 0;
9db2f6b4 15258 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
037e8744 15259
9db2f6b4 15260 if (rs == NS_FF || rs == NS_HH)
037e8744
JB
15261 {
15262 if (is_neg)
477330fc 15263 do_vfp_nsyn_opcode ("fnegs");
037e8744 15264 else
477330fc 15265 do_vfp_nsyn_opcode ("fabss");
9db2f6b4
RL
15266
15267 /* ARMv8.2 fp16 instruction. */
15268 if (rs == NS_HH)
15269 do_scalar_fp16_v82_encode ();
037e8744
JB
15270 }
15271 else
15272 {
15273 if (is_neg)
477330fc 15274 do_vfp_nsyn_opcode ("fnegd");
037e8744 15275 else
477330fc 15276 do_vfp_nsyn_opcode ("fabsd");
037e8744
JB
15277 }
15278}
15279
15280/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15281 insns belong to Neon, and are handled elsewhere. */
15282
15283static void
15284do_vfp_nsyn_ldm_stm (int is_dbmode)
15285{
15286 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15287 if (is_ldm)
15288 {
15289 if (is_dbmode)
477330fc 15290 do_vfp_nsyn_opcode ("fldmdbs");
037e8744 15291 else
477330fc 15292 do_vfp_nsyn_opcode ("fldmias");
037e8744
JB
15293 }
15294 else
15295 {
15296 if (is_dbmode)
477330fc 15297 do_vfp_nsyn_opcode ("fstmdbs");
037e8744 15298 else
477330fc 15299 do_vfp_nsyn_opcode ("fstmias");
037e8744
JB
15300 }
15301}
15302
037e8744
JB
15303static void
15304do_vfp_nsyn_sqrt (void)
15305{
9db2f6b4
RL
15306 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15307 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15308
9db2f6b4
RL
15309 if (rs == NS_FF || rs == NS_HH)
15310 {
15311 do_vfp_nsyn_opcode ("fsqrts");
15312
15313 /* ARMv8.2 fp16 instruction. */
15314 if (rs == NS_HH)
15315 do_scalar_fp16_v82_encode ();
15316 }
037e8744
JB
15317 else
15318 do_vfp_nsyn_opcode ("fsqrtd");
15319}
15320
15321static void
15322do_vfp_nsyn_div (void)
15323{
9db2f6b4 15324 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15325 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15326 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15327
9db2f6b4
RL
15328 if (rs == NS_FFF || rs == NS_HHH)
15329 {
15330 do_vfp_nsyn_opcode ("fdivs");
15331
15332 /* ARMv8.2 fp16 instruction. */
15333 if (rs == NS_HHH)
15334 do_scalar_fp16_v82_encode ();
15335 }
037e8744
JB
15336 else
15337 do_vfp_nsyn_opcode ("fdivd");
15338}
15339
15340static void
15341do_vfp_nsyn_nmul (void)
15342{
9db2f6b4 15343 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15344 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15345 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15346
9db2f6b4 15347 if (rs == NS_FFF || rs == NS_HHH)
037e8744 15348 {
88714cb8 15349 NEON_ENCODE (SINGLE, inst);
037e8744 15350 do_vfp_sp_dyadic ();
9db2f6b4
RL
15351
15352 /* ARMv8.2 fp16 instruction. */
15353 if (rs == NS_HHH)
15354 do_scalar_fp16_v82_encode ();
037e8744
JB
15355 }
15356 else
15357 {
88714cb8 15358 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
15359 do_vfp_dp_rd_rn_rm ();
15360 }
15361 do_vfp_cond_or_thumb ();
9db2f6b4 15362
037e8744
JB
15363}
15364
1b883319
AV
15365/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15366 (0, 1, 2, 3). */
15367
15368static unsigned
15369neon_logbits (unsigned x)
15370{
15371 return ffs (x) - 4;
15372}
15373
15374#define LOW4(R) ((R) & 0xf)
15375#define HI1(R) (((R) >> 4) & 1)
15376
15377static unsigned
15378mve_get_vcmp_vpt_cond (struct neon_type_el et)
15379{
15380 switch (et.type)
15381 {
15382 default:
15383 first_error (BAD_EL_TYPE);
15384 return 0;
15385 case NT_float:
15386 switch (inst.operands[0].imm)
15387 {
15388 default:
15389 first_error (_("invalid condition"));
15390 return 0;
15391 case 0x0:
15392 /* eq. */
15393 return 0;
15394 case 0x1:
15395 /* ne. */
15396 return 1;
15397 case 0xa:
15398 /* ge/ */
15399 return 4;
15400 case 0xb:
15401 /* lt. */
15402 return 5;
15403 case 0xc:
15404 /* gt. */
15405 return 6;
15406 case 0xd:
15407 /* le. */
15408 return 7;
15409 }
15410 case NT_integer:
15411 /* only accept eq and ne. */
15412 if (inst.operands[0].imm > 1)
15413 {
15414 first_error (_("invalid condition"));
15415 return 0;
15416 }
15417 return inst.operands[0].imm;
15418 case NT_unsigned:
15419 if (inst.operands[0].imm == 0x2)
15420 return 2;
15421 else if (inst.operands[0].imm == 0x8)
15422 return 3;
15423 else
15424 {
15425 first_error (_("invalid condition"));
15426 return 0;
15427 }
15428 case NT_signed:
15429 switch (inst.operands[0].imm)
15430 {
15431 default:
15432 first_error (_("invalid condition"));
15433 return 0;
15434 case 0xa:
15435 /* ge. */
15436 return 4;
15437 case 0xb:
15438 /* lt. */
15439 return 5;
15440 case 0xc:
15441 /* gt. */
15442 return 6;
15443 case 0xd:
15444 /* le. */
15445 return 7;
15446 }
15447 }
15448 /* Should be unreachable. */
15449 abort ();
15450}
15451
15452static void
15453do_mve_vpt (void)
15454{
15455 /* We are dealing with a vector predicated block. */
15456 if (inst.operands[0].present)
15457 {
15458 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15459 struct neon_type_el et
15460 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15461 N_EQK);
15462
15463 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15464
15465 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15466
15467 if (et.type == NT_invtype)
15468 return;
15469
15470 if (et.type == NT_float)
15471 {
15472 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15473 BAD_FPU);
15474 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15475 inst.instruction |= (et.size == 16) << 28;
15476 inst.instruction |= 0x3 << 20;
15477 }
15478 else
15479 {
15480 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15481 BAD_EL_TYPE);
15482 inst.instruction |= 1 << 28;
15483 inst.instruction |= neon_logbits (et.size) << 20;
15484 }
15485
15486 if (inst.operands[2].isquad)
15487 {
15488 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15489 inst.instruction |= LOW4 (inst.operands[2].reg);
15490 inst.instruction |= (fcond & 0x2) >> 1;
15491 }
15492 else
15493 {
15494 if (inst.operands[2].reg == REG_SP)
15495 as_tsktsk (MVE_BAD_SP);
15496 inst.instruction |= 1 << 6;
15497 inst.instruction |= (fcond & 0x2) << 4;
15498 inst.instruction |= inst.operands[2].reg;
15499 }
15500 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15501 inst.instruction |= (fcond & 0x4) << 10;
15502 inst.instruction |= (fcond & 0x1) << 7;
15503
15504 }
15505 set_pred_insn_type (VPT_INSN);
15506 now_pred.cc = 0;
15507 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15508 | ((inst.instruction & 0xe000) >> 13);
15509 now_pred.warn_deprecated = FALSE;
15510 now_pred.type = VECTOR_PRED;
15511 inst.is_neon = 1;
15512}
15513
15514static void
15515do_mve_vcmp (void)
15516{
15517 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15518 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15519 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15520 if (!inst.operands[2].present)
15521 first_error (_("MVE vector or ARM register expected"));
15522 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15523
15524 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15525 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15526 && inst.operands[1].isquad)
15527 {
15528 inst.instruction = N_MNEM_vcmp;
15529 inst.cond = 0x10;
15530 }
15531
15532 if (inst.cond > COND_ALWAYS)
15533 inst.pred_insn_type = INSIDE_VPT_INSN;
15534 else
15535 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15536
15537 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15538 struct neon_type_el et
15539 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15540 N_EQK);
15541
15542 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15543 && !inst.operands[2].iszr, BAD_PC);
15544
15545 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15546
15547 inst.instruction = 0xee010f00;
15548 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15549 inst.instruction |= (fcond & 0x4) << 10;
15550 inst.instruction |= (fcond & 0x1) << 7;
15551 if (et.type == NT_float)
15552 {
15553 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15554 BAD_FPU);
15555 inst.instruction |= (et.size == 16) << 28;
15556 inst.instruction |= 0x3 << 20;
15557 }
15558 else
15559 {
15560 inst.instruction |= 1 << 28;
15561 inst.instruction |= neon_logbits (et.size) << 20;
15562 }
15563 if (inst.operands[2].isquad)
15564 {
15565 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15566 inst.instruction |= (fcond & 0x2) >> 1;
15567 inst.instruction |= LOW4 (inst.operands[2].reg);
15568 }
15569 else
15570 {
15571 if (inst.operands[2].reg == REG_SP)
15572 as_tsktsk (MVE_BAD_SP);
15573 inst.instruction |= 1 << 6;
15574 inst.instruction |= (fcond & 0x2) << 4;
15575 inst.instruction |= inst.operands[2].reg;
15576 }
15577
15578 inst.is_neon = 1;
15579 return;
15580}
15581
5d281bf0
AV
15582static void
15583do_mve_vcmul (void)
15584{
15585 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15586 struct neon_type_el et
15587 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15588
15589 if (inst.cond > COND_ALWAYS)
15590 inst.pred_insn_type = INSIDE_VPT_INSN;
15591 else
15592 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15593
15594 unsigned rot = inst.relocs[0].exp.X_add_number;
15595 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15596 _("immediate out of range"));
15597
15598 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15599 || inst.operands[0].reg == inst.operands[2].reg))
15600 as_tsktsk (BAD_MVE_SRCDEST);
15601
15602 inst.instruction |= (et.size == 32) << 28;
15603 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15604 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15605 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15606 inst.instruction |= (rot > 90) << 12;
15607 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15608 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15609 inst.instruction |= LOW4 (inst.operands[2].reg);
15610 inst.instruction |= (rot == 90 || rot == 270);
15611 inst.is_neon = 1;
15612}
15613
037e8744
JB
15614static void
15615do_vfp_nsyn_cmp (void)
15616{
9db2f6b4 15617 enum neon_shape rs;
1b883319
AV
15618 if (!inst.operands[0].isreg)
15619 {
15620 do_mve_vcmp ();
15621 return;
15622 }
15623 else
15624 {
15625 constraint (inst.operands[2].present, BAD_SYNTAX);
15626 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15627 BAD_FPU);
15628 }
15629
037e8744
JB
15630 if (inst.operands[1].isreg)
15631 {
9db2f6b4
RL
15632 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15633 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15634
9db2f6b4 15635 if (rs == NS_FF || rs == NS_HH)
477330fc
RM
15636 {
15637 NEON_ENCODE (SINGLE, inst);
15638 do_vfp_sp_monadic ();
15639 }
037e8744 15640 else
477330fc
RM
15641 {
15642 NEON_ENCODE (DOUBLE, inst);
15643 do_vfp_dp_rd_rm ();
15644 }
037e8744
JB
15645 }
15646 else
15647 {
9db2f6b4
RL
15648 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15649 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
037e8744
JB
15650
15651 switch (inst.instruction & 0x0fffffff)
477330fc
RM
15652 {
15653 case N_MNEM_vcmp:
15654 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15655 break;
15656 case N_MNEM_vcmpe:
15657 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15658 break;
15659 default:
15660 abort ();
15661 }
5f4273c7 15662
9db2f6b4 15663 if (rs == NS_FI || rs == NS_HI)
477330fc
RM
15664 {
15665 NEON_ENCODE (SINGLE, inst);
15666 do_vfp_sp_compare_z ();
15667 }
037e8744 15668 else
477330fc
RM
15669 {
15670 NEON_ENCODE (DOUBLE, inst);
15671 do_vfp_dp_rd ();
15672 }
037e8744
JB
15673 }
15674 do_vfp_cond_or_thumb ();
9db2f6b4
RL
15675
15676 /* ARMv8.2 fp16 instruction. */
15677 if (rs == NS_HI || rs == NS_HH)
15678 do_scalar_fp16_v82_encode ();
037e8744
JB
15679}
15680
15681static void
15682nsyn_insert_sp (void)
15683{
15684 inst.operands[1] = inst.operands[0];
15685 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 15686 inst.operands[0].reg = REG_SP;
037e8744
JB
15687 inst.operands[0].isreg = 1;
15688 inst.operands[0].writeback = 1;
15689 inst.operands[0].present = 1;
15690}
15691
15692static void
15693do_vfp_nsyn_push (void)
15694{
15695 nsyn_insert_sp ();
b126985e
NC
15696
15697 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15698 _("register list must contain at least 1 and at most 16 "
15699 "registers"));
15700
037e8744
JB
15701 if (inst.operands[1].issingle)
15702 do_vfp_nsyn_opcode ("fstmdbs");
15703 else
15704 do_vfp_nsyn_opcode ("fstmdbd");
15705}
15706
15707static void
15708do_vfp_nsyn_pop (void)
15709{
15710 nsyn_insert_sp ();
b126985e
NC
15711
15712 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15713 _("register list must contain at least 1 and at most 16 "
15714 "registers"));
15715
037e8744 15716 if (inst.operands[1].issingle)
22b5b651 15717 do_vfp_nsyn_opcode ("fldmias");
037e8744 15718 else
22b5b651 15719 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
15720}
15721
15722/* Fix up Neon data-processing instructions, ORing in the correct bits for
15723 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15724
88714cb8
DG
15725static void
15726neon_dp_fixup (struct arm_it* insn)
037e8744 15727{
88714cb8
DG
15728 unsigned int i = insn->instruction;
15729 insn->is_neon = 1;
15730
037e8744
JB
15731 if (thumb_mode)
15732 {
15733 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15734 if (i & (1 << 24))
477330fc 15735 i |= 1 << 28;
5f4273c7 15736
037e8744 15737 i &= ~(1 << 24);
5f4273c7 15738
037e8744
JB
15739 i |= 0xef000000;
15740 }
15741 else
15742 i |= 0xf2000000;
5f4273c7 15743
88714cb8 15744 insn->instruction = i;
037e8744
JB
15745}
15746
5ee91343
AV
15747static void
15748mve_encode_qqr (int size, int fp)
15749{
15750 if (inst.operands[2].reg == REG_SP)
15751 as_tsktsk (MVE_BAD_SP);
15752 else if (inst.operands[2].reg == REG_PC)
15753 as_tsktsk (MVE_BAD_PC);
15754
15755 if (fp)
15756 {
15757 /* vadd. */
15758 if (((unsigned)inst.instruction) == 0xd00)
15759 inst.instruction = 0xee300f40;
15760 /* vsub. */
15761 else if (((unsigned)inst.instruction) == 0x200d00)
15762 inst.instruction = 0xee301f40;
15763
15764 /* Setting size which is 1 for F16 and 0 for F32. */
15765 inst.instruction |= (size == 16) << 28;
15766 }
15767 else
15768 {
15769 /* vadd. */
15770 if (((unsigned)inst.instruction) == 0x800)
15771 inst.instruction = 0xee010f40;
15772 /* vsub. */
15773 else if (((unsigned)inst.instruction) == 0x1000800)
15774 inst.instruction = 0xee011f40;
15775 /* Setting bits for size. */
15776 inst.instruction |= neon_logbits (size) << 20;
15777 }
15778 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15779 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15780 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15781 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15782 inst.instruction |= inst.operands[2].reg;
15783 inst.is_neon = 1;
15784}
15785
a302e574
AV
15786static void
15787mve_encode_rqq (unsigned bit28, unsigned size)
15788{
15789 inst.instruction |= bit28 << 28;
15790 inst.instruction |= neon_logbits (size) << 20;
15791 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15792 inst.instruction |= inst.operands[0].reg << 12;
15793 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15794 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15795 inst.instruction |= LOW4 (inst.operands[2].reg);
15796 inst.is_neon = 1;
15797}
15798
886e1c73
AV
15799static void
15800mve_encode_qqq (int ubit, int size)
15801{
15802
15803 inst.instruction |= (ubit != 0) << 28;
15804 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15805 inst.instruction |= neon_logbits (size) << 20;
15806 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15807 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15808 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15809 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15810 inst.instruction |= LOW4 (inst.operands[2].reg);
15811
15812 inst.is_neon = 1;
15813}
15814
26c1e780
AV
15815static void
15816mve_encode_rq (unsigned bit28, unsigned size)
15817{
15818 inst.instruction |= bit28 << 28;
15819 inst.instruction |= neon_logbits (size) << 18;
15820 inst.instruction |= inst.operands[0].reg << 12;
15821 inst.instruction |= LOW4 (inst.operands[1].reg);
15822 inst.is_neon = 1;
15823}
886e1c73 15824
037e8744
JB
15825/* Encode insns with bit pattern:
15826
15827 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
15828 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 15829
037e8744
JB
15830 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
15831 different meaning for some instruction. */
15832
15833static void
15834neon_three_same (int isquad, int ubit, int size)
15835{
15836 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15837 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15838 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15839 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15840 inst.instruction |= LOW4 (inst.operands[2].reg);
15841 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15842 inst.instruction |= (isquad != 0) << 6;
15843 inst.instruction |= (ubit != 0) << 24;
15844 if (size != -1)
15845 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 15846
88714cb8 15847 neon_dp_fixup (&inst);
037e8744
JB
15848}
15849
15850/* Encode instructions of the form:
15851
15852 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
15853 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
15854
15855 Don't write size if SIZE == -1. */
15856
15857static void
15858neon_two_same (int qbit, int ubit, int size)
15859{
15860 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15861 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15862 inst.instruction |= LOW4 (inst.operands[1].reg);
15863 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15864 inst.instruction |= (qbit != 0) << 6;
15865 inst.instruction |= (ubit != 0) << 24;
15866
15867 if (size != -1)
15868 inst.instruction |= neon_logbits (size) << 18;
15869
88714cb8 15870 neon_dp_fixup (&inst);
5287ad62
JB
15871}
15872
15873/* Neon instruction encoders, in approximate order of appearance. */
15874
15875static void
15876do_neon_dyadic_i_su (void)
15877{
037e8744 15878 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
15879 struct neon_type_el et = neon_check_type (3, rs,
15880 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 15881 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
15882}
15883
15884static void
15885do_neon_dyadic_i64_su (void)
15886{
037e8744 15887 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
15888 struct neon_type_el et = neon_check_type (3, rs,
15889 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 15890 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
15891}
15892
15893static void
15894neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
477330fc 15895 unsigned immbits)
5287ad62
JB
15896{
15897 unsigned size = et.size >> 3;
15898 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15899 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15900 inst.instruction |= LOW4 (inst.operands[1].reg);
15901 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15902 inst.instruction |= (isquad != 0) << 6;
15903 inst.instruction |= immbits << 16;
15904 inst.instruction |= (size >> 3) << 7;
15905 inst.instruction |= (size & 0x7) << 19;
15906 if (write_ubit)
15907 inst.instruction |= (uval != 0) << 24;
15908
88714cb8 15909 neon_dp_fixup (&inst);
5287ad62
JB
15910}
15911
15912static void
15913do_neon_shl_imm (void)
15914{
15915 if (!inst.operands[2].isreg)
15916 {
037e8744 15917 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 15918 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
cb3b1e65
JB
15919 int imm = inst.operands[2].imm;
15920
15921 constraint (imm < 0 || (unsigned)imm >= et.size,
15922 _("immediate out of range for shift"));
88714cb8 15923 NEON_ENCODE (IMMED, inst);
cb3b1e65 15924 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
15925 }
15926 else
15927 {
037e8744 15928 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 15929 struct neon_type_el et = neon_check_type (3, rs,
477330fc 15930 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
15931 unsigned int tmp;
15932
15933 /* VSHL/VQSHL 3-register variants have syntax such as:
477330fc
RM
15934 vshl.xx Dd, Dm, Dn
15935 whereas other 3-register operations encoded by neon_three_same have
15936 syntax like:
15937 vadd.xx Dd, Dn, Dm
15938 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
15939 here. */
627907b7
JB
15940 tmp = inst.operands[2].reg;
15941 inst.operands[2].reg = inst.operands[1].reg;
15942 inst.operands[1].reg = tmp;
88714cb8 15943 NEON_ENCODE (INTEGER, inst);
037e8744 15944 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
15945 }
15946}
15947
15948static void
15949do_neon_qshl_imm (void)
15950{
15951 if (!inst.operands[2].isreg)
15952 {
037e8744 15953 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 15954 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
cb3b1e65 15955 int imm = inst.operands[2].imm;
627907b7 15956
cb3b1e65
JB
15957 constraint (imm < 0 || (unsigned)imm >= et.size,
15958 _("immediate out of range for shift"));
88714cb8 15959 NEON_ENCODE (IMMED, inst);
cb3b1e65 15960 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
5287ad62
JB
15961 }
15962 else
15963 {
037e8744 15964 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 15965 struct neon_type_el et = neon_check_type (3, rs,
477330fc 15966 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
15967 unsigned int tmp;
15968
15969 /* See note in do_neon_shl_imm. */
15970 tmp = inst.operands[2].reg;
15971 inst.operands[2].reg = inst.operands[1].reg;
15972 inst.operands[1].reg = tmp;
88714cb8 15973 NEON_ENCODE (INTEGER, inst);
037e8744 15974 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
15975 }
15976}
15977
627907b7
JB
15978static void
15979do_neon_rshl (void)
15980{
15981 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15982 struct neon_type_el et = neon_check_type (3, rs,
15983 N_EQK, N_EQK, N_SU_ALL | N_KEY);
15984 unsigned int tmp;
15985
15986 tmp = inst.operands[2].reg;
15987 inst.operands[2].reg = inst.operands[1].reg;
15988 inst.operands[1].reg = tmp;
15989 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
15990}
15991
5287ad62
JB
15992static int
15993neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
15994{
036dc3f7
PB
15995 /* Handle .I8 pseudo-instructions. */
15996 if (size == 8)
5287ad62 15997 {
5287ad62 15998 /* Unfortunately, this will make everything apart from zero out-of-range.
477330fc
RM
15999 FIXME is this the intended semantics? There doesn't seem much point in
16000 accepting .I8 if so. */
5287ad62
JB
16001 immediate |= immediate << 8;
16002 size = 16;
036dc3f7
PB
16003 }
16004
16005 if (size >= 32)
16006 {
16007 if (immediate == (immediate & 0x000000ff))
16008 {
16009 *immbits = immediate;
16010 return 0x1;
16011 }
16012 else if (immediate == (immediate & 0x0000ff00))
16013 {
16014 *immbits = immediate >> 8;
16015 return 0x3;
16016 }
16017 else if (immediate == (immediate & 0x00ff0000))
16018 {
16019 *immbits = immediate >> 16;
16020 return 0x5;
16021 }
16022 else if (immediate == (immediate & 0xff000000))
16023 {
16024 *immbits = immediate >> 24;
16025 return 0x7;
16026 }
16027 if ((immediate & 0xffff) != (immediate >> 16))
16028 goto bad_immediate;
16029 immediate &= 0xffff;
5287ad62
JB
16030 }
16031
16032 if (immediate == (immediate & 0x000000ff))
16033 {
16034 *immbits = immediate;
036dc3f7 16035 return 0x9;
5287ad62
JB
16036 }
16037 else if (immediate == (immediate & 0x0000ff00))
16038 {
16039 *immbits = immediate >> 8;
036dc3f7 16040 return 0xb;
5287ad62
JB
16041 }
16042
16043 bad_immediate:
dcbf9037 16044 first_error (_("immediate value out of range"));
5287ad62
JB
16045 return FAIL;
16046}
16047
f601a00c
AV
16048enum vfp_or_neon_is_neon_bits
16049{
16050NEON_CHECK_CC = 1,
16051NEON_CHECK_ARCH = 2,
16052NEON_CHECK_ARCH8 = 4
16053};
16054
16055/* Call this function if an instruction which may have belonged to the VFP or
16056 Neon instruction sets, but turned out to be a Neon instruction (due to the
16057 operand types involved, etc.). We have to check and/or fix-up a couple of
16058 things:
16059
16060 - Make sure the user hasn't attempted to make a Neon instruction
16061 conditional.
16062 - Alter the value in the condition code field if necessary.
16063 - Make sure that the arch supports Neon instructions.
16064
16065 Which of these operations take place depends on bits from enum
16066 vfp_or_neon_is_neon_bits.
16067
16068 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16069 current instruction's condition is COND_ALWAYS, the condition field is
16070 changed to inst.uncond_value. This is necessary because instructions shared
16071 between VFP and Neon may be conditional for the VFP variants only, and the
16072 unconditional Neon version must have, e.g., 0xF in the condition field. */
16073
16074static int
16075vfp_or_neon_is_neon (unsigned check)
16076{
16077/* Conditions are always legal in Thumb mode (IT blocks). */
16078if (!thumb_mode && (check & NEON_CHECK_CC))
16079 {
16080 if (inst.cond != COND_ALWAYS)
16081 {
16082 first_error (_(BAD_COND));
16083 return FAIL;
16084 }
16085 if (inst.uncond_value != -1)
16086 inst.instruction |= inst.uncond_value << 28;
16087 }
16088
16089
16090 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16091 || ((check & NEON_CHECK_ARCH8)
16092 && !mark_feature_used (&fpu_neon_ext_armv8)))
16093 {
16094 first_error (_(BAD_FPU));
16095 return FAIL;
16096 }
16097
16098return SUCCESS;
16099}
16100
16101static int
16102check_simd_pred_availability (int fp, unsigned check)
16103{
16104if (inst.cond > COND_ALWAYS)
16105 {
16106 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16107 {
16108 inst.error = BAD_FPU;
16109 return 1;
16110 }
16111 inst.pred_insn_type = INSIDE_VPT_INSN;
16112 }
16113else if (inst.cond < COND_ALWAYS)
16114 {
16115 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16116 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16117 else if (vfp_or_neon_is_neon (check) == FAIL)
16118 return 2;
16119 }
16120else
16121 {
16122 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16123 && vfp_or_neon_is_neon (check) == FAIL)
16124 return 3;
16125
16126 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16127 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16128 }
16129return 0;
16130}
16131
5287ad62
JB
16132static void
16133do_neon_logic (void)
16134{
16135 if (inst.operands[2].present && inst.operands[2].isreg)
16136 {
037e8744 16137 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
f601a00c
AV
16138 if (rs == NS_QQQ
16139 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16140 == FAIL)
16141 return;
16142 else if (rs != NS_QQQ
16143 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16144 first_error (BAD_FPU);
16145
5287ad62
JB
16146 neon_check_type (3, rs, N_IGNORE_TYPE);
16147 /* U bit and size field were set as part of the bitmask. */
88714cb8 16148 NEON_ENCODE (INTEGER, inst);
037e8744 16149 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16150 }
16151 else
16152 {
4316f0d2
DG
16153 const int three_ops_form = (inst.operands[2].present
16154 && !inst.operands[2].isreg);
16155 const int immoperand = (three_ops_form ? 2 : 1);
16156 enum neon_shape rs = (three_ops_form
16157 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16158 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
f601a00c
AV
16159 /* Because neon_select_shape makes the second operand a copy of the first
16160 if the second operand is not present. */
16161 if (rs == NS_QQI
16162 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16163 == FAIL)
16164 return;
16165 else if (rs != NS_QQI
16166 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16167 first_error (BAD_FPU);
16168
16169 struct neon_type_el et;
16170 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16171 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16172 else
16173 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16174 | N_KEY, N_EQK);
16175
16176 if (et.type == NT_invtype)
16177 return;
21d799b5 16178 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
16179 unsigned immbits;
16180 int cmode;
5f4273c7 16181
5f4273c7 16182
4316f0d2
DG
16183 if (three_ops_form)
16184 constraint (inst.operands[0].reg != inst.operands[1].reg,
16185 _("first and second operands shall be the same register"));
16186
88714cb8 16187 NEON_ENCODE (IMMED, inst);
5287ad62 16188
4316f0d2 16189 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
16190 if (et.size == 64)
16191 {
16192 /* .i64 is a pseudo-op, so the immediate must be a repeating
16193 pattern. */
4316f0d2
DG
16194 if (immbits != (inst.operands[immoperand].regisimm ?
16195 inst.operands[immoperand].reg : 0))
036dc3f7
PB
16196 {
16197 /* Set immbits to an invalid constant. */
16198 immbits = 0xdeadbeef;
16199 }
16200 }
16201
5287ad62 16202 switch (opcode)
477330fc
RM
16203 {
16204 case N_MNEM_vbic:
16205 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16206 break;
16207
16208 case N_MNEM_vorr:
16209 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16210 break;
16211
16212 case N_MNEM_vand:
16213 /* Pseudo-instruction for VBIC. */
16214 neon_invert_size (&immbits, 0, et.size);
16215 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16216 break;
16217
16218 case N_MNEM_vorn:
16219 /* Pseudo-instruction for VORR. */
16220 neon_invert_size (&immbits, 0, et.size);
16221 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16222 break;
16223
16224 default:
16225 abort ();
16226 }
5287ad62
JB
16227
16228 if (cmode == FAIL)
477330fc 16229 return;
5287ad62 16230
037e8744 16231 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16232 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16233 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16234 inst.instruction |= cmode << 8;
16235 neon_write_immbits (immbits);
5f4273c7 16236
88714cb8 16237 neon_dp_fixup (&inst);
5287ad62
JB
16238 }
16239}
16240
16241static void
16242do_neon_bitfield (void)
16243{
037e8744 16244 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 16245 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 16246 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16247}
16248
16249static void
dcbf9037 16250neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
477330fc 16251 unsigned destbits)
5287ad62 16252{
5ee91343 16253 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
dcbf9037 16254 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
477330fc 16255 types | N_KEY);
5287ad62
JB
16256 if (et.type == NT_float)
16257 {
88714cb8 16258 NEON_ENCODE (FLOAT, inst);
5ee91343
AV
16259 if (rs == NS_QQR)
16260 mve_encode_qqr (et.size, 1);
16261 else
16262 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
16263 }
16264 else
16265 {
88714cb8 16266 NEON_ENCODE (INTEGER, inst);
5ee91343
AV
16267 if (rs == NS_QQR)
16268 mve_encode_qqr (et.size, 0);
16269 else
16270 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
16271 }
16272}
16273
5287ad62
JB
16274
16275static void
16276do_neon_dyadic_if_su_d (void)
16277{
16278 /* This version only allow D registers, but that constraint is enforced during
16279 operand parsing so we don't need to do anything extra here. */
dcbf9037 16280 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
16281}
16282
5287ad62
JB
16283static void
16284do_neon_dyadic_if_i_d (void)
16285{
428e3f1f
PB
16286 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16287 affected if we specify unsigned args. */
16288 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
16289}
16290
f5f10c66
AV
16291static void
16292do_mve_vstr_vldr_QI (int size, int elsize, int load)
16293{
16294 constraint (size < 32, BAD_ADDR_MODE);
16295 constraint (size != elsize, BAD_EL_TYPE);
16296 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16297 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16298 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16299 _("destination register and offset register may not be the"
16300 " same"));
16301
16302 int imm = inst.relocs[0].exp.X_add_number;
16303 int add = 1;
16304 if (imm < 0)
16305 {
16306 add = 0;
16307 imm = -imm;
16308 }
16309 constraint ((imm % (size / 8) != 0)
16310 || imm > (0x7f << neon_logbits (size)),
16311 (size == 32) ? _("immediate must be a multiple of 4 in the"
16312 " range of +/-[0,508]")
16313 : _("immediate must be a multiple of 8 in the"
16314 " range of +/-[0,1016]"));
16315 inst.instruction |= 0x11 << 24;
16316 inst.instruction |= add << 23;
16317 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16318 inst.instruction |= inst.operands[1].writeback << 21;
16319 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16320 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16321 inst.instruction |= 1 << 12;
16322 inst.instruction |= (size == 64) << 8;
16323 inst.instruction &= 0xffffff00;
16324 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16325 inst.instruction |= imm >> neon_logbits (size);
16326}
16327
16328static void
16329do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16330{
16331 unsigned os = inst.operands[1].imm >> 5;
16332 constraint (os != 0 && size == 8,
16333 _("can not shift offsets when accessing less than half-word"));
16334 constraint (os && os != neon_logbits (size),
16335 _("shift immediate must be 1, 2 or 3 for half-word, word"
16336 " or double-word accesses respectively"));
16337 if (inst.operands[1].reg == REG_PC)
16338 as_tsktsk (MVE_BAD_PC);
16339
16340 switch (size)
16341 {
16342 case 8:
16343 constraint (elsize >= 64, BAD_EL_TYPE);
16344 break;
16345 case 16:
16346 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16347 break;
16348 case 32:
16349 case 64:
16350 constraint (elsize != size, BAD_EL_TYPE);
16351 break;
16352 default:
16353 break;
16354 }
16355 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16356 BAD_ADDR_MODE);
16357 if (load)
16358 {
16359 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16360 _("destination register and offset register may not be"
16361 " the same"));
16362 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16363 BAD_EL_TYPE);
16364 constraint (inst.vectype.el[0].type != NT_unsigned
16365 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16366 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16367 }
16368 else
16369 {
16370 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16371 }
16372
16373 inst.instruction |= 1 << 23;
16374 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16375 inst.instruction |= inst.operands[1].reg << 16;
16376 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16377 inst.instruction |= neon_logbits (elsize) << 7;
16378 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16379 inst.instruction |= LOW4 (inst.operands[1].imm);
16380 inst.instruction |= !!os;
16381}
16382
16383static void
16384do_mve_vstr_vldr_RI (int size, int elsize, int load)
16385{
16386 enum neon_el_type type = inst.vectype.el[0].type;
16387
16388 constraint (size >= 64, BAD_ADDR_MODE);
16389 switch (size)
16390 {
16391 case 16:
16392 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16393 break;
16394 case 32:
16395 constraint (elsize != size, BAD_EL_TYPE);
16396 break;
16397 default:
16398 break;
16399 }
16400 if (load)
16401 {
16402 constraint (elsize != size && type != NT_unsigned
16403 && type != NT_signed, BAD_EL_TYPE);
16404 }
16405 else
16406 {
16407 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16408 }
16409
16410 int imm = inst.relocs[0].exp.X_add_number;
16411 int add = 1;
16412 if (imm < 0)
16413 {
16414 add = 0;
16415 imm = -imm;
16416 }
16417
16418 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16419 {
16420 switch (size)
16421 {
16422 case 8:
16423 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16424 break;
16425 case 16:
16426 constraint (1, _("immediate must be a multiple of 2 in the"
16427 " range of +/-[0,254]"));
16428 break;
16429 case 32:
16430 constraint (1, _("immediate must be a multiple of 4 in the"
16431 " range of +/-[0,508]"));
16432 break;
16433 }
16434 }
16435
16436 if (size != elsize)
16437 {
16438 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16439 constraint (inst.operands[0].reg > 14,
16440 _("MVE vector register in the range [Q0..Q7] expected"));
16441 inst.instruction |= (load && type == NT_unsigned) << 28;
16442 inst.instruction |= (size == 16) << 19;
16443 inst.instruction |= neon_logbits (elsize) << 7;
16444 }
16445 else
16446 {
16447 if (inst.operands[1].reg == REG_PC)
16448 as_tsktsk (MVE_BAD_PC);
16449 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16450 as_tsktsk (MVE_BAD_SP);
16451 inst.instruction |= 1 << 12;
16452 inst.instruction |= neon_logbits (size) << 7;
16453 }
16454 inst.instruction |= inst.operands[1].preind << 24;
16455 inst.instruction |= add << 23;
16456 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16457 inst.instruction |= inst.operands[1].writeback << 21;
16458 inst.instruction |= inst.operands[1].reg << 16;
16459 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16460 inst.instruction &= 0xffffff80;
16461 inst.instruction |= imm >> neon_logbits (size);
16462
16463}
16464
16465static void
16466do_mve_vstr_vldr (void)
16467{
16468 unsigned size;
16469 int load = 0;
16470
16471 if (inst.cond > COND_ALWAYS)
16472 inst.pred_insn_type = INSIDE_VPT_INSN;
16473 else
16474 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16475
16476 switch (inst.instruction)
16477 {
16478 default:
16479 gas_assert (0);
16480 break;
16481 case M_MNEM_vldrb:
16482 load = 1;
16483 /* fall through. */
16484 case M_MNEM_vstrb:
16485 size = 8;
16486 break;
16487 case M_MNEM_vldrh:
16488 load = 1;
16489 /* fall through. */
16490 case M_MNEM_vstrh:
16491 size = 16;
16492 break;
16493 case M_MNEM_vldrw:
16494 load = 1;
16495 /* fall through. */
16496 case M_MNEM_vstrw:
16497 size = 32;
16498 break;
16499 case M_MNEM_vldrd:
16500 load = 1;
16501 /* fall through. */
16502 case M_MNEM_vstrd:
16503 size = 64;
16504 break;
16505 }
16506 unsigned elsize = inst.vectype.el[0].size;
16507
16508 if (inst.operands[1].isquad)
16509 {
16510 /* We are dealing with [Q, imm]{!} cases. */
16511 do_mve_vstr_vldr_QI (size, elsize, load);
16512 }
16513 else
16514 {
16515 if (inst.operands[1].immisreg == 2)
16516 {
16517 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16518 do_mve_vstr_vldr_RQ (size, elsize, load);
16519 }
16520 else if (!inst.operands[1].immisreg)
16521 {
16522 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16523 do_mve_vstr_vldr_RI (size, elsize, load);
16524 }
16525 else
16526 constraint (1, BAD_ADDR_MODE);
16527 }
16528
16529 inst.is_neon = 1;
16530}
16531
35c228db
AV
16532static void
16533do_mve_vst_vld (void)
16534{
16535 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16536 return;
16537
16538 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16539 || inst.relocs[0].exp.X_add_number != 0
16540 || inst.operands[1].immisreg != 0,
16541 BAD_ADDR_MODE);
16542 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16543 if (inst.operands[1].reg == REG_PC)
16544 as_tsktsk (MVE_BAD_PC);
16545 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16546 as_tsktsk (MVE_BAD_SP);
16547
16548
16549 /* These instructions are one of the "exceptions" mentioned in
16550 handle_pred_state. They are MVE instructions that are not VPT compatible
16551 and do not accept a VPT code, thus appending such a code is a syntax
16552 error. */
16553 if (inst.cond > COND_ALWAYS)
16554 first_error (BAD_SYNTAX);
16555 /* If we append a scalar condition code we can set this to
16556 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16557 else if (inst.cond < COND_ALWAYS)
16558 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16559 else
16560 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16561
16562 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16563 inst.instruction |= inst.operands[1].writeback << 21;
16564 inst.instruction |= inst.operands[1].reg << 16;
16565 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16566 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16567 inst.is_neon = 1;
16568}
16569
26c1e780
AV
16570static void
16571do_mve_vaddlv (void)
16572{
16573 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
16574 struct neon_type_el et
16575 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
16576
16577 if (et.type == NT_invtype)
16578 first_error (BAD_EL_TYPE);
16579
16580 if (inst.cond > COND_ALWAYS)
16581 inst.pred_insn_type = INSIDE_VPT_INSN;
16582 else
16583 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16584
16585 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16586
16587 inst.instruction |= (et.type == NT_unsigned) << 28;
16588 inst.instruction |= inst.operands[1].reg << 19;
16589 inst.instruction |= inst.operands[0].reg << 12;
16590 inst.instruction |= inst.operands[2].reg;
16591 inst.is_neon = 1;
16592}
16593
5287ad62 16594static void
5ee91343 16595do_neon_dyadic_if_su (void)
5287ad62 16596{
5ee91343
AV
16597 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16598 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16599 N_SUF_32 | N_KEY);
16600
16601 if (check_simd_pred_availability (et.type == NT_float,
16602 NEON_CHECK_ARCH | NEON_CHECK_CC))
037e8744
JB
16603 return;
16604
5ee91343
AV
16605 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16606}
16607
16608static void
16609do_neon_addsub_if_i (void)
16610{
16611 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
16612 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
037e8744
JB
16613 return;
16614
5ee91343
AV
16615 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16616 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
16617 N_EQK, N_IF_32 | N_I64 | N_KEY);
16618
16619 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
16620 /* If we are parsing Q registers and the element types match MVE, which NEON
16621 also supports, then we must check whether this is an instruction that can
16622 be used by both MVE/NEON. This distinction can be made based on whether
16623 they are predicated or not. */
16624 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
16625 {
16626 if (check_simd_pred_availability (et.type == NT_float,
16627 NEON_CHECK_ARCH | NEON_CHECK_CC))
16628 return;
16629 }
16630 else
16631 {
16632 /* If they are either in a D register or are using an unsupported. */
16633 if (rs != NS_QQR
16634 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16635 return;
16636 }
16637
5287ad62
JB
16638 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16639 affected if we specify unsigned args. */
dcbf9037 16640 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
16641}
16642
16643/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
16644 result to be:
16645 V<op> A,B (A is operand 0, B is operand 2)
16646 to mean:
16647 V<op> A,B,A
16648 not:
16649 V<op> A,B,B
16650 so handle that case specially. */
16651
16652static void
16653neon_exchange_operands (void)
16654{
5287ad62
JB
16655 if (inst.operands[1].present)
16656 {
e1fa0163
NC
16657 void *scratch = xmalloc (sizeof (inst.operands[0]));
16658
5287ad62
JB
16659 /* Swap operands[1] and operands[2]. */
16660 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
16661 inst.operands[1] = inst.operands[2];
16662 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
e1fa0163 16663 free (scratch);
5287ad62
JB
16664 }
16665 else
16666 {
16667 inst.operands[1] = inst.operands[2];
16668 inst.operands[2] = inst.operands[0];
16669 }
16670}
16671
16672static void
16673neon_compare (unsigned regtypes, unsigned immtypes, int invert)
16674{
16675 if (inst.operands[2].isreg)
16676 {
16677 if (invert)
477330fc 16678 neon_exchange_operands ();
dcbf9037 16679 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
16680 }
16681 else
16682 {
037e8744 16683 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037 16684 struct neon_type_el et = neon_check_type (2, rs,
477330fc 16685 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 16686
88714cb8 16687 NEON_ENCODE (IMMED, inst);
5287ad62
JB
16688 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16689 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16690 inst.instruction |= LOW4 (inst.operands[1].reg);
16691 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 16692 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16693 inst.instruction |= (et.type == NT_float) << 10;
16694 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 16695
88714cb8 16696 neon_dp_fixup (&inst);
5287ad62
JB
16697 }
16698}
16699
16700static void
16701do_neon_cmp (void)
16702{
cc933301 16703 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
5287ad62
JB
16704}
16705
16706static void
16707do_neon_cmp_inv (void)
16708{
cc933301 16709 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
5287ad62
JB
16710}
16711
16712static void
16713do_neon_ceq (void)
16714{
16715 neon_compare (N_IF_32, N_IF_32, FALSE);
16716}
16717
16718/* For multiply instructions, we have the possibility of 16-bit or 32-bit
16719 scalars, which are encoded in 5 bits, M : Rm.
16720 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
16721 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
c604a79a
JW
16722 index in M.
16723
16724 Dot Product instructions are similar to multiply instructions except elsize
16725 should always be 32.
16726
16727 This function translates SCALAR, which is GAS's internal encoding of indexed
16728 scalar register, to raw encoding. There is also register and index range
16729 check based on ELSIZE. */
5287ad62
JB
16730
16731static unsigned
16732neon_scalar_for_mul (unsigned scalar, unsigned elsize)
16733{
dcbf9037
JB
16734 unsigned regno = NEON_SCALAR_REG (scalar);
16735 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
16736
16737 switch (elsize)
16738 {
16739 case 16:
16740 if (regno > 7 || elno > 3)
477330fc 16741 goto bad_scalar;
5287ad62 16742 return regno | (elno << 3);
5f4273c7 16743
5287ad62
JB
16744 case 32:
16745 if (regno > 15 || elno > 1)
477330fc 16746 goto bad_scalar;
5287ad62
JB
16747 return regno | (elno << 4);
16748
16749 default:
16750 bad_scalar:
dcbf9037 16751 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
16752 }
16753
16754 return 0;
16755}
16756
16757/* Encode multiply / multiply-accumulate scalar instructions. */
16758
16759static void
16760neon_mul_mac (struct neon_type_el et, int ubit)
16761{
dcbf9037
JB
16762 unsigned scalar;
16763
16764 /* Give a more helpful error message if we have an invalid type. */
16765 if (et.type == NT_invtype)
16766 return;
5f4273c7 16767
dcbf9037 16768 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
16769 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16770 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16771 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16772 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16773 inst.instruction |= LOW4 (scalar);
16774 inst.instruction |= HI1 (scalar) << 5;
16775 inst.instruction |= (et.type == NT_float) << 8;
16776 inst.instruction |= neon_logbits (et.size) << 20;
16777 inst.instruction |= (ubit != 0) << 24;
16778
88714cb8 16779 neon_dp_fixup (&inst);
5287ad62
JB
16780}
16781
16782static void
16783do_neon_mac_maybe_scalar (void)
16784{
037e8744
JB
16785 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
16786 return;
16787
16788 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16789 return;
16790
5287ad62
JB
16791 if (inst.operands[2].isscalar)
16792 {
037e8744 16793 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 16794 struct neon_type_el et = neon_check_type (3, rs,
589a7d88 16795 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
88714cb8 16796 NEON_ENCODE (SCALAR, inst);
037e8744 16797 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
16798 }
16799 else
428e3f1f
PB
16800 {
16801 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16802 affected if we specify unsigned args. */
16803 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16804 }
5287ad62
JB
16805}
16806
62f3b8c8
PB
16807static void
16808do_neon_fmac (void)
16809{
16810 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
16811 return;
16812
16813 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16814 return;
16815
16816 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16817}
16818
5287ad62
JB
16819static void
16820do_neon_tst (void)
16821{
037e8744 16822 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
16823 struct neon_type_el et = neon_check_type (3, rs,
16824 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 16825 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
16826}
16827
16828/* VMUL with 3 registers allows the P8 type. The scalar version supports the
16829 same types as the MAC equivalents. The polynomial type for this instruction
16830 is encoded the same as the integer type. */
16831
16832static void
16833do_neon_mul (void)
16834{
037e8744
JB
16835 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
16836 return;
16837
16838 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16839 return;
16840
5287ad62
JB
16841 if (inst.operands[2].isscalar)
16842 do_neon_mac_maybe_scalar ();
16843 else
cc933301 16844 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
5287ad62
JB
16845}
16846
16847static void
16848do_neon_qdmulh (void)
16849{
16850 if (inst.operands[2].isscalar)
16851 {
037e8744 16852 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 16853 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16854 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 16855 NEON_ENCODE (SCALAR, inst);
037e8744 16856 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
16857 }
16858 else
16859 {
037e8744 16860 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 16861 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16862 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 16863 NEON_ENCODE (INTEGER, inst);
5287ad62 16864 /* The U bit (rounding) comes from bit mask. */
037e8744 16865 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
16866 }
16867}
16868
26c1e780
AV
16869static void
16870do_mve_vaddv (void)
16871{
16872 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
16873 struct neon_type_el et
16874 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
16875
16876 if (et.type == NT_invtype)
16877 first_error (BAD_EL_TYPE);
16878
16879 if (inst.cond > COND_ALWAYS)
16880 inst.pred_insn_type = INSIDE_VPT_INSN;
16881 else
16882 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16883
16884 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16885
16886 mve_encode_rq (et.type == NT_unsigned, et.size);
16887}
16888
c2dafc2a
AV
16889static void
16890do_mve_vadc (void)
16891{
16892 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
16893 struct neon_type_el et
16894 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
16895
16896 if (et.type == NT_invtype)
16897 first_error (BAD_EL_TYPE);
16898
16899 if (inst.cond > COND_ALWAYS)
16900 inst.pred_insn_type = INSIDE_VPT_INSN;
16901 else
16902 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16903
16904 mve_encode_qqq (0, 64);
16905}
16906
16907static void
16908do_mve_vbrsr (void)
16909{
16910 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
16911 struct neon_type_el et
16912 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
16913
16914 if (inst.cond > COND_ALWAYS)
16915 inst.pred_insn_type = INSIDE_VPT_INSN;
16916 else
16917 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16918
16919 mve_encode_qqr (et.size, 0);
16920}
16921
16922static void
16923do_mve_vsbc (void)
16924{
16925 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
16926
16927 if (inst.cond > COND_ALWAYS)
16928 inst.pred_insn_type = INSIDE_VPT_INSN;
16929 else
16930 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16931
16932 mve_encode_qqq (1, 64);
16933}
16934
886e1c73
AV
16935static void
16936do_mve_vmull (void)
16937{
16938
16939 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
16940 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
16941 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
16942 && inst.cond == COND_ALWAYS
16943 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
16944 {
16945 if (rs == NS_QQQ)
16946 {
16947
16948 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16949 N_SUF_32 | N_F64 | N_P8
16950 | N_P16 | N_I_MVE | N_KEY);
16951 if (((et.type == NT_poly) && et.size == 8
16952 && ARM_CPU_IS_ANY (cpu_variant))
16953 || (et.type == NT_integer) || (et.type == NT_float))
16954 goto neon_vmul;
16955 }
16956 else
16957 goto neon_vmul;
16958 }
16959
16960 constraint (rs != NS_QQQ, BAD_FPU);
16961 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16962 N_SU_32 | N_P8 | N_P16 | N_KEY);
16963
16964 /* We are dealing with MVE's vmullt. */
16965 if (et.size == 32
16966 && (inst.operands[0].reg == inst.operands[1].reg
16967 || inst.operands[0].reg == inst.operands[2].reg))
16968 as_tsktsk (BAD_MVE_SRCDEST);
16969
16970 if (inst.cond > COND_ALWAYS)
16971 inst.pred_insn_type = INSIDE_VPT_INSN;
16972 else
16973 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16974
16975 if (et.type == NT_poly)
16976 mve_encode_qqq (neon_logbits (et.size), 64);
16977 else
16978 mve_encode_qqq (et.type == NT_unsigned, et.size);
16979
16980 return;
16981
16982neon_vmul:
16983 inst.instruction = N_MNEM_vmul;
16984 inst.cond = 0xb;
16985 if (thumb_mode)
16986 inst.pred_insn_type = INSIDE_IT_INSN;
16987 do_neon_mul ();
16988}
16989
a302e574
AV
16990static void
16991do_mve_vabav (void)
16992{
16993 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
16994
16995 if (rs == NS_NULL)
16996 return;
16997
16998 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16999 return;
17000
17001 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17002 | N_S16 | N_S32 | N_U8 | N_U16
17003 | N_U32);
17004
17005 if (inst.cond > COND_ALWAYS)
17006 inst.pred_insn_type = INSIDE_VPT_INSN;
17007 else
17008 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17009
17010 mve_encode_rqq (et.type == NT_unsigned, et.size);
17011}
17012
17013static void
17014do_mve_vmladav (void)
17015{
17016 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17017 struct neon_type_el et = neon_check_type (3, rs,
17018 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17019
17020 if (et.type == NT_unsigned
17021 && (inst.instruction == M_MNEM_vmladavx
17022 || inst.instruction == M_MNEM_vmladavax
17023 || inst.instruction == M_MNEM_vmlsdav
17024 || inst.instruction == M_MNEM_vmlsdava
17025 || inst.instruction == M_MNEM_vmlsdavx
17026 || inst.instruction == M_MNEM_vmlsdavax))
17027 first_error (BAD_SIMD_TYPE);
17028
17029 constraint (inst.operands[2].reg > 14,
17030 _("MVE vector register in the range [Q0..Q7] expected"));
17031
17032 if (inst.cond > COND_ALWAYS)
17033 inst.pred_insn_type = INSIDE_VPT_INSN;
17034 else
17035 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17036
17037 if (inst.instruction == M_MNEM_vmlsdav
17038 || inst.instruction == M_MNEM_vmlsdava
17039 || inst.instruction == M_MNEM_vmlsdavx
17040 || inst.instruction == M_MNEM_vmlsdavax)
17041 inst.instruction |= (et.size == 8) << 28;
17042 else
17043 inst.instruction |= (et.size == 8) << 8;
17044
17045 mve_encode_rqq (et.type == NT_unsigned, 64);
17046 inst.instruction |= (et.size == 32) << 16;
17047}
17048
643afb90
MW
17049static void
17050do_neon_qrdmlah (void)
17051{
17052 /* Check we're on the correct architecture. */
17053 if (!mark_feature_used (&fpu_neon_ext_armv8))
17054 inst.error =
17055 _("instruction form not available on this architecture.");
17056 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17057 {
17058 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17059 record_feature_use (&fpu_neon_ext_v8_1);
17060 }
17061
17062 if (inst.operands[2].isscalar)
17063 {
17064 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17065 struct neon_type_el et = neon_check_type (3, rs,
17066 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17067 NEON_ENCODE (SCALAR, inst);
17068 neon_mul_mac (et, neon_quad (rs));
17069 }
17070 else
17071 {
17072 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17073 struct neon_type_el et = neon_check_type (3, rs,
17074 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17075 NEON_ENCODE (INTEGER, inst);
17076 /* The U bit (rounding) comes from bit mask. */
17077 neon_three_same (neon_quad (rs), 0, et.size);
17078 }
17079}
17080
5287ad62
JB
17081static void
17082do_neon_fcmp_absolute (void)
17083{
037e8744 17084 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
17085 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17086 N_F_16_32 | N_KEY);
5287ad62 17087 /* Size field comes from bit mask. */
cc933301 17088 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
17089}
17090
17091static void
17092do_neon_fcmp_absolute_inv (void)
17093{
17094 neon_exchange_operands ();
17095 do_neon_fcmp_absolute ();
17096}
17097
17098static void
17099do_neon_step (void)
17100{
037e8744 17101 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
17102 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17103 N_F_16_32 | N_KEY);
17104 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
17105}
17106
17107static void
17108do_neon_abs_neg (void)
17109{
037e8744
JB
17110 enum neon_shape rs;
17111 struct neon_type_el et;
5f4273c7 17112
037e8744
JB
17113 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
17114 return;
17115
037e8744 17116 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
cc933301 17117 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
5f4273c7 17118
485dee97
AV
17119 if (check_simd_pred_availability (et.type == NT_float,
17120 NEON_CHECK_ARCH | NEON_CHECK_CC))
17121 return;
17122
5287ad62
JB
17123 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17124 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17125 inst.instruction |= LOW4 (inst.operands[1].reg);
17126 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 17127 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
17128 inst.instruction |= (et.type == NT_float) << 10;
17129 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17130
88714cb8 17131 neon_dp_fixup (&inst);
5287ad62
JB
17132}
17133
17134static void
17135do_neon_sli (void)
17136{
037e8744 17137 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17138 struct neon_type_el et = neon_check_type (2, rs,
17139 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17140 int imm = inst.operands[2].imm;
17141 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 17142 _("immediate out of range for insert"));
037e8744 17143 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
17144}
17145
17146static void
17147do_neon_sri (void)
17148{
037e8744 17149 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17150 struct neon_type_el et = neon_check_type (2, rs,
17151 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17152 int imm = inst.operands[2].imm;
17153 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17154 _("immediate out of range for insert"));
037e8744 17155 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
17156}
17157
17158static void
17159do_neon_qshlu_imm (void)
17160{
037e8744 17161 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17162 struct neon_type_el et = neon_check_type (2, rs,
17163 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
17164 int imm = inst.operands[2].imm;
17165 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 17166 _("immediate out of range for shift"));
5287ad62
JB
17167 /* Only encodes the 'U present' variant of the instruction.
17168 In this case, signed types have OP (bit 8) set to 0.
17169 Unsigned types have OP set to 1. */
17170 inst.instruction |= (et.type == NT_unsigned) << 8;
17171 /* The rest of the bits are the same as other immediate shifts. */
037e8744 17172 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
17173}
17174
17175static void
17176do_neon_qmovn (void)
17177{
17178 struct neon_type_el et = neon_check_type (2, NS_DQ,
17179 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17180 /* Saturating move where operands can be signed or unsigned, and the
17181 destination has the same signedness. */
88714cb8 17182 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17183 if (et.type == NT_unsigned)
17184 inst.instruction |= 0xc0;
17185 else
17186 inst.instruction |= 0x80;
17187 neon_two_same (0, 1, et.size / 2);
17188}
17189
17190static void
17191do_neon_qmovun (void)
17192{
17193 struct neon_type_el et = neon_check_type (2, NS_DQ,
17194 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17195 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 17196 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17197 neon_two_same (0, 1, et.size / 2);
17198}
17199
17200static void
17201do_neon_rshift_sat_narrow (void)
17202{
17203 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17204 or unsigned. If operands are unsigned, results must also be unsigned. */
17205 struct neon_type_el et = neon_check_type (2, NS_DQI,
17206 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17207 int imm = inst.operands[2].imm;
17208 /* This gets the bounds check, size encoding and immediate bits calculation
17209 right. */
17210 et.size /= 2;
5f4273c7 17211
5287ad62
JB
17212 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17213 VQMOVN.I<size> <Dd>, <Qm>. */
17214 if (imm == 0)
17215 {
17216 inst.operands[2].present = 0;
17217 inst.instruction = N_MNEM_vqmovn;
17218 do_neon_qmovn ();
17219 return;
17220 }
5f4273c7 17221
5287ad62 17222 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17223 _("immediate out of range"));
5287ad62
JB
17224 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17225}
17226
17227static void
17228do_neon_rshift_sat_narrow_u (void)
17229{
17230 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17231 or unsigned. If operands are unsigned, results must also be unsigned. */
17232 struct neon_type_el et = neon_check_type (2, NS_DQI,
17233 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17234 int imm = inst.operands[2].imm;
17235 /* This gets the bounds check, size encoding and immediate bits calculation
17236 right. */
17237 et.size /= 2;
17238
17239 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17240 VQMOVUN.I<size> <Dd>, <Qm>. */
17241 if (imm == 0)
17242 {
17243 inst.operands[2].present = 0;
17244 inst.instruction = N_MNEM_vqmovun;
17245 do_neon_qmovun ();
17246 return;
17247 }
17248
17249 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17250 _("immediate out of range"));
5287ad62
JB
17251 /* FIXME: The manual is kind of unclear about what value U should have in
17252 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17253 must be 1. */
17254 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
17255}
17256
17257static void
17258do_neon_movn (void)
17259{
17260 struct neon_type_el et = neon_check_type (2, NS_DQ,
17261 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 17262 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17263 neon_two_same (0, 1, et.size / 2);
17264}
17265
17266static void
17267do_neon_rshift_narrow (void)
17268{
17269 struct neon_type_el et = neon_check_type (2, NS_DQI,
17270 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17271 int imm = inst.operands[2].imm;
17272 /* This gets the bounds check, size encoding and immediate bits calculation
17273 right. */
17274 et.size /= 2;
5f4273c7 17275
5287ad62
JB
17276 /* If immediate is zero then we are a pseudo-instruction for
17277 VMOVN.I<size> <Dd>, <Qm> */
17278 if (imm == 0)
17279 {
17280 inst.operands[2].present = 0;
17281 inst.instruction = N_MNEM_vmovn;
17282 do_neon_movn ();
17283 return;
17284 }
5f4273c7 17285
5287ad62 17286 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17287 _("immediate out of range for narrowing operation"));
5287ad62
JB
17288 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
17289}
17290
17291static void
17292do_neon_shll (void)
17293{
17294 /* FIXME: Type checking when lengthening. */
17295 struct neon_type_el et = neon_check_type (2, NS_QDI,
17296 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
17297 unsigned imm = inst.operands[2].imm;
17298
17299 if (imm == et.size)
17300 {
17301 /* Maximum shift variant. */
88714cb8 17302 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17303 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17304 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17305 inst.instruction |= LOW4 (inst.operands[1].reg);
17306 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17307 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17308
88714cb8 17309 neon_dp_fixup (&inst);
5287ad62
JB
17310 }
17311 else
17312 {
17313 /* A more-specific type check for non-max versions. */
17314 et = neon_check_type (2, NS_QDI,
477330fc 17315 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 17316 NEON_ENCODE (IMMED, inst);
5287ad62
JB
17317 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
17318 }
17319}
17320
037e8744 17321/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
17322 the current instruction is. */
17323
6b9a8b67
MGD
17324#define CVT_FLAVOUR_VAR \
17325 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
17326 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
17327 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
17328 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
17329 /* Half-precision conversions. */ \
cc933301
JW
17330 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17331 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17332 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
17333 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
6b9a8b67
MGD
17334 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
17335 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
9db2f6b4
RL
17336 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
17337 Compared with single/double precision variants, only the co-processor \
17338 field is different, so the encoding flow is reused here. */ \
17339 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
17340 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
17341 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
17342 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
6b9a8b67
MGD
17343 /* VFP instructions. */ \
17344 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
17345 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
17346 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
17347 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
17348 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
17349 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
17350 /* VFP instructions with bitshift. */ \
17351 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
17352 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
17353 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
17354 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
17355 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
17356 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
17357 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
17358 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
17359
17360#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
17361 neon_cvt_flavour_##C,
17362
17363/* The different types of conversions we can do. */
17364enum neon_cvt_flavour
17365{
17366 CVT_FLAVOUR_VAR
17367 neon_cvt_flavour_invalid,
17368 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
17369};
17370
17371#undef CVT_VAR
17372
17373static enum neon_cvt_flavour
17374get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 17375{
6b9a8b67
MGD
17376#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
17377 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
17378 if (et.type != NT_invtype) \
17379 { \
17380 inst.error = NULL; \
17381 return (neon_cvt_flavour_##C); \
5287ad62 17382 }
6b9a8b67 17383
5287ad62 17384 struct neon_type_el et;
037e8744 17385 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
477330fc 17386 || rs == NS_FF) ? N_VFP : 0;
037e8744
JB
17387 /* The instruction versions which take an immediate take one register
17388 argument, which is extended to the width of the full register. Thus the
17389 "source" and "destination" registers must have the same width. Hack that
17390 here by making the size equal to the key (wider, in this case) operand. */
17391 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 17392
6b9a8b67
MGD
17393 CVT_FLAVOUR_VAR;
17394
17395 return neon_cvt_flavour_invalid;
5287ad62
JB
17396#undef CVT_VAR
17397}
17398
7e8e6784
MGD
17399enum neon_cvt_mode
17400{
17401 neon_cvt_mode_a,
17402 neon_cvt_mode_n,
17403 neon_cvt_mode_p,
17404 neon_cvt_mode_m,
17405 neon_cvt_mode_z,
30bdf752
MGD
17406 neon_cvt_mode_x,
17407 neon_cvt_mode_r
7e8e6784
MGD
17408};
17409
037e8744
JB
17410/* Neon-syntax VFP conversions. */
17411
5287ad62 17412static void
6b9a8b67 17413do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 17414{
037e8744 17415 const char *opname = 0;
5f4273c7 17416
d54af2d0
RL
17417 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
17418 || rs == NS_FHI || rs == NS_HFI)
5287ad62 17419 {
037e8744
JB
17420 /* Conversions with immediate bitshift. */
17421 const char *enc[] =
477330fc 17422 {
6b9a8b67
MGD
17423#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
17424 CVT_FLAVOUR_VAR
17425 NULL
17426#undef CVT_VAR
477330fc 17427 };
037e8744 17428
6b9a8b67 17429 if (flavour < (int) ARRAY_SIZE (enc))
477330fc
RM
17430 {
17431 opname = enc[flavour];
17432 constraint (inst.operands[0].reg != inst.operands[1].reg,
17433 _("operands 0 and 1 must be the same register"));
17434 inst.operands[1] = inst.operands[2];
17435 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
17436 }
5287ad62
JB
17437 }
17438 else
17439 {
037e8744
JB
17440 /* Conversions without bitshift. */
17441 const char *enc[] =
477330fc 17442 {
6b9a8b67
MGD
17443#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
17444 CVT_FLAVOUR_VAR
17445 NULL
17446#undef CVT_VAR
477330fc 17447 };
037e8744 17448
6b9a8b67 17449 if (flavour < (int) ARRAY_SIZE (enc))
477330fc 17450 opname = enc[flavour];
037e8744
JB
17451 }
17452
17453 if (opname)
17454 do_vfp_nsyn_opcode (opname);
9db2f6b4
RL
17455
17456 /* ARMv8.2 fp16 VCVT instruction. */
17457 if (flavour == neon_cvt_flavour_s32_f16
17458 || flavour == neon_cvt_flavour_u32_f16
17459 || flavour == neon_cvt_flavour_f16_u32
17460 || flavour == neon_cvt_flavour_f16_s32)
17461 do_scalar_fp16_v82_encode ();
037e8744
JB
17462}
17463
17464static void
17465do_vfp_nsyn_cvtz (void)
17466{
d54af2d0 17467 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
6b9a8b67 17468 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
17469 const char *enc[] =
17470 {
6b9a8b67
MGD
17471#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
17472 CVT_FLAVOUR_VAR
17473 NULL
17474#undef CVT_VAR
037e8744
JB
17475 };
17476
6b9a8b67 17477 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
17478 do_vfp_nsyn_opcode (enc[flavour]);
17479}
f31fef98 17480
037e8744 17481static void
bacebabc 17482do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
7e8e6784
MGD
17483 enum neon_cvt_mode mode)
17484{
17485 int sz, op;
17486 int rm;
17487
a715796b
TG
17488 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17489 D register operands. */
17490 if (flavour == neon_cvt_flavour_s32_f64
17491 || flavour == neon_cvt_flavour_u32_f64)
17492 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17493 _(BAD_FPU));
17494
9db2f6b4
RL
17495 if (flavour == neon_cvt_flavour_s32_f16
17496 || flavour == neon_cvt_flavour_u32_f16)
17497 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
17498 _(BAD_FP16));
17499
5ee91343 17500 set_pred_insn_type (OUTSIDE_PRED_INSN);
7e8e6784
MGD
17501
17502 switch (flavour)
17503 {
17504 case neon_cvt_flavour_s32_f64:
17505 sz = 1;
827f64ff 17506 op = 1;
7e8e6784
MGD
17507 break;
17508 case neon_cvt_flavour_s32_f32:
17509 sz = 0;
17510 op = 1;
17511 break;
9db2f6b4
RL
17512 case neon_cvt_flavour_s32_f16:
17513 sz = 0;
17514 op = 1;
17515 break;
7e8e6784
MGD
17516 case neon_cvt_flavour_u32_f64:
17517 sz = 1;
17518 op = 0;
17519 break;
17520 case neon_cvt_flavour_u32_f32:
17521 sz = 0;
17522 op = 0;
17523 break;
9db2f6b4
RL
17524 case neon_cvt_flavour_u32_f16:
17525 sz = 0;
17526 op = 0;
17527 break;
7e8e6784
MGD
17528 default:
17529 first_error (_("invalid instruction shape"));
17530 return;
17531 }
17532
17533 switch (mode)
17534 {
17535 case neon_cvt_mode_a: rm = 0; break;
17536 case neon_cvt_mode_n: rm = 1; break;
17537 case neon_cvt_mode_p: rm = 2; break;
17538 case neon_cvt_mode_m: rm = 3; break;
17539 default: first_error (_("invalid rounding mode")); return;
17540 }
17541
17542 NEON_ENCODE (FPV8, inst);
17543 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
17544 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
17545 inst.instruction |= sz << 8;
9db2f6b4
RL
17546
17547 /* ARMv8.2 fp16 VCVT instruction. */
17548 if (flavour == neon_cvt_flavour_s32_f16
17549 ||flavour == neon_cvt_flavour_u32_f16)
17550 do_scalar_fp16_v82_encode ();
7e8e6784
MGD
17551 inst.instruction |= op << 7;
17552 inst.instruction |= rm << 16;
17553 inst.instruction |= 0xf0000000;
17554 inst.is_neon = TRUE;
17555}
17556
17557static void
17558do_neon_cvt_1 (enum neon_cvt_mode mode)
037e8744
JB
17559{
17560 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
d54af2d0
RL
17561 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
17562 NS_FH, NS_HF, NS_FHI, NS_HFI,
17563 NS_NULL);
6b9a8b67 17564 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 17565
cc933301
JW
17566 if (flavour == neon_cvt_flavour_invalid)
17567 return;
17568
e3e535bc 17569 /* PR11109: Handle round-to-zero for VCVT conversions. */
7e8e6784 17570 if (mode == neon_cvt_mode_z
e3e535bc 17571 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
cc933301
JW
17572 && (flavour == neon_cvt_flavour_s16_f16
17573 || flavour == neon_cvt_flavour_u16_f16
17574 || flavour == neon_cvt_flavour_s32_f32
bacebabc
RM
17575 || flavour == neon_cvt_flavour_u32_f32
17576 || flavour == neon_cvt_flavour_s32_f64
6b9a8b67 17577 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
17578 && (rs == NS_FD || rs == NS_FF))
17579 {
17580 do_vfp_nsyn_cvtz ();
17581 return;
17582 }
17583
9db2f6b4
RL
17584 /* ARMv8.2 fp16 VCVT conversions. */
17585 if (mode == neon_cvt_mode_z
17586 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
17587 && (flavour == neon_cvt_flavour_s32_f16
17588 || flavour == neon_cvt_flavour_u32_f16)
17589 && (rs == NS_FH))
17590 {
17591 do_vfp_nsyn_cvtz ();
17592 do_scalar_fp16_v82_encode ();
17593 return;
17594 }
17595
037e8744 17596 /* VFP rather than Neon conversions. */
6b9a8b67 17597 if (flavour >= neon_cvt_flavour_first_fp)
037e8744 17598 {
7e8e6784
MGD
17599 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
17600 do_vfp_nsyn_cvt (rs, flavour);
17601 else
17602 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
17603
037e8744
JB
17604 return;
17605 }
17606
17607 switch (rs)
17608 {
037e8744 17609 case NS_QQI:
dd9634d9
AV
17610 if (mode == neon_cvt_mode_z
17611 && (flavour == neon_cvt_flavour_f16_s16
17612 || flavour == neon_cvt_flavour_f16_u16
17613 || flavour == neon_cvt_flavour_s16_f16
17614 || flavour == neon_cvt_flavour_u16_f16
17615 || flavour == neon_cvt_flavour_f32_u32
17616 || flavour == neon_cvt_flavour_f32_s32
17617 || flavour == neon_cvt_flavour_s32_f32
17618 || flavour == neon_cvt_flavour_u32_f32))
17619 {
17620 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
17621 return;
17622 }
17623 else if (mode == neon_cvt_mode_n)
17624 {
17625 /* We are dealing with vcvt with the 'ne' condition. */
17626 inst.cond = 0x1;
17627 inst.instruction = N_MNEM_vcvt;
17628 do_neon_cvt_1 (neon_cvt_mode_z);
17629 return;
17630 }
17631 /* fall through. */
17632 case NS_DDI:
037e8744 17633 {
477330fc 17634 unsigned immbits;
cc933301
JW
17635 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
17636 0x0000100, 0x1000100, 0x0, 0x1000000};
35997600 17637
dd9634d9
AV
17638 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17639 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17640 return;
17641
17642 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17643 {
17644 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
17645 _("immediate value out of range"));
17646 switch (flavour)
17647 {
17648 case neon_cvt_flavour_f16_s16:
17649 case neon_cvt_flavour_f16_u16:
17650 case neon_cvt_flavour_s16_f16:
17651 case neon_cvt_flavour_u16_f16:
17652 constraint (inst.operands[2].imm > 16,
17653 _("immediate value out of range"));
17654 break;
17655 case neon_cvt_flavour_f32_u32:
17656 case neon_cvt_flavour_f32_s32:
17657 case neon_cvt_flavour_s32_f32:
17658 case neon_cvt_flavour_u32_f32:
17659 constraint (inst.operands[2].imm > 32,
17660 _("immediate value out of range"));
17661 break;
17662 default:
17663 inst.error = BAD_FPU;
17664 return;
17665 }
17666 }
037e8744 17667
477330fc
RM
17668 /* Fixed-point conversion with #0 immediate is encoded as an
17669 integer conversion. */
17670 if (inst.operands[2].present && inst.operands[2].imm == 0)
17671 goto int_encode;
477330fc
RM
17672 NEON_ENCODE (IMMED, inst);
17673 if (flavour != neon_cvt_flavour_invalid)
17674 inst.instruction |= enctab[flavour];
17675 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17676 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17677 inst.instruction |= LOW4 (inst.operands[1].reg);
17678 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17679 inst.instruction |= neon_quad (rs) << 6;
17680 inst.instruction |= 1 << 21;
cc933301
JW
17681 if (flavour < neon_cvt_flavour_s16_f16)
17682 {
17683 inst.instruction |= 1 << 21;
17684 immbits = 32 - inst.operands[2].imm;
17685 inst.instruction |= immbits << 16;
17686 }
17687 else
17688 {
17689 inst.instruction |= 3 << 20;
17690 immbits = 16 - inst.operands[2].imm;
17691 inst.instruction |= immbits << 16;
17692 inst.instruction &= ~(1 << 9);
17693 }
477330fc
RM
17694
17695 neon_dp_fixup (&inst);
037e8744
JB
17696 }
17697 break;
17698
037e8744 17699 case NS_QQ:
dd9634d9
AV
17700 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17701 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
17702 && (flavour == neon_cvt_flavour_s16_f16
17703 || flavour == neon_cvt_flavour_u16_f16
17704 || flavour == neon_cvt_flavour_s32_f32
17705 || flavour == neon_cvt_flavour_u32_f32))
17706 {
17707 if (check_simd_pred_availability (1,
17708 NEON_CHECK_CC | NEON_CHECK_ARCH8))
17709 return;
17710 }
17711 else if (mode == neon_cvt_mode_z
17712 && (flavour == neon_cvt_flavour_f16_s16
17713 || flavour == neon_cvt_flavour_f16_u16
17714 || flavour == neon_cvt_flavour_s16_f16
17715 || flavour == neon_cvt_flavour_u16_f16
17716 || flavour == neon_cvt_flavour_f32_u32
17717 || flavour == neon_cvt_flavour_f32_s32
17718 || flavour == neon_cvt_flavour_s32_f32
17719 || flavour == neon_cvt_flavour_u32_f32))
17720 {
17721 if (check_simd_pred_availability (1,
17722 NEON_CHECK_CC | NEON_CHECK_ARCH))
17723 return;
17724 }
17725 /* fall through. */
17726 case NS_DD:
7e8e6784
MGD
17727 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
17728 {
7e8e6784 17729
dd9634d9
AV
17730 NEON_ENCODE (FLOAT, inst);
17731 if (check_simd_pred_availability (1,
17732 NEON_CHECK_CC | NEON_CHECK_ARCH8))
7e8e6784
MGD
17733 return;
17734
17735 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17736 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17737 inst.instruction |= LOW4 (inst.operands[1].reg);
17738 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17739 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
17740 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
17741 || flavour == neon_cvt_flavour_u32_f32) << 7;
7e8e6784 17742 inst.instruction |= mode << 8;
cc933301
JW
17743 if (flavour == neon_cvt_flavour_u16_f16
17744 || flavour == neon_cvt_flavour_s16_f16)
17745 /* Mask off the original size bits and reencode them. */
17746 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
17747
7e8e6784
MGD
17748 if (thumb_mode)
17749 inst.instruction |= 0xfc000000;
17750 else
17751 inst.instruction |= 0xf0000000;
17752 }
17753 else
17754 {
037e8744 17755 int_encode:
7e8e6784 17756 {
cc933301
JW
17757 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
17758 0x100, 0x180, 0x0, 0x080};
037e8744 17759
7e8e6784 17760 NEON_ENCODE (INTEGER, inst);
037e8744 17761
dd9634d9
AV
17762 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17763 {
17764 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17765 return;
17766 }
037e8744 17767
7e8e6784
MGD
17768 if (flavour != neon_cvt_flavour_invalid)
17769 inst.instruction |= enctab[flavour];
037e8744 17770
7e8e6784
MGD
17771 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17772 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17773 inst.instruction |= LOW4 (inst.operands[1].reg);
17774 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17775 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
17776 if (flavour >= neon_cvt_flavour_s16_f16
17777 && flavour <= neon_cvt_flavour_f16_u16)
17778 /* Half precision. */
17779 inst.instruction |= 1 << 18;
17780 else
17781 inst.instruction |= 2 << 18;
037e8744 17782
7e8e6784
MGD
17783 neon_dp_fixup (&inst);
17784 }
17785 }
17786 break;
037e8744 17787
8e79c3df
CM
17788 /* Half-precision conversions for Advanced SIMD -- neon. */
17789 case NS_QD:
17790 case NS_DQ:
bc52d49c
MM
17791 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17792 return;
8e79c3df
CM
17793
17794 if ((rs == NS_DQ)
17795 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
17796 {
17797 as_bad (_("operand size must match register width"));
17798 break;
17799 }
17800
17801 if ((rs == NS_QD)
17802 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
17803 {
17804 as_bad (_("operand size must match register width"));
17805 break;
17806 }
17807
17808 if (rs == NS_DQ)
477330fc 17809 inst.instruction = 0x3b60600;
8e79c3df
CM
17810 else
17811 inst.instruction = 0x3b60700;
17812
17813 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17814 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17815 inst.instruction |= LOW4 (inst.operands[1].reg);
17816 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 17817 neon_dp_fixup (&inst);
8e79c3df
CM
17818 break;
17819
037e8744
JB
17820 default:
17821 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
7e8e6784
MGD
17822 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
17823 do_vfp_nsyn_cvt (rs, flavour);
17824 else
17825 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
5287ad62 17826 }
5287ad62
JB
17827}
17828
e3e535bc
NC
17829static void
17830do_neon_cvtr (void)
17831{
7e8e6784 17832 do_neon_cvt_1 (neon_cvt_mode_x);
e3e535bc
NC
17833}
17834
17835static void
17836do_neon_cvt (void)
17837{
7e8e6784
MGD
17838 do_neon_cvt_1 (neon_cvt_mode_z);
17839}
17840
17841static void
17842do_neon_cvta (void)
17843{
17844 do_neon_cvt_1 (neon_cvt_mode_a);
17845}
17846
17847static void
17848do_neon_cvtn (void)
17849{
17850 do_neon_cvt_1 (neon_cvt_mode_n);
17851}
17852
17853static void
17854do_neon_cvtp (void)
17855{
17856 do_neon_cvt_1 (neon_cvt_mode_p);
17857}
17858
17859static void
17860do_neon_cvtm (void)
17861{
17862 do_neon_cvt_1 (neon_cvt_mode_m);
e3e535bc
NC
17863}
17864
8e79c3df 17865static void
c70a8987 17866do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
8e79c3df 17867{
c70a8987
MGD
17868 if (is_double)
17869 mark_feature_used (&fpu_vfp_ext_armv8);
8e79c3df 17870
c70a8987
MGD
17871 encode_arm_vfp_reg (inst.operands[0].reg,
17872 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
17873 encode_arm_vfp_reg (inst.operands[1].reg,
17874 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
17875 inst.instruction |= to ? 0x10000 : 0;
17876 inst.instruction |= t ? 0x80 : 0;
17877 inst.instruction |= is_double ? 0x100 : 0;
17878 do_vfp_cond_or_thumb ();
17879}
8e79c3df 17880
c70a8987
MGD
17881static void
17882do_neon_cvttb_1 (bfd_boolean t)
17883{
d54af2d0 17884 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
dd9634d9 17885 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
8e79c3df 17886
c70a8987
MGD
17887 if (rs == NS_NULL)
17888 return;
dd9634d9
AV
17889 else if (rs == NS_QQ || rs == NS_QQI)
17890 {
17891 int single_to_half = 0;
17892 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
17893 return;
17894
17895 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
17896
17897 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17898 && (flavour == neon_cvt_flavour_u16_f16
17899 || flavour == neon_cvt_flavour_s16_f16
17900 || flavour == neon_cvt_flavour_f16_s16
17901 || flavour == neon_cvt_flavour_f16_u16
17902 || flavour == neon_cvt_flavour_u32_f32
17903 || flavour == neon_cvt_flavour_s32_f32
17904 || flavour == neon_cvt_flavour_f32_s32
17905 || flavour == neon_cvt_flavour_f32_u32))
17906 {
17907 inst.cond = 0xf;
17908 inst.instruction = N_MNEM_vcvt;
17909 set_pred_insn_type (INSIDE_VPT_INSN);
17910 do_neon_cvt_1 (neon_cvt_mode_z);
17911 return;
17912 }
17913 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
17914 single_to_half = 1;
17915 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
17916 {
17917 first_error (BAD_FPU);
17918 return;
17919 }
17920
17921 inst.instruction = 0xee3f0e01;
17922 inst.instruction |= single_to_half << 28;
17923 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17924 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
17925 inst.instruction |= t << 12;
17926 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17927 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
17928 inst.is_neon = 1;
17929 }
c70a8987
MGD
17930 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
17931 {
17932 inst.error = NULL;
17933 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
17934 }
17935 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
17936 {
17937 inst.error = NULL;
17938 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
17939 }
17940 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
17941 {
a715796b
TG
17942 /* The VCVTB and VCVTT instructions with D-register operands
17943 don't work for SP only targets. */
17944 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17945 _(BAD_FPU));
17946
c70a8987
MGD
17947 inst.error = NULL;
17948 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
17949 }
17950 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
17951 {
a715796b
TG
17952 /* The VCVTB and VCVTT instructions with D-register operands
17953 don't work for SP only targets. */
17954 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17955 _(BAD_FPU));
17956
c70a8987
MGD
17957 inst.error = NULL;
17958 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
17959 }
17960 else
17961 return;
17962}
17963
17964static void
17965do_neon_cvtb (void)
17966{
17967 do_neon_cvttb_1 (FALSE);
8e79c3df
CM
17968}
17969
17970
17971static void
17972do_neon_cvtt (void)
17973{
c70a8987 17974 do_neon_cvttb_1 (TRUE);
8e79c3df
CM
17975}
17976
5287ad62
JB
17977static void
17978neon_move_immediate (void)
17979{
037e8744
JB
17980 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
17981 struct neon_type_el et = neon_check_type (2, rs,
17982 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 17983 unsigned immlo, immhi = 0, immbits;
c96612cc 17984 int op, cmode, float_p;
5287ad62 17985
037e8744 17986 constraint (et.type == NT_invtype,
477330fc 17987 _("operand size must be specified for immediate VMOV"));
037e8744 17988
5287ad62
JB
17989 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
17990 op = (inst.instruction & (1 << 5)) != 0;
17991
17992 immlo = inst.operands[1].imm;
17993 if (inst.operands[1].regisimm)
17994 immhi = inst.operands[1].reg;
17995
17996 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
477330fc 17997 _("immediate has bits set outside the operand size"));
5287ad62 17998
c96612cc
JB
17999 float_p = inst.operands[1].immisfloat;
18000
18001 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
477330fc 18002 et.size, et.type)) == FAIL)
5287ad62
JB
18003 {
18004 /* Invert relevant bits only. */
18005 neon_invert_size (&immlo, &immhi, et.size);
18006 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
477330fc
RM
18007 with one or the other; those cases are caught by
18008 neon_cmode_for_move_imm. */
5287ad62 18009 op = !op;
c96612cc
JB
18010 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
18011 &op, et.size, et.type)) == FAIL)
477330fc
RM
18012 {
18013 first_error (_("immediate out of range"));
18014 return;
18015 }
5287ad62
JB
18016 }
18017
18018 inst.instruction &= ~(1 << 5);
18019 inst.instruction |= op << 5;
18020
18021 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18022 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 18023 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18024 inst.instruction |= cmode << 8;
18025
18026 neon_write_immbits (immbits);
18027}
18028
18029static void
18030do_neon_mvn (void)
18031{
18032 if (inst.operands[1].isreg)
18033 {
037e8744 18034 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 18035
88714cb8 18036 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18037 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18038 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18039 inst.instruction |= LOW4 (inst.operands[1].reg);
18040 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 18041 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18042 }
18043 else
18044 {
88714cb8 18045 NEON_ENCODE (IMMED, inst);
5287ad62
JB
18046 neon_move_immediate ();
18047 }
18048
88714cb8 18049 neon_dp_fixup (&inst);
5287ad62
JB
18050}
18051
18052/* Encode instructions of form:
18053
18054 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 18055 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
18056
18057static void
18058neon_mixed_length (struct neon_type_el et, unsigned size)
18059{
18060 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18061 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18062 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18063 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18064 inst.instruction |= LOW4 (inst.operands[2].reg);
18065 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18066 inst.instruction |= (et.type == NT_unsigned) << 24;
18067 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 18068
88714cb8 18069 neon_dp_fixup (&inst);
5287ad62
JB
18070}
18071
18072static void
18073do_neon_dyadic_long (void)
18074{
5ee91343
AV
18075 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
18076 if (rs == NS_QDD)
18077 {
18078 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
18079 return;
18080
18081 NEON_ENCODE (INTEGER, inst);
18082 /* FIXME: Type checking for lengthening op. */
18083 struct neon_type_el et = neon_check_type (3, NS_QDD,
18084 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
18085 neon_mixed_length (et, et.size);
18086 }
18087 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18088 && (inst.cond == 0xf || inst.cond == 0x10))
18089 {
18090 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18091 in an IT block with le/lt conditions. */
18092
18093 if (inst.cond == 0xf)
18094 inst.cond = 0xb;
18095 else if (inst.cond == 0x10)
18096 inst.cond = 0xd;
18097
18098 inst.pred_insn_type = INSIDE_IT_INSN;
18099
18100 if (inst.instruction == N_MNEM_vaddl)
18101 {
18102 inst.instruction = N_MNEM_vadd;
18103 do_neon_addsub_if_i ();
18104 }
18105 else if (inst.instruction == N_MNEM_vsubl)
18106 {
18107 inst.instruction = N_MNEM_vsub;
18108 do_neon_addsub_if_i ();
18109 }
18110 else if (inst.instruction == N_MNEM_vabdl)
18111 {
18112 inst.instruction = N_MNEM_vabd;
18113 do_neon_dyadic_if_su ();
18114 }
18115 }
18116 else
18117 first_error (BAD_FPU);
5287ad62
JB
18118}
18119
18120static void
18121do_neon_abal (void)
18122{
18123 struct neon_type_el et = neon_check_type (3, NS_QDD,
18124 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
18125 neon_mixed_length (et, et.size);
18126}
18127
18128static void
18129neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
18130{
18131 if (inst.operands[2].isscalar)
18132 {
dcbf9037 18133 struct neon_type_el et = neon_check_type (3, NS_QDS,
477330fc 18134 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 18135 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
18136 neon_mul_mac (et, et.type == NT_unsigned);
18137 }
18138 else
18139 {
18140 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 18141 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 18142 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18143 neon_mixed_length (et, et.size);
18144 }
18145}
18146
18147static void
18148do_neon_mac_maybe_scalar_long (void)
18149{
18150 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
18151}
18152
dec41383
JW
18153/* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18154 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18155
18156static unsigned
18157neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
18158{
18159 unsigned regno = NEON_SCALAR_REG (scalar);
18160 unsigned elno = NEON_SCALAR_INDEX (scalar);
18161
18162 if (quad_p)
18163 {
18164 if (regno > 7 || elno > 3)
18165 goto bad_scalar;
18166
18167 return ((regno & 0x7)
18168 | ((elno & 0x1) << 3)
18169 | (((elno >> 1) & 0x1) << 5));
18170 }
18171 else
18172 {
18173 if (regno > 15 || elno > 1)
18174 goto bad_scalar;
18175
18176 return (((regno & 0x1) << 5)
18177 | ((regno >> 1) & 0x7)
18178 | ((elno & 0x1) << 3));
18179 }
18180
18181bad_scalar:
18182 first_error (_("scalar out of range for multiply instruction"));
18183 return 0;
18184}
18185
18186static void
18187do_neon_fmac_maybe_scalar_long (int subtype)
18188{
18189 enum neon_shape rs;
18190 int high8;
18191 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18192 field (bits[21:20]) has different meaning. For scalar index variant, it's
18193 used to differentiate add and subtract, otherwise it's with fixed value
18194 0x2. */
18195 int size = -1;
18196
18197 if (inst.cond != COND_ALWAYS)
18198 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18199 "behaviour is UNPREDICTABLE"));
18200
01f48020 18201 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
dec41383
JW
18202 _(BAD_FP16));
18203
18204 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18205 _(BAD_FPU));
18206
18207 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18208 be a scalar index register. */
18209 if (inst.operands[2].isscalar)
18210 {
18211 high8 = 0xfe000000;
18212 if (subtype)
18213 size = 16;
18214 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18215 }
18216 else
18217 {
18218 high8 = 0xfc000000;
18219 size = 32;
18220 if (subtype)
18221 inst.instruction |= (0x1 << 23);
18222 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
18223 }
18224
18225 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
18226
18227 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18228 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18229 so we simply pass -1 as size. */
18230 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
18231 neon_three_same (quad_p, 0, size);
18232
18233 /* Undo neon_dp_fixup. Redo the high eight bits. */
18234 inst.instruction &= 0x00ffffff;
18235 inst.instruction |= high8;
18236
18237#define LOW1(R) ((R) & 0x1)
18238#define HI4(R) (((R) >> 1) & 0xf)
18239 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18240 whether the instruction is in Q form and whether Vm is a scalar indexed
18241 operand. */
18242 if (inst.operands[2].isscalar)
18243 {
18244 unsigned rm
18245 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
18246 inst.instruction &= 0xffffffd0;
18247 inst.instruction |= rm;
18248
18249 if (!quad_p)
18250 {
18251 /* Redo Rn as well. */
18252 inst.instruction &= 0xfff0ff7f;
18253 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18254 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18255 }
18256 }
18257 else if (!quad_p)
18258 {
18259 /* Redo Rn and Rm. */
18260 inst.instruction &= 0xfff0ff50;
18261 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18262 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18263 inst.instruction |= HI4 (inst.operands[2].reg);
18264 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
18265 }
18266}
18267
18268static void
18269do_neon_vfmal (void)
18270{
18271 return do_neon_fmac_maybe_scalar_long (0);
18272}
18273
18274static void
18275do_neon_vfmsl (void)
18276{
18277 return do_neon_fmac_maybe_scalar_long (1);
18278}
18279
5287ad62
JB
18280static void
18281do_neon_dyadic_wide (void)
18282{
18283 struct neon_type_el et = neon_check_type (3, NS_QQD,
18284 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
18285 neon_mixed_length (et, et.size);
18286}
18287
18288static void
18289do_neon_dyadic_narrow (void)
18290{
18291 struct neon_type_el et = neon_check_type (3, NS_QDD,
18292 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
18293 /* Operand sign is unimportant, and the U bit is part of the opcode,
18294 so force the operand type to integer. */
18295 et.type = NT_integer;
5287ad62
JB
18296 neon_mixed_length (et, et.size / 2);
18297}
18298
18299static void
18300do_neon_mul_sat_scalar_long (void)
18301{
18302 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
18303}
18304
18305static void
18306do_neon_vmull (void)
18307{
18308 if (inst.operands[2].isscalar)
18309 do_neon_mac_maybe_scalar_long ();
18310 else
18311 {
18312 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 18313 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
4f51b4bd 18314
5287ad62 18315 if (et.type == NT_poly)
477330fc 18316 NEON_ENCODE (POLY, inst);
5287ad62 18317 else
477330fc 18318 NEON_ENCODE (INTEGER, inst);
4f51b4bd
MGD
18319
18320 /* For polynomial encoding the U bit must be zero, and the size must
18321 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
18322 obviously, as 0b10). */
18323 if (et.size == 64)
18324 {
18325 /* Check we're on the correct architecture. */
18326 if (!mark_feature_used (&fpu_crypto_ext_armv8))
18327 inst.error =
18328 _("Instruction form not available on this architecture.");
18329
18330 et.size = 32;
18331 }
18332
5287ad62
JB
18333 neon_mixed_length (et, et.size);
18334 }
18335}
18336
18337static void
18338do_neon_ext (void)
18339{
037e8744 18340 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
18341 struct neon_type_el et = neon_check_type (3, rs,
18342 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18343 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
18344
18345 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
18346 _("shift out of range"));
5287ad62
JB
18347 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18348 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18349 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18350 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18351 inst.instruction |= LOW4 (inst.operands[2].reg);
18352 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 18353 inst.instruction |= neon_quad (rs) << 6;
5287ad62 18354 inst.instruction |= imm << 8;
5f4273c7 18355
88714cb8 18356 neon_dp_fixup (&inst);
5287ad62
JB
18357}
18358
18359static void
18360do_neon_rev (void)
18361{
037e8744 18362 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
18363 struct neon_type_el et = neon_check_type (2, rs,
18364 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18365 unsigned op = (inst.instruction >> 7) & 3;
18366 /* N (width of reversed regions) is encoded as part of the bitmask. We
18367 extract it here to check the elements to be reversed are smaller.
18368 Otherwise we'd get a reserved instruction. */
18369 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 18370 gas_assert (elsize != 0);
5287ad62 18371 constraint (et.size >= elsize,
477330fc 18372 _("elements must be smaller than reversal region"));
037e8744 18373 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
18374}
18375
18376static void
18377do_neon_dup (void)
18378{
18379 if (inst.operands[1].isscalar)
18380 {
037e8744 18381 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037 18382 struct neon_type_el et = neon_check_type (2, rs,
477330fc 18383 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 18384 unsigned sizebits = et.size >> 3;
dcbf9037 18385 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 18386 int logsize = neon_logbits (et.size);
dcbf9037 18387 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
18388
18389 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
477330fc 18390 return;
037e8744 18391
88714cb8 18392 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
18393 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18394 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18395 inst.instruction |= LOW4 (dm);
18396 inst.instruction |= HI1 (dm) << 5;
037e8744 18397 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18398 inst.instruction |= x << 17;
18399 inst.instruction |= sizebits << 16;
5f4273c7 18400
88714cb8 18401 neon_dp_fixup (&inst);
5287ad62
JB
18402 }
18403 else
18404 {
037e8744
JB
18405 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
18406 struct neon_type_el et = neon_check_type (2, rs,
477330fc 18407 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 18408 /* Duplicate ARM register to lanes of vector. */
88714cb8 18409 NEON_ENCODE (ARMREG, inst);
5287ad62 18410 switch (et.size)
477330fc
RM
18411 {
18412 case 8: inst.instruction |= 0x400000; break;
18413 case 16: inst.instruction |= 0x000020; break;
18414 case 32: inst.instruction |= 0x000000; break;
18415 default: break;
18416 }
5287ad62
JB
18417 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
18418 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
18419 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 18420 inst.instruction |= neon_quad (rs) << 21;
5287ad62 18421 /* The encoding for this instruction is identical for the ARM and Thumb
477330fc 18422 variants, except for the condition field. */
037e8744 18423 do_vfp_cond_or_thumb ();
5287ad62
JB
18424 }
18425}
18426
57785aa2
AV
18427static void
18428do_mve_mov (int toQ)
18429{
18430 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18431 return;
18432 if (inst.cond > COND_ALWAYS)
18433 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
18434
18435 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
18436 if (toQ)
18437 {
18438 Q0 = 0;
18439 Q1 = 1;
18440 Rt = 2;
18441 Rt2 = 3;
18442 }
18443
18444 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
18445 _("Index one must be [2,3] and index two must be two less than"
18446 " index one."));
18447 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
18448 _("General purpose registers may not be the same"));
18449 constraint (inst.operands[Rt].reg == REG_SP
18450 || inst.operands[Rt2].reg == REG_SP,
18451 BAD_SP);
18452 constraint (inst.operands[Rt].reg == REG_PC
18453 || inst.operands[Rt2].reg == REG_PC,
18454 BAD_PC);
18455
18456 inst.instruction = 0xec000f00;
18457 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
18458 inst.instruction |= !!toQ << 20;
18459 inst.instruction |= inst.operands[Rt2].reg << 16;
18460 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
18461 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
18462 inst.instruction |= inst.operands[Rt].reg;
18463}
18464
18465static void
18466do_mve_movn (void)
18467{
18468 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18469 return;
18470
18471 if (inst.cond > COND_ALWAYS)
18472 inst.pred_insn_type = INSIDE_VPT_INSN;
18473 else
18474 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18475
18476 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
18477 | N_KEY);
18478
18479 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18480 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
18481 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18482 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18483 inst.instruction |= LOW4 (inst.operands[1].reg);
18484 inst.is_neon = 1;
18485
18486}
18487
5287ad62
JB
18488/* VMOV has particularly many variations. It can be one of:
18489 0. VMOV<c><q> <Qd>, <Qm>
18490 1. VMOV<c><q> <Dd>, <Dm>
18491 (Register operations, which are VORR with Rm = Rn.)
18492 2. VMOV<c><q>.<dt> <Qd>, #<imm>
18493 3. VMOV<c><q>.<dt> <Dd>, #<imm>
18494 (Immediate loads.)
18495 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
18496 (ARM register to scalar.)
18497 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
18498 (Two ARM registers to vector.)
18499 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
18500 (Scalar to ARM register.)
18501 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
18502 (Vector to two ARM registers.)
037e8744
JB
18503 8. VMOV.F32 <Sd>, <Sm>
18504 9. VMOV.F64 <Dd>, <Dm>
18505 (VFP register moves.)
18506 10. VMOV.F32 <Sd>, #imm
18507 11. VMOV.F64 <Dd>, #imm
18508 (VFP float immediate load.)
18509 12. VMOV <Rd>, <Sm>
18510 (VFP single to ARM reg.)
18511 13. VMOV <Sd>, <Rm>
18512 (ARM reg to VFP single.)
18513 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
18514 (Two ARM regs to two VFP singles.)
18515 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
18516 (Two VFP singles to two ARM regs.)
57785aa2
AV
18517 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
18518 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
18519 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
18520 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
5f4273c7 18521
037e8744
JB
18522 These cases can be disambiguated using neon_select_shape, except cases 1/9
18523 and 3/11 which depend on the operand type too.
5f4273c7 18524
5287ad62 18525 All the encoded bits are hardcoded by this function.
5f4273c7 18526
b7fc2769
JB
18527 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
18528 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 18529
5287ad62 18530 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 18531 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
18532
18533static void
18534do_neon_mov (void)
18535{
57785aa2
AV
18536 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
18537 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
18538 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
18539 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
18540 NS_NULL);
037e8744
JB
18541 struct neon_type_el et;
18542 const char *ldconst = 0;
5287ad62 18543
037e8744 18544 switch (rs)
5287ad62 18545 {
037e8744
JB
18546 case NS_DD: /* case 1/9. */
18547 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18548 /* It is not an error here if no type is given. */
18549 inst.error = NULL;
18550 if (et.type == NT_float && et.size == 64)
477330fc
RM
18551 {
18552 do_vfp_nsyn_opcode ("fcpyd");
18553 break;
18554 }
037e8744 18555 /* fall through. */
5287ad62 18556
037e8744
JB
18557 case NS_QQ: /* case 0/1. */
18558 {
57785aa2 18559 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc
RM
18560 return;
18561 /* The architecture manual I have doesn't explicitly state which
18562 value the U bit should have for register->register moves, but
18563 the equivalent VORR instruction has U = 0, so do that. */
18564 inst.instruction = 0x0200110;
18565 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18566 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18567 inst.instruction |= LOW4 (inst.operands[1].reg);
18568 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18569 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18570 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18571 inst.instruction |= neon_quad (rs) << 6;
18572
18573 neon_dp_fixup (&inst);
037e8744
JB
18574 }
18575 break;
5f4273c7 18576
037e8744
JB
18577 case NS_DI: /* case 3/11. */
18578 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18579 inst.error = NULL;
18580 if (et.type == NT_float && et.size == 64)
477330fc
RM
18581 {
18582 /* case 11 (fconstd). */
18583 ldconst = "fconstd";
18584 goto encode_fconstd;
18585 }
037e8744
JB
18586 /* fall through. */
18587
18588 case NS_QI: /* case 2/3. */
57785aa2 18589 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc 18590 return;
037e8744
JB
18591 inst.instruction = 0x0800010;
18592 neon_move_immediate ();
88714cb8 18593 neon_dp_fixup (&inst);
5287ad62 18594 break;
5f4273c7 18595
037e8744
JB
18596 case NS_SR: /* case 4. */
18597 {
477330fc
RM
18598 unsigned bcdebits = 0;
18599 int logsize;
18600 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
18601 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
037e8744 18602
05ac0ffb
JB
18603 /* .<size> is optional here, defaulting to .32. */
18604 if (inst.vectype.elems == 0
18605 && inst.operands[0].vectype.type == NT_invtype
18606 && inst.operands[1].vectype.type == NT_invtype)
18607 {
18608 inst.vectype.el[0].type = NT_untyped;
18609 inst.vectype.el[0].size = 32;
18610 inst.vectype.elems = 1;
18611 }
18612
477330fc
RM
18613 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
18614 logsize = neon_logbits (et.size);
18615
57785aa2
AV
18616 if (et.size != 32)
18617 {
18618 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18619 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
18620 return;
18621 }
18622 else
18623 {
18624 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18625 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18626 _(BAD_FPU));
18627 }
18628
18629 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18630 {
18631 if (inst.operands[1].reg == REG_SP)
18632 as_tsktsk (MVE_BAD_SP);
18633 else if (inst.operands[1].reg == REG_PC)
18634 as_tsktsk (MVE_BAD_PC);
18635 }
18636 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
18637
477330fc 18638 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2
AV
18639 constraint (x >= size / et.size, _("scalar index out of range"));
18640
477330fc
RM
18641
18642 switch (et.size)
18643 {
18644 case 8: bcdebits = 0x8; break;
18645 case 16: bcdebits = 0x1; break;
18646 case 32: bcdebits = 0x0; break;
18647 default: ;
18648 }
18649
57785aa2 18650 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
18651
18652 inst.instruction = 0xe000b10;
18653 do_vfp_cond_or_thumb ();
18654 inst.instruction |= LOW4 (dn) << 16;
18655 inst.instruction |= HI1 (dn) << 7;
18656 inst.instruction |= inst.operands[1].reg << 12;
18657 inst.instruction |= (bcdebits & 3) << 5;
57785aa2
AV
18658 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
18659 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
18660 }
18661 break;
5f4273c7 18662
037e8744 18663 case NS_DRR: /* case 5 (fmdrr). */
57785aa2
AV
18664 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18665 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 18666 _(BAD_FPU));
b7fc2769 18667
037e8744
JB
18668 inst.instruction = 0xc400b10;
18669 do_vfp_cond_or_thumb ();
18670 inst.instruction |= LOW4 (inst.operands[0].reg);
18671 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
18672 inst.instruction |= inst.operands[1].reg << 12;
18673 inst.instruction |= inst.operands[2].reg << 16;
18674 break;
5f4273c7 18675
037e8744
JB
18676 case NS_RS: /* case 6. */
18677 {
477330fc
RM
18678 unsigned logsize;
18679 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
18680 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
18681 unsigned abcdebits = 0;
037e8744 18682
05ac0ffb
JB
18683 /* .<dt> is optional here, defaulting to .32. */
18684 if (inst.vectype.elems == 0
18685 && inst.operands[0].vectype.type == NT_invtype
18686 && inst.operands[1].vectype.type == NT_invtype)
18687 {
18688 inst.vectype.el[0].type = NT_untyped;
18689 inst.vectype.el[0].size = 32;
18690 inst.vectype.elems = 1;
18691 }
18692
91d6fa6a
NC
18693 et = neon_check_type (2, NS_NULL,
18694 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
477330fc
RM
18695 logsize = neon_logbits (et.size);
18696
57785aa2
AV
18697 if (et.size != 32)
18698 {
18699 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18700 && vfp_or_neon_is_neon (NEON_CHECK_CC
18701 | NEON_CHECK_ARCH) == FAIL)
18702 return;
18703 }
18704 else
18705 {
18706 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18707 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18708 _(BAD_FPU));
18709 }
18710
18711 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18712 {
18713 if (inst.operands[0].reg == REG_SP)
18714 as_tsktsk (MVE_BAD_SP);
18715 else if (inst.operands[0].reg == REG_PC)
18716 as_tsktsk (MVE_BAD_PC);
18717 }
18718
18719 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
18720
477330fc 18721 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2 18722 constraint (x >= size / et.size, _("scalar index out of range"));
477330fc
RM
18723
18724 switch (et.size)
18725 {
18726 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
18727 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
18728 case 32: abcdebits = 0x00; break;
18729 default: ;
18730 }
18731
57785aa2 18732 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
18733 inst.instruction = 0xe100b10;
18734 do_vfp_cond_or_thumb ();
18735 inst.instruction |= LOW4 (dn) << 16;
18736 inst.instruction |= HI1 (dn) << 7;
18737 inst.instruction |= inst.operands[0].reg << 12;
18738 inst.instruction |= (abcdebits & 3) << 5;
18739 inst.instruction |= (abcdebits >> 2) << 21;
57785aa2 18740 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
18741 }
18742 break;
5f4273c7 18743
037e8744 18744 case NS_RRD: /* case 7 (fmrrd). */
57785aa2
AV
18745 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18746 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 18747 _(BAD_FPU));
037e8744
JB
18748
18749 inst.instruction = 0xc500b10;
18750 do_vfp_cond_or_thumb ();
18751 inst.instruction |= inst.operands[0].reg << 12;
18752 inst.instruction |= inst.operands[1].reg << 16;
18753 inst.instruction |= LOW4 (inst.operands[2].reg);
18754 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18755 break;
5f4273c7 18756
037e8744
JB
18757 case NS_FF: /* case 8 (fcpys). */
18758 do_vfp_nsyn_opcode ("fcpys");
18759 break;
5f4273c7 18760
9db2f6b4 18761 case NS_HI:
037e8744
JB
18762 case NS_FI: /* case 10 (fconsts). */
18763 ldconst = "fconsts";
4ef4710f 18764 encode_fconstd:
58ed5c38
TC
18765 if (!inst.operands[1].immisfloat)
18766 {
4ef4710f 18767 unsigned new_imm;
58ed5c38 18768 /* Immediate has to fit in 8 bits so float is enough. */
4ef4710f
NC
18769 float imm = (float) inst.operands[1].imm;
18770 memcpy (&new_imm, &imm, sizeof (float));
18771 /* But the assembly may have been written to provide an integer
18772 bit pattern that equates to a float, so check that the
18773 conversion has worked. */
18774 if (is_quarter_float (new_imm))
18775 {
18776 if (is_quarter_float (inst.operands[1].imm))
18777 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
18778
18779 inst.operands[1].imm = new_imm;
18780 inst.operands[1].immisfloat = 1;
18781 }
58ed5c38
TC
18782 }
18783
037e8744 18784 if (is_quarter_float (inst.operands[1].imm))
477330fc
RM
18785 {
18786 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
18787 do_vfp_nsyn_opcode (ldconst);
9db2f6b4
RL
18788
18789 /* ARMv8.2 fp16 vmov.f16 instruction. */
18790 if (rs == NS_HI)
18791 do_scalar_fp16_v82_encode ();
477330fc 18792 }
5287ad62 18793 else
477330fc 18794 first_error (_("immediate out of range"));
037e8744 18795 break;
5f4273c7 18796
9db2f6b4 18797 case NS_RH:
037e8744
JB
18798 case NS_RF: /* case 12 (fmrs). */
18799 do_vfp_nsyn_opcode ("fmrs");
9db2f6b4
RL
18800 /* ARMv8.2 fp16 vmov.f16 instruction. */
18801 if (rs == NS_RH)
18802 do_scalar_fp16_v82_encode ();
037e8744 18803 break;
5f4273c7 18804
9db2f6b4 18805 case NS_HR:
037e8744
JB
18806 case NS_FR: /* case 13 (fmsr). */
18807 do_vfp_nsyn_opcode ("fmsr");
9db2f6b4
RL
18808 /* ARMv8.2 fp16 vmov.f16 instruction. */
18809 if (rs == NS_HR)
18810 do_scalar_fp16_v82_encode ();
037e8744 18811 break;
5f4273c7 18812
57785aa2
AV
18813 case NS_RRSS:
18814 do_mve_mov (0);
18815 break;
18816 case NS_SSRR:
18817 do_mve_mov (1);
18818 break;
18819
037e8744
JB
18820 /* The encoders for the fmrrs and fmsrr instructions expect three operands
18821 (one of which is a list), but we have parsed four. Do some fiddling to
18822 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
18823 expect. */
18824 case NS_RRFF: /* case 14 (fmrrs). */
57785aa2
AV
18825 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18826 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18827 _(BAD_FPU));
037e8744 18828 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
477330fc 18829 _("VFP registers must be adjacent"));
037e8744
JB
18830 inst.operands[2].imm = 2;
18831 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
18832 do_vfp_nsyn_opcode ("fmrrs");
18833 break;
5f4273c7 18834
037e8744 18835 case NS_FFRR: /* case 15 (fmsrr). */
57785aa2
AV
18836 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18837 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18838 _(BAD_FPU));
037e8744 18839 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
477330fc 18840 _("VFP registers must be adjacent"));
037e8744
JB
18841 inst.operands[1] = inst.operands[2];
18842 inst.operands[2] = inst.operands[3];
18843 inst.operands[0].imm = 2;
18844 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
18845 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 18846 break;
5f4273c7 18847
4c261dff
NC
18848 case NS_NULL:
18849 /* neon_select_shape has determined that the instruction
18850 shape is wrong and has already set the error message. */
18851 break;
18852
5287ad62
JB
18853 default:
18854 abort ();
18855 }
18856}
18857
57785aa2
AV
18858static void
18859do_mve_movl (void)
18860{
18861 if (!(inst.operands[0].present && inst.operands[0].isquad
18862 && inst.operands[1].present && inst.operands[1].isquad
18863 && !inst.operands[2].present))
18864 {
18865 inst.instruction = 0;
18866 inst.cond = 0xb;
18867 if (thumb_mode)
18868 set_pred_insn_type (INSIDE_IT_INSN);
18869 do_neon_mov ();
18870 return;
18871 }
18872
18873 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18874 return;
18875
18876 if (inst.cond != COND_ALWAYS)
18877 inst.pred_insn_type = INSIDE_VPT_INSN;
18878
18879 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
18880 | N_S16 | N_U16 | N_KEY);
18881
18882 inst.instruction |= (et.type == NT_unsigned) << 28;
18883 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18884 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
18885 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18886 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18887 inst.instruction |= LOW4 (inst.operands[1].reg);
18888 inst.is_neon = 1;
18889}
18890
5287ad62
JB
18891static void
18892do_neon_rshift_round_imm (void)
18893{
037e8744 18894 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
18895 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
18896 int imm = inst.operands[2].imm;
18897
18898 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
18899 if (imm == 0)
18900 {
18901 inst.operands[2].present = 0;
18902 do_neon_mov ();
18903 return;
18904 }
18905
18906 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 18907 _("immediate out of range for shift"));
037e8744 18908 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
477330fc 18909 et.size - imm);
5287ad62
JB
18910}
18911
9db2f6b4
RL
18912static void
18913do_neon_movhf (void)
18914{
18915 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
18916 constraint (rs != NS_HH, _("invalid suffix"));
18917
7bdf778b
ASDV
18918 if (inst.cond != COND_ALWAYS)
18919 {
18920 if (thumb_mode)
18921 {
18922 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
18923 " the behaviour is UNPREDICTABLE"));
18924 }
18925 else
18926 {
18927 inst.error = BAD_COND;
18928 return;
18929 }
18930 }
18931
9db2f6b4
RL
18932 do_vfp_sp_monadic ();
18933
18934 inst.is_neon = 1;
18935 inst.instruction |= 0xf0000000;
18936}
18937
5287ad62
JB
18938static void
18939do_neon_movl (void)
18940{
18941 struct neon_type_el et = neon_check_type (2, NS_QD,
18942 N_EQK | N_DBL, N_SU_32 | N_KEY);
18943 unsigned sizebits = et.size >> 3;
18944 inst.instruction |= sizebits << 19;
18945 neon_two_same (0, et.type == NT_unsigned, -1);
18946}
18947
18948static void
18949do_neon_trn (void)
18950{
037e8744 18951 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
18952 struct neon_type_el et = neon_check_type (2, rs,
18953 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 18954 NEON_ENCODE (INTEGER, inst);
037e8744 18955 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
18956}
18957
18958static void
18959do_neon_zip_uzp (void)
18960{
037e8744 18961 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
18962 struct neon_type_el et = neon_check_type (2, rs,
18963 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18964 if (rs == NS_DD && et.size == 32)
18965 {
18966 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
18967 inst.instruction = N_MNEM_vtrn;
18968 do_neon_trn ();
18969 return;
18970 }
037e8744 18971 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
18972}
18973
18974static void
18975do_neon_sat_abs_neg (void)
18976{
037e8744 18977 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
18978 struct neon_type_el et = neon_check_type (2, rs,
18979 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 18980 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
18981}
18982
18983static void
18984do_neon_pair_long (void)
18985{
037e8744 18986 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
18987 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
18988 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
18989 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 18990 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
18991}
18992
18993static void
18994do_neon_recip_est (void)
18995{
037e8744 18996 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62 18997 struct neon_type_el et = neon_check_type (2, rs,
cc933301 18998 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
5287ad62 18999 inst.instruction |= (et.type == NT_float) << 8;
037e8744 19000 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19001}
19002
19003static void
19004do_neon_cls (void)
19005{
037e8744 19006 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19007 struct neon_type_el et = neon_check_type (2, rs,
19008 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 19009 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19010}
19011
19012static void
19013do_neon_clz (void)
19014{
037e8744 19015 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19016 struct neon_type_el et = neon_check_type (2, rs,
19017 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 19018 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19019}
19020
19021static void
19022do_neon_cnt (void)
19023{
037e8744 19024 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19025 struct neon_type_el et = neon_check_type (2, rs,
19026 N_EQK | N_INT, N_8 | N_KEY);
037e8744 19027 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19028}
19029
19030static void
19031do_neon_swp (void)
19032{
037e8744
JB
19033 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19034 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
19035}
19036
19037static void
19038do_neon_tbl_tbx (void)
19039{
19040 unsigned listlenbits;
dcbf9037 19041 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 19042
5287ad62
JB
19043 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
19044 {
dcbf9037 19045 first_error (_("bad list length for table lookup"));
5287ad62
JB
19046 return;
19047 }
5f4273c7 19048
5287ad62
JB
19049 listlenbits = inst.operands[1].imm - 1;
19050 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19051 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19052 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19053 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19054 inst.instruction |= LOW4 (inst.operands[2].reg);
19055 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19056 inst.instruction |= listlenbits << 8;
5f4273c7 19057
88714cb8 19058 neon_dp_fixup (&inst);
5287ad62
JB
19059}
19060
19061static void
19062do_neon_ldm_stm (void)
19063{
19064 /* P, U and L bits are part of bitmask. */
19065 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
19066 unsigned offsetbits = inst.operands[1].imm * 2;
19067
037e8744
JB
19068 if (inst.operands[1].issingle)
19069 {
19070 do_vfp_nsyn_ldm_stm (is_dbmode);
19071 return;
19072 }
19073
5287ad62 19074 constraint (is_dbmode && !inst.operands[0].writeback,
477330fc 19075 _("writeback (!) must be used for VLDMDB and VSTMDB"));
5287ad62
JB
19076
19077 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
477330fc
RM
19078 _("register list must contain at least 1 and at most 16 "
19079 "registers"));
5287ad62
JB
19080
19081 inst.instruction |= inst.operands[0].reg << 16;
19082 inst.instruction |= inst.operands[0].writeback << 21;
19083 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19084 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
19085
19086 inst.instruction |= offsetbits;
5f4273c7 19087
037e8744 19088 do_vfp_cond_or_thumb ();
5287ad62
JB
19089}
19090
19091static void
19092do_neon_ldr_str (void)
19093{
5287ad62 19094 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 19095
6844b2c2
MGD
19096 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19097 And is UNPREDICTABLE in thumb mode. */
fa94de6b 19098 if (!is_ldr
6844b2c2 19099 && inst.operands[1].reg == REG_PC
ba86b375 19100 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
6844b2c2 19101 {
94dcf8bf 19102 if (thumb_mode)
6844b2c2 19103 inst.error = _("Use of PC here is UNPREDICTABLE");
94dcf8bf 19104 else if (warn_on_deprecated)
5c3696f8 19105 as_tsktsk (_("Use of PC here is deprecated"));
6844b2c2
MGD
19106 }
19107
037e8744
JB
19108 if (inst.operands[0].issingle)
19109 {
cd2f129f 19110 if (is_ldr)
477330fc 19111 do_vfp_nsyn_opcode ("flds");
cd2f129f 19112 else
477330fc 19113 do_vfp_nsyn_opcode ("fsts");
9db2f6b4
RL
19114
19115 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19116 if (inst.vectype.el[0].size == 16)
19117 do_scalar_fp16_v82_encode ();
5287ad62
JB
19118 }
19119 else
5287ad62 19120 {
cd2f129f 19121 if (is_ldr)
477330fc 19122 do_vfp_nsyn_opcode ("fldd");
5287ad62 19123 else
477330fc 19124 do_vfp_nsyn_opcode ("fstd");
5287ad62 19125 }
5287ad62
JB
19126}
19127
32c36c3c
AV
19128static void
19129do_t_vldr_vstr_sysreg (void)
19130{
19131 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
19132 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
19133
19134 /* Use of PC is UNPREDICTABLE. */
19135 if (inst.operands[1].reg == REG_PC)
19136 inst.error = _("Use of PC here is UNPREDICTABLE");
19137
19138 if (inst.operands[1].immisreg)
19139 inst.error = _("instruction does not accept register index");
19140
19141 if (!inst.operands[1].isreg)
19142 inst.error = _("instruction does not accept PC-relative addressing");
19143
19144 if (abs (inst.operands[1].imm) >= (1 << 7))
19145 inst.error = _("immediate value out of range");
19146
19147 inst.instruction = 0xec000f80;
19148 if (is_vldr)
19149 inst.instruction |= 1 << sysreg_vldr_bitno;
19150 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
19151 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
19152 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
19153}
19154
19155static void
19156do_vldr_vstr (void)
19157{
19158 bfd_boolean sysreg_op = !inst.operands[0].isreg;
19159
19160 /* VLDR/VSTR (System Register). */
19161 if (sysreg_op)
19162 {
19163 if (!mark_feature_used (&arm_ext_v8_1m_main))
19164 as_bad (_("Instruction not permitted on this architecture"));
19165
19166 do_t_vldr_vstr_sysreg ();
19167 }
19168 /* VLDR/VSTR. */
19169 else
19170 {
19171 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
19172 as_bad (_("Instruction not permitted on this architecture"));
19173 do_neon_ldr_str ();
19174 }
19175}
19176
5287ad62
JB
19177/* "interleave" version also handles non-interleaving register VLD1/VST1
19178 instructions. */
19179
19180static void
19181do_neon_ld_st_interleave (void)
19182{
037e8744 19183 struct neon_type_el et = neon_check_type (1, NS_NULL,
477330fc 19184 N_8 | N_16 | N_32 | N_64);
5287ad62
JB
19185 unsigned alignbits = 0;
19186 unsigned idx;
19187 /* The bits in this table go:
19188 0: register stride of one (0) or two (1)
19189 1,2: register list length, minus one (1, 2, 3, 4).
19190 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19191 We use -1 for invalid entries. */
19192 const int typetable[] =
19193 {
19194 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19195 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19196 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19197 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19198 };
19199 int typebits;
19200
dcbf9037
JB
19201 if (et.type == NT_invtype)
19202 return;
19203
5287ad62
JB
19204 if (inst.operands[1].immisalign)
19205 switch (inst.operands[1].imm >> 8)
19206 {
19207 case 64: alignbits = 1; break;
19208 case 128:
477330fc 19209 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
e23c0ad8 19210 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
477330fc
RM
19211 goto bad_alignment;
19212 alignbits = 2;
19213 break;
5287ad62 19214 case 256:
477330fc
RM
19215 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19216 goto bad_alignment;
19217 alignbits = 3;
19218 break;
5287ad62
JB
19219 default:
19220 bad_alignment:
477330fc
RM
19221 first_error (_("bad alignment"));
19222 return;
5287ad62
JB
19223 }
19224
19225 inst.instruction |= alignbits << 4;
19226 inst.instruction |= neon_logbits (et.size) << 6;
19227
19228 /* Bits [4:6] of the immediate in a list specifier encode register stride
19229 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19230 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19231 up the right value for "type" in a table based on this value and the given
19232 list style, then stick it back. */
19233 idx = ((inst.operands[0].imm >> 4) & 7)
477330fc 19234 | (((inst.instruction >> 8) & 3) << 3);
5287ad62
JB
19235
19236 typebits = typetable[idx];
5f4273c7 19237
5287ad62 19238 constraint (typebits == -1, _("bad list type for instruction"));
1d50d57c 19239 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
35c228db 19240 BAD_EL_TYPE);
5287ad62
JB
19241
19242 inst.instruction &= ~0xf00;
19243 inst.instruction |= typebits << 8;
19244}
19245
19246/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19247 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19248 otherwise. The variable arguments are a list of pairs of legal (size, align)
19249 values, terminated with -1. */
19250
19251static int
aa8a0863 19252neon_alignment_bit (int size, int align, int *do_alignment, ...)
5287ad62
JB
19253{
19254 va_list ap;
19255 int result = FAIL, thissize, thisalign;
5f4273c7 19256
5287ad62
JB
19257 if (!inst.operands[1].immisalign)
19258 {
aa8a0863 19259 *do_alignment = 0;
5287ad62
JB
19260 return SUCCESS;
19261 }
5f4273c7 19262
aa8a0863 19263 va_start (ap, do_alignment);
5287ad62
JB
19264
19265 do
19266 {
19267 thissize = va_arg (ap, int);
19268 if (thissize == -1)
477330fc 19269 break;
5287ad62
JB
19270 thisalign = va_arg (ap, int);
19271
19272 if (size == thissize && align == thisalign)
477330fc 19273 result = SUCCESS;
5287ad62
JB
19274 }
19275 while (result != SUCCESS);
19276
19277 va_end (ap);
19278
19279 if (result == SUCCESS)
aa8a0863 19280 *do_alignment = 1;
5287ad62 19281 else
dcbf9037 19282 first_error (_("unsupported alignment for instruction"));
5f4273c7 19283
5287ad62
JB
19284 return result;
19285}
19286
19287static void
19288do_neon_ld_st_lane (void)
19289{
037e8744 19290 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 19291 int align_good, do_alignment = 0;
5287ad62
JB
19292 int logsize = neon_logbits (et.size);
19293 int align = inst.operands[1].imm >> 8;
19294 int n = (inst.instruction >> 8) & 3;
19295 int max_el = 64 / et.size;
5f4273c7 19296
dcbf9037
JB
19297 if (et.type == NT_invtype)
19298 return;
5f4273c7 19299
5287ad62 19300 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
477330fc 19301 _("bad list length"));
5287ad62 19302 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
477330fc 19303 _("scalar index out of range"));
5287ad62 19304 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
477330fc
RM
19305 && et.size == 8,
19306 _("stride of 2 unavailable when element size is 8"));
5f4273c7 19307
5287ad62
JB
19308 switch (n)
19309 {
19310 case 0: /* VLD1 / VST1. */
aa8a0863 19311 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
477330fc 19312 32, 32, -1);
5287ad62 19313 if (align_good == FAIL)
477330fc 19314 return;
aa8a0863 19315 if (do_alignment)
477330fc
RM
19316 {
19317 unsigned alignbits = 0;
19318 switch (et.size)
19319 {
19320 case 16: alignbits = 0x1; break;
19321 case 32: alignbits = 0x3; break;
19322 default: ;
19323 }
19324 inst.instruction |= alignbits << 4;
19325 }
5287ad62
JB
19326 break;
19327
19328 case 1: /* VLD2 / VST2. */
aa8a0863
TS
19329 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
19330 16, 32, 32, 64, -1);
5287ad62 19331 if (align_good == FAIL)
477330fc 19332 return;
aa8a0863 19333 if (do_alignment)
477330fc 19334 inst.instruction |= 1 << 4;
5287ad62
JB
19335 break;
19336
19337 case 2: /* VLD3 / VST3. */
19338 constraint (inst.operands[1].immisalign,
477330fc 19339 _("can't use alignment with this instruction"));
5287ad62
JB
19340 break;
19341
19342 case 3: /* VLD4 / VST4. */
aa8a0863 19343 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc 19344 16, 64, 32, 64, 32, 128, -1);
5287ad62 19345 if (align_good == FAIL)
477330fc 19346 return;
aa8a0863 19347 if (do_alignment)
477330fc
RM
19348 {
19349 unsigned alignbits = 0;
19350 switch (et.size)
19351 {
19352 case 8: alignbits = 0x1; break;
19353 case 16: alignbits = 0x1; break;
19354 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
19355 default: ;
19356 }
19357 inst.instruction |= alignbits << 4;
19358 }
5287ad62
JB
19359 break;
19360
19361 default: ;
19362 }
19363
19364 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
19365 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19366 inst.instruction |= 1 << (4 + logsize);
5f4273c7 19367
5287ad62
JB
19368 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
19369 inst.instruction |= logsize << 10;
19370}
19371
19372/* Encode single n-element structure to all lanes VLD<n> instructions. */
19373
19374static void
19375do_neon_ld_dup (void)
19376{
037e8744 19377 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 19378 int align_good, do_alignment = 0;
5287ad62 19379
dcbf9037
JB
19380 if (et.type == NT_invtype)
19381 return;
19382
5287ad62
JB
19383 switch ((inst.instruction >> 8) & 3)
19384 {
19385 case 0: /* VLD1. */
9c2799c2 19386 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62 19387 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863 19388 &do_alignment, 16, 16, 32, 32, -1);
5287ad62 19389 if (align_good == FAIL)
477330fc 19390 return;
5287ad62 19391 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
477330fc
RM
19392 {
19393 case 1: break;
19394 case 2: inst.instruction |= 1 << 5; break;
19395 default: first_error (_("bad list length")); return;
19396 }
5287ad62
JB
19397 inst.instruction |= neon_logbits (et.size) << 6;
19398 break;
19399
19400 case 1: /* VLD2. */
19401 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863
TS
19402 &do_alignment, 8, 16, 16, 32, 32, 64,
19403 -1);
5287ad62 19404 if (align_good == FAIL)
477330fc 19405 return;
5287ad62 19406 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
477330fc 19407 _("bad list length"));
5287ad62 19408 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 19409 inst.instruction |= 1 << 5;
5287ad62
JB
19410 inst.instruction |= neon_logbits (et.size) << 6;
19411 break;
19412
19413 case 2: /* VLD3. */
19414 constraint (inst.operands[1].immisalign,
477330fc 19415 _("can't use alignment with this instruction"));
5287ad62 19416 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
477330fc 19417 _("bad list length"));
5287ad62 19418 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 19419 inst.instruction |= 1 << 5;
5287ad62
JB
19420 inst.instruction |= neon_logbits (et.size) << 6;
19421 break;
19422
19423 case 3: /* VLD4. */
19424 {
477330fc 19425 int align = inst.operands[1].imm >> 8;
aa8a0863 19426 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc
RM
19427 16, 64, 32, 64, 32, 128, -1);
19428 if (align_good == FAIL)
19429 return;
19430 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
19431 _("bad list length"));
19432 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19433 inst.instruction |= 1 << 5;
19434 if (et.size == 32 && align == 128)
19435 inst.instruction |= 0x3 << 6;
19436 else
19437 inst.instruction |= neon_logbits (et.size) << 6;
5287ad62
JB
19438 }
19439 break;
19440
19441 default: ;
19442 }
19443
aa8a0863 19444 inst.instruction |= do_alignment << 4;
5287ad62
JB
19445}
19446
19447/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
19448 apart from bits [11:4]. */
19449
19450static void
19451do_neon_ldx_stx (void)
19452{
b1a769ed
DG
19453 if (inst.operands[1].isreg)
19454 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
19455
5287ad62
JB
19456 switch (NEON_LANE (inst.operands[0].imm))
19457 {
19458 case NEON_INTERLEAVE_LANES:
88714cb8 19459 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
19460 do_neon_ld_st_interleave ();
19461 break;
5f4273c7 19462
5287ad62 19463 case NEON_ALL_LANES:
88714cb8 19464 NEON_ENCODE (DUP, inst);
2d51fb74
JB
19465 if (inst.instruction == N_INV)
19466 {
19467 first_error ("only loads support such operands");
19468 break;
19469 }
5287ad62
JB
19470 do_neon_ld_dup ();
19471 break;
5f4273c7 19472
5287ad62 19473 default:
88714cb8 19474 NEON_ENCODE (LANE, inst);
5287ad62
JB
19475 do_neon_ld_st_lane ();
19476 }
19477
19478 /* L bit comes from bit mask. */
19479 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19480 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19481 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 19482
5287ad62
JB
19483 if (inst.operands[1].postind)
19484 {
19485 int postreg = inst.operands[1].imm & 0xf;
19486 constraint (!inst.operands[1].immisreg,
477330fc 19487 _("post-index must be a register"));
5287ad62 19488 constraint (postreg == 0xd || postreg == 0xf,
477330fc 19489 _("bad register for post-index"));
5287ad62
JB
19490 inst.instruction |= postreg;
19491 }
4f2374c7 19492 else
5287ad62 19493 {
4f2374c7 19494 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
e2b0ab59
AV
19495 constraint (inst.relocs[0].exp.X_op != O_constant
19496 || inst.relocs[0].exp.X_add_number != 0,
4f2374c7
WN
19497 BAD_ADDR_MODE);
19498
19499 if (inst.operands[1].writeback)
19500 {
19501 inst.instruction |= 0xd;
19502 }
19503 else
19504 inst.instruction |= 0xf;
5287ad62 19505 }
5f4273c7 19506
5287ad62
JB
19507 if (thumb_mode)
19508 inst.instruction |= 0xf9000000;
19509 else
19510 inst.instruction |= 0xf4000000;
19511}
33399f07
MGD
19512
19513/* FP v8. */
19514static void
19515do_vfp_nsyn_fpv8 (enum neon_shape rs)
19516{
a715796b
TG
19517 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19518 D register operands. */
19519 if (neon_shape_class[rs] == SC_DOUBLE)
19520 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19521 _(BAD_FPU));
19522
33399f07
MGD
19523 NEON_ENCODE (FPV8, inst);
19524
9db2f6b4
RL
19525 if (rs == NS_FFF || rs == NS_HHH)
19526 {
19527 do_vfp_sp_dyadic ();
19528
19529 /* ARMv8.2 fp16 instruction. */
19530 if (rs == NS_HHH)
19531 do_scalar_fp16_v82_encode ();
19532 }
33399f07
MGD
19533 else
19534 do_vfp_dp_rd_rn_rm ();
19535
19536 if (rs == NS_DDD)
19537 inst.instruction |= 0x100;
19538
19539 inst.instruction |= 0xf0000000;
19540}
19541
19542static void
19543do_vsel (void)
19544{
5ee91343 19545 set_pred_insn_type (OUTSIDE_PRED_INSN);
33399f07
MGD
19546
19547 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
19548 first_error (_("invalid instruction shape"));
19549}
19550
73924fbc
MGD
19551static void
19552do_vmaxnm (void)
19553{
5ee91343 19554 set_pred_insn_type (OUTSIDE_PRED_INSN);
73924fbc
MGD
19555
19556 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
19557 return;
19558
19559 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
19560 return;
19561
cc933301 19562 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
73924fbc
MGD
19563}
19564
30bdf752
MGD
19565static void
19566do_vrint_1 (enum neon_cvt_mode mode)
19567{
9db2f6b4 19568 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
30bdf752
MGD
19569 struct neon_type_el et;
19570
19571 if (rs == NS_NULL)
19572 return;
19573
a715796b
TG
19574 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19575 D register operands. */
19576 if (neon_shape_class[rs] == SC_DOUBLE)
19577 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19578 _(BAD_FPU));
19579
9db2f6b4
RL
19580 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
19581 | N_VFP);
30bdf752
MGD
19582 if (et.type != NT_invtype)
19583 {
19584 /* VFP encodings. */
19585 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
19586 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
5ee91343 19587 set_pred_insn_type (OUTSIDE_PRED_INSN);
30bdf752
MGD
19588
19589 NEON_ENCODE (FPV8, inst);
9db2f6b4 19590 if (rs == NS_FF || rs == NS_HH)
30bdf752
MGD
19591 do_vfp_sp_monadic ();
19592 else
19593 do_vfp_dp_rd_rm ();
19594
19595 switch (mode)
19596 {
19597 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
19598 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
19599 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
19600 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
19601 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
19602 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
19603 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
19604 default: abort ();
19605 }
19606
19607 inst.instruction |= (rs == NS_DD) << 8;
19608 do_vfp_cond_or_thumb ();
9db2f6b4
RL
19609
19610 /* ARMv8.2 fp16 vrint instruction. */
19611 if (rs == NS_HH)
19612 do_scalar_fp16_v82_encode ();
30bdf752
MGD
19613 }
19614 else
19615 {
19616 /* Neon encodings (or something broken...). */
19617 inst.error = NULL;
cc933301 19618 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
30bdf752
MGD
19619
19620 if (et.type == NT_invtype)
19621 return;
19622
5ee91343 19623 set_pred_insn_type (OUTSIDE_PRED_INSN);
30bdf752
MGD
19624 NEON_ENCODE (FLOAT, inst);
19625
19626 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
19627 return;
19628
19629 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19630 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19631 inst.instruction |= LOW4 (inst.operands[1].reg);
19632 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19633 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
19634 /* Mask off the original size bits and reencode them. */
19635 inst.instruction = ((inst.instruction & 0xfff3ffff)
19636 | neon_logbits (et.size) << 18);
19637
30bdf752
MGD
19638 switch (mode)
19639 {
19640 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
19641 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
19642 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
19643 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
19644 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
19645 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
19646 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
19647 default: abort ();
19648 }
19649
19650 if (thumb_mode)
19651 inst.instruction |= 0xfc000000;
19652 else
19653 inst.instruction |= 0xf0000000;
19654 }
19655}
19656
19657static void
19658do_vrintx (void)
19659{
19660 do_vrint_1 (neon_cvt_mode_x);
19661}
19662
19663static void
19664do_vrintz (void)
19665{
19666 do_vrint_1 (neon_cvt_mode_z);
19667}
19668
19669static void
19670do_vrintr (void)
19671{
19672 do_vrint_1 (neon_cvt_mode_r);
19673}
19674
19675static void
19676do_vrinta (void)
19677{
19678 do_vrint_1 (neon_cvt_mode_a);
19679}
19680
19681static void
19682do_vrintn (void)
19683{
19684 do_vrint_1 (neon_cvt_mode_n);
19685}
19686
19687static void
19688do_vrintp (void)
19689{
19690 do_vrint_1 (neon_cvt_mode_p);
19691}
19692
19693static void
19694do_vrintm (void)
19695{
19696 do_vrint_1 (neon_cvt_mode_m);
19697}
19698
c28eeff2
SN
19699static unsigned
19700neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
19701{
19702 unsigned regno = NEON_SCALAR_REG (opnd);
19703 unsigned elno = NEON_SCALAR_INDEX (opnd);
19704
19705 if (elsize == 16 && elno < 2 && regno < 16)
19706 return regno | (elno << 4);
19707 else if (elsize == 32 && elno == 0)
19708 return regno;
19709
19710 first_error (_("scalar out of range"));
19711 return 0;
19712}
19713
19714static void
19715do_vcmla (void)
19716{
5d281bf0
AV
19717 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
19718 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
19719 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
19720 constraint (inst.relocs[0].exp.X_op != O_constant,
19721 _("expression too complex"));
19722 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2
SN
19723 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
19724 _("immediate out of range"));
19725 rot /= 90;
5d281bf0
AV
19726
19727 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8 | NEON_CHECK_CC))
19728 return;
19729
c28eeff2
SN
19730 if (inst.operands[2].isscalar)
19731 {
5d281bf0
AV
19732 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19733 first_error (_("invalid instruction shape"));
c28eeff2
SN
19734 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
19735 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19736 N_KEY | N_F16 | N_F32).size;
19737 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
19738 inst.is_neon = 1;
19739 inst.instruction = 0xfe000800;
19740 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19741 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19742 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19743 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19744 inst.instruction |= LOW4 (m);
19745 inst.instruction |= HI1 (m) << 5;
19746 inst.instruction |= neon_quad (rs) << 6;
19747 inst.instruction |= rot << 20;
19748 inst.instruction |= (size == 32) << 23;
19749 }
19750 else
19751 {
5d281bf0
AV
19752 enum neon_shape rs;
19753 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19754 rs = neon_select_shape (NS_QQQI, NS_NULL);
19755 else
19756 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19757
c28eeff2
SN
19758 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19759 N_KEY | N_F16 | N_F32).size;
5d281bf0
AV
19760 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
19761 && (inst.operands[0].reg == inst.operands[1].reg
19762 || inst.operands[0].reg == inst.operands[2].reg))
19763 as_tsktsk (BAD_MVE_SRCDEST);
19764
c28eeff2
SN
19765 neon_three_same (neon_quad (rs), 0, -1);
19766 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
19767 inst.instruction |= 0xfc200800;
19768 inst.instruction |= rot << 23;
19769 inst.instruction |= (size == 32) << 20;
19770 }
19771}
19772
19773static void
19774do_vcadd (void)
19775{
5d281bf0
AV
19776 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19777 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
19778 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
19779 constraint (inst.relocs[0].exp.X_op != O_constant,
19780 _("expression too complex"));
5d281bf0 19781
e2b0ab59 19782 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2 19783 constraint (rot != 90 && rot != 270, _("immediate out of range"));
5d281bf0
AV
19784 enum neon_shape rs;
19785 struct neon_type_el et;
19786 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19787 {
19788 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19789 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
19790 }
19791 else
19792 {
19793 rs = neon_select_shape (NS_QQQI, NS_NULL);
19794 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
19795 | N_I16 | N_I32);
19796 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
19797 as_tsktsk (_("Warning: 32-bit element size and same first and third "
19798 "operand makes instruction UNPREDICTABLE"));
19799 }
19800
19801 if (et.type == NT_invtype)
19802 return;
19803
19804 if (check_simd_pred_availability (et.type == NT_float, NEON_CHECK_ARCH8
19805 | NEON_CHECK_CC))
19806 return;
19807
19808 if (et.type == NT_float)
19809 {
19810 neon_three_same (neon_quad (rs), 0, -1);
19811 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
19812 inst.instruction |= 0xfc800800;
19813 inst.instruction |= (rot == 270) << 24;
19814 inst.instruction |= (et.size == 32) << 20;
19815 }
19816 else
19817 {
19818 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
19819 inst.instruction = 0xfe000f00;
19820 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19821 inst.instruction |= neon_logbits (et.size) << 20;
19822 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19823 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19824 inst.instruction |= (rot == 270) << 12;
19825 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19826 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19827 inst.instruction |= LOW4 (inst.operands[2].reg);
19828 inst.is_neon = 1;
19829 }
c28eeff2
SN
19830}
19831
c604a79a
JW
19832/* Dot Product instructions encoding support. */
19833
19834static void
19835do_neon_dotproduct (int unsigned_p)
19836{
19837 enum neon_shape rs;
19838 unsigned scalar_oprd2 = 0;
19839 int high8;
19840
19841 if (inst.cond != COND_ALWAYS)
19842 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
19843 "is UNPREDICTABLE"));
19844
19845 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19846 _(BAD_FPU));
19847
19848 /* Dot Product instructions are in three-same D/Q register format or the third
19849 operand can be a scalar index register. */
19850 if (inst.operands[2].isscalar)
19851 {
19852 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
19853 high8 = 0xfe000000;
19854 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
19855 }
19856 else
19857 {
19858 high8 = 0xfc000000;
19859 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
19860 }
19861
19862 if (unsigned_p)
19863 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
19864 else
19865 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
19866
19867 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
19868 Product instruction, so we pass 0 as the "ubit" parameter. And the
19869 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
19870 neon_three_same (neon_quad (rs), 0, 32);
19871
19872 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
19873 different NEON three-same encoding. */
19874 inst.instruction &= 0x00ffffff;
19875 inst.instruction |= high8;
19876 /* Encode 'U' bit which indicates signedness. */
19877 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
19878 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
19879 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
19880 the instruction encoding. */
19881 if (inst.operands[2].isscalar)
19882 {
19883 inst.instruction &= 0xffffffd0;
19884 inst.instruction |= LOW4 (scalar_oprd2);
19885 inst.instruction |= HI1 (scalar_oprd2) << 5;
19886 }
19887}
19888
19889/* Dot Product instructions for signed integer. */
19890
19891static void
19892do_neon_dotproduct_s (void)
19893{
19894 return do_neon_dotproduct (0);
19895}
19896
19897/* Dot Product instructions for unsigned integer. */
19898
19899static void
19900do_neon_dotproduct_u (void)
19901{
19902 return do_neon_dotproduct (1);
19903}
19904
91ff7894
MGD
19905/* Crypto v1 instructions. */
19906static void
19907do_crypto_2op_1 (unsigned elttype, int op)
19908{
5ee91343 19909 set_pred_insn_type (OUTSIDE_PRED_INSN);
91ff7894
MGD
19910
19911 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
19912 == NT_invtype)
19913 return;
19914
19915 inst.error = NULL;
19916
19917 NEON_ENCODE (INTEGER, inst);
19918 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19919 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19920 inst.instruction |= LOW4 (inst.operands[1].reg);
19921 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19922 if (op != -1)
19923 inst.instruction |= op << 6;
19924
19925 if (thumb_mode)
19926 inst.instruction |= 0xfc000000;
19927 else
19928 inst.instruction |= 0xf0000000;
19929}
19930
48adcd8e
MGD
19931static void
19932do_crypto_3op_1 (int u, int op)
19933{
5ee91343 19934 set_pred_insn_type (OUTSIDE_PRED_INSN);
48adcd8e
MGD
19935
19936 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
19937 N_32 | N_UNT | N_KEY).type == NT_invtype)
19938 return;
19939
19940 inst.error = NULL;
19941
19942 NEON_ENCODE (INTEGER, inst);
19943 neon_three_same (1, u, 8 << op);
19944}
19945
91ff7894
MGD
19946static void
19947do_aese (void)
19948{
19949 do_crypto_2op_1 (N_8, 0);
19950}
19951
19952static void
19953do_aesd (void)
19954{
19955 do_crypto_2op_1 (N_8, 1);
19956}
19957
19958static void
19959do_aesmc (void)
19960{
19961 do_crypto_2op_1 (N_8, 2);
19962}
19963
19964static void
19965do_aesimc (void)
19966{
19967 do_crypto_2op_1 (N_8, 3);
19968}
19969
48adcd8e
MGD
19970static void
19971do_sha1c (void)
19972{
19973 do_crypto_3op_1 (0, 0);
19974}
19975
19976static void
19977do_sha1p (void)
19978{
19979 do_crypto_3op_1 (0, 1);
19980}
19981
19982static void
19983do_sha1m (void)
19984{
19985 do_crypto_3op_1 (0, 2);
19986}
19987
19988static void
19989do_sha1su0 (void)
19990{
19991 do_crypto_3op_1 (0, 3);
19992}
91ff7894 19993
48adcd8e
MGD
19994static void
19995do_sha256h (void)
19996{
19997 do_crypto_3op_1 (1, 0);
19998}
19999
20000static void
20001do_sha256h2 (void)
20002{
20003 do_crypto_3op_1 (1, 1);
20004}
20005
20006static void
20007do_sha256su1 (void)
20008{
20009 do_crypto_3op_1 (1, 2);
20010}
3c9017d2
MGD
20011
20012static void
20013do_sha1h (void)
20014{
20015 do_crypto_2op_1 (N_32, -1);
20016}
20017
20018static void
20019do_sha1su1 (void)
20020{
20021 do_crypto_2op_1 (N_32, 0);
20022}
20023
20024static void
20025do_sha256su0 (void)
20026{
20027 do_crypto_2op_1 (N_32, 1);
20028}
dd5181d5
KT
20029
20030static void
20031do_crc32_1 (unsigned int poly, unsigned int sz)
20032{
20033 unsigned int Rd = inst.operands[0].reg;
20034 unsigned int Rn = inst.operands[1].reg;
20035 unsigned int Rm = inst.operands[2].reg;
20036
5ee91343 20037 set_pred_insn_type (OUTSIDE_PRED_INSN);
dd5181d5
KT
20038 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
20039 inst.instruction |= LOW4 (Rn) << 16;
20040 inst.instruction |= LOW4 (Rm);
20041 inst.instruction |= sz << (thumb_mode ? 4 : 21);
20042 inst.instruction |= poly << (thumb_mode ? 20 : 9);
20043
20044 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
20045 as_warn (UNPRED_REG ("r15"));
dd5181d5
KT
20046}
20047
20048static void
20049do_crc32b (void)
20050{
20051 do_crc32_1 (0, 0);
20052}
20053
20054static void
20055do_crc32h (void)
20056{
20057 do_crc32_1 (0, 1);
20058}
20059
20060static void
20061do_crc32w (void)
20062{
20063 do_crc32_1 (0, 2);
20064}
20065
20066static void
20067do_crc32cb (void)
20068{
20069 do_crc32_1 (1, 0);
20070}
20071
20072static void
20073do_crc32ch (void)
20074{
20075 do_crc32_1 (1, 1);
20076}
20077
20078static void
20079do_crc32cw (void)
20080{
20081 do_crc32_1 (1, 2);
20082}
20083
49e8a725
SN
20084static void
20085do_vjcvt (void)
20086{
20087 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20088 _(BAD_FPU));
20089 neon_check_type (2, NS_FD, N_S32, N_F64);
20090 do_vfp_sp_dp_cvt ();
20091 do_vfp_cond_or_thumb ();
20092}
20093
5287ad62
JB
20094\f
20095/* Overall per-instruction processing. */
20096
20097/* We need to be able to fix up arbitrary expressions in some statements.
20098 This is so that we can handle symbols that are an arbitrary distance from
20099 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20100 which returns part of an address in a form which will be valid for
20101 a data instruction. We do this by pushing the expression into a symbol
20102 in the expr_section, and creating a fix for that. */
20103
20104static void
20105fix_new_arm (fragS * frag,
20106 int where,
20107 short int size,
20108 expressionS * exp,
20109 int pc_rel,
20110 int reloc)
20111{
20112 fixS * new_fix;
20113
20114 switch (exp->X_op)
20115 {
20116 case O_constant:
6e7ce2cd
PB
20117 if (pc_rel)
20118 {
20119 /* Create an absolute valued symbol, so we have something to
477330fc
RM
20120 refer to in the object file. Unfortunately for us, gas's
20121 generic expression parsing will already have folded out
20122 any use of .set foo/.type foo %function that may have
20123 been used to set type information of the target location,
20124 that's being specified symbolically. We have to presume
20125 the user knows what they are doing. */
6e7ce2cd
PB
20126 char name[16 + 8];
20127 symbolS *symbol;
20128
20129 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
20130
20131 symbol = symbol_find_or_make (name);
20132 S_SET_SEGMENT (symbol, absolute_section);
20133 symbol_set_frag (symbol, &zero_address_frag);
20134 S_SET_VALUE (symbol, exp->X_add_number);
20135 exp->X_op = O_symbol;
20136 exp->X_add_symbol = symbol;
20137 exp->X_add_number = 0;
20138 }
20139 /* FALLTHROUGH */
5287ad62
JB
20140 case O_symbol:
20141 case O_add:
20142 case O_subtract:
21d799b5 20143 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
477330fc 20144 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
20145 break;
20146
20147 default:
21d799b5 20148 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
477330fc 20149 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
20150 break;
20151 }
20152
20153 /* Mark whether the fix is to a THUMB instruction, or an ARM
20154 instruction. */
20155 new_fix->tc_fix_data = thumb_mode;
20156}
20157
20158/* Create a frg for an instruction requiring relaxation. */
20159static void
20160output_relax_insn (void)
20161{
20162 char * to;
20163 symbolS *sym;
0110f2b8
PB
20164 int offset;
20165
6e1cb1a6
PB
20166 /* The size of the instruction is unknown, so tie the debug info to the
20167 start of the instruction. */
20168 dwarf2_emit_insn (0);
6e1cb1a6 20169
e2b0ab59 20170 switch (inst.relocs[0].exp.X_op)
0110f2b8
PB
20171 {
20172 case O_symbol:
e2b0ab59
AV
20173 sym = inst.relocs[0].exp.X_add_symbol;
20174 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
20175 break;
20176 case O_constant:
20177 sym = NULL;
e2b0ab59 20178 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
20179 break;
20180 default:
e2b0ab59 20181 sym = make_expr_symbol (&inst.relocs[0].exp);
0110f2b8
PB
20182 offset = 0;
20183 break;
20184 }
20185 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
20186 inst.relax, sym, offset, NULL/*offset, opcode*/);
20187 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
20188}
20189
20190/* Write a 32-bit thumb instruction to buf. */
20191static void
20192put_thumb32_insn (char * buf, unsigned long insn)
20193{
20194 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
20195 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
20196}
20197
b99bd4ef 20198static void
c19d1205 20199output_inst (const char * str)
b99bd4ef 20200{
c19d1205 20201 char * to = NULL;
b99bd4ef 20202
c19d1205 20203 if (inst.error)
b99bd4ef 20204 {
c19d1205 20205 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
20206 return;
20207 }
5f4273c7
NC
20208 if (inst.relax)
20209 {
20210 output_relax_insn ();
0110f2b8 20211 return;
5f4273c7 20212 }
c19d1205
ZW
20213 if (inst.size == 0)
20214 return;
b99bd4ef 20215
c19d1205 20216 to = frag_more (inst.size);
8dc2430f
NC
20217 /* PR 9814: Record the thumb mode into the current frag so that we know
20218 what type of NOP padding to use, if necessary. We override any previous
20219 setting so that if the mode has changed then the NOPS that we use will
20220 match the encoding of the last instruction in the frag. */
cd000bff 20221 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
20222
20223 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 20224 {
9c2799c2 20225 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 20226 put_thumb32_insn (to, inst.instruction);
b99bd4ef 20227 }
c19d1205 20228 else if (inst.size > INSN_SIZE)
b99bd4ef 20229 {
9c2799c2 20230 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
20231 md_number_to_chars (to, inst.instruction, INSN_SIZE);
20232 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 20233 }
c19d1205
ZW
20234 else
20235 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 20236
e2b0ab59
AV
20237 int r;
20238 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
20239 {
20240 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
20241 fix_new_arm (frag_now, to - frag_now->fr_literal,
20242 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
20243 inst.relocs[r].type);
20244 }
b99bd4ef 20245
c19d1205 20246 dwarf2_emit_insn (inst.size);
c19d1205 20247}
b99bd4ef 20248
e07e6e58
NC
20249static char *
20250output_it_inst (int cond, int mask, char * to)
20251{
20252 unsigned long instruction = 0xbf00;
20253
20254 mask &= 0xf;
20255 instruction |= mask;
20256 instruction |= cond << 4;
20257
20258 if (to == NULL)
20259 {
20260 to = frag_more (2);
20261#ifdef OBJ_ELF
20262 dwarf2_emit_insn (2);
20263#endif
20264 }
20265
20266 md_number_to_chars (to, instruction, 2);
20267
20268 return to;
20269}
20270
c19d1205
ZW
20271/* Tag values used in struct asm_opcode's tag field. */
20272enum opcode_tag
20273{
20274 OT_unconditional, /* Instruction cannot be conditionalized.
20275 The ARM condition field is still 0xE. */
20276 OT_unconditionalF, /* Instruction cannot be conditionalized
20277 and carries 0xF in its ARM condition field. */
20278 OT_csuffix, /* Instruction takes a conditional suffix. */
5ee91343
AV
20279 OT_csuffixF, /* Some forms of the instruction take a scalar
20280 conditional suffix, others place 0xF where the
20281 condition field would be, others take a vector
20282 conditional suffix. */
c19d1205
ZW
20283 OT_cinfix3, /* Instruction takes a conditional infix,
20284 beginning at character index 3. (In
20285 unified mode, it becomes a suffix.) */
088fa78e
KH
20286 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
20287 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
20288 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
20289 character index 3, even in unified mode. Used for
20290 legacy instructions where suffix and infix forms
20291 may be ambiguous. */
c19d1205 20292 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 20293 suffix or an infix at character index 3. */
c19d1205
ZW
20294 OT_odd_infix_unc, /* This is the unconditional variant of an
20295 instruction that takes a conditional infix
20296 at an unusual position. In unified mode,
20297 this variant will accept a suffix. */
20298 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
20299 are the conditional variants of instructions that
20300 take conditional infixes in unusual positions.
20301 The infix appears at character index
20302 (tag - OT_odd_infix_0). These are not accepted
20303 in unified mode. */
20304};
b99bd4ef 20305
c19d1205
ZW
20306/* Subroutine of md_assemble, responsible for looking up the primary
20307 opcode from the mnemonic the user wrote. STR points to the
20308 beginning of the mnemonic.
20309
20310 This is not simply a hash table lookup, because of conditional
20311 variants. Most instructions have conditional variants, which are
20312 expressed with a _conditional affix_ to the mnemonic. If we were
20313 to encode each conditional variant as a literal string in the opcode
20314 table, it would have approximately 20,000 entries.
20315
20316 Most mnemonics take this affix as a suffix, and in unified syntax,
20317 'most' is upgraded to 'all'. However, in the divided syntax, some
20318 instructions take the affix as an infix, notably the s-variants of
20319 the arithmetic instructions. Of those instructions, all but six
20320 have the infix appear after the third character of the mnemonic.
20321
20322 Accordingly, the algorithm for looking up primary opcodes given
20323 an identifier is:
20324
20325 1. Look up the identifier in the opcode table.
20326 If we find a match, go to step U.
20327
20328 2. Look up the last two characters of the identifier in the
20329 conditions table. If we find a match, look up the first N-2
20330 characters of the identifier in the opcode table. If we
20331 find a match, go to step CE.
20332
20333 3. Look up the fourth and fifth characters of the identifier in
20334 the conditions table. If we find a match, extract those
20335 characters from the identifier, and look up the remaining
20336 characters in the opcode table. If we find a match, go
20337 to step CM.
20338
20339 4. Fail.
20340
20341 U. Examine the tag field of the opcode structure, in case this is
20342 one of the six instructions with its conditional infix in an
20343 unusual place. If it is, the tag tells us where to find the
20344 infix; look it up in the conditions table and set inst.cond
20345 accordingly. Otherwise, this is an unconditional instruction.
20346 Again set inst.cond accordingly. Return the opcode structure.
20347
20348 CE. Examine the tag field to make sure this is an instruction that
20349 should receive a conditional suffix. If it is not, fail.
20350 Otherwise, set inst.cond from the suffix we already looked up,
20351 and return the opcode structure.
20352
20353 CM. Examine the tag field to make sure this is an instruction that
20354 should receive a conditional infix after the third character.
20355 If it is not, fail. Otherwise, undo the edits to the current
20356 line of input and proceed as for case CE. */
20357
20358static const struct asm_opcode *
20359opcode_lookup (char **str)
20360{
20361 char *end, *base;
20362 char *affix;
20363 const struct asm_opcode *opcode;
20364 const struct asm_cond *cond;
e3cb604e 20365 char save[2];
c19d1205
ZW
20366
20367 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 20368 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 20369 for (base = end = *str; *end != '\0'; end++)
721a8186 20370 if (*end == ' ' || *end == '.')
c19d1205 20371 break;
b99bd4ef 20372
c19d1205 20373 if (end == base)
c921be7d 20374 return NULL;
b99bd4ef 20375
5287ad62 20376 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 20377 if (end[0] == '.')
b99bd4ef 20378 {
5287ad62 20379 int offset = 2;
5f4273c7 20380
267d2029 20381 /* The .w and .n suffixes are only valid if the unified syntax is in
477330fc 20382 use. */
267d2029 20383 if (unified_syntax && end[1] == 'w')
c19d1205 20384 inst.size_req = 4;
267d2029 20385 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
20386 inst.size_req = 2;
20387 else
477330fc 20388 offset = 0;
5287ad62
JB
20389
20390 inst.vectype.elems = 0;
20391
20392 *str = end + offset;
b99bd4ef 20393
5f4273c7 20394 if (end[offset] == '.')
5287ad62 20395 {
267d2029 20396 /* See if we have a Neon type suffix (possible in either unified or
477330fc
RM
20397 non-unified ARM syntax mode). */
20398 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 20399 return NULL;
477330fc 20400 }
5287ad62 20401 else if (end[offset] != '\0' && end[offset] != ' ')
477330fc 20402 return NULL;
b99bd4ef 20403 }
c19d1205
ZW
20404 else
20405 *str = end;
b99bd4ef 20406
c19d1205 20407 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5 20408 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 20409 end - base);
c19d1205 20410 if (opcode)
b99bd4ef 20411 {
c19d1205
ZW
20412 /* step U */
20413 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 20414 {
c19d1205
ZW
20415 inst.cond = COND_ALWAYS;
20416 return opcode;
b99bd4ef 20417 }
b99bd4ef 20418
278df34e 20419 if (warn_on_deprecated && unified_syntax)
5c3696f8 20420 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205 20421 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 20422 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 20423 gas_assert (cond);
b99bd4ef 20424
c19d1205
ZW
20425 inst.cond = cond->value;
20426 return opcode;
20427 }
5ee91343
AV
20428 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20429 {
20430 /* Cannot have a conditional suffix on a mnemonic of less than a character.
20431 */
20432 if (end - base < 2)
20433 return NULL;
20434 affix = end - 1;
20435 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
20436 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20437 affix - base);
20438 /* If this opcode can not be vector predicated then don't accept it with a
20439 vector predication code. */
20440 if (opcode && !opcode->mayBeVecPred)
20441 opcode = NULL;
20442 }
20443 if (!opcode || !cond)
20444 {
20445 /* Cannot have a conditional suffix on a mnemonic of less than two
20446 characters. */
20447 if (end - base < 3)
20448 return NULL;
b99bd4ef 20449
5ee91343
AV
20450 /* Look for suffixed mnemonic. */
20451 affix = end - 2;
20452 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20453 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20454 affix - base);
20455 }
b99bd4ef 20456
c19d1205
ZW
20457 if (opcode && cond)
20458 {
20459 /* step CE */
20460 switch (opcode->tag)
20461 {
e3cb604e
PB
20462 case OT_cinfix3_legacy:
20463 /* Ignore conditional suffixes matched on infix only mnemonics. */
20464 break;
20465
c19d1205 20466 case OT_cinfix3:
088fa78e 20467 case OT_cinfix3_deprecated:
c19d1205
ZW
20468 case OT_odd_infix_unc:
20469 if (!unified_syntax)
0198d5e6 20470 return NULL;
1a0670f3 20471 /* Fall through. */
c19d1205
ZW
20472
20473 case OT_csuffix:
477330fc 20474 case OT_csuffixF:
c19d1205
ZW
20475 case OT_csuf_or_in3:
20476 inst.cond = cond->value;
20477 return opcode;
20478
20479 case OT_unconditional:
20480 case OT_unconditionalF:
dfa9f0d5 20481 if (thumb_mode)
c921be7d 20482 inst.cond = cond->value;
dfa9f0d5
PB
20483 else
20484 {
c921be7d 20485 /* Delayed diagnostic. */
dfa9f0d5
PB
20486 inst.error = BAD_COND;
20487 inst.cond = COND_ALWAYS;
20488 }
c19d1205 20489 return opcode;
b99bd4ef 20490
c19d1205 20491 default:
c921be7d 20492 return NULL;
c19d1205
ZW
20493 }
20494 }
b99bd4ef 20495
c19d1205
ZW
20496 /* Cannot have a usual-position infix on a mnemonic of less than
20497 six characters (five would be a suffix). */
20498 if (end - base < 6)
c921be7d 20499 return NULL;
b99bd4ef 20500
c19d1205
ZW
20501 /* Look for infixed mnemonic in the usual position. */
20502 affix = base + 3;
21d799b5 20503 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 20504 if (!cond)
c921be7d 20505 return NULL;
e3cb604e
PB
20506
20507 memcpy (save, affix, 2);
20508 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5 20509 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 20510 (end - base) - 2);
e3cb604e
PB
20511 memmove (affix + 2, affix, (end - affix) - 2);
20512 memcpy (affix, save, 2);
20513
088fa78e
KH
20514 if (opcode
20515 && (opcode->tag == OT_cinfix3
20516 || opcode->tag == OT_cinfix3_deprecated
20517 || opcode->tag == OT_csuf_or_in3
20518 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 20519 {
c921be7d 20520 /* Step CM. */
278df34e 20521 if (warn_on_deprecated && unified_syntax
088fa78e
KH
20522 && (opcode->tag == OT_cinfix3
20523 || opcode->tag == OT_cinfix3_deprecated))
5c3696f8 20524 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205
ZW
20525
20526 inst.cond = cond->value;
20527 return opcode;
b99bd4ef
NC
20528 }
20529
c921be7d 20530 return NULL;
b99bd4ef
NC
20531}
20532
e07e6e58
NC
20533/* This function generates an initial IT instruction, leaving its block
20534 virtually open for the new instructions. Eventually,
5ee91343 20535 the mask will be updated by now_pred_add_mask () each time
e07e6e58
NC
20536 a new instruction needs to be included in the IT block.
20537 Finally, the block is closed with close_automatic_it_block ().
20538 The block closure can be requested either from md_assemble (),
20539 a tencode (), or due to a label hook. */
20540
20541static void
20542new_automatic_it_block (int cond)
20543{
5ee91343
AV
20544 now_pred.state = AUTOMATIC_PRED_BLOCK;
20545 now_pred.mask = 0x18;
20546 now_pred.cc = cond;
20547 now_pred.block_length = 1;
cd000bff 20548 mapping_state (MAP_THUMB);
5ee91343
AV
20549 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
20550 now_pred.warn_deprecated = FALSE;
20551 now_pred.insn_cond = TRUE;
e07e6e58
NC
20552}
20553
20554/* Close an automatic IT block.
20555 See comments in new_automatic_it_block (). */
20556
20557static void
20558close_automatic_it_block (void)
20559{
5ee91343
AV
20560 now_pred.mask = 0x10;
20561 now_pred.block_length = 0;
e07e6e58
NC
20562}
20563
20564/* Update the mask of the current automatically-generated IT
20565 instruction. See comments in new_automatic_it_block (). */
20566
20567static void
5ee91343 20568now_pred_add_mask (int cond)
e07e6e58
NC
20569{
20570#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
20571#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
477330fc 20572 | ((bitvalue) << (nbit)))
e07e6e58 20573 const int resulting_bit = (cond & 1);
c921be7d 20574
5ee91343
AV
20575 now_pred.mask &= 0xf;
20576 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 20577 resulting_bit,
5ee91343
AV
20578 (5 - now_pred.block_length));
20579 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 20580 1,
5ee91343
AV
20581 ((5 - now_pred.block_length) - 1));
20582 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
e07e6e58
NC
20583
20584#undef CLEAR_BIT
20585#undef SET_BIT_VALUE
e07e6e58
NC
20586}
20587
20588/* The IT blocks handling machinery is accessed through the these functions:
20589 it_fsm_pre_encode () from md_assemble ()
5ee91343
AV
20590 set_pred_insn_type () optional, from the tencode functions
20591 set_pred_insn_type_last () ditto
20592 in_pred_block () ditto
e07e6e58 20593 it_fsm_post_encode () from md_assemble ()
33eaf5de 20594 force_automatic_it_block_close () from label handling functions
e07e6e58
NC
20595
20596 Rationale:
20597 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
477330fc
RM
20598 initializing the IT insn type with a generic initial value depending
20599 on the inst.condition.
e07e6e58 20600 2) During the tencode function, two things may happen:
477330fc 20601 a) The tencode function overrides the IT insn type by
5ee91343
AV
20602 calling either set_pred_insn_type (type) or
20603 set_pred_insn_type_last ().
477330fc 20604 b) The tencode function queries the IT block state by
5ee91343 20605 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
477330fc 20606
5ee91343
AV
20607 Both set_pred_insn_type and in_pred_block run the internal FSM state
20608 handling function (handle_pred_state), because: a) setting the IT insn
477330fc
RM
20609 type may incur in an invalid state (exiting the function),
20610 and b) querying the state requires the FSM to be updated.
20611 Specifically we want to avoid creating an IT block for conditional
20612 branches, so it_fsm_pre_encode is actually a guess and we can't
20613 determine whether an IT block is required until the tencode () routine
20614 has decided what type of instruction this actually it.
5ee91343
AV
20615 Because of this, if set_pred_insn_type and in_pred_block have to be
20616 used, set_pred_insn_type has to be called first.
477330fc 20617
5ee91343
AV
20618 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
20619 that determines the insn IT type depending on the inst.cond code.
477330fc
RM
20620 When a tencode () routine encodes an instruction that can be
20621 either outside an IT block, or, in the case of being inside, has to be
5ee91343 20622 the last one, set_pred_insn_type_last () will determine the proper
477330fc 20623 IT instruction type based on the inst.cond code. Otherwise,
5ee91343 20624 set_pred_insn_type can be called for overriding that logic or
477330fc
RM
20625 for covering other cases.
20626
5ee91343
AV
20627 Calling handle_pred_state () may not transition the IT block state to
20628 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
477330fc 20629 still queried. Instead, if the FSM determines that the state should
5ee91343 20630 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
477330fc
RM
20631 after the tencode () function: that's what it_fsm_post_encode () does.
20632
5ee91343 20633 Since in_pred_block () calls the state handling function to get an
477330fc
RM
20634 updated state, an error may occur (due to invalid insns combination).
20635 In that case, inst.error is set.
20636 Therefore, inst.error has to be checked after the execution of
20637 the tencode () routine.
e07e6e58
NC
20638
20639 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
477330fc 20640 any pending state change (if any) that didn't take place in
5ee91343 20641 handle_pred_state () as explained above. */
e07e6e58
NC
20642
20643static void
20644it_fsm_pre_encode (void)
20645{
20646 if (inst.cond != COND_ALWAYS)
5ee91343 20647 inst.pred_insn_type = INSIDE_IT_INSN;
e07e6e58 20648 else
5ee91343 20649 inst.pred_insn_type = OUTSIDE_PRED_INSN;
e07e6e58 20650
5ee91343 20651 now_pred.state_handled = 0;
e07e6e58
NC
20652}
20653
20654/* IT state FSM handling function. */
5ee91343
AV
20655/* MVE instructions and non-MVE instructions are handled differently because of
20656 the introduction of VPT blocks.
20657 Specifications say that any non-MVE instruction inside a VPT block is
20658 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
20659 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
35c228db 20660 few exceptions we have MVE_UNPREDICABLE_INSN.
5ee91343
AV
20661 The error messages provided depending on the different combinations possible
20662 are described in the cases below:
20663 For 'most' MVE instructions:
20664 1) In an IT block, with an IT code: syntax error
20665 2) In an IT block, with a VPT code: error: must be in a VPT block
20666 3) In an IT block, with no code: warning: UNPREDICTABLE
20667 4) In a VPT block, with an IT code: syntax error
20668 5) In a VPT block, with a VPT code: OK!
20669 6) In a VPT block, with no code: error: missing code
20670 7) Outside a pred block, with an IT code: error: syntax error
20671 8) Outside a pred block, with a VPT code: error: should be in a VPT block
20672 9) Outside a pred block, with no code: OK!
20673 For non-MVE instructions:
20674 10) In an IT block, with an IT code: OK!
20675 11) In an IT block, with a VPT code: syntax error
20676 12) In an IT block, with no code: error: missing code
20677 13) In a VPT block, with an IT code: error: should be in an IT block
20678 14) In a VPT block, with a VPT code: syntax error
20679 15) In a VPT block, with no code: UNPREDICTABLE
20680 16) Outside a pred block, with an IT code: error: should be in an IT block
20681 17) Outside a pred block, with a VPT code: syntax error
20682 18) Outside a pred block, with no code: OK!
20683 */
20684
e07e6e58
NC
20685
20686static int
5ee91343 20687handle_pred_state (void)
e07e6e58 20688{
5ee91343
AV
20689 now_pred.state_handled = 1;
20690 now_pred.insn_cond = FALSE;
e07e6e58 20691
5ee91343 20692 switch (now_pred.state)
e07e6e58 20693 {
5ee91343
AV
20694 case OUTSIDE_PRED_BLOCK:
20695 switch (inst.pred_insn_type)
e07e6e58 20696 {
35c228db 20697 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
20698 case MVE_OUTSIDE_PRED_INSN:
20699 if (inst.cond < COND_ALWAYS)
20700 {
20701 /* Case 7: Outside a pred block, with an IT code: error: syntax
20702 error. */
20703 inst.error = BAD_SYNTAX;
20704 return FAIL;
20705 }
20706 /* Case 9: Outside a pred block, with no code: OK! */
20707 break;
20708 case OUTSIDE_PRED_INSN:
20709 if (inst.cond > COND_ALWAYS)
20710 {
20711 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20712 */
20713 inst.error = BAD_SYNTAX;
20714 return FAIL;
20715 }
20716 /* Case 18: Outside a pred block, with no code: OK! */
e07e6e58
NC
20717 break;
20718
5ee91343
AV
20719 case INSIDE_VPT_INSN:
20720 /* Case 8: Outside a pred block, with a VPT code: error: should be in
20721 a VPT block. */
20722 inst.error = BAD_OUT_VPT;
20723 return FAIL;
20724
e07e6e58
NC
20725 case INSIDE_IT_INSN:
20726 case INSIDE_IT_LAST_INSN:
5ee91343 20727 if (inst.cond < COND_ALWAYS)
e07e6e58 20728 {
5ee91343
AV
20729 /* Case 16: Outside a pred block, with an IT code: error: should
20730 be in an IT block. */
20731 if (thumb_mode == 0)
e07e6e58 20732 {
5ee91343
AV
20733 if (unified_syntax
20734 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
20735 as_tsktsk (_("Warning: conditional outside an IT block"\
20736 " for Thumb."));
e07e6e58
NC
20737 }
20738 else
20739 {
5ee91343
AV
20740 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
20741 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
20742 {
20743 /* Automatically generate the IT instruction. */
20744 new_automatic_it_block (inst.cond);
20745 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
20746 close_automatic_it_block ();
20747 }
20748 else
20749 {
20750 inst.error = BAD_OUT_IT;
20751 return FAIL;
20752 }
e07e6e58 20753 }
5ee91343 20754 break;
e07e6e58 20755 }
5ee91343
AV
20756 else if (inst.cond > COND_ALWAYS)
20757 {
20758 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20759 */
20760 inst.error = BAD_SYNTAX;
20761 return FAIL;
20762 }
20763 else
20764 gas_assert (0);
e07e6e58
NC
20765 case IF_INSIDE_IT_LAST_INSN:
20766 case NEUTRAL_IT_INSN:
20767 break;
20768
5ee91343
AV
20769 case VPT_INSN:
20770 if (inst.cond != COND_ALWAYS)
20771 first_error (BAD_SYNTAX);
20772 now_pred.state = MANUAL_PRED_BLOCK;
20773 now_pred.block_length = 0;
20774 now_pred.type = VECTOR_PRED;
20775 now_pred.cc = 0;
20776 break;
e07e6e58 20777 case IT_INSN:
5ee91343
AV
20778 now_pred.state = MANUAL_PRED_BLOCK;
20779 now_pred.block_length = 0;
20780 now_pred.type = SCALAR_PRED;
e07e6e58
NC
20781 break;
20782 }
20783 break;
20784
5ee91343 20785 case AUTOMATIC_PRED_BLOCK:
e07e6e58
NC
20786 /* Three things may happen now:
20787 a) We should increment current it block size;
20788 b) We should close current it block (closing insn or 4 insns);
20789 c) We should close current it block and start a new one (due
20790 to incompatible conditions or
20791 4 insns-length block reached). */
20792
5ee91343 20793 switch (inst.pred_insn_type)
e07e6e58 20794 {
5ee91343
AV
20795 case INSIDE_VPT_INSN:
20796 case VPT_INSN:
35c228db 20797 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
20798 case MVE_OUTSIDE_PRED_INSN:
20799 gas_assert (0);
20800 case OUTSIDE_PRED_INSN:
2b0f3761 20801 /* The closure of the block shall happen immediately,
5ee91343 20802 so any in_pred_block () call reports the block as closed. */
e07e6e58
NC
20803 force_automatic_it_block_close ();
20804 break;
20805
20806 case INSIDE_IT_INSN:
20807 case INSIDE_IT_LAST_INSN:
20808 case IF_INSIDE_IT_LAST_INSN:
5ee91343 20809 now_pred.block_length++;
e07e6e58 20810
5ee91343
AV
20811 if (now_pred.block_length > 4
20812 || !now_pred_compatible (inst.cond))
e07e6e58
NC
20813 {
20814 force_automatic_it_block_close ();
5ee91343 20815 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
e07e6e58
NC
20816 new_automatic_it_block (inst.cond);
20817 }
20818 else
20819 {
5ee91343
AV
20820 now_pred.insn_cond = TRUE;
20821 now_pred_add_mask (inst.cond);
e07e6e58
NC
20822 }
20823
5ee91343
AV
20824 if (now_pred.state == AUTOMATIC_PRED_BLOCK
20825 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
20826 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
e07e6e58
NC
20827 close_automatic_it_block ();
20828 break;
20829
20830 case NEUTRAL_IT_INSN:
5ee91343
AV
20831 now_pred.block_length++;
20832 now_pred.insn_cond = TRUE;
e07e6e58 20833
5ee91343 20834 if (now_pred.block_length > 4)
e07e6e58
NC
20835 force_automatic_it_block_close ();
20836 else
5ee91343 20837 now_pred_add_mask (now_pred.cc & 1);
e07e6e58
NC
20838 break;
20839
20840 case IT_INSN:
20841 close_automatic_it_block ();
5ee91343 20842 now_pred.state = MANUAL_PRED_BLOCK;
e07e6e58
NC
20843 break;
20844 }
20845 break;
20846
5ee91343 20847 case MANUAL_PRED_BLOCK:
e07e6e58 20848 {
5ee91343
AV
20849 int cond, is_last;
20850 if (now_pred.type == SCALAR_PRED)
e07e6e58 20851 {
5ee91343
AV
20852 /* Check conditional suffixes. */
20853 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
20854 now_pred.mask <<= 1;
20855 now_pred.mask &= 0x1f;
20856 is_last = (now_pred.mask == 0x10);
20857 }
20858 else
20859 {
20860 now_pred.cc ^= (now_pred.mask >> 4);
20861 cond = now_pred.cc + 0xf;
20862 now_pred.mask <<= 1;
20863 now_pred.mask &= 0x1f;
20864 is_last = now_pred.mask == 0x10;
20865 }
20866 now_pred.insn_cond = TRUE;
e07e6e58 20867
5ee91343
AV
20868 switch (inst.pred_insn_type)
20869 {
20870 case OUTSIDE_PRED_INSN:
20871 if (now_pred.type == SCALAR_PRED)
20872 {
20873 if (inst.cond == COND_ALWAYS)
20874 {
20875 /* Case 12: In an IT block, with no code: error: missing
20876 code. */
20877 inst.error = BAD_NOT_IT;
20878 return FAIL;
20879 }
20880 else if (inst.cond > COND_ALWAYS)
20881 {
20882 /* Case 11: In an IT block, with a VPT code: syntax error.
20883 */
20884 inst.error = BAD_SYNTAX;
20885 return FAIL;
20886 }
20887 else if (thumb_mode)
20888 {
20889 /* This is for some special cases where a non-MVE
20890 instruction is not allowed in an IT block, such as cbz,
20891 but are put into one with a condition code.
20892 You could argue this should be a syntax error, but we
20893 gave the 'not allowed in IT block' diagnostic in the
20894 past so we will keep doing so. */
20895 inst.error = BAD_NOT_IT;
20896 return FAIL;
20897 }
20898 break;
20899 }
20900 else
20901 {
20902 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
20903 as_tsktsk (MVE_NOT_VPT);
20904 return SUCCESS;
20905 }
20906 case MVE_OUTSIDE_PRED_INSN:
20907 if (now_pred.type == SCALAR_PRED)
20908 {
20909 if (inst.cond == COND_ALWAYS)
20910 {
20911 /* Case 3: In an IT block, with no code: warning:
20912 UNPREDICTABLE. */
20913 as_tsktsk (MVE_NOT_IT);
20914 return SUCCESS;
20915 }
20916 else if (inst.cond < COND_ALWAYS)
20917 {
20918 /* Case 1: In an IT block, with an IT code: syntax error.
20919 */
20920 inst.error = BAD_SYNTAX;
20921 return FAIL;
20922 }
20923 else
20924 gas_assert (0);
20925 }
20926 else
20927 {
20928 if (inst.cond < COND_ALWAYS)
20929 {
20930 /* Case 4: In a VPT block, with an IT code: syntax error.
20931 */
20932 inst.error = BAD_SYNTAX;
20933 return FAIL;
20934 }
20935 else if (inst.cond == COND_ALWAYS)
20936 {
20937 /* Case 6: In a VPT block, with no code: error: missing
20938 code. */
20939 inst.error = BAD_NOT_VPT;
20940 return FAIL;
20941 }
20942 else
20943 {
20944 gas_assert (0);
20945 }
20946 }
35c228db
AV
20947 case MVE_UNPREDICABLE_INSN:
20948 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
20949 return SUCCESS;
e07e6e58 20950 case INSIDE_IT_INSN:
5ee91343 20951 if (inst.cond > COND_ALWAYS)
e07e6e58 20952 {
5ee91343
AV
20953 /* Case 11: In an IT block, with a VPT code: syntax error. */
20954 /* Case 14: In a VPT block, with a VPT code: syntax error. */
20955 inst.error = BAD_SYNTAX;
20956 return FAIL;
20957 }
20958 else if (now_pred.type == SCALAR_PRED)
20959 {
20960 /* Case 10: In an IT block, with an IT code: OK! */
20961 if (cond != inst.cond)
20962 {
20963 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
20964 BAD_VPT_COND;
20965 return FAIL;
20966 }
20967 }
20968 else
20969 {
20970 /* Case 13: In a VPT block, with an IT code: error: should be
20971 in an IT block. */
20972 inst.error = BAD_OUT_IT;
e07e6e58
NC
20973 return FAIL;
20974 }
20975 break;
20976
5ee91343
AV
20977 case INSIDE_VPT_INSN:
20978 if (now_pred.type == SCALAR_PRED)
20979 {
20980 /* Case 2: In an IT block, with a VPT code: error: must be in a
20981 VPT block. */
20982 inst.error = BAD_OUT_VPT;
20983 return FAIL;
20984 }
20985 /* Case 5: In a VPT block, with a VPT code: OK! */
20986 else if (cond != inst.cond)
20987 {
20988 inst.error = BAD_VPT_COND;
20989 return FAIL;
20990 }
20991 break;
e07e6e58
NC
20992 case INSIDE_IT_LAST_INSN:
20993 case IF_INSIDE_IT_LAST_INSN:
5ee91343
AV
20994 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
20995 {
20996 /* Case 4: In a VPT block, with an IT code: syntax error. */
20997 /* Case 11: In an IT block, with a VPT code: syntax error. */
20998 inst.error = BAD_SYNTAX;
20999 return FAIL;
21000 }
21001 else if (cond != inst.cond)
e07e6e58
NC
21002 {
21003 inst.error = BAD_IT_COND;
21004 return FAIL;
21005 }
21006 if (!is_last)
21007 {
21008 inst.error = BAD_BRANCH;
21009 return FAIL;
21010 }
21011 break;
21012
21013 case NEUTRAL_IT_INSN:
5ee91343
AV
21014 /* The BKPT instruction is unconditional even in a IT or VPT
21015 block. */
e07e6e58
NC
21016 break;
21017
21018 case IT_INSN:
5ee91343
AV
21019 if (now_pred.type == SCALAR_PRED)
21020 {
21021 inst.error = BAD_IT_IT;
21022 return FAIL;
21023 }
21024 /* fall through. */
21025 case VPT_INSN:
21026 if (inst.cond == COND_ALWAYS)
21027 {
21028 /* Executing a VPT/VPST instruction inside an IT block or a
21029 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21030 */
21031 if (now_pred.type == SCALAR_PRED)
21032 as_tsktsk (MVE_NOT_IT);
21033 else
21034 as_tsktsk (MVE_NOT_VPT);
21035 return SUCCESS;
21036 }
21037 else
21038 {
21039 /* VPT/VPST do not accept condition codes. */
21040 inst.error = BAD_SYNTAX;
21041 return FAIL;
21042 }
e07e6e58 21043 }
5ee91343 21044 }
e07e6e58
NC
21045 break;
21046 }
21047
21048 return SUCCESS;
21049}
21050
5a01bb1d
MGD
21051struct depr_insn_mask
21052{
21053 unsigned long pattern;
21054 unsigned long mask;
21055 const char* description;
21056};
21057
21058/* List of 16-bit instruction patterns deprecated in an IT block in
21059 ARMv8. */
21060static const struct depr_insn_mask depr_it_insns[] = {
21061 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
21062 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
21063 { 0xa000, 0xb800, N_("ADR") },
21064 { 0x4800, 0xf800, N_("Literal loads") },
21065 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
21066 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
c8de034b
JW
21067 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
21068 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
21069 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
5a01bb1d
MGD
21070 { 0, 0, NULL }
21071};
21072
e07e6e58
NC
21073static void
21074it_fsm_post_encode (void)
21075{
21076 int is_last;
21077
5ee91343
AV
21078 if (!now_pred.state_handled)
21079 handle_pred_state ();
e07e6e58 21080
5ee91343
AV
21081 if (now_pred.insn_cond
21082 && !now_pred.warn_deprecated
5a01bb1d 21083 && warn_on_deprecated
df9909b8
TP
21084 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
21085 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
5a01bb1d
MGD
21086 {
21087 if (inst.instruction >= 0x10000)
21088 {
5c3696f8 21089 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
df9909b8 21090 "performance deprecated in ARMv8-A and ARMv8-R"));
5ee91343 21091 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21092 }
21093 else
21094 {
21095 const struct depr_insn_mask *p = depr_it_insns;
21096
21097 while (p->mask != 0)
21098 {
21099 if ((inst.instruction & p->mask) == p->pattern)
21100 {
df9909b8
TP
21101 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21102 "instructions of the following class are "
21103 "performance deprecated in ARMv8-A and "
21104 "ARMv8-R: %s"), p->description);
5ee91343 21105 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21106 break;
21107 }
21108
21109 ++p;
21110 }
21111 }
21112
5ee91343 21113 if (now_pred.block_length > 1)
5a01bb1d 21114 {
5c3696f8 21115 as_tsktsk (_("IT blocks containing more than one conditional "
df9909b8
TP
21116 "instruction are performance deprecated in ARMv8-A and "
21117 "ARMv8-R"));
5ee91343 21118 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21119 }
21120 }
21121
5ee91343
AV
21122 is_last = (now_pred.mask == 0x10);
21123 if (is_last)
21124 {
21125 now_pred.state = OUTSIDE_PRED_BLOCK;
21126 now_pred.mask = 0;
21127 }
e07e6e58
NC
21128}
21129
21130static void
21131force_automatic_it_block_close (void)
21132{
5ee91343 21133 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
e07e6e58
NC
21134 {
21135 close_automatic_it_block ();
5ee91343
AV
21136 now_pred.state = OUTSIDE_PRED_BLOCK;
21137 now_pred.mask = 0;
e07e6e58
NC
21138 }
21139}
21140
21141static int
5ee91343 21142in_pred_block (void)
e07e6e58 21143{
5ee91343
AV
21144 if (!now_pred.state_handled)
21145 handle_pred_state ();
e07e6e58 21146
5ee91343 21147 return now_pred.state != OUTSIDE_PRED_BLOCK;
e07e6e58
NC
21148}
21149
ff8646ee
TP
21150/* Whether OPCODE only has T32 encoding. Since this function is only used by
21151 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21152 here, hence the "known" in the function name. */
fc289b0a
TP
21153
21154static bfd_boolean
ff8646ee 21155known_t32_only_insn (const struct asm_opcode *opcode)
fc289b0a
TP
21156{
21157 /* Original Thumb-1 wide instruction. */
21158 if (opcode->tencode == do_t_blx
21159 || opcode->tencode == do_t_branch23
21160 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
21161 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
21162 return TRUE;
21163
16a1fa25
TP
21164 /* Wide-only instruction added to ARMv8-M Baseline. */
21165 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
ff8646ee
TP
21166 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
21167 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
21168 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
21169 return TRUE;
21170
21171 return FALSE;
21172}
21173
21174/* Whether wide instruction variant can be used if available for a valid OPCODE
21175 in ARCH. */
21176
21177static bfd_boolean
21178t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
21179{
21180 if (known_t32_only_insn (opcode))
21181 return TRUE;
21182
21183 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21184 of variant T3 of B.W is checked in do_t_branch. */
21185 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21186 && opcode->tencode == do_t_branch)
21187 return TRUE;
21188
bada4342
JW
21189 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21190 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21191 && opcode->tencode == do_t_mov_cmp
21192 /* Make sure CMP instruction is not affected. */
21193 && opcode->aencode == do_mov)
21194 return TRUE;
21195
ff8646ee
TP
21196 /* Wide instruction variants of all instructions with narrow *and* wide
21197 variants become available with ARMv6t2. Other opcodes are either
21198 narrow-only or wide-only and are thus available if OPCODE is valid. */
21199 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
21200 return TRUE;
21201
21202 /* OPCODE with narrow only instruction variant or wide variant not
21203 available. */
fc289b0a
TP
21204 return FALSE;
21205}
21206
c19d1205
ZW
21207void
21208md_assemble (char *str)
b99bd4ef 21209{
c19d1205
ZW
21210 char *p = str;
21211 const struct asm_opcode * opcode;
b99bd4ef 21212
c19d1205
ZW
21213 /* Align the previous label if needed. */
21214 if (last_label_seen != NULL)
b99bd4ef 21215 {
c19d1205
ZW
21216 symbol_set_frag (last_label_seen, frag_now);
21217 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
21218 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
21219 }
21220
c19d1205 21221 memset (&inst, '\0', sizeof (inst));
e2b0ab59
AV
21222 int r;
21223 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21224 inst.relocs[r].type = BFD_RELOC_UNUSED;
b99bd4ef 21225
c19d1205
ZW
21226 opcode = opcode_lookup (&p);
21227 if (!opcode)
b99bd4ef 21228 {
c19d1205 21229 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 21230 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d 21231 if (! create_register_alias (str, p)
477330fc 21232 && ! create_neon_reg_alias (str, p))
c19d1205 21233 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 21234
b99bd4ef
NC
21235 return;
21236 }
21237
278df34e 21238 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
5c3696f8 21239 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
088fa78e 21240
037e8744
JB
21241 /* The value which unconditional instructions should have in place of the
21242 condition field. */
21243 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
21244
c19d1205 21245 if (thumb_mode)
b99bd4ef 21246 {
e74cfd16 21247 arm_feature_set variant;
8f06b2d8
PB
21248
21249 variant = cpu_variant;
21250 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
21251 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
21252 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 21253 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
21254 if (!opcode->tvariant
21255 || (thumb_mode == 1
21256 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 21257 {
173205ca
TP
21258 if (opcode->tencode == do_t_swi)
21259 as_bad (_("SVC is not permitted on this architecture"));
21260 else
21261 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
b99bd4ef
NC
21262 return;
21263 }
c19d1205
ZW
21264 if (inst.cond != COND_ALWAYS && !unified_syntax
21265 && opcode->tencode != do_t_branch)
b99bd4ef 21266 {
c19d1205 21267 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
21268 return;
21269 }
21270
fc289b0a
TP
21271 /* Two things are addressed here:
21272 1) Implicit require narrow instructions on Thumb-1.
21273 This avoids relaxation accidentally introducing Thumb-2
21274 instructions.
21275 2) Reject wide instructions in non Thumb-2 cores.
21276
21277 Only instructions with narrow and wide variants need to be handled
21278 but selecting all non wide-only instructions is easier. */
21279 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
ff8646ee 21280 && !t32_insn_ok (variant, opcode))
076d447c 21281 {
fc289b0a
TP
21282 if (inst.size_req == 0)
21283 inst.size_req = 2;
21284 else if (inst.size_req == 4)
752d5da4 21285 {
ff8646ee
TP
21286 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
21287 as_bad (_("selected processor does not support 32bit wide "
21288 "variant of instruction `%s'"), str);
21289 else
21290 as_bad (_("selected processor does not support `%s' in "
21291 "Thumb-2 mode"), str);
fc289b0a 21292 return;
752d5da4 21293 }
076d447c
PB
21294 }
21295
c19d1205
ZW
21296 inst.instruction = opcode->tvalue;
21297
5be8be5d 21298 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
477330fc 21299 {
5ee91343 21300 /* Prepare the pred_insn_type for those encodings that don't set
477330fc
RM
21301 it. */
21302 it_fsm_pre_encode ();
c19d1205 21303
477330fc 21304 opcode->tencode ();
e07e6e58 21305
477330fc
RM
21306 it_fsm_post_encode ();
21307 }
e27ec89e 21308
0110f2b8 21309 if (!(inst.error || inst.relax))
b99bd4ef 21310 {
9c2799c2 21311 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
21312 inst.size = (inst.instruction > 0xffff ? 4 : 2);
21313 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 21314 {
c19d1205 21315 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
21316 return;
21317 }
21318 }
076d447c
PB
21319
21320 /* Something has gone badly wrong if we try to relax a fixed size
477330fc 21321 instruction. */
9c2799c2 21322 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 21323
e74cfd16
PB
21324 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21325 *opcode->tvariant);
ee065d83 21326 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
fc289b0a
TP
21327 set those bits when Thumb-2 32-bit instructions are seen. The impact
21328 of relaxable instructions will be considered later after we finish all
21329 relaxation. */
ff8646ee
TP
21330 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
21331 variant = arm_arch_none;
21332 else
21333 variant = cpu_variant;
21334 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
e74cfd16
PB
21335 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21336 arm_ext_v6t2);
cd000bff 21337
88714cb8
DG
21338 check_neon_suffixes;
21339
cd000bff 21340 if (!inst.error)
c877a2f2
NC
21341 {
21342 mapping_state (MAP_THUMB);
21343 }
c19d1205 21344 }
3e9e4fcf 21345 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 21346 {
845b51d6
PB
21347 bfd_boolean is_bx;
21348
21349 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
21350 is_bx = (opcode->aencode == do_bx);
21351
c19d1205 21352 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
21353 if (!(is_bx && fix_v4bx)
21354 && !(opcode->avariant &&
21355 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 21356 {
84b52b66 21357 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
c19d1205 21358 return;
b99bd4ef 21359 }
c19d1205 21360 if (inst.size_req)
b99bd4ef 21361 {
c19d1205
ZW
21362 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
21363 return;
b99bd4ef
NC
21364 }
21365
c19d1205
ZW
21366 inst.instruction = opcode->avalue;
21367 if (opcode->tag == OT_unconditionalF)
eff0bc54 21368 inst.instruction |= 0xFU << 28;
c19d1205
ZW
21369 else
21370 inst.instruction |= inst.cond << 28;
21371 inst.size = INSN_SIZE;
5be8be5d 21372 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
477330fc
RM
21373 {
21374 it_fsm_pre_encode ();
21375 opcode->aencode ();
21376 it_fsm_post_encode ();
21377 }
ee065d83 21378 /* Arm mode bx is marked as both v4T and v5 because it's still required
477330fc 21379 on a hypothetical non-thumb v5 core. */
845b51d6 21380 if (is_bx)
e74cfd16 21381 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 21382 else
e74cfd16
PB
21383 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
21384 *opcode->avariant);
88714cb8
DG
21385
21386 check_neon_suffixes;
21387
cd000bff 21388 if (!inst.error)
c877a2f2
NC
21389 {
21390 mapping_state (MAP_ARM);
21391 }
b99bd4ef 21392 }
3e9e4fcf
JB
21393 else
21394 {
21395 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
21396 "-- `%s'"), str);
21397 return;
21398 }
c19d1205
ZW
21399 output_inst (str);
21400}
b99bd4ef 21401
e07e6e58 21402static void
5ee91343 21403check_pred_blocks_finished (void)
e07e6e58
NC
21404{
21405#ifdef OBJ_ELF
21406 asection *sect;
21407
21408 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
5ee91343
AV
21409 if (seg_info (sect)->tc_segment_info_data.current_pred.state
21410 == MANUAL_PRED_BLOCK)
e07e6e58 21411 {
5ee91343
AV
21412 if (now_pred.type == SCALAR_PRED)
21413 as_warn (_("section '%s' finished with an open IT block."),
21414 sect->name);
21415 else
21416 as_warn (_("section '%s' finished with an open VPT/VPST block."),
21417 sect->name);
e07e6e58
NC
21418 }
21419#else
5ee91343
AV
21420 if (now_pred.state == MANUAL_PRED_BLOCK)
21421 {
21422 if (now_pred.type == SCALAR_PRED)
21423 as_warn (_("file finished with an open IT block."));
21424 else
21425 as_warn (_("file finished with an open VPT/VPST block."));
21426 }
e07e6e58
NC
21427#endif
21428}
21429
c19d1205
ZW
21430/* Various frobbings of labels and their addresses. */
21431
21432void
21433arm_start_line_hook (void)
21434{
21435 last_label_seen = NULL;
b99bd4ef
NC
21436}
21437
c19d1205
ZW
21438void
21439arm_frob_label (symbolS * sym)
b99bd4ef 21440{
c19d1205 21441 last_label_seen = sym;
b99bd4ef 21442
c19d1205 21443 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 21444
c19d1205
ZW
21445#if defined OBJ_COFF || defined OBJ_ELF
21446 ARM_SET_INTERWORK (sym, support_interwork);
21447#endif
b99bd4ef 21448
e07e6e58
NC
21449 force_automatic_it_block_close ();
21450
5f4273c7 21451 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
21452 as Thumb functions. This is because these labels, whilst
21453 they exist inside Thumb code, are not the entry points for
21454 possible ARM->Thumb calls. Also, these labels can be used
21455 as part of a computed goto or switch statement. eg gcc
21456 can generate code that looks like this:
b99bd4ef 21457
c19d1205
ZW
21458 ldr r2, [pc, .Laaa]
21459 lsl r3, r3, #2
21460 ldr r2, [r3, r2]
21461 mov pc, r2
b99bd4ef 21462
c19d1205
ZW
21463 .Lbbb: .word .Lxxx
21464 .Lccc: .word .Lyyy
21465 ..etc...
21466 .Laaa: .word Lbbb
b99bd4ef 21467
c19d1205
ZW
21468 The first instruction loads the address of the jump table.
21469 The second instruction converts a table index into a byte offset.
21470 The third instruction gets the jump address out of the table.
21471 The fourth instruction performs the jump.
b99bd4ef 21472
c19d1205
ZW
21473 If the address stored at .Laaa is that of a symbol which has the
21474 Thumb_Func bit set, then the linker will arrange for this address
21475 to have the bottom bit set, which in turn would mean that the
21476 address computation performed by the third instruction would end
21477 up with the bottom bit set. Since the ARM is capable of unaligned
21478 word loads, the instruction would then load the incorrect address
21479 out of the jump table, and chaos would ensue. */
21480 if (label_is_thumb_function_name
21481 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
21482 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 21483 {
c19d1205
ZW
21484 /* When the address of a Thumb function is taken the bottom
21485 bit of that address should be set. This will allow
21486 interworking between Arm and Thumb functions to work
21487 correctly. */
b99bd4ef 21488
c19d1205 21489 THUMB_SET_FUNC (sym, 1);
b99bd4ef 21490
c19d1205 21491 label_is_thumb_function_name = FALSE;
b99bd4ef 21492 }
07a53e5c 21493
07a53e5c 21494 dwarf2_emit_label (sym);
b99bd4ef
NC
21495}
21496
c921be7d 21497bfd_boolean
c19d1205 21498arm_data_in_code (void)
b99bd4ef 21499{
c19d1205 21500 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 21501 {
c19d1205
ZW
21502 *input_line_pointer = '/';
21503 input_line_pointer += 5;
21504 *input_line_pointer = 0;
c921be7d 21505 return TRUE;
b99bd4ef
NC
21506 }
21507
c921be7d 21508 return FALSE;
b99bd4ef
NC
21509}
21510
c19d1205
ZW
21511char *
21512arm_canonicalize_symbol_name (char * name)
b99bd4ef 21513{
c19d1205 21514 int len;
b99bd4ef 21515
c19d1205
ZW
21516 if (thumb_mode && (len = strlen (name)) > 5
21517 && streq (name + len - 5, "/data"))
21518 *(name + len - 5) = 0;
b99bd4ef 21519
c19d1205 21520 return name;
b99bd4ef 21521}
c19d1205
ZW
21522\f
21523/* Table of all register names defined by default. The user can
21524 define additional names with .req. Note that all register names
21525 should appear in both upper and lowercase variants. Some registers
21526 also have mixed-case names. */
b99bd4ef 21527
dcbf9037 21528#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 21529#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 21530#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
21531#define REGSET(p,t) \
21532 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
21533 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
21534 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
21535 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
21536#define REGSETH(p,t) \
21537 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
21538 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
21539 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
21540 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
21541#define REGSET2(p,t) \
21542 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
21543 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
21544 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
21545 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
21546#define SPLRBANK(base,bank,t) \
21547 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
21548 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
21549 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
21550 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
21551 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
21552 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 21553
c19d1205 21554static const struct reg_entry reg_names[] =
7ed4c4c5 21555{
c19d1205
ZW
21556 /* ARM integer registers. */
21557 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 21558
c19d1205
ZW
21559 /* ATPCS synonyms. */
21560 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
21561 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
21562 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 21563
c19d1205
ZW
21564 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
21565 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
21566 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 21567
c19d1205
ZW
21568 /* Well-known aliases. */
21569 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
21570 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
21571
21572 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
21573 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
21574
1b883319
AV
21575 /* Defining the new Zero register from ARMv8.1-M. */
21576 REGDEF(zr,15,ZR),
21577 REGDEF(ZR,15,ZR),
21578
c19d1205
ZW
21579 /* Coprocessor numbers. */
21580 REGSET(p, CP), REGSET(P, CP),
21581
21582 /* Coprocessor register numbers. The "cr" variants are for backward
21583 compatibility. */
21584 REGSET(c, CN), REGSET(C, CN),
21585 REGSET(cr, CN), REGSET(CR, CN),
21586
90ec0d68
MGD
21587 /* ARM banked registers. */
21588 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
21589 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
21590 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
21591 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
21592 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
21593 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
21594 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
21595
21596 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
21597 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
21598 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
21599 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
21600 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
1472d06f 21601 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
90ec0d68
MGD
21602 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
21603 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
21604
21605 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
21606 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
21607 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
21608 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
21609 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
21610 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
21611 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 21612 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
21613 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
21614
c19d1205
ZW
21615 /* FPA registers. */
21616 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
21617 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
21618
21619 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
21620 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
21621
21622 /* VFP SP registers. */
5287ad62
JB
21623 REGSET(s,VFS), REGSET(S,VFS),
21624 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
21625
21626 /* VFP DP Registers. */
5287ad62
JB
21627 REGSET(d,VFD), REGSET(D,VFD),
21628 /* Extra Neon DP registers. */
21629 REGSETH(d,VFD), REGSETH(D,VFD),
21630
21631 /* Neon QP registers. */
21632 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
21633
21634 /* VFP control registers. */
21635 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
21636 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
21637 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
21638 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
21639 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
21640 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
40c7d507 21641 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
c19d1205
ZW
21642
21643 /* Maverick DSP coprocessor registers. */
21644 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
21645 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
21646
21647 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
21648 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
21649 REGDEF(dspsc,0,DSPSC),
21650
21651 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
21652 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
21653 REGDEF(DSPSC,0,DSPSC),
21654
21655 /* iWMMXt data registers - p0, c0-15. */
21656 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
21657
21658 /* iWMMXt control registers - p1, c0-3. */
21659 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
21660 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
21661 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
21662 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
21663
21664 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
21665 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
21666 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
21667 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
21668 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
21669
21670 /* XScale accumulator registers. */
21671 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
21672};
21673#undef REGDEF
21674#undef REGNUM
21675#undef REGSET
7ed4c4c5 21676
c19d1205
ZW
21677/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
21678 within psr_required_here. */
21679static const struct asm_psr psrs[] =
21680{
21681 /* Backward compatibility notation. Note that "all" is no longer
21682 truly all possible PSR bits. */
21683 {"all", PSR_c | PSR_f},
21684 {"flg", PSR_f},
21685 {"ctl", PSR_c},
21686
21687 /* Individual flags. */
21688 {"f", PSR_f},
21689 {"c", PSR_c},
21690 {"x", PSR_x},
21691 {"s", PSR_s},
59b42a0d 21692
c19d1205
ZW
21693 /* Combinations of flags. */
21694 {"fs", PSR_f | PSR_s},
21695 {"fx", PSR_f | PSR_x},
21696 {"fc", PSR_f | PSR_c},
21697 {"sf", PSR_s | PSR_f},
21698 {"sx", PSR_s | PSR_x},
21699 {"sc", PSR_s | PSR_c},
21700 {"xf", PSR_x | PSR_f},
21701 {"xs", PSR_x | PSR_s},
21702 {"xc", PSR_x | PSR_c},
21703 {"cf", PSR_c | PSR_f},
21704 {"cs", PSR_c | PSR_s},
21705 {"cx", PSR_c | PSR_x},
21706 {"fsx", PSR_f | PSR_s | PSR_x},
21707 {"fsc", PSR_f | PSR_s | PSR_c},
21708 {"fxs", PSR_f | PSR_x | PSR_s},
21709 {"fxc", PSR_f | PSR_x | PSR_c},
21710 {"fcs", PSR_f | PSR_c | PSR_s},
21711 {"fcx", PSR_f | PSR_c | PSR_x},
21712 {"sfx", PSR_s | PSR_f | PSR_x},
21713 {"sfc", PSR_s | PSR_f | PSR_c},
21714 {"sxf", PSR_s | PSR_x | PSR_f},
21715 {"sxc", PSR_s | PSR_x | PSR_c},
21716 {"scf", PSR_s | PSR_c | PSR_f},
21717 {"scx", PSR_s | PSR_c | PSR_x},
21718 {"xfs", PSR_x | PSR_f | PSR_s},
21719 {"xfc", PSR_x | PSR_f | PSR_c},
21720 {"xsf", PSR_x | PSR_s | PSR_f},
21721 {"xsc", PSR_x | PSR_s | PSR_c},
21722 {"xcf", PSR_x | PSR_c | PSR_f},
21723 {"xcs", PSR_x | PSR_c | PSR_s},
21724 {"cfs", PSR_c | PSR_f | PSR_s},
21725 {"cfx", PSR_c | PSR_f | PSR_x},
21726 {"csf", PSR_c | PSR_s | PSR_f},
21727 {"csx", PSR_c | PSR_s | PSR_x},
21728 {"cxf", PSR_c | PSR_x | PSR_f},
21729 {"cxs", PSR_c | PSR_x | PSR_s},
21730 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
21731 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
21732 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
21733 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
21734 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
21735 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
21736 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
21737 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
21738 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
21739 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
21740 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
21741 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
21742 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
21743 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
21744 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
21745 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
21746 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
21747 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
21748 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
21749 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
21750 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
21751 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
21752 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
21753 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
21754};
21755
62b3e311
PB
21756/* Table of V7M psr names. */
21757static const struct asm_psr v7m_psrs[] =
21758{
1a336194
TP
21759 {"apsr", 0x0 }, {"APSR", 0x0 },
21760 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
21761 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
21762 {"psr", 0x3 }, {"PSR", 0x3 },
21763 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
21764 {"ipsr", 0x5 }, {"IPSR", 0x5 },
21765 {"epsr", 0x6 }, {"EPSR", 0x6 },
21766 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
21767 {"msp", 0x8 }, {"MSP", 0x8 },
21768 {"psp", 0x9 }, {"PSP", 0x9 },
21769 {"msplim", 0xa }, {"MSPLIM", 0xa },
21770 {"psplim", 0xb }, {"PSPLIM", 0xb },
21771 {"primask", 0x10}, {"PRIMASK", 0x10},
21772 {"basepri", 0x11}, {"BASEPRI", 0x11},
21773 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
1a336194
TP
21774 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
21775 {"control", 0x14}, {"CONTROL", 0x14},
21776 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
21777 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
21778 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
21779 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
21780 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
21781 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
21782 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
21783 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
21784 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
62b3e311
PB
21785};
21786
c19d1205
ZW
21787/* Table of all shift-in-operand names. */
21788static const struct asm_shift_name shift_names [] =
b99bd4ef 21789{
c19d1205
ZW
21790 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
21791 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
21792 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
21793 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
21794 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
f5f10c66
AV
21795 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
21796 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
c19d1205 21797};
b99bd4ef 21798
c19d1205
ZW
21799/* Table of all explicit relocation names. */
21800#ifdef OBJ_ELF
21801static struct reloc_entry reloc_names[] =
21802{
21803 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
21804 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
21805 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
21806 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
21807 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
21808 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
21809 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
21810 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
21811 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
21812 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 21813 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
21814 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
21815 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
477330fc 21816 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
0855e32b 21817 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
477330fc 21818 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
0855e32b 21819 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
188fd7ae
CL
21820 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
21821 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
21822 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
21823 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
21824 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
21825 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
5c5a4843
CL
21826 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
21827 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
21828 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
21829 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
c19d1205
ZW
21830};
21831#endif
b99bd4ef 21832
5ee91343 21833/* Table of all conditional affixes. */
c19d1205
ZW
21834static const struct asm_cond conds[] =
21835{
21836 {"eq", 0x0},
21837 {"ne", 0x1},
21838 {"cs", 0x2}, {"hs", 0x2},
21839 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
21840 {"mi", 0x4},
21841 {"pl", 0x5},
21842 {"vs", 0x6},
21843 {"vc", 0x7},
21844 {"hi", 0x8},
21845 {"ls", 0x9},
21846 {"ge", 0xa},
21847 {"lt", 0xb},
21848 {"gt", 0xc},
21849 {"le", 0xd},
21850 {"al", 0xe}
21851};
5ee91343
AV
21852static const struct asm_cond vconds[] =
21853{
21854 {"t", 0xf},
21855 {"e", 0x10}
21856};
bfae80f2 21857
e797f7e0 21858#define UL_BARRIER(L,U,CODE,FEAT) \
823d2571
TG
21859 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
21860 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
e797f7e0 21861
62b3e311
PB
21862static struct asm_barrier_opt barrier_opt_names[] =
21863{
e797f7e0
MGD
21864 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
21865 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
21866 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
21867 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
21868 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
21869 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
21870 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
21871 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
21872 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
21873 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
21874 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
21875 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
21876 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
21877 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
21878 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
21879 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
21880};
21881
e797f7e0
MGD
21882#undef UL_BARRIER
21883
c19d1205
ZW
21884/* Table of ARM-format instructions. */
21885
21886/* Macros for gluing together operand strings. N.B. In all cases
21887 other than OPS0, the trailing OP_stop comes from default
21888 zero-initialization of the unspecified elements of the array. */
21889#define OPS0() { OP_stop, }
21890#define OPS1(a) { OP_##a, }
21891#define OPS2(a,b) { OP_##a,OP_##b, }
21892#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
21893#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
21894#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
21895#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
21896
5be8be5d
DG
21897/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
21898 This is useful when mixing operands for ARM and THUMB, i.e. using the
21899 MIX_ARM_THUMB_OPERANDS macro.
21900 In order to use these macros, prefix the number of operands with _
21901 e.g. _3. */
21902#define OPS_1(a) { a, }
21903#define OPS_2(a,b) { a,b, }
21904#define OPS_3(a,b,c) { a,b,c, }
21905#define OPS_4(a,b,c,d) { a,b,c,d, }
21906#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
21907#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
21908
c19d1205
ZW
21909/* These macros abstract out the exact format of the mnemonic table and
21910 save some repeated characters. */
21911
21912/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
21913#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 21914 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
5ee91343 21915 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
21916
21917/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
21918 a T_MNEM_xyz enumerator. */
21919#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 21920 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 21921#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 21922 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
21923
21924/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
21925 infix after the third character. */
21926#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 21927 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
5ee91343 21928 THUMB_VARIANT, do_##ae, do_##te, 0 }
088fa78e 21929#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 21930 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
5ee91343 21931 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 21932#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 21933 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 21934#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 21935 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 21936#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 21937 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 21938#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 21939 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205 21940
c19d1205 21941/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
21942 field is still 0xE. Many of the Thumb variants can be executed
21943 conditionally, so this is checked separately. */
c19d1205 21944#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 21945 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 21946 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 21947
dd5181d5
KT
21948/* Same as TUE but the encoding function for ARM and Thumb modes is the same.
21949 Used by mnemonics that have very minimal differences in the encoding for
21950 ARM and Thumb variants and can be handled in a common function. */
21951#define TUEc(mnem, op, top, nops, ops, en) \
21952 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 21953 THUMB_VARIANT, do_##en, do_##en, 0 }
dd5181d5 21954
c19d1205
ZW
21955/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
21956 condition code field. */
21957#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 21958 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 21959 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
21960
21961/* ARM-only variants of all the above. */
6a86118a 21962#define CE(mnem, op, nops, ops, ae) \
5ee91343 21963 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
21964
21965#define C3(mnem, op, nops, ops, ae) \
5ee91343 21966 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 21967
cf3cf39d
TP
21968/* Thumb-only variants of TCE and TUE. */
21969#define ToC(mnem, top, nops, ops, te) \
21970 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
5ee91343 21971 do_##te, 0 }
cf3cf39d
TP
21972
21973#define ToU(mnem, top, nops, ops, te) \
21974 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
5ee91343 21975 NULL, do_##te, 0 }
cf3cf39d 21976
4389b29a
AV
21977/* T_MNEM_xyz enumerator variants of ToC. */
21978#define toC(mnem, top, nops, ops, te) \
21979 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
5ee91343 21980 do_##te, 0 }
4389b29a 21981
f6b2b12d
AV
21982/* T_MNEM_xyz enumerator variants of ToU. */
21983#define toU(mnem, top, nops, ops, te) \
21984 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
5ee91343 21985 NULL, do_##te, 0 }
f6b2b12d 21986
e3cb604e
PB
21987/* Legacy mnemonics that always have conditional infix after the third
21988 character. */
21989#define CL(mnem, op, nops, ops, ae) \
21d799b5 21990 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 21991 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
e3cb604e 21992
8f06b2d8
PB
21993/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
21994#define cCE(mnem, op, nops, ops, ae) \
5ee91343 21995 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 21996
57785aa2
AV
21997/* mov instructions that are shared between coprocessor and MVE. */
21998#define mcCE(mnem, op, nops, ops, ae) \
21999 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22000
e3cb604e
PB
22001/* Legacy coprocessor instructions where conditional infix and conditional
22002 suffix are ambiguous. For consistency this includes all FPA instructions,
22003 not just the potentially ambiguous ones. */
22004#define cCL(mnem, op, nops, ops, ae) \
21d799b5 22005 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 22006 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
e3cb604e
PB
22007
22008/* Coprocessor, takes either a suffix or a position-3 infix
22009 (for an FPA corner case). */
22010#define C3E(mnem, op, nops, ops, ae) \
21d799b5 22011 { mnem, OPS##nops ops, OT_csuf_or_in3, \
5ee91343 22012 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 22013
6a86118a 22014#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
22015 { m1 #m2 m3, OPS##nops ops, \
22016 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
5ee91343 22017 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22018
22019#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
22020 xCM_ (m1, , m2, op, nops, ops, ae), \
22021 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22022 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22023 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22024 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22025 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22026 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22027 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22028 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22029 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22030 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22031 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22032 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22033 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22034 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22035 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22036 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22037 xCM_ (m1, le, m2, op, nops, ops, ae), \
22038 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
22039
22040#define UE(mnem, op, nops, ops, ae) \
5ee91343 22041 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22042
22043#define UF(mnem, op, nops, ops, ae) \
5ee91343 22044 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 22045
5287ad62
JB
22046/* Neon data-processing. ARM versions are unconditional with cond=0xf.
22047 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
22048 use the same encoding function for each. */
22049#define NUF(mnem, op, nops, ops, enc) \
22050 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
5ee91343 22051 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
22052
22053/* Neon data processing, version which indirects through neon_enc_tab for
22054 the various overloaded versions of opcodes. */
22055#define nUF(mnem, op, nops, ops, enc) \
21d799b5 22056 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5ee91343 22057 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
22058
22059/* Neon insn with conditional suffix for the ARM version, non-overloaded
22060 version. */
5ee91343 22061#define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
037e8744 22062 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5ee91343 22063 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 22064
037e8744 22065#define NCE(mnem, op, nops, ops, enc) \
5ee91343 22066 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
22067
22068#define NCEF(mnem, op, nops, ops, enc) \
5ee91343 22069 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
037e8744 22070
5287ad62 22071/* Neon insn with conditional suffix for the ARM version, overloaded types. */
5ee91343 22072#define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
21d799b5 22073 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5ee91343 22074 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 22075
037e8744 22076#define nCE(mnem, op, nops, ops, enc) \
5ee91343 22077 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
22078
22079#define nCEF(mnem, op, nops, ops, enc) \
5ee91343
AV
22080 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22081
22082/* */
22083#define mCEF(mnem, op, nops, ops, enc) \
a302e574 22084 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
5ee91343
AV
22085 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22086
22087
22088/* nCEF but for MVE predicated instructions. */
22089#define mnCEF(mnem, op, nops, ops, enc) \
22090 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22091
22092/* nCE but for MVE predicated instructions. */
22093#define mnCE(mnem, op, nops, ops, enc) \
22094 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
037e8744 22095
5ee91343
AV
22096/* NUF but for potentially MVE predicated instructions. */
22097#define MNUF(mnem, op, nops, ops, enc) \
22098 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22099 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22100
22101/* nUF but for potentially MVE predicated instructions. */
22102#define mnUF(mnem, op, nops, ops, enc) \
22103 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22104 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22105
22106/* ToC but for potentially MVE predicated instructions. */
22107#define mToC(mnem, top, nops, ops, te) \
22108 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22109 do_##te, 1 }
22110
22111/* NCE but for MVE predicated instructions. */
22112#define MNCE(mnem, op, nops, ops, enc) \
22113 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22114
22115/* NCEF but for MVE predicated instructions. */
22116#define MNCEF(mnem, op, nops, ops, enc) \
22117 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
c19d1205
ZW
22118#define do_0 0
22119
c19d1205 22120static const struct asm_opcode insns[] =
bfae80f2 22121{
74db7efb
NC
22122#define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22123#define THUMB_VARIANT & arm_ext_v4t
21d799b5
NC
22124 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
22125 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
22126 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
22127 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
22128 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
22129 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
22130 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
22131 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
22132 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
22133 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
22134 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
22135 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
22136 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
22137 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
22138 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
22139 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
22140
22141 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22142 for setting PSR flag bits. They are obsolete in V6 and do not
22143 have Thumb equivalents. */
21d799b5
NC
22144 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22145 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22146 CL("tstp", 110f000, 2, (RR, SH), cmp),
22147 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22148 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22149 CL("cmpp", 150f000, 2, (RR, SH), cmp),
22150 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22151 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22152 CL("cmnp", 170f000, 2, (RR, SH), cmp),
22153
22154 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
72d98d16 22155 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
21d799b5
NC
22156 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
22157 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
22158
22159 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
22160 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22161 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
22162 OP_RRnpc),
22163 OP_ADDRGLDR),ldst, t_ldst),
22164 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
22165
22166 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22167 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22168 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22169 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22170 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22171 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22172
21d799b5
NC
22173 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
22174 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 22175
c19d1205 22176 /* Pseudo ops. */
21d799b5 22177 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 22178 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 22179 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
74db7efb 22180 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
c19d1205
ZW
22181
22182 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
22183 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
22184 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
22185 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
22186 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
22187 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
22188 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
22189 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
22190 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
22191 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
22192 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
22193 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
22194 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 22195
16a4cf17 22196 /* These may simplify to neg. */
21d799b5
NC
22197 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
22198 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 22199
173205ca
TP
22200#undef THUMB_VARIANT
22201#define THUMB_VARIANT & arm_ext_os
22202
22203 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
22204 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
22205
c921be7d
NC
22206#undef THUMB_VARIANT
22207#define THUMB_VARIANT & arm_ext_v6
22208
21d799b5 22209 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
22210
22211 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
22212#undef THUMB_VARIANT
22213#define THUMB_VARIANT & arm_ext_v6t2
22214
21d799b5
NC
22215 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22216 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22217 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 22218
5be8be5d
DG
22219 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22220 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22221 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
22222 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 22223
21d799b5
NC
22224 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22225 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 22226
21d799b5
NC
22227 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22228 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
22229
22230 /* V1 instructions with no Thumb analogue at all. */
21d799b5 22231 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
22232 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
22233
22234 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
22235 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
22236 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
22237 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
22238 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
22239 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
22240 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
22241 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
22242
c921be7d
NC
22243#undef ARM_VARIANT
22244#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22245#undef THUMB_VARIANT
22246#define THUMB_VARIANT & arm_ext_v4t
22247
21d799b5
NC
22248 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22249 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 22250
c921be7d
NC
22251#undef THUMB_VARIANT
22252#define THUMB_VARIANT & arm_ext_v6t2
22253
21d799b5 22254 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
22255 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
22256
22257 /* Generic coprocessor instructions. */
21d799b5
NC
22258 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22259 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22260 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22261 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22262 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22263 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 22264 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 22265
c921be7d
NC
22266#undef ARM_VARIANT
22267#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
22268
21d799b5 22269 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
22270 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22271
c921be7d
NC
22272#undef ARM_VARIANT
22273#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
22274#undef THUMB_VARIANT
22275#define THUMB_VARIANT & arm_ext_msr
22276
d2cd1205
JB
22277 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
22278 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 22279
c921be7d
NC
22280#undef ARM_VARIANT
22281#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
22282#undef THUMB_VARIANT
22283#define THUMB_VARIANT & arm_ext_v6t2
22284
21d799b5
NC
22285 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22286 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22287 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22288 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22289 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22290 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22291 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22292 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 22293
c921be7d
NC
22294#undef ARM_VARIANT
22295#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
22296#undef THUMB_VARIANT
22297#define THUMB_VARIANT & arm_ext_v4t
22298
5be8be5d
DG
22299 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22300 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22301 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22302 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
56c0a61f
RE
22303 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22304 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 22305
c921be7d
NC
22306#undef ARM_VARIANT
22307#define ARM_VARIANT & arm_ext_v4t_5
22308
c19d1205
ZW
22309 /* ARM Architecture 4T. */
22310 /* Note: bx (and blx) are required on V5, even if the processor does
22311 not support Thumb. */
21d799b5 22312 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 22313
c921be7d
NC
22314#undef ARM_VARIANT
22315#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
22316#undef THUMB_VARIANT
22317#define THUMB_VARIANT & arm_ext_v5t
22318
c19d1205
ZW
22319 /* Note: blx has 2 variants; the .value coded here is for
22320 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
22321 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
22322 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 22323
c921be7d
NC
22324#undef THUMB_VARIANT
22325#define THUMB_VARIANT & arm_ext_v6t2
22326
21d799b5
NC
22327 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
22328 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22329 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22330 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22331 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22332 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22333 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22334 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 22335
c921be7d 22336#undef ARM_VARIANT
74db7efb
NC
22337#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
22338#undef THUMB_VARIANT
22339#define THUMB_VARIANT & arm_ext_v5exp
c921be7d 22340
21d799b5
NC
22341 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22342 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22343 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22344 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 22345
21d799b5
NC
22346 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22347 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 22348
21d799b5
NC
22349 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22350 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22351 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22352 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 22353
21d799b5
NC
22354 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22355 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22356 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22357 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 22358
21d799b5
NC
22359 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22360 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 22361
03ee1b7f
NC
22362 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22363 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22364 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22365 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 22366
c921be7d 22367#undef ARM_VARIANT
74db7efb
NC
22368#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
22369#undef THUMB_VARIANT
22370#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 22371
21d799b5 22372 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
22373 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
22374 ldrd, t_ldstd),
22375 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
22376 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 22377
21d799b5
NC
22378 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22379 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 22380
c921be7d
NC
22381#undef ARM_VARIANT
22382#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
22383
21d799b5 22384 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 22385
c921be7d
NC
22386#undef ARM_VARIANT
22387#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
22388#undef THUMB_VARIANT
22389#define THUMB_VARIANT & arm_ext_v6
22390
21d799b5
NC
22391 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
22392 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
22393 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22394 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22395 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22396 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22397 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22398 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22399 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22400 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 22401
c921be7d 22402#undef THUMB_VARIANT
ff8646ee 22403#define THUMB_VARIANT & arm_ext_v6t2_v8m
c921be7d 22404
5be8be5d
DG
22405 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
22406 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22407 strex, t_strex),
ff8646ee
TP
22408#undef THUMB_VARIANT
22409#define THUMB_VARIANT & arm_ext_v6t2
22410
21d799b5
NC
22411 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22412 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 22413
21d799b5
NC
22414 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
22415 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 22416
9e3c6df6 22417/* ARM V6 not included in V7M. */
c921be7d
NC
22418#undef THUMB_VARIANT
22419#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6 22420 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6 22421 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
9e3c6df6
PB
22422 UF(rfeib, 9900a00, 1, (RRw), rfe),
22423 UF(rfeda, 8100a00, 1, (RRw), rfe),
22424 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22425 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6
RE
22426 UF(rfefa, 8100a00, 1, (RRw), rfe),
22427 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22428 UF(rfeed, 9900a00, 1, (RRw), rfe),
9e3c6df6 22429 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
d709e4e6
RE
22430 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22431 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
9e3c6df6 22432 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
d709e4e6 22433 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
9e3c6df6 22434 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
d709e4e6 22435 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
9e3c6df6 22436 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
d709e4e6 22437 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
941c9cad 22438 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c921be7d 22439
9e3c6df6
PB
22440/* ARM V6 not included in V7M (eg. integer SIMD). */
22441#undef THUMB_VARIANT
22442#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
22443 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
22444 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
22445 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22446 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22447 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22448 /* Old name for QASX. */
74db7efb 22449 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 22450 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22451 /* Old name for QSAX. */
74db7efb 22452 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22453 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22454 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22455 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22456 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22457 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22458 /* Old name for SASX. */
74db7efb 22459 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22460 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22461 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22462 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22463 /* Old name for SHASX. */
21d799b5 22464 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22465 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22466 /* Old name for SHSAX. */
21d799b5
NC
22467 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22468 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22469 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22470 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22471 /* Old name for SSAX. */
74db7efb 22472 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22473 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22474 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22475 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22476 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22477 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22478 /* Old name for UASX. */
74db7efb 22479 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22480 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22481 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22482 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22483 /* Old name for UHASX. */
21d799b5
NC
22484 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22485 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22486 /* Old name for UHSAX. */
21d799b5
NC
22487 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22488 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22489 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22490 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22491 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22492 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22493 /* Old name for UQASX. */
21d799b5
NC
22494 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22495 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22496 /* Old name for UQSAX. */
21d799b5
NC
22497 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22498 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22499 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22500 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22501 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22502 /* Old name for USAX. */
74db7efb 22503 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 22504 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22505 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22506 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22507 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22508 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22509 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22510 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22511 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22512 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22513 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22514 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22515 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22516 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22517 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22518 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22519 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22520 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22521 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22522 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22523 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22524 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22525 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22526 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22527 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22528 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22529 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22530 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22531 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
22532 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
22533 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
22534 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22535 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22536 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 22537
c921be7d 22538#undef ARM_VARIANT
55e8aae7 22539#define ARM_VARIANT & arm_ext_v6k_v6t2
c921be7d 22540#undef THUMB_VARIANT
55e8aae7 22541#define THUMB_VARIANT & arm_ext_v6k_v6t2
c921be7d 22542
21d799b5
NC
22543 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
22544 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
22545 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
22546 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 22547
c921be7d
NC
22548#undef THUMB_VARIANT
22549#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
22550 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
22551 ldrexd, t_ldrexd),
22552 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
22553 RRnpcb), strexd, t_strexd),
ebdca51a 22554
c921be7d 22555#undef THUMB_VARIANT
ff8646ee 22556#define THUMB_VARIANT & arm_ext_v6t2_v8m
5be8be5d
DG
22557 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
22558 rd_rn, rd_rn),
22559 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
22560 rd_rn, rd_rn),
22561 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 22562 strex, t_strexbh),
5be8be5d 22563 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 22564 strex, t_strexbh),
21d799b5 22565 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 22566
c921be7d 22567#undef ARM_VARIANT
f4c65163 22568#define ARM_VARIANT & arm_ext_sec
74db7efb 22569#undef THUMB_VARIANT
f4c65163 22570#define THUMB_VARIANT & arm_ext_sec
c921be7d 22571
21d799b5 22572 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 22573
90ec0d68
MGD
22574#undef ARM_VARIANT
22575#define ARM_VARIANT & arm_ext_virt
22576#undef THUMB_VARIANT
22577#define THUMB_VARIANT & arm_ext_virt
22578
22579 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
22580 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
22581
ddfded2f
MW
22582#undef ARM_VARIANT
22583#define ARM_VARIANT & arm_ext_pan
22584#undef THUMB_VARIANT
22585#define THUMB_VARIANT & arm_ext_pan
22586
22587 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
22588
c921be7d 22589#undef ARM_VARIANT
74db7efb 22590#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
22591#undef THUMB_VARIANT
22592#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 22593
21d799b5
NC
22594 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
22595 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
22596 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
22597 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 22598
21d799b5 22599 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
21d799b5 22600 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 22601
5be8be5d
DG
22602 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22603 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22604 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22605 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 22606
91d8b670
JG
22607#undef ARM_VARIANT
22608#define ARM_VARIANT & arm_ext_v3
22609#undef THUMB_VARIANT
22610#define THUMB_VARIANT & arm_ext_v6t2
22611
22612 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
c597cc3d
SD
22613 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
22614 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
91d8b670
JG
22615
22616#undef ARM_VARIANT
22617#define ARM_VARIANT & arm_ext_v6t2
ff8646ee
TP
22618#undef THUMB_VARIANT
22619#define THUMB_VARIANT & arm_ext_v6t2_v8m
22620 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
22621 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
22622
bf3eeda7 22623 /* Thumb-only instructions. */
74db7efb 22624#undef ARM_VARIANT
bf3eeda7
NS
22625#define ARM_VARIANT NULL
22626 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
22627 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
22628
22629 /* ARM does not really have an IT instruction, so always allow it.
22630 The opcode is copied from Thumb in order to allow warnings in
22631 -mimplicit-it=[never | arm] modes. */
22632#undef ARM_VARIANT
22633#define ARM_VARIANT & arm_ext_v1
ff8646ee
TP
22634#undef THUMB_VARIANT
22635#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 22636
21d799b5
NC
22637 TUE("it", bf08, bf08, 1, (COND), it, t_it),
22638 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
22639 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
22640 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
22641 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
22642 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
22643 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
22644 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
22645 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
22646 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
22647 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
22648 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
22649 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
22650 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
22651 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 22652 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
22653 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
22654 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 22655
92e90b6e 22656 /* Thumb2 only instructions. */
c921be7d
NC
22657#undef ARM_VARIANT
22658#define ARM_VARIANT NULL
92e90b6e 22659
21d799b5
NC
22660 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22661 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22662 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
22663 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
22664 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
22665 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 22666
eea54501
MGD
22667 /* Hardware division instructions. */
22668#undef ARM_VARIANT
22669#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
22670#undef THUMB_VARIANT
22671#define THUMB_VARIANT & arm_ext_div
22672
eea54501
MGD
22673 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
22674 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 22675
7e806470 22676 /* ARM V6M/V7 instructions. */
c921be7d
NC
22677#undef ARM_VARIANT
22678#define ARM_VARIANT & arm_ext_barrier
22679#undef THUMB_VARIANT
22680#define THUMB_VARIANT & arm_ext_barrier
22681
ccb84d65
JB
22682 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
22683 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
22684 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
7e806470 22685
62b3e311 22686 /* ARM V7 instructions. */
c921be7d
NC
22687#undef ARM_VARIANT
22688#define ARM_VARIANT & arm_ext_v7
22689#undef THUMB_VARIANT
22690#define THUMB_VARIANT & arm_ext_v7
22691
21d799b5
NC
22692 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
22693 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 22694
74db7efb 22695#undef ARM_VARIANT
60e5ef9f 22696#define ARM_VARIANT & arm_ext_mp
74db7efb 22697#undef THUMB_VARIANT
60e5ef9f
MGD
22698#define THUMB_VARIANT & arm_ext_mp
22699
22700 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
22701
53c4b28b
MGD
22702 /* AArchv8 instructions. */
22703#undef ARM_VARIANT
22704#define ARM_VARIANT & arm_ext_v8
4ed7ed8d
TP
22705
22706/* Instructions shared between armv8-a and armv8-m. */
53c4b28b 22707#undef THUMB_VARIANT
4ed7ed8d 22708#define THUMB_VARIANT & arm_ext_atomics
53c4b28b 22709
4ed7ed8d
TP
22710 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22711 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22712 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22713 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22714 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22715 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
4b8c8c02 22716 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
4b8c8c02
RE
22717 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
22718 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22719 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
22720 stlex, t_stlex),
4b8c8c02
RE
22721 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
22722 stlex, t_stlex),
22723 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
22724 stlex, t_stlex),
4ed7ed8d
TP
22725#undef THUMB_VARIANT
22726#define THUMB_VARIANT & arm_ext_v8
53c4b28b 22727
4ed7ed8d 22728 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
4ed7ed8d
TP
22729 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
22730 ldrexd, t_ldrexd),
22731 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
22732 strexd, t_strexd),
f7dd2fb2
TC
22733
22734/* Defined in V8 but is in undefined encoding space for earlier
22735 architectures. However earlier architectures are required to treat
22736 this instuction as a semihosting trap as well. Hence while not explicitly
22737 defined as such, it is in fact correct to define the instruction for all
22738 architectures. */
22739#undef THUMB_VARIANT
22740#define THUMB_VARIANT & arm_ext_v1
22741#undef ARM_VARIANT
22742#define ARM_VARIANT & arm_ext_v1
22743 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
22744
8884b720 22745 /* ARMv8 T32 only. */
74db7efb 22746#undef ARM_VARIANT
b79f7053
MGD
22747#define ARM_VARIANT NULL
22748 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
22749 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
22750 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
22751
33399f07
MGD
22752 /* FP for ARMv8. */
22753#undef ARM_VARIANT
a715796b 22754#define ARM_VARIANT & fpu_vfp_ext_armv8xd
33399f07 22755#undef THUMB_VARIANT
a715796b 22756#define THUMB_VARIANT & fpu_vfp_ext_armv8xd
33399f07
MGD
22757
22758 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
22759 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
22760 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
22761 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
73924fbc
MGD
22762 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
22763 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
30bdf752
MGD
22764 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
22765 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
22766 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
22767 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
22768 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
22769 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
22770 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
33399f07 22771
91ff7894
MGD
22772 /* Crypto v1 extensions. */
22773#undef ARM_VARIANT
22774#define ARM_VARIANT & fpu_crypto_ext_armv8
22775#undef THUMB_VARIANT
22776#define THUMB_VARIANT & fpu_crypto_ext_armv8
22777
22778 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
22779 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
22780 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
22781 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
48adcd8e
MGD
22782 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
22783 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
22784 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
22785 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
22786 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
22787 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
22788 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
3c9017d2
MGD
22789 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
22790 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
22791 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
91ff7894 22792
dd5181d5 22793#undef ARM_VARIANT
74db7efb 22794#define ARM_VARIANT & crc_ext_armv8
dd5181d5
KT
22795#undef THUMB_VARIANT
22796#define THUMB_VARIANT & crc_ext_armv8
22797 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
22798 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
22799 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
22800 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
22801 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
22802 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
22803
105bde57
MW
22804 /* ARMv8.2 RAS extension. */
22805#undef ARM_VARIANT
4d1464f2 22806#define ARM_VARIANT & arm_ext_ras
105bde57 22807#undef THUMB_VARIANT
4d1464f2 22808#define THUMB_VARIANT & arm_ext_ras
105bde57
MW
22809 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
22810
49e8a725
SN
22811#undef ARM_VARIANT
22812#define ARM_VARIANT & arm_ext_v8_3
22813#undef THUMB_VARIANT
22814#define THUMB_VARIANT & arm_ext_v8_3
22815 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
22816
c604a79a
JW
22817#undef ARM_VARIANT
22818#define ARM_VARIANT & fpu_neon_ext_dotprod
22819#undef THUMB_VARIANT
22820#define THUMB_VARIANT & fpu_neon_ext_dotprod
22821 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
22822 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
22823
c921be7d
NC
22824#undef ARM_VARIANT
22825#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
22826#undef THUMB_VARIANT
22827#define THUMB_VARIANT NULL
c921be7d 22828
21d799b5
NC
22829 cCE("wfs", e200110, 1, (RR), rd),
22830 cCE("rfs", e300110, 1, (RR), rd),
22831 cCE("wfc", e400110, 1, (RR), rd),
22832 cCE("rfc", e500110, 1, (RR), rd),
22833
22834 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
22835 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
22836 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
22837 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
22838
22839 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
22840 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
22841 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
22842 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
22843
22844 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
22845 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
22846 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
22847 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
22848 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
22849 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
22850 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
22851 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
22852 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
22853 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
22854 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
22855 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
22856
22857 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
22858 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
22859 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
22860 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
22861 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
22862 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
22863 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
22864 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
22865 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
22866 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
22867 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
22868 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
22869
22870 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
22871 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
22872 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
22873 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
22874 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
22875 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
22876 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
22877 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
22878 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
22879 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
22880 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
22881 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
22882
22883 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
22884 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
22885 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
22886 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
22887 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
22888 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
22889 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
22890 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
22891 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
22892 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
22893 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
22894 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
22895
22896 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
22897 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
22898 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
22899 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
22900 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
22901 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
22902 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
22903 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
22904 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
22905 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
22906 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
22907 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
22908
22909 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
22910 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
22911 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
22912 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
22913 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
22914 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
22915 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
22916 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
22917 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
22918 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
22919 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
22920 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
22921
22922 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
22923 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
22924 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
22925 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
22926 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
22927 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
22928 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
22929 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
22930 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
22931 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
22932 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
22933 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
22934
22935 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
22936 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
22937 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
22938 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
22939 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
22940 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
22941 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
22942 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
22943 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
22944 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
22945 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
22946 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
22947
22948 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
22949 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
22950 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
22951 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
22952 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
22953 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
22954 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
22955 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
22956 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
22957 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
22958 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
22959 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
22960
22961 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
22962 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
22963 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
22964 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
22965 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
22966 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
22967 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
22968 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
22969 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
22970 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
22971 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
22972 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
22973
22974 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
22975 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
22976 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
22977 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
22978 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
22979 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
22980 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
22981 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
22982 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
22983 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
22984 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
22985 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
22986
22987 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
22988 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
22989 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
22990 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
22991 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
22992 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
22993 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
22994 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
22995 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
22996 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
22997 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
22998 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
22999
23000 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
23001 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
23002 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
23003 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
23004 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
23005 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
23006 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
23007 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
23008 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
23009 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
23010 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
23011 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
23012
23013 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
23014 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
23015 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
23016 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
23017 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
23018 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
23019 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
23020 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
23021 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
23022 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
23023 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
23024 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
23025
23026 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
23027 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
23028 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
23029 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
23030 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
23031 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
23032 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
23033 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
23034 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
23035 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
23036 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
23037 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
23038
23039 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
23040 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
23041 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
23042 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
23043 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
23044 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
23045 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
23046 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
23047 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
23048 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
23049 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
23050 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
23051
23052 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
23053 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
23054 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
23055 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
23056 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
23057 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23058 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23059 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23060 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
23061 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
23062 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
23063 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
23064
23065 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
23066 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
23067 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
23068 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
23069 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
23070 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23071 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23072 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23073 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
23074 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
23075 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
23076 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
23077
23078 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
23079 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
23080 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
23081 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
23082 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
23083 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23084 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23085 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23086 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
23087 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
23088 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
23089 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
23090
23091 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
23092 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
23093 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
23094 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
23095 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
23096 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23097 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23098 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23099 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
23100 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
23101 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
23102 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
23103
23104 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
23105 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
23106 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
23107 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
23108 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
23109 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23110 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23111 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23112 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
23113 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
23114 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
23115 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
23116
23117 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
23118 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
23119 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
23120 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
23121 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
23122 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23123 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23124 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23125 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
23126 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
23127 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
23128 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
23129
23130 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
23131 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
23132 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
23133 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
23134 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
23135 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23136 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23137 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23138 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
23139 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
23140 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
23141 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
23142
23143 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
23144 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
23145 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
23146 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
23147 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
23148 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23149 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23150 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23151 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
23152 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
23153 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
23154 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
23155
23156 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
23157 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
23158 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
23159 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
23160 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
23161 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23162 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23163 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23164 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
23165 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
23166 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
23167 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
23168
23169 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
23170 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
23171 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
23172 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
23173 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
23174 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23175 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23176 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23177 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
23178 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
23179 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
23180 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
23181
23182 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23183 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23184 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23185 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23186 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23187 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23188 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23189 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23190 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23191 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23192 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23193 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23194
23195 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23196 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23197 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23198 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23199 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23200 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23201 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23202 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23203 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23204 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23205 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23206 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23207
23208 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23209 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23210 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23211 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23212 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23213 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23214 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23215 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23216 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23217 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23218 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23219 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23220
23221 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
23222 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
23223 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
23224 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
23225
23226 cCL("flts", e000110, 2, (RF, RR), rn_rd),
23227 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
23228 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
23229 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
23230 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
23231 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
23232 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
23233 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
23234 cCL("flte", e080110, 2, (RF, RR), rn_rd),
23235 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
23236 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
23237 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 23238
c19d1205
ZW
23239 /* The implementation of the FIX instruction is broken on some
23240 assemblers, in that it accepts a precision specifier as well as a
23241 rounding specifier, despite the fact that this is meaningless.
23242 To be more compatible, we accept it as well, though of course it
23243 does not set any bits. */
21d799b5
NC
23244 cCE("fix", e100110, 2, (RR, RF), rd_rm),
23245 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
23246 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
23247 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
23248 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
23249 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
23250 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
23251 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
23252 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
23253 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
23254 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
23255 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
23256 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 23257
c19d1205 23258 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
23259#undef ARM_VARIANT
23260#define ARM_VARIANT & fpu_fpa_ext_v2
23261
21d799b5
NC
23262 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23263 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23264 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23265 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23266 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23267 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 23268
c921be7d
NC
23269#undef ARM_VARIANT
23270#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
23271
c19d1205 23272 /* Moves and type conversions. */
21d799b5 23273 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
23274 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
23275 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
23276 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
23277 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
23278 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
23279 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23280 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
23281 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23282 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
23283 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
23284
23285 /* Memory operations. */
21d799b5
NC
23286 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23287 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
23288 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23289 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23290 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23291 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23292 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23293 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23294 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23295 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23296 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23297 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23298 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23299 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23300 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23301 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23302 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23303 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 23304
c19d1205 23305 /* Monadic operations. */
21d799b5
NC
23306 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
23307 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
23308 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
23309
23310 /* Dyadic operations. */
21d799b5
NC
23311 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23312 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23313 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23314 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23315 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23316 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23317 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23318 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23319 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 23320
c19d1205 23321 /* Comparisons. */
21d799b5
NC
23322 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
23323 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
23324 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
23325 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 23326
62f3b8c8
PB
23327 /* Double precision load/store are still present on single precision
23328 implementations. */
23329 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23330 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
23331 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23332 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23333 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23334 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23335 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23336 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23337 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23338 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 23339
c921be7d
NC
23340#undef ARM_VARIANT
23341#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
23342
c19d1205 23343 /* Moves and type conversions. */
21d799b5
NC
23344 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23345 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23346 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
23347 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
23348 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
23349 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
23350 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23351 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
23352 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23353 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23354 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23355 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 23356
c19d1205 23357 /* Monadic operations. */
21d799b5
NC
23358 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23359 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23360 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
23361
23362 /* Dyadic operations. */
21d799b5
NC
23363 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23364 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23365 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23366 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23367 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23368 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23369 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23370 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23371 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 23372
c19d1205 23373 /* Comparisons. */
21d799b5
NC
23374 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23375 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
23376 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23377 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 23378
037e8744
JB
23379/* Instructions which may belong to either the Neon or VFP instruction sets.
23380 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
23381#undef ARM_VARIANT
23382#define ARM_VARIANT & fpu_vfp_ext_v1xd
23383#undef THUMB_VARIANT
23384#define THUMB_VARIANT & fpu_vfp_ext_v1xd
23385
037e8744
JB
23386 /* These mnemonics are unique to VFP. */
23387 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
23388 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
23389 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23390 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23391 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
037e8744
JB
23392 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
23393 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
23394 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
23395
23396 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
23397 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
23398 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
23399 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 23400
55881a11
MGD
23401 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23402 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23403 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23404 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23405 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23406 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
037e8744 23407
dd9634d9 23408 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
e3e535bc 23409 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
dd9634d9
AV
23410 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
23411 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
f31fef98 23412
037e8744
JB
23413
23414 /* NOTE: All VMOV encoding is special-cased! */
037e8744
JB
23415 NCE(vmovq, 0, 1, (VMOV), neon_mov),
23416
32c36c3c
AV
23417#undef THUMB_VARIANT
23418/* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
23419 by different feature bits. Since we are setting the Thumb guard, we can
23420 require Thumb-1 which makes it a nop guard and set the right feature bit in
23421 do_vldr_vstr (). */
23422#define THUMB_VARIANT & arm_ext_v4t
23423 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23424 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23425
9db2f6b4
RL
23426#undef ARM_VARIANT
23427#define ARM_VARIANT & arm_ext_fp16
23428#undef THUMB_VARIANT
23429#define THUMB_VARIANT & arm_ext_fp16
23430 /* New instructions added from v8.2, allowing the extraction and insertion of
23431 the upper 16 bits of a 32-bit vector register. */
23432 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
23433 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
23434
dec41383
JW
23435 /* New backported fma/fms instructions optional in v8.2. */
23436 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
23437 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
23438
c921be7d
NC
23439#undef THUMB_VARIANT
23440#define THUMB_VARIANT & fpu_neon_ext_v1
23441#undef ARM_VARIANT
23442#define ARM_VARIANT & fpu_neon_ext_v1
23443
5287ad62
JB
23444 /* Data processing with three registers of the same length. */
23445 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
23446 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
23447 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
23448 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
23449 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23450 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
23451 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23452 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
23453 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23454 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
23455 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23456 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
23457 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23458 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
23459 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23460 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
23461 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23462 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
23463 /* If not immediate, fall back to neon_dyadic_i64_su.
23464 shl_imm should accept I8 I16 I32 I64,
23465 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
23466 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
23467 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
23468 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
23469 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 23470 /* Logic ops, types optional & ignored. */
4316f0d2 23471 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 23472 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 23473 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 23474 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 23475 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
23476 /* Bitfield ops, untyped. */
23477 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23478 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23479 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23480 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23481 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23482 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
cc933301 23483 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
21d799b5
NC
23484 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23485 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
23486 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23487 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
23488 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
23489 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
23490 back to neon_dyadic_if_su. */
21d799b5
NC
23491 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23492 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23493 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23494 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23495 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23496 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
23497 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23498 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 23499 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
23500 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
23501 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 23502 /* As above, D registers only. */
21d799b5
NC
23503 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
23504 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 23505 /* Int and float variants, signedness unimportant. */
21d799b5
NC
23506 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23507 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23508 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 23509 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
23510 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
23511 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
23512 /* vtst takes sizes 8, 16, 32. */
23513 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
23514 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
23515 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 23516 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 23517 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
23518 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23519 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
23520 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23521 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
23522 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23523 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
23524 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23525 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
23526 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23527 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
23528 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23529 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
23530 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23531 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
23532 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23533 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
d6b4b13e 23534 /* ARM v8.1 extension. */
643afb90
MW
23535 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23536 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
23537 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23538 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
5287ad62
JB
23539
23540 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 23541 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
23542 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
23543
23544 /* Data processing with two registers and a shift amount. */
23545 /* Right shifts, and variants with rounding.
23546 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
23547 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23548 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23549 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23550 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23551 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23552 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23553 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23554 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23555 /* Shift and insert. Sizes accepted 8 16 32 64. */
23556 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
23557 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
23558 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
23559 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
23560 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
23561 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
23562 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
23563 /* Right shift immediate, saturating & narrowing, with rounding variants.
23564 Types accepted S16 S32 S64 U16 U32 U64. */
23565 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23566 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23567 /* As above, unsigned. Types accepted S16 S32 S64. */
23568 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23569 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23570 /* Right shift narrowing. Types accepted I16 I32 I64. */
23571 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23572 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23573 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 23574 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 23575 /* CVT with optional immediate for fixed-point variant. */
21d799b5 23576 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 23577
4316f0d2
DG
23578 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
23579 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
23580
23581 /* Data processing, three registers of different lengths. */
23582 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
23583 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
5287ad62
JB
23584 /* If not scalar, fall back to neon_dyadic_long.
23585 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
23586 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
23587 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
23588 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
23589 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23590 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23591 /* Dyadic, narrowing insns. Types I16 I32 I64. */
23592 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23593 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23594 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23595 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23596 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
23597 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23598 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23599 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
23600 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
23601 S16 S32 U16 U32. */
21d799b5 23602 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
23603
23604 /* Extract. Size 8. */
3b8d421e
PB
23605 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
23606 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
23607
23608 /* Two registers, miscellaneous. */
23609 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
23610 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
23611 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
23612 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
23613 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
23614 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
23615 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
23616 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
23617 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
23618 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
23619 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
23620 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
23621 /* VMOVN. Types I16 I32 I64. */
21d799b5 23622 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 23623 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 23624 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 23625 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 23626 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
23627 /* VZIP / VUZP. Sizes 8 16 32. */
23628 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
23629 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
23630 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
23631 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
23632 /* VQABS / VQNEG. Types S8 S16 S32. */
23633 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23634 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
23635 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23636 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
23637 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
23638 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
23639 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
23640 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
23641 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
cc933301 23642 /* Reciprocal estimates. Types U32 F16 F32. */
5287ad62
JB
23643 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
23644 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
23645 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
23646 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
23647 /* VCLS. Types S8 S16 S32. */
23648 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
23649 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
23650 /* VCLZ. Types I8 I16 I32. */
23651 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
23652 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
23653 /* VCNT. Size 8. */
23654 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
23655 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
23656 /* Two address, untyped. */
23657 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
23658 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
23659 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
23660 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
23661 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
23662
23663 /* Table lookup. Size 8. */
23664 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23665 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23666
c921be7d
NC
23667#undef THUMB_VARIANT
23668#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
23669#undef ARM_VARIANT
23670#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
23671
5287ad62 23672 /* Neon element/structure load/store. */
21d799b5
NC
23673 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23674 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23675 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23676 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23677 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23678 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23679 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
23680 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 23681
c921be7d 23682#undef THUMB_VARIANT
74db7efb
NC
23683#define THUMB_VARIANT & fpu_vfp_ext_v3xd
23684#undef ARM_VARIANT
23685#define ARM_VARIANT & fpu_vfp_ext_v3xd
62f3b8c8
PB
23686 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
23687 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23688 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23689 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23690 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23691 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23692 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23693 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23694 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23695
74db7efb 23696#undef THUMB_VARIANT
c921be7d
NC
23697#define THUMB_VARIANT & fpu_vfp_ext_v3
23698#undef ARM_VARIANT
23699#define ARM_VARIANT & fpu_vfp_ext_v3
23700
21d799b5 23701 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 23702 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 23703 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 23704 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 23705 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 23706 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 23707 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 23708 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 23709 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 23710
74db7efb
NC
23711#undef ARM_VARIANT
23712#define ARM_VARIANT & fpu_vfp_ext_fma
23713#undef THUMB_VARIANT
23714#define THUMB_VARIANT & fpu_vfp_ext_fma
62f3b8c8
PB
23715 /* Mnemonics shared by Neon and VFP. These are included in the
23716 VFP FMA variant; NEON and VFP FMA always includes the NEON
23717 FMA instructions. */
23718 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
23719 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
23720 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
23721 the v form should always be used. */
23722 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23723 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23724 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23725 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23726 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23727 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23728
5287ad62 23729#undef THUMB_VARIANT
c921be7d
NC
23730#undef ARM_VARIANT
23731#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
23732
21d799b5
NC
23733 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23734 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23735 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23736 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23737 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23738 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23739 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
23740 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 23741
c921be7d
NC
23742#undef ARM_VARIANT
23743#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
23744
21d799b5
NC
23745 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
23746 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
23747 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
23748 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
23749 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
23750 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
23751 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
23752 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
23753 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
74db7efb
NC
23754 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23755 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23756 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23757 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23758 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23759 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21d799b5
NC
23760 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23761 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23762 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23763 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
23764 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
23765 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23766 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23767 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23768 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23769 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23770 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
74db7efb
NC
23771 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
23772 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
23773 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21d799b5
NC
23774 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
23775 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
23776 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
23777 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
23778 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
23779 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
23780 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
23781 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
23782 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23783 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23784 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23785 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23786 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23787 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23788 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23789 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23790 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23791 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
74db7efb
NC
23792 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23793 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23794 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23795 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
23796 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23797 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23798 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23799 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23800 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23801 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23802 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23803 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23804 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
23805 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23806 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23807 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23808 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23809 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23810 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
23811 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23812 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23813 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
23814 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
23815 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23816 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23817 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23818 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23819 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23820 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23821 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23822 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23823 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23824 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23825 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23826 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23827 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23828 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23829 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23830 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23831 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23832 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23833 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
23834 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23835 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23836 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23837 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23838 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
23839 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23840 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23841 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23842 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23843 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23844 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
23845 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23846 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23847 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23848 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23849 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23850 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23851 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23852 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23853 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23854 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23855 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
23856 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23857 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23858 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23859 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23860 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23861 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23862 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23863 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23864 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23865 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23866 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23867 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23868 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23869 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23870 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23871 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23872 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23873 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23874 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23875 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23876 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
23877 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
23878 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23879 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23880 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23881 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23882 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23883 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23884 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23885 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23886 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23887 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
23888 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
23889 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
23890 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
23891 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
23892 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
23893 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23894 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23895 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23896 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
23897 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
23898 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
23899 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
23900 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
23901 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
23902 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23903 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23904 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23905 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23906 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 23907
c921be7d
NC
23908#undef ARM_VARIANT
23909#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
23910
21d799b5
NC
23911 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
23912 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
23913 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
23914 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
23915 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
23916 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
23917 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23918 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23919 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23920 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23921 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23922 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23923 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23924 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23925 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23926 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23927 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23928 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23929 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23930 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23931 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
23932 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23933 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23934 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23935 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23936 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23937 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23938 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23939 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23940 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23941 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23942 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23943 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23944 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23945 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23946 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23947 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23948 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23949 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23950 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23951 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23952 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23953 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23954 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23955 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23956 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23957 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23958 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23959 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23960 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23961 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23962 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23963 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23964 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23965 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23966 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23967 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 23968
c921be7d
NC
23969#undef ARM_VARIANT
23970#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
23971
21d799b5
NC
23972 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
23973 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
23974 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
23975 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
23976 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
23977 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
23978 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
23979 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
23980 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
23981 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
23982 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
23983 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
23984 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
23985 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
74db7efb
NC
23986 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
23987 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
23988 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
23989 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
23990 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
23991 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
23992 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
23993 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
23994 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
23995 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21d799b5
NC
23996 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
23997 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
23998 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
23999 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
74db7efb
NC
24000 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
24001 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21d799b5
NC
24002 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
24003 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
24004 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
24005 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
74db7efb
NC
24006 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
24007 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
24008 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
24009 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
24010 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
24011 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21d799b5
NC
24012 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
24013 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
74db7efb
NC
24014 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
24015 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21d799b5
NC
24016 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
24017 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
24018 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
24019 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
24020 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
24021 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
24022 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
24023 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
24024 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
24025 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
24026 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
24027 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
24028 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
24029 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
24030 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
24031 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
24032 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
24033 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
24034 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
24035 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
24036 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24037 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24038 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24039 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24040 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24041 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24042 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24043 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
74db7efb
NC
24044 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24045 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21d799b5
NC
24046 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24047 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
4ed7ed8d 24048
7fadb25d
SD
24049 /* ARMv8.5-A instructions. */
24050#undef ARM_VARIANT
24051#define ARM_VARIANT & arm_ext_sb
24052#undef THUMB_VARIANT
24053#define THUMB_VARIANT & arm_ext_sb
24054 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
24055
dad0c3bf
SD
24056#undef ARM_VARIANT
24057#define ARM_VARIANT & arm_ext_predres
24058#undef THUMB_VARIANT
24059#define THUMB_VARIANT & arm_ext_predres
24060 CE("cfprctx", e070f93, 1, (RRnpc), rd),
24061 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
24062 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
24063
16a1fa25 24064 /* ARMv8-M instructions. */
4ed7ed8d
TP
24065#undef ARM_VARIANT
24066#define ARM_VARIANT NULL
24067#undef THUMB_VARIANT
24068#define THUMB_VARIANT & arm_ext_v8m
cf3cf39d
TP
24069 ToU("sg", e97fe97f, 0, (), noargs),
24070 ToC("blxns", 4784, 1, (RRnpc), t_blx),
24071 ToC("bxns", 4704, 1, (RRnpc), t_bx),
24072 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
24073 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
24074 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
24075 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
16a1fa25
TP
24076
24077 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
24078 instructions behave as nop if no VFP is present. */
24079#undef THUMB_VARIANT
24080#define THUMB_VARIANT & arm_ext_v8m_main
cf3cf39d
TP
24081 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
24082 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
4389b29a
AV
24083
24084 /* Armv8.1-M Mainline instructions. */
24085#undef THUMB_VARIANT
24086#define THUMB_VARIANT & arm_ext_v8_1m_main
24087 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
f6b2b12d 24088 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
f1c7f421 24089 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
65d1bc05 24090 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
f1c7f421 24091 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
60f993ce
AV
24092
24093 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
24094 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
24095 toU("le", _le, 2, (oLR, EXP), t_loloop),
4b5a202f 24096
efd6b359 24097 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
5ee91343
AV
24098 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
24099
24100#undef THUMB_VARIANT
24101#define THUMB_VARIANT & mve_ext
1b883319
AV
24102
24103 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24104 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24105 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24106 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24107 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24108 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24109 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24110 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24111 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24112 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24113 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24114 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24115 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24116 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24117 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24118
5ee91343
AV
24119 ToC("vpst", fe710f4d, 0, (), mve_vpt),
24120 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
24121 ToC("vpste", fe718f4d, 0, (), mve_vpt),
24122 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
24123 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
24124 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
24125 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
24126 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
24127 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
24128 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
24129 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
24130 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
24131 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
24132 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
24133 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
24134
a302e574 24135 /* MVE and MVE FP only. */
c2dafc2a
AV
24136 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
24137 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
24138 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24139 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
886e1c73 24140 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
a302e574
AV
24141 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
24142 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24143 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24144 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24145 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24146 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24147 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24148 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24149 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24150 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24151 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24152
35c228db
AV
24153 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24154 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24155 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24156 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24157 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24158 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24159 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24160 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24161 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24162 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24163 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24164 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
f5f10c66
AV
24165 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24166 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24167 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24168 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24169 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24170 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24171 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24172 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
35c228db 24173
57785aa2
AV
24174 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
24175 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
c2dafc2a 24176 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
26c1e780
AV
24177 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
24178 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
24179 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
24180 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
57785aa2 24181
5d281bf0
AV
24182#undef THUMB_VARIANT
24183#define THUMB_VARIANT & mve_fp_ext
24184 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
24185
5ee91343 24186#undef ARM_VARIANT
57785aa2 24187#define ARM_VARIANT & fpu_vfp_ext_v1
5ee91343
AV
24188#undef THUMB_VARIANT
24189#define THUMB_VARIANT & arm_ext_v6t2
24190
57785aa2
AV
24191 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24192
24193#undef ARM_VARIANT
24194#define ARM_VARIANT & fpu_vfp_ext_v1xd
24195
24196 MNCE(vmov, 0, 1, (VMOV), neon_mov),
24197 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
24198 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
24199 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
24200
886e1c73
AV
24201 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
24202 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24203 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
5ee91343 24204
485dee97
AV
24205 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24206 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24207
57785aa2
AV
24208 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
24209 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
24210
1b883319
AV
24211 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24212 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24213
57785aa2
AV
24214#undef ARM_VARIANT
24215#define ARM_VARIANT & fpu_vfp_ext_v2
24216
24217 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
24218 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
24219 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
24220 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
24221
dd9634d9
AV
24222#undef ARM_VARIANT
24223#define ARM_VARIANT & fpu_vfp_ext_armv8xd
24224 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
24225 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
24226 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
24227 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
24228
24229#undef ARM_VARIANT
5ee91343 24230#define ARM_VARIANT & fpu_neon_ext_v1
f601a00c 24231 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
5ee91343
AV
24232 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
24233 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24234 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
f601a00c
AV
24235 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24236 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24237 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24238 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24239 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
5d281bf0
AV
24240
24241#undef ARM_VARIANT
24242#define ARM_VARIANT & arm_ext_v8_3
24243#undef THUMB_VARIANT
24244#define THUMB_VARIANT & arm_ext_v6t2_v8m
24245 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
24246 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
c19d1205
ZW
24247};
24248#undef ARM_VARIANT
24249#undef THUMB_VARIANT
24250#undef TCE
c19d1205
ZW
24251#undef TUE
24252#undef TUF
24253#undef TCC
8f06b2d8 24254#undef cCE
e3cb604e
PB
24255#undef cCL
24256#undef C3E
4389b29a 24257#undef C3
c19d1205
ZW
24258#undef CE
24259#undef CM
4389b29a 24260#undef CL
c19d1205
ZW
24261#undef UE
24262#undef UF
24263#undef UT
5287ad62
JB
24264#undef NUF
24265#undef nUF
24266#undef NCE
24267#undef nCE
c19d1205
ZW
24268#undef OPS0
24269#undef OPS1
24270#undef OPS2
24271#undef OPS3
24272#undef OPS4
24273#undef OPS5
24274#undef OPS6
24275#undef do_0
4389b29a
AV
24276#undef ToC
24277#undef toC
24278#undef ToU
f6b2b12d 24279#undef toU
c19d1205
ZW
24280\f
24281/* MD interface: bits in the object file. */
bfae80f2 24282
c19d1205
ZW
24283/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
24284 for use in the a.out file, and stores them in the array pointed to by buf.
24285 This knows about the endian-ness of the target machine and does
24286 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
24287 2 (short) and 4 (long) Floating numbers are put out as a series of
24288 LITTLENUMS (shorts, here at least). */
b99bd4ef 24289
c19d1205
ZW
24290void
24291md_number_to_chars (char * buf, valueT val, int n)
24292{
24293 if (target_big_endian)
24294 number_to_chars_bigendian (buf, val, n);
24295 else
24296 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
24297}
24298
c19d1205
ZW
24299static valueT
24300md_chars_to_number (char * buf, int n)
bfae80f2 24301{
c19d1205
ZW
24302 valueT result = 0;
24303 unsigned char * where = (unsigned char *) buf;
bfae80f2 24304
c19d1205 24305 if (target_big_endian)
b99bd4ef 24306 {
c19d1205
ZW
24307 while (n--)
24308 {
24309 result <<= 8;
24310 result |= (*where++ & 255);
24311 }
b99bd4ef 24312 }
c19d1205 24313 else
b99bd4ef 24314 {
c19d1205
ZW
24315 while (n--)
24316 {
24317 result <<= 8;
24318 result |= (where[n] & 255);
24319 }
bfae80f2 24320 }
b99bd4ef 24321
c19d1205 24322 return result;
bfae80f2 24323}
b99bd4ef 24324
c19d1205 24325/* MD interface: Sections. */
b99bd4ef 24326
fa94de6b
RM
24327/* Calculate the maximum variable size (i.e., excluding fr_fix)
24328 that an rs_machine_dependent frag may reach. */
24329
24330unsigned int
24331arm_frag_max_var (fragS *fragp)
24332{
24333 /* We only use rs_machine_dependent for variable-size Thumb instructions,
24334 which are either THUMB_SIZE (2) or INSN_SIZE (4).
24335
24336 Note that we generate relaxable instructions even for cases that don't
24337 really need it, like an immediate that's a trivial constant. So we're
24338 overestimating the instruction size for some of those cases. Rather
24339 than putting more intelligence here, it would probably be better to
24340 avoid generating a relaxation frag in the first place when it can be
24341 determined up front that a short instruction will suffice. */
24342
24343 gas_assert (fragp->fr_type == rs_machine_dependent);
24344 return INSN_SIZE;
24345}
24346
0110f2b8
PB
24347/* Estimate the size of a frag before relaxing. Assume everything fits in
24348 2 bytes. */
24349
c19d1205 24350int
0110f2b8 24351md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
24352 segT segtype ATTRIBUTE_UNUSED)
24353{
0110f2b8
PB
24354 fragp->fr_var = 2;
24355 return 2;
24356}
24357
24358/* Convert a machine dependent frag. */
24359
24360void
24361md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
24362{
24363 unsigned long insn;
24364 unsigned long old_op;
24365 char *buf;
24366 expressionS exp;
24367 fixS *fixp;
24368 int reloc_type;
24369 int pc_rel;
24370 int opcode;
24371
24372 buf = fragp->fr_literal + fragp->fr_fix;
24373
24374 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
24375 if (fragp->fr_symbol)
24376 {
0110f2b8
PB
24377 exp.X_op = O_symbol;
24378 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
24379 }
24380 else
24381 {
0110f2b8 24382 exp.X_op = O_constant;
5f4273c7 24383 }
0110f2b8
PB
24384 exp.X_add_number = fragp->fr_offset;
24385 opcode = fragp->fr_subtype;
24386 switch (opcode)
24387 {
24388 case T_MNEM_ldr_pc:
24389 case T_MNEM_ldr_pc2:
24390 case T_MNEM_ldr_sp:
24391 case T_MNEM_str_sp:
24392 case T_MNEM_ldr:
24393 case T_MNEM_ldrb:
24394 case T_MNEM_ldrh:
24395 case T_MNEM_str:
24396 case T_MNEM_strb:
24397 case T_MNEM_strh:
24398 if (fragp->fr_var == 4)
24399 {
5f4273c7 24400 insn = THUMB_OP32 (opcode);
0110f2b8
PB
24401 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
24402 {
24403 insn |= (old_op & 0x700) << 4;
24404 }
24405 else
24406 {
24407 insn |= (old_op & 7) << 12;
24408 insn |= (old_op & 0x38) << 13;
24409 }
24410 insn |= 0x00000c00;
24411 put_thumb32_insn (buf, insn);
24412 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
24413 }
24414 else
24415 {
24416 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
24417 }
24418 pc_rel = (opcode == T_MNEM_ldr_pc2);
24419 break;
24420 case T_MNEM_adr:
24421 if (fragp->fr_var == 4)
24422 {
24423 insn = THUMB_OP32 (opcode);
24424 insn |= (old_op & 0xf0) << 4;
24425 put_thumb32_insn (buf, insn);
24426 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
24427 }
24428 else
24429 {
24430 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24431 exp.X_add_number -= 4;
24432 }
24433 pc_rel = 1;
24434 break;
24435 case T_MNEM_mov:
24436 case T_MNEM_movs:
24437 case T_MNEM_cmp:
24438 case T_MNEM_cmn:
24439 if (fragp->fr_var == 4)
24440 {
24441 int r0off = (opcode == T_MNEM_mov
24442 || opcode == T_MNEM_movs) ? 0 : 8;
24443 insn = THUMB_OP32 (opcode);
24444 insn = (insn & 0xe1ffffff) | 0x10000000;
24445 insn |= (old_op & 0x700) << r0off;
24446 put_thumb32_insn (buf, insn);
24447 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
24448 }
24449 else
24450 {
24451 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
24452 }
24453 pc_rel = 0;
24454 break;
24455 case T_MNEM_b:
24456 if (fragp->fr_var == 4)
24457 {
24458 insn = THUMB_OP32(opcode);
24459 put_thumb32_insn (buf, insn);
24460 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
24461 }
24462 else
24463 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
24464 pc_rel = 1;
24465 break;
24466 case T_MNEM_bcond:
24467 if (fragp->fr_var == 4)
24468 {
24469 insn = THUMB_OP32(opcode);
24470 insn |= (old_op & 0xf00) << 14;
24471 put_thumb32_insn (buf, insn);
24472 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
24473 }
24474 else
24475 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
24476 pc_rel = 1;
24477 break;
24478 case T_MNEM_add_sp:
24479 case T_MNEM_add_pc:
24480 case T_MNEM_inc_sp:
24481 case T_MNEM_dec_sp:
24482 if (fragp->fr_var == 4)
24483 {
24484 /* ??? Choose between add and addw. */
24485 insn = THUMB_OP32 (opcode);
24486 insn |= (old_op & 0xf0) << 4;
24487 put_thumb32_insn (buf, insn);
16805f35
PB
24488 if (opcode == T_MNEM_add_pc)
24489 reloc_type = BFD_RELOC_ARM_T32_IMM12;
24490 else
24491 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
24492 }
24493 else
24494 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24495 pc_rel = 0;
24496 break;
24497
24498 case T_MNEM_addi:
24499 case T_MNEM_addis:
24500 case T_MNEM_subi:
24501 case T_MNEM_subis:
24502 if (fragp->fr_var == 4)
24503 {
24504 insn = THUMB_OP32 (opcode);
24505 insn |= (old_op & 0xf0) << 4;
24506 insn |= (old_op & 0xf) << 16;
24507 put_thumb32_insn (buf, insn);
16805f35
PB
24508 if (insn & (1 << 20))
24509 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
24510 else
24511 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
24512 }
24513 else
24514 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24515 pc_rel = 0;
24516 break;
24517 default:
5f4273c7 24518 abort ();
0110f2b8
PB
24519 }
24520 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 24521 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
24522 fixp->fx_file = fragp->fr_file;
24523 fixp->fx_line = fragp->fr_line;
24524 fragp->fr_fix += fragp->fr_var;
3cfdb781
TG
24525
24526 /* Set whether we use thumb-2 ISA based on final relaxation results. */
24527 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
24528 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
24529 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
0110f2b8
PB
24530}
24531
24532/* Return the size of a relaxable immediate operand instruction.
24533 SHIFT and SIZE specify the form of the allowable immediate. */
24534static int
24535relax_immediate (fragS *fragp, int size, int shift)
24536{
24537 offsetT offset;
24538 offsetT mask;
24539 offsetT low;
24540
24541 /* ??? Should be able to do better than this. */
24542 if (fragp->fr_symbol)
24543 return 4;
24544
24545 low = (1 << shift) - 1;
24546 mask = (1 << (shift + size)) - (1 << shift);
24547 offset = fragp->fr_offset;
24548 /* Force misaligned offsets to 32-bit variant. */
24549 if (offset & low)
5e77afaa 24550 return 4;
0110f2b8
PB
24551 if (offset & ~mask)
24552 return 4;
24553 return 2;
24554}
24555
5e77afaa
PB
24556/* Get the address of a symbol during relaxation. */
24557static addressT
5f4273c7 24558relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
24559{
24560 fragS *sym_frag;
24561 addressT addr;
24562 symbolS *sym;
24563
24564 sym = fragp->fr_symbol;
24565 sym_frag = symbol_get_frag (sym);
24566 know (S_GET_SEGMENT (sym) != absolute_section
24567 || sym_frag == &zero_address_frag);
24568 addr = S_GET_VALUE (sym) + fragp->fr_offset;
24569
24570 /* If frag has yet to be reached on this pass, assume it will
24571 move by STRETCH just as we did. If this is not so, it will
24572 be because some frag between grows, and that will force
24573 another pass. */
24574
24575 if (stretch != 0
24576 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
24577 {
24578 fragS *f;
24579
24580 /* Adjust stretch for any alignment frag. Note that if have
24581 been expanding the earlier code, the symbol may be
24582 defined in what appears to be an earlier frag. FIXME:
24583 This doesn't handle the fr_subtype field, which specifies
24584 a maximum number of bytes to skip when doing an
24585 alignment. */
24586 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
24587 {
24588 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
24589 {
24590 if (stretch < 0)
24591 stretch = - ((- stretch)
24592 & ~ ((1 << (int) f->fr_offset) - 1));
24593 else
24594 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
24595 if (stretch == 0)
24596 break;
24597 }
24598 }
24599 if (f != NULL)
24600 addr += stretch;
24601 }
5e77afaa
PB
24602
24603 return addr;
24604}
24605
0110f2b8
PB
24606/* Return the size of a relaxable adr pseudo-instruction or PC-relative
24607 load. */
24608static int
5e77afaa 24609relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
24610{
24611 addressT addr;
24612 offsetT val;
24613
24614 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
24615 if (fragp->fr_symbol == NULL
24616 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
24617 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24618 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
24619 return 4;
24620
5f4273c7 24621 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
24622 addr = fragp->fr_address + fragp->fr_fix;
24623 addr = (addr + 4) & ~3;
5e77afaa 24624 /* Force misaligned targets to 32-bit variant. */
0110f2b8 24625 if (val & 3)
5e77afaa 24626 return 4;
0110f2b8
PB
24627 val -= addr;
24628 if (val < 0 || val > 1020)
24629 return 4;
24630 return 2;
24631}
24632
24633/* Return the size of a relaxable add/sub immediate instruction. */
24634static int
24635relax_addsub (fragS *fragp, asection *sec)
24636{
24637 char *buf;
24638 int op;
24639
24640 buf = fragp->fr_literal + fragp->fr_fix;
24641 op = bfd_get_16(sec->owner, buf);
24642 if ((op & 0xf) == ((op >> 4) & 0xf))
24643 return relax_immediate (fragp, 8, 0);
24644 else
24645 return relax_immediate (fragp, 3, 0);
24646}
24647
e83a675f
RE
24648/* Return TRUE iff the definition of symbol S could be pre-empted
24649 (overridden) at link or load time. */
24650static bfd_boolean
24651symbol_preemptible (symbolS *s)
24652{
24653 /* Weak symbols can always be pre-empted. */
24654 if (S_IS_WEAK (s))
24655 return TRUE;
24656
24657 /* Non-global symbols cannot be pre-empted. */
24658 if (! S_IS_EXTERNAL (s))
24659 return FALSE;
24660
24661#ifdef OBJ_ELF
24662 /* In ELF, a global symbol can be marked protected, or private. In that
24663 case it can't be pre-empted (other definitions in the same link unit
24664 would violate the ODR). */
24665 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
24666 return FALSE;
24667#endif
24668
24669 /* Other global symbols might be pre-empted. */
24670 return TRUE;
24671}
0110f2b8
PB
24672
24673/* Return the size of a relaxable branch instruction. BITS is the
24674 size of the offset field in the narrow instruction. */
24675
24676static int
5e77afaa 24677relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
24678{
24679 addressT addr;
24680 offsetT val;
24681 offsetT limit;
24682
24683 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 24684 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
24685 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24686 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
24687 return 4;
24688
267bf995 24689#ifdef OBJ_ELF
e83a675f 24690 /* A branch to a function in ARM state will require interworking. */
267bf995
RR
24691 if (S_IS_DEFINED (fragp->fr_symbol)
24692 && ARM_IS_FUNC (fragp->fr_symbol))
24693 return 4;
e83a675f 24694#endif
0d9b4b55 24695
e83a675f 24696 if (symbol_preemptible (fragp->fr_symbol))
0d9b4b55 24697 return 4;
267bf995 24698
5f4273c7 24699 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
24700 addr = fragp->fr_address + fragp->fr_fix + 4;
24701 val -= addr;
24702
24703 /* Offset is a signed value *2 */
24704 limit = 1 << bits;
24705 if (val >= limit || val < -limit)
24706 return 4;
24707 return 2;
24708}
24709
24710
24711/* Relax a machine dependent frag. This returns the amount by which
24712 the current size of the frag should change. */
24713
24714int
5e77afaa 24715arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
24716{
24717 int oldsize;
24718 int newsize;
24719
24720 oldsize = fragp->fr_var;
24721 switch (fragp->fr_subtype)
24722 {
24723 case T_MNEM_ldr_pc2:
5f4273c7 24724 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
24725 break;
24726 case T_MNEM_ldr_pc:
24727 case T_MNEM_ldr_sp:
24728 case T_MNEM_str_sp:
5f4273c7 24729 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
24730 break;
24731 case T_MNEM_ldr:
24732 case T_MNEM_str:
5f4273c7 24733 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
24734 break;
24735 case T_MNEM_ldrh:
24736 case T_MNEM_strh:
5f4273c7 24737 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
24738 break;
24739 case T_MNEM_ldrb:
24740 case T_MNEM_strb:
5f4273c7 24741 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
24742 break;
24743 case T_MNEM_adr:
5f4273c7 24744 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
24745 break;
24746 case T_MNEM_mov:
24747 case T_MNEM_movs:
24748 case T_MNEM_cmp:
24749 case T_MNEM_cmn:
5f4273c7 24750 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
24751 break;
24752 case T_MNEM_b:
5f4273c7 24753 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
24754 break;
24755 case T_MNEM_bcond:
5f4273c7 24756 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
24757 break;
24758 case T_MNEM_add_sp:
24759 case T_MNEM_add_pc:
24760 newsize = relax_immediate (fragp, 8, 2);
24761 break;
24762 case T_MNEM_inc_sp:
24763 case T_MNEM_dec_sp:
24764 newsize = relax_immediate (fragp, 7, 2);
24765 break;
24766 case T_MNEM_addi:
24767 case T_MNEM_addis:
24768 case T_MNEM_subi:
24769 case T_MNEM_subis:
24770 newsize = relax_addsub (fragp, sec);
24771 break;
24772 default:
5f4273c7 24773 abort ();
0110f2b8 24774 }
5e77afaa
PB
24775
24776 fragp->fr_var = newsize;
24777 /* Freeze wide instructions that are at or before the same location as
24778 in the previous pass. This avoids infinite loops.
5f4273c7
NC
24779 Don't freeze them unconditionally because targets may be artificially
24780 misaligned by the expansion of preceding frags. */
5e77afaa 24781 if (stretch <= 0 && newsize > 2)
0110f2b8 24782 {
0110f2b8 24783 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 24784 frag_wane (fragp);
0110f2b8 24785 }
5e77afaa 24786
0110f2b8 24787 return newsize - oldsize;
c19d1205 24788}
b99bd4ef 24789
c19d1205 24790/* Round up a section size to the appropriate boundary. */
b99bd4ef 24791
c19d1205
ZW
24792valueT
24793md_section_align (segT segment ATTRIBUTE_UNUSED,
24794 valueT size)
24795{
6844c0cc 24796 return size;
bfae80f2 24797}
b99bd4ef 24798
c19d1205
ZW
24799/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
24800 of an rs_align_code fragment. */
24801
24802void
24803arm_handle_align (fragS * fragP)
bfae80f2 24804{
d9235011 24805 static unsigned char const arm_noop[2][2][4] =
e7495e45
NS
24806 {
24807 { /* ARMv1 */
24808 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
24809 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
24810 },
24811 { /* ARMv6k */
24812 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
24813 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
24814 },
24815 };
d9235011 24816 static unsigned char const thumb_noop[2][2][2] =
e7495e45
NS
24817 {
24818 { /* Thumb-1 */
24819 {0xc0, 0x46}, /* LE */
24820 {0x46, 0xc0}, /* BE */
24821 },
24822 { /* Thumb-2 */
24823 {0x00, 0xbf}, /* LE */
24824 {0xbf, 0x00} /* BE */
24825 }
24826 };
d9235011 24827 static unsigned char const wide_thumb_noop[2][4] =
e7495e45
NS
24828 { /* Wide Thumb-2 */
24829 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
24830 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
24831 };
c921be7d 24832
e7495e45 24833 unsigned bytes, fix, noop_size;
c19d1205 24834 char * p;
d9235011
TS
24835 const unsigned char * noop;
24836 const unsigned char *narrow_noop = NULL;
cd000bff
DJ
24837#ifdef OBJ_ELF
24838 enum mstate state;
24839#endif
bfae80f2 24840
c19d1205 24841 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
24842 return;
24843
c19d1205
ZW
24844 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
24845 p = fragP->fr_literal + fragP->fr_fix;
24846 fix = 0;
bfae80f2 24847
c19d1205
ZW
24848 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
24849 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 24850
cd000bff 24851 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 24852
cd000bff 24853 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 24854 {
7f78eb34
JW
24855 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
24856 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
e7495e45
NS
24857 {
24858 narrow_noop = thumb_noop[1][target_big_endian];
24859 noop = wide_thumb_noop[target_big_endian];
24860 }
c19d1205 24861 else
e7495e45
NS
24862 noop = thumb_noop[0][target_big_endian];
24863 noop_size = 2;
cd000bff
DJ
24864#ifdef OBJ_ELF
24865 state = MAP_THUMB;
24866#endif
7ed4c4c5
NC
24867 }
24868 else
24869 {
7f78eb34
JW
24870 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
24871 ? selected_cpu : arm_arch_none,
24872 arm_ext_v6k) != 0]
e7495e45
NS
24873 [target_big_endian];
24874 noop_size = 4;
cd000bff
DJ
24875#ifdef OBJ_ELF
24876 state = MAP_ARM;
24877#endif
7ed4c4c5 24878 }
c921be7d 24879
e7495e45 24880 fragP->fr_var = noop_size;
c921be7d 24881
c19d1205 24882 if (bytes & (noop_size - 1))
7ed4c4c5 24883 {
c19d1205 24884 fix = bytes & (noop_size - 1);
cd000bff
DJ
24885#ifdef OBJ_ELF
24886 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
24887#endif
c19d1205
ZW
24888 memset (p, 0, fix);
24889 p += fix;
24890 bytes -= fix;
a737bd4d 24891 }
a737bd4d 24892
e7495e45
NS
24893 if (narrow_noop)
24894 {
24895 if (bytes & noop_size)
24896 {
24897 /* Insert a narrow noop. */
24898 memcpy (p, narrow_noop, noop_size);
24899 p += noop_size;
24900 bytes -= noop_size;
24901 fix += noop_size;
24902 }
24903
24904 /* Use wide noops for the remainder */
24905 noop_size = 4;
24906 }
24907
c19d1205 24908 while (bytes >= noop_size)
a737bd4d 24909 {
c19d1205
ZW
24910 memcpy (p, noop, noop_size);
24911 p += noop_size;
24912 bytes -= noop_size;
24913 fix += noop_size;
a737bd4d
NC
24914 }
24915
c19d1205 24916 fragP->fr_fix += fix;
a737bd4d
NC
24917}
24918
c19d1205
ZW
24919/* Called from md_do_align. Used to create an alignment
24920 frag in a code section. */
24921
24922void
24923arm_frag_align_code (int n, int max)
bfae80f2 24924{
c19d1205 24925 char * p;
7ed4c4c5 24926
c19d1205 24927 /* We assume that there will never be a requirement
6ec8e702 24928 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 24929 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
24930 {
24931 char err_msg[128];
24932
fa94de6b 24933 sprintf (err_msg,
477330fc
RM
24934 _("alignments greater than %d bytes not supported in .text sections."),
24935 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 24936 as_fatal ("%s", err_msg);
6ec8e702 24937 }
bfae80f2 24938
c19d1205
ZW
24939 p = frag_var (rs_align_code,
24940 MAX_MEM_FOR_RS_ALIGN_CODE,
24941 1,
24942 (relax_substateT) max,
24943 (symbolS *) NULL,
24944 (offsetT) n,
24945 (char *) NULL);
24946 *p = 0;
24947}
bfae80f2 24948
8dc2430f
NC
24949/* Perform target specific initialisation of a frag.
24950 Note - despite the name this initialisation is not done when the frag
24951 is created, but only when its type is assigned. A frag can be created
24952 and used a long time before its type is set, so beware of assuming that
33eaf5de 24953 this initialisation is performed first. */
bfae80f2 24954
cd000bff
DJ
24955#ifndef OBJ_ELF
24956void
24957arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
24958{
24959 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 24960 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
24961}
24962
24963#else /* OBJ_ELF is defined. */
c19d1205 24964void
cd000bff 24965arm_init_frag (fragS * fragP, int max_chars)
c19d1205 24966{
e8d84ca1 24967 bfd_boolean frag_thumb_mode;
b968d18a 24968
8dc2430f
NC
24969 /* If the current ARM vs THUMB mode has not already
24970 been recorded into this frag then do so now. */
cd000bff 24971 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
b968d18a
JW
24972 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
24973
e8d84ca1
NC
24974 /* PR 21809: Do not set a mapping state for debug sections
24975 - it just confuses other tools. */
24976 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
24977 return;
24978
b968d18a 24979 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
cd000bff 24980
f9c1b181
RL
24981 /* Record a mapping symbol for alignment frags. We will delete this
24982 later if the alignment ends up empty. */
24983 switch (fragP->fr_type)
24984 {
24985 case rs_align:
24986 case rs_align_test:
24987 case rs_fill:
24988 mapping_state_2 (MAP_DATA, max_chars);
24989 break;
24990 case rs_align_code:
b968d18a 24991 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
f9c1b181
RL
24992 break;
24993 default:
24994 break;
cd000bff 24995 }
bfae80f2
RE
24996}
24997
c19d1205
ZW
24998/* When we change sections we need to issue a new mapping symbol. */
24999
25000void
25001arm_elf_change_section (void)
bfae80f2 25002{
c19d1205
ZW
25003 /* Link an unlinked unwind index table section to the .text section. */
25004 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
25005 && elf_linked_to_section (now_seg) == NULL)
25006 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
25007}
25008
c19d1205
ZW
25009int
25010arm_elf_section_type (const char * str, size_t len)
e45d0630 25011{
c19d1205
ZW
25012 if (len == 5 && strncmp (str, "exidx", 5) == 0)
25013 return SHT_ARM_EXIDX;
e45d0630 25014
c19d1205
ZW
25015 return -1;
25016}
25017\f
25018/* Code to deal with unwinding tables. */
e45d0630 25019
c19d1205 25020static void add_unwind_adjustsp (offsetT);
e45d0630 25021
5f4273c7 25022/* Generate any deferred unwind frame offset. */
e45d0630 25023
bfae80f2 25024static void
c19d1205 25025flush_pending_unwind (void)
bfae80f2 25026{
c19d1205 25027 offsetT offset;
bfae80f2 25028
c19d1205
ZW
25029 offset = unwind.pending_offset;
25030 unwind.pending_offset = 0;
25031 if (offset != 0)
25032 add_unwind_adjustsp (offset);
bfae80f2
RE
25033}
25034
c19d1205
ZW
25035/* Add an opcode to this list for this function. Two-byte opcodes should
25036 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
25037 order. */
25038
bfae80f2 25039static void
c19d1205 25040add_unwind_opcode (valueT op, int length)
bfae80f2 25041{
c19d1205
ZW
25042 /* Add any deferred stack adjustment. */
25043 if (unwind.pending_offset)
25044 flush_pending_unwind ();
bfae80f2 25045
c19d1205 25046 unwind.sp_restored = 0;
bfae80f2 25047
c19d1205 25048 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 25049 {
c19d1205
ZW
25050 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
25051 if (unwind.opcodes)
325801bd
TS
25052 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
25053 unwind.opcode_alloc);
c19d1205 25054 else
325801bd 25055 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
bfae80f2 25056 }
c19d1205 25057 while (length > 0)
bfae80f2 25058 {
c19d1205
ZW
25059 length--;
25060 unwind.opcodes[unwind.opcode_count] = op & 0xff;
25061 op >>= 8;
25062 unwind.opcode_count++;
bfae80f2 25063 }
bfae80f2
RE
25064}
25065
c19d1205
ZW
25066/* Add unwind opcodes to adjust the stack pointer. */
25067
bfae80f2 25068static void
c19d1205 25069add_unwind_adjustsp (offsetT offset)
bfae80f2 25070{
c19d1205 25071 valueT op;
bfae80f2 25072
c19d1205 25073 if (offset > 0x200)
bfae80f2 25074 {
c19d1205
ZW
25075 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
25076 char bytes[5];
25077 int n;
25078 valueT o;
bfae80f2 25079
c19d1205
ZW
25080 /* Long form: 0xb2, uleb128. */
25081 /* This might not fit in a word so add the individual bytes,
25082 remembering the list is built in reverse order. */
25083 o = (valueT) ((offset - 0x204) >> 2);
25084 if (o == 0)
25085 add_unwind_opcode (0, 1);
bfae80f2 25086
c19d1205
ZW
25087 /* Calculate the uleb128 encoding of the offset. */
25088 n = 0;
25089 while (o)
25090 {
25091 bytes[n] = o & 0x7f;
25092 o >>= 7;
25093 if (o)
25094 bytes[n] |= 0x80;
25095 n++;
25096 }
25097 /* Add the insn. */
25098 for (; n; n--)
25099 add_unwind_opcode (bytes[n - 1], 1);
25100 add_unwind_opcode (0xb2, 1);
25101 }
25102 else if (offset > 0x100)
bfae80f2 25103 {
c19d1205
ZW
25104 /* Two short opcodes. */
25105 add_unwind_opcode (0x3f, 1);
25106 op = (offset - 0x104) >> 2;
25107 add_unwind_opcode (op, 1);
bfae80f2 25108 }
c19d1205
ZW
25109 else if (offset > 0)
25110 {
25111 /* Short opcode. */
25112 op = (offset - 4) >> 2;
25113 add_unwind_opcode (op, 1);
25114 }
25115 else if (offset < 0)
bfae80f2 25116 {
c19d1205
ZW
25117 offset = -offset;
25118 while (offset > 0x100)
bfae80f2 25119 {
c19d1205
ZW
25120 add_unwind_opcode (0x7f, 1);
25121 offset -= 0x100;
bfae80f2 25122 }
c19d1205
ZW
25123 op = ((offset - 4) >> 2) | 0x40;
25124 add_unwind_opcode (op, 1);
bfae80f2 25125 }
bfae80f2
RE
25126}
25127
c19d1205 25128/* Finish the list of unwind opcodes for this function. */
0198d5e6 25129
c19d1205
ZW
25130static void
25131finish_unwind_opcodes (void)
bfae80f2 25132{
c19d1205 25133 valueT op;
bfae80f2 25134
c19d1205 25135 if (unwind.fp_used)
bfae80f2 25136 {
708587a4 25137 /* Adjust sp as necessary. */
c19d1205
ZW
25138 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
25139 flush_pending_unwind ();
bfae80f2 25140
c19d1205
ZW
25141 /* After restoring sp from the frame pointer. */
25142 op = 0x90 | unwind.fp_reg;
25143 add_unwind_opcode (op, 1);
25144 }
25145 else
25146 flush_pending_unwind ();
bfae80f2
RE
25147}
25148
bfae80f2 25149
c19d1205
ZW
25150/* Start an exception table entry. If idx is nonzero this is an index table
25151 entry. */
bfae80f2
RE
25152
25153static void
c19d1205 25154start_unwind_section (const segT text_seg, int idx)
bfae80f2 25155{
c19d1205
ZW
25156 const char * text_name;
25157 const char * prefix;
25158 const char * prefix_once;
25159 const char * group_name;
c19d1205 25160 char * sec_name;
c19d1205
ZW
25161 int type;
25162 int flags;
25163 int linkonce;
bfae80f2 25164
c19d1205 25165 if (idx)
bfae80f2 25166 {
c19d1205
ZW
25167 prefix = ELF_STRING_ARM_unwind;
25168 prefix_once = ELF_STRING_ARM_unwind_once;
25169 type = SHT_ARM_EXIDX;
bfae80f2 25170 }
c19d1205 25171 else
bfae80f2 25172 {
c19d1205
ZW
25173 prefix = ELF_STRING_ARM_unwind_info;
25174 prefix_once = ELF_STRING_ARM_unwind_info_once;
25175 type = SHT_PROGBITS;
bfae80f2
RE
25176 }
25177
c19d1205
ZW
25178 text_name = segment_name (text_seg);
25179 if (streq (text_name, ".text"))
25180 text_name = "";
25181
25182 if (strncmp (text_name, ".gnu.linkonce.t.",
25183 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 25184 {
c19d1205
ZW
25185 prefix = prefix_once;
25186 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
25187 }
25188
29a2809e 25189 sec_name = concat (prefix, text_name, (char *) NULL);
bfae80f2 25190
c19d1205
ZW
25191 flags = SHF_ALLOC;
25192 linkonce = 0;
25193 group_name = 0;
bfae80f2 25194
c19d1205
ZW
25195 /* Handle COMDAT group. */
25196 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 25197 {
c19d1205
ZW
25198 group_name = elf_group_name (text_seg);
25199 if (group_name == NULL)
25200 {
bd3ba5d1 25201 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
25202 segment_name (text_seg));
25203 ignore_rest_of_line ();
25204 return;
25205 }
25206 flags |= SHF_GROUP;
25207 linkonce = 1;
bfae80f2
RE
25208 }
25209
a91e1603
L
25210 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
25211 linkonce, 0);
bfae80f2 25212
5f4273c7 25213 /* Set the section link for index tables. */
c19d1205
ZW
25214 if (idx)
25215 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
25216}
25217
bfae80f2 25218
c19d1205
ZW
25219/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
25220 personality routine data. Returns zero, or the index table value for
cad0da33 25221 an inline entry. */
c19d1205
ZW
25222
25223static valueT
25224create_unwind_entry (int have_data)
bfae80f2 25225{
c19d1205
ZW
25226 int size;
25227 addressT where;
25228 char *ptr;
25229 /* The current word of data. */
25230 valueT data;
25231 /* The number of bytes left in this word. */
25232 int n;
bfae80f2 25233
c19d1205 25234 finish_unwind_opcodes ();
bfae80f2 25235
c19d1205
ZW
25236 /* Remember the current text section. */
25237 unwind.saved_seg = now_seg;
25238 unwind.saved_subseg = now_subseg;
bfae80f2 25239
c19d1205 25240 start_unwind_section (now_seg, 0);
bfae80f2 25241
c19d1205 25242 if (unwind.personality_routine == NULL)
bfae80f2 25243 {
c19d1205
ZW
25244 if (unwind.personality_index == -2)
25245 {
25246 if (have_data)
5f4273c7 25247 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
25248 return 1; /* EXIDX_CANTUNWIND. */
25249 }
bfae80f2 25250
c19d1205
ZW
25251 /* Use a default personality routine if none is specified. */
25252 if (unwind.personality_index == -1)
25253 {
25254 if (unwind.opcode_count > 3)
25255 unwind.personality_index = 1;
25256 else
25257 unwind.personality_index = 0;
25258 }
bfae80f2 25259
c19d1205
ZW
25260 /* Space for the personality routine entry. */
25261 if (unwind.personality_index == 0)
25262 {
25263 if (unwind.opcode_count > 3)
25264 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 25265
c19d1205
ZW
25266 if (!have_data)
25267 {
25268 /* All the data is inline in the index table. */
25269 data = 0x80;
25270 n = 3;
25271 while (unwind.opcode_count > 0)
25272 {
25273 unwind.opcode_count--;
25274 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25275 n--;
25276 }
bfae80f2 25277
c19d1205
ZW
25278 /* Pad with "finish" opcodes. */
25279 while (n--)
25280 data = (data << 8) | 0xb0;
bfae80f2 25281
c19d1205
ZW
25282 return data;
25283 }
25284 size = 0;
25285 }
25286 else
25287 /* We get two opcodes "free" in the first word. */
25288 size = unwind.opcode_count - 2;
25289 }
25290 else
5011093d 25291 {
cad0da33
NC
25292 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
25293 if (unwind.personality_index != -1)
25294 {
25295 as_bad (_("attempt to recreate an unwind entry"));
25296 return 1;
25297 }
5011093d
NC
25298
25299 /* An extra byte is required for the opcode count. */
25300 size = unwind.opcode_count + 1;
25301 }
bfae80f2 25302
c19d1205
ZW
25303 size = (size + 3) >> 2;
25304 if (size > 0xff)
25305 as_bad (_("too many unwind opcodes"));
bfae80f2 25306
c19d1205
ZW
25307 frag_align (2, 0, 0);
25308 record_alignment (now_seg, 2);
25309 unwind.table_entry = expr_build_dot ();
25310
25311 /* Allocate the table entry. */
25312 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
25313 /* PR 13449: Zero the table entries in case some of them are not used. */
25314 memset (ptr, 0, (size << 2) + 4);
c19d1205 25315 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 25316
c19d1205 25317 switch (unwind.personality_index)
bfae80f2 25318 {
c19d1205
ZW
25319 case -1:
25320 /* ??? Should this be a PLT generating relocation? */
25321 /* Custom personality routine. */
25322 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
25323 BFD_RELOC_ARM_PREL31);
bfae80f2 25324
c19d1205
ZW
25325 where += 4;
25326 ptr += 4;
bfae80f2 25327
c19d1205 25328 /* Set the first byte to the number of additional words. */
5011093d 25329 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
25330 n = 3;
25331 break;
bfae80f2 25332
c19d1205
ZW
25333 /* ABI defined personality routines. */
25334 case 0:
25335 /* Three opcodes bytes are packed into the first word. */
25336 data = 0x80;
25337 n = 3;
25338 break;
bfae80f2 25339
c19d1205
ZW
25340 case 1:
25341 case 2:
25342 /* The size and first two opcode bytes go in the first word. */
25343 data = ((0x80 + unwind.personality_index) << 8) | size;
25344 n = 2;
25345 break;
bfae80f2 25346
c19d1205
ZW
25347 default:
25348 /* Should never happen. */
25349 abort ();
25350 }
bfae80f2 25351
c19d1205
ZW
25352 /* Pack the opcodes into words (MSB first), reversing the list at the same
25353 time. */
25354 while (unwind.opcode_count > 0)
25355 {
25356 if (n == 0)
25357 {
25358 md_number_to_chars (ptr, data, 4);
25359 ptr += 4;
25360 n = 4;
25361 data = 0;
25362 }
25363 unwind.opcode_count--;
25364 n--;
25365 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25366 }
25367
25368 /* Finish off the last word. */
25369 if (n < 4)
25370 {
25371 /* Pad with "finish" opcodes. */
25372 while (n--)
25373 data = (data << 8) | 0xb0;
25374
25375 md_number_to_chars (ptr, data, 4);
25376 }
25377
25378 if (!have_data)
25379 {
25380 /* Add an empty descriptor if there is no user-specified data. */
25381 ptr = frag_more (4);
25382 md_number_to_chars (ptr, 0, 4);
25383 }
25384
25385 return 0;
bfae80f2
RE
25386}
25387
f0927246
NC
25388
25389/* Initialize the DWARF-2 unwind information for this procedure. */
25390
25391void
25392tc_arm_frame_initial_instructions (void)
25393{
25394 cfi_add_CFA_def_cfa (REG_SP, 0);
25395}
25396#endif /* OBJ_ELF */
25397
c19d1205
ZW
25398/* Convert REGNAME to a DWARF-2 register number. */
25399
25400int
1df69f4f 25401tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 25402{
1df69f4f 25403 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
1f5afe1c
NC
25404 if (reg != FAIL)
25405 return reg;
c19d1205 25406
1f5afe1c
NC
25407 /* PR 16694: Allow VFP registers as well. */
25408 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
25409 if (reg != FAIL)
25410 return 64 + reg;
c19d1205 25411
1f5afe1c
NC
25412 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
25413 if (reg != FAIL)
25414 return reg + 256;
25415
0198d5e6 25416 return FAIL;
bfae80f2
RE
25417}
25418
f0927246 25419#ifdef TE_PE
c19d1205 25420void
f0927246 25421tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 25422{
91d6fa6a 25423 expressionS exp;
bfae80f2 25424
91d6fa6a
NC
25425 exp.X_op = O_secrel;
25426 exp.X_add_symbol = symbol;
25427 exp.X_add_number = 0;
25428 emit_expr (&exp, size);
f0927246
NC
25429}
25430#endif
bfae80f2 25431
c19d1205 25432/* MD interface: Symbol and relocation handling. */
bfae80f2 25433
2fc8bdac
ZW
25434/* Return the address within the segment that a PC-relative fixup is
25435 relative to. For ARM, PC-relative fixups applied to instructions
25436 are generally relative to the location of the fixup plus 8 bytes.
25437 Thumb branches are offset by 4, and Thumb loads relative to PC
25438 require special handling. */
bfae80f2 25439
c19d1205 25440long
2fc8bdac 25441md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 25442{
2fc8bdac
ZW
25443 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
25444
25445 /* If this is pc-relative and we are going to emit a relocation
25446 then we just want to put out any pipeline compensation that the linker
53baae48
NC
25447 will need. Otherwise we want to use the calculated base.
25448 For WinCE we skip the bias for externals as well, since this
25449 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 25450 if (fixP->fx_pcrel
2fc8bdac 25451 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
25452 || (arm_force_relocation (fixP)
25453#ifdef TE_WINCE
25454 && !S_IS_EXTERNAL (fixP->fx_addsy)
25455#endif
25456 )))
2fc8bdac 25457 base = 0;
bfae80f2 25458
267bf995 25459
c19d1205 25460 switch (fixP->fx_r_type)
bfae80f2 25461 {
2fc8bdac
ZW
25462 /* PC relative addressing on the Thumb is slightly odd as the
25463 bottom two bits of the PC are forced to zero for the
25464 calculation. This happens *after* application of the
25465 pipeline offset. However, Thumb adrl already adjusts for
25466 this, so we need not do it again. */
c19d1205 25467 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 25468 return base & ~3;
c19d1205
ZW
25469
25470 case BFD_RELOC_ARM_THUMB_OFFSET:
25471 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 25472 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 25473 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 25474 return (base + 4) & ~3;
c19d1205 25475
2fc8bdac 25476 /* Thumb branches are simply offset by +4. */
e12437dc 25477 case BFD_RELOC_THUMB_PCREL_BRANCH5:
2fc8bdac
ZW
25478 case BFD_RELOC_THUMB_PCREL_BRANCH7:
25479 case BFD_RELOC_THUMB_PCREL_BRANCH9:
25480 case BFD_RELOC_THUMB_PCREL_BRANCH12:
25481 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 25482 case BFD_RELOC_THUMB_PCREL_BRANCH25:
f6b2b12d 25483 case BFD_RELOC_THUMB_PCREL_BFCSEL:
e5d6e09e 25484 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 25485 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 25486 case BFD_RELOC_ARM_THUMB_BF13:
60f993ce 25487 case BFD_RELOC_ARM_THUMB_LOOP12:
2fc8bdac 25488 return base + 4;
bfae80f2 25489
267bf995 25490 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
25491 if (fixP->fx_addsy
25492 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25493 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995 25494 && ARM_IS_FUNC (fixP->fx_addsy)
477330fc
RM
25495 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25496 base = fixP->fx_where + fixP->fx_frag->fr_address;
267bf995
RR
25497 return base + 4;
25498
00adf2d4
JB
25499 /* BLX is like branches above, but forces the low two bits of PC to
25500 zero. */
486499d0
CL
25501 case BFD_RELOC_THUMB_PCREL_BLX:
25502 if (fixP->fx_addsy
25503 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25504 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
25505 && THUMB_IS_FUNC (fixP->fx_addsy)
25506 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25507 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
25508 return (base + 4) & ~3;
25509
2fc8bdac
ZW
25510 /* ARM mode branches are offset by +8. However, the Windows CE
25511 loader expects the relocation not to take this into account. */
267bf995 25512 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
25513 if (fixP->fx_addsy
25514 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25515 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
25516 && ARM_IS_FUNC (fixP->fx_addsy)
25517 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25518 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 25519 return base + 8;
267bf995 25520
486499d0
CL
25521 case BFD_RELOC_ARM_PCREL_CALL:
25522 if (fixP->fx_addsy
25523 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25524 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
25525 && THUMB_IS_FUNC (fixP->fx_addsy)
25526 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25527 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 25528 return base + 8;
267bf995 25529
2fc8bdac 25530 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 25531 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 25532 case BFD_RELOC_ARM_PLT32:
c19d1205 25533#ifdef TE_WINCE
5f4273c7 25534 /* When handling fixups immediately, because we have already
477330fc 25535 discovered the value of a symbol, or the address of the frag involved
53baae48 25536 we must account for the offset by +8, as the OS loader will never see the reloc.
477330fc
RM
25537 see fixup_segment() in write.c
25538 The S_IS_EXTERNAL test handles the case of global symbols.
25539 Those need the calculated base, not just the pipe compensation the linker will need. */
53baae48
NC
25540 if (fixP->fx_pcrel
25541 && fixP->fx_addsy != NULL
25542 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25543 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
25544 return base + 8;
2fc8bdac 25545 return base;
c19d1205 25546#else
2fc8bdac 25547 return base + 8;
c19d1205 25548#endif
2fc8bdac 25549
267bf995 25550
2fc8bdac
ZW
25551 /* ARM mode loads relative to PC are also offset by +8. Unlike
25552 branches, the Windows CE loader *does* expect the relocation
25553 to take this into account. */
25554 case BFD_RELOC_ARM_OFFSET_IMM:
25555 case BFD_RELOC_ARM_OFFSET_IMM8:
25556 case BFD_RELOC_ARM_HWLITERAL:
25557 case BFD_RELOC_ARM_LITERAL:
25558 case BFD_RELOC_ARM_CP_OFF_IMM:
25559 return base + 8;
25560
25561
25562 /* Other PC-relative relocations are un-offset. */
25563 default:
25564 return base;
25565 }
bfae80f2
RE
25566}
25567
8b2d793c
NC
25568static bfd_boolean flag_warn_syms = TRUE;
25569
ae8714c2
NC
25570bfd_boolean
25571arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
bfae80f2 25572{
8b2d793c
NC
25573 /* PR 18347 - Warn if the user attempts to create a symbol with the same
25574 name as an ARM instruction. Whilst strictly speaking it is allowed, it
25575 does mean that the resulting code might be very confusing to the reader.
25576 Also this warning can be triggered if the user omits an operand before
25577 an immediate address, eg:
25578
25579 LDR =foo
25580
25581 GAS treats this as an assignment of the value of the symbol foo to a
25582 symbol LDR, and so (without this code) it will not issue any kind of
25583 warning or error message.
25584
25585 Note - ARM instructions are case-insensitive but the strings in the hash
25586 table are all stored in lower case, so we must first ensure that name is
ae8714c2
NC
25587 lower case too. */
25588 if (flag_warn_syms && arm_ops_hsh)
8b2d793c
NC
25589 {
25590 char * nbuf = strdup (name);
25591 char * p;
25592
25593 for (p = nbuf; *p; p++)
25594 *p = TOLOWER (*p);
25595 if (hash_find (arm_ops_hsh, nbuf) != NULL)
25596 {
25597 static struct hash_control * already_warned = NULL;
25598
25599 if (already_warned == NULL)
25600 already_warned = hash_new ();
25601 /* Only warn about the symbol once. To keep the code
25602 simple we let hash_insert do the lookup for us. */
3076e594 25603 if (hash_insert (already_warned, nbuf, NULL) == NULL)
ae8714c2 25604 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
8b2d793c
NC
25605 }
25606 else
25607 free (nbuf);
25608 }
3739860c 25609
ae8714c2
NC
25610 return FALSE;
25611}
25612
25613/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
25614 Otherwise we have no need to default values of symbols. */
25615
25616symbolS *
25617md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
25618{
25619#ifdef OBJ_ELF
25620 if (name[0] == '_' && name[1] == 'G'
25621 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
25622 {
25623 if (!GOT_symbol)
25624 {
25625 if (symbol_find (name))
25626 as_bad (_("GOT already in the symbol table"));
25627
25628 GOT_symbol = symbol_new (name, undefined_section,
25629 (valueT) 0, & zero_address_frag);
25630 }
25631
25632 return GOT_symbol;
25633 }
25634#endif
25635
c921be7d 25636 return NULL;
bfae80f2
RE
25637}
25638
55cf6793 25639/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
25640 computed as two separate immediate values, added together. We
25641 already know that this value cannot be computed by just one ARM
25642 instruction. */
25643
25644static unsigned int
25645validate_immediate_twopart (unsigned int val,
25646 unsigned int * highpart)
bfae80f2 25647{
c19d1205
ZW
25648 unsigned int a;
25649 unsigned int i;
bfae80f2 25650
c19d1205
ZW
25651 for (i = 0; i < 32; i += 2)
25652 if (((a = rotate_left (val, i)) & 0xff) != 0)
25653 {
25654 if (a & 0xff00)
25655 {
25656 if (a & ~ 0xffff)
25657 continue;
25658 * highpart = (a >> 8) | ((i + 24) << 7);
25659 }
25660 else if (a & 0xff0000)
25661 {
25662 if (a & 0xff000000)
25663 continue;
25664 * highpart = (a >> 16) | ((i + 16) << 7);
25665 }
25666 else
25667 {
9c2799c2 25668 gas_assert (a & 0xff000000);
c19d1205
ZW
25669 * highpart = (a >> 24) | ((i + 8) << 7);
25670 }
bfae80f2 25671
c19d1205
ZW
25672 return (a & 0xff) | (i << 7);
25673 }
bfae80f2 25674
c19d1205 25675 return FAIL;
bfae80f2
RE
25676}
25677
c19d1205
ZW
25678static int
25679validate_offset_imm (unsigned int val, int hwse)
25680{
25681 if ((hwse && val > 255) || val > 4095)
25682 return FAIL;
25683 return val;
25684}
bfae80f2 25685
55cf6793 25686/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
25687 negative immediate constant by altering the instruction. A bit of
25688 a hack really.
25689 MOV <-> MVN
25690 AND <-> BIC
25691 ADC <-> SBC
25692 by inverting the second operand, and
25693 ADD <-> SUB
25694 CMP <-> CMN
25695 by negating the second operand. */
bfae80f2 25696
c19d1205
ZW
25697static int
25698negate_data_op (unsigned long * instruction,
25699 unsigned long value)
bfae80f2 25700{
c19d1205
ZW
25701 int op, new_inst;
25702 unsigned long negated, inverted;
bfae80f2 25703
c19d1205
ZW
25704 negated = encode_arm_immediate (-value);
25705 inverted = encode_arm_immediate (~value);
bfae80f2 25706
c19d1205
ZW
25707 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
25708 switch (op)
bfae80f2 25709 {
c19d1205
ZW
25710 /* First negates. */
25711 case OPCODE_SUB: /* ADD <-> SUB */
25712 new_inst = OPCODE_ADD;
25713 value = negated;
25714 break;
bfae80f2 25715
c19d1205
ZW
25716 case OPCODE_ADD:
25717 new_inst = OPCODE_SUB;
25718 value = negated;
25719 break;
bfae80f2 25720
c19d1205
ZW
25721 case OPCODE_CMP: /* CMP <-> CMN */
25722 new_inst = OPCODE_CMN;
25723 value = negated;
25724 break;
bfae80f2 25725
c19d1205
ZW
25726 case OPCODE_CMN:
25727 new_inst = OPCODE_CMP;
25728 value = negated;
25729 break;
bfae80f2 25730
c19d1205
ZW
25731 /* Now Inverted ops. */
25732 case OPCODE_MOV: /* MOV <-> MVN */
25733 new_inst = OPCODE_MVN;
25734 value = inverted;
25735 break;
bfae80f2 25736
c19d1205
ZW
25737 case OPCODE_MVN:
25738 new_inst = OPCODE_MOV;
25739 value = inverted;
25740 break;
bfae80f2 25741
c19d1205
ZW
25742 case OPCODE_AND: /* AND <-> BIC */
25743 new_inst = OPCODE_BIC;
25744 value = inverted;
25745 break;
bfae80f2 25746
c19d1205
ZW
25747 case OPCODE_BIC:
25748 new_inst = OPCODE_AND;
25749 value = inverted;
25750 break;
bfae80f2 25751
c19d1205
ZW
25752 case OPCODE_ADC: /* ADC <-> SBC */
25753 new_inst = OPCODE_SBC;
25754 value = inverted;
25755 break;
bfae80f2 25756
c19d1205
ZW
25757 case OPCODE_SBC:
25758 new_inst = OPCODE_ADC;
25759 value = inverted;
25760 break;
bfae80f2 25761
c19d1205
ZW
25762 /* We cannot do anything. */
25763 default:
25764 return FAIL;
b99bd4ef
NC
25765 }
25766
c19d1205
ZW
25767 if (value == (unsigned) FAIL)
25768 return FAIL;
25769
25770 *instruction &= OPCODE_MASK;
25771 *instruction |= new_inst << DATA_OP_SHIFT;
25772 return value;
b99bd4ef
NC
25773}
25774
ef8d22e6
PB
25775/* Like negate_data_op, but for Thumb-2. */
25776
25777static unsigned int
16dd5e42 25778thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
25779{
25780 int op, new_inst;
25781 int rd;
16dd5e42 25782 unsigned int negated, inverted;
ef8d22e6
PB
25783
25784 negated = encode_thumb32_immediate (-value);
25785 inverted = encode_thumb32_immediate (~value);
25786
25787 rd = (*instruction >> 8) & 0xf;
25788 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
25789 switch (op)
25790 {
25791 /* ADD <-> SUB. Includes CMP <-> CMN. */
25792 case T2_OPCODE_SUB:
25793 new_inst = T2_OPCODE_ADD;
25794 value = negated;
25795 break;
25796
25797 case T2_OPCODE_ADD:
25798 new_inst = T2_OPCODE_SUB;
25799 value = negated;
25800 break;
25801
25802 /* ORR <-> ORN. Includes MOV <-> MVN. */
25803 case T2_OPCODE_ORR:
25804 new_inst = T2_OPCODE_ORN;
25805 value = inverted;
25806 break;
25807
25808 case T2_OPCODE_ORN:
25809 new_inst = T2_OPCODE_ORR;
25810 value = inverted;
25811 break;
25812
25813 /* AND <-> BIC. TST has no inverted equivalent. */
25814 case T2_OPCODE_AND:
25815 new_inst = T2_OPCODE_BIC;
25816 if (rd == 15)
25817 value = FAIL;
25818 else
25819 value = inverted;
25820 break;
25821
25822 case T2_OPCODE_BIC:
25823 new_inst = T2_OPCODE_AND;
25824 value = inverted;
25825 break;
25826
25827 /* ADC <-> SBC */
25828 case T2_OPCODE_ADC:
25829 new_inst = T2_OPCODE_SBC;
25830 value = inverted;
25831 break;
25832
25833 case T2_OPCODE_SBC:
25834 new_inst = T2_OPCODE_ADC;
25835 value = inverted;
25836 break;
25837
25838 /* We cannot do anything. */
25839 default:
25840 return FAIL;
25841 }
25842
16dd5e42 25843 if (value == (unsigned int)FAIL)
ef8d22e6
PB
25844 return FAIL;
25845
25846 *instruction &= T2_OPCODE_MASK;
25847 *instruction |= new_inst << T2_DATA_OP_SHIFT;
25848 return value;
25849}
25850
8f06b2d8 25851/* Read a 32-bit thumb instruction from buf. */
0198d5e6 25852
8f06b2d8
PB
25853static unsigned long
25854get_thumb32_insn (char * buf)
25855{
25856 unsigned long insn;
25857 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
25858 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
25859
25860 return insn;
25861}
25862
a8bc6c78
PB
25863/* We usually want to set the low bit on the address of thumb function
25864 symbols. In particular .word foo - . should have the low bit set.
25865 Generic code tries to fold the difference of two symbols to
25866 a constant. Prevent this and force a relocation when the first symbols
25867 is a thumb function. */
c921be7d
NC
25868
25869bfd_boolean
a8bc6c78
PB
25870arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
25871{
25872 if (op == O_subtract
25873 && l->X_op == O_symbol
25874 && r->X_op == O_symbol
25875 && THUMB_IS_FUNC (l->X_add_symbol))
25876 {
25877 l->X_op = O_subtract;
25878 l->X_op_symbol = r->X_add_symbol;
25879 l->X_add_number -= r->X_add_number;
c921be7d 25880 return TRUE;
a8bc6c78 25881 }
c921be7d 25882
a8bc6c78 25883 /* Process as normal. */
c921be7d 25884 return FALSE;
a8bc6c78
PB
25885}
25886
4a42ebbc
RR
25887/* Encode Thumb2 unconditional branches and calls. The encoding
25888 for the 2 are identical for the immediate values. */
25889
25890static void
25891encode_thumb2_b_bl_offset (char * buf, offsetT value)
25892{
25893#define T2I1I2MASK ((1 << 13) | (1 << 11))
25894 offsetT newval;
25895 offsetT newval2;
25896 addressT S, I1, I2, lo, hi;
25897
25898 S = (value >> 24) & 0x01;
25899 I1 = (value >> 23) & 0x01;
25900 I2 = (value >> 22) & 0x01;
25901 hi = (value >> 12) & 0x3ff;
fa94de6b 25902 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
25903 newval = md_chars_to_number (buf, THUMB_SIZE);
25904 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
25905 newval |= (S << 10) | hi;
25906 newval2 &= ~T2I1I2MASK;
25907 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
25908 md_number_to_chars (buf, newval, THUMB_SIZE);
25909 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
25910}
25911
c19d1205 25912void
55cf6793 25913md_apply_fix (fixS * fixP,
c19d1205
ZW
25914 valueT * valP,
25915 segT seg)
25916{
25917 offsetT value = * valP;
25918 offsetT newval;
25919 unsigned int newimm;
25920 unsigned long temp;
25921 int sign;
25922 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 25923
9c2799c2 25924 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 25925
c19d1205 25926 /* Note whether this will delete the relocation. */
4962c51a 25927
c19d1205
ZW
25928 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
25929 fixP->fx_done = 1;
b99bd4ef 25930
adbaf948 25931 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 25932 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
25933 for emit_reloc. */
25934 value &= 0xffffffff;
25935 value ^= 0x80000000;
5f4273c7 25936 value -= 0x80000000;
adbaf948
ZW
25937
25938 *valP = value;
c19d1205 25939 fixP->fx_addnumber = value;
b99bd4ef 25940
adbaf948
ZW
25941 /* Same treatment for fixP->fx_offset. */
25942 fixP->fx_offset &= 0xffffffff;
25943 fixP->fx_offset ^= 0x80000000;
25944 fixP->fx_offset -= 0x80000000;
25945
c19d1205 25946 switch (fixP->fx_r_type)
b99bd4ef 25947 {
c19d1205
ZW
25948 case BFD_RELOC_NONE:
25949 /* This will need to go in the object file. */
25950 fixP->fx_done = 0;
25951 break;
b99bd4ef 25952
c19d1205
ZW
25953 case BFD_RELOC_ARM_IMMEDIATE:
25954 /* We claim that this fixup has been processed here,
25955 even if in fact we generate an error because we do
25956 not have a reloc for it, so tc_gen_reloc will reject it. */
25957 fixP->fx_done = 1;
b99bd4ef 25958
77db8e2e 25959 if (fixP->fx_addsy)
b99bd4ef 25960 {
77db8e2e 25961 const char *msg = 0;
b99bd4ef 25962
77db8e2e
NC
25963 if (! S_IS_DEFINED (fixP->fx_addsy))
25964 msg = _("undefined symbol %s used as an immediate value");
25965 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
25966 msg = _("symbol %s is in a different section");
25967 else if (S_IS_WEAK (fixP->fx_addsy))
25968 msg = _("symbol %s is weak and may be overridden later");
25969
25970 if (msg)
25971 {
25972 as_bad_where (fixP->fx_file, fixP->fx_line,
25973 msg, S_GET_NAME (fixP->fx_addsy));
25974 break;
25975 }
42e5fcbf
AS
25976 }
25977
c19d1205
ZW
25978 temp = md_chars_to_number (buf, INSN_SIZE);
25979
5e73442d
SL
25980 /* If the offset is negative, we should use encoding A2 for ADR. */
25981 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
25982 newimm = negate_data_op (&temp, value);
25983 else
25984 {
25985 newimm = encode_arm_immediate (value);
25986
25987 /* If the instruction will fail, see if we can fix things up by
25988 changing the opcode. */
25989 if (newimm == (unsigned int) FAIL)
25990 newimm = negate_data_op (&temp, value);
bada4342
JW
25991 /* MOV accepts both ARM modified immediate (A1 encoding) and
25992 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
25993 When disassembling, MOV is preferred when there is no encoding
25994 overlap. */
25995 if (newimm == (unsigned int) FAIL
25996 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
25997 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
25998 && !((temp >> SBIT_SHIFT) & 0x1)
25999 && value >= 0 && value <= 0xffff)
26000 {
26001 /* Clear bits[23:20] to change encoding from A1 to A2. */
26002 temp &= 0xff0fffff;
26003 /* Encoding high 4bits imm. Code below will encode the remaining
26004 low 12bits. */
26005 temp |= (value & 0x0000f000) << 4;
26006 newimm = value & 0x00000fff;
26007 }
5e73442d
SL
26008 }
26009
26010 if (newimm == (unsigned int) FAIL)
b99bd4ef 26011 {
c19d1205
ZW
26012 as_bad_where (fixP->fx_file, fixP->fx_line,
26013 _("invalid constant (%lx) after fixup"),
26014 (unsigned long) value);
26015 break;
b99bd4ef 26016 }
b99bd4ef 26017
c19d1205
ZW
26018 newimm |= (temp & 0xfffff000);
26019 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26020 break;
b99bd4ef 26021
c19d1205
ZW
26022 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
26023 {
26024 unsigned int highpart = 0;
26025 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 26026
77db8e2e 26027 if (fixP->fx_addsy)
42e5fcbf 26028 {
77db8e2e 26029 const char *msg = 0;
42e5fcbf 26030
77db8e2e
NC
26031 if (! S_IS_DEFINED (fixP->fx_addsy))
26032 msg = _("undefined symbol %s used as an immediate value");
26033 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26034 msg = _("symbol %s is in a different section");
26035 else if (S_IS_WEAK (fixP->fx_addsy))
26036 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 26037
77db8e2e
NC
26038 if (msg)
26039 {
26040 as_bad_where (fixP->fx_file, fixP->fx_line,
26041 msg, S_GET_NAME (fixP->fx_addsy));
26042 break;
26043 }
26044 }
fa94de6b 26045
c19d1205
ZW
26046 newimm = encode_arm_immediate (value);
26047 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 26048
c19d1205
ZW
26049 /* If the instruction will fail, see if we can fix things up by
26050 changing the opcode. */
26051 if (newimm == (unsigned int) FAIL
26052 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
26053 {
26054 /* No ? OK - try using two ADD instructions to generate
26055 the value. */
26056 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 26057
c19d1205
ZW
26058 /* Yes - then make sure that the second instruction is
26059 also an add. */
26060 if (newimm != (unsigned int) FAIL)
26061 newinsn = temp;
26062 /* Still No ? Try using a negated value. */
26063 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
26064 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
26065 /* Otherwise - give up. */
26066 else
26067 {
26068 as_bad_where (fixP->fx_file, fixP->fx_line,
26069 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
26070 (long) value);
26071 break;
26072 }
b99bd4ef 26073
c19d1205
ZW
26074 /* Replace the first operand in the 2nd instruction (which
26075 is the PC) with the destination register. We have
26076 already added in the PC in the first instruction and we
26077 do not want to do it again. */
26078 newinsn &= ~ 0xf0000;
26079 newinsn |= ((newinsn & 0x0f000) << 4);
26080 }
b99bd4ef 26081
c19d1205
ZW
26082 newimm |= (temp & 0xfffff000);
26083 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 26084
c19d1205
ZW
26085 highpart |= (newinsn & 0xfffff000);
26086 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
26087 }
26088 break;
b99bd4ef 26089
c19d1205 26090 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
26091 if (!fixP->fx_done && seg->use_rela_p)
26092 value = 0;
1a0670f3 26093 /* Fall through. */
00a97672 26094
c19d1205 26095 case BFD_RELOC_ARM_LITERAL:
26d97720 26096 sign = value > 0;
b99bd4ef 26097
c19d1205
ZW
26098 if (value < 0)
26099 value = - value;
b99bd4ef 26100
c19d1205 26101 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 26102 {
c19d1205
ZW
26103 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
26104 as_bad_where (fixP->fx_file, fixP->fx_line,
26105 _("invalid literal constant: pool needs to be closer"));
26106 else
26107 as_bad_where (fixP->fx_file, fixP->fx_line,
26108 _("bad immediate value for offset (%ld)"),
26109 (long) value);
26110 break;
f03698e6
RE
26111 }
26112
c19d1205 26113 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
26114 if (value == 0)
26115 newval &= 0xfffff000;
26116 else
26117 {
26118 newval &= 0xff7ff000;
26119 newval |= value | (sign ? INDEX_UP : 0);
26120 }
c19d1205
ZW
26121 md_number_to_chars (buf, newval, INSN_SIZE);
26122 break;
b99bd4ef 26123
c19d1205
ZW
26124 case BFD_RELOC_ARM_OFFSET_IMM8:
26125 case BFD_RELOC_ARM_HWLITERAL:
26d97720 26126 sign = value > 0;
b99bd4ef 26127
c19d1205
ZW
26128 if (value < 0)
26129 value = - value;
b99bd4ef 26130
c19d1205 26131 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 26132 {
c19d1205
ZW
26133 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
26134 as_bad_where (fixP->fx_file, fixP->fx_line,
26135 _("invalid literal constant: pool needs to be closer"));
26136 else
427d0db6
RM
26137 as_bad_where (fixP->fx_file, fixP->fx_line,
26138 _("bad immediate value for 8-bit offset (%ld)"),
26139 (long) value);
c19d1205 26140 break;
b99bd4ef
NC
26141 }
26142
c19d1205 26143 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
26144 if (value == 0)
26145 newval &= 0xfffff0f0;
26146 else
26147 {
26148 newval &= 0xff7ff0f0;
26149 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
26150 }
c19d1205
ZW
26151 md_number_to_chars (buf, newval, INSN_SIZE);
26152 break;
b99bd4ef 26153
c19d1205
ZW
26154 case BFD_RELOC_ARM_T32_OFFSET_U8:
26155 if (value < 0 || value > 1020 || value % 4 != 0)
26156 as_bad_where (fixP->fx_file, fixP->fx_line,
26157 _("bad immediate value for offset (%ld)"), (long) value);
26158 value /= 4;
b99bd4ef 26159
c19d1205 26160 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
26161 newval |= value;
26162 md_number_to_chars (buf+2, newval, THUMB_SIZE);
26163 break;
b99bd4ef 26164
c19d1205
ZW
26165 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26166 /* This is a complicated relocation used for all varieties of Thumb32
26167 load/store instruction with immediate offset:
26168
26169 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
477330fc 26170 *4, optional writeback(W)
c19d1205
ZW
26171 (doubleword load/store)
26172
26173 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
26174 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
26175 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
26176 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
26177 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
26178
26179 Uppercase letters indicate bits that are already encoded at
26180 this point. Lowercase letters are our problem. For the
26181 second block of instructions, the secondary opcode nybble
26182 (bits 8..11) is present, and bit 23 is zero, even if this is
26183 a PC-relative operation. */
26184 newval = md_chars_to_number (buf, THUMB_SIZE);
26185 newval <<= 16;
26186 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 26187
c19d1205 26188 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 26189 {
c19d1205
ZW
26190 /* Doubleword load/store: 8-bit offset, scaled by 4. */
26191 if (value >= 0)
26192 newval |= (1 << 23);
26193 else
26194 value = -value;
26195 if (value % 4 != 0)
26196 {
26197 as_bad_where (fixP->fx_file, fixP->fx_line,
26198 _("offset not a multiple of 4"));
26199 break;
26200 }
26201 value /= 4;
216d22bc 26202 if (value > 0xff)
c19d1205
ZW
26203 {
26204 as_bad_where (fixP->fx_file, fixP->fx_line,
26205 _("offset out of range"));
26206 break;
26207 }
26208 newval &= ~0xff;
b99bd4ef 26209 }
c19d1205 26210 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 26211 {
c19d1205
ZW
26212 /* PC-relative, 12-bit offset. */
26213 if (value >= 0)
26214 newval |= (1 << 23);
26215 else
26216 value = -value;
216d22bc 26217 if (value > 0xfff)
c19d1205
ZW
26218 {
26219 as_bad_where (fixP->fx_file, fixP->fx_line,
26220 _("offset out of range"));
26221 break;
26222 }
26223 newval &= ~0xfff;
b99bd4ef 26224 }
c19d1205 26225 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 26226 {
c19d1205
ZW
26227 /* Writeback: 8-bit, +/- offset. */
26228 if (value >= 0)
26229 newval |= (1 << 9);
26230 else
26231 value = -value;
216d22bc 26232 if (value > 0xff)
c19d1205
ZW
26233 {
26234 as_bad_where (fixP->fx_file, fixP->fx_line,
26235 _("offset out of range"));
26236 break;
26237 }
26238 newval &= ~0xff;
b99bd4ef 26239 }
c19d1205 26240 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 26241 {
c19d1205 26242 /* T-instruction: positive 8-bit offset. */
216d22bc 26243 if (value < 0 || value > 0xff)
b99bd4ef 26244 {
c19d1205
ZW
26245 as_bad_where (fixP->fx_file, fixP->fx_line,
26246 _("offset out of range"));
26247 break;
b99bd4ef 26248 }
c19d1205
ZW
26249 newval &= ~0xff;
26250 newval |= value;
b99bd4ef
NC
26251 }
26252 else
b99bd4ef 26253 {
c19d1205
ZW
26254 /* Positive 12-bit or negative 8-bit offset. */
26255 int limit;
26256 if (value >= 0)
b99bd4ef 26257 {
c19d1205
ZW
26258 newval |= (1 << 23);
26259 limit = 0xfff;
26260 }
26261 else
26262 {
26263 value = -value;
26264 limit = 0xff;
26265 }
26266 if (value > limit)
26267 {
26268 as_bad_where (fixP->fx_file, fixP->fx_line,
26269 _("offset out of range"));
26270 break;
b99bd4ef 26271 }
c19d1205 26272 newval &= ~limit;
b99bd4ef 26273 }
b99bd4ef 26274
c19d1205
ZW
26275 newval |= value;
26276 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
26277 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
26278 break;
404ff6b5 26279
c19d1205
ZW
26280 case BFD_RELOC_ARM_SHIFT_IMM:
26281 newval = md_chars_to_number (buf, INSN_SIZE);
26282 if (((unsigned long) value) > 32
26283 || (value == 32
26284 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
26285 {
26286 as_bad_where (fixP->fx_file, fixP->fx_line,
26287 _("shift expression is too large"));
26288 break;
26289 }
404ff6b5 26290
c19d1205
ZW
26291 if (value == 0)
26292 /* Shifts of zero must be done as lsl. */
26293 newval &= ~0x60;
26294 else if (value == 32)
26295 value = 0;
26296 newval &= 0xfffff07f;
26297 newval |= (value & 0x1f) << 7;
26298 md_number_to_chars (buf, newval, INSN_SIZE);
26299 break;
404ff6b5 26300
c19d1205 26301 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 26302 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 26303 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 26304 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
26305 /* We claim that this fixup has been processed here,
26306 even if in fact we generate an error because we do
26307 not have a reloc for it, so tc_gen_reloc will reject it. */
26308 fixP->fx_done = 1;
404ff6b5 26309
c19d1205
ZW
26310 if (fixP->fx_addsy
26311 && ! S_IS_DEFINED (fixP->fx_addsy))
26312 {
26313 as_bad_where (fixP->fx_file, fixP->fx_line,
26314 _("undefined symbol %s used as an immediate value"),
26315 S_GET_NAME (fixP->fx_addsy));
26316 break;
26317 }
404ff6b5 26318
c19d1205
ZW
26319 newval = md_chars_to_number (buf, THUMB_SIZE);
26320 newval <<= 16;
26321 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 26322
16805f35 26323 newimm = FAIL;
bada4342
JW
26324 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
26325 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
26326 Thumb2 modified immediate encoding (T2). */
26327 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
16805f35 26328 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
26329 {
26330 newimm = encode_thumb32_immediate (value);
26331 if (newimm == (unsigned int) FAIL)
26332 newimm = thumb32_negate_data_op (&newval, value);
26333 }
bada4342 26334 if (newimm == (unsigned int) FAIL)
92e90b6e 26335 {
bada4342 26336 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
e9f89963 26337 {
bada4342
JW
26338 /* Turn add/sum into addw/subw. */
26339 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
26340 newval = (newval & 0xfeffffff) | 0x02000000;
26341 /* No flat 12-bit imm encoding for addsw/subsw. */
26342 if ((newval & 0x00100000) == 0)
40f246e3 26343 {
bada4342
JW
26344 /* 12 bit immediate for addw/subw. */
26345 if (value < 0)
26346 {
26347 value = -value;
26348 newval ^= 0x00a00000;
26349 }
26350 if (value > 0xfff)
26351 newimm = (unsigned int) FAIL;
26352 else
26353 newimm = value;
26354 }
26355 }
26356 else
26357 {
26358 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
26359 UINT16 (T3 encoding), MOVW only accepts UINT16. When
26360 disassembling, MOV is preferred when there is no encoding
db7bf105 26361 overlap. */
bada4342 26362 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
db7bf105
NC
26363 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
26364 but with the Rn field [19:16] set to 1111. */
26365 && (((newval >> 16) & 0xf) == 0xf)
bada4342
JW
26366 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
26367 && !((newval >> T2_SBIT_SHIFT) & 0x1)
db7bf105 26368 && value >= 0 && value <= 0xffff)
bada4342
JW
26369 {
26370 /* Toggle bit[25] to change encoding from T2 to T3. */
26371 newval ^= 1 << 25;
26372 /* Clear bits[19:16]. */
26373 newval &= 0xfff0ffff;
26374 /* Encoding high 4bits imm. Code below will encode the
26375 remaining low 12bits. */
26376 newval |= (value & 0x0000f000) << 4;
26377 newimm = value & 0x00000fff;
40f246e3 26378 }
e9f89963 26379 }
92e90b6e 26380 }
cc8a6dd0 26381
c19d1205 26382 if (newimm == (unsigned int)FAIL)
3631a3c8 26383 {
c19d1205
ZW
26384 as_bad_where (fixP->fx_file, fixP->fx_line,
26385 _("invalid constant (%lx) after fixup"),
26386 (unsigned long) value);
26387 break;
3631a3c8
NC
26388 }
26389
c19d1205
ZW
26390 newval |= (newimm & 0x800) << 15;
26391 newval |= (newimm & 0x700) << 4;
26392 newval |= (newimm & 0x0ff);
cc8a6dd0 26393
c19d1205
ZW
26394 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
26395 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
26396 break;
a737bd4d 26397
3eb17e6b 26398 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
26399 if (((unsigned long) value) > 0xffff)
26400 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 26401 _("invalid smc expression"));
2fc8bdac 26402 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
26403 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26404 md_number_to_chars (buf, newval, INSN_SIZE);
26405 break;
a737bd4d 26406
90ec0d68
MGD
26407 case BFD_RELOC_ARM_HVC:
26408 if (((unsigned long) value) > 0xffff)
26409 as_bad_where (fixP->fx_file, fixP->fx_line,
26410 _("invalid hvc expression"));
26411 newval = md_chars_to_number (buf, INSN_SIZE);
26412 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26413 md_number_to_chars (buf, newval, INSN_SIZE);
26414 break;
26415
c19d1205 26416 case BFD_RELOC_ARM_SWI:
adbaf948 26417 if (fixP->tc_fix_data != 0)
c19d1205
ZW
26418 {
26419 if (((unsigned long) value) > 0xff)
26420 as_bad_where (fixP->fx_file, fixP->fx_line,
26421 _("invalid swi expression"));
2fc8bdac 26422 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
26423 newval |= value;
26424 md_number_to_chars (buf, newval, THUMB_SIZE);
26425 }
26426 else
26427 {
26428 if (((unsigned long) value) > 0x00ffffff)
26429 as_bad_where (fixP->fx_file, fixP->fx_line,
26430 _("invalid swi expression"));
2fc8bdac 26431 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
26432 newval |= value;
26433 md_number_to_chars (buf, newval, INSN_SIZE);
26434 }
26435 break;
a737bd4d 26436
c19d1205
ZW
26437 case BFD_RELOC_ARM_MULTI:
26438 if (((unsigned long) value) > 0xffff)
26439 as_bad_where (fixP->fx_file, fixP->fx_line,
26440 _("invalid expression in load/store multiple"));
26441 newval = value | md_chars_to_number (buf, INSN_SIZE);
26442 md_number_to_chars (buf, newval, INSN_SIZE);
26443 break;
a737bd4d 26444
c19d1205 26445#ifdef OBJ_ELF
39b41c9c 26446 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
26447
26448 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26449 && fixP->fx_addsy
34e77a92 26450 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26451 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26452 && THUMB_IS_FUNC (fixP->fx_addsy))
26453 /* Flip the bl to blx. This is a simple flip
26454 bit here because we generate PCREL_CALL for
26455 unconditional bls. */
26456 {
26457 newval = md_chars_to_number (buf, INSN_SIZE);
26458 newval = newval | 0x10000000;
26459 md_number_to_chars (buf, newval, INSN_SIZE);
26460 temp = 1;
26461 fixP->fx_done = 1;
26462 }
39b41c9c
PB
26463 else
26464 temp = 3;
26465 goto arm_branch_common;
26466
26467 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
26468 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26469 && fixP->fx_addsy
34e77a92 26470 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26471 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26472 && THUMB_IS_FUNC (fixP->fx_addsy))
26473 {
26474 /* This would map to a bl<cond>, b<cond>,
26475 b<always> to a Thumb function. We
26476 need to force a relocation for this particular
26477 case. */
26478 newval = md_chars_to_number (buf, INSN_SIZE);
26479 fixP->fx_done = 0;
26480 }
1a0670f3 26481 /* Fall through. */
267bf995 26482
2fc8bdac 26483 case BFD_RELOC_ARM_PLT32:
c19d1205 26484#endif
39b41c9c
PB
26485 case BFD_RELOC_ARM_PCREL_BRANCH:
26486 temp = 3;
26487 goto arm_branch_common;
a737bd4d 26488
39b41c9c 26489 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 26490
39b41c9c 26491 temp = 1;
267bf995
RR
26492 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26493 && fixP->fx_addsy
34e77a92 26494 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26495 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26496 && ARM_IS_FUNC (fixP->fx_addsy))
26497 {
26498 /* Flip the blx to a bl and warn. */
26499 const char *name = S_GET_NAME (fixP->fx_addsy);
26500 newval = 0xeb000000;
26501 as_warn_where (fixP->fx_file, fixP->fx_line,
26502 _("blx to '%s' an ARM ISA state function changed to bl"),
26503 name);
26504 md_number_to_chars (buf, newval, INSN_SIZE);
26505 temp = 3;
26506 fixP->fx_done = 1;
26507 }
26508
26509#ifdef OBJ_ELF
26510 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
477330fc 26511 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
267bf995
RR
26512#endif
26513
39b41c9c 26514 arm_branch_common:
c19d1205 26515 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
26516 instruction, in a 24 bit, signed field. Bits 26 through 32 either
26517 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
de194d85 26518 also be clear. */
39b41c9c 26519 if (value & temp)
c19d1205 26520 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
26521 _("misaligned branch destination"));
26522 if ((value & (offsetT)0xfe000000) != (offsetT)0
26523 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 26524 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 26525
2fc8bdac 26526 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 26527 {
2fc8bdac
ZW
26528 newval = md_chars_to_number (buf, INSN_SIZE);
26529 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
26530 /* Set the H bit on BLX instructions. */
26531 if (temp == 1)
26532 {
26533 if (value & 2)
26534 newval |= 0x01000000;
26535 else
26536 newval &= ~0x01000000;
26537 }
2fc8bdac 26538 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 26539 }
c19d1205 26540 break;
a737bd4d 26541
25fe350b
MS
26542 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
26543 /* CBZ can only branch forward. */
a737bd4d 26544
738755b0 26545 /* Attempts to use CBZ to branch to the next instruction
477330fc
RM
26546 (which, strictly speaking, are prohibited) will be turned into
26547 no-ops.
738755b0
MS
26548
26549 FIXME: It may be better to remove the instruction completely and
26550 perform relaxation. */
26551 if (value == -2)
2fc8bdac
ZW
26552 {
26553 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 26554 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
26555 md_number_to_chars (buf, newval, THUMB_SIZE);
26556 }
738755b0
MS
26557 else
26558 {
26559 if (value & ~0x7e)
08f10d51 26560 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0 26561
477330fc 26562 if (fixP->fx_done || !seg->use_rela_p)
738755b0
MS
26563 {
26564 newval = md_chars_to_number (buf, THUMB_SIZE);
26565 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
26566 md_number_to_chars (buf, newval, THUMB_SIZE);
26567 }
26568 }
c19d1205 26569 break;
a737bd4d 26570
c19d1205 26571 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 26572 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 26573 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 26574
2fc8bdac
ZW
26575 if (fixP->fx_done || !seg->use_rela_p)
26576 {
26577 newval = md_chars_to_number (buf, THUMB_SIZE);
26578 newval |= (value & 0x1ff) >> 1;
26579 md_number_to_chars (buf, newval, THUMB_SIZE);
26580 }
c19d1205 26581 break;
a737bd4d 26582
c19d1205 26583 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 26584 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 26585 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 26586
2fc8bdac
ZW
26587 if (fixP->fx_done || !seg->use_rela_p)
26588 {
26589 newval = md_chars_to_number (buf, THUMB_SIZE);
26590 newval |= (value & 0xfff) >> 1;
26591 md_number_to_chars (buf, newval, THUMB_SIZE);
26592 }
c19d1205 26593 break;
a737bd4d 26594
c19d1205 26595 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
26596 if (fixP->fx_addsy
26597 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26598 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26599 && ARM_IS_FUNC (fixP->fx_addsy)
26600 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26601 {
26602 /* Force a relocation for a branch 20 bits wide. */
26603 fixP->fx_done = 0;
26604 }
08f10d51 26605 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
26606 as_bad_where (fixP->fx_file, fixP->fx_line,
26607 _("conditional branch out of range"));
404ff6b5 26608
2fc8bdac
ZW
26609 if (fixP->fx_done || !seg->use_rela_p)
26610 {
26611 offsetT newval2;
26612 addressT S, J1, J2, lo, hi;
404ff6b5 26613
2fc8bdac
ZW
26614 S = (value & 0x00100000) >> 20;
26615 J2 = (value & 0x00080000) >> 19;
26616 J1 = (value & 0x00040000) >> 18;
26617 hi = (value & 0x0003f000) >> 12;
26618 lo = (value & 0x00000ffe) >> 1;
6c43fab6 26619
2fc8bdac
ZW
26620 newval = md_chars_to_number (buf, THUMB_SIZE);
26621 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26622 newval |= (S << 10) | hi;
26623 newval2 |= (J1 << 13) | (J2 << 11) | lo;
26624 md_number_to_chars (buf, newval, THUMB_SIZE);
26625 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26626 }
c19d1205 26627 break;
6c43fab6 26628
c19d1205 26629 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
26630 /* If there is a blx from a thumb state function to
26631 another thumb function flip this to a bl and warn
26632 about it. */
26633
26634 if (fixP->fx_addsy
34e77a92 26635 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26636 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26637 && THUMB_IS_FUNC (fixP->fx_addsy))
26638 {
26639 const char *name = S_GET_NAME (fixP->fx_addsy);
26640 as_warn_where (fixP->fx_file, fixP->fx_line,
26641 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
26642 name);
26643 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26644 newval = newval | 0x1000;
26645 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26646 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26647 fixP->fx_done = 1;
26648 }
26649
26650
26651 goto thumb_bl_common;
26652
c19d1205 26653 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
26654 /* A bl from Thumb state ISA to an internal ARM state function
26655 is converted to a blx. */
26656 if (fixP->fx_addsy
26657 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26658 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26659 && ARM_IS_FUNC (fixP->fx_addsy)
26660 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26661 {
26662 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26663 newval = newval & ~0x1000;
26664 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26665 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
26666 fixP->fx_done = 1;
26667 }
26668
26669 thumb_bl_common:
26670
2fc8bdac
ZW
26671 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26672 /* For a BLX instruction, make sure that the relocation is rounded up
26673 to a word boundary. This follows the semantics of the instruction
26674 which specifies that bit 1 of the target address will come from bit
26675 1 of the base address. */
d406f3e4
JB
26676 value = (value + 3) & ~ 3;
26677
26678#ifdef OBJ_ELF
26679 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
26680 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26681 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26682#endif
404ff6b5 26683
2b2f5df9
NC
26684 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
26685 {
fc289b0a 26686 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
2b2f5df9
NC
26687 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26688 else if ((value & ~0x1ffffff)
26689 && ((value & ~0x1ffffff) != ~0x1ffffff))
26690 as_bad_where (fixP->fx_file, fixP->fx_line,
26691 _("Thumb2 branch out of range"));
26692 }
4a42ebbc
RR
26693
26694 if (fixP->fx_done || !seg->use_rela_p)
26695 encode_thumb2_b_bl_offset (buf, value);
26696
c19d1205 26697 break;
404ff6b5 26698
c19d1205 26699 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
26700 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
26701 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 26702
2fc8bdac 26703 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 26704 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 26705
2fc8bdac 26706 break;
a737bd4d 26707
2fc8bdac
ZW
26708 case BFD_RELOC_8:
26709 if (fixP->fx_done || !seg->use_rela_p)
4b1a927e 26710 *buf = value;
c19d1205 26711 break;
a737bd4d 26712
c19d1205 26713 case BFD_RELOC_16:
2fc8bdac 26714 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 26715 md_number_to_chars (buf, value, 2);
c19d1205 26716 break;
a737bd4d 26717
c19d1205 26718#ifdef OBJ_ELF
0855e32b
NS
26719 case BFD_RELOC_ARM_TLS_CALL:
26720 case BFD_RELOC_ARM_THM_TLS_CALL:
26721 case BFD_RELOC_ARM_TLS_DESCSEQ:
26722 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
0855e32b 26723 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
26724 case BFD_RELOC_ARM_TLS_GD32:
26725 case BFD_RELOC_ARM_TLS_LE32:
26726 case BFD_RELOC_ARM_TLS_IE32:
26727 case BFD_RELOC_ARM_TLS_LDM32:
26728 case BFD_RELOC_ARM_TLS_LDO32:
26729 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4b1a927e 26730 break;
6c43fab6 26731
5c5a4843
CL
26732 /* Same handling as above, but with the arm_fdpic guard. */
26733 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
26734 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
26735 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
26736 if (arm_fdpic)
26737 {
26738 S_SET_THREAD_LOCAL (fixP->fx_addsy);
26739 }
26740 else
26741 {
26742 as_bad_where (fixP->fx_file, fixP->fx_line,
26743 _("Relocation supported only in FDPIC mode"));
26744 }
26745 break;
26746
c19d1205
ZW
26747 case BFD_RELOC_ARM_GOT32:
26748 case BFD_RELOC_ARM_GOTOFF:
c19d1205 26749 break;
b43420e6
NC
26750
26751 case BFD_RELOC_ARM_GOT_PREL:
26752 if (fixP->fx_done || !seg->use_rela_p)
477330fc 26753 md_number_to_chars (buf, value, 4);
b43420e6
NC
26754 break;
26755
9a6f4e97
NS
26756 case BFD_RELOC_ARM_TARGET2:
26757 /* TARGET2 is not partial-inplace, so we need to write the
477330fc
RM
26758 addend here for REL targets, because it won't be written out
26759 during reloc processing later. */
9a6f4e97
NS
26760 if (fixP->fx_done || !seg->use_rela_p)
26761 md_number_to_chars (buf, fixP->fx_offset, 4);
26762 break;
188fd7ae
CL
26763
26764 /* Relocations for FDPIC. */
26765 case BFD_RELOC_ARM_GOTFUNCDESC:
26766 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
26767 case BFD_RELOC_ARM_FUNCDESC:
26768 if (arm_fdpic)
26769 {
26770 if (fixP->fx_done || !seg->use_rela_p)
26771 md_number_to_chars (buf, 0, 4);
26772 }
26773 else
26774 {
26775 as_bad_where (fixP->fx_file, fixP->fx_line,
26776 _("Relocation supported only in FDPIC mode"));
26777 }
26778 break;
c19d1205 26779#endif
6c43fab6 26780
c19d1205
ZW
26781 case BFD_RELOC_RVA:
26782 case BFD_RELOC_32:
26783 case BFD_RELOC_ARM_TARGET1:
26784 case BFD_RELOC_ARM_ROSEGREL32:
26785 case BFD_RELOC_ARM_SBREL32:
26786 case BFD_RELOC_32_PCREL:
f0927246
NC
26787#ifdef TE_PE
26788 case BFD_RELOC_32_SECREL:
26789#endif
2fc8bdac 26790 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
26791#ifdef TE_WINCE
26792 /* For WinCE we only do this for pcrel fixups. */
26793 if (fixP->fx_done || fixP->fx_pcrel)
26794#endif
26795 md_number_to_chars (buf, value, 4);
c19d1205 26796 break;
6c43fab6 26797
c19d1205
ZW
26798#ifdef OBJ_ELF
26799 case BFD_RELOC_ARM_PREL31:
2fc8bdac 26800 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
26801 {
26802 newval = md_chars_to_number (buf, 4) & 0x80000000;
26803 if ((value ^ (value >> 1)) & 0x40000000)
26804 {
26805 as_bad_where (fixP->fx_file, fixP->fx_line,
26806 _("rel31 relocation overflow"));
26807 }
26808 newval |= value & 0x7fffffff;
26809 md_number_to_chars (buf, newval, 4);
26810 }
26811 break;
c19d1205 26812#endif
a737bd4d 26813
c19d1205 26814 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 26815 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
32c36c3c 26816 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
9db2f6b4
RL
26817 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
26818 newval = md_chars_to_number (buf, INSN_SIZE);
26819 else
26820 newval = get_thumb32_insn (buf);
26821 if ((newval & 0x0f200f00) == 0x0d000900)
26822 {
26823 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
26824 has permitted values that are multiples of 2, in the range 0
26825 to 510. */
26826 if (value < -510 || value > 510 || (value & 1))
26827 as_bad_where (fixP->fx_file, fixP->fx_line,
26828 _("co-processor offset out of range"));
26829 }
32c36c3c
AV
26830 else if ((newval & 0xfe001f80) == 0xec000f80)
26831 {
26832 if (value < -511 || value > 512 || (value & 3))
26833 as_bad_where (fixP->fx_file, fixP->fx_line,
26834 _("co-processor offset out of range"));
26835 }
9db2f6b4 26836 else if (value < -1023 || value > 1023 || (value & 3))
c19d1205
ZW
26837 as_bad_where (fixP->fx_file, fixP->fx_line,
26838 _("co-processor offset out of range"));
26839 cp_off_common:
26d97720 26840 sign = value > 0;
c19d1205
ZW
26841 if (value < 0)
26842 value = -value;
8f06b2d8
PB
26843 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
26844 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
26845 newval = md_chars_to_number (buf, INSN_SIZE);
26846 else
26847 newval = get_thumb32_insn (buf);
26d97720 26848 if (value == 0)
32c36c3c
AV
26849 {
26850 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
26851 newval &= 0xffffff80;
26852 else
26853 newval &= 0xffffff00;
26854 }
26d97720
NS
26855 else
26856 {
32c36c3c
AV
26857 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
26858 newval &= 0xff7fff80;
26859 else
26860 newval &= 0xff7fff00;
9db2f6b4
RL
26861 if ((newval & 0x0f200f00) == 0x0d000900)
26862 {
26863 /* This is a fp16 vstr/vldr.
26864
26865 It requires the immediate offset in the instruction is shifted
26866 left by 1 to be a half-word offset.
26867
26868 Here, left shift by 1 first, and later right shift by 2
26869 should get the right offset. */
26870 value <<= 1;
26871 }
26d97720
NS
26872 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
26873 }
8f06b2d8
PB
26874 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
26875 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
26876 md_number_to_chars (buf, newval, INSN_SIZE);
26877 else
26878 put_thumb32_insn (buf, newval);
c19d1205 26879 break;
a737bd4d 26880
c19d1205 26881 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 26882 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
26883 if (value < -255 || value > 255)
26884 as_bad_where (fixP->fx_file, fixP->fx_line,
26885 _("co-processor offset out of range"));
df7849c5 26886 value *= 4;
c19d1205 26887 goto cp_off_common;
6c43fab6 26888
c19d1205
ZW
26889 case BFD_RELOC_ARM_THUMB_OFFSET:
26890 newval = md_chars_to_number (buf, THUMB_SIZE);
26891 /* Exactly what ranges, and where the offset is inserted depends
26892 on the type of instruction, we can establish this from the
26893 top 4 bits. */
26894 switch (newval >> 12)
26895 {
26896 case 4: /* PC load. */
26897 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
26898 forced to zero for these loads; md_pcrel_from has already
26899 compensated for this. */
26900 if (value & 3)
26901 as_bad_where (fixP->fx_file, fixP->fx_line,
26902 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
26903 (((unsigned long) fixP->fx_frag->fr_address
26904 + (unsigned long) fixP->fx_where) & ~3)
26905 + (unsigned long) value);
a737bd4d 26906
c19d1205
ZW
26907 if (value & ~0x3fc)
26908 as_bad_where (fixP->fx_file, fixP->fx_line,
26909 _("invalid offset, value too big (0x%08lX)"),
26910 (long) value);
a737bd4d 26911
c19d1205
ZW
26912 newval |= value >> 2;
26913 break;
a737bd4d 26914
c19d1205
ZW
26915 case 9: /* SP load/store. */
26916 if (value & ~0x3fc)
26917 as_bad_where (fixP->fx_file, fixP->fx_line,
26918 _("invalid offset, value too big (0x%08lX)"),
26919 (long) value);
26920 newval |= value >> 2;
26921 break;
6c43fab6 26922
c19d1205
ZW
26923 case 6: /* Word load/store. */
26924 if (value & ~0x7c)
26925 as_bad_where (fixP->fx_file, fixP->fx_line,
26926 _("invalid offset, value too big (0x%08lX)"),
26927 (long) value);
26928 newval |= value << 4; /* 6 - 2. */
26929 break;
a737bd4d 26930
c19d1205
ZW
26931 case 7: /* Byte load/store. */
26932 if (value & ~0x1f)
26933 as_bad_where (fixP->fx_file, fixP->fx_line,
26934 _("invalid offset, value too big (0x%08lX)"),
26935 (long) value);
26936 newval |= value << 6;
26937 break;
a737bd4d 26938
c19d1205
ZW
26939 case 8: /* Halfword load/store. */
26940 if (value & ~0x3e)
26941 as_bad_where (fixP->fx_file, fixP->fx_line,
26942 _("invalid offset, value too big (0x%08lX)"),
26943 (long) value);
26944 newval |= value << 5; /* 6 - 1. */
26945 break;
a737bd4d 26946
c19d1205
ZW
26947 default:
26948 as_bad_where (fixP->fx_file, fixP->fx_line,
26949 "Unable to process relocation for thumb opcode: %lx",
26950 (unsigned long) newval);
26951 break;
26952 }
26953 md_number_to_chars (buf, newval, THUMB_SIZE);
26954 break;
a737bd4d 26955
c19d1205
ZW
26956 case BFD_RELOC_ARM_THUMB_ADD:
26957 /* This is a complicated relocation, since we use it for all of
26958 the following immediate relocations:
a737bd4d 26959
c19d1205
ZW
26960 3bit ADD/SUB
26961 8bit ADD/SUB
26962 9bit ADD/SUB SP word-aligned
26963 10bit ADD PC/SP word-aligned
a737bd4d 26964
c19d1205
ZW
26965 The type of instruction being processed is encoded in the
26966 instruction field:
a737bd4d 26967
c19d1205
ZW
26968 0x8000 SUB
26969 0x00F0 Rd
26970 0x000F Rs
26971 */
26972 newval = md_chars_to_number (buf, THUMB_SIZE);
26973 {
26974 int rd = (newval >> 4) & 0xf;
26975 int rs = newval & 0xf;
26976 int subtract = !!(newval & 0x8000);
a737bd4d 26977
c19d1205
ZW
26978 /* Check for HI regs, only very restricted cases allowed:
26979 Adjusting SP, and using PC or SP to get an address. */
26980 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
26981 || (rs > 7 && rs != REG_SP && rs != REG_PC))
26982 as_bad_where (fixP->fx_file, fixP->fx_line,
26983 _("invalid Hi register with immediate"));
a737bd4d 26984
c19d1205
ZW
26985 /* If value is negative, choose the opposite instruction. */
26986 if (value < 0)
26987 {
26988 value = -value;
26989 subtract = !subtract;
26990 if (value < 0)
26991 as_bad_where (fixP->fx_file, fixP->fx_line,
26992 _("immediate value out of range"));
26993 }
a737bd4d 26994
c19d1205
ZW
26995 if (rd == REG_SP)
26996 {
75c11999 26997 if (value & ~0x1fc)
c19d1205
ZW
26998 as_bad_where (fixP->fx_file, fixP->fx_line,
26999 _("invalid immediate for stack address calculation"));
27000 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
27001 newval |= value >> 2;
27002 }
27003 else if (rs == REG_PC || rs == REG_SP)
27004 {
c12d2c9d
NC
27005 /* PR gas/18541. If the addition is for a defined symbol
27006 within range of an ADR instruction then accept it. */
27007 if (subtract
27008 && value == 4
27009 && fixP->fx_addsy != NULL)
27010 {
27011 subtract = 0;
27012
27013 if (! S_IS_DEFINED (fixP->fx_addsy)
27014 || S_GET_SEGMENT (fixP->fx_addsy) != seg
27015 || S_IS_WEAK (fixP->fx_addsy))
27016 {
27017 as_bad_where (fixP->fx_file, fixP->fx_line,
27018 _("address calculation needs a strongly defined nearby symbol"));
27019 }
27020 else
27021 {
27022 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
27023
27024 /* Round up to the next 4-byte boundary. */
27025 if (v & 3)
27026 v = (v + 3) & ~ 3;
27027 else
27028 v += 4;
27029 v = S_GET_VALUE (fixP->fx_addsy) - v;
27030
27031 if (v & ~0x3fc)
27032 {
27033 as_bad_where (fixP->fx_file, fixP->fx_line,
27034 _("symbol too far away"));
27035 }
27036 else
27037 {
27038 fixP->fx_done = 1;
27039 value = v;
27040 }
27041 }
27042 }
27043
c19d1205
ZW
27044 if (subtract || value & ~0x3fc)
27045 as_bad_where (fixP->fx_file, fixP->fx_line,
27046 _("invalid immediate for address calculation (value = 0x%08lX)"),
5fc177c8 27047 (unsigned long) (subtract ? - value : value));
c19d1205
ZW
27048 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
27049 newval |= rd << 8;
27050 newval |= value >> 2;
27051 }
27052 else if (rs == rd)
27053 {
27054 if (value & ~0xff)
27055 as_bad_where (fixP->fx_file, fixP->fx_line,
27056 _("immediate value out of range"));
27057 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
27058 newval |= (rd << 8) | value;
27059 }
27060 else
27061 {
27062 if (value & ~0x7)
27063 as_bad_where (fixP->fx_file, fixP->fx_line,
27064 _("immediate value out of range"));
27065 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
27066 newval |= rd | (rs << 3) | (value << 6);
27067 }
27068 }
27069 md_number_to_chars (buf, newval, THUMB_SIZE);
27070 break;
a737bd4d 27071
c19d1205
ZW
27072 case BFD_RELOC_ARM_THUMB_IMM:
27073 newval = md_chars_to_number (buf, THUMB_SIZE);
27074 if (value < 0 || value > 255)
27075 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 27076 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
27077 (long) value);
27078 newval |= value;
27079 md_number_to_chars (buf, newval, THUMB_SIZE);
27080 break;
a737bd4d 27081
c19d1205
ZW
27082 case BFD_RELOC_ARM_THUMB_SHIFT:
27083 /* 5bit shift value (0..32). LSL cannot take 32. */
27084 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
27085 temp = newval & 0xf800;
27086 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
27087 as_bad_where (fixP->fx_file, fixP->fx_line,
27088 _("invalid shift value: %ld"), (long) value);
27089 /* Shifts of zero must be encoded as LSL. */
27090 if (value == 0)
27091 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
27092 /* Shifts of 32 are encoded as zero. */
27093 else if (value == 32)
27094 value = 0;
27095 newval |= value << 6;
27096 md_number_to_chars (buf, newval, THUMB_SIZE);
27097 break;
a737bd4d 27098
c19d1205
ZW
27099 case BFD_RELOC_VTABLE_INHERIT:
27100 case BFD_RELOC_VTABLE_ENTRY:
27101 fixP->fx_done = 0;
27102 return;
6c43fab6 27103
b6895b4f
PB
27104 case BFD_RELOC_ARM_MOVW:
27105 case BFD_RELOC_ARM_MOVT:
27106 case BFD_RELOC_ARM_THUMB_MOVW:
27107 case BFD_RELOC_ARM_THUMB_MOVT:
27108 if (fixP->fx_done || !seg->use_rela_p)
27109 {
27110 /* REL format relocations are limited to a 16-bit addend. */
27111 if (!fixP->fx_done)
27112 {
39623e12 27113 if (value < -0x8000 || value > 0x7fff)
b6895b4f 27114 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 27115 _("offset out of range"));
b6895b4f
PB
27116 }
27117 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27118 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27119 {
27120 value >>= 16;
27121 }
27122
27123 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27124 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27125 {
27126 newval = get_thumb32_insn (buf);
27127 newval &= 0xfbf08f00;
27128 newval |= (value & 0xf000) << 4;
27129 newval |= (value & 0x0800) << 15;
27130 newval |= (value & 0x0700) << 4;
27131 newval |= (value & 0x00ff);
27132 put_thumb32_insn (buf, newval);
27133 }
27134 else
27135 {
27136 newval = md_chars_to_number (buf, 4);
27137 newval &= 0xfff0f000;
27138 newval |= value & 0x0fff;
27139 newval |= (value & 0xf000) << 4;
27140 md_number_to_chars (buf, newval, 4);
27141 }
27142 }
27143 return;
27144
72d98d16
MG
27145 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27146 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27147 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27148 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27149 gas_assert (!fixP->fx_done);
27150 {
27151 bfd_vma insn;
27152 bfd_boolean is_mov;
27153 bfd_vma encoded_addend = value;
27154
27155 /* Check that addend can be encoded in instruction. */
27156 if (!seg->use_rela_p && (value < 0 || value > 255))
27157 as_bad_where (fixP->fx_file, fixP->fx_line,
27158 _("the offset 0x%08lX is not representable"),
27159 (unsigned long) encoded_addend);
27160
27161 /* Extract the instruction. */
27162 insn = md_chars_to_number (buf, THUMB_SIZE);
27163 is_mov = (insn & 0xf800) == 0x2000;
27164
27165 /* Encode insn. */
27166 if (is_mov)
27167 {
27168 if (!seg->use_rela_p)
27169 insn |= encoded_addend;
27170 }
27171 else
27172 {
27173 int rd, rs;
27174
27175 /* Extract the instruction. */
27176 /* Encoding is the following
27177 0x8000 SUB
27178 0x00F0 Rd
27179 0x000F Rs
27180 */
27181 /* The following conditions must be true :
27182 - ADD
27183 - Rd == Rs
27184 - Rd <= 7
27185 */
27186 rd = (insn >> 4) & 0xf;
27187 rs = insn & 0xf;
27188 if ((insn & 0x8000) || (rd != rs) || rd > 7)
27189 as_bad_where (fixP->fx_file, fixP->fx_line,
27190 _("Unable to process relocation for thumb opcode: %lx"),
27191 (unsigned long) insn);
27192
27193 /* Encode as ADD immediate8 thumb 1 code. */
27194 insn = 0x3000 | (rd << 8);
27195
27196 /* Place the encoded addend into the first 8 bits of the
27197 instruction. */
27198 if (!seg->use_rela_p)
27199 insn |= encoded_addend;
27200 }
27201
27202 /* Update the instruction. */
27203 md_number_to_chars (buf, insn, THUMB_SIZE);
27204 }
27205 break;
27206
4962c51a
MS
27207 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27208 case BFD_RELOC_ARM_ALU_PC_G0:
27209 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27210 case BFD_RELOC_ARM_ALU_PC_G1:
27211 case BFD_RELOC_ARM_ALU_PC_G2:
27212 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27213 case BFD_RELOC_ARM_ALU_SB_G0:
27214 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27215 case BFD_RELOC_ARM_ALU_SB_G1:
27216 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 27217 gas_assert (!fixP->fx_done);
4962c51a
MS
27218 if (!seg->use_rela_p)
27219 {
477330fc
RM
27220 bfd_vma insn;
27221 bfd_vma encoded_addend;
3ca4a8ec 27222 bfd_vma addend_abs = llabs (value);
477330fc
RM
27223
27224 /* Check that the absolute value of the addend can be
27225 expressed as an 8-bit constant plus a rotation. */
27226 encoded_addend = encode_arm_immediate (addend_abs);
27227 if (encoded_addend == (unsigned int) FAIL)
4962c51a 27228 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27229 _("the offset 0x%08lX is not representable"),
27230 (unsigned long) addend_abs);
27231
27232 /* Extract the instruction. */
27233 insn = md_chars_to_number (buf, INSN_SIZE);
27234
27235 /* If the addend is positive, use an ADD instruction.
27236 Otherwise use a SUB. Take care not to destroy the S bit. */
27237 insn &= 0xff1fffff;
27238 if (value < 0)
27239 insn |= 1 << 22;
27240 else
27241 insn |= 1 << 23;
27242
27243 /* Place the encoded addend into the first 12 bits of the
27244 instruction. */
27245 insn &= 0xfffff000;
27246 insn |= encoded_addend;
27247
27248 /* Update the instruction. */
27249 md_number_to_chars (buf, insn, INSN_SIZE);
4962c51a
MS
27250 }
27251 break;
27252
27253 case BFD_RELOC_ARM_LDR_PC_G0:
27254 case BFD_RELOC_ARM_LDR_PC_G1:
27255 case BFD_RELOC_ARM_LDR_PC_G2:
27256 case BFD_RELOC_ARM_LDR_SB_G0:
27257 case BFD_RELOC_ARM_LDR_SB_G1:
27258 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 27259 gas_assert (!fixP->fx_done);
4962c51a 27260 if (!seg->use_rela_p)
477330fc
RM
27261 {
27262 bfd_vma insn;
3ca4a8ec 27263 bfd_vma addend_abs = llabs (value);
4962c51a 27264
477330fc
RM
27265 /* Check that the absolute value of the addend can be
27266 encoded in 12 bits. */
27267 if (addend_abs >= 0x1000)
4962c51a 27268 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27269 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
27270 (unsigned long) addend_abs);
27271
27272 /* Extract the instruction. */
27273 insn = md_chars_to_number (buf, INSN_SIZE);
27274
27275 /* If the addend is negative, clear bit 23 of the instruction.
27276 Otherwise set it. */
27277 if (value < 0)
27278 insn &= ~(1 << 23);
27279 else
27280 insn |= 1 << 23;
27281
27282 /* Place the absolute value of the addend into the first 12 bits
27283 of the instruction. */
27284 insn &= 0xfffff000;
27285 insn |= addend_abs;
27286
27287 /* Update the instruction. */
27288 md_number_to_chars (buf, insn, INSN_SIZE);
27289 }
4962c51a
MS
27290 break;
27291
27292 case BFD_RELOC_ARM_LDRS_PC_G0:
27293 case BFD_RELOC_ARM_LDRS_PC_G1:
27294 case BFD_RELOC_ARM_LDRS_PC_G2:
27295 case BFD_RELOC_ARM_LDRS_SB_G0:
27296 case BFD_RELOC_ARM_LDRS_SB_G1:
27297 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 27298 gas_assert (!fixP->fx_done);
4962c51a 27299 if (!seg->use_rela_p)
477330fc
RM
27300 {
27301 bfd_vma insn;
3ca4a8ec 27302 bfd_vma addend_abs = llabs (value);
4962c51a 27303
477330fc
RM
27304 /* Check that the absolute value of the addend can be
27305 encoded in 8 bits. */
27306 if (addend_abs >= 0x100)
4962c51a 27307 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27308 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
27309 (unsigned long) addend_abs);
27310
27311 /* Extract the instruction. */
27312 insn = md_chars_to_number (buf, INSN_SIZE);
27313
27314 /* If the addend is negative, clear bit 23 of the instruction.
27315 Otherwise set it. */
27316 if (value < 0)
27317 insn &= ~(1 << 23);
27318 else
27319 insn |= 1 << 23;
27320
27321 /* Place the first four bits of the absolute value of the addend
27322 into the first 4 bits of the instruction, and the remaining
27323 four into bits 8 .. 11. */
27324 insn &= 0xfffff0f0;
27325 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
27326
27327 /* Update the instruction. */
27328 md_number_to_chars (buf, insn, INSN_SIZE);
27329 }
4962c51a
MS
27330 break;
27331
27332 case BFD_RELOC_ARM_LDC_PC_G0:
27333 case BFD_RELOC_ARM_LDC_PC_G1:
27334 case BFD_RELOC_ARM_LDC_PC_G2:
27335 case BFD_RELOC_ARM_LDC_SB_G0:
27336 case BFD_RELOC_ARM_LDC_SB_G1:
27337 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 27338 gas_assert (!fixP->fx_done);
4962c51a 27339 if (!seg->use_rela_p)
477330fc
RM
27340 {
27341 bfd_vma insn;
3ca4a8ec 27342 bfd_vma addend_abs = llabs (value);
4962c51a 27343
477330fc
RM
27344 /* Check that the absolute value of the addend is a multiple of
27345 four and, when divided by four, fits in 8 bits. */
27346 if (addend_abs & 0x3)
4962c51a 27347 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27348 _("bad offset 0x%08lX (must be word-aligned)"),
27349 (unsigned long) addend_abs);
4962c51a 27350
477330fc 27351 if ((addend_abs >> 2) > 0xff)
4962c51a 27352 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27353 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
27354 (unsigned long) addend_abs);
27355
27356 /* Extract the instruction. */
27357 insn = md_chars_to_number (buf, INSN_SIZE);
27358
27359 /* If the addend is negative, clear bit 23 of the instruction.
27360 Otherwise set it. */
27361 if (value < 0)
27362 insn &= ~(1 << 23);
27363 else
27364 insn |= 1 << 23;
27365
27366 /* Place the addend (divided by four) into the first eight
27367 bits of the instruction. */
27368 insn &= 0xfffffff0;
27369 insn |= addend_abs >> 2;
27370
27371 /* Update the instruction. */
27372 md_number_to_chars (buf, insn, INSN_SIZE);
27373 }
4962c51a
MS
27374 break;
27375
e12437dc
AV
27376 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27377 if (fixP->fx_addsy
27378 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27379 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27380 && ARM_IS_FUNC (fixP->fx_addsy)
27381 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27382 {
27383 /* Force a relocation for a branch 5 bits wide. */
27384 fixP->fx_done = 0;
27385 }
27386 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
27387 as_bad_where (fixP->fx_file, fixP->fx_line,
27388 BAD_BRANCH_OFF);
27389
27390 if (fixP->fx_done || !seg->use_rela_p)
27391 {
27392 addressT boff = value >> 1;
27393
27394 newval = md_chars_to_number (buf, THUMB_SIZE);
27395 newval |= (boff << 7);
27396 md_number_to_chars (buf, newval, THUMB_SIZE);
27397 }
27398 break;
27399
f6b2b12d
AV
27400 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27401 if (fixP->fx_addsy
27402 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27403 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27404 && ARM_IS_FUNC (fixP->fx_addsy)
27405 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27406 {
27407 fixP->fx_done = 0;
27408 }
27409 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
27410 as_bad_where (fixP->fx_file, fixP->fx_line,
27411 _("branch out of range"));
27412
27413 if (fixP->fx_done || !seg->use_rela_p)
27414 {
27415 newval = md_chars_to_number (buf, THUMB_SIZE);
27416
27417 addressT boff = ((newval & 0x0780) >> 7) << 1;
27418 addressT diff = value - boff;
27419
27420 if (diff == 4)
27421 {
27422 newval |= 1 << 1; /* T bit. */
27423 }
27424 else if (diff != 2)
27425 {
27426 as_bad_where (fixP->fx_file, fixP->fx_line,
27427 _("out of range label-relative fixup value"));
27428 }
27429 md_number_to_chars (buf, newval, THUMB_SIZE);
27430 }
27431 break;
27432
e5d6e09e
AV
27433 case BFD_RELOC_ARM_THUMB_BF17:
27434 if (fixP->fx_addsy
27435 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27436 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27437 && ARM_IS_FUNC (fixP->fx_addsy)
27438 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27439 {
27440 /* Force a relocation for a branch 17 bits wide. */
27441 fixP->fx_done = 0;
27442 }
27443
27444 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
27445 as_bad_where (fixP->fx_file, fixP->fx_line,
27446 BAD_BRANCH_OFF);
27447
27448 if (fixP->fx_done || !seg->use_rela_p)
27449 {
27450 offsetT newval2;
27451 addressT immA, immB, immC;
27452
27453 immA = (value & 0x0001f000) >> 12;
27454 immB = (value & 0x00000ffc) >> 2;
27455 immC = (value & 0x00000002) >> 1;
27456
27457 newval = md_chars_to_number (buf, THUMB_SIZE);
27458 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27459 newval |= immA;
27460 newval2 |= (immC << 11) | (immB << 1);
27461 md_number_to_chars (buf, newval, THUMB_SIZE);
27462 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27463 }
27464 break;
27465
1caf72a5
AV
27466 case BFD_RELOC_ARM_THUMB_BF19:
27467 if (fixP->fx_addsy
27468 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27469 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27470 && ARM_IS_FUNC (fixP->fx_addsy)
27471 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27472 {
27473 /* Force a relocation for a branch 19 bits wide. */
27474 fixP->fx_done = 0;
27475 }
27476
27477 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
27478 as_bad_where (fixP->fx_file, fixP->fx_line,
27479 BAD_BRANCH_OFF);
27480
27481 if (fixP->fx_done || !seg->use_rela_p)
27482 {
27483 offsetT newval2;
27484 addressT immA, immB, immC;
27485
27486 immA = (value & 0x0007f000) >> 12;
27487 immB = (value & 0x00000ffc) >> 2;
27488 immC = (value & 0x00000002) >> 1;
27489
27490 newval = md_chars_to_number (buf, THUMB_SIZE);
27491 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27492 newval |= immA;
27493 newval2 |= (immC << 11) | (immB << 1);
27494 md_number_to_chars (buf, newval, THUMB_SIZE);
27495 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27496 }
27497 break;
27498
1889da70
AV
27499 case BFD_RELOC_ARM_THUMB_BF13:
27500 if (fixP->fx_addsy
27501 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27502 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27503 && ARM_IS_FUNC (fixP->fx_addsy)
27504 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27505 {
27506 /* Force a relocation for a branch 13 bits wide. */
27507 fixP->fx_done = 0;
27508 }
27509
27510 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
27511 as_bad_where (fixP->fx_file, fixP->fx_line,
27512 BAD_BRANCH_OFF);
27513
27514 if (fixP->fx_done || !seg->use_rela_p)
27515 {
27516 offsetT newval2;
27517 addressT immA, immB, immC;
27518
27519 immA = (value & 0x00001000) >> 12;
27520 immB = (value & 0x00000ffc) >> 2;
27521 immC = (value & 0x00000002) >> 1;
27522
27523 newval = md_chars_to_number (buf, THUMB_SIZE);
27524 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27525 newval |= immA;
27526 newval2 |= (immC << 11) | (immB << 1);
27527 md_number_to_chars (buf, newval, THUMB_SIZE);
27528 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27529 }
27530 break;
27531
60f993ce
AV
27532 case BFD_RELOC_ARM_THUMB_LOOP12:
27533 if (fixP->fx_addsy
27534 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27535 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27536 && ARM_IS_FUNC (fixP->fx_addsy)
27537 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27538 {
27539 /* Force a relocation for a branch 12 bits wide. */
27540 fixP->fx_done = 0;
27541 }
27542
27543 bfd_vma insn = get_thumb32_insn (buf);
27544 /* le lr, <label> or le <label> */
27545 if (((insn & 0xffffffff) == 0xf00fc001)
27546 || ((insn & 0xffffffff) == 0xf02fc001))
27547 value = -value;
27548
27549 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
27550 as_bad_where (fixP->fx_file, fixP->fx_line,
27551 BAD_BRANCH_OFF);
27552 if (fixP->fx_done || !seg->use_rela_p)
27553 {
27554 addressT imml, immh;
27555
27556 immh = (value & 0x00000ffc) >> 2;
27557 imml = (value & 0x00000002) >> 1;
27558
27559 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27560 newval |= (imml << 11) | (immh << 1);
27561 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
27562 }
27563 break;
27564
845b51d6
PB
27565 case BFD_RELOC_ARM_V4BX:
27566 /* This will need to go in the object file. */
27567 fixP->fx_done = 0;
27568 break;
27569
c19d1205
ZW
27570 case BFD_RELOC_UNUSED:
27571 default:
27572 as_bad_where (fixP->fx_file, fixP->fx_line,
27573 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
27574 }
6c43fab6
RE
27575}
27576
c19d1205
ZW
27577/* Translate internal representation of relocation info to BFD target
27578 format. */
a737bd4d 27579
c19d1205 27580arelent *
00a97672 27581tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 27582{
c19d1205
ZW
27583 arelent * reloc;
27584 bfd_reloc_code_real_type code;
a737bd4d 27585
325801bd 27586 reloc = XNEW (arelent);
a737bd4d 27587
325801bd 27588 reloc->sym_ptr_ptr = XNEW (asymbol *);
c19d1205
ZW
27589 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
27590 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 27591
2fc8bdac 27592 if (fixp->fx_pcrel)
00a97672
RS
27593 {
27594 if (section->use_rela_p)
27595 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
27596 else
27597 fixp->fx_offset = reloc->address;
27598 }
c19d1205 27599 reloc->addend = fixp->fx_offset;
a737bd4d 27600
c19d1205 27601 switch (fixp->fx_r_type)
a737bd4d 27602 {
c19d1205
ZW
27603 case BFD_RELOC_8:
27604 if (fixp->fx_pcrel)
27605 {
27606 code = BFD_RELOC_8_PCREL;
27607 break;
27608 }
1a0670f3 27609 /* Fall through. */
a737bd4d 27610
c19d1205
ZW
27611 case BFD_RELOC_16:
27612 if (fixp->fx_pcrel)
27613 {
27614 code = BFD_RELOC_16_PCREL;
27615 break;
27616 }
1a0670f3 27617 /* Fall through. */
6c43fab6 27618
c19d1205
ZW
27619 case BFD_RELOC_32:
27620 if (fixp->fx_pcrel)
27621 {
27622 code = BFD_RELOC_32_PCREL;
27623 break;
27624 }
1a0670f3 27625 /* Fall through. */
a737bd4d 27626
b6895b4f
PB
27627 case BFD_RELOC_ARM_MOVW:
27628 if (fixp->fx_pcrel)
27629 {
27630 code = BFD_RELOC_ARM_MOVW_PCREL;
27631 break;
27632 }
1a0670f3 27633 /* Fall through. */
b6895b4f
PB
27634
27635 case BFD_RELOC_ARM_MOVT:
27636 if (fixp->fx_pcrel)
27637 {
27638 code = BFD_RELOC_ARM_MOVT_PCREL;
27639 break;
27640 }
1a0670f3 27641 /* Fall through. */
b6895b4f
PB
27642
27643 case BFD_RELOC_ARM_THUMB_MOVW:
27644 if (fixp->fx_pcrel)
27645 {
27646 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
27647 break;
27648 }
1a0670f3 27649 /* Fall through. */
b6895b4f
PB
27650
27651 case BFD_RELOC_ARM_THUMB_MOVT:
27652 if (fixp->fx_pcrel)
27653 {
27654 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
27655 break;
27656 }
1a0670f3 27657 /* Fall through. */
b6895b4f 27658
c19d1205
ZW
27659 case BFD_RELOC_NONE:
27660 case BFD_RELOC_ARM_PCREL_BRANCH:
27661 case BFD_RELOC_ARM_PCREL_BLX:
27662 case BFD_RELOC_RVA:
27663 case BFD_RELOC_THUMB_PCREL_BRANCH7:
27664 case BFD_RELOC_THUMB_PCREL_BRANCH9:
27665 case BFD_RELOC_THUMB_PCREL_BRANCH12:
27666 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27667 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27668 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
27669 case BFD_RELOC_VTABLE_ENTRY:
27670 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
27671#ifdef TE_PE
27672 case BFD_RELOC_32_SECREL:
27673#endif
c19d1205
ZW
27674 code = fixp->fx_r_type;
27675 break;
a737bd4d 27676
00adf2d4
JB
27677 case BFD_RELOC_THUMB_PCREL_BLX:
27678#ifdef OBJ_ELF
27679 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
27680 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
27681 else
27682#endif
27683 code = BFD_RELOC_THUMB_PCREL_BLX;
27684 break;
27685
c19d1205
ZW
27686 case BFD_RELOC_ARM_LITERAL:
27687 case BFD_RELOC_ARM_HWLITERAL:
27688 /* If this is called then the a literal has
27689 been referenced across a section boundary. */
27690 as_bad_where (fixp->fx_file, fixp->fx_line,
27691 _("literal referenced across section boundary"));
27692 return NULL;
a737bd4d 27693
c19d1205 27694#ifdef OBJ_ELF
0855e32b
NS
27695 case BFD_RELOC_ARM_TLS_CALL:
27696 case BFD_RELOC_ARM_THM_TLS_CALL:
27697 case BFD_RELOC_ARM_TLS_DESCSEQ:
27698 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
27699 case BFD_RELOC_ARM_GOT32:
27700 case BFD_RELOC_ARM_GOTOFF:
b43420e6 27701 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
27702 case BFD_RELOC_ARM_PLT32:
27703 case BFD_RELOC_ARM_TARGET1:
27704 case BFD_RELOC_ARM_ROSEGREL32:
27705 case BFD_RELOC_ARM_SBREL32:
27706 case BFD_RELOC_ARM_PREL31:
27707 case BFD_RELOC_ARM_TARGET2:
c19d1205 27708 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
27709 case BFD_RELOC_ARM_PCREL_CALL:
27710 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
27711 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27712 case BFD_RELOC_ARM_ALU_PC_G0:
27713 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27714 case BFD_RELOC_ARM_ALU_PC_G1:
27715 case BFD_RELOC_ARM_ALU_PC_G2:
27716 case BFD_RELOC_ARM_LDR_PC_G0:
27717 case BFD_RELOC_ARM_LDR_PC_G1:
27718 case BFD_RELOC_ARM_LDR_PC_G2:
27719 case BFD_RELOC_ARM_LDRS_PC_G0:
27720 case BFD_RELOC_ARM_LDRS_PC_G1:
27721 case BFD_RELOC_ARM_LDRS_PC_G2:
27722 case BFD_RELOC_ARM_LDC_PC_G0:
27723 case BFD_RELOC_ARM_LDC_PC_G1:
27724 case BFD_RELOC_ARM_LDC_PC_G2:
27725 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27726 case BFD_RELOC_ARM_ALU_SB_G0:
27727 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27728 case BFD_RELOC_ARM_ALU_SB_G1:
27729 case BFD_RELOC_ARM_ALU_SB_G2:
27730 case BFD_RELOC_ARM_LDR_SB_G0:
27731 case BFD_RELOC_ARM_LDR_SB_G1:
27732 case BFD_RELOC_ARM_LDR_SB_G2:
27733 case BFD_RELOC_ARM_LDRS_SB_G0:
27734 case BFD_RELOC_ARM_LDRS_SB_G1:
27735 case BFD_RELOC_ARM_LDRS_SB_G2:
27736 case BFD_RELOC_ARM_LDC_SB_G0:
27737 case BFD_RELOC_ARM_LDC_SB_G1:
27738 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 27739 case BFD_RELOC_ARM_V4BX:
72d98d16
MG
27740 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27741 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27742 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27743 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
188fd7ae
CL
27744 case BFD_RELOC_ARM_GOTFUNCDESC:
27745 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27746 case BFD_RELOC_ARM_FUNCDESC:
e5d6e09e 27747 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 27748 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 27749 case BFD_RELOC_ARM_THUMB_BF13:
c19d1205
ZW
27750 code = fixp->fx_r_type;
27751 break;
a737bd4d 27752
0855e32b 27753 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205 27754 case BFD_RELOC_ARM_TLS_GD32:
5c5a4843 27755 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
75c11999 27756 case BFD_RELOC_ARM_TLS_LE32:
c19d1205 27757 case BFD_RELOC_ARM_TLS_IE32:
5c5a4843 27758 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
c19d1205 27759 case BFD_RELOC_ARM_TLS_LDM32:
5c5a4843 27760 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
c19d1205
ZW
27761 /* BFD will include the symbol's address in the addend.
27762 But we don't want that, so subtract it out again here. */
27763 if (!S_IS_COMMON (fixp->fx_addsy))
27764 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
27765 code = fixp->fx_r_type;
27766 break;
27767#endif
a737bd4d 27768
c19d1205
ZW
27769 case BFD_RELOC_ARM_IMMEDIATE:
27770 as_bad_where (fixp->fx_file, fixp->fx_line,
27771 _("internal relocation (type: IMMEDIATE) not fixed up"));
27772 return NULL;
a737bd4d 27773
c19d1205
ZW
27774 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
27775 as_bad_where (fixp->fx_file, fixp->fx_line,
27776 _("ADRL used for a symbol not defined in the same file"));
27777 return NULL;
a737bd4d 27778
e12437dc 27779 case BFD_RELOC_THUMB_PCREL_BRANCH5:
f6b2b12d 27780 case BFD_RELOC_THUMB_PCREL_BFCSEL:
60f993ce 27781 case BFD_RELOC_ARM_THUMB_LOOP12:
e12437dc
AV
27782 as_bad_where (fixp->fx_file, fixp->fx_line,
27783 _("%s used for a symbol not defined in the same file"),
27784 bfd_get_reloc_code_name (fixp->fx_r_type));
27785 return NULL;
27786
c19d1205 27787 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
27788 if (section->use_rela_p)
27789 {
27790 code = fixp->fx_r_type;
27791 break;
27792 }
27793
c19d1205
ZW
27794 if (fixp->fx_addsy != NULL
27795 && !S_IS_DEFINED (fixp->fx_addsy)
27796 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 27797 {
c19d1205
ZW
27798 as_bad_where (fixp->fx_file, fixp->fx_line,
27799 _("undefined local label `%s'"),
27800 S_GET_NAME (fixp->fx_addsy));
27801 return NULL;
a737bd4d
NC
27802 }
27803
c19d1205
ZW
27804 as_bad_where (fixp->fx_file, fixp->fx_line,
27805 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
27806 return NULL;
a737bd4d 27807
c19d1205
ZW
27808 default:
27809 {
e0471c16 27810 const char * type;
6c43fab6 27811
c19d1205
ZW
27812 switch (fixp->fx_r_type)
27813 {
27814 case BFD_RELOC_NONE: type = "NONE"; break;
27815 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
27816 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 27817 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
27818 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
27819 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
27820 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 27821 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 27822 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
27823 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
27824 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
27825 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
27826 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
27827 default: type = _("<unknown>"); break;
27828 }
27829 as_bad_where (fixp->fx_file, fixp->fx_line,
27830 _("cannot represent %s relocation in this object file format"),
27831 type);
27832 return NULL;
27833 }
a737bd4d 27834 }
6c43fab6 27835
c19d1205
ZW
27836#ifdef OBJ_ELF
27837 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
27838 && GOT_symbol
27839 && fixp->fx_addsy == GOT_symbol)
27840 {
27841 code = BFD_RELOC_ARM_GOTPC;
27842 reloc->addend = fixp->fx_offset = reloc->address;
27843 }
27844#endif
6c43fab6 27845
c19d1205 27846 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 27847
c19d1205
ZW
27848 if (reloc->howto == NULL)
27849 {
27850 as_bad_where (fixp->fx_file, fixp->fx_line,
27851 _("cannot represent %s relocation in this object file format"),
27852 bfd_get_reloc_code_name (code));
27853 return NULL;
27854 }
6c43fab6 27855
c19d1205
ZW
27856 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
27857 vtable entry to be used in the relocation's section offset. */
27858 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
27859 reloc->address = fixp->fx_offset;
6c43fab6 27860
c19d1205 27861 return reloc;
6c43fab6
RE
27862}
27863
c19d1205 27864/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 27865
c19d1205
ZW
27866void
27867cons_fix_new_arm (fragS * frag,
27868 int where,
27869 int size,
62ebcb5c
AM
27870 expressionS * exp,
27871 bfd_reloc_code_real_type reloc)
6c43fab6 27872{
c19d1205 27873 int pcrel = 0;
6c43fab6 27874
c19d1205
ZW
27875 /* Pick a reloc.
27876 FIXME: @@ Should look at CPU word size. */
27877 switch (size)
27878 {
27879 case 1:
62ebcb5c 27880 reloc = BFD_RELOC_8;
c19d1205
ZW
27881 break;
27882 case 2:
62ebcb5c 27883 reloc = BFD_RELOC_16;
c19d1205
ZW
27884 break;
27885 case 4:
27886 default:
62ebcb5c 27887 reloc = BFD_RELOC_32;
c19d1205
ZW
27888 break;
27889 case 8:
62ebcb5c 27890 reloc = BFD_RELOC_64;
c19d1205
ZW
27891 break;
27892 }
6c43fab6 27893
f0927246
NC
27894#ifdef TE_PE
27895 if (exp->X_op == O_secrel)
27896 {
27897 exp->X_op = O_symbol;
62ebcb5c 27898 reloc = BFD_RELOC_32_SECREL;
f0927246
NC
27899 }
27900#endif
27901
62ebcb5c 27902 fix_new_exp (frag, where, size, exp, pcrel, reloc);
c19d1205 27903}
6c43fab6 27904
4343666d 27905#if defined (OBJ_COFF)
c19d1205
ZW
27906void
27907arm_validate_fix (fixS * fixP)
6c43fab6 27908{
c19d1205
ZW
27909 /* If the destination of the branch is a defined symbol which does not have
27910 the THUMB_FUNC attribute, then we must be calling a function which has
27911 the (interfacearm) attribute. We look for the Thumb entry point to that
27912 function and change the branch to refer to that function instead. */
27913 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
27914 && fixP->fx_addsy != NULL
27915 && S_IS_DEFINED (fixP->fx_addsy)
27916 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 27917 {
c19d1205 27918 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 27919 }
c19d1205
ZW
27920}
27921#endif
6c43fab6 27922
267bf995 27923
c19d1205
ZW
27924int
27925arm_force_relocation (struct fix * fixp)
27926{
27927#if defined (OBJ_COFF) && defined (TE_PE)
27928 if (fixp->fx_r_type == BFD_RELOC_RVA)
27929 return 1;
27930#endif
6c43fab6 27931
267bf995
RR
27932 /* In case we have a call or a branch to a function in ARM ISA mode from
27933 a thumb function or vice-versa force the relocation. These relocations
27934 are cleared off for some cores that might have blx and simple transformations
27935 are possible. */
27936
27937#ifdef OBJ_ELF
27938 switch (fixp->fx_r_type)
27939 {
27940 case BFD_RELOC_ARM_PCREL_JUMP:
27941 case BFD_RELOC_ARM_PCREL_CALL:
27942 case BFD_RELOC_THUMB_PCREL_BLX:
27943 if (THUMB_IS_FUNC (fixp->fx_addsy))
27944 return 1;
27945 break;
27946
27947 case BFD_RELOC_ARM_PCREL_BLX:
27948 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27949 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27950 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27951 if (ARM_IS_FUNC (fixp->fx_addsy))
27952 return 1;
27953 break;
27954
27955 default:
27956 break;
27957 }
27958#endif
27959
b5884301
PB
27960 /* Resolve these relocations even if the symbol is extern or weak.
27961 Technically this is probably wrong due to symbol preemption.
27962 In practice these relocations do not have enough range to be useful
27963 at dynamic link time, and some code (e.g. in the Linux kernel)
27964 expects these references to be resolved. */
c19d1205
ZW
27965 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
27966 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 27967 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 27968 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
27969 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27970 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
27971 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 27972 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
27973 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
27974 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
27975 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
27976 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
27977 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
27978 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 27979 return 0;
a737bd4d 27980
4962c51a
MS
27981 /* Always leave these relocations for the linker. */
27982 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
27983 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
27984 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
27985 return 1;
27986
f0291e4c
PB
27987 /* Always generate relocations against function symbols. */
27988 if (fixp->fx_r_type == BFD_RELOC_32
27989 && fixp->fx_addsy
27990 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
27991 return 1;
27992
c19d1205 27993 return generic_force_reloc (fixp);
404ff6b5
AH
27994}
27995
0ffdc86c 27996#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
27997/* Relocations against function names must be left unadjusted,
27998 so that the linker can use this information to generate interworking
27999 stubs. The MIPS version of this function
c19d1205
ZW
28000 also prevents relocations that are mips-16 specific, but I do not
28001 know why it does this.
404ff6b5 28002
c19d1205
ZW
28003 FIXME:
28004 There is one other problem that ought to be addressed here, but
28005 which currently is not: Taking the address of a label (rather
28006 than a function) and then later jumping to that address. Such
28007 addresses also ought to have their bottom bit set (assuming that
28008 they reside in Thumb code), but at the moment they will not. */
404ff6b5 28009
c19d1205
ZW
28010bfd_boolean
28011arm_fix_adjustable (fixS * fixP)
404ff6b5 28012{
c19d1205
ZW
28013 if (fixP->fx_addsy == NULL)
28014 return 1;
404ff6b5 28015
e28387c3
PB
28016 /* Preserve relocations against symbols with function type. */
28017 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 28018 return FALSE;
e28387c3 28019
c19d1205
ZW
28020 if (THUMB_IS_FUNC (fixP->fx_addsy)
28021 && fixP->fx_subsy == NULL)
c921be7d 28022 return FALSE;
a737bd4d 28023
c19d1205
ZW
28024 /* We need the symbol name for the VTABLE entries. */
28025 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
28026 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 28027 return FALSE;
404ff6b5 28028
c19d1205
ZW
28029 /* Don't allow symbols to be discarded on GOT related relocs. */
28030 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
28031 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
28032 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
28033 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
5c5a4843 28034 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
c19d1205
ZW
28035 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
28036 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
5c5a4843 28037 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
c19d1205 28038 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
5c5a4843 28039 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
c19d1205 28040 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
28041 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
28042 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
28043 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
28044 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
28045 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 28046 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 28047 return FALSE;
a737bd4d 28048
4962c51a
MS
28049 /* Similarly for group relocations. */
28050 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28051 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28052 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 28053 return FALSE;
4962c51a 28054
79947c54
CD
28055 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
28056 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
28057 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28058 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
28059 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
28060 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28061 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
28062 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
28063 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 28064 return FALSE;
79947c54 28065
72d98d16
MG
28066 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
28067 offsets, so keep these symbols. */
28068 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
28069 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
28070 return FALSE;
28071
c921be7d 28072 return TRUE;
a737bd4d 28073}
0ffdc86c
NC
28074#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
28075
28076#ifdef OBJ_ELF
c19d1205
ZW
28077const char *
28078elf32_arm_target_format (void)
404ff6b5 28079{
c19d1205
ZW
28080#ifdef TE_SYMBIAN
28081 return (target_big_endian
28082 ? "elf32-bigarm-symbian"
28083 : "elf32-littlearm-symbian");
28084#elif defined (TE_VXWORKS)
28085 return (target_big_endian
28086 ? "elf32-bigarm-vxworks"
28087 : "elf32-littlearm-vxworks");
b38cadfb
NC
28088#elif defined (TE_NACL)
28089 return (target_big_endian
28090 ? "elf32-bigarm-nacl"
28091 : "elf32-littlearm-nacl");
c19d1205 28092#else
18a20338
CL
28093 if (arm_fdpic)
28094 {
28095 if (target_big_endian)
28096 return "elf32-bigarm-fdpic";
28097 else
28098 return "elf32-littlearm-fdpic";
28099 }
c19d1205 28100 else
18a20338
CL
28101 {
28102 if (target_big_endian)
28103 return "elf32-bigarm";
28104 else
28105 return "elf32-littlearm";
28106 }
c19d1205 28107#endif
404ff6b5
AH
28108}
28109
c19d1205
ZW
28110void
28111armelf_frob_symbol (symbolS * symp,
28112 int * puntp)
404ff6b5 28113{
c19d1205
ZW
28114 elf_frob_symbol (symp, puntp);
28115}
28116#endif
404ff6b5 28117
c19d1205 28118/* MD interface: Finalization. */
a737bd4d 28119
c19d1205
ZW
28120void
28121arm_cleanup (void)
28122{
28123 literal_pool * pool;
a737bd4d 28124
5ee91343
AV
28125 /* Ensure that all the predication blocks are properly closed. */
28126 check_pred_blocks_finished ();
e07e6e58 28127
c19d1205
ZW
28128 for (pool = list_of_pools; pool; pool = pool->next)
28129 {
5f4273c7 28130 /* Put it at the end of the relevant section. */
c19d1205
ZW
28131 subseg_set (pool->section, pool->sub_section);
28132#ifdef OBJ_ELF
28133 arm_elf_change_section ();
28134#endif
28135 s_ltorg (0);
28136 }
404ff6b5
AH
28137}
28138
cd000bff
DJ
28139#ifdef OBJ_ELF
28140/* Remove any excess mapping symbols generated for alignment frags in
28141 SEC. We may have created a mapping symbol before a zero byte
28142 alignment; remove it if there's a mapping symbol after the
28143 alignment. */
28144static void
28145check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
28146 void *dummy ATTRIBUTE_UNUSED)
28147{
28148 segment_info_type *seginfo = seg_info (sec);
28149 fragS *fragp;
28150
28151 if (seginfo == NULL || seginfo->frchainP == NULL)
28152 return;
28153
28154 for (fragp = seginfo->frchainP->frch_root;
28155 fragp != NULL;
28156 fragp = fragp->fr_next)
28157 {
28158 symbolS *sym = fragp->tc_frag_data.last_map;
28159 fragS *next = fragp->fr_next;
28160
28161 /* Variable-sized frags have been converted to fixed size by
28162 this point. But if this was variable-sized to start with,
28163 there will be a fixed-size frag after it. So don't handle
28164 next == NULL. */
28165 if (sym == NULL || next == NULL)
28166 continue;
28167
28168 if (S_GET_VALUE (sym) < next->fr_address)
28169 /* Not at the end of this frag. */
28170 continue;
28171 know (S_GET_VALUE (sym) == next->fr_address);
28172
28173 do
28174 {
28175 if (next->tc_frag_data.first_map != NULL)
28176 {
28177 /* Next frag starts with a mapping symbol. Discard this
28178 one. */
28179 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28180 break;
28181 }
28182
28183 if (next->fr_next == NULL)
28184 {
28185 /* This mapping symbol is at the end of the section. Discard
28186 it. */
28187 know (next->fr_fix == 0 && next->fr_var == 0);
28188 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28189 break;
28190 }
28191
28192 /* As long as we have empty frags without any mapping symbols,
28193 keep looking. */
28194 /* If the next frag is non-empty and does not start with a
28195 mapping symbol, then this mapping symbol is required. */
28196 if (next->fr_address != next->fr_next->fr_address)
28197 break;
28198
28199 next = next->fr_next;
28200 }
28201 while (next != NULL);
28202 }
28203}
28204#endif
28205
c19d1205
ZW
28206/* Adjust the symbol table. This marks Thumb symbols as distinct from
28207 ARM ones. */
404ff6b5 28208
c19d1205
ZW
28209void
28210arm_adjust_symtab (void)
404ff6b5 28211{
c19d1205
ZW
28212#ifdef OBJ_COFF
28213 symbolS * sym;
404ff6b5 28214
c19d1205
ZW
28215 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28216 {
28217 if (ARM_IS_THUMB (sym))
28218 {
28219 if (THUMB_IS_FUNC (sym))
28220 {
28221 /* Mark the symbol as a Thumb function. */
28222 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
28223 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
28224 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 28225
c19d1205
ZW
28226 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
28227 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
28228 else
28229 as_bad (_("%s: unexpected function type: %d"),
28230 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
28231 }
28232 else switch (S_GET_STORAGE_CLASS (sym))
28233 {
28234 case C_EXT:
28235 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
28236 break;
28237 case C_STAT:
28238 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
28239 break;
28240 case C_LABEL:
28241 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
28242 break;
28243 default:
28244 /* Do nothing. */
28245 break;
28246 }
28247 }
a737bd4d 28248
c19d1205
ZW
28249 if (ARM_IS_INTERWORK (sym))
28250 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 28251 }
c19d1205
ZW
28252#endif
28253#ifdef OBJ_ELF
28254 symbolS * sym;
28255 char bind;
404ff6b5 28256
c19d1205 28257 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 28258 {
c19d1205
ZW
28259 if (ARM_IS_THUMB (sym))
28260 {
28261 elf_symbol_type * elf_sym;
404ff6b5 28262
c19d1205
ZW
28263 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
28264 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 28265
b0796911
PB
28266 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
28267 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
28268 {
28269 /* If it's a .thumb_func, declare it as so,
28270 otherwise tag label as .code 16. */
28271 if (THUMB_IS_FUNC (sym))
39d911fc
TP
28272 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
28273 ST_BRANCH_TO_THUMB);
3ba67470 28274 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
28275 elf_sym->internal_elf_sym.st_info =
28276 ELF_ST_INFO (bind, STT_ARM_16BIT);
28277 }
28278 }
28279 }
cd000bff
DJ
28280
28281 /* Remove any overlapping mapping symbols generated by alignment frags. */
28282 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
28283 /* Now do generic ELF adjustments. */
28284 elf_adjust_symtab ();
c19d1205 28285#endif
404ff6b5
AH
28286}
28287
c19d1205 28288/* MD interface: Initialization. */
404ff6b5 28289
a737bd4d 28290static void
c19d1205 28291set_constant_flonums (void)
a737bd4d 28292{
c19d1205 28293 int i;
404ff6b5 28294
c19d1205
ZW
28295 for (i = 0; i < NUM_FLOAT_VALS; i++)
28296 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
28297 abort ();
a737bd4d 28298}
404ff6b5 28299
3e9e4fcf
JB
28300/* Auto-select Thumb mode if it's the only available instruction set for the
28301 given architecture. */
28302
28303static void
28304autoselect_thumb_from_cpu_variant (void)
28305{
28306 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
28307 opcode_select (16);
28308}
28309
c19d1205
ZW
28310void
28311md_begin (void)
a737bd4d 28312{
c19d1205
ZW
28313 unsigned mach;
28314 unsigned int i;
404ff6b5 28315
c19d1205
ZW
28316 if ( (arm_ops_hsh = hash_new ()) == NULL
28317 || (arm_cond_hsh = hash_new ()) == NULL
5ee91343 28318 || (arm_vcond_hsh = hash_new ()) == NULL
c19d1205
ZW
28319 || (arm_shift_hsh = hash_new ()) == NULL
28320 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 28321 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 28322 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
28323 || (arm_reloc_hsh = hash_new ()) == NULL
28324 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
28325 as_fatal (_("virtual memory exhausted"));
28326
28327 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 28328 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 28329 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 28330 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
5ee91343
AV
28331 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
28332 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
c19d1205 28333 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 28334 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 28335 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 28336 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 28337 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 28338 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
477330fc 28339 (void *) (v7m_psrs + i));
c19d1205 28340 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 28341 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
28342 for (i = 0;
28343 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
28344 i++)
d3ce72d0 28345 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 28346 (void *) (barrier_opt_names + i));
c19d1205 28347#ifdef OBJ_ELF
3da1d841
NC
28348 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
28349 {
28350 struct reloc_entry * entry = reloc_names + i;
28351
28352 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
28353 /* This makes encode_branch() use the EABI versions of this relocation. */
28354 entry->reloc = BFD_RELOC_UNUSED;
28355
28356 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
28357 }
c19d1205
ZW
28358#endif
28359
28360 set_constant_flonums ();
404ff6b5 28361
c19d1205
ZW
28362 /* Set the cpu variant based on the command-line options. We prefer
28363 -mcpu= over -march= if both are set (as for GCC); and we prefer
28364 -mfpu= over any other way of setting the floating point unit.
28365 Use of legacy options with new options are faulted. */
e74cfd16 28366 if (legacy_cpu)
404ff6b5 28367 {
e74cfd16 28368 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
28369 as_bad (_("use of old and new-style options to set CPU type"));
28370
4d354d8b 28371 selected_arch = *legacy_cpu;
404ff6b5 28372 }
4d354d8b
TP
28373 else if (mcpu_cpu_opt)
28374 {
28375 selected_arch = *mcpu_cpu_opt;
28376 selected_ext = *mcpu_ext_opt;
28377 }
28378 else if (march_cpu_opt)
c168ce07 28379 {
4d354d8b
TP
28380 selected_arch = *march_cpu_opt;
28381 selected_ext = *march_ext_opt;
c168ce07 28382 }
4d354d8b 28383 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
404ff6b5 28384
e74cfd16 28385 if (legacy_fpu)
c19d1205 28386 {
e74cfd16 28387 if (mfpu_opt)
c19d1205 28388 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f 28389
4d354d8b 28390 selected_fpu = *legacy_fpu;
03b1477f 28391 }
4d354d8b
TP
28392 else if (mfpu_opt)
28393 selected_fpu = *mfpu_opt;
28394 else
03b1477f 28395 {
45eb4c1b
NS
28396#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
28397 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
28398 /* Some environments specify a default FPU. If they don't, infer it
28399 from the processor. */
e74cfd16 28400 if (mcpu_fpu_opt)
4d354d8b 28401 selected_fpu = *mcpu_fpu_opt;
e7da50fa 28402 else if (march_fpu_opt)
4d354d8b 28403 selected_fpu = *march_fpu_opt;
39c2da32 28404#else
4d354d8b 28405 selected_fpu = fpu_default;
39c2da32 28406#endif
03b1477f
RE
28407 }
28408
4d354d8b 28409 if (ARM_FEATURE_ZERO (selected_fpu))
03b1477f 28410 {
4d354d8b
TP
28411 if (!no_cpu_selected ())
28412 selected_fpu = fpu_default;
03b1477f 28413 else
4d354d8b 28414 selected_fpu = fpu_arch_fpa;
03b1477f
RE
28415 }
28416
ee065d83 28417#ifdef CPU_DEFAULT
4d354d8b 28418 if (ARM_FEATURE_ZERO (selected_arch))
ee065d83 28419 {
4d354d8b
TP
28420 selected_arch = cpu_default;
28421 selected_cpu = selected_arch;
ee065d83 28422 }
4d354d8b 28423 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
e74cfd16 28424#else
4d354d8b
TP
28425 /* Autodection of feature mode: allow all features in cpu_variant but leave
28426 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
28427 after all instruction have been processed and we can decide what CPU
28428 should be selected. */
28429 if (ARM_FEATURE_ZERO (selected_arch))
28430 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
ee065d83 28431 else
4d354d8b 28432 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83 28433#endif
03b1477f 28434
3e9e4fcf
JB
28435 autoselect_thumb_from_cpu_variant ();
28436
e74cfd16 28437 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 28438
f17c130b 28439#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 28440 {
7cc69913
NC
28441 unsigned int flags = 0;
28442
28443#if defined OBJ_ELF
28444 flags = meabi_flags;
d507cf36
PB
28445
28446 switch (meabi_flags)
33a392fb 28447 {
d507cf36 28448 case EF_ARM_EABI_UNKNOWN:
7cc69913 28449#endif
d507cf36
PB
28450 /* Set the flags in the private structure. */
28451 if (uses_apcs_26) flags |= F_APCS26;
28452 if (support_interwork) flags |= F_INTERWORK;
28453 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 28454 if (pic_code) flags |= F_PIC;
e74cfd16 28455 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
28456 flags |= F_SOFT_FLOAT;
28457
d507cf36
PB
28458 switch (mfloat_abi_opt)
28459 {
28460 case ARM_FLOAT_ABI_SOFT:
28461 case ARM_FLOAT_ABI_SOFTFP:
28462 flags |= F_SOFT_FLOAT;
28463 break;
33a392fb 28464
d507cf36
PB
28465 case ARM_FLOAT_ABI_HARD:
28466 if (flags & F_SOFT_FLOAT)
28467 as_bad (_("hard-float conflicts with specified fpu"));
28468 break;
28469 }
03b1477f 28470
e74cfd16
PB
28471 /* Using pure-endian doubles (even if soft-float). */
28472 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 28473 flags |= F_VFP_FLOAT;
f17c130b 28474
fde78edd 28475#if defined OBJ_ELF
e74cfd16 28476 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 28477 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
28478 break;
28479
8cb51566 28480 case EF_ARM_EABI_VER4:
3a4a14e9 28481 case EF_ARM_EABI_VER5:
c19d1205 28482 /* No additional flags to set. */
d507cf36
PB
28483 break;
28484
28485 default:
28486 abort ();
28487 }
7cc69913 28488#endif
b99bd4ef
NC
28489 bfd_set_private_flags (stdoutput, flags);
28490
28491 /* We have run out flags in the COFF header to encode the
28492 status of ATPCS support, so instead we create a dummy,
c19d1205 28493 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
28494 if (atpcs)
28495 {
28496 asection * sec;
28497
28498 sec = bfd_make_section (stdoutput, ".arm.atpcs");
28499
28500 if (sec != NULL)
28501 {
28502 bfd_set_section_flags
28503 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
28504 bfd_set_section_size (stdoutput, sec, 0);
28505 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
28506 }
28507 }
7cc69913 28508 }
f17c130b 28509#endif
b99bd4ef
NC
28510
28511 /* Record the CPU type as well. */
2d447fca
JM
28512 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
28513 mach = bfd_mach_arm_iWMMXt2;
28514 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 28515 mach = bfd_mach_arm_iWMMXt;
e74cfd16 28516 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 28517 mach = bfd_mach_arm_XScale;
e74cfd16 28518 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 28519 mach = bfd_mach_arm_ep9312;
e74cfd16 28520 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 28521 mach = bfd_mach_arm_5TE;
e74cfd16 28522 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 28523 {
e74cfd16 28524 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
28525 mach = bfd_mach_arm_5T;
28526 else
28527 mach = bfd_mach_arm_5;
28528 }
e74cfd16 28529 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 28530 {
e74cfd16 28531 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
28532 mach = bfd_mach_arm_4T;
28533 else
28534 mach = bfd_mach_arm_4;
28535 }
e74cfd16 28536 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 28537 mach = bfd_mach_arm_3M;
e74cfd16
PB
28538 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
28539 mach = bfd_mach_arm_3;
28540 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
28541 mach = bfd_mach_arm_2a;
28542 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
28543 mach = bfd_mach_arm_2;
28544 else
28545 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
28546
28547 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
28548}
28549
c19d1205 28550/* Command line processing. */
b99bd4ef 28551
c19d1205
ZW
28552/* md_parse_option
28553 Invocation line includes a switch not recognized by the base assembler.
28554 See if it's a processor-specific option.
b99bd4ef 28555
c19d1205
ZW
28556 This routine is somewhat complicated by the need for backwards
28557 compatibility (since older releases of gcc can't be changed).
28558 The new options try to make the interface as compatible as
28559 possible with GCC.
b99bd4ef 28560
c19d1205 28561 New options (supported) are:
b99bd4ef 28562
c19d1205
ZW
28563 -mcpu=<cpu name> Assemble for selected processor
28564 -march=<architecture name> Assemble for selected architecture
28565 -mfpu=<fpu architecture> Assemble for selected FPU.
28566 -EB/-mbig-endian Big-endian
28567 -EL/-mlittle-endian Little-endian
28568 -k Generate PIC code
28569 -mthumb Start in Thumb mode
28570 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 28571
278df34e 28572 -m[no-]warn-deprecated Warn about deprecated features
8b2d793c 28573 -m[no-]warn-syms Warn when symbols match instructions
267bf995 28574
c19d1205 28575 For now we will also provide support for:
b99bd4ef 28576
c19d1205
ZW
28577 -mapcs-32 32-bit Program counter
28578 -mapcs-26 26-bit Program counter
28579 -macps-float Floats passed in FP registers
28580 -mapcs-reentrant Reentrant code
28581 -matpcs
28582 (sometime these will probably be replaced with -mapcs=<list of options>
28583 and -matpcs=<list of options>)
b99bd4ef 28584
c19d1205
ZW
28585 The remaining options are only supported for back-wards compatibility.
28586 Cpu variants, the arm part is optional:
28587 -m[arm]1 Currently not supported.
28588 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
28589 -m[arm]3 Arm 3 processor
28590 -m[arm]6[xx], Arm 6 processors
28591 -m[arm]7[xx][t][[d]m] Arm 7 processors
28592 -m[arm]8[10] Arm 8 processors
28593 -m[arm]9[20][tdmi] Arm 9 processors
28594 -mstrongarm[110[0]] StrongARM processors
28595 -mxscale XScale processors
28596 -m[arm]v[2345[t[e]]] Arm architectures
28597 -mall All (except the ARM1)
28598 FP variants:
28599 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
28600 -mfpe-old (No float load/store multiples)
28601 -mvfpxd VFP Single precision
28602 -mvfp All VFP
28603 -mno-fpu Disable all floating point instructions
b99bd4ef 28604
c19d1205
ZW
28605 The following CPU names are recognized:
28606 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
28607 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
28608 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
28609 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
28610 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
28611 arm10t arm10e, arm1020t, arm1020e, arm10200e,
28612 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 28613
c19d1205 28614 */
b99bd4ef 28615
c19d1205 28616const char * md_shortopts = "m:k";
b99bd4ef 28617
c19d1205
ZW
28618#ifdef ARM_BI_ENDIAN
28619#define OPTION_EB (OPTION_MD_BASE + 0)
28620#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 28621#else
c19d1205
ZW
28622#if TARGET_BYTES_BIG_ENDIAN
28623#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 28624#else
c19d1205
ZW
28625#define OPTION_EL (OPTION_MD_BASE + 1)
28626#endif
b99bd4ef 28627#endif
845b51d6 28628#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
18a20338 28629#define OPTION_FDPIC (OPTION_MD_BASE + 3)
b99bd4ef 28630
c19d1205 28631struct option md_longopts[] =
b99bd4ef 28632{
c19d1205
ZW
28633#ifdef OPTION_EB
28634 {"EB", no_argument, NULL, OPTION_EB},
28635#endif
28636#ifdef OPTION_EL
28637 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 28638#endif
845b51d6 28639 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
18a20338
CL
28640#ifdef OBJ_ELF
28641 {"fdpic", no_argument, NULL, OPTION_FDPIC},
28642#endif
c19d1205
ZW
28643 {NULL, no_argument, NULL, 0}
28644};
b99bd4ef 28645
c19d1205 28646size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 28647
c19d1205 28648struct arm_option_table
b99bd4ef 28649{
0198d5e6
TC
28650 const char * option; /* Option name to match. */
28651 const char * help; /* Help information. */
28652 int * var; /* Variable to change. */
28653 int value; /* What to change it to. */
28654 const char * deprecated; /* If non-null, print this message. */
c19d1205 28655};
b99bd4ef 28656
c19d1205
ZW
28657struct arm_option_table arm_opts[] =
28658{
28659 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
28660 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
28661 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
28662 &support_interwork, 1, NULL},
28663 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
28664 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
28665 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
28666 1, NULL},
28667 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
28668 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
28669 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
28670 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
28671 NULL},
b99bd4ef 28672
c19d1205
ZW
28673 /* These are recognized by the assembler, but have no affect on code. */
28674 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
28675 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
28676
28677 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
28678 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
28679 &warn_on_deprecated, 0, NULL},
8b2d793c
NC
28680 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
28681 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
e74cfd16
PB
28682 {NULL, NULL, NULL, 0, NULL}
28683};
28684
28685struct arm_legacy_option_table
28686{
0198d5e6
TC
28687 const char * option; /* Option name to match. */
28688 const arm_feature_set ** var; /* Variable to change. */
28689 const arm_feature_set value; /* What to change it to. */
28690 const char * deprecated; /* If non-null, print this message. */
e74cfd16 28691};
b99bd4ef 28692
e74cfd16
PB
28693const struct arm_legacy_option_table arm_legacy_opts[] =
28694{
c19d1205
ZW
28695 /* DON'T add any new processors to this list -- we want the whole list
28696 to go away... Add them to the processors table instead. */
e74cfd16
PB
28697 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
28698 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
28699 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
28700 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
28701 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
28702 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
28703 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
28704 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
28705 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
28706 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
28707 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
28708 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
28709 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
28710 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
28711 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
28712 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
28713 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
28714 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
28715 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
28716 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
28717 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
28718 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
28719 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
28720 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
28721 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
28722 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
28723 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
28724 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
28725 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
28726 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
28727 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
28728 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
28729 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
28730 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
28731 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
28732 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
28733 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
28734 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
28735 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
28736 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
28737 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
28738 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
28739 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
28740 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
28741 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
28742 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
28743 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28744 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28745 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28746 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28747 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
28748 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
28749 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
28750 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
28751 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
28752 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
28753 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
28754 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
28755 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
28756 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
28757 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
28758 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
28759 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
28760 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
28761 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
28762 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
28763 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
28764 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
28765 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
28766 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 28767 N_("use -mcpu=strongarm110")},
e74cfd16 28768 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 28769 N_("use -mcpu=strongarm1100")},
e74cfd16 28770 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 28771 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
28772 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
28773 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
28774 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 28775
c19d1205 28776 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
28777 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
28778 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
28779 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
28780 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
28781 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
28782 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
28783 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
28784 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
28785 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
28786 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
28787 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
28788 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
28789 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
28790 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
28791 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
28792 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
28793 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
28794 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 28795
c19d1205 28796 /* Floating point variants -- don't add any more to this list either. */
0198d5e6
TC
28797 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
28798 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
28799 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
28800 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 28801 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 28802
e74cfd16 28803 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 28804};
7ed4c4c5 28805
c19d1205 28806struct arm_cpu_option_table
7ed4c4c5 28807{
0198d5e6
TC
28808 const char * name;
28809 size_t name_len;
28810 const arm_feature_set value;
28811 const arm_feature_set ext;
c19d1205
ZW
28812 /* For some CPUs we assume an FPU unless the user explicitly sets
28813 -mfpu=... */
0198d5e6 28814 const arm_feature_set default_fpu;
ee065d83
PB
28815 /* The canonical name of the CPU, or NULL to use NAME converted to upper
28816 case. */
0198d5e6 28817 const char * canonical_name;
c19d1205 28818};
7ed4c4c5 28819
c19d1205
ZW
28820/* This list should, at a minimum, contain all the cpu names
28821 recognized by GCC. */
996b5569 28822#define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
0198d5e6 28823
e74cfd16 28824static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 28825{
996b5569
TP
28826 ARM_CPU_OPT ("all", NULL, ARM_ANY,
28827 ARM_ARCH_NONE,
28828 FPU_ARCH_FPA),
28829 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
28830 ARM_ARCH_NONE,
28831 FPU_ARCH_FPA),
28832 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
28833 ARM_ARCH_NONE,
28834 FPU_ARCH_FPA),
28835 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
28836 ARM_ARCH_NONE,
28837 FPU_ARCH_FPA),
28838 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
28839 ARM_ARCH_NONE,
28840 FPU_ARCH_FPA),
28841 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
28842 ARM_ARCH_NONE,
28843 FPU_ARCH_FPA),
28844 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
28845 ARM_ARCH_NONE,
28846 FPU_ARCH_FPA),
28847 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
28848 ARM_ARCH_NONE,
28849 FPU_ARCH_FPA),
28850 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
28851 ARM_ARCH_NONE,
28852 FPU_ARCH_FPA),
28853 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
28854 ARM_ARCH_NONE,
28855 FPU_ARCH_FPA),
28856 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
28857 ARM_ARCH_NONE,
28858 FPU_ARCH_FPA),
28859 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
28860 ARM_ARCH_NONE,
28861 FPU_ARCH_FPA),
28862 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
28863 ARM_ARCH_NONE,
28864 FPU_ARCH_FPA),
28865 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
28866 ARM_ARCH_NONE,
28867 FPU_ARCH_FPA),
28868 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
28869 ARM_ARCH_NONE,
28870 FPU_ARCH_FPA),
28871 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
28872 ARM_ARCH_NONE,
28873 FPU_ARCH_FPA),
28874 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
28875 ARM_ARCH_NONE,
28876 FPU_ARCH_FPA),
28877 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
28878 ARM_ARCH_NONE,
28879 FPU_ARCH_FPA),
28880 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
28881 ARM_ARCH_NONE,
28882 FPU_ARCH_FPA),
28883 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
28884 ARM_ARCH_NONE,
28885 FPU_ARCH_FPA),
28886 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
28887 ARM_ARCH_NONE,
28888 FPU_ARCH_FPA),
28889 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
28890 ARM_ARCH_NONE,
28891 FPU_ARCH_FPA),
28892 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
28893 ARM_ARCH_NONE,
28894 FPU_ARCH_FPA),
28895 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
28896 ARM_ARCH_NONE,
28897 FPU_ARCH_FPA),
28898 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
28899 ARM_ARCH_NONE,
28900 FPU_ARCH_FPA),
28901 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
28902 ARM_ARCH_NONE,
28903 FPU_ARCH_FPA),
28904 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
28905 ARM_ARCH_NONE,
28906 FPU_ARCH_FPA),
28907 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
28908 ARM_ARCH_NONE,
28909 FPU_ARCH_FPA),
28910 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
28911 ARM_ARCH_NONE,
28912 FPU_ARCH_FPA),
28913 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
28914 ARM_ARCH_NONE,
28915 FPU_ARCH_FPA),
28916 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
28917 ARM_ARCH_NONE,
28918 FPU_ARCH_FPA),
28919 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
28920 ARM_ARCH_NONE,
28921 FPU_ARCH_FPA),
28922 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
28923 ARM_ARCH_NONE,
28924 FPU_ARCH_FPA),
28925 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
28926 ARM_ARCH_NONE,
28927 FPU_ARCH_FPA),
28928 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
28929 ARM_ARCH_NONE,
28930 FPU_ARCH_FPA),
28931 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
28932 ARM_ARCH_NONE,
28933 FPU_ARCH_FPA),
28934 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
28935 ARM_ARCH_NONE,
28936 FPU_ARCH_FPA),
28937 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
28938 ARM_ARCH_NONE,
28939 FPU_ARCH_FPA),
28940 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
28941 ARM_ARCH_NONE,
28942 FPU_ARCH_FPA),
28943 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
28944 ARM_ARCH_NONE,
28945 FPU_ARCH_FPA),
28946 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
28947 ARM_ARCH_NONE,
28948 FPU_ARCH_FPA),
28949 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
28950 ARM_ARCH_NONE,
28951 FPU_ARCH_FPA),
28952 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
28953 ARM_ARCH_NONE,
28954 FPU_ARCH_FPA),
28955 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
28956 ARM_ARCH_NONE,
28957 FPU_ARCH_FPA),
28958 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
28959 ARM_ARCH_NONE,
28960 FPU_ARCH_FPA),
28961 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
28962 ARM_ARCH_NONE,
28963 FPU_ARCH_FPA),
28964
c19d1205
ZW
28965 /* For V5 or later processors we default to using VFP; but the user
28966 should really set the FPU type explicitly. */
996b5569
TP
28967 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
28968 ARM_ARCH_NONE,
28969 FPU_ARCH_VFP_V2),
28970 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
28971 ARM_ARCH_NONE,
28972 FPU_ARCH_VFP_V2),
28973 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
28974 ARM_ARCH_NONE,
28975 FPU_ARCH_VFP_V2),
28976 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
28977 ARM_ARCH_NONE,
28978 FPU_ARCH_VFP_V2),
28979 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
28980 ARM_ARCH_NONE,
28981 FPU_ARCH_VFP_V2),
28982 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
28983 ARM_ARCH_NONE,
28984 FPU_ARCH_VFP_V2),
28985 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
28986 ARM_ARCH_NONE,
28987 FPU_ARCH_VFP_V2),
28988 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
28989 ARM_ARCH_NONE,
28990 FPU_ARCH_VFP_V2),
28991 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
28992 ARM_ARCH_NONE,
28993 FPU_ARCH_VFP_V2),
28994 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
28995 ARM_ARCH_NONE,
28996 FPU_ARCH_VFP_V2),
28997 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
28998 ARM_ARCH_NONE,
28999 FPU_ARCH_VFP_V2),
29000 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
29001 ARM_ARCH_NONE,
29002 FPU_ARCH_VFP_V2),
29003 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
29004 ARM_ARCH_NONE,
29005 FPU_ARCH_VFP_V1),
29006 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
29007 ARM_ARCH_NONE,
29008 FPU_ARCH_VFP_V1),
29009 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
29010 ARM_ARCH_NONE,
29011 FPU_ARCH_VFP_V2),
29012 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
29013 ARM_ARCH_NONE,
29014 FPU_ARCH_VFP_V2),
29015 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
29016 ARM_ARCH_NONE,
29017 FPU_ARCH_VFP_V1),
29018 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
29019 ARM_ARCH_NONE,
29020 FPU_ARCH_VFP_V2),
29021 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
29022 ARM_ARCH_NONE,
29023 FPU_ARCH_VFP_V2),
29024 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
29025 ARM_ARCH_NONE,
29026 FPU_ARCH_VFP_V2),
29027 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
29028 ARM_ARCH_NONE,
29029 FPU_ARCH_VFP_V2),
29030 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
29031 ARM_ARCH_NONE,
29032 FPU_ARCH_VFP_V2),
29033 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
29034 ARM_ARCH_NONE,
29035 FPU_ARCH_VFP_V2),
29036 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
29037 ARM_ARCH_NONE,
29038 FPU_ARCH_VFP_V2),
29039 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
29040 ARM_ARCH_NONE,
29041 FPU_ARCH_VFP_V2),
29042 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
29043 ARM_ARCH_NONE,
29044 FPU_ARCH_VFP_V2),
29045 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
29046 ARM_ARCH_NONE,
29047 FPU_NONE),
29048 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
29049 ARM_ARCH_NONE,
29050 FPU_NONE),
29051 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
29052 ARM_ARCH_NONE,
29053 FPU_ARCH_VFP_V2),
29054 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
29055 ARM_ARCH_NONE,
29056 FPU_ARCH_VFP_V2),
29057 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
29058 ARM_ARCH_NONE,
29059 FPU_ARCH_VFP_V2),
29060 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
29061 ARM_ARCH_NONE,
29062 FPU_NONE),
29063 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
29064 ARM_ARCH_NONE,
29065 FPU_NONE),
29066 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
29067 ARM_ARCH_NONE,
29068 FPU_ARCH_VFP_V2),
29069 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
29070 ARM_ARCH_NONE,
29071 FPU_NONE),
29072 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
29073 ARM_ARCH_NONE,
29074 FPU_ARCH_VFP_V2),
29075 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
29076 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29077 FPU_NONE),
29078 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
29079 ARM_ARCH_NONE,
29080 FPU_ARCH_NEON_VFP_V4),
29081 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
29082 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29083 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29084 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
29085 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29086 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29087 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
29088 ARM_ARCH_NONE,
29089 FPU_ARCH_NEON_VFP_V4),
29090 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
29091 ARM_ARCH_NONE,
29092 FPU_ARCH_NEON_VFP_V4),
29093 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
29094 ARM_ARCH_NONE,
29095 FPU_ARCH_NEON_VFP_V4),
29096 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
29097 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29098 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29099 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
29100 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29101 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29102 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
29103 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29104 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
29105 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
29106 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 29107 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
29108 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
29109 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29110 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29111 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
29112 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29113 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29114 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
29115 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29116 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
29117 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
29118 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 29119 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
7ebd1359 29120 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
29121 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29122 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
ef8df4ca
KT
29123 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
29124 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29125 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
29126 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
29127 ARM_ARCH_NONE,
29128 FPU_NONE),
29129 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
29130 ARM_ARCH_NONE,
29131 FPU_ARCH_VFP_V3D16),
29132 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
29133 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29134 FPU_NONE),
29135 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
29136 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29137 FPU_ARCH_VFP_V3D16),
29138 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
29139 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29140 FPU_ARCH_VFP_V3D16),
0cda1e19
TP
29141 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
29142 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29143 FPU_ARCH_NEON_VFP_ARMV8),
996b5569
TP
29144 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
29145 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29146 FPU_NONE),
29147 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
29148 ARM_ARCH_NONE,
29149 FPU_NONE),
29150 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
29151 ARM_ARCH_NONE,
29152 FPU_NONE),
29153 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
29154 ARM_ARCH_NONE,
29155 FPU_NONE),
29156 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
29157 ARM_ARCH_NONE,
29158 FPU_NONE),
29159 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
29160 ARM_ARCH_NONE,
29161 FPU_NONE),
29162 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
29163 ARM_ARCH_NONE,
29164 FPU_NONE),
29165 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
29166 ARM_ARCH_NONE,
29167 FPU_NONE),
29168 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
29169 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29170 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
83f43c83
KT
29171 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
29172 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29173 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
c19d1205 29174 /* ??? XSCALE is really an architecture. */
996b5569
TP
29175 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
29176 ARM_ARCH_NONE,
29177 FPU_ARCH_VFP_V2),
29178
c19d1205 29179 /* ??? iwmmxt is not a processor. */
996b5569
TP
29180 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
29181 ARM_ARCH_NONE,
29182 FPU_ARCH_VFP_V2),
29183 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
29184 ARM_ARCH_NONE,
29185 FPU_ARCH_VFP_V2),
29186 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
29187 ARM_ARCH_NONE,
29188 FPU_ARCH_VFP_V2),
29189
0198d5e6 29190 /* Maverick. */
996b5569
TP
29191 ARM_CPU_OPT ("ep9312", "ARM920T",
29192 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
29193 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
29194
da4339ed 29195 /* Marvell processors. */
996b5569
TP
29196 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
29197 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29198 FPU_ARCH_VFP_V3D16),
29199 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
29200 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29201 FPU_ARCH_NEON_VFP_V4),
da4339ed 29202
996b5569
TP
29203 /* APM X-Gene family. */
29204 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
29205 ARM_ARCH_NONE,
29206 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29207 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
29208 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29209 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29210
29211 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 29212};
f3bad469 29213#undef ARM_CPU_OPT
7ed4c4c5 29214
34ef62f4
AV
29215struct arm_ext_table
29216{
29217 const char * name;
29218 size_t name_len;
29219 const arm_feature_set merge;
29220 const arm_feature_set clear;
29221};
29222
c19d1205 29223struct arm_arch_option_table
7ed4c4c5 29224{
34ef62f4
AV
29225 const char * name;
29226 size_t name_len;
29227 const arm_feature_set value;
29228 const arm_feature_set default_fpu;
29229 const struct arm_ext_table * ext_table;
29230};
29231
29232/* Used to add support for +E and +noE extension. */
29233#define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
29234/* Used to add support for a +E extension. */
29235#define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
29236/* Used to add support for a +noE extension. */
29237#define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
29238
29239#define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
29240 ~0 & ~FPU_ENDIAN_PURE)
29241
29242static const struct arm_ext_table armv5te_ext_table[] =
29243{
29244 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
29245 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29246};
29247
29248static const struct arm_ext_table armv7_ext_table[] =
29249{
29250 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29251 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29252};
29253
29254static const struct arm_ext_table armv7ve_ext_table[] =
29255{
29256 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
29257 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
29258 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29259 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29260 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29261 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
29262 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29263
29264 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
29265 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29266
29267 /* Aliases for +simd. */
29268 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29269
29270 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29271 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29272 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29273
29274 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29275};
29276
29277static const struct arm_ext_table armv7a_ext_table[] =
29278{
29279 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29280 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29281 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29282 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29283 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29284 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
29285 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29286
29287 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
29288 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29289
29290 /* Aliases for +simd. */
29291 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29292 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29293
29294 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29295 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29296
29297 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
29298 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
29299 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29300};
29301
29302static const struct arm_ext_table armv7r_ext_table[] =
29303{
29304 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
29305 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
29306 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29307 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29308 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
29309 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29310 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29311 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
29312 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29313};
29314
29315static const struct arm_ext_table armv7em_ext_table[] =
29316{
29317 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
29318 /* Alias for +fp, used to be known as fpv4-sp-d16. */
29319 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
29320 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
29321 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29322 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
29323 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29324};
29325
29326static const struct arm_ext_table armv8a_ext_table[] =
29327{
29328 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29329 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29330 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29331 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29332
29333 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29334 should use the +simd option to turn on FP. */
29335 ARM_REMOVE ("fp", ALL_FP),
29336 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29337 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29338 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29339};
29340
29341
29342static const struct arm_ext_table armv81a_ext_table[] =
29343{
29344 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29345 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29346 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29347
29348 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29349 should use the +simd option to turn on FP. */
29350 ARM_REMOVE ("fp", ALL_FP),
29351 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29352 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29353 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29354};
29355
29356static const struct arm_ext_table armv82a_ext_table[] =
29357{
29358 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29359 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
29360 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
29361 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29362 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29363 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29364
29365 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29366 should use the +simd option to turn on FP. */
29367 ARM_REMOVE ("fp", ALL_FP),
29368 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29369 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29370 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29371};
29372
29373static const struct arm_ext_table armv84a_ext_table[] =
29374{
29375 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29376 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29377 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29378 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29379
29380 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29381 should use the +simd option to turn on FP. */
29382 ARM_REMOVE ("fp", ALL_FP),
29383 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29384 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29385 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29386};
29387
29388static const struct arm_ext_table armv85a_ext_table[] =
29389{
29390 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29391 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29392 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29393 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29394
29395 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29396 should use the +simd option to turn on FP. */
29397 ARM_REMOVE ("fp", ALL_FP),
29398 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29399};
29400
29401static const struct arm_ext_table armv8m_main_ext_table[] =
29402{
29403 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29404 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29405 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
29406 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29407 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29408};
29409
e0991585
AV
29410static const struct arm_ext_table armv8_1m_main_ext_table[] =
29411{
29412 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29413 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29414 ARM_EXT ("fp",
29415 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29416 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
29417 ALL_FP),
29418 ARM_ADD ("fp.dp",
29419 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29420 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
a7ad558c
AV
29421 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
29422 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
29423 ARM_ADD ("mve.fp",
29424 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29425 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
29426 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
e0991585
AV
29427 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29428};
29429
34ef62f4
AV
29430static const struct arm_ext_table armv8r_ext_table[] =
29431{
29432 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29433 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29434 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29435 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29436 ARM_REMOVE ("fp", ALL_FP),
29437 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
29438 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 29439};
7ed4c4c5 29440
c19d1205
ZW
29441/* This list should, at a minimum, contain all the architecture names
29442 recognized by GCC. */
34ef62f4
AV
29443#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
29444#define ARM_ARCH_OPT2(N, V, DF, ext) \
29445 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
0198d5e6 29446
e74cfd16 29447static const struct arm_arch_option_table arm_archs[] =
c19d1205 29448{
497d849d
TP
29449 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
29450 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
29451 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
29452 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
29453 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
29454 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
29455 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
29456 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
29457 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
29458 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
29459 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
29460 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
29461 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
29462 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
34ef62f4
AV
29463 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
29464 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
29465 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
29466 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29467 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29468 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
29469 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
f33026a9
MW
29470 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
29471 kept to preserve existing behaviour. */
34ef62f4
AV
29472 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29473 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29474 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
29475 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
29476 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
f33026a9
MW
29477 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
29478 kept to preserve existing behaviour. */
34ef62f4
AV
29479 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
29480 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
497d849d
TP
29481 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
29482 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
34ef62f4 29483 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
c450d570
PB
29484 /* The official spelling of the ARMv7 profile variants is the dashed form.
29485 Accept the non-dashed form for compatibility with old toolchains. */
34ef62f4
AV
29486 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29487 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
29488 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 29489 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4
AV
29490 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29491 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 29492 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4 29493 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
497d849d 29494 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
34ef62f4
AV
29495 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
29496 armv8m_main),
e0991585
AV
29497 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
29498 armv8_1m_main),
34ef62f4
AV
29499 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
29500 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
29501 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
29502 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
29503 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
29504 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
29505 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
497d849d
TP
29506 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
29507 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
29508 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
34ef62f4 29509 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 29510};
f3bad469 29511#undef ARM_ARCH_OPT
7ed4c4c5 29512
69133863 29513/* ISA extensions in the co-processor and main instruction set space. */
0198d5e6 29514
69133863 29515struct arm_option_extension_value_table
c19d1205 29516{
0198d5e6
TC
29517 const char * name;
29518 size_t name_len;
29519 const arm_feature_set merge_value;
29520 const arm_feature_set clear_value;
d942732e
TP
29521 /* List of architectures for which an extension is available. ARM_ARCH_NONE
29522 indicates that an extension is available for all architectures while
29523 ARM_ANY marks an empty entry. */
0198d5e6 29524 const arm_feature_set allowed_archs[2];
c19d1205 29525};
7ed4c4c5 29526
0198d5e6
TC
29527/* The following table must be in alphabetical order with a NULL last entry. */
29528
d942732e
TP
29529#define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
29530#define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
0198d5e6 29531
34ef62f4
AV
29532/* DEPRECATED: Refrain from using this table to add any new extensions, instead
29533 use the context sensitive approach using arm_ext_table's. */
69133863 29534static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 29535{
823d2571
TG
29536 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29537 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
bca38921 29538 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
823d2571
TG
29539 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
29540 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
c604a79a
JW
29541 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
29542 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
29543 ARM_ARCH_V8_2A),
15afaa63
TP
29544 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29545 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29546 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
823d2571
TG
29547 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
29548 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
b8ec4e87
JW
29549 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29550 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29551 ARM_ARCH_V8_2A),
01f48020
TC
29552 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29553 | ARM_EXT2_FP16_FML),
29554 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29555 | ARM_EXT2_FP16_FML),
29556 ARM_ARCH_V8_2A),
d942732e 29557 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
823d2571 29558 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
d942732e
TP
29559 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29560 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
3d030cdb
TP
29561 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
29562 Thumb divide instruction. Due to this having the same name as the
29563 previous entry, this will be ignored when doing command-line parsing and
29564 only considered by build attribute selection code. */
29565 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29566 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29567 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
823d2571 29568 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
d942732e 29569 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
823d2571 29570 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
d942732e 29571 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
823d2571 29572 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
d942732e
TP
29573 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
29574 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
823d2571 29575 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
d942732e
TP
29576 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29577 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
823d2571
TG
29578 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29579 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29580 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
ddfded2f
MW
29581 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
29582 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
ced40572 29583 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
dad0c3bf
SD
29584 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29585 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29586 ARM_ARCH_V8A),
4d1464f2
MW
29587 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
29588 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
ced40572 29589 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
643afb90
MW
29590 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
29591 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
ced40572 29592 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
7fadb25d
SD
29593 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29594 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29595 ARM_ARCH_V8A),
d942732e 29596 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
823d2571 29597 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
d942732e
TP
29598 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
29599 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
643afb90
MW
29600 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
29601 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
29602 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
823d2571
TG
29603 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
29604 | ARM_EXT_DIV),
29605 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
29606 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
29607 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
d942732e
TP
29608 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
29609 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
69133863 29610};
f3bad469 29611#undef ARM_EXT_OPT
69133863
MGD
29612
29613/* ISA floating-point and Advanced SIMD extensions. */
29614struct arm_option_fpu_value_table
29615{
0198d5e6
TC
29616 const char * name;
29617 const arm_feature_set value;
c19d1205 29618};
7ed4c4c5 29619
c19d1205
ZW
29620/* This list should, at a minimum, contain all the fpu names
29621 recognized by GCC. */
69133863 29622static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
29623{
29624 {"softfpa", FPU_NONE},
29625 {"fpe", FPU_ARCH_FPE},
29626 {"fpe2", FPU_ARCH_FPE},
29627 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
29628 {"fpa", FPU_ARCH_FPA},
29629 {"fpa10", FPU_ARCH_FPA},
29630 {"fpa11", FPU_ARCH_FPA},
29631 {"arm7500fe", FPU_ARCH_FPA},
29632 {"softvfp", FPU_ARCH_VFP},
29633 {"softvfp+vfp", FPU_ARCH_VFP_V2},
29634 {"vfp", FPU_ARCH_VFP_V2},
29635 {"vfp9", FPU_ARCH_VFP_V2},
d5e0ba9c 29636 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
c19d1205
ZW
29637 {"vfp10", FPU_ARCH_VFP_V2},
29638 {"vfp10-r0", FPU_ARCH_VFP_V1},
29639 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
29640 {"vfpv2", FPU_ARCH_VFP_V2},
29641 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 29642 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 29643 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
29644 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
29645 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
29646 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
29647 {"arm1020t", FPU_ARCH_VFP_V1},
29648 {"arm1020e", FPU_ARCH_VFP_V2},
d5e0ba9c 29649 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
c19d1205
ZW
29650 {"arm1136jf-s", FPU_ARCH_VFP_V2},
29651 {"maverick", FPU_ARCH_MAVERICK},
d5e0ba9c 29652 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
d3375ddd 29653 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 29654 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
29655 {"vfpv4", FPU_ARCH_VFP_V4},
29656 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 29657 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
a715796b
TG
29658 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
29659 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
62f3b8c8 29660 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
29661 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
29662 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
29663 {"crypto-neon-fp-armv8",
29664 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
d6b4b13e 29665 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
081e4c7d
MW
29666 {"crypto-neon-fp-armv8.1",
29667 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
e74cfd16
PB
29668 {NULL, ARM_ARCH_NONE}
29669};
29670
29671struct arm_option_value_table
29672{
e0471c16 29673 const char *name;
e74cfd16 29674 long value;
c19d1205 29675};
7ed4c4c5 29676
e74cfd16 29677static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
29678{
29679 {"hard", ARM_FLOAT_ABI_HARD},
29680 {"softfp", ARM_FLOAT_ABI_SOFTFP},
29681 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 29682 {NULL, 0}
c19d1205 29683};
7ed4c4c5 29684
c19d1205 29685#ifdef OBJ_ELF
3a4a14e9 29686/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 29687static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
29688{
29689 {"gnu", EF_ARM_EABI_UNKNOWN},
29690 {"4", EF_ARM_EABI_VER4},
3a4a14e9 29691 {"5", EF_ARM_EABI_VER5},
e74cfd16 29692 {NULL, 0}
c19d1205
ZW
29693};
29694#endif
7ed4c4c5 29695
c19d1205
ZW
29696struct arm_long_option_table
29697{
0198d5e6 29698 const char * option; /* Substring to match. */
e0471c16 29699 const char * help; /* Help information. */
17b9d67d 29700 int (* func) (const char * subopt); /* Function to decode sub-option. */
e0471c16 29701 const char * deprecated; /* If non-null, print this message. */
c19d1205 29702};
7ed4c4c5 29703
c921be7d 29704static bfd_boolean
c168ce07 29705arm_parse_extension (const char *str, const arm_feature_set *opt_set,
34ef62f4
AV
29706 arm_feature_set *ext_set,
29707 const struct arm_ext_table *ext_table)
7ed4c4c5 29708{
69133863 29709 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
29710 extensions being added before being removed. We achieve this by having
29711 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 29712 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 29713 or removing it (0) and only allowing it to change in the order
69133863
MGD
29714 -1 -> 1 -> 0. */
29715 const struct arm_option_extension_value_table * opt = NULL;
d942732e 29716 const arm_feature_set arm_any = ARM_ANY;
69133863
MGD
29717 int adding_value = -1;
29718
c19d1205 29719 while (str != NULL && *str != 0)
7ed4c4c5 29720 {
82b8a785 29721 const char *ext;
f3bad469 29722 size_t len;
7ed4c4c5 29723
c19d1205
ZW
29724 if (*str != '+')
29725 {
29726 as_bad (_("invalid architectural extension"));
c921be7d 29727 return FALSE;
c19d1205 29728 }
7ed4c4c5 29729
c19d1205
ZW
29730 str++;
29731 ext = strchr (str, '+');
7ed4c4c5 29732
c19d1205 29733 if (ext != NULL)
f3bad469 29734 len = ext - str;
c19d1205 29735 else
f3bad469 29736 len = strlen (str);
7ed4c4c5 29737
f3bad469 29738 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
29739 {
29740 if (adding_value != 0)
29741 {
29742 adding_value = 0;
29743 opt = arm_extensions;
29744 }
29745
f3bad469 29746 len -= 2;
69133863
MGD
29747 str += 2;
29748 }
f3bad469 29749 else if (len > 0)
69133863
MGD
29750 {
29751 if (adding_value == -1)
29752 {
29753 adding_value = 1;
29754 opt = arm_extensions;
29755 }
29756 else if (adding_value != 1)
29757 {
29758 as_bad (_("must specify extensions to add before specifying "
29759 "those to remove"));
29760 return FALSE;
29761 }
29762 }
29763
f3bad469 29764 if (len == 0)
c19d1205
ZW
29765 {
29766 as_bad (_("missing architectural extension"));
c921be7d 29767 return FALSE;
c19d1205 29768 }
7ed4c4c5 29769
69133863
MGD
29770 gas_assert (adding_value != -1);
29771 gas_assert (opt != NULL);
29772
34ef62f4
AV
29773 if (ext_table != NULL)
29774 {
29775 const struct arm_ext_table * ext_opt = ext_table;
29776 bfd_boolean found = FALSE;
29777 for (; ext_opt->name != NULL; ext_opt++)
29778 if (ext_opt->name_len == len
29779 && strncmp (ext_opt->name, str, len) == 0)
29780 {
29781 if (adding_value)
29782 {
29783 if (ARM_FEATURE_ZERO (ext_opt->merge))
29784 /* TODO: Option not supported. When we remove the
29785 legacy table this case should error out. */
29786 continue;
29787
29788 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
29789 }
29790 else
29791 {
29792 if (ARM_FEATURE_ZERO (ext_opt->clear))
29793 /* TODO: Option not supported. When we remove the
29794 legacy table this case should error out. */
29795 continue;
29796 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
29797 }
29798 found = TRUE;
29799 break;
29800 }
29801 if (found)
29802 {
29803 str = ext;
29804 continue;
29805 }
29806 }
29807
69133863
MGD
29808 /* Scan over the options table trying to find an exact match. */
29809 for (; opt->name != NULL; opt++)
f3bad469 29810 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 29811 {
d942732e
TP
29812 int i, nb_allowed_archs =
29813 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
69133863 29814 /* Check we can apply the extension to this architecture. */
d942732e
TP
29815 for (i = 0; i < nb_allowed_archs; i++)
29816 {
29817 /* Empty entry. */
29818 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
29819 continue;
c168ce07 29820 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
d942732e
TP
29821 break;
29822 }
29823 if (i == nb_allowed_archs)
69133863
MGD
29824 {
29825 as_bad (_("extension does not apply to the base architecture"));
29826 return FALSE;
29827 }
29828
29829 /* Add or remove the extension. */
29830 if (adding_value)
4d354d8b 29831 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
69133863 29832 else
4d354d8b 29833 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
69133863 29834
3d030cdb
TP
29835 /* Allowing Thumb division instructions for ARMv7 in autodetection
29836 rely on this break so that duplicate extensions (extensions
29837 with the same name as a previous extension in the list) are not
29838 considered for command-line parsing. */
c19d1205
ZW
29839 break;
29840 }
7ed4c4c5 29841
c19d1205
ZW
29842 if (opt->name == NULL)
29843 {
69133863
MGD
29844 /* Did we fail to find an extension because it wasn't specified in
29845 alphabetical order, or because it does not exist? */
29846
29847 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 29848 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
29849 break;
29850
29851 if (opt->name == NULL)
29852 as_bad (_("unknown architectural extension `%s'"), str);
29853 else
29854 as_bad (_("architectural extensions must be specified in "
29855 "alphabetical order"));
29856
c921be7d 29857 return FALSE;
c19d1205 29858 }
69133863
MGD
29859 else
29860 {
29861 /* We should skip the extension we've just matched the next time
29862 round. */
29863 opt++;
29864 }
7ed4c4c5 29865
c19d1205
ZW
29866 str = ext;
29867 };
7ed4c4c5 29868
c921be7d 29869 return TRUE;
c19d1205 29870}
7ed4c4c5 29871
c921be7d 29872static bfd_boolean
17b9d67d 29873arm_parse_cpu (const char *str)
7ed4c4c5 29874{
f3bad469 29875 const struct arm_cpu_option_table *opt;
82b8a785 29876 const char *ext = strchr (str, '+');
f3bad469 29877 size_t len;
7ed4c4c5 29878
c19d1205 29879 if (ext != NULL)
f3bad469 29880 len = ext - str;
7ed4c4c5 29881 else
f3bad469 29882 len = strlen (str);
7ed4c4c5 29883
f3bad469 29884 if (len == 0)
7ed4c4c5 29885 {
c19d1205 29886 as_bad (_("missing cpu name `%s'"), str);
c921be7d 29887 return FALSE;
7ed4c4c5
NC
29888 }
29889
c19d1205 29890 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 29891 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 29892 {
c168ce07 29893 mcpu_cpu_opt = &opt->value;
4d354d8b
TP
29894 if (mcpu_ext_opt == NULL)
29895 mcpu_ext_opt = XNEW (arm_feature_set);
29896 *mcpu_ext_opt = opt->ext;
e74cfd16 29897 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 29898 if (opt->canonical_name)
ef8e6722
JW
29899 {
29900 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
29901 strcpy (selected_cpu_name, opt->canonical_name);
29902 }
ee065d83
PB
29903 else
29904 {
f3bad469 29905 size_t i;
c921be7d 29906
ef8e6722
JW
29907 if (len >= sizeof selected_cpu_name)
29908 len = (sizeof selected_cpu_name) - 1;
29909
f3bad469 29910 for (i = 0; i < len; i++)
ee065d83
PB
29911 selected_cpu_name[i] = TOUPPER (opt->name[i]);
29912 selected_cpu_name[i] = 0;
29913 }
7ed4c4c5 29914
c19d1205 29915 if (ext != NULL)
34ef62f4 29916 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
7ed4c4c5 29917
c921be7d 29918 return TRUE;
c19d1205 29919 }
7ed4c4c5 29920
c19d1205 29921 as_bad (_("unknown cpu `%s'"), str);
c921be7d 29922 return FALSE;
7ed4c4c5
NC
29923}
29924
c921be7d 29925static bfd_boolean
17b9d67d 29926arm_parse_arch (const char *str)
7ed4c4c5 29927{
e74cfd16 29928 const struct arm_arch_option_table *opt;
82b8a785 29929 const char *ext = strchr (str, '+');
f3bad469 29930 size_t len;
7ed4c4c5 29931
c19d1205 29932 if (ext != NULL)
f3bad469 29933 len = ext - str;
7ed4c4c5 29934 else
f3bad469 29935 len = strlen (str);
7ed4c4c5 29936
f3bad469 29937 if (len == 0)
7ed4c4c5 29938 {
c19d1205 29939 as_bad (_("missing architecture name `%s'"), str);
c921be7d 29940 return FALSE;
7ed4c4c5
NC
29941 }
29942
c19d1205 29943 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 29944 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 29945 {
e74cfd16 29946 march_cpu_opt = &opt->value;
4d354d8b
TP
29947 if (march_ext_opt == NULL)
29948 march_ext_opt = XNEW (arm_feature_set);
29949 *march_ext_opt = arm_arch_none;
e74cfd16 29950 march_fpu_opt = &opt->default_fpu;
5f4273c7 29951 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 29952
c19d1205 29953 if (ext != NULL)
34ef62f4
AV
29954 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
29955 opt->ext_table);
7ed4c4c5 29956
c921be7d 29957 return TRUE;
c19d1205
ZW
29958 }
29959
29960 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 29961 return FALSE;
7ed4c4c5 29962}
eb043451 29963
c921be7d 29964static bfd_boolean
17b9d67d 29965arm_parse_fpu (const char * str)
c19d1205 29966{
69133863 29967 const struct arm_option_fpu_value_table * opt;
b99bd4ef 29968
c19d1205
ZW
29969 for (opt = arm_fpus; opt->name != NULL; opt++)
29970 if (streq (opt->name, str))
29971 {
e74cfd16 29972 mfpu_opt = &opt->value;
c921be7d 29973 return TRUE;
c19d1205 29974 }
b99bd4ef 29975
c19d1205 29976 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 29977 return FALSE;
c19d1205
ZW
29978}
29979
c921be7d 29980static bfd_boolean
17b9d67d 29981arm_parse_float_abi (const char * str)
b99bd4ef 29982{
e74cfd16 29983 const struct arm_option_value_table * opt;
b99bd4ef 29984
c19d1205
ZW
29985 for (opt = arm_float_abis; opt->name != NULL; opt++)
29986 if (streq (opt->name, str))
29987 {
29988 mfloat_abi_opt = opt->value;
c921be7d 29989 return TRUE;
c19d1205 29990 }
cc8a6dd0 29991
c19d1205 29992 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 29993 return FALSE;
c19d1205 29994}
b99bd4ef 29995
c19d1205 29996#ifdef OBJ_ELF
c921be7d 29997static bfd_boolean
17b9d67d 29998arm_parse_eabi (const char * str)
c19d1205 29999{
e74cfd16 30000 const struct arm_option_value_table *opt;
cc8a6dd0 30001
c19d1205
ZW
30002 for (opt = arm_eabis; opt->name != NULL; opt++)
30003 if (streq (opt->name, str))
30004 {
30005 meabi_flags = opt->value;
c921be7d 30006 return TRUE;
c19d1205
ZW
30007 }
30008 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 30009 return FALSE;
c19d1205
ZW
30010}
30011#endif
cc8a6dd0 30012
c921be7d 30013static bfd_boolean
17b9d67d 30014arm_parse_it_mode (const char * str)
e07e6e58 30015{
c921be7d 30016 bfd_boolean ret = TRUE;
e07e6e58
NC
30017
30018 if (streq ("arm", str))
30019 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
30020 else if (streq ("thumb", str))
30021 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
30022 else if (streq ("always", str))
30023 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
30024 else if (streq ("never", str))
30025 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
30026 else
30027 {
30028 as_bad (_("unknown implicit IT mode `%s', should be "\
477330fc 30029 "arm, thumb, always, or never."), str);
c921be7d 30030 ret = FALSE;
e07e6e58
NC
30031 }
30032
30033 return ret;
30034}
30035
2e6976a8 30036static bfd_boolean
17b9d67d 30037arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
2e6976a8
DG
30038{
30039 codecomposer_syntax = TRUE;
30040 arm_comment_chars[0] = ';';
30041 arm_line_separator_chars[0] = 0;
30042 return TRUE;
30043}
30044
c19d1205
ZW
30045struct arm_long_option_table arm_long_opts[] =
30046{
30047 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
30048 arm_parse_cpu, NULL},
30049 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
30050 arm_parse_arch, NULL},
30051 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
30052 arm_parse_fpu, NULL},
30053 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
30054 arm_parse_float_abi, NULL},
30055#ifdef OBJ_ELF
7fac0536 30056 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
30057 arm_parse_eabi, NULL},
30058#endif
e07e6e58
NC
30059 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
30060 arm_parse_it_mode, NULL},
2e6976a8
DG
30061 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
30062 arm_ccs_mode, NULL},
c19d1205
ZW
30063 {NULL, NULL, 0, NULL}
30064};
cc8a6dd0 30065
c19d1205 30066int
17b9d67d 30067md_parse_option (int c, const char * arg)
c19d1205
ZW
30068{
30069 struct arm_option_table *opt;
e74cfd16 30070 const struct arm_legacy_option_table *fopt;
c19d1205 30071 struct arm_long_option_table *lopt;
b99bd4ef 30072
c19d1205 30073 switch (c)
b99bd4ef 30074 {
c19d1205
ZW
30075#ifdef OPTION_EB
30076 case OPTION_EB:
30077 target_big_endian = 1;
30078 break;
30079#endif
cc8a6dd0 30080
c19d1205
ZW
30081#ifdef OPTION_EL
30082 case OPTION_EL:
30083 target_big_endian = 0;
30084 break;
30085#endif
b99bd4ef 30086
845b51d6
PB
30087 case OPTION_FIX_V4BX:
30088 fix_v4bx = TRUE;
30089 break;
30090
18a20338
CL
30091#ifdef OBJ_ELF
30092 case OPTION_FDPIC:
30093 arm_fdpic = TRUE;
30094 break;
30095#endif /* OBJ_ELF */
30096
c19d1205
ZW
30097 case 'a':
30098 /* Listing option. Just ignore these, we don't support additional
30099 ones. */
30100 return 0;
b99bd4ef 30101
c19d1205
ZW
30102 default:
30103 for (opt = arm_opts; opt->option != NULL; opt++)
30104 {
30105 if (c == opt->option[0]
30106 && ((arg == NULL && opt->option[1] == 0)
30107 || streq (arg, opt->option + 1)))
30108 {
c19d1205 30109 /* If the option is deprecated, tell the user. */
278df34e 30110 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
30111 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30112 arg ? arg : "", _(opt->deprecated));
b99bd4ef 30113
c19d1205
ZW
30114 if (opt->var != NULL)
30115 *opt->var = opt->value;
cc8a6dd0 30116
c19d1205
ZW
30117 return 1;
30118 }
30119 }
b99bd4ef 30120
e74cfd16
PB
30121 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
30122 {
30123 if (c == fopt->option[0]
30124 && ((arg == NULL && fopt->option[1] == 0)
30125 || streq (arg, fopt->option + 1)))
30126 {
e74cfd16 30127 /* If the option is deprecated, tell the user. */
278df34e 30128 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
30129 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30130 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
30131
30132 if (fopt->var != NULL)
30133 *fopt->var = &fopt->value;
30134
30135 return 1;
30136 }
30137 }
30138
c19d1205
ZW
30139 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30140 {
30141 /* These options are expected to have an argument. */
30142 if (c == lopt->option[0]
30143 && arg != NULL
30144 && strncmp (arg, lopt->option + 1,
30145 strlen (lopt->option + 1)) == 0)
30146 {
c19d1205 30147 /* If the option is deprecated, tell the user. */
278df34e 30148 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
30149 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
30150 _(lopt->deprecated));
b99bd4ef 30151
c19d1205
ZW
30152 /* Call the sup-option parser. */
30153 return lopt->func (arg + strlen (lopt->option) - 1);
30154 }
30155 }
a737bd4d 30156
c19d1205
ZW
30157 return 0;
30158 }
a394c00f 30159
c19d1205
ZW
30160 return 1;
30161}
a394c00f 30162
c19d1205
ZW
30163void
30164md_show_usage (FILE * fp)
a394c00f 30165{
c19d1205
ZW
30166 struct arm_option_table *opt;
30167 struct arm_long_option_table *lopt;
a394c00f 30168
c19d1205 30169 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 30170
c19d1205
ZW
30171 for (opt = arm_opts; opt->option != NULL; opt++)
30172 if (opt->help != NULL)
30173 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 30174
c19d1205
ZW
30175 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30176 if (lopt->help != NULL)
30177 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 30178
c19d1205
ZW
30179#ifdef OPTION_EB
30180 fprintf (fp, _("\
30181 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
30182#endif
30183
c19d1205
ZW
30184#ifdef OPTION_EL
30185 fprintf (fp, _("\
30186 -EL assemble code for a little-endian cpu\n"));
a737bd4d 30187#endif
845b51d6
PB
30188
30189 fprintf (fp, _("\
30190 --fix-v4bx Allow BX in ARMv4 code\n"));
18a20338
CL
30191
30192#ifdef OBJ_ELF
30193 fprintf (fp, _("\
30194 --fdpic generate an FDPIC object file\n"));
30195#endif /* OBJ_ELF */
c19d1205 30196}
ee065d83 30197
ee065d83 30198#ifdef OBJ_ELF
0198d5e6 30199
62b3e311
PB
30200typedef struct
30201{
30202 int val;
30203 arm_feature_set flags;
30204} cpu_arch_ver_table;
30205
2c6b98ea
TP
30206/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
30207 chronologically for architectures, with an exception for ARMv6-M and
30208 ARMv6S-M due to legacy reasons. No new architecture should have a
30209 special case. This allows for build attribute selection results to be
30210 stable when new architectures are added. */
62b3e311
PB
30211static const cpu_arch_ver_table cpu_arch_ver[] =
30212{
031254f2
AV
30213 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
30214 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
30215 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
30216 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
30217 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
30218 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
30219 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
30220 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
30221 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
30222 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
30223 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
30224 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
30225 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
30226 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
30227 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
30228 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
30229 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
30230 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
30231 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
30232 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
30233 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
30234 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
30235 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
30236 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
2c6b98ea
TP
30237
30238 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
30239 always selected build attributes to match those of ARMv6-M
30240 (resp. ARMv6S-M). However, due to these architectures being a strict
30241 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
30242 would be selected when fully respecting chronology of architectures.
30243 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
30244 move them before ARMv7 architectures. */
031254f2
AV
30245 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
30246 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
30247
30248 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
30249 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
30250 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
30251 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
30252 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
30253 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
30254 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
30255 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
30256 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
30257 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
30258 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
30259 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
30260 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
30261 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
30262 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
30263 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
30264 {-1, ARM_ARCH_NONE}
62b3e311
PB
30265};
30266
ee3c0378 30267/* Set an attribute if it has not already been set by the user. */
0198d5e6 30268
ee3c0378
AS
30269static void
30270aeabi_set_attribute_int (int tag, int value)
30271{
30272 if (tag < 1
30273 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30274 || !attributes_set_explicitly[tag])
30275 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
30276}
30277
30278static void
30279aeabi_set_attribute_string (int tag, const char *value)
30280{
30281 if (tag < 1
30282 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30283 || !attributes_set_explicitly[tag])
30284 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
30285}
30286
2c6b98ea
TP
30287/* Return whether features in the *NEEDED feature set are available via
30288 extensions for the architecture whose feature set is *ARCH_FSET. */
0198d5e6 30289
2c6b98ea
TP
30290static bfd_boolean
30291have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
30292 const arm_feature_set *needed)
30293{
30294 int i, nb_allowed_archs;
30295 arm_feature_set ext_fset;
30296 const struct arm_option_extension_value_table *opt;
30297
30298 ext_fset = arm_arch_none;
30299 for (opt = arm_extensions; opt->name != NULL; opt++)
30300 {
30301 /* Extension does not provide any feature we need. */
30302 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
30303 continue;
30304
30305 nb_allowed_archs =
30306 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30307 for (i = 0; i < nb_allowed_archs; i++)
30308 {
30309 /* Empty entry. */
30310 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
30311 break;
30312
30313 /* Extension is available, add it. */
30314 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
30315 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
30316 }
30317 }
30318
30319 /* Can we enable all features in *needed? */
30320 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
30321}
30322
30323/* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
30324 a given architecture feature set *ARCH_EXT_FSET including extension feature
30325 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
30326 - if true, check for an exact match of the architecture modulo extensions;
30327 - otherwise, select build attribute value of the first superset
30328 architecture released so that results remains stable when new architectures
30329 are added.
30330 For -march/-mcpu=all the build attribute value of the most featureful
30331 architecture is returned. Tag_CPU_arch_profile result is returned in
30332 PROFILE. */
0198d5e6 30333
2c6b98ea
TP
30334static int
30335get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
30336 const arm_feature_set *ext_fset,
30337 char *profile, int exact_match)
30338{
30339 arm_feature_set arch_fset;
30340 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
30341
30342 /* Select most featureful architecture with all its extensions if building
30343 for -march=all as the feature sets used to set build attributes. */
30344 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
30345 {
30346 /* Force revisiting of decision for each new architecture. */
031254f2 30347 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
2c6b98ea
TP
30348 *profile = 'A';
30349 return TAG_CPU_ARCH_V8;
30350 }
30351
30352 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
30353
30354 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
30355 {
30356 arm_feature_set known_arch_fset;
30357
30358 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
30359 if (exact_match)
30360 {
30361 /* Base architecture match user-specified architecture and
30362 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
30363 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
30364 {
30365 p_ver_ret = p_ver;
30366 goto found;
30367 }
30368 /* Base architecture match user-specified architecture only
30369 (eg. ARMv6-M in the same case as above). Record it in case we
30370 find a match with above condition. */
30371 else if (p_ver_ret == NULL
30372 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
30373 p_ver_ret = p_ver;
30374 }
30375 else
30376 {
30377
30378 /* Architecture has all features wanted. */
30379 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
30380 {
30381 arm_feature_set added_fset;
30382
30383 /* Compute features added by this architecture over the one
30384 recorded in p_ver_ret. */
30385 if (p_ver_ret != NULL)
30386 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
30387 p_ver_ret->flags);
30388 /* First architecture that match incl. with extensions, or the
30389 only difference in features over the recorded match is
30390 features that were optional and are now mandatory. */
30391 if (p_ver_ret == NULL
30392 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
30393 {
30394 p_ver_ret = p_ver;
30395 goto found;
30396 }
30397 }
30398 else if (p_ver_ret == NULL)
30399 {
30400 arm_feature_set needed_ext_fset;
30401
30402 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
30403
30404 /* Architecture has all features needed when using some
30405 extensions. Record it and continue searching in case there
30406 exist an architecture providing all needed features without
30407 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
30408 OS extension). */
30409 if (have_ext_for_needed_feat_p (&known_arch_fset,
30410 &needed_ext_fset))
30411 p_ver_ret = p_ver;
30412 }
30413 }
30414 }
30415
30416 if (p_ver_ret == NULL)
30417 return -1;
30418
30419found:
30420 /* Tag_CPU_arch_profile. */
30421 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
30422 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
30423 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
30424 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
30425 *profile = 'A';
30426 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
30427 *profile = 'R';
30428 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
30429 *profile = 'M';
30430 else
30431 *profile = '\0';
30432 return p_ver_ret->val;
30433}
30434
ee065d83 30435/* Set the public EABI object attributes. */
0198d5e6 30436
c168ce07 30437static void
ee065d83
PB
30438aeabi_set_public_attributes (void)
30439{
b90d5ba0 30440 char profile = '\0';
2c6b98ea 30441 int arch = -1;
90ec0d68 30442 int virt_sec = 0;
bca38921 30443 int fp16_optional = 0;
2c6b98ea
TP
30444 int skip_exact_match = 0;
30445 arm_feature_set flags, flags_arch, flags_ext;
ee065d83 30446
54bab281
TP
30447 /* Autodetection mode, choose the architecture based the instructions
30448 actually used. */
30449 if (no_cpu_selected ())
30450 {
30451 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
ddd7f988 30452
54bab281
TP
30453 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
30454 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
ddd7f988 30455
54bab281
TP
30456 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
30457 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
ddd7f988 30458
54bab281 30459 /* Code run during relaxation relies on selected_cpu being set. */
4d354d8b
TP
30460 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
30461 flags_ext = arm_arch_none;
30462 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
30463 selected_ext = flags_ext;
54bab281
TP
30464 selected_cpu = flags;
30465 }
30466 /* Otherwise, choose the architecture based on the capabilities of the
30467 requested cpu. */
30468 else
4d354d8b
TP
30469 {
30470 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
30471 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
30472 flags_ext = selected_ext;
30473 flags = selected_cpu;
30474 }
30475 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
7f78eb34 30476
ddd7f988 30477 /* Allow the user to override the reported architecture. */
4d354d8b 30478 if (!ARM_FEATURE_ZERO (selected_object_arch))
7a1d4c38 30479 {
4d354d8b 30480 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
2c6b98ea 30481 flags_ext = arm_arch_none;
7a1d4c38 30482 }
2c6b98ea 30483 else
4d354d8b 30484 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
2c6b98ea
TP
30485
30486 /* When this function is run again after relaxation has happened there is no
30487 way to determine whether an architecture or CPU was specified by the user:
30488 - selected_cpu is set above for relaxation to work;
30489 - march_cpu_opt is not set if only -mcpu or .cpu is used;
30490 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
30491 Therefore, if not in -march=all case we first try an exact match and fall
30492 back to autodetection. */
30493 if (!skip_exact_match)
30494 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
30495 if (arch == -1)
30496 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
30497 if (arch == -1)
30498 as_bad (_("no architecture contains all the instructions used\n"));
9e3c6df6 30499
ee065d83
PB
30500 /* Tag_CPU_name. */
30501 if (selected_cpu_name[0])
30502 {
91d6fa6a 30503 char *q;
ee065d83 30504
91d6fa6a
NC
30505 q = selected_cpu_name;
30506 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
30507 {
30508 int i;
5f4273c7 30509
91d6fa6a
NC
30510 q += 4;
30511 for (i = 0; q[i]; i++)
30512 q[i] = TOUPPER (q[i]);
ee065d83 30513 }
91d6fa6a 30514 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 30515 }
62f3b8c8 30516
ee065d83 30517 /* Tag_CPU_arch. */
ee3c0378 30518 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 30519
62b3e311 30520 /* Tag_CPU_arch_profile. */
69239280
MGD
30521 if (profile != '\0')
30522 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 30523
15afaa63 30524 /* Tag_DSP_extension. */
4d354d8b 30525 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
6c290d53 30526 aeabi_set_attribute_int (Tag_DSP_extension, 1);
15afaa63 30527
2c6b98ea 30528 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
ee065d83 30529 /* Tag_ARM_ISA_use. */
ee3c0378 30530 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
2c6b98ea 30531 || ARM_FEATURE_ZERO (flags_arch))
ee3c0378 30532 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 30533
ee065d83 30534 /* Tag_THUMB_ISA_use. */
ee3c0378 30535 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
2c6b98ea 30536 || ARM_FEATURE_ZERO (flags_arch))
4ed7ed8d
TP
30537 {
30538 int thumb_isa_use;
30539
30540 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
16a1fa25 30541 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
4ed7ed8d
TP
30542 thumb_isa_use = 3;
30543 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
30544 thumb_isa_use = 2;
30545 else
30546 thumb_isa_use = 1;
30547 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
30548 }
62f3b8c8 30549
ee065d83 30550 /* Tag_VFP_arch. */
a715796b
TG
30551 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
30552 aeabi_set_attribute_int (Tag_VFP_arch,
30553 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30554 ? 7 : 8);
bca38921 30555 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
30556 aeabi_set_attribute_int (Tag_VFP_arch,
30557 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30558 ? 5 : 6);
30559 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
30560 {
30561 fp16_optional = 1;
30562 aeabi_set_attribute_int (Tag_VFP_arch, 3);
30563 }
ada65aa3 30564 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
30565 {
30566 aeabi_set_attribute_int (Tag_VFP_arch, 4);
30567 fp16_optional = 1;
30568 }
ee3c0378
AS
30569 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
30570 aeabi_set_attribute_int (Tag_VFP_arch, 2);
30571 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
477330fc 30572 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
ee3c0378 30573 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 30574
4547cb56
NC
30575 /* Tag_ABI_HardFP_use. */
30576 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
30577 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
30578 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
30579
ee065d83 30580 /* Tag_WMMX_arch. */
ee3c0378
AS
30581 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
30582 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
30583 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
30584 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 30585
ee3c0378 30586 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
9411fd44
MW
30587 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
30588 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
30589 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
bca38921
MGD
30590 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
30591 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
30592 {
30593 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
30594 {
30595 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
30596 }
30597 else
30598 {
30599 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
30600 fp16_optional = 1;
30601 }
30602 }
fa94de6b 30603
a7ad558c
AV
30604 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
30605 aeabi_set_attribute_int (Tag_MVE_arch, 2);
30606 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
30607 aeabi_set_attribute_int (Tag_MVE_arch, 1);
30608
ee3c0378 30609 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 30610 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 30611 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 30612
69239280
MGD
30613 /* Tag_DIV_use.
30614
30615 We set Tag_DIV_use to two when integer divide instructions have been used
30616 in ARM state, or when Thumb integer divide instructions have been used,
30617 but we have no architecture profile set, nor have we any ARM instructions.
30618
4ed7ed8d
TP
30619 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
30620 by the base architecture.
bca38921 30621
69239280 30622 For new architectures we will have to check these tests. */
031254f2 30623 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4ed7ed8d
TP
30624 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
30625 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
bca38921
MGD
30626 aeabi_set_attribute_int (Tag_DIV_use, 0);
30627 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
30628 || (profile == '\0'
30629 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
30630 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 30631 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
30632
30633 /* Tag_MP_extension_use. */
30634 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
30635 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
30636
30637 /* Tag Virtualization_use. */
30638 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
30639 virt_sec |= 1;
30640 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
30641 virt_sec |= 2;
30642 if (virt_sec != 0)
30643 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
30644}
30645
c168ce07
TP
30646/* Post relaxation hook. Recompute ARM attributes now that relaxation is
30647 finished and free extension feature bits which will not be used anymore. */
0198d5e6 30648
c168ce07
TP
30649void
30650arm_md_post_relax (void)
30651{
30652 aeabi_set_public_attributes ();
4d354d8b
TP
30653 XDELETE (mcpu_ext_opt);
30654 mcpu_ext_opt = NULL;
30655 XDELETE (march_ext_opt);
30656 march_ext_opt = NULL;
c168ce07
TP
30657}
30658
104d59d1 30659/* Add the default contents for the .ARM.attributes section. */
0198d5e6 30660
ee065d83
PB
30661void
30662arm_md_end (void)
30663{
ee065d83
PB
30664 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
30665 return;
30666
30667 aeabi_set_public_attributes ();
ee065d83 30668}
8463be01 30669#endif /* OBJ_ELF */
ee065d83 30670
ee065d83
PB
30671/* Parse a .cpu directive. */
30672
30673static void
30674s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
30675{
e74cfd16 30676 const struct arm_cpu_option_table *opt;
ee065d83
PB
30677 char *name;
30678 char saved_char;
30679
30680 name = input_line_pointer;
5f4273c7 30681 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
30682 input_line_pointer++;
30683 saved_char = *input_line_pointer;
30684 *input_line_pointer = 0;
30685
30686 /* Skip the first "all" entry. */
30687 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
30688 if (streq (opt->name, name))
30689 {
4d354d8b
TP
30690 selected_arch = opt->value;
30691 selected_ext = opt->ext;
30692 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
ee065d83 30693 if (opt->canonical_name)
5f4273c7 30694 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
30695 else
30696 {
30697 int i;
30698 for (i = 0; opt->name[i]; i++)
30699 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 30700
ee065d83
PB
30701 selected_cpu_name[i] = 0;
30702 }
4d354d8b
TP
30703 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30704
ee065d83
PB
30705 *input_line_pointer = saved_char;
30706 demand_empty_rest_of_line ();
30707 return;
30708 }
30709 as_bad (_("unknown cpu `%s'"), name);
30710 *input_line_pointer = saved_char;
30711 ignore_rest_of_line ();
30712}
30713
ee065d83
PB
30714/* Parse a .arch directive. */
30715
30716static void
30717s_arm_arch (int ignored ATTRIBUTE_UNUSED)
30718{
e74cfd16 30719 const struct arm_arch_option_table *opt;
ee065d83
PB
30720 char saved_char;
30721 char *name;
30722
30723 name = input_line_pointer;
5f4273c7 30724 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
30725 input_line_pointer++;
30726 saved_char = *input_line_pointer;
30727 *input_line_pointer = 0;
30728
30729 /* Skip the first "all" entry. */
30730 for (opt = arm_archs + 1; opt->name != NULL; opt++)
30731 if (streq (opt->name, name))
30732 {
4d354d8b
TP
30733 selected_arch = opt->value;
30734 selected_ext = arm_arch_none;
30735 selected_cpu = selected_arch;
5f4273c7 30736 strcpy (selected_cpu_name, opt->name);
4d354d8b 30737 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
30738 *input_line_pointer = saved_char;
30739 demand_empty_rest_of_line ();
30740 return;
30741 }
30742
30743 as_bad (_("unknown architecture `%s'\n"), name);
30744 *input_line_pointer = saved_char;
30745 ignore_rest_of_line ();
30746}
30747
7a1d4c38
PB
30748/* Parse a .object_arch directive. */
30749
30750static void
30751s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
30752{
30753 const struct arm_arch_option_table *opt;
30754 char saved_char;
30755 char *name;
30756
30757 name = input_line_pointer;
5f4273c7 30758 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
30759 input_line_pointer++;
30760 saved_char = *input_line_pointer;
30761 *input_line_pointer = 0;
30762
30763 /* Skip the first "all" entry. */
30764 for (opt = arm_archs + 1; opt->name != NULL; opt++)
30765 if (streq (opt->name, name))
30766 {
4d354d8b 30767 selected_object_arch = opt->value;
7a1d4c38
PB
30768 *input_line_pointer = saved_char;
30769 demand_empty_rest_of_line ();
30770 return;
30771 }
30772
30773 as_bad (_("unknown architecture `%s'\n"), name);
30774 *input_line_pointer = saved_char;
30775 ignore_rest_of_line ();
30776}
30777
69133863
MGD
30778/* Parse a .arch_extension directive. */
30779
30780static void
30781s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
30782{
30783 const struct arm_option_extension_value_table *opt;
30784 char saved_char;
30785 char *name;
30786 int adding_value = 1;
30787
30788 name = input_line_pointer;
30789 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30790 input_line_pointer++;
30791 saved_char = *input_line_pointer;
30792 *input_line_pointer = 0;
30793
30794 if (strlen (name) >= 2
30795 && strncmp (name, "no", 2) == 0)
30796 {
30797 adding_value = 0;
30798 name += 2;
30799 }
30800
30801 for (opt = arm_extensions; opt->name != NULL; opt++)
30802 if (streq (opt->name, name))
30803 {
d942732e
TP
30804 int i, nb_allowed_archs =
30805 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
30806 for (i = 0; i < nb_allowed_archs; i++)
30807 {
30808 /* Empty entry. */
4d354d8b 30809 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
d942732e 30810 continue;
4d354d8b 30811 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
d942732e
TP
30812 break;
30813 }
30814
30815 if (i == nb_allowed_archs)
69133863
MGD
30816 {
30817 as_bad (_("architectural extension `%s' is not allowed for the "
30818 "current base architecture"), name);
30819 break;
30820 }
30821
30822 if (adding_value)
4d354d8b 30823 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
5a70a223 30824 opt->merge_value);
69133863 30825 else
4d354d8b 30826 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
69133863 30827
4d354d8b
TP
30828 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
30829 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
69133863
MGD
30830 *input_line_pointer = saved_char;
30831 demand_empty_rest_of_line ();
3d030cdb
TP
30832 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
30833 on this return so that duplicate extensions (extensions with the
30834 same name as a previous extension in the list) are not considered
30835 for command-line parsing. */
69133863
MGD
30836 return;
30837 }
30838
30839 if (opt->name == NULL)
e673710a 30840 as_bad (_("unknown architecture extension `%s'\n"), name);
69133863
MGD
30841
30842 *input_line_pointer = saved_char;
30843 ignore_rest_of_line ();
30844}
30845
ee065d83
PB
30846/* Parse a .fpu directive. */
30847
30848static void
30849s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
30850{
69133863 30851 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
30852 char saved_char;
30853 char *name;
30854
30855 name = input_line_pointer;
5f4273c7 30856 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
30857 input_line_pointer++;
30858 saved_char = *input_line_pointer;
30859 *input_line_pointer = 0;
5f4273c7 30860
ee065d83
PB
30861 for (opt = arm_fpus; opt->name != NULL; opt++)
30862 if (streq (opt->name, name))
30863 {
4d354d8b
TP
30864 selected_fpu = opt->value;
30865#ifndef CPU_DEFAULT
30866 if (no_cpu_selected ())
30867 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
30868 else
30869#endif
30870 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
30871 *input_line_pointer = saved_char;
30872 demand_empty_rest_of_line ();
30873 return;
30874 }
30875
30876 as_bad (_("unknown floating point format `%s'\n"), name);
30877 *input_line_pointer = saved_char;
30878 ignore_rest_of_line ();
30879}
ee065d83 30880
794ba86a 30881/* Copy symbol information. */
f31fef98 30882
794ba86a
DJ
30883void
30884arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
30885{
30886 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
30887}
e04befd0 30888
f31fef98 30889#ifdef OBJ_ELF
e04befd0
AS
30890/* Given a symbolic attribute NAME, return the proper integer value.
30891 Returns -1 if the attribute is not known. */
f31fef98 30892
e04befd0
AS
30893int
30894arm_convert_symbolic_attribute (const char *name)
30895{
f31fef98
NC
30896 static const struct
30897 {
30898 const char * name;
30899 const int tag;
30900 }
30901 attribute_table[] =
30902 {
30903 /* When you modify this table you should
30904 also modify the list in doc/c-arm.texi. */
e04befd0 30905#define T(tag) {#tag, tag}
f31fef98
NC
30906 T (Tag_CPU_raw_name),
30907 T (Tag_CPU_name),
30908 T (Tag_CPU_arch),
30909 T (Tag_CPU_arch_profile),
30910 T (Tag_ARM_ISA_use),
30911 T (Tag_THUMB_ISA_use),
75375b3e 30912 T (Tag_FP_arch),
f31fef98
NC
30913 T (Tag_VFP_arch),
30914 T (Tag_WMMX_arch),
30915 T (Tag_Advanced_SIMD_arch),
30916 T (Tag_PCS_config),
30917 T (Tag_ABI_PCS_R9_use),
30918 T (Tag_ABI_PCS_RW_data),
30919 T (Tag_ABI_PCS_RO_data),
30920 T (Tag_ABI_PCS_GOT_use),
30921 T (Tag_ABI_PCS_wchar_t),
30922 T (Tag_ABI_FP_rounding),
30923 T (Tag_ABI_FP_denormal),
30924 T (Tag_ABI_FP_exceptions),
30925 T (Tag_ABI_FP_user_exceptions),
30926 T (Tag_ABI_FP_number_model),
75375b3e 30927 T (Tag_ABI_align_needed),
f31fef98 30928 T (Tag_ABI_align8_needed),
75375b3e 30929 T (Tag_ABI_align_preserved),
f31fef98
NC
30930 T (Tag_ABI_align8_preserved),
30931 T (Tag_ABI_enum_size),
30932 T (Tag_ABI_HardFP_use),
30933 T (Tag_ABI_VFP_args),
30934 T (Tag_ABI_WMMX_args),
30935 T (Tag_ABI_optimization_goals),
30936 T (Tag_ABI_FP_optimization_goals),
30937 T (Tag_compatibility),
30938 T (Tag_CPU_unaligned_access),
75375b3e 30939 T (Tag_FP_HP_extension),
f31fef98
NC
30940 T (Tag_VFP_HP_extension),
30941 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
30942 T (Tag_MPextension_use),
30943 T (Tag_DIV_use),
f31fef98
NC
30944 T (Tag_nodefaults),
30945 T (Tag_also_compatible_with),
30946 T (Tag_conformance),
30947 T (Tag_T2EE_use),
30948 T (Tag_Virtualization_use),
15afaa63 30949 T (Tag_DSP_extension),
a7ad558c 30950 T (Tag_MVE_arch),
cd21e546 30951 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 30952#undef T
f31fef98 30953 };
e04befd0
AS
30954 unsigned int i;
30955
30956 if (name == NULL)
30957 return -1;
30958
f31fef98 30959 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 30960 if (streq (name, attribute_table[i].name))
e04befd0
AS
30961 return attribute_table[i].tag;
30962
30963 return -1;
30964}
267bf995 30965
93ef582d
NC
30966/* Apply sym value for relocations only in the case that they are for
30967 local symbols in the same segment as the fixup and you have the
30968 respective architectural feature for blx and simple switches. */
0198d5e6 30969
267bf995 30970int
93ef582d 30971arm_apply_sym_value (struct fix * fixP, segT this_seg)
267bf995
RR
30972{
30973 if (fixP->fx_addsy
30974 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
93ef582d
NC
30975 /* PR 17444: If the local symbol is in a different section then a reloc
30976 will always be generated for it, so applying the symbol value now
30977 will result in a double offset being stored in the relocation. */
30978 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
34e77a92 30979 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
30980 {
30981 switch (fixP->fx_r_type)
30982 {
30983 case BFD_RELOC_ARM_PCREL_BLX:
30984 case BFD_RELOC_THUMB_PCREL_BRANCH23:
30985 if (ARM_IS_FUNC (fixP->fx_addsy))
30986 return 1;
30987 break;
30988
30989 case BFD_RELOC_ARM_PCREL_CALL:
30990 case BFD_RELOC_THUMB_PCREL_BLX:
30991 if (THUMB_IS_FUNC (fixP->fx_addsy))
93ef582d 30992 return 1;
267bf995
RR
30993 break;
30994
30995 default:
30996 break;
30997 }
30998
30999 }
31000 return 0;
31001}
f31fef98 31002#endif /* OBJ_ELF */