]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
[PATCH 23/57][Arm][GAS] Add support for MVE instructions: vmla, vmul, vqadd and vqsub
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
82704155 2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
b99bd4ef
NC
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
ec2655a6 13 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
b99bd4ef 25
42a68e18 26#include "as.h"
5287ad62 27#include <limits.h>
037e8744 28#include <stdarg.h>
c19d1205 29#define NO_RELOC 0
3882b010 30#include "safe-ctype.h"
b99bd4ef
NC
31#include "subsegs.h"
32#include "obstack.h"
3da1d841 33#include "libiberty.h"
f263249b
RE
34#include "opcode/arm.h"
35
b99bd4ef
NC
36#ifdef OBJ_ELF
37#include "elf/arm.h"
a394c00f 38#include "dw2gencfi.h"
b99bd4ef
NC
39#endif
40
f0927246
NC
41#include "dwarf2dbg.h"
42
7ed4c4c5
NC
43#ifdef OBJ_ELF
44/* Must be at least the size of the largest unwind opcode (currently two). */
45#define ARM_OPCODE_CHUNK_SIZE 8
46
47/* This structure holds the unwinding state. */
48
49static struct
50{
c19d1205
ZW
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
7ed4c4c5 55 /* The segment containing the function. */
c19d1205
ZW
56 segT saved_seg;
57 subsegT saved_subseg;
7ed4c4c5
NC
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
c19d1205
ZW
60 int opcode_count;
61 int opcode_alloc;
7ed4c4c5 62 /* The number of bytes pushed to the stack. */
c19d1205 63 offsetT frame_size;
7ed4c4c5
NC
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
c19d1205 67 offsetT pending_offset;
7ed4c4c5 68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
7ed4c4c5 72 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 73 unsigned fp_used:1;
7ed4c4c5 74 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 75 unsigned sp_restored:1;
7ed4c4c5
NC
76} unwind;
77
18a20338
CL
78/* Whether --fdpic was given. */
79static int arm_fdpic;
80
8b1ad454
NC
81#endif /* OBJ_ELF */
82
4962c51a
MS
83/* Results from operand parsing worker functions. */
84
85typedef enum
86{
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90} parse_operand_result;
91
33a392fb
PB
92enum arm_float_abi
93{
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97};
98
c19d1205 99/* Types of processor to assemble for. */
b99bd4ef 100#ifndef CPU_DEFAULT
8a59fff3 101/* The code that was here used to select a default CPU depending on compiler
fa94de6b 102 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
b99bd4ef
NC
107#endif
108
109#ifndef FPU_DEFAULT
c820d418
MM
110# ifdef TE_LINUX
111# define FPU_DEFAULT FPU_ARCH_FPA
112# elif defined (TE_NetBSD)
113# ifdef OBJ_ELF
114# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115# else
116 /* Legacy a.out format. */
117# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118# endif
4e7fd91e
PB
119# elif defined (TE_VXWORKS)
120# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
121# else
122 /* For backwards compatibility, default to FPA. */
123# define FPU_DEFAULT FPU_ARCH_FPA
124# endif
125#endif /* ifndef FPU_DEFAULT */
b99bd4ef 126
c19d1205 127#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 128
4d354d8b
TP
129/* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
e74cfd16 132static arm_feature_set cpu_variant;
4d354d8b
TP
133/* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
e74cfd16
PB
135static arm_feature_set arm_arch_used;
136static arm_feature_set thumb_arch_used;
b99bd4ef 137
b99bd4ef 138/* Flags stored in private area of BFD structure. */
c19d1205
ZW
139static int uses_apcs_26 = FALSE;
140static int atpcs = FALSE;
b34976b6
AM
141static int support_interwork = FALSE;
142static int uses_apcs_float = FALSE;
c19d1205 143static int pic_code = FALSE;
845b51d6 144static int fix_v4bx = FALSE;
278df34e
NS
145/* Warn on using deprecated features. */
146static int warn_on_deprecated = TRUE;
147
2e6976a8
DG
148/* Understand CodeComposer Studio assembly syntax. */
149bfd_boolean codecomposer_syntax = FALSE;
03b1477f
RE
150
151/* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
4d354d8b
TP
154
155/* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157static const arm_feature_set *legacy_cpu = NULL;
158static const arm_feature_set *legacy_fpu = NULL;
159
160/* CPU, extension and FPU feature bits selected by -mcpu. */
161static const arm_feature_set *mcpu_cpu_opt = NULL;
162static arm_feature_set *mcpu_ext_opt = NULL;
163static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165/* CPU, extension and FPU feature bits selected by -march. */
166static const arm_feature_set *march_cpu_opt = NULL;
167static arm_feature_set *march_ext_opt = NULL;
168static const arm_feature_set *march_fpu_opt = NULL;
169
170/* Feature bits selected by -mfpu. */
171static const arm_feature_set *mfpu_opt = NULL;
e74cfd16
PB
172
173/* Constants for known architecture features. */
174static const arm_feature_set fpu_default = FPU_DEFAULT;
f85d59c3 175static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
e74cfd16 176static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
f85d59c3
KT
177static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
e74cfd16
PB
179static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
69c9e028 181#ifdef OBJ_ELF
e74cfd16 182static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
69c9e028 183#endif
e74cfd16
PB
184static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186#ifdef CPU_DEFAULT
187static const arm_feature_set cpu_default = CPU_DEFAULT;
188#endif
189
823d2571 190static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
4070243b 191static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
823d2571
TG
192static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
e74cfd16 198static const arm_feature_set arm_ext_v4t_5 =
823d2571
TG
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
55e8aae7
SP
207/* Only for compatability of hint instructions. */
208static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
823d2571
TG
210static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
69c9e028 222#ifdef OBJ_ELF
e7d39ed3 223static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
69c9e028 224#endif
823d2571 225static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
7e806470 226static const arm_feature_set arm_ext_m =
173205ca 227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
16a1fa25 228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
823d2571
TG
229static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
ddfded2f 234static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
4ed7ed8d 235static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
16a1fa25
TP
236static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
e12437dc
AV
238static const arm_feature_set arm_ext_v8_1m_main =
239ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
16a1fa25
TP
240/* Instructions in ARMv8-M only found in M profile architectures. */
241static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
ff8646ee
TP
243static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
4ed7ed8d
TP
245/* Instructions shared between ARMv8-A and ARMv8-M. */
246static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
69c9e028 248#ifdef OBJ_ELF
15afaa63
TP
249/* DSP instructions Tag_DSP_extension refers to. */
250static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
69c9e028 252#endif
4d1464f2
MW
253static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
b8ec4e87
JW
255/* FP16 instructions. */
256static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
01f48020
TC
258static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
dec41383
JW
260static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
49e8a725
SN
262static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
7fadb25d
SD
264static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
dad0c3bf
SD
266static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
e74cfd16
PB
268
269static const arm_feature_set arm_arch_any = ARM_ANY;
49fa50ef 270#ifdef OBJ_ELF
2c6b98ea 271static const arm_feature_set fpu_any = FPU_ANY;
49fa50ef 272#endif
f85d59c3 273static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
e74cfd16
PB
274static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
2d447fca 277static const arm_feature_set arm_cext_iwmmxt2 =
823d2571 278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
e74cfd16 279static const arm_feature_set arm_cext_iwmmxt =
823d2571 280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
e74cfd16 281static const arm_feature_set arm_cext_xscale =
823d2571 282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
e74cfd16 283static const arm_feature_set arm_cext_maverick =
823d2571
TG
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
e74cfd16 289static const arm_feature_set fpu_vfp_ext_v1xd =
823d2571
TG
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
b1cc4aeb 299static const arm_feature_set fpu_vfp_ext_d32 =
823d2571
TG
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
5287ad62 303static const arm_feature_set fpu_vfp_v3_or_neon_ext =
823d2571 304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
a7ad558c
AV
305static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
69c9e028 309#ifdef OBJ_ELF
823d2571
TG
310static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
69c9e028 314#endif
823d2571
TG
315static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
bca38921 317static const arm_feature_set fpu_vfp_ext_armv8 =
823d2571 318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
a715796b 319static const arm_feature_set fpu_vfp_ext_armv8xd =
823d2571 320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
bca38921 321static const arm_feature_set fpu_neon_ext_armv8 =
823d2571 322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
bca38921 323static const arm_feature_set fpu_crypto_ext_armv8 =
823d2571 324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
dd5181d5 325static const arm_feature_set crc_ext_armv8 =
823d2571 326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
d6b4b13e 327static const arm_feature_set fpu_neon_ext_v8_1 =
643afb90 328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
c604a79a
JW
329static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
e74cfd16 331
33a392fb 332static int mfloat_abi_opt = -1;
4d354d8b
TP
333/* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335static arm_feature_set selected_arch = ARM_ARCH_NONE;
336/* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338static arm_feature_set selected_ext = ARM_ARCH_NONE;
339/* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
e74cfd16 342static arm_feature_set selected_cpu = ARM_ARCH_NONE;
4d354d8b
TP
343/* FPU feature bits selected by the last -mfpu or .fpu directive. */
344static arm_feature_set selected_fpu = FPU_NONE;
345/* Feature bits selected by the last .object_arch directive. */
346static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
ee065d83 347/* Must be long enough to hold any of the names in arm_cpus. */
ef8e6722 348static char selected_cpu_name[20];
8d67f500 349
aacf0b33
KT
350extern FLONUM_TYPE generic_floating_point_number;
351
8d67f500
NC
352/* Return if no cpu was selected on command-line. */
353static bfd_boolean
354no_cpu_selected (void)
355{
823d2571 356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
8d67f500
NC
357}
358
7cc69913 359#ifdef OBJ_ELF
deeaaff8
DJ
360# ifdef EABI_DEFAULT
361static int meabi_flags = EABI_DEFAULT;
362# else
d507cf36 363static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 364# endif
e1da3f5b 365
ee3c0378
AS
366static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
e1da3f5b 368bfd_boolean
5f4273c7 369arm_is_eabi (void)
e1da3f5b
PB
370{
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372}
7cc69913 373#endif
b99bd4ef 374
b99bd4ef 375#ifdef OBJ_ELF
c19d1205 376/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
377symbolS * GOT_symbol;
378#endif
379
b99bd4ef
NC
380/* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384static int thumb_mode = 0;
8dc2430f
NC
385/* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388#define MODE_RECORDED (1 << 4)
b99bd4ef 389
e07e6e58
NC
390/* Specifies the intrinsic IT insn behavior mode. */
391enum implicit_it_mode
392{
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397};
398static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
c19d1205
ZW
400/* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423static bfd_boolean unified_syntax = FALSE;
b99bd4ef 424
bacebabc
RM
425/* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
477330fc
RM
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429const char arm_symbol_chars[] = "#[]{}";
bacebabc 430
5287ad62
JB
431enum neon_el_type
432{
dcbf9037 433 NT_invtype,
5287ad62
JB
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
dcbf9037 439 NT_unsigned
5287ad62
JB
440};
441
442struct neon_type_el
443{
444 enum neon_el_type type;
445 unsigned size;
446};
447
448#define NEON_MAX_TYPE_ELS 4
449
450struct neon_type
451{
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454};
455
5ee91343 456enum pred_instruction_type
e07e6e58 457{
5ee91343
AV
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
e07e6e58
NC
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
477330fc 463 if inside, should be the last one. */
e07e6e58 464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
477330fc 465 i.e. BKPT and NOP. */
5ee91343
AV
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
35c228db 468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
5ee91343 469 a predication code. */
35c228db 470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
e07e6e58
NC
471};
472
ad6cec43
MGD
473/* The maximum number of operands we need. */
474#define ARM_IT_MAX_OPERANDS 6
e2b0ab59 475#define ARM_IT_MAX_RELOCS 3
ad6cec43 476
b99bd4ef
NC
477struct arm_it
478{
c19d1205 479 const char * error;
b99bd4ef 480 unsigned long instruction;
c19d1205
ZW
481 int size;
482 int size_req;
483 int cond;
037e8744
JB
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
5287ad62 488 struct neon_type vectype;
88714cb8
DG
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
0110f2b8
PB
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
b99bd4ef
NC
495 struct
496 {
497 bfd_reloc_code_real_type type;
c19d1205
ZW
498 expressionS exp;
499 int pc_rel;
e2b0ab59 500 } relocs[ARM_IT_MAX_RELOCS];
b99bd4ef 501
5ee91343 502 enum pred_instruction_type pred_insn_type;
e07e6e58 503
c19d1205
ZW
504 struct
505 {
506 unsigned reg;
ca3f61f7 507 signed int imm;
dcbf9037 508 struct neon_type_el vectype;
ca3f61f7
NC
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
f5f10c66
AV
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
57785aa2
AV
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
5287ad62 517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5ee91343 523 unsigned isquad : 1; /* Operand is SIMD quad register. */
037e8744 524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
1b883319 525 unsigned iszr : 1; /* Operand is ZR register. */
ca3f61f7
NC
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 533 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
534};
535
c19d1205 536static struct arm_it inst;
b99bd4ef
NC
537
538#define NUM_FLOAT_VALS 8
539
05d2d07e 540const char * fp_const[] =
b99bd4ef
NC
541{
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543};
544
b99bd4ef
NC
545LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547#define FAIL (-1)
548#define SUCCESS (0)
549
550#define SUFF_S 1
551#define SUFF_D 2
552#define SUFF_E 3
553#define SUFF_P 4
554
c19d1205
ZW
555#define CP_T_X 0x00008000
556#define CP_T_Y 0x00400000
b99bd4ef 557
c19d1205
ZW
558#define CONDS_BIT 0x00100000
559#define LOAD_BIT 0x00100000
b99bd4ef
NC
560
561#define DOUBLE_LOAD_FLAG 0x00000001
562
563struct asm_cond
564{
d3ce72d0 565 const char * template_name;
c921be7d 566 unsigned long value;
b99bd4ef
NC
567};
568
c19d1205 569#define COND_ALWAYS 0xE
b99bd4ef 570
b99bd4ef
NC
571struct asm_psr
572{
d3ce72d0 573 const char * template_name;
c921be7d 574 unsigned long field;
b99bd4ef
NC
575};
576
62b3e311
PB
577struct asm_barrier_opt
578{
e797f7e0
MGD
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
62b3e311
PB
582};
583
2d2255b5 584/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
585#define SPSR_BIT (1 << 22)
586
c19d1205
ZW
587/* The individual PSR flag bits. */
588#define PSR_c (1 << 16)
589#define PSR_x (1 << 17)
590#define PSR_s (1 << 18)
591#define PSR_f (1 << 19)
b99bd4ef 592
c19d1205 593struct reloc_entry
bfae80f2 594{
0198d5e6 595 const char * name;
c921be7d 596 bfd_reloc_code_real_type reloc;
bfae80f2
RE
597};
598
5287ad62 599enum vfp_reg_pos
bfae80f2 600{
5287ad62
JB
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
603};
604
605enum vfp_ldstm_type
606{
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608};
609
dcbf9037
JB
610/* Bits for DEFINED field in neon_typed_alias. */
611#define NTA_HASTYPE 1
612#define NTA_HASINDEX 2
613
614struct neon_typed_alias
615{
c921be7d
NC
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
dcbf9037
JB
619};
620
c19d1205 621/* ARM register categories. This includes coprocessor numbers and various
5aa75429
TP
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
c19d1205 624enum arm_reg_type
bfae80f2 625{
c19d1205
ZW
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
5287ad62 632 REG_TYPE_NQ,
037e8744 633 REG_TYPE_VFSD,
5287ad62 634 REG_TYPE_NDQ,
dec41383 635 REG_TYPE_NSD,
037e8744 636 REG_TYPE_NSDQ,
c19d1205
ZW
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
5ee91343 643 REG_TYPE_MQ,
c19d1205
ZW
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
5ee91343 649 REG_TYPE_RNB,
1b883319 650 REG_TYPE_ZR
bfae80f2
RE
651};
652
dcbf9037
JB
653/* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
657struct reg_entry
658{
c921be7d 659 const char * name;
90ec0d68 660 unsigned int number;
c921be7d
NC
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
6c43fab6
RE
664};
665
c19d1205 666/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 667const char * const reg_expected_msgs[] =
c19d1205 668{
5aa75429
TP
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
5ee91343 692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
5aa75429 693 [REG_TYPE_RNB] = N_("")
6c43fab6
RE
694};
695
c19d1205 696/* Some well known registers that we refer to directly elsewhere. */
bd340a04 697#define REG_R12 12
c19d1205
ZW
698#define REG_SP 13
699#define REG_LR 14
700#define REG_PC 15
404ff6b5 701
b99bd4ef
NC
702/* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
c19d1205 704#define INSN_SIZE 4
b99bd4ef
NC
705
706struct asm_opcode
707{
708 /* Basic string to match. */
d3ce72d0 709 const char * template_name;
c19d1205
ZW
710
711 /* Parameters to instruction. */
5be8be5d 712 unsigned int operands[8];
c19d1205
ZW
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
b99bd4ef
NC
716
717 /* Basic instruction code. */
a302e574 718 unsigned int avalue;
b99bd4ef 719
c19d1205
ZW
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
b99bd4ef 722
90e4755a 723 /* Which architecture variant provides this instruction. */
c921be7d
NC
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
c19d1205
ZW
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
b99bd4ef 729
c19d1205
ZW
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
5ee91343
AV
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
b99bd4ef
NC
735};
736
a737bd4d
NC
737/* Defines for various bits that we will want to toggle. */
738#define INST_IMMEDIATE 0x02000000
739#define OFFSET_REG 0x02000000
c19d1205 740#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
741#define SHIFT_BY_REG 0x00000010
742#define PRE_INDEX 0x01000000
743#define INDEX_UP 0x00800000
744#define WRITE_BACK 0x00200000
745#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 746#define CPSI_MMOD 0x00020000
90e4755a 747
a737bd4d
NC
748#define LITERAL_MASK 0xf000f000
749#define OPCODE_MASK 0xfe1fffff
750#define V4_STR_BIT 0x00000020
8335d6aa 751#define VLDR_VMOV_SAME 0x0040f000
90e4755a 752
efd81785
PB
753#define T2_SUBS_PC_LR 0xf3de8f00
754
a737bd4d 755#define DATA_OP_SHIFT 21
bada4342 756#define SBIT_SHIFT 20
90e4755a 757
ef8d22e6
PB
758#define T2_OPCODE_MASK 0xfe1fffff
759#define T2_DATA_OP_SHIFT 21
bada4342 760#define T2_SBIT_SHIFT 20
ef8d22e6 761
6530b175
NC
762#define A_COND_MASK 0xf0000000
763#define A_PUSH_POP_OP_MASK 0x0fff0000
764
765/* Opcodes for pushing/poping registers to/from the stack. */
766#define A1_OPCODE_PUSH 0x092d0000
767#define A2_OPCODE_PUSH 0x052d0004
768#define A2_OPCODE_POP 0x049d0004
769
a737bd4d
NC
770/* Codes to distinguish the arithmetic instructions. */
771#define OPCODE_AND 0
772#define OPCODE_EOR 1
773#define OPCODE_SUB 2
774#define OPCODE_RSB 3
775#define OPCODE_ADD 4
776#define OPCODE_ADC 5
777#define OPCODE_SBC 6
778#define OPCODE_RSC 7
779#define OPCODE_TST 8
780#define OPCODE_TEQ 9
781#define OPCODE_CMP 10
782#define OPCODE_CMN 11
783#define OPCODE_ORR 12
784#define OPCODE_MOV 13
785#define OPCODE_BIC 14
786#define OPCODE_MVN 15
90e4755a 787
ef8d22e6
PB
788#define T2_OPCODE_AND 0
789#define T2_OPCODE_BIC 1
790#define T2_OPCODE_ORR 2
791#define T2_OPCODE_ORN 3
792#define T2_OPCODE_EOR 4
793#define T2_OPCODE_ADD 8
794#define T2_OPCODE_ADC 10
795#define T2_OPCODE_SBC 11
796#define T2_OPCODE_SUB 13
797#define T2_OPCODE_RSB 14
798
a737bd4d
NC
799#define T_OPCODE_MUL 0x4340
800#define T_OPCODE_TST 0x4200
801#define T_OPCODE_CMN 0x42c0
802#define T_OPCODE_NEG 0x4240
803#define T_OPCODE_MVN 0x43c0
90e4755a 804
a737bd4d
NC
805#define T_OPCODE_ADD_R3 0x1800
806#define T_OPCODE_SUB_R3 0x1a00
807#define T_OPCODE_ADD_HI 0x4400
808#define T_OPCODE_ADD_ST 0xb000
809#define T_OPCODE_SUB_ST 0xb080
810#define T_OPCODE_ADD_SP 0xa800
811#define T_OPCODE_ADD_PC 0xa000
812#define T_OPCODE_ADD_I8 0x3000
813#define T_OPCODE_SUB_I8 0x3800
814#define T_OPCODE_ADD_I3 0x1c00
815#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 816
a737bd4d
NC
817#define T_OPCODE_ASR_R 0x4100
818#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
819#define T_OPCODE_LSR_R 0x40c0
820#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
821#define T_OPCODE_ASR_I 0x1000
822#define T_OPCODE_LSL_I 0x0000
823#define T_OPCODE_LSR_I 0x0800
b99bd4ef 824
a737bd4d
NC
825#define T_OPCODE_MOV_I8 0x2000
826#define T_OPCODE_CMP_I8 0x2800
827#define T_OPCODE_CMP_LR 0x4280
828#define T_OPCODE_MOV_HR 0x4600
829#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 830
a737bd4d
NC
831#define T_OPCODE_LDR_PC 0x4800
832#define T_OPCODE_LDR_SP 0x9800
833#define T_OPCODE_STR_SP 0x9000
834#define T_OPCODE_LDR_IW 0x6800
835#define T_OPCODE_STR_IW 0x6000
836#define T_OPCODE_LDR_IH 0x8800
837#define T_OPCODE_STR_IH 0x8000
838#define T_OPCODE_LDR_IB 0x7800
839#define T_OPCODE_STR_IB 0x7000
840#define T_OPCODE_LDR_RW 0x5800
841#define T_OPCODE_STR_RW 0x5000
842#define T_OPCODE_LDR_RH 0x5a00
843#define T_OPCODE_STR_RH 0x5200
844#define T_OPCODE_LDR_RB 0x5c00
845#define T_OPCODE_STR_RB 0x5400
c9b604bd 846
a737bd4d
NC
847#define T_OPCODE_PUSH 0xb400
848#define T_OPCODE_POP 0xbc00
b99bd4ef 849
2fc8bdac 850#define T_OPCODE_BRANCH 0xe000
b99bd4ef 851
a737bd4d 852#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 853#define THUMB_PP_PC_LR 0x0100
c19d1205 854#define THUMB_LOAD_BIT 0x0800
53365c0d 855#define THUMB2_LOAD_BIT 0x00100000
c19d1205 856
5ee91343 857#define BAD_SYNTAX _("syntax error")
c19d1205 858#define BAD_ARGS _("bad arguments to instruction")
fdfde340 859#define BAD_SP _("r13 not allowed here")
c19d1205 860#define BAD_PC _("r15 not allowed here")
a302e574
AV
861#define BAD_ODD _("Odd register not allowed here")
862#define BAD_EVEN _("Even register not allowed here")
c19d1205
ZW
863#define BAD_COND _("instruction cannot be conditional")
864#define BAD_OVERLAP _("registers may not be the same")
865#define BAD_HIREG _("lo register required")
866#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
35c228db 867#define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
dfa9f0d5 868#define BAD_BRANCH _("branch must be last instruction in IT block")
e12437dc 869#define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
dfa9f0d5 870#define BAD_NOT_IT _("instruction not allowed in IT block")
5ee91343 871#define BAD_NOT_VPT _("instruction missing MVE vector predication code")
037e8744 872#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58 873#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
5ee91343
AV
874#define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
e07e6e58 876#define BAD_IT_COND _("incorrect condition in IT block")
5ee91343 877#define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
e07e6e58 878#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 879#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
880#define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882#define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
9db2f6b4
RL
884#define BAD_RANGE _("branch out of range")
885#define BAD_FP16 _("selected processor does not support fp16 instruction")
dd5181d5 886#define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
a9f02af8 887#define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
5ee91343
AV
888#define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890#define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892#define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894#define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
a302e574 896#define BAD_SIMD_TYPE _("bad type in SIMD instruction")
886e1c73
AV
897#define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900#define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
35c228db 902#define BAD_EL_TYPE _("bad element type for instruction")
1b883319 903#define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
c19d1205 904
c921be7d
NC
905static struct hash_control * arm_ops_hsh;
906static struct hash_control * arm_cond_hsh;
5ee91343 907static struct hash_control * arm_vcond_hsh;
c921be7d
NC
908static struct hash_control * arm_shift_hsh;
909static struct hash_control * arm_psr_hsh;
910static struct hash_control * arm_v7m_psr_hsh;
911static struct hash_control * arm_reg_hsh;
912static struct hash_control * arm_reloc_hsh;
913static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 914
b99bd4ef
NC
915/* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
5f4273c7 922 <insn> */
b99bd4ef
NC
923
924symbolS * last_label_seen;
b34976b6 925static int label_is_thumb_function_name = FALSE;
e07e6e58 926
3d0c9500
NC
927/* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
a737bd4d 929
c19d1205 930#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 931typedef struct literal_pool
b99bd4ef 932{
c921be7d
NC
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
a8040cf2
NC
939#ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941#endif
c921be7d 942 struct literal_pool * next;
8335d6aa 943 unsigned int alignment;
3d0c9500 944} literal_pool;
b99bd4ef 945
3d0c9500
NC
946/* Pointer to a linked list of literal pools. */
947literal_pool * list_of_pools = NULL;
e27ec89e 948
2e6976a8
DG
949typedef enum asmfunc_states
950{
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954} asmfunc_states;
955
956static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
e07e6e58 958#ifdef OBJ_ELF
5ee91343 959# define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
e07e6e58 960#else
5ee91343 961static struct current_pred now_pred;
e07e6e58
NC
962#endif
963
964static inline int
5ee91343 965now_pred_compatible (int cond)
e07e6e58 966{
5ee91343 967 return (cond & ~1) == (now_pred.cc & ~1);
e07e6e58
NC
968}
969
970static inline int
971conditional_insn (void)
972{
973 return inst.cond != COND_ALWAYS;
974}
975
5ee91343 976static int in_pred_block (void);
e07e6e58 977
5ee91343 978static int handle_pred_state (void);
e07e6e58
NC
979
980static void force_automatic_it_block_close (void);
981
c921be7d
NC
982static void it_fsm_post_encode (void);
983
5ee91343 984#define set_pred_insn_type(type) \
e07e6e58
NC
985 do \
986 { \
5ee91343
AV
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
477330fc 989 return; \
e07e6e58
NC
990 } \
991 while (0)
992
5ee91343 993#define set_pred_insn_type_nonvoid(type, failret) \
c921be7d
NC
994 do \
995 { \
5ee91343
AV
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
477330fc 998 return failret; \
c921be7d
NC
999 } \
1000 while(0)
1001
5ee91343 1002#define set_pred_insn_type_last() \
e07e6e58
NC
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
5ee91343 1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
e07e6e58 1007 else \
5ee91343 1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
e07e6e58
NC
1009 } \
1010 while (0)
1011
c19d1205 1012/* Pure syntax. */
b99bd4ef 1013
c19d1205
ZW
1014/* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
2e6976a8 1016char arm_comment_chars[] = "@";
3d0c9500 1017
c19d1205
ZW
1018/* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021/* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024/* Also note that comments like this one will always work. */
1025const char line_comment_chars[] = "#";
3d0c9500 1026
2e6976a8 1027char arm_line_separator_chars[] = ";";
b99bd4ef 1028
c19d1205
ZW
1029/* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031const char EXP_CHARS[] = "eE";
3d0c9500 1032
c19d1205
ZW
1033/* Chars that mean this number is a floating point constant. */
1034/* As in 0f12.456 */
1035/* or 0d1.2345e12 */
b99bd4ef 1036
c19d1205 1037const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 1038
c19d1205
ZW
1039/* Prefix characters that indicate the start of an immediate
1040 value. */
1041#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 1042
c19d1205
ZW
1043/* Separator character handling. */
1044
1045#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047static inline int
1048skip_past_char (char ** str, char c)
1049{
8ab8155f
NC
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
427d0db6 1052
c19d1205
ZW
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
3d0c9500 1057 }
c19d1205
ZW
1058 else
1059 return FAIL;
1060}
c921be7d 1061
c19d1205 1062#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 1063
c19d1205
ZW
1064/* Arithmetic expressions (possibly involving symbols). */
1065
1066/* Return TRUE if anything in the expression is a bignum. */
1067
0198d5e6 1068static bfd_boolean
c19d1205
ZW
1069walk_no_bignums (symbolS * sp)
1070{
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
0198d5e6 1072 return TRUE;
c19d1205
ZW
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 1075 {
c19d1205
ZW
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
1079 }
1080
0198d5e6 1081 return FALSE;
3d0c9500
NC
1082}
1083
0198d5e6 1084static bfd_boolean in_my_get_expression = FALSE;
c19d1205
ZW
1085
1086/* Third argument to my_get_expression. */
1087#define GE_NO_PREFIX 0
1088#define GE_IMM_PREFIX 1
1089#define GE_OPT_PREFIX 2
5287ad62
JB
1090/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092#define GE_OPT_PREFIX_BIG 3
a737bd4d 1093
b99bd4ef 1094static int
c19d1205 1095my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 1096{
c19d1205 1097 char * save_in;
b99bd4ef 1098
c19d1205
ZW
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
5287ad62 1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
477330fc 1102 : GE_OPT_PREFIX;
b99bd4ef 1103
c19d1205 1104 switch (prefix_mode)
b99bd4ef 1105 {
c19d1205
ZW
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
5287ad62 1116 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
0198d5e6
TC
1120 default:
1121 abort ();
c19d1205 1122 }
b99bd4ef 1123
c19d1205 1124 memset (ep, 0, sizeof (expressionS));
b99bd4ef 1125
c19d1205
ZW
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
0198d5e6 1128 in_my_get_expression = TRUE;
2ac93be7 1129 expression (ep);
0198d5e6 1130 in_my_get_expression = FALSE;
c19d1205 1131
f86adc07 1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 1133 {
f86adc07 1134 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
f86adc07
NS
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
1140 return 1;
1141 }
b99bd4ef 1142
c19d1205
ZW
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
5287ad62
JB
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
477330fc 1148 || (ep->X_add_symbol
5287ad62 1149 && (walk_no_bignums (ep->X_add_symbol)
477330fc 1150 || (ep->X_op_symbol
5287ad62 1151 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
b99bd4ef 1158
c19d1205
ZW
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
0198d5e6 1161 return SUCCESS;
b99bd4ef
NC
1162}
1163
c19d1205
ZW
1164/* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
b99bd4ef 1168
c19d1205
ZW
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1175
c19d1205 1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1177
6d4af3c2 1178const char *
c19d1205
ZW
1179md_atof (int type, char * litP, int * sizeP)
1180{
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
b99bd4ef 1185
c19d1205
ZW
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
b99bd4ef 1194
c19d1205
ZW
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
b99bd4ef 1201
c19d1205
ZW
1202 case 'x':
1203 case 'X':
499ac353 1204 prec = 5;
c19d1205 1205 break;
b99bd4ef 1206
c19d1205
ZW
1207 case 'p':
1208 case 'P':
499ac353 1209 prec = 5;
c19d1205 1210 break;
a737bd4d 1211
c19d1205
ZW
1212 default:
1213 *sizeP = 0;
499ac353 1214 return _("Unrecognized or unsupported floating point constant");
c19d1205 1215 }
b99bd4ef 1216
c19d1205
ZW
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
499ac353 1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1221
c19d1205
ZW
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
499ac353
NC
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1228 }
1229 }
1230 else
1231 {
e74cfd16 1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1233 for (i = prec - 1; i >= 0; i--)
1234 {
499ac353
NC
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
499ac353
NC
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1248 }
1249 }
b99bd4ef 1250
499ac353 1251 return NULL;
c19d1205 1252}
b99bd4ef 1253
c19d1205
ZW
1254/* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
0198d5e6 1256
c19d1205 1257void
91d6fa6a 1258md_operand (expressionS * exp)
c19d1205
ZW
1259{
1260 if (in_my_get_expression)
91d6fa6a 1261 exp->X_op = O_illegal;
b99bd4ef
NC
1262}
1263
c19d1205 1264/* Immediate values. */
b99bd4ef 1265
0198d5e6 1266#ifdef OBJ_ELF
c19d1205
ZW
1267/* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
0198d5e6 1270
c19d1205
ZW
1271static int
1272immediate_for_directive (int *val)
b99bd4ef 1273{
c19d1205
ZW
1274 expressionS exp;
1275 exp.X_op = O_illegal;
b99bd4ef 1276
c19d1205
ZW
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
b99bd4ef 1282
c19d1205
ZW
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
b99bd4ef 1291}
c19d1205 1292#endif
b99bd4ef 1293
c19d1205 1294/* Register parsing. */
b99bd4ef 1295
c19d1205
ZW
1296/* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301static struct reg_entry *
1302arm_reg_parse_multi (char **ccp)
b99bd4ef 1303{
c19d1205
ZW
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
b99bd4ef 1307
477330fc
RM
1308 skip_whitespace (start);
1309
c19d1205
ZW
1310#ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
01cfc07f 1312 return NULL;
c19d1205
ZW
1313 start++;
1314#endif
1315#ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318#endif
b99bd4ef 1319
c19d1205
ZW
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
b99bd4ef 1323
c19d1205
ZW
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
b99bd4ef
NC
1335}
1336
1337static int
dcbf9037 1338arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
477330fc 1339 enum arm_reg_type type)
b99bd4ef 1340{
c19d1205
ZW
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
79134647 1349 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1350 return reg->number;
1351 break;
69b97547 1352
c19d1205
ZW
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1a0670f3 1360 /* Fall through. */
6057a28f 1361
c19d1205
ZW
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
79134647 1365 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1366 return reg->number;
6057a28f 1367 break;
c19d1205 1368
6057a28f 1369 default:
c19d1205 1370 break;
6057a28f
NC
1371 }
1372
dcbf9037
JB
1373 return FAIL;
1374}
1375
1376/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379static int
1380arm_reg_parse (char **ccp, enum arm_reg_type type)
1381{
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
c19d1205
ZW
1396 *ccp = start;
1397 return FAIL;
1398}
69b97547 1399
dcbf9037
JB
1400/* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414static int
1415parse_neon_type (struct neon_type *type, char **str)
1416{
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
477330fc
RM
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
dcbf9037
JB
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
477330fc
RM
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
dcbf9037
JB
1467 return FAIL;
1468 }
1469 }
1470
037e8744 1471 done:
dcbf9037 1472 if (type)
477330fc
RM
1473 {
1474 type->el[type->elems].type = thistype;
dcbf9037
JB
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487}
1488
1489/* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494static void
1495first_error (const char *err)
1496{
1497 if (!inst.error)
1498 inst.error = err;
1499}
1500
1501/* Parse a single type, e.g. ".s32", leading period included. */
1502static int
1503parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504{
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
477330fc
RM
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
dcbf9037 1520 else
477330fc
RM
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
dcbf9037
JB
1525 }
1526 else
1527 return FAIL;
5f4273c7 1528
dcbf9037 1529 *ccp = str;
5f4273c7 1530
dcbf9037
JB
1531 return SUCCESS;
1532}
1533
1534/* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537#define NEON_ALL_LANES 15
1538#define NEON_INTERLEAVE_LANES 14
1539
5ee91343
AV
1540/* Record a use of the given feature. */
1541static void
1542record_feature_use (const arm_feature_set *feature)
1543{
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548}
1549
1550/* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552static bfd_boolean
1553mark_feature_used (const arm_feature_set *feature)
1554{
886e1c73
AV
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
5ee91343
AV
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573}
1574
dcbf9037
JB
1575/* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580static int
1581parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
477330fc
RM
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
dcbf9037
JB
1584{
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
477330fc 1601 *ccp = str;
dcbf9037 1602 if (typeinfo)
477330fc 1603 *typeinfo = atype;
dcbf9037
JB
1604 return altreg;
1605 }
1606
037e8744
JB
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
477330fc 1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
037e8744 1612 || (type == REG_TYPE_NSDQ
477330fc
RM
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
dec41383
JW
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
f512f76f
NC
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1619 type = (enum arm_reg_type) reg->type;
dcbf9037 1620
5ee91343
AV
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
dcbf9037
JB
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
5f4273c7 1646
dcbf9037
JB
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
477330fc
RM
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
dcbf9037
JB
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
5f4273c7 1657
dcbf9037
JB
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
dec41383
JW
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
57785aa2
AV
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
477330fc 1665 {
57785aa2
AV
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
477330fc
RM
1670 return FAIL;
1671 }
5f4273c7 1672
dcbf9037 1673 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
dcbf9037
JB
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
477330fc 1682 atype.index = NEON_ALL_LANES;
dcbf9037 1683 else
477330fc
RM
1684 {
1685 expressionS exp;
dcbf9037 1686
477330fc 1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
dcbf9037 1688
477330fc
RM
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
dcbf9037 1694
477330fc
RM
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
dcbf9037 1697
477330fc
RM
1698 atype.index = exp.X_add_number;
1699 }
dcbf9037 1700 }
5f4273c7 1701
dcbf9037
JB
1702 if (typeinfo)
1703 *typeinfo = atype;
5f4273c7 1704
dcbf9037
JB
1705 if (rtype)
1706 *rtype = type;
5f4273c7 1707
dcbf9037 1708 *ccp = str;
5f4273c7 1709
dcbf9037
JB
1710 return reg->number;
1711}
1712
efd6b359 1713/* Like arm_reg_parse, but also allow the following extra features:
dcbf9037
JB
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1718 This function will fault on encountering a scalar. */
dcbf9037
JB
1719
1720static int
1721arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
477330fc 1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
dcbf9037
JB
1723{
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
0855e32b
NS
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
dcbf9037
JB
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748}
1749
1750#define NEON_SCALAR_REG(X) ((X) >> 4)
1751#define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
5287ad62
JB
1753/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757static int
57785aa2
AV
1758parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
5287ad62 1760{
dcbf9037 1761 int reg;
5287ad62 1762 char *str = *ccp;
dcbf9037 1763 struct neon_typed_alias atype;
57785aa2 1764 unsigned reg_size;
5f4273c7 1765
dec41383 1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
5f4273c7 1767
57785aa2
AV
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
dcbf9037 1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1785 return FAIL;
5f4273c7 1786
57785aa2 1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
5287ad62 1788 {
dcbf9037 1789 first_error (_("scalar must have an index"));
5287ad62
JB
1790 return FAIL;
1791 }
57785aa2 1792 else if (atype.index >= reg_size / elsize)
5287ad62 1793 {
dcbf9037 1794 first_error (_("scalar index out of range"));
5287ad62
JB
1795 return FAIL;
1796 }
5f4273c7 1797
dcbf9037
JB
1798 if (type)
1799 *type = atype.eltype;
5f4273c7 1800
5287ad62 1801 *ccp = str;
5f4273c7 1802
dcbf9037 1803 return reg * 16 + atype.index;
5287ad62
JB
1804}
1805
4b5a202f
AV
1806/* Types of registers in a list. */
1807
1808enum reg_list_els
1809{
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
efd6b359 1813 REGLIST_VFP_S_VPR,
4b5a202f 1814 REGLIST_VFP_D,
efd6b359 1815 REGLIST_VFP_D_VPR,
4b5a202f
AV
1816 REGLIST_NEON_D
1817};
1818
c19d1205 1819/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1820
c19d1205 1821static long
4b5a202f 1822parse_reg_list (char ** strp, enum reg_list_els etype)
c19d1205 1823{
4b5a202f
AV
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
a737bd4d 1829
c19d1205
ZW
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
6057a28f 1832 {
477330fc
RM
1833 skip_whitespace (str);
1834
c19d1205 1835 another_range = 0;
a737bd4d 1836
c19d1205
ZW
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
a737bd4d 1841
c19d1205
ZW
1842 str++;
1843 do
1844 {
1845 int reg;
4b5a202f
AV
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
6057a28f 1848
4b5a202f
AV
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
c19d1205 1851 {
4b5a202f
AV
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
c19d1205 1875 }
a737bd4d 1876
c19d1205
ZW
1877 if (in_range)
1878 {
1879 int i;
a737bd4d 1880
c19d1205
ZW
1881 if (reg <= cur_reg)
1882 {
dcbf9037 1883 first_error (_("bad range in register list"));
c19d1205
ZW
1884 return FAIL;
1885 }
40a18ebd 1886
c19d1205
ZW
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
a737bd4d 1898
c19d1205
ZW
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1904
c19d1205
ZW
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
a737bd4d 1911
d996d970 1912 if (skip_past_char (&str, '}') == FAIL)
c19d1205 1913 {
dcbf9037 1914 first_error (_("missing `}'"));
c19d1205
ZW
1915 return FAIL;
1916 }
1917 }
4b5a202f 1918 else if (etype == REGLIST_RN)
c19d1205 1919 {
91d6fa6a 1920 expressionS exp;
40a18ebd 1921
91d6fa6a 1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1923 return FAIL;
40a18ebd 1924
91d6fa6a 1925 if (exp.X_op == O_constant)
c19d1205 1926 {
91d6fa6a
NC
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
a737bd4d 1933
91d6fa6a 1934 if ((range & exp.X_add_number) != 0)
c19d1205 1935 {
91d6fa6a 1936 int regno = range & exp.X_add_number;
a737bd4d 1937
c19d1205
ZW
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
a737bd4d 1944
91d6fa6a 1945 range |= exp.X_add_number;
c19d1205
ZW
1946 }
1947 else
1948 {
e2b0ab59 1949 if (inst.relocs[0].type != 0)
c19d1205
ZW
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
a737bd4d 1954
e2b0ab59
AV
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
c19d1205
ZW
1958 }
1959 }
a737bd4d 1960
c19d1205
ZW
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
a737bd4d 1966 }
c19d1205 1967 while (another_range);
a737bd4d 1968
c19d1205
ZW
1969 *strp = str;
1970 return range;
a737bd4d
NC
1971}
1972
c19d1205
ZW
1973/* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
477330fc
RM
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
dcbf9037
JB
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
6057a28f 1987
c19d1205 1988static int
efd6b359
AV
1989parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
6057a28f 1991{
037e8744 1992 char *str = *ccp;
c19d1205
ZW
1993 int base_reg;
1994 int new_base;
21d799b5 1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1996 int max_regs = 0;
c19d1205
ZW
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
a737bd4d 2000 int i;
efd6b359
AV
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
6057a28f 2004
477330fc 2005 if (skip_past_char (&str, '{') == FAIL)
5287ad62
JB
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
6057a28f 2010
5287ad62 2011 switch (etype)
c19d1205 2012 {
5287ad62 2013 case REGLIST_VFP_S:
efd6b359 2014 case REGLIST_VFP_S_VPR:
c19d1205
ZW
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
5287ad62 2017 break;
5f4273c7 2018
5287ad62 2019 case REGLIST_VFP_D:
efd6b359 2020 case REGLIST_VFP_D_VPR:
5287ad62 2021 regtype = REG_TYPE_VFD;
b7fc2769 2022 break;
5f4273c7 2023
b7fc2769
JB
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
4b5a202f
AV
2027
2028 default:
2029 gas_assert (0);
b7fc2769
JB
2030 }
2031
efd6b359 2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
b7fc2769 2033 {
b1cc4aeb
PB
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
5287ad62 2045 else
477330fc 2046 max_regs = 16;
c19d1205 2047 }
6057a28f 2048
c19d1205 2049 base_reg = max_regs;
efd6b359 2050 *partial_match = FALSE;
a737bd4d 2051
c19d1205
ZW
2052 do
2053 {
5287ad62 2054 int setmask = 1, addregs = 1;
efd6b359
AV
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
dcbf9037 2057
037e8744 2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 2059
efd6b359
AV
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
a737bd4d 2089 {
dcbf9037 2090 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
2091 return FAIL;
2092 }
5f4273c7 2093
efd6b359
AV
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
b7fc2769 2098 if (new_base >= max_regs)
477330fc
RM
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
5f4273c7 2103
5287ad62
JB
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
477330fc
RM
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
5287ad62 2110
c19d1205
ZW
2111 if (new_base < base_reg)
2112 base_reg = new_base;
a737bd4d 2113
5287ad62 2114 if (mask & (setmask << new_base))
c19d1205 2115 {
dcbf9037 2116 first_error (_("invalid register list"));
c19d1205 2117 return FAIL;
a737bd4d 2118 }
a737bd4d 2119
efd6b359 2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
c19d1205
ZW
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
0bbf2aa4 2125
5287ad62
JB
2126 mask |= setmask << new_base;
2127 count += addregs;
0bbf2aa4 2128
037e8744 2129 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
2130 {
2131 int high_range;
0bbf2aa4 2132
037e8744 2133 str++;
0bbf2aa4 2134
037e8744 2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
477330fc 2136 == FAIL)
c19d1205
ZW
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
0bbf2aa4 2141
477330fc
RM
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
b7fc2769 2147
477330fc
RM
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
5287ad62 2150
c19d1205
ZW
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
0bbf2aa4 2156
5287ad62 2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 2158 {
5287ad62 2159 if (mask & (setmask << new_base))
0bbf2aa4 2160 {
c19d1205
ZW
2161 inst.error = _("invalid register list");
2162 return FAIL;
0bbf2aa4 2163 }
c19d1205 2164
5287ad62
JB
2165 mask |= setmask << new_base;
2166 count += addregs;
0bbf2aa4 2167 }
0bbf2aa4 2168 }
0bbf2aa4 2169 }
037e8744 2170 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 2171
037e8744 2172 str++;
0bbf2aa4 2173
c19d1205 2174 /* Sanity check -- should have raised a parse error above. */
efd6b359 2175 if ((!vpr_seen && count == 0) || count > max_regs)
c19d1205
ZW
2176 abort ();
2177
2178 *pbase = base_reg;
2179
efd6b359
AV
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
c19d1205
ZW
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
037e8744
JB
2197 *ccp = str;
2198
c19d1205 2199 return count;
b99bd4ef
NC
2200}
2201
dcbf9037
JB
2202/* True if two alias types are the same. */
2203
c921be7d 2204static bfd_boolean
dcbf9037
JB
2205neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206{
2207 if (!a && !b)
c921be7d 2208 return TRUE;
5f4273c7 2209
dcbf9037 2210 if (!a || !b)
c921be7d 2211 return FALSE;
dcbf9037
JB
2212
2213 if (a->defined != b->defined)
c921be7d 2214 return FALSE;
5f4273c7 2215
dcbf9037
JB
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
477330fc 2218 || a->eltype.size != b->eltype.size))
c921be7d 2219 return FALSE;
dcbf9037
JB
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
c921be7d 2223 return FALSE;
5f4273c7 2224
c921be7d 2225 return TRUE;
dcbf9037
JB
2226}
2227
5287ad62
JB
2228/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
dcbf9037 2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 2235
5287ad62 2236#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 2237#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
2238#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240static int
dcbf9037 2241parse_neon_el_struct_list (char **str, unsigned *pbase,
35c228db 2242 int mve,
477330fc 2243 struct neon_type_el *eltype)
5287ad62
JB
2244{
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
35c228db
AV
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
20203fb9 2254 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 2255 struct neon_typed_alias firsttype;
f85d59c3
KT
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
5f4273c7 2260
5287ad62
JB
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
5f4273c7 2263
5287ad62
JB
2264 do
2265 {
dcbf9037 2266 struct neon_typed_alias atype;
35c228db
AV
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
dcbf9037
JB
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
5287ad62 2271 if (getreg == FAIL)
477330fc
RM
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
5f4273c7 2276
5287ad62 2277 if (base_reg == -1)
477330fc
RM
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
5287ad62 2286 else if (reg_incr == -1)
477330fc
RM
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
5287ad62 2295 else if (getreg != base_reg + reg_incr * count)
477330fc
RM
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
dcbf9037 2300
c921be7d 2301 if (! neon_alias_types_same (&atype, &firsttype))
477330fc
RM
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
5f4273c7 2306
5287ad62 2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
477330fc 2308 modes. */
5287ad62 2309 if (ptr[0] == '-')
477330fc
RM
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
5f4273c7 2342
5287ad62
JB
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
477330fc
RM
2345 {
2346 count += 2;
2347 continue;
2348 }
5f4273c7 2349
dcbf9037 2350 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
5287ad62 2360 else if (lane == -1)
477330fc 2361 lane = NEON_INTERLEAVE_LANES;
5287ad62 2362 else if (lane != NEON_INTERLEAVE_LANES)
477330fc
RM
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
5287ad62
JB
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2370
5287ad62
JB
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2374
5287ad62 2375 /* Sanity check. */
35c228db 2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
5287ad62
JB
2377 || (count > 1 && reg_incr == -1))
2378 {
dcbf9037 2379 first_error (_("error parsing element/structure list"));
5287ad62
JB
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
dcbf9037 2385 first_error (_("expected }"));
5287ad62
JB
2386 return FAIL;
2387 }
5f4273c7 2388
5287ad62
JB
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
dcbf9037
JB
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
5287ad62
JB
2395 *pbase = base_reg;
2396 *str = ptr;
5f4273c7 2397
5287ad62
JB
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399}
2400
c19d1205
ZW
2401/* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2406
c19d1205
ZW
2407static int
2408parse_reloc (char **str)
b99bd4ef 2409{
c19d1205
ZW
2410 struct reloc_entry *r;
2411 char *p, *q;
b99bd4ef 2412
c19d1205
ZW
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
b99bd4ef 2415
c19d1205
ZW
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
21d799b5
NC
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
b99bd4ef
NC
2430}
2431
c19d1205
ZW
2432/* Directives: register aliases. */
2433
dcbf9037 2434static struct reg_entry *
90ec0d68 2435insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2436{
d3ce72d0 2437 struct reg_entry *new_reg;
c19d1205 2438 const char *name;
b99bd4ef 2439
d3ce72d0 2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2441 {
d3ce72d0 2442 if (new_reg->builtin)
c19d1205 2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2444
c19d1205
ZW
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
d3ce72d0 2447 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2449
d929913e 2450 return NULL;
c19d1205 2451 }
b99bd4ef 2452
c19d1205 2453 name = xstrdup (str);
325801bd 2454 new_reg = XNEW (struct reg_entry);
b99bd4ef 2455
d3ce72d0
NC
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
b99bd4ef 2461
d3ce72d0 2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2463 abort ();
5f4273c7 2464
d3ce72d0 2465 return new_reg;
dcbf9037
JB
2466}
2467
2468static void
2469insert_neon_reg_alias (char *str, int number, int type,
477330fc 2470 struct neon_typed_alias *atype)
dcbf9037
JB
2471{
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2473
dcbf9037
JB
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
5f4273c7 2479
dcbf9037
JB
2480 if (atype)
2481 {
325801bd 2482 reg->neon = XNEW (struct neon_typed_alias);
dcbf9037
JB
2483 *reg->neon = *atype;
2484 }
c19d1205 2485}
b99bd4ef 2486
c19d1205 2487/* Look for the .req directive. This is of the form:
b99bd4ef 2488
c19d1205 2489 new_register_name .req existing_register_name
b99bd4ef 2490
c19d1205 2491 If we find one, or if it looks sufficiently like one that we want to
d929913e 2492 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2493
d929913e 2494static bfd_boolean
c19d1205
ZW
2495create_register_alias (char * newname, char *p)
2496{
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
b99bd4ef 2500
c19d1205
ZW
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2505 return FALSE;
b99bd4ef 2506
c19d1205
ZW
2507 oldname += 6;
2508 if (*oldname == '\0')
d929913e 2509 return FALSE;
b99bd4ef 2510
21d799b5 2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2512 if (!old)
b99bd4ef 2513 {
c19d1205 2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2515 return TRUE;
b99bd4ef
NC
2516 }
2517
c19d1205
ZW
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521#ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523#else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526#endif
b99bd4ef 2527
29a2809e 2528 nbuf = xmemdup0 (newname, nlen);
b99bd4ef 2529
c19d1205
ZW
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
d929913e
NC
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
c19d1205 2537
d929913e
NC
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2547 the artificial FOO alias because it has already been created by the
d929913e
NC
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
d929913e 2554 }
c19d1205 2555
d929913e
NC
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
c19d1205 2558
d929913e
NC
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
c19d1205 2562
e1fa0163 2563 free (nbuf);
d929913e 2564 return TRUE;
b99bd4ef
NC
2565}
2566
dcbf9037
JB
2567/* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
5f4273c7 2575 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2576
c921be7d 2577static bfd_boolean
dcbf9037
JB
2578create_neon_reg_alias (char *newname, char *p)
2579{
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
12d6b0b7 2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2586 int namelen;
5f4273c7 2587
dcbf9037
JB
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
5f4273c7 2592
dcbf9037 2593 nameend = p;
5f4273c7 2594
dcbf9037
JB
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
c921be7d 2600 return FALSE;
5f4273c7 2601
dcbf9037 2602 p += 5;
5f4273c7 2603
dcbf9037 2604 if (*p == '\0')
c921be7d 2605 return FALSE;
5f4273c7 2606
dcbf9037
JB
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
c921be7d 2612 return FALSE;
dcbf9037
JB
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
477330fc
RM
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
dcbf9037
JB
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
477330fc 2627 : exp.X_add_number;
dcbf9037
JB
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
477330fc
RM
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
5f4273c7 2642
dcbf9037
JB
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
477330fc
RM
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
dcbf9037
JB
2649 typeinfo.eltype = ntype.el[0];
2650 }
5f4273c7 2651
dcbf9037
JB
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
5f4273c7 2656
dcbf9037 2657 if (typeinfo.defined & NTA_HASINDEX)
477330fc
RM
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
5f4273c7 2662
dcbf9037 2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2664
dcbf9037 2665 if (exp.X_op != O_constant)
477330fc
RM
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
5f4273c7 2670
dcbf9037
JB
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
5f4273c7 2673
dcbf9037 2674 if (skip_past_char (&p, ']') == FAIL)
477330fc
RM
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
dcbf9037
JB
2679 }
2680
15735687
NS
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684#ifdef TC_CASE_SENSITIVE
dcbf9037 2685 namelen = nameend - newname;
15735687
NS
2686#else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689#endif
2690
29a2809e 2691 namebuf = xmemdup0 (newname, namelen);
5f4273c7 2692
dcbf9037 2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2694 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2695
dcbf9037
JB
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
5f4273c7 2699
dcbf9037
JB
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2702 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2703
dcbf9037
JB
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
5f4273c7 2707
dcbf9037
JB
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2710 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2711
e1fa0163 2712 free (namebuf);
c921be7d 2713 return TRUE;
dcbf9037
JB
2714}
2715
c19d1205
ZW
2716/* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
c921be7d 2718
b99bd4ef 2719static void
c19d1205 2720s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2721{
c19d1205
ZW
2722 as_bad (_("invalid syntax for .req directive"));
2723}
b99bd4ef 2724
dcbf9037
JB
2725static void
2726s_dn (int a ATTRIBUTE_UNUSED)
2727{
2728 as_bad (_("invalid syntax for .dn directive"));
2729}
2730
2731static void
2732s_qn (int a ATTRIBUTE_UNUSED)
2733{
2734 as_bad (_("invalid syntax for .qn directive"));
2735}
2736
c19d1205
ZW
2737/* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
b99bd4ef 2739
c19d1205
ZW
2740 my_alias .req r11
2741 .unreq my_alias */
b99bd4ef
NC
2742
2743static void
c19d1205 2744s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2745{
c19d1205
ZW
2746 char * name;
2747 char saved_char;
b99bd4ef 2748
c19d1205
ZW
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
21d799b5 2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
477330fc 2764 name);
c19d1205
ZW
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
a1727c1a 2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2770 name);
2771 else
2772 {
d929913e
NC
2773 char * p;
2774 char * nbuf;
2775
db0bc284 2776 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2777 free ((char *) reg->name);
477330fc
RM
2778 if (reg->neon)
2779 free (reg->neon);
c19d1205 2780 free (reg);
d929913e
NC
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
5f4273c7 2785
d929913e
NC
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
21d799b5 2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2790 if (reg)
2791 {
db0bc284 2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
21d799b5 2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2802 if (reg)
2803 {
db0bc284 2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
c19d1205
ZW
2812 }
2813 }
b99bd4ef 2814
c19d1205 2815 *input_line_pointer = saved_char;
b99bd4ef
NC
2816 demand_empty_rest_of_line ();
2817}
2818
c19d1205
ZW
2819/* Directives: Instruction set selection. */
2820
2821#ifdef OBJ_ELF
2822/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
cd000bff
DJ
2827/* Create a new mapping symbol for the transition to STATE. */
2828
2829static void
2830make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2831{
a737bd4d 2832 symbolS * symbolP;
c19d1205
ZW
2833 const char * symname;
2834 int type;
b99bd4ef 2835
c19d1205 2836 switch (state)
b99bd4ef 2837 {
c19d1205
ZW
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
c19d1205
ZW
2850 default:
2851 abort ();
2852 }
2853
cd000bff 2854 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
cd000bff
DJ
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2de7820f
JZ
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2885 if (value == 0)
2886 {
2de7820f
JZ
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
cd000bff
DJ
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
cd000bff
DJ
2900 frag->tc_frag_data.last_map = symbolP;
2901}
2902
2903/* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907static void
2908insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910{
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2924 }
cd000bff
DJ
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928}
2929
2930static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932/* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
4e9aaefb 2935#define TRANSITION(from, to) (mapstate == (from) && state == (to))
cd000bff
DJ
2936void
2937mapping_state (enum mstate state)
2938{
940b5ce0
DJ
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
cd000bff
DJ
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
49c62a33
NC
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
33eaf5de 2956 PC- relative forms. However, these cases will involve implicit
49c62a33
NC
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
4e9aaefb 2963 /* This case will be evaluated later. */
cd000bff 2964 return;
cd000bff
DJ
2965
2966 mapping_state_2 (state, 0);
cd000bff
DJ
2967}
2968
2969/* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972static void
2973mapping_state_2 (enum mstate state, int max_chars)
2974{
940b5ce0
DJ
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
cd000bff
DJ
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
4e9aaefb
SA
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
cd000bff
DJ
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205 2997}
4e9aaefb 2998#undef TRANSITION
c19d1205 2999#else
d3106081
NS
3000#define mapping_state(x) ((void)0)
3001#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
3002#endif
3003
3004/* Find the real, Thumb encoded start of a Thumb function. */
3005
4343666d 3006#ifdef OBJ_COFF
c19d1205
ZW
3007static symbolS *
3008find_real_start (symbolS * symbolP)
3009{
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015#define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
37f6032b
ZW
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
3026 return symbolP;
3027
e1fa0163 3028 real_start = concat (STUB_NAME, name, NULL);
c19d1205 3029 new_target = symbol_find (real_start);
e1fa0163 3030 free (real_start);
c19d1205
ZW
3031
3032 if (new_target == NULL)
3033 {
bd3ba5d1 3034 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
3035 new_target = symbolP;
3036 }
3037
c19d1205
ZW
3038 return new_target;
3039}
4343666d 3040#endif
c19d1205
ZW
3041
3042static void
3043opcode_select (int width)
3044{
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
e74cfd16 3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
c19d1205
ZW
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
e74cfd16 3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
c19d1205
ZW
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078}
3079
3080static void
3081s_arm (int ignore ATTRIBUTE_UNUSED)
3082{
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085}
3086
3087static void
3088s_thumb (int ignore ATTRIBUTE_UNUSED)
3089{
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092}
3093
3094static void
3095s_code (int unused ATTRIBUTE_UNUSED)
3096{
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110}
3111
3112static void
3113s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114{
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127}
3128
3129static void
3130s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131{
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137}
3138
3139/* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142static void
3143s_thumb_set (int equiv)
3144{
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
d02603dc 3156 delim = get_symbol_name (& name);
c19d1205 3157 end_name = input_line_pointer;
d02603dc 3158 (void) restore_line_pointer (delim);
c19d1205
ZW
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181#ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
c19d1205 3184 for this symbol. */
b99bd4ef
NC
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
21d799b5 3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197#endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200#ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203#endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
c19d1205 3219 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223#if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225#endif
3226}
3227
c19d1205 3228/* Directives: Mode selection. */
b99bd4ef 3229
c19d1205
ZW
3230/* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 3233static void
c19d1205 3234s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 3235{
c19d1205
ZW
3236 char *name, delim;
3237
d02603dc 3238 delim = get_symbol_name (& name);
c19d1205
ZW
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
d02603dc 3249 (void) restore_line_pointer (delim);
b99bd4ef
NC
3250 demand_empty_rest_of_line ();
3251}
3252
c19d1205
ZW
3253/* Directives: sectioning and alignment. */
3254
c19d1205
ZW
3255static void
3256s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 3257{
c19d1205
ZW
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
cd000bff
DJ
3262
3263#ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265#endif
c19d1205 3266}
b99bd4ef 3267
c19d1205
ZW
3268static void
3269s_even (int ignore ATTRIBUTE_UNUSED)
3270{
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
b99bd4ef 3274
c19d1205 3275 record_alignment (now_seg, 1);
b99bd4ef 3276
c19d1205 3277 demand_empty_rest_of_line ();
b99bd4ef
NC
3278}
3279
2e6976a8
DG
3280/* Directives: CodeComposer Studio. */
3281
3282/* .ref (for CodeComposer Studio syntax only). */
3283static void
3284s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285{
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290}
3291
3292/* If name is not NULL, then it is used for marking the beginning of a
2b0f3761 3293 function, whereas if it is NULL then it means the function end. */
2e6976a8
DG
3294static void
3295asmfunc_debug (const char * name)
3296{
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316}
3317
3318static void
3319s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320{
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341}
3342
3343static void
3344s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345{
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367}
3368
3369static void
3370s_ccs_def (int name)
3371{
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376}
3377
c19d1205 3378/* Directives: Literal pools. */
a737bd4d 3379
c19d1205
ZW
3380static literal_pool *
3381find_literal_pool (void)
a737bd4d 3382{
c19d1205 3383 literal_pool * pool;
a737bd4d 3384
c19d1205 3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3386 {
c19d1205
ZW
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
a737bd4d
NC
3390 }
3391
c19d1205 3392 return pool;
a737bd4d
NC
3393}
3394
c19d1205
ZW
3395static literal_pool *
3396find_or_make_literal_pool (void)
a737bd4d 3397{
c19d1205
ZW
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
a737bd4d 3401
c19d1205 3402 pool = find_literal_pool ();
a737bd4d 3403
c19d1205 3404 if (pool == NULL)
a737bd4d 3405 {
c19d1205 3406 /* Create a new pool. */
325801bd 3407 pool = XNEW (literal_pool);
c19d1205
ZW
3408 if (! pool)
3409 return NULL;
a737bd4d 3410
c19d1205
ZW
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
8335d6aa 3416 pool->alignment = 2;
c19d1205
ZW
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
a737bd4d 3420 }
a737bd4d 3421
c19d1205
ZW
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
a737bd4d 3424 {
c19d1205
ZW
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
a737bd4d
NC
3428 }
3429
c19d1205
ZW
3430 /* Done. */
3431 return pool;
a737bd4d
NC
3432}
3433
c19d1205 3434/* Add the literal in the global 'inst'
5f4273c7 3435 structure to the relevant literal pool. */
b99bd4ef
NC
3436
3437static int
8335d6aa 3438add_to_lit_pool (unsigned int nbytes)
b99bd4ef 3439{
8335d6aa
JW
3440#define PADDING_SLOT 0x1
3441#define LIT_ENTRY_SIZE_MASK 0xFF
c19d1205 3442 literal_pool * pool;
8335d6aa
JW
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
e56c722b 3445 unsigned imm1 = 0;
8335d6aa
JW
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
e2b0ab59 3452 : inst.relocs[0].exp.X_unsigned ? 0
2569ceb0 3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
8335d6aa
JW
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
b99bd4ef 3460
c19d1205
ZW
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3465 {
8335d6aa
JW
3466 if (nbytes == 4)
3467 {
e2b0ab59
AV
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
8335d6aa 3470 && (pool->literals[entry].X_add_number
e2b0ab59 3471 == inst.relocs[0].exp.X_add_number)
8335d6aa
JW
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
e2b0ab59 3474 == inst.relocs[0].exp.X_unsigned))
8335d6aa
JW
3475 break;
3476
e2b0ab59
AV
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
8335d6aa 3479 && (pool->literals[entry].X_add_number
e2b0ab59 3480 == inst.relocs[0].exp.X_add_number)
8335d6aa 3481 && (pool->literals[entry].X_add_symbol
e2b0ab59 3482 == inst.relocs[0].exp.X_add_symbol)
8335d6aa 3483 && (pool->literals[entry].X_op_symbol
e2b0ab59 3484 == inst.relocs[0].exp.X_op_symbol)
8335d6aa
JW
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
19f2f6a9 3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
8335d6aa 3493 && (pool->literals[entry].X_unsigned
e2b0ab59 3494 == inst.relocs[0].exp.X_unsigned)
8335d6aa 3495 && (pool->literals[entry + 1].X_op == O_constant)
19f2f6a9 3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
8335d6aa 3497 && (pool->literals[entry + 1].X_unsigned
e2b0ab59 3498 == inst.relocs[0].exp.X_unsigned))
c19d1205
ZW
3499 break;
3500
8335d6aa
JW
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
c19d1205 3503 break;
8335d6aa
JW
3504
3505 pool_size += 4;
b99bd4ef
NC
3506 }
3507
c19d1205
ZW
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
8335d6aa
JW
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
e2b0ab59
AV
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
8335d6aa
JW
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
e2b0ab59 3544 pool->literals[entry] = inst.relocs[0].exp;
a6684f0d 3545 pool->literals[entry].X_op = O_constant;
8335d6aa
JW
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
e2b0ab59 3557 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
e2b0ab59 3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa 3561 pool->literals[entry++].X_md = 4;
e2b0ab59 3562 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
e2b0ab59 3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa
JW
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
e2b0ab59 3572 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3573 pool->literals[entry].X_md = 4;
3574 }
3575
a8040cf2
NC
3576#ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583#endif
c19d1205
ZW
3584 pool->next_free_entry += 1;
3585 }
8335d6aa
JW
3586 else if (padding_slot_p)
3587 {
e2b0ab59 3588 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3589 pool->literals[entry].X_md = nbytes;
3590 }
b99bd4ef 3591
e2b0ab59
AV
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
b99bd4ef 3595
c19d1205 3596 return SUCCESS;
b99bd4ef
NC
3597}
3598
2e6976a8 3599bfd_boolean
2e57ce7b 3600tc_start_label_without_colon (void)
2e6976a8
DG
3601{
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
2e57ce7b 3606 const char *label = input_line_pointer;
2e6976a8
DG
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623}
3624
c19d1205 3625/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 3626 a later date assign it a value. That's what these functions do. */
e16bb312 3627
c19d1205
ZW
3628static void
3629symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634{
e57e6ddc 3635 size_t name_length;
c19d1205 3636 char * preserved_copy_of_name;
e16bb312 3637
c19d1205
ZW
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
21d799b5 3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3641
c19d1205
ZW
3642#ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645#endif
b99bd4ef 3646
c19d1205 3647 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3648
c19d1205
ZW
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
b99bd4ef 3652
c19d1205 3653 symbol_set_frag (symbolP, frag);
b99bd4ef 3654
c19d1205
ZW
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
b99bd4ef 3658
c19d1205
ZW
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
b99bd4ef 3662
c19d1205 3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3664
c19d1205 3665 obj_symbol_new_hook (symbolP);
b99bd4ef 3666
c19d1205
ZW
3667#ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669#endif
3670
3671#ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673#endif /* DEBUG_SYMS */
b99bd4ef
NC
3674}
3675
c19d1205
ZW
3676static void
3677s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3678{
c19d1205
ZW
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
b99bd4ef 3682
c19d1205
ZW
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
b99bd4ef 3688
c19d1205
ZW
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
8335d6aa 3692 frag_align (pool->alignment, 0, 0);
b99bd4ef 3693
c19d1205 3694 record_alignment (now_seg, 2);
b99bd4ef 3695
aaca88ef 3696#ifdef OBJ_ELF
47fc6e36
WN
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
aaca88ef 3699#endif
c19d1205 3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3701
c19d1205
ZW
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
b99bd4ef 3705
c19d1205 3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3707
c19d1205
ZW
3708#if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710#endif
6c43fab6 3711
c19d1205 3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3713 {
3714#ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717#endif
3718 /* First output the expression in the instruction to the pool. */
8335d6aa
JW
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
a8040cf2 3721 }
b99bd4ef 3722
c19d1205
ZW
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
b99bd4ef
NC
3726}
3727
c19d1205
ZW
3728#ifdef OBJ_ELF
3729/* Forward declarations for functions below, in the MD interface
3730 section. */
3731static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732static valueT create_unwind_entry (int);
3733static void start_unwind_section (const segT, int);
3734static void add_unwind_opcode (valueT, int);
3735static void flush_pending_unwind (void);
b99bd4ef 3736
c19d1205 3737/* Directives: Data. */
b99bd4ef 3738
c19d1205
ZW
3739static void
3740s_arm_elf_cons (int nbytes)
3741{
3742 expressionS exp;
b99bd4ef 3743
c19d1205
ZW
3744#ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746#endif
b99bd4ef 3747
c19d1205 3748 if (is_it_end_of_statement ())
b99bd4ef 3749 {
c19d1205
ZW
3750 demand_empty_rest_of_line ();
3751 return;
b99bd4ef
NC
3752 }
3753
c19d1205
ZW
3754#ifdef md_cons_align
3755 md_cons_align (nbytes);
3756#endif
b99bd4ef 3757
c19d1205
ZW
3758 mapping_state (MAP_DATA);
3759 do
b99bd4ef 3760 {
c19d1205
ZW
3761 int reloc;
3762 char *base = input_line_pointer;
b99bd4ef 3763
c19d1205 3764 expression (& exp);
b99bd4ef 3765
c19d1205
ZW
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
21d799b5 3782 reloc_howto_type *howto = (reloc_howto_type *)
477330fc
RM
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
c19d1205 3785 int size = bfd_get_reloc_size (howto);
b99bd4ef 3786
2fc8bdac
ZW
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
c19d1205 3794 if (size > nbytes)
992a06ee
AM
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
c19d1205
ZW
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
325801bd 3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
e1fa0163 3808
c19d1205
ZW
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
4b1a927e
AM
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
c19d1205 3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
e1fa0163 3822 free (save_buf);
c19d1205
ZW
3823 }
3824 }
3825 }
b99bd4ef 3826 }
c19d1205 3827 while (*input_line_pointer++ == ',');
b99bd4ef 3828
c19d1205
ZW
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
b99bd4ef
NC
3832}
3833
c921be7d
NC
3834/* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837static void
3838emit_thumb32_expr (expressionS * exp)
3839{
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846}
3847
3848/* Guess the instruction size based on the opcode. */
3849
3850static int
3851thumb_insn_size (int opcode)
3852{
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859}
3860
3861static bfd_boolean
3862emit_insn (expressionS *exp, int nbytes)
3863{
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
5ee91343
AV
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
c921be7d 3885 else
5ee91343 3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
c921be7d
NC
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904}
3905
3906/* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909static void
3910s_arm_elf_inst (int nbytes)
3911{
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954}
b99bd4ef 3955
c19d1205 3956/* Parse a .rel31 directive. */
b99bd4ef 3957
c19d1205
ZW
3958static void
3959s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960{
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
b99bd4ef 3964
c19d1205
ZW
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
b99bd4ef 3970
c19d1205
ZW
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
b99bd4ef 3975
c19d1205
ZW
3976#ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978#endif
b99bd4ef 3979
c19d1205
ZW
3980#ifdef md_cons_align
3981 md_cons_align (4);
3982#endif
b99bd4ef 3983
c19d1205 3984 mapping_state (MAP_DATA);
b99bd4ef 3985
c19d1205 3986 expression (&exp);
b99bd4ef 3987
c19d1205
ZW
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
b99bd4ef 3992
c19d1205 3993 demand_empty_rest_of_line ();
b99bd4ef
NC
3994}
3995
c19d1205 3996/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3997
c19d1205 3998/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3999
c19d1205
ZW
4000static void
4001s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002{
4003 demand_empty_rest_of_line ();
921e5f0a
PB
4004 if (unwind.proc_start)
4005 {
c921be7d 4006 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
4007 return;
4008 }
4009
c19d1205
ZW
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
b99bd4ef 4012
c19d1205
ZW
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
fdfde340 4020 unwind.fp_reg = REG_SP;
c19d1205
ZW
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023}
b99bd4ef 4024
b99bd4ef 4025
c19d1205
ZW
4026/* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
b99bd4ef 4028
c19d1205
ZW
4029static void
4030s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031{
4032 demand_empty_rest_of_line ();
921e5f0a 4033 if (!unwind.proc_start)
c921be7d 4034 as_bad (MISSING_FNSTART);
921e5f0a 4035
c19d1205 4036 if (unwind.table_entry)
6decc662 4037 as_bad (_("duplicate .handlerdata directive"));
f02232aa 4038
c19d1205
ZW
4039 create_unwind_entry (1);
4040}
a737bd4d 4041
c19d1205 4042/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 4043
c19d1205
ZW
4044static void
4045s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046{
4047 long where;
4048 char *ptr;
4049 valueT val;
940b5ce0 4050 unsigned int marked_pr_dependency;
f02232aa 4051
c19d1205 4052 demand_empty_rest_of_line ();
f02232aa 4053
921e5f0a
PB
4054 if (!unwind.proc_start)
4055 {
c921be7d 4056 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
4057 return;
4058 }
4059
c19d1205
ZW
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
f02232aa 4065
c19d1205
ZW
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
b99bd4ef 4070
c19d1205 4071 ptr = frag_more (8);
5011093d 4072 memset (ptr, 0, 8);
c19d1205 4073 where = frag_now_fix () - 8;
f02232aa 4074
c19d1205
ZW
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
f02232aa 4078
c19d1205
ZW
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
940b5ce0
DJ
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
5f4273c7
NC
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
c19d1205
ZW
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 4095 |= 1 << unwind.personality_index;
c19d1205 4096 }
f02232aa 4097
c19d1205
ZW
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
f02232aa 4105
c19d1205
ZW
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
4108
4109 unwind.proc_start = NULL;
c19d1205 4110}
f02232aa 4111
f02232aa 4112
c19d1205 4113/* Parse an unwind_cantunwind directive. */
b99bd4ef 4114
c19d1205
ZW
4115static void
4116s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117{
4118 demand_empty_rest_of_line ();
921e5f0a 4119 if (!unwind.proc_start)
c921be7d 4120 as_bad (MISSING_FNSTART);
921e5f0a 4121
c19d1205
ZW
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 4124
c19d1205
ZW
4125 unwind.personality_index = -2;
4126}
b99bd4ef 4127
b99bd4ef 4128
c19d1205 4129/* Parse a personalityindex directive. */
b99bd4ef 4130
c19d1205
ZW
4131static void
4132s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133{
4134 expressionS exp;
b99bd4ef 4135
921e5f0a 4136 if (!unwind.proc_start)
c921be7d 4137 as_bad (MISSING_FNSTART);
921e5f0a 4138
c19d1205
ZW
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 4141
c19d1205 4142 expression (&exp);
b99bd4ef 4143
c19d1205
ZW
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 4146 {
c19d1205
ZW
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
b99bd4ef
NC
4150 }
4151
c19d1205 4152 unwind.personality_index = exp.X_add_number;
b99bd4ef 4153
c19d1205
ZW
4154 demand_empty_rest_of_line ();
4155}
e16bb312 4156
e16bb312 4157
c19d1205 4158/* Parse a personality directive. */
e16bb312 4159
c19d1205
ZW
4160static void
4161s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162{
4163 char *name, *p, c;
a737bd4d 4164
921e5f0a 4165 if (!unwind.proc_start)
c921be7d 4166 as_bad (MISSING_FNSTART);
921e5f0a 4167
c19d1205
ZW
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
a737bd4d 4170
d02603dc 4171 c = get_symbol_name (& name);
c19d1205 4172 p = input_line_pointer;
d02603dc
NC
4173 if (c == '"')
4174 ++ input_line_pointer;
c19d1205
ZW
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178}
e16bb312 4179
e16bb312 4180
c19d1205 4181/* Parse a directive saving core registers. */
e16bb312 4182
c19d1205
ZW
4183static void
4184s_arm_unwind_save_core (void)
e16bb312 4185{
c19d1205
ZW
4186 valueT op;
4187 long range;
4188 int n;
e16bb312 4189
4b5a202f 4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
c19d1205 4191 if (range == FAIL)
e16bb312 4192 {
c19d1205
ZW
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
e16bb312 4197
c19d1205 4198 demand_empty_rest_of_line ();
e16bb312 4199
c19d1205
ZW
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
e16bb312 4211
01ae4198
DJ
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
c19d1205 4214 {
01ae4198
DJ
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
0dd132b6 4230 else
01ae4198
DJ
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
c19d1205 4240 }
0dd132b6 4241
c19d1205
ZW
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
0dd132b6
NC
4247 }
4248
c19d1205
ZW
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
0dd132b6
NC
4255}
4256
c19d1205
ZW
4257
4258/* Parse a directive saving FPA registers. */
b99bd4ef
NC
4259
4260static void
c19d1205 4261s_arm_unwind_save_fpa (int reg)
b99bd4ef 4262{
c19d1205
ZW
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
b99bd4ef 4266
c19d1205
ZW
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
b99bd4ef 4272
c19d1205 4273 if (exp.X_op != O_constant)
b99bd4ef 4274 {
c19d1205
ZW
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
b99bd4ef
NC
4277 return;
4278 }
4279
c19d1205
ZW
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
b99bd4ef 4283 {
c19d1205
ZW
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
b99bd4ef
NC
4286 return;
4287 }
4288
c19d1205 4289 demand_empty_rest_of_line ();
b99bd4ef 4290
c19d1205
ZW
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
b99bd4ef
NC
4297 else
4298 {
c19d1205
ZW
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
b99bd4ef 4302 }
c19d1205 4303 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
4304}
4305
c19d1205 4306
fa073d69
MS
4307/* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309static void
4310s_arm_unwind_save_vfp_armv6 (void)
4311{
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
efd6b359 4317 bfd_boolean partial_match;
fa073d69 4318
efd6b359
AV
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
fa073d69
MS
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356}
4357
4358
4359/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
4360
4361static void
c19d1205 4362s_arm_unwind_save_vfp (void)
b99bd4ef 4363{
c19d1205 4364 int count;
ca3f61f7 4365 unsigned int reg;
c19d1205 4366 valueT op;
efd6b359 4367 bfd_boolean partial_match;
b99bd4ef 4368
efd6b359
AV
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
c19d1205 4371 if (count == FAIL)
b99bd4ef 4372 {
c19d1205
ZW
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
b99bd4ef
NC
4375 return;
4376 }
4377
c19d1205 4378 demand_empty_rest_of_line ();
b99bd4ef 4379
c19d1205 4380 if (reg == 8)
b99bd4ef 4381 {
c19d1205
ZW
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
b99bd4ef 4385 }
c19d1205 4386 else
b99bd4ef 4387 {
c19d1205
ZW
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
b99bd4ef 4391 }
c19d1205
ZW
4392 unwind.frame_size += count * 8 + 4;
4393}
b99bd4ef 4394
b99bd4ef 4395
c19d1205
ZW
4396/* Parse a directive saving iWMMXt data registers. */
4397
4398static void
4399s_arm_unwind_save_mmxwr (void)
4400{
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
b99bd4ef 4406
c19d1205
ZW
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
b99bd4ef 4409
c19d1205 4410 do
b99bd4ef 4411 {
dcbf9037 4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 4413
c19d1205 4414 if (reg == FAIL)
b99bd4ef 4415 {
9b7132d3 4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 4417 goto error;
b99bd4ef
NC
4418 }
4419
c19d1205
ZW
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
b99bd4ef 4423
c19d1205
ZW
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
dcbf9037 4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
4428 if (hi_reg == FAIL)
4429 {
9b7132d3 4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4443
d996d970 4444 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4445
c19d1205 4446 demand_empty_rest_of_line ();
b99bd4ef 4447
708587a4 4448 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4449 the list. */
4450 flush_pending_unwind ();
b99bd4ef 4451
c19d1205 4452 for (i = 0; i < 16; i++)
b99bd4ef 4453 {
c19d1205
ZW
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
b99bd4ef
NC
4456 }
4457
c19d1205
ZW
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
b99bd4ef 4462 {
c19d1205
ZW
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
b99bd4ef 4481
c19d1205
ZW
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
87a1fd79 4484 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
b99bd4ef
NC
4493 }
4494
c19d1205
ZW
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
b99bd4ef 4499 {
c19d1205
ZW
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 4505 preceding block. */
c19d1205
ZW
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
b99bd4ef
NC
4523 }
4524
c19d1205
ZW
4525 return;
4526error:
4527 ignore_rest_of_line ();
b99bd4ef
NC
4528}
4529
4530static void
c19d1205 4531s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4532{
c19d1205
ZW
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
b99bd4ef 4537
c19d1205
ZW
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
b99bd4ef 4540
477330fc
RM
4541 skip_whitespace (input_line_pointer);
4542
c19d1205 4543 do
b99bd4ef 4544 {
dcbf9037 4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4546
c19d1205
ZW
4547 if (reg == FAIL)
4548 {
9b7132d3 4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4550 goto error;
4551 }
b99bd4ef 4552
c19d1205
ZW
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
b99bd4ef 4557
c19d1205
ZW
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
dcbf9037 4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4562 if (hi_reg == FAIL)
4563 {
9b7132d3 4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
b99bd4ef 4575 }
c19d1205 4576 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4577
d996d970 4578 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4579
c19d1205
ZW
4580 demand_empty_rest_of_line ();
4581
708587a4 4582 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4583 the list. */
4584 flush_pending_unwind ();
b99bd4ef 4585
c19d1205 4586 for (reg = 0; reg < 16; reg++)
b99bd4ef 4587 {
c19d1205
ZW
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
b99bd4ef 4590 }
c19d1205
ZW
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594error:
4595 ignore_rest_of_line ();
b99bd4ef
NC
4596}
4597
c19d1205 4598
fa073d69
MS
4599/* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4601
b99bd4ef 4602static void
fa073d69 4603s_arm_unwind_save (int arch_v6)
b99bd4ef 4604{
c19d1205
ZW
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
b99bd4ef 4608
921e5f0a 4609 if (!unwind.proc_start)
c921be7d 4610 as_bad (MISSING_FNSTART);
921e5f0a 4611
c19d1205
ZW
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
b99bd4ef 4614
c19d1205 4615 if (*peek == '{')
b99bd4ef 4616 {
c19d1205
ZW
4617 had_brace = TRUE;
4618 peek++;
b99bd4ef
NC
4619 }
4620
c19d1205 4621 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4622
c19d1205 4623 if (!reg)
b99bd4ef 4624 {
c19d1205
ZW
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
b99bd4ef
NC
4627 return;
4628 }
4629
c19d1205 4630 switch (reg->type)
b99bd4ef 4631 {
c19d1205
ZW
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
93ac2687 4639 input_line_pointer = peek;
c19d1205 4640 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4641 return;
c19d1205 4642
1f5afe1c
NC
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
fa073d69
MS
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
477330fc 4649 s_arm_unwind_save_vfp_armv6 ();
fa073d69 4650 else
477330fc 4651 s_arm_unwind_save_vfp ();
fa073d69 4652 return;
1f5afe1c
NC
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
c19d1205
ZW
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
b99bd4ef 4665 }
c19d1205 4666}
b99bd4ef 4667
b99bd4ef 4668
c19d1205
ZW
4669/* Parse an unwind_movsp directive. */
4670
4671static void
4672s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673{
4674 int reg;
4675 valueT op;
4fa3602b 4676 int offset;
c19d1205 4677
921e5f0a 4678 if (!unwind.proc_start)
c921be7d 4679 as_bad (MISSING_FNSTART);
921e5f0a 4680
dcbf9037 4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4682 if (reg == FAIL)
b99bd4ef 4683 {
9b7132d3 4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4685 ignore_rest_of_line ();
b99bd4ef
NC
4686 return;
4687 }
4fa3602b
PB
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
c19d1205 4698 demand_empty_rest_of_line ();
b99bd4ef 4699
c19d1205 4700 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4701 {
c19d1205 4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4703 return;
4704 }
4705
c19d1205
ZW
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4708
c19d1205
ZW
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4fa3602b 4715 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4716 unwind.sp_restored = 1;
b05fe5cf
ZW
4717}
4718
c19d1205
ZW
4719/* Parse an unwind_pad directive. */
4720
b05fe5cf 4721static void
c19d1205 4722s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4723{
c19d1205 4724 int offset;
b05fe5cf 4725
921e5f0a 4726 if (!unwind.proc_start)
c921be7d 4727 as_bad (MISSING_FNSTART);
921e5f0a 4728
c19d1205
ZW
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
b99bd4ef 4731
c19d1205
ZW
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
b99bd4ef 4738
c19d1205
ZW
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744}
4745
4746/* Parse an unwind_setfp directive. */
4747
4748static void
4749s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4750{
c19d1205
ZW
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
921e5f0a 4755 if (!unwind.proc_start)
c921be7d 4756 as_bad (MISSING_FNSTART);
921e5f0a 4757
dcbf9037 4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
dcbf9037 4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4763
c19d1205
ZW
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
b99bd4ef 4770
c19d1205
ZW
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
a737bd4d 4779
c19d1205 4780 demand_empty_rest_of_line ();
a737bd4d 4781
fdfde340 4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4783 {
c19d1205
ZW
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
a737bd4d
NC
4787 }
4788
c19d1205
ZW
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
fdfde340 4792 if (sp_reg == REG_SP)
c19d1205
ZW
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
a737bd4d
NC
4796}
4797
c19d1205
ZW
4798/* Parse an unwind_raw directive. */
4799
4800static void
4801s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4802{
c19d1205 4803 expressionS exp;
708587a4 4804 /* This is an arbitrary limit. */
c19d1205
ZW
4805 unsigned char op[16];
4806 int count;
a737bd4d 4807
921e5f0a 4808 if (!unwind.proc_start)
c921be7d 4809 as_bad (MISSING_FNSTART);
921e5f0a 4810
c19d1205
ZW
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4814 {
c19d1205
ZW
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
a737bd4d 4820
c19d1205
ZW
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
a737bd4d 4827
c19d1205 4828 count = 0;
a737bd4d 4829
c19d1205
ZW
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
a737bd4d 4837 }
c19d1205 4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4839 {
c19d1205
ZW
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
a737bd4d 4843 }
c19d1205 4844 op[count++] = exp.X_add_number;
a737bd4d 4845
c19d1205
ZW
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
a737bd4d 4849
c19d1205
ZW
4850 expression (&exp);
4851 }
b99bd4ef 4852
c19d1205
ZW
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
b99bd4ef 4856
c19d1205 4857 demand_empty_rest_of_line ();
b99bd4ef 4858}
ee065d83
PB
4859
4860
4861/* Parse a .eabi_attribute directive. */
4862
4863static void
4864s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865{
0420f52b 4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
ee3c0378 4867
3076e594 4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
ee3c0378 4869 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4870}
4871
0855e32b
NS
4872/* Emit a tls fix for the symbol. */
4873
4874static void
4875s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876{
4877 char *p;
4878 expressionS exp;
4879#ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881#endif
4882
4883#ifdef md_cons_align
4884 md_cons_align (4);
4885#endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894}
cdf9ccec 4895#endif /* OBJ_ELF */
0855e32b 4896
ee065d83 4897static void s_arm_arch (int);
7a1d4c38 4898static void s_arm_object_arch (int);
ee065d83
PB
4899static void s_arm_cpu (int);
4900static void s_arm_fpu (int);
69133863 4901static void s_arm_arch_extension (int);
b99bd4ef 4902
f0927246
NC
4903#ifdef TE_PE
4904
4905static void
5f4273c7 4906pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4907{
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922}
4923#endif /* TE_PE */
4924
c19d1205
ZW
4925/* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
b99bd4ef 4930
c19d1205 4931const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4932{
c19d1205
ZW
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
dcbf9037
JB
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
c19d1205
ZW
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
db2ed2e0 4940 { "align", s_align_ptwo, 2 },
c19d1205
ZW
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
8463be01
PB
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
7a1d4c38 4953 { "object_arch", s_arm_object_arch, 0 },
8463be01 4954 { "fpu", s_arm_fpu, 0 },
69133863 4955 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4956#ifdef OBJ_ELF
c921be7d
NC
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
fa073d69 4970 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4977#else
4978 { "word", cons, 4},
f0927246
NC
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
68d20676 4985 { "file", dwarf2_directive_file, 0 },
f0927246
NC
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4988#endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
f0927246
NC
4992#ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994#endif
2e6976a8
DG
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
c19d1205
ZW
5002 { 0, 0, 0 }
5003};
5004\f
5005/* Parser functions used exclusively in instruction operands. */
b99bd4ef 5006
c19d1205
ZW
5007/* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
b99bd4ef 5012
c19d1205
ZW
5013static int
5014parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016{
5017 expressionS exp;
0198d5e6 5018
c19d1205
ZW
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
b99bd4ef 5021 {
c19d1205
ZW
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
b99bd4ef 5025
c19d1205
ZW
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
b99bd4ef 5031
c19d1205
ZW
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034}
b99bd4ef 5035
5287ad62 5036/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040static int
8335d6aa
JW
5041parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5287ad62
JB
5043{
5044 expressionS exp;
8335d6aa 5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5287ad62
JB
5046 char *ptr = *str;
5047
8335d6aa 5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5287ad62 5049
8335d6aa 5050 if (exp_p->X_op == O_constant)
036dc3f7 5051 {
8335d6aa 5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
036dc3f7
PB
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
8335d6aa 5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7 5057 {
8335d6aa
JW
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
036dc3f7
PB
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
8335d6aa
JW
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5287ad62
JB
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 5068
5287ad62 5069 /* Bignums have their least significant bits in
477330fc
RM
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 5072 gas_assert (parts != 0);
95b75c01
NC
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
8335d6aa 5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
95b75c01
NC
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
8335d6aa 5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
95b75c01
NC
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5287ad62
JB
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5099 inst.operands[i].regisimm = 1;
5100 }
8335d6aa 5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5287ad62 5102 return FAIL;
5f4273c7 5103
5287ad62
JB
5104 *str = ptr;
5105
5106 return SUCCESS;
5107}
5108
c19d1205
ZW
5109/* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
b99bd4ef 5111
c19d1205
ZW
5112static int
5113parse_fpa_immediate (char ** str)
5114{
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
b99bd4ef 5120
c19d1205
ZW
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
b99bd4ef 5123
c19d1205
ZW
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 5127 {
c19d1205 5128 char *start = *str;
b99bd4ef 5129
c19d1205
ZW
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
b99bd4ef 5136
c19d1205
ZW
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
b99bd4ef 5141
c19d1205 5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 5143
c19d1205
ZW
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 5151 {
c19d1205
ZW
5152 if (words[j] != fp_values[i][j])
5153 break;
b99bd4ef
NC
5154 }
5155
c19d1205 5156 if (j == MAX_LITTLENUMS)
b99bd4ef 5157 {
c19d1205
ZW
5158 *str = save_in;
5159 return i + 8;
b99bd4ef
NC
5160 }
5161 }
5162 }
b99bd4ef 5163
c19d1205
ZW
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
ba592044
AM
5174#define X_PRECISION 5
5175#define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
c19d1205
ZW
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
b99bd4ef 5185
c19d1205
ZW
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
b99bd4ef
NC
5194 }
5195
c19d1205
ZW
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
b99bd4ef
NC
5200}
5201
136da414
JB
5202/* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205static int
5206is_quarter_float (unsigned imm)
5207{
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210}
5211
aacf0b33
KT
5212
5213/* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216static bfd_boolean
5217parse_ifimm_zero (char **in)
5218{
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
3c6452ae
TP
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
0900a05b
JW
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
aacf0b33
KT
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249}
5250
136da414
JB
5251/* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
136da414
JB
5256
5257static unsigned
5258parse_qfloat_immediate (char **ccp, int *immed)
5259{
5260 char *str = *ccp;
c96612cc 5261 char *fpnum;
136da414 5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 5263 int found_fpchar = 0;
5f4273c7 5264
136da414 5265 skip_past_char (&str, '#');
5f4273c7 5266
c96612cc
JB
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
477330fc
RM
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
c96612cc
JB
5285
5286 if (!found_fpchar)
477330fc 5287 return FAIL;
c96612cc 5288 }
5f4273c7 5289
136da414
JB
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5f4273c7 5294
136da414
JB
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
477330fc
RM
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5f4273c7 5301
c96612cc 5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
477330fc 5303 *immed = fpword;
136da414 5304 else
477330fc 5305 return FAIL;
136da414
JB
5306
5307 *ccp = str;
5f4273c7 5308
136da414
JB
5309 return SUCCESS;
5310 }
5f4273c7 5311
136da414
JB
5312 return FAIL;
5313}
5314
c19d1205
ZW
5315/* Shift operands. */
5316enum shift_kind
b99bd4ef 5317{
f5f10c66 5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
c19d1205 5319};
b99bd4ef 5320
c19d1205
ZW
5321struct asm_shift_name
5322{
5323 const char *name;
5324 enum shift_kind kind;
5325};
b99bd4ef 5326
c19d1205
ZW
5327/* Third argument to parse_shift. */
5328enum parse_shift_mode
5329{
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
f5f10c66 5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
c19d1205 5336};
b99bd4ef 5337
c19d1205
ZW
5338/* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
b99bd4ef 5340
c19d1205
ZW
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
b99bd4ef 5344
c19d1205
ZW
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 5347
c19d1205
ZW
5348static int
5349parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 5350{
c19d1205
ZW
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
b99bd4ef 5356
c19d1205
ZW
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
b99bd4ef 5359
c19d1205 5360 if (p == *str)
b99bd4ef 5361 {
c19d1205
ZW
5362 inst.error = _("shift expression expected");
5363 return FAIL;
b99bd4ef
NC
5364 }
5365
21d799b5 5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
477330fc 5367 p - *str);
c19d1205
ZW
5368
5369 if (shift_name == NULL)
b99bd4ef 5370 {
c19d1205
ZW
5371 inst.error = _("shift expression expected");
5372 return FAIL;
b99bd4ef
NC
5373 }
5374
c19d1205 5375 shift = shift_name->kind;
b99bd4ef 5376
c19d1205
ZW
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
f5f10c66
AV
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
b99bd4ef 5387
c19d1205
ZW
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
b99bd4ef 5395
c19d1205
ZW
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
b99bd4ef 5403
c19d1205
ZW
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
f5f10c66
AV
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
b99bd4ef 5418
c19d1205
ZW
5419 default: abort ();
5420 }
b99bd4ef 5421
c19d1205
ZW
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
b99bd4ef 5426
c19d1205 5427 if (mode == NO_SHIFT_RESTRICT
dcbf9037 5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
e2b0ab59 5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
c19d1205
ZW
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
b99bd4ef
NC
5440}
5441
c19d1205 5442/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 5443
c19d1205
ZW
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
b99bd4ef 5448
c19d1205
ZW
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 5451 is deferred to md_apply_fix. */
b99bd4ef 5452
c19d1205
ZW
5453static int
5454parse_shifter_operand (char **str, int i)
5455{
5456 int value;
91d6fa6a 5457 expressionS exp;
b99bd4ef 5458
dcbf9037 5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
b99bd4ef 5463
c19d1205 5464 /* parse_shift will override this if appropriate */
e2b0ab59
AV
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
b99bd4ef 5467
c19d1205
ZW
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
b99bd4ef 5470
c19d1205
ZW
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
5473 }
5474
e2b0ab59 5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
c19d1205 5476 return FAIL;
b99bd4ef 5477
c19d1205 5478 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 5479 {
c19d1205 5480 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 5482 return FAIL;
b99bd4ef 5483
e2b0ab59 5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
c19d1205
ZW
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
b99bd4ef 5489
91d6fa6a 5490 value = exp.X_add_number;
c19d1205
ZW
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
e2b0ab59
AV
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
c19d1205
ZW
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
09d92015 5502
a415b1cd 5503 /* Encode as specified. */
e2b0ab59 5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
a415b1cd 5505 return SUCCESS;
09d92015
MM
5506 }
5507
e2b0ab59
AV
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
c19d1205 5510 return SUCCESS;
09d92015
MM
5511}
5512
4962c51a
MS
5513/* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520struct group_reloc_table_entry
5521{
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527};
5528
5529typedef enum
5530{
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
35c228db
AV
5535 GROUP_LDC,
5536 GROUP_MVE
4962c51a
MS
5537} group_reloc_type;
5538
5539static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
72d98d16
MG
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
4962c51a
MS
5613
5614/* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621static int
5622find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623{
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5f4273c7
NC
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
477330fc
RM
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
4962c51a
MS
5636 }
5637
5638 return FAIL;
5639}
5640
5641/* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655static parse_operand_result
5656parse_shifter_operand_group_reloc (char **str, int i)
5657{
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
477330fc 5668 (*str) += 2;
4962c51a 5669 else
477330fc 5670 (*str)++;
4962c51a
MS
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
477330fc
RM
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
4962c51a
MS
5678
5679 /* We now have the group relocation table entry corresponding to
477330fc 5680 the name in the assembler source. Next, we parse the expression. */
e2b0ab59 5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
477330fc 5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4962c51a
MS
5683
5684 /* Record the relocation type (always the ALU variant here). */
e2b0ab59
AV
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
4962c51a
MS
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
477330fc 5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4962c51a
MS
5693
5694 /* Never reached. */
5695}
5696
8e560766
MGD
5697/* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5699
8e560766
MGD
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701static parse_operand_result
5702parse_neon_alignment (char **str, int i)
5703{
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722}
5723
c19d1205 5724/* Parse all forms of an ARM address expression. Information is written
e2b0ab59 5725 to inst.operands[i] and/or inst.relocs[0].
09d92015 5726
c19d1205 5727 Preindexed addressing (.preind=1):
09d92015 5728
e2b0ab59 5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5732 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5733
c19d1205 5734 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5735
c19d1205 5736 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5737
e2b0ab59 5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5741 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5742
c19d1205 5743 Unindexed addressing (.preind=0, .postind=0):
09d92015 5744
c19d1205 5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5746
c19d1205 5747 Other:
09d92015 5748
c19d1205 5749 [Rn]{!} shorthand for [Rn,#0]{!}
e2b0ab59
AV
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
09d92015 5752
c19d1205 5753 It is the caller's responsibility to check for addressing modes not
e2b0ab59 5754 supported by the instruction, and to set inst.relocs[0].type. */
c19d1205 5755
4962c51a
MS
5756static parse_operand_result
5757parse_address_main (char **str, int i, int group_relocations,
477330fc 5758 group_reloc_type group_type)
09d92015 5759{
c19d1205
ZW
5760 char *p = *str;
5761 int reg;
09d92015 5762
c19d1205 5763 if (skip_past_char (&p, '[') == FAIL)
09d92015 5764 {
c19d1205
ZW
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
974da60d 5767 /* Bare address - translate to PC-relative offset. */
e2b0ab59 5768 inst.relocs[0].pc_rel = 1;
c19d1205
ZW
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
09d92015 5772
e2b0ab59 5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
8335d6aa
JW
5774 return PARSE_OPERAND_FAIL;
5775 }
e2b0ab59 5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
8335d6aa 5777 /*allow_symbol_p=*/TRUE))
4962c51a 5778 return PARSE_OPERAND_FAIL;
09d92015 5779
c19d1205 5780 *str = p;
4962c51a 5781 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5782 }
5783
8ab8155f
NC
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
f5f10c66
AV
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5802 {
35c228db
AV
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5807 return PARSE_OPERAND_FAIL;
09d92015 5808 }
c19d1205
ZW
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
09d92015 5811
c19d1205 5812 if (skip_past_comma (&p) == SUCCESS)
09d92015 5813 {
c19d1205 5814 inst.operands[i].preind = 1;
09d92015 5815
c19d1205
ZW
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
f5f10c66
AV
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5839 {
c19d1205
ZW
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5845 return PARSE_OPERAND_FAIL;
c19d1205 5846 }
5287ad62 5847 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5853
8e560766
MGD
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
c19d1205
ZW
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
4962c51a 5864
5f4273c7
NC
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5867 {
5868 struct group_reloc_table_entry *entry;
5869
477330fc
RM
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
4962c51a
MS
5875
5876 /* Try to parse a group relocation. Anything else is an
477330fc 5877 error. */
4962c51a
MS
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
477330fc 5886 expression. */
e2b0ab59 5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
4962c51a
MS
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
477330fc
RM
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
e2b0ab59
AV
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
477330fc 5896 break;
4962c51a 5897
477330fc 5898 case GROUP_LDRS:
e2b0ab59
AV
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
477330fc 5901 break;
4962c51a 5902
477330fc 5903 case GROUP_LDC:
e2b0ab59
AV
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
477330fc 5906 break;
4962c51a 5907
477330fc
RM
5908 default:
5909 gas_assert (0);
5910 }
4962c51a 5911
e2b0ab59 5912 if (inst.relocs[0].type == 0)
4962c51a
MS
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
477330fc
RM
5917 }
5918 else
26d97720
NS
5919 {
5920 char *q = p;
0198d5e6 5921
e2b0ab59 5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
26d97720
NS
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
09d92015
MM
5938 }
5939 }
8e560766
MGD
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5945
8e560766
MGD
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
09d92015 5949
c19d1205 5950 if (skip_past_char (&p, ']') == FAIL)
09d92015 5951 {
c19d1205 5952 inst.error = _("']' expected");
4962c51a 5953 return PARSE_OPERAND_FAIL;
09d92015
MM
5954 }
5955
c19d1205
ZW
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
09d92015 5958
c19d1205 5959 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5960 {
c19d1205
ZW
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5965 0, 255, TRUE) == FAIL)
4962c51a 5966 return PARSE_OPERAND_FAIL;
09d92015 5967
c19d1205
ZW
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5971 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
4962c51a 5976 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5977 }
5978 *str = p;
4962c51a 5979 return PARSE_OPERAND_SUCCESS;
09d92015 5980 }
c19d1205
ZW
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
09d92015 5985
c19d1205
ZW
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5989 return PARSE_OPERAND_FAIL;
c19d1205 5990 }
09d92015 5991
c19d1205
ZW
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5994
f5f10c66
AV
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 6004 {
477330fc
RM
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
c19d1205 6011 inst.operands[i].immisreg = 1;
a737bd4d 6012
c19d1205
ZW
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 6015 return PARSE_OPERAND_FAIL;
c19d1205
ZW
6016 }
6017 else
6018 {
26d97720 6019 char *q = p;
0198d5e6 6020
c19d1205
ZW
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
e2b0ab59 6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
4962c51a 6027 return PARSE_OPERAND_FAIL;
26d97720 6028 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
c19d1205
ZW
6041 }
6042 }
a737bd4d
NC
6043 }
6044
c19d1205
ZW
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
e2b0ab59
AV
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
c19d1205
ZW
6052 }
6053 *str = p;
4962c51a
MS
6054 return PARSE_OPERAND_SUCCESS;
6055}
6056
6057static int
6058parse_address (char **str, int i)
6059{
21d799b5 6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
477330fc 6061 ? SUCCESS : FAIL;
4962c51a
MS
6062}
6063
6064static parse_operand_result
6065parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066{
6067 return parse_address_main (str, i, 1, type);
a737bd4d
NC
6068}
6069
b6895b4f
PB
6070/* Parse an operand for a MOVW or MOVT instruction. */
6071static int
6072parse_half (char **str)
6073{
6074 char * p;
5f4273c7 6075
b6895b4f
PB
6076 p = *str;
6077 skip_past_char (&p, '#');
5f4273c7 6078 if (strncasecmp (p, ":lower16:", 9) == 0)
e2b0ab59 6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
b6895b4f 6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
e2b0ab59 6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
b6895b4f 6082
e2b0ab59 6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
b6895b4f
PB
6084 {
6085 p += 9;
5f4273c7 6086 skip_whitespace (p);
b6895b4f
PB
6087 }
6088
e2b0ab59 6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
b6895b4f
PB
6090 return FAIL;
6091
e2b0ab59 6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 6093 {
e2b0ab59 6094 if (inst.relocs[0].exp.X_op != O_constant)
b6895b4f
PB
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
e2b0ab59
AV
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
b6895b4f
PB
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108}
6109
c19d1205 6110/* Miscellaneous. */
a737bd4d 6111
c19d1205
ZW
6112/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114static int
d2cd1205 6115parse_psr (char **str, bfd_boolean lhs)
09d92015 6116{
c19d1205
ZW
6117 char *p;
6118 unsigned long psr_field;
62b3e311
PB
6119 const struct asm_psr *psr;
6120 char *start;
d2cd1205 6121 bfd_boolean is_apsr = FALSE;
ac7f631b 6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 6123
a4482bb6
NC
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
823d2571 6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
a4482bb6
NC
6128 m_profile = FALSE;
6129
c19d1205
ZW
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
62b3e311 6133 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
fa94de6b 6137
d2cd1205
JB
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
62b3e311
PB
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
d2cd1205
JB
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
21d799b5 6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
477330fc 6168 p - start);
d2cd1205 6169
62b3e311
PB
6170 if (!psr)
6171 return FAIL;
09d92015 6172
d2cd1205
JB
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
62b3e311 6182 *str = p;
d2cd1205
JB
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
62b3e311 6188 }
d2cd1205
JB
6189 else
6190 goto unsupported_psr;
09d92015 6191
62b3e311 6192 p += 4;
d2cd1205 6193check_suffix:
c19d1205
ZW
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
c19d1205
ZW
6197 p++;
6198 start = p;
a737bd4d 6199
c19d1205
ZW
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
a737bd4d 6203
d2cd1205
JB
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
fa94de6b 6210
d2cd1205
JB
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
477330fc 6214 {
d2cd1205
JB
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
fa94de6b 6230
d2cd1205
JB
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
fa94de6b 6234
d2cd1205
JB
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
fa94de6b 6238
d2cd1205
JB
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
fa94de6b 6244
d2cd1205
JB
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
fa94de6b 6247
d2cd1205
JB
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
477330fc 6251 {
d2cd1205
JB
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
fa94de6b 6259
d2cd1205
JB
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
477330fc 6269 {
d2cd1205 6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
477330fc 6271 p - start);
d2cd1205 6272 if (!psr)
477330fc 6273 goto error;
a737bd4d 6274
d2cd1205
JB
6275 psr_field |= psr->field;
6276 }
a737bd4d 6277 }
c19d1205 6278 else
a737bd4d 6279 {
c19d1205
ZW
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
d2cd1205 6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
477330fc 6284 is deprecated, but allow it anyway. */
d2cd1205
JB
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
a737bd4d 6295 }
c19d1205
ZW
6296 *str = p;
6297 return psr_field;
a737bd4d 6298
d2cd1205
JB
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
c19d1205
ZW
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
a737bd4d
NC
6307}
6308
32c36c3c
AV
6309static int
6310parse_sys_vldr_vstr (char **str)
6311{
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340}
6341
c19d1205
ZW
6342/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 6344
c19d1205
ZW
6345static int
6346parse_cps_flags (char **str)
a737bd4d 6347{
c19d1205
ZW
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
a737bd4d 6351
c19d1205
ZW
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
a737bd4d 6357
c19d1205
ZW
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 6361
c19d1205
ZW
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
a737bd4d 6366
c19d1205
ZW
6367 done:
6368 if (saw_a_flag == 0)
a737bd4d 6369 {
c19d1205
ZW
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
a737bd4d 6372 }
a737bd4d 6373
c19d1205
ZW
6374 *str = s - 1;
6375 return val;
a737bd4d
NC
6376}
6377
c19d1205
ZW
6378/* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
6380
6381static int
c19d1205 6382parse_endian_specifier (char **str)
a737bd4d 6383{
c19d1205
ZW
6384 int little_endian;
6385 char *s = *str;
a737bd4d 6386
c19d1205
ZW
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
a737bd4d 6392 {
c19d1205 6393 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6394 return FAIL;
6395 }
6396
c19d1205 6397 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 6398 {
c19d1205 6399 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6400 return FAIL;
6401 }
6402
c19d1205
ZW
6403 *str = s + 2;
6404 return little_endian;
6405}
a737bd4d 6406
c19d1205
ZW
6407/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411static int
6412parse_ror (char **str)
6413{
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
a737bd4d 6420 {
c19d1205 6421 inst.error = _("missing rotation field after comma");
a737bd4d
NC
6422 return FAIL;
6423 }
c19d1205
ZW
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
a737bd4d 6429 {
c19d1205
ZW
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
6437 return FAIL;
6438 }
c19d1205 6439}
a737bd4d 6440
c19d1205
ZW
6441/* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443static int
6444parse_cond (char **str)
6445{
c462b453 6446 char *q;
c19d1205 6447 const struct asm_cond *c;
c462b453
PB
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
a737bd4d 6452
c462b453
PB
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
e07e6e58 6457 cond[n] = TOLOWER (*q);
c462b453
PB
6458 q++;
6459 n++;
6460 }
a737bd4d 6461
21d799b5 6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 6463 if (!c)
a737bd4d 6464 {
c19d1205 6465 inst.error = _("condition required");
a737bd4d
NC
6466 return FAIL;
6467 }
6468
c19d1205
ZW
6469 *str = q;
6470 return c->value;
6471}
6472
62b3e311
PB
6473/* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475static int
6476parse_barrier (char **str)
6477{
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
21d799b5 6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
477330fc 6486 q - p);
62b3e311
PB
6487 if (!o)
6488 return FAIL;
6489
e797f7e0
MGD
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
62b3e311
PB
6493 *str = q;
6494 return o->value;
6495}
6496
92e90b6e
PB
6497/* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499static int
6500parse_tb (char **str)
6501{
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
92e90b6e 6510
dcbf9037 6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
5f4273c7 6523
dcbf9037 6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
e2b0ab59 6535 if (inst.relocs[0].exp.X_add_number != 1)
92e90b6e
PB
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550}
6551
5287ad62
JB
6552/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
037e8744
JB
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
5287ad62
JB
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559static int
6560parse_neon_mov (char **str, int *which_operand)
6561{
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
dcbf9037 6565 struct neon_type_el optype;
5f4273c7 6566
57785aa2
AV
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
5287ad62
JB
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
dcbf9037 6626 inst.operands[i].vectype = optype;
5287ad62
JB
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
477330fc 6630 goto wanted_comma;
5f4273c7 6631
dcbf9037 6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
477330fc 6633 goto wanted_arm;
5f4273c7 6634
5287ad62
JB
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
57785aa2
AV
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
5287ad62
JB
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
477330fc 6646 goto wanted_comma;
5f4273c7 6647
5287ad62
JB
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
dcbf9037 6653 inst.operands[i].vectype = optype;
5287ad62
JB
6654 inst.operands[i++].present = 1;
6655
dcbf9037 6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
037e8744 6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
477330fc
RM
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
4641781c 6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
477330fc
RM
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
8335d6aa
JW
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
477330fc
RM
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
5287ad62 6731 else
477330fc
RM
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
5287ad62 6736 }
dcbf9037 6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 6738 {
57785aa2 6739 /* Cases 6, 7, 16, 18. */
5287ad62
JB
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
5f4273c7 6743
5287ad62 6744 if (skip_past_comma (&ptr) == FAIL)
477330fc 6745 goto wanted_comma;
5f4273c7 6746
57785aa2
AV
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
477330fc
RM
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
dcbf9037 6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc 6764 {
477330fc
RM
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
57785aa2 6773 != FAIL)
477330fc 6774 {
57785aa2 6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
477330fc 6776
477330fc
RM
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
57785aa2 6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
477330fc
RM
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
57785aa2
AV
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
477330fc
RM
6837 }
6838 }
037e8744 6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
477330fc
RM
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
5287ad62
JB
6850 }
6851 else
6852 {
dcbf9037 6853 first_error (_("parse error"));
5287ad62
JB
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
5f4273c7 6862 wanted_comma:
dcbf9037 6863 first_error (_("expected comma"));
5287ad62 6864 return FAIL;
5f4273c7
NC
6865
6866 wanted_arm:
dcbf9037 6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6868 return FAIL;
5287ad62
JB
6869}
6870
5be8be5d
DG
6871/* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
c19d1205
ZW
6876/* Matcher codes for parse_operands. */
6877enum operand_parse_code
6878{
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6886 optional trailing ! */
c19d1205
ZW
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
5287ad62
JB
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
5ee91343
AV
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
5287ad62 6897 OP_RNQ, /* Neon quad precision register */
5ee91343 6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
037e8744 6899 OP_RVSD, /* VFP single or double precision register */
1b883319 6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
dd9634d9 6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
dec41383 6902 OP_RNSD, /* Neon single or double precision register */
5287ad62 6903 OP_RNDQ, /* Neon double or quad precision register */
5ee91343 6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
7df54120 6905 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
037e8744 6906 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6907 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6908 OP_RVC, /* VFP control register */
6909 OP_RMF, /* Maverick F register */
6910 OP_RMD, /* Maverick D register */
6911 OP_RMFX, /* Maverick FX register */
6912 OP_RMDX, /* Maverick DX register */
6913 OP_RMAX, /* Maverick AX register */
6914 OP_RMDS, /* Maverick DSPSC register */
6915 OP_RIWR, /* iWMMXt wR register */
6916 OP_RIWC, /* iWMMXt wC register */
6917 OP_RIWG, /* iWMMXt wCG register */
6918 OP_RXA, /* XScale accumulator register */
6919
5ee91343
AV
6920 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6921 */
6922 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6923 GPR (no SP/SP) */
a302e574 6924 OP_RMQ, /* MVE vector register. */
1b883319 6925 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
a302e574 6926
60f993ce
AV
6927 /* New operands for Armv8.1-M Mainline. */
6928 OP_LR, /* ARM LR register */
a302e574
AV
6929 OP_RRe, /* ARM register, only even numbered. */
6930 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
60f993ce
AV
6931 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6932
c19d1205 6933 OP_REGLST, /* ARM register list */
4b5a202f 6934 OP_CLRMLST, /* CLRM register list */
c19d1205
ZW
6935 OP_VRSLST, /* VFP single-precision register list */
6936 OP_VRDLST, /* VFP double-precision register list */
037e8744 6937 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6938 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6939 OP_NSTRLST, /* Neon element/structure list */
efd6b359 6940 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
35c228db
AV
6941 OP_MSTRLST2, /* MVE vector list with two elements. */
6942 OP_MSTRLST4, /* MVE vector list with four elements. */
5287ad62 6943
5287ad62 6944 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6945 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
aacf0b33 6946 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
1b883319
AV
6947 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6948 zero. */
5287ad62 6949 OP_RR_RNSC, /* ARM reg or Neon scalar. */
dec41383 6950 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
037e8744 6951 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
886e1c73
AV
6952 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6953 */
a8465a06
AV
6954 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
6955 scalar, or ARM register. */
5287ad62 6956 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5d281bf0 6957 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
5287ad62
JB
6958 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6959 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6960 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
f601a00c
AV
6961 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6962 OP_RNDQMQ_Ibig,
5287ad62 6963 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6964 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
32c36c3c 6965 OP_VLDR, /* VLDR operand. */
5287ad62
JB
6966
6967 OP_I0, /* immediate zero */
c19d1205
ZW
6968 OP_I7, /* immediate value 0 .. 7 */
6969 OP_I15, /* 0 .. 15 */
6970 OP_I16, /* 1 .. 16 */
5287ad62 6971 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6972 OP_I31, /* 0 .. 31 */
6973 OP_I31w, /* 0 .. 31, optional trailing ! */
6974 OP_I32, /* 1 .. 32 */
5287ad62
JB
6975 OP_I32z, /* 0 .. 32 */
6976 OP_I63, /* 0 .. 63 */
c19d1205 6977 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6978 OP_I64, /* 1 .. 64 */
6979 OP_I64z, /* 0 .. 64 */
c19d1205 6980 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6981
6982 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6983 OP_I7b, /* 0 .. 7 */
6984 OP_I15b, /* 0 .. 15 */
6985 OP_I31b, /* 0 .. 31 */
6986
6987 OP_SH, /* shifter operand */
4962c51a 6988 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6989 OP_ADDR, /* Memory address expression (any mode) */
35c228db 6990 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
4962c51a
MS
6991 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6992 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6993 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6994 OP_EXP, /* arbitrary expression */
6995 OP_EXPi, /* same, with optional immediate prefix */
6996 OP_EXPr, /* same, with optional relocation suffix */
e2b0ab59 6997 OP_EXPs, /* same, with optional non-first operand relocation suffix */
b6895b4f 6998 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c28eeff2
SN
6999 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7000 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
c19d1205
ZW
7001
7002 OP_CPSF, /* CPS flags */
7003 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
7004 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7005 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 7006 OP_COND, /* conditional code */
92e90b6e 7007 OP_TB, /* Table branch. */
c19d1205 7008
037e8744
JB
7009 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7010
c19d1205 7011 OP_RRnpc_I0, /* ARM register or literal 0 */
33eaf5de 7012 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
c19d1205
ZW
7013 OP_RR_EXi, /* ARM register or expression with imm prefix */
7014 OP_RF_IF, /* FPA register or immediate */
7015 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 7016 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
7017
7018 /* Optional operands. */
7019 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7020 OP_oI31b, /* 0 .. 31 */
5287ad62 7021 OP_oI32b, /* 1 .. 32 */
5f1af56b 7022 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
7023 OP_oIffffb, /* 0 .. 65535 */
7024 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7025
7026 OP_oRR, /* ARM register */
60f993ce 7027 OP_oLR, /* ARM LR register */
c19d1205 7028 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 7029 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 7030 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
7031 OP_oRND, /* Optional Neon double precision register */
7032 OP_oRNQ, /* Optional Neon quad precision register */
5ee91343 7033 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
5287ad62 7034 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 7035 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5ee91343
AV
7036 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7037 register. */
c19d1205
ZW
7038 OP_oSHll, /* LSL immediate */
7039 OP_oSHar, /* ASR immediate */
7040 OP_oSHllar, /* LSL or ASR immediate */
7041 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 7042 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 7043
1b883319
AV
7044 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7045
5be8be5d
DG
7046 /* Some pre-defined mixed (ARM/THUMB) operands. */
7047 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7048 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7049 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7050
c19d1205
ZW
7051 OP_FIRST_OPTIONAL = OP_oI7b
7052};
a737bd4d 7053
c19d1205
ZW
7054/* Generic instruction operand parser. This does no encoding and no
7055 semantic validation; it merely squirrels values away in the inst
7056 structure. Returns SUCCESS or FAIL depending on whether the
7057 specified grammar matched. */
7058static int
5be8be5d 7059parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 7060{
5be8be5d 7061 unsigned const int *upat = pattern;
c19d1205
ZW
7062 char *backtrack_pos = 0;
7063 const char *backtrack_error = 0;
99aad254 7064 int i, val = 0, backtrack_index = 0;
5287ad62 7065 enum arm_reg_type rtype;
4962c51a 7066 parse_operand_result result;
5be8be5d 7067 unsigned int op_parse_code;
efd6b359 7068 bfd_boolean partial_match;
c19d1205 7069
e07e6e58
NC
7070#define po_char_or_fail(chr) \
7071 do \
7072 { \
7073 if (skip_past_char (&str, chr) == FAIL) \
477330fc 7074 goto bad_args; \
e07e6e58
NC
7075 } \
7076 while (0)
c19d1205 7077
e07e6e58
NC
7078#define po_reg_or_fail(regtype) \
7079 do \
dcbf9037 7080 { \
e07e6e58 7081 val = arm_typed_reg_parse (& str, regtype, & rtype, \
477330fc 7082 & inst.operands[i].vectype); \
e07e6e58 7083 if (val == FAIL) \
477330fc
RM
7084 { \
7085 first_error (_(reg_expected_msgs[regtype])); \
7086 goto failure; \
7087 } \
e07e6e58
NC
7088 inst.operands[i].reg = val; \
7089 inst.operands[i].isreg = 1; \
7090 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7091 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7092 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc
RM
7093 || rtype == REG_TYPE_VFD \
7094 || rtype == REG_TYPE_NQ); \
1b883319 7095 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
dcbf9037 7096 } \
e07e6e58
NC
7097 while (0)
7098
7099#define po_reg_or_goto(regtype, label) \
7100 do \
7101 { \
7102 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7103 & inst.operands[i].vectype); \
7104 if (val == FAIL) \
7105 goto label; \
dcbf9037 7106 \
e07e6e58
NC
7107 inst.operands[i].reg = val; \
7108 inst.operands[i].isreg = 1; \
7109 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7110 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7111 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc 7112 || rtype == REG_TYPE_VFD \
e07e6e58 7113 || rtype == REG_TYPE_NQ); \
1b883319 7114 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
e07e6e58
NC
7115 } \
7116 while (0)
7117
7118#define po_imm_or_fail(min, max, popt) \
7119 do \
7120 { \
7121 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7122 goto failure; \
7123 inst.operands[i].imm = val; \
7124 } \
7125 while (0)
7126
57785aa2 7127#define po_scalar_or_goto(elsz, label, reg_type) \
e07e6e58
NC
7128 do \
7129 { \
57785aa2
AV
7130 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7131 reg_type); \
e07e6e58
NC
7132 if (val == FAIL) \
7133 goto label; \
7134 inst.operands[i].reg = val; \
7135 inst.operands[i].isscalar = 1; \
7136 } \
7137 while (0)
7138
7139#define po_misc_or_fail(expr) \
7140 do \
7141 { \
7142 if (expr) \
7143 goto failure; \
7144 } \
7145 while (0)
7146
7147#define po_misc_or_fail_no_backtrack(expr) \
7148 do \
7149 { \
7150 result = expr; \
7151 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7152 backtrack_pos = 0; \
7153 if (result != PARSE_OPERAND_SUCCESS) \
7154 goto failure; \
7155 } \
7156 while (0)
4962c51a 7157
52e7f43d
RE
7158#define po_barrier_or_imm(str) \
7159 do \
7160 { \
7161 val = parse_barrier (&str); \
ccb84d65
JB
7162 if (val == FAIL && ! ISALPHA (*str)) \
7163 goto immediate; \
7164 if (val == FAIL \
7165 /* ISB can only take SY as an option. */ \
7166 || ((inst.instruction & 0xf0) == 0x60 \
7167 && val != 0xf)) \
52e7f43d 7168 { \
ccb84d65
JB
7169 inst.error = _("invalid barrier type"); \
7170 backtrack_pos = 0; \
7171 goto failure; \
52e7f43d
RE
7172 } \
7173 } \
7174 while (0)
7175
c19d1205
ZW
7176 skip_whitespace (str);
7177
7178 for (i = 0; upat[i] != OP_stop; i++)
7179 {
5be8be5d
DG
7180 op_parse_code = upat[i];
7181 if (op_parse_code >= 1<<16)
7182 op_parse_code = thumb ? (op_parse_code >> 16)
7183 : (op_parse_code & ((1<<16)-1));
7184
7185 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
7186 {
7187 /* Remember where we are in case we need to backtrack. */
c19d1205
ZW
7188 backtrack_pos = str;
7189 backtrack_error = inst.error;
7190 backtrack_index = i;
7191 }
7192
b6702015 7193 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
7194 po_char_or_fail (',');
7195
5be8be5d 7196 switch (op_parse_code)
c19d1205
ZW
7197 {
7198 /* Registers */
7199 case OP_oRRnpc:
5be8be5d 7200 case OP_oRRnpcsp:
c19d1205 7201 case OP_RRnpc:
5be8be5d 7202 case OP_RRnpcsp:
c19d1205 7203 case OP_oRR:
a302e574
AV
7204 case OP_RRe:
7205 case OP_RRo:
60f993ce
AV
7206 case OP_LR:
7207 case OP_oLR:
c19d1205
ZW
7208 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7209 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7210 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7211 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7212 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7213 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
477330fc 7214 case OP_oRND:
5ee91343
AV
7215 case OP_RNDMQR:
7216 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7217 break;
7218 try_rndmq:
7219 case OP_RNDMQ:
7220 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7221 break;
7222 try_rnd:
5287ad62 7223 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
7224 case OP_RVC:
7225 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7226 break;
7227 /* Also accept generic coprocessor regs for unknown registers. */
7228 coproc_reg:
7229 po_reg_or_fail (REG_TYPE_CN);
7230 break;
c19d1205
ZW
7231 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7232 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7233 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7234 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7235 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7236 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7237 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7238 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7239 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7240 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
477330fc 7241 case OP_oRNQ:
5ee91343
AV
7242 case OP_RNQMQ:
7243 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7244 break;
7245 try_nq:
5287ad62 7246 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
dec41383 7247 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7df54120
AV
7248 case OP_RNDQMQR:
7249 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7250 break;
7251 try_rndqmq:
5ee91343
AV
7252 case OP_oRNDQMQ:
7253 case OP_RNDQMQ:
7254 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7255 break;
7256 try_rndq:
477330fc 7257 case OP_oRNDQ:
5287ad62 7258 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
dd9634d9
AV
7259 case OP_RVSDMQ:
7260 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7261 break;
7262 try_rvsd:
477330fc 7263 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
1b883319
AV
7264 case OP_RVSD_COND:
7265 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7266 break;
477330fc
RM
7267 case OP_oRNSDQ:
7268 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5ee91343
AV
7269 case OP_RNSDQMQR:
7270 po_reg_or_goto (REG_TYPE_RN, try_mq);
7271 break;
7272 try_mq:
7273 case OP_oRNSDQMQ:
7274 case OP_RNSDQMQ:
7275 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7276 break;
7277 try_nsdq2:
7278 po_reg_or_fail (REG_TYPE_NSDQ);
7279 inst.error = 0;
7280 break;
a302e574
AV
7281 case OP_RMQ:
7282 po_reg_or_fail (REG_TYPE_MQ);
7283 break;
477330fc
RM
7284 /* Neon scalar. Using an element size of 8 means that some invalid
7285 scalars are accepted here, so deal with those in later code. */
57785aa2 7286 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
477330fc
RM
7287
7288 case OP_RNDQ_I0:
7289 {
7290 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7291 break;
7292 try_imm0:
7293 po_imm_or_fail (0, 0, TRUE);
7294 }
7295 break;
7296
7297 case OP_RVSD_I0:
7298 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7299 break;
7300
1b883319
AV
7301 case OP_RSVDMQ_FI0:
7302 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7303 break;
7304 try_rsvd_fi0:
aacf0b33
KT
7305 case OP_RSVD_FI0:
7306 {
7307 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7308 break;
7309 try_ifimm0:
7310 if (parse_ifimm_zero (&str))
7311 inst.operands[i].imm = 0;
7312 else
7313 {
7314 inst.error
7315 = _("only floating point zero is allowed as immediate value");
7316 goto failure;
7317 }
7318 }
7319 break;
7320
477330fc
RM
7321 case OP_RR_RNSC:
7322 {
57785aa2 7323 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
477330fc
RM
7324 break;
7325 try_rr:
7326 po_reg_or_fail (REG_TYPE_RN);
7327 }
7328 break;
7329
a8465a06
AV
7330 case OP_RNSDQ_RNSC_MQ_RR:
7331 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7332 break;
7333 try_rnsdq_rnsc_mq:
886e1c73
AV
7334 case OP_RNSDQ_RNSC_MQ:
7335 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7336 break;
7337 try_rnsdq_rnsc:
477330fc
RM
7338 case OP_RNSDQ_RNSC:
7339 {
57785aa2
AV
7340 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7341 inst.error = 0;
477330fc
RM
7342 break;
7343 try_nsdq:
7344 po_reg_or_fail (REG_TYPE_NSDQ);
57785aa2 7345 inst.error = 0;
477330fc
RM
7346 }
7347 break;
7348
dec41383
JW
7349 case OP_RNSD_RNSC:
7350 {
57785aa2 7351 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
dec41383
JW
7352 break;
7353 try_s_scalar:
57785aa2 7354 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
dec41383
JW
7355 break;
7356 try_nsd:
7357 po_reg_or_fail (REG_TYPE_NSD);
7358 }
7359 break;
7360
5d281bf0
AV
7361 case OP_RNDQMQ_RNSC:
7362 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7363 break;
7364 try_rndq_rnsc:
477330fc
RM
7365 case OP_RNDQ_RNSC:
7366 {
57785aa2 7367 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
477330fc
RM
7368 break;
7369 try_ndq:
7370 po_reg_or_fail (REG_TYPE_NDQ);
7371 }
7372 break;
7373
7374 case OP_RND_RNSC:
7375 {
57785aa2 7376 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
477330fc
RM
7377 break;
7378 try_vfd:
7379 po_reg_or_fail (REG_TYPE_VFD);
7380 }
7381 break;
7382
7383 case OP_VMOV:
7384 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7385 not careful then bad things might happen. */
7386 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7387 break;
7388
f601a00c
AV
7389 case OP_RNDQMQ_Ibig:
7390 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7391 break;
7392 try_rndq_ibig:
477330fc
RM
7393 case OP_RNDQ_Ibig:
7394 {
7395 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7396 break;
7397 try_immbig:
7398 /* There's a possibility of getting a 64-bit immediate here, so
7399 we need special handling. */
8335d6aa
JW
7400 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7401 == FAIL)
477330fc
RM
7402 {
7403 inst.error = _("immediate value is out of range");
7404 goto failure;
7405 }
7406 }
7407 break;
7408
7409 case OP_RNDQ_I63b:
7410 {
7411 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7412 break;
7413 try_shimm:
7414 po_imm_or_fail (0, 63, TRUE);
7415 }
7416 break;
c19d1205
ZW
7417
7418 case OP_RRnpcb:
7419 po_char_or_fail ('[');
7420 po_reg_or_fail (REG_TYPE_RN);
7421 po_char_or_fail (']');
7422 break;
a737bd4d 7423
55881a11 7424 case OP_RRnpctw:
c19d1205 7425 case OP_RRw:
b6702015 7426 case OP_oRRw:
c19d1205
ZW
7427 po_reg_or_fail (REG_TYPE_RN);
7428 if (skip_past_char (&str, '!') == SUCCESS)
7429 inst.operands[i].writeback = 1;
7430 break;
7431
7432 /* Immediates */
7433 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7434 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7435 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
477330fc 7436 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
7437 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7438 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
477330fc 7439 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 7440 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
477330fc
RM
7441 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7442 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7443 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 7444 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
7445
7446 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7447 case OP_oI7b:
7448 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7449 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7450 case OP_oI31b:
7451 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
477330fc
RM
7452 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7453 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
7454 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7455
7456 /* Immediate variants */
7457 case OP_oI255c:
7458 po_char_or_fail ('{');
7459 po_imm_or_fail (0, 255, TRUE);
7460 po_char_or_fail ('}');
7461 break;
7462
7463 case OP_I31w:
7464 /* The expression parser chokes on a trailing !, so we have
7465 to find it first and zap it. */
7466 {
7467 char *s = str;
7468 while (*s && *s != ',')
7469 s++;
7470 if (s[-1] == '!')
7471 {
7472 s[-1] = '\0';
7473 inst.operands[i].writeback = 1;
7474 }
7475 po_imm_or_fail (0, 31, TRUE);
7476 if (str == s - 1)
7477 str = s;
7478 }
7479 break;
7480
7481 /* Expressions */
7482 case OP_EXPi: EXPi:
e2b0ab59 7483 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7484 GE_OPT_PREFIX));
7485 break;
7486
7487 case OP_EXP:
e2b0ab59 7488 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7489 GE_NO_PREFIX));
7490 break;
7491
7492 case OP_EXPr: EXPr:
e2b0ab59 7493 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205 7494 GE_NO_PREFIX));
e2b0ab59 7495 if (inst.relocs[0].exp.X_op == O_symbol)
a737bd4d 7496 {
c19d1205
ZW
7497 val = parse_reloc (&str);
7498 if (val == -1)
7499 {
7500 inst.error = _("unrecognized relocation suffix");
7501 goto failure;
7502 }
7503 else if (val != BFD_RELOC_UNUSED)
7504 {
7505 inst.operands[i].imm = val;
7506 inst.operands[i].hasreloc = 1;
7507 }
a737bd4d 7508 }
c19d1205 7509 break;
a737bd4d 7510
e2b0ab59
AV
7511 case OP_EXPs:
7512 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7513 GE_NO_PREFIX));
7514 if (inst.relocs[i].exp.X_op == O_symbol)
7515 {
7516 inst.operands[i].hasreloc = 1;
7517 }
7518 else if (inst.relocs[i].exp.X_op == O_constant)
7519 {
7520 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7521 inst.operands[i].hasreloc = 0;
7522 }
7523 break;
7524
b6895b4f
PB
7525 /* Operand for MOVW or MOVT. */
7526 case OP_HALF:
7527 po_misc_or_fail (parse_half (&str));
7528 break;
7529
e07e6e58 7530 /* Register or expression. */
c19d1205
ZW
7531 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7532 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 7533
e07e6e58 7534 /* Register or immediate. */
c19d1205
ZW
7535 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7536 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 7537
c19d1205
ZW
7538 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7539 IF:
7540 if (!is_immediate_prefix (*str))
7541 goto bad_args;
7542 str++;
7543 val = parse_fpa_immediate (&str);
7544 if (val == FAIL)
7545 goto failure;
7546 /* FPA immediates are encoded as registers 8-15.
7547 parse_fpa_immediate has already applied the offset. */
7548 inst.operands[i].reg = val;
7549 inst.operands[i].isreg = 1;
7550 break;
09d92015 7551
2d447fca
JM
7552 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7553 I32z: po_imm_or_fail (0, 32, FALSE); break;
7554
e07e6e58 7555 /* Two kinds of register. */
c19d1205
ZW
7556 case OP_RIWR_RIWC:
7557 {
7558 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
7559 if (!rege
7560 || (rege->type != REG_TYPE_MMXWR
7561 && rege->type != REG_TYPE_MMXWC
7562 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
7563 {
7564 inst.error = _("iWMMXt data or control register expected");
7565 goto failure;
7566 }
7567 inst.operands[i].reg = rege->number;
7568 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7569 }
7570 break;
09d92015 7571
41adaa5c
JM
7572 case OP_RIWC_RIWG:
7573 {
7574 struct reg_entry *rege = arm_reg_parse_multi (&str);
7575 if (!rege
7576 || (rege->type != REG_TYPE_MMXWC
7577 && rege->type != REG_TYPE_MMXWCG))
7578 {
7579 inst.error = _("iWMMXt control register expected");
7580 goto failure;
7581 }
7582 inst.operands[i].reg = rege->number;
7583 inst.operands[i].isreg = 1;
7584 }
7585 break;
7586
c19d1205
ZW
7587 /* Misc */
7588 case OP_CPSF: val = parse_cps_flags (&str); break;
7589 case OP_ENDI: val = parse_endian_specifier (&str); break;
7590 case OP_oROR: val = parse_ror (&str); break;
1b883319 7591 try_cond:
c19d1205 7592 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
7593 case OP_oBARRIER_I15:
7594 po_barrier_or_imm (str); break;
7595 immediate:
7596 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
477330fc 7597 goto failure;
52e7f43d 7598 break;
c19d1205 7599
fa94de6b 7600 case OP_wPSR:
d2cd1205 7601 case OP_rPSR:
90ec0d68
MGD
7602 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7603 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7604 {
7605 inst.error = _("Banked registers are not available with this "
7606 "architecture.");
7607 goto failure;
7608 }
7609 break;
d2cd1205
JB
7610 try_psr:
7611 val = parse_psr (&str, op_parse_code == OP_wPSR);
7612 break;
037e8744 7613
32c36c3c
AV
7614 case OP_VLDR:
7615 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7616 break;
7617 try_sysreg:
7618 val = parse_sys_vldr_vstr (&str);
7619 break;
7620
477330fc
RM
7621 case OP_APSR_RR:
7622 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7623 break;
7624 try_apsr:
7625 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7626 instruction). */
7627 if (strncasecmp (str, "APSR_", 5) == 0)
7628 {
7629 unsigned found = 0;
7630 str += 5;
7631 while (found < 15)
7632 switch (*str++)
7633 {
7634 case 'c': found = (found & 1) ? 16 : found | 1; break;
7635 case 'n': found = (found & 2) ? 16 : found | 2; break;
7636 case 'z': found = (found & 4) ? 16 : found | 4; break;
7637 case 'v': found = (found & 8) ? 16 : found | 8; break;
7638 default: found = 16;
7639 }
7640 if (found != 15)
7641 goto failure;
7642 inst.operands[i].isvec = 1;
f7c21dc7
NC
7643 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7644 inst.operands[i].reg = REG_PC;
477330fc
RM
7645 }
7646 else
7647 goto failure;
7648 break;
037e8744 7649
92e90b6e
PB
7650 case OP_TB:
7651 po_misc_or_fail (parse_tb (&str));
7652 break;
7653
e07e6e58 7654 /* Register lists. */
c19d1205 7655 case OP_REGLST:
4b5a202f 7656 val = parse_reg_list (&str, REGLIST_RN);
c19d1205
ZW
7657 if (*str == '^')
7658 {
5e0d7f77 7659 inst.operands[i].writeback = 1;
c19d1205
ZW
7660 str++;
7661 }
7662 break;
09d92015 7663
4b5a202f
AV
7664 case OP_CLRMLST:
7665 val = parse_reg_list (&str, REGLIST_CLRM);
7666 break;
7667
c19d1205 7668 case OP_VRSLST:
efd6b359
AV
7669 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7670 &partial_match);
c19d1205 7671 break;
09d92015 7672
c19d1205 7673 case OP_VRDLST:
efd6b359
AV
7674 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7675 &partial_match);
c19d1205 7676 break;
a737bd4d 7677
477330fc
RM
7678 case OP_VRSDLST:
7679 /* Allow Q registers too. */
7680 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7681 REGLIST_NEON_D, &partial_match);
477330fc
RM
7682 if (val == FAIL)
7683 {
7684 inst.error = NULL;
7685 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359
AV
7686 REGLIST_VFP_S, &partial_match);
7687 inst.operands[i].issingle = 1;
7688 }
7689 break;
7690
7691 case OP_VRSDVLST:
7692 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7693 REGLIST_VFP_D_VPR, &partial_match);
7694 if (val == FAIL && !partial_match)
7695 {
7696 inst.error = NULL;
7697 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7698 REGLIST_VFP_S_VPR, &partial_match);
477330fc
RM
7699 inst.operands[i].issingle = 1;
7700 }
7701 break;
7702
7703 case OP_NRDLST:
7704 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7705 REGLIST_NEON_D, &partial_match);
477330fc 7706 break;
5287ad62 7707
35c228db
AV
7708 case OP_MSTRLST4:
7709 case OP_MSTRLST2:
7710 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7711 1, &inst.operands[i].vectype);
7712 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7713 goto failure;
7714 break;
5287ad62 7715 case OP_NSTRLST:
477330fc 7716 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
35c228db 7717 0, &inst.operands[i].vectype);
477330fc 7718 break;
5287ad62 7719
c19d1205 7720 /* Addressing modes */
35c228db
AV
7721 case OP_ADDRMVE:
7722 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7723 break;
7724
c19d1205
ZW
7725 case OP_ADDR:
7726 po_misc_or_fail (parse_address (&str, i));
7727 break;
09d92015 7728
4962c51a
MS
7729 case OP_ADDRGLDR:
7730 po_misc_or_fail_no_backtrack (
477330fc 7731 parse_address_group_reloc (&str, i, GROUP_LDR));
4962c51a
MS
7732 break;
7733
7734 case OP_ADDRGLDRS:
7735 po_misc_or_fail_no_backtrack (
477330fc 7736 parse_address_group_reloc (&str, i, GROUP_LDRS));
4962c51a
MS
7737 break;
7738
7739 case OP_ADDRGLDC:
7740 po_misc_or_fail_no_backtrack (
477330fc 7741 parse_address_group_reloc (&str, i, GROUP_LDC));
4962c51a
MS
7742 break;
7743
c19d1205
ZW
7744 case OP_SH:
7745 po_misc_or_fail (parse_shifter_operand (&str, i));
7746 break;
09d92015 7747
4962c51a
MS
7748 case OP_SHG:
7749 po_misc_or_fail_no_backtrack (
477330fc 7750 parse_shifter_operand_group_reloc (&str, i));
4962c51a
MS
7751 break;
7752
c19d1205
ZW
7753 case OP_oSHll:
7754 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7755 break;
09d92015 7756
c19d1205
ZW
7757 case OP_oSHar:
7758 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7759 break;
09d92015 7760
c19d1205
ZW
7761 case OP_oSHllar:
7762 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7763 break;
09d92015 7764
1b883319
AV
7765 case OP_RMQRZ:
7766 case OP_oRMQRZ:
7767 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7768 break;
7769 try_rr_zr:
7770 po_reg_or_goto (REG_TYPE_RN, ZR);
7771 break;
7772 ZR:
7773 po_reg_or_fail (REG_TYPE_ZR);
7774 break;
7775
c19d1205 7776 default:
5be8be5d 7777 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 7778 }
09d92015 7779
c19d1205
ZW
7780 /* Various value-based sanity checks and shared operations. We
7781 do not signal immediate failures for the register constraints;
7782 this allows a syntax error to take precedence. */
5be8be5d 7783 switch (op_parse_code)
c19d1205
ZW
7784 {
7785 case OP_oRRnpc:
7786 case OP_RRnpc:
7787 case OP_RRnpcb:
7788 case OP_RRw:
b6702015 7789 case OP_oRRw:
c19d1205
ZW
7790 case OP_RRnpc_I0:
7791 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7792 inst.error = BAD_PC;
7793 break;
09d92015 7794
5be8be5d
DG
7795 case OP_oRRnpcsp:
7796 case OP_RRnpcsp:
7797 if (inst.operands[i].isreg)
7798 {
7799 if (inst.operands[i].reg == REG_PC)
7800 inst.error = BAD_PC;
5c8ed6a4
JW
7801 else if (inst.operands[i].reg == REG_SP
7802 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7803 relaxed since ARMv8-A. */
7804 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7805 {
7806 gas_assert (thumb);
7807 inst.error = BAD_SP;
7808 }
5be8be5d
DG
7809 }
7810 break;
7811
55881a11 7812 case OP_RRnpctw:
fa94de6b
RM
7813 if (inst.operands[i].isreg
7814 && inst.operands[i].reg == REG_PC
55881a11
MGD
7815 && (inst.operands[i].writeback || thumb))
7816 inst.error = BAD_PC;
7817 break;
7818
1b883319 7819 case OP_RVSD_COND:
32c36c3c
AV
7820 case OP_VLDR:
7821 if (inst.operands[i].isreg)
7822 break;
7823 /* fall through. */
1b883319 7824
c19d1205
ZW
7825 case OP_CPSF:
7826 case OP_ENDI:
7827 case OP_oROR:
d2cd1205
JB
7828 case OP_wPSR:
7829 case OP_rPSR:
c19d1205 7830 case OP_COND:
52e7f43d 7831 case OP_oBARRIER_I15:
c19d1205 7832 case OP_REGLST:
4b5a202f 7833 case OP_CLRMLST:
c19d1205
ZW
7834 case OP_VRSLST:
7835 case OP_VRDLST:
477330fc 7836 case OP_VRSDLST:
efd6b359 7837 case OP_VRSDVLST:
477330fc
RM
7838 case OP_NRDLST:
7839 case OP_NSTRLST:
35c228db
AV
7840 case OP_MSTRLST2:
7841 case OP_MSTRLST4:
c19d1205
ZW
7842 if (val == FAIL)
7843 goto failure;
7844 inst.operands[i].imm = val;
7845 break;
a737bd4d 7846
60f993ce
AV
7847 case OP_LR:
7848 case OP_oLR:
7849 if (inst.operands[i].reg != REG_LR)
7850 inst.error = _("operand must be LR register");
7851 break;
7852
1b883319
AV
7853 case OP_RMQRZ:
7854 case OP_oRMQRZ:
7855 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7856 inst.error = BAD_PC;
7857 break;
7858
a302e574
AV
7859 case OP_RRe:
7860 if (inst.operands[i].isreg
7861 && (inst.operands[i].reg & 0x00000001) != 0)
7862 inst.error = BAD_ODD;
7863 break;
7864
7865 case OP_RRo:
7866 if (inst.operands[i].isreg)
7867 {
7868 if ((inst.operands[i].reg & 0x00000001) != 1)
7869 inst.error = BAD_EVEN;
7870 else if (inst.operands[i].reg == REG_SP)
7871 as_tsktsk (MVE_BAD_SP);
7872 else if (inst.operands[i].reg == REG_PC)
7873 inst.error = BAD_PC;
7874 }
7875 break;
7876
c19d1205
ZW
7877 default:
7878 break;
7879 }
09d92015 7880
c19d1205
ZW
7881 /* If we get here, this operand was successfully parsed. */
7882 inst.operands[i].present = 1;
7883 continue;
09d92015 7884
c19d1205 7885 bad_args:
09d92015 7886 inst.error = BAD_ARGS;
c19d1205
ZW
7887
7888 failure:
7889 if (!backtrack_pos)
d252fdde
PB
7890 {
7891 /* The parse routine should already have set inst.error, but set a
5f4273c7 7892 default here just in case. */
d252fdde 7893 if (!inst.error)
5ee91343 7894 inst.error = BAD_SYNTAX;
d252fdde
PB
7895 return FAIL;
7896 }
c19d1205
ZW
7897
7898 /* Do not backtrack over a trailing optional argument that
7899 absorbed some text. We will only fail again, with the
7900 'garbage following instruction' error message, which is
7901 probably less helpful than the current one. */
7902 if (backtrack_index == i && backtrack_pos != str
7903 && upat[i+1] == OP_stop)
d252fdde
PB
7904 {
7905 if (!inst.error)
5ee91343 7906 inst.error = BAD_SYNTAX;
d252fdde
PB
7907 return FAIL;
7908 }
c19d1205
ZW
7909
7910 /* Try again, skipping the optional argument at backtrack_pos. */
7911 str = backtrack_pos;
7912 inst.error = backtrack_error;
7913 inst.operands[backtrack_index].present = 0;
7914 i = backtrack_index;
7915 backtrack_pos = 0;
09d92015 7916 }
09d92015 7917
c19d1205
ZW
7918 /* Check that we have parsed all the arguments. */
7919 if (*str != '\0' && !inst.error)
7920 inst.error = _("garbage following instruction");
09d92015 7921
c19d1205 7922 return inst.error ? FAIL : SUCCESS;
09d92015
MM
7923}
7924
c19d1205
ZW
7925#undef po_char_or_fail
7926#undef po_reg_or_fail
7927#undef po_reg_or_goto
7928#undef po_imm_or_fail
5287ad62 7929#undef po_scalar_or_fail
52e7f43d 7930#undef po_barrier_or_imm
e07e6e58 7931
c19d1205 7932/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
7933#define constraint(expr, err) \
7934 do \
c19d1205 7935 { \
e07e6e58
NC
7936 if (expr) \
7937 { \
7938 inst.error = err; \
7939 return; \
7940 } \
c19d1205 7941 } \
e07e6e58 7942 while (0)
c19d1205 7943
fdfde340
JM
7944/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7945 instructions are unpredictable if these registers are used. This
5c8ed6a4
JW
7946 is the BadReg predicate in ARM's Thumb-2 documentation.
7947
7948 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7949 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7950#define reject_bad_reg(reg) \
7951 do \
7952 if (reg == REG_PC) \
7953 { \
7954 inst.error = BAD_PC; \
7955 return; \
7956 } \
7957 else if (reg == REG_SP \
7958 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7959 { \
7960 inst.error = BAD_SP; \
7961 return; \
7962 } \
fdfde340
JM
7963 while (0)
7964
94206790
MM
7965/* If REG is R13 (the stack pointer), warn that its use is
7966 deprecated. */
7967#define warn_deprecated_sp(reg) \
7968 do \
7969 if (warn_on_deprecated && reg == REG_SP) \
5c3696f8 7970 as_tsktsk (_("use of r13 is deprecated")); \
94206790
MM
7971 while (0)
7972
c19d1205
ZW
7973/* Functions for operand encoding. ARM, then Thumb. */
7974
d840c081 7975#define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
c19d1205 7976
9db2f6b4
RL
7977/* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7978
7979 The only binary encoding difference is the Coprocessor number. Coprocessor
7980 9 is used for half-precision calculations or conversions. The format of the
2b0f3761 7981 instruction is the same as the equivalent Coprocessor 10 instruction that
9db2f6b4
RL
7982 exists for Single-Precision operation. */
7983
7984static void
7985do_scalar_fp16_v82_encode (void)
7986{
5ee91343 7987 if (inst.cond < COND_ALWAYS)
9db2f6b4
RL
7988 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7989 " the behaviour is UNPREDICTABLE"));
7990 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7991 _(BAD_FP16));
7992
7993 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7994 mark_feature_used (&arm_ext_fp16);
7995}
7996
c19d1205
ZW
7997/* If VAL can be encoded in the immediate field of an ARM instruction,
7998 return the encoded form. Otherwise, return FAIL. */
7999
8000static unsigned int
8001encode_arm_immediate (unsigned int val)
09d92015 8002{
c19d1205
ZW
8003 unsigned int a, i;
8004
4f1d6205
L
8005 if (val <= 0xff)
8006 return val;
8007
8008 for (i = 2; i < 32; i += 2)
c19d1205
ZW
8009 if ((a = rotate_left (val, i)) <= 0xff)
8010 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8011
8012 return FAIL;
09d92015
MM
8013}
8014
c19d1205
ZW
8015/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8016 return the encoded form. Otherwise, return FAIL. */
8017static unsigned int
8018encode_thumb32_immediate (unsigned int val)
09d92015 8019{
c19d1205 8020 unsigned int a, i;
09d92015 8021
9c3c69f2 8022 if (val <= 0xff)
c19d1205 8023 return val;
a737bd4d 8024
9c3c69f2 8025 for (i = 1; i <= 24; i++)
09d92015 8026 {
9c3c69f2
PB
8027 a = val >> i;
8028 if ((val & ~(0xff << i)) == 0)
8029 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 8030 }
a737bd4d 8031
c19d1205
ZW
8032 a = val & 0xff;
8033 if (val == ((a << 16) | a))
8034 return 0x100 | a;
8035 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8036 return 0x300 | a;
09d92015 8037
c19d1205
ZW
8038 a = val & 0xff00;
8039 if (val == ((a << 16) | a))
8040 return 0x200 | (a >> 8);
a737bd4d 8041
c19d1205 8042 return FAIL;
09d92015 8043}
5287ad62 8044/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
8045
8046static void
5287ad62
JB
8047encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8048{
8049 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8050 && reg > 15)
8051 {
b1cc4aeb 8052 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
8053 {
8054 if (thumb_mode)
8055 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8056 fpu_vfp_ext_d32);
8057 else
8058 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8059 fpu_vfp_ext_d32);
8060 }
5287ad62 8061 else
477330fc
RM
8062 {
8063 first_error (_("D register out of range for selected VFP version"));
8064 return;
8065 }
5287ad62
JB
8066 }
8067
c19d1205 8068 switch (pos)
09d92015 8069 {
c19d1205
ZW
8070 case VFP_REG_Sd:
8071 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8072 break;
8073
8074 case VFP_REG_Sn:
8075 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8076 break;
8077
8078 case VFP_REG_Sm:
8079 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8080 break;
8081
5287ad62
JB
8082 case VFP_REG_Dd:
8083 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8084 break;
5f4273c7 8085
5287ad62
JB
8086 case VFP_REG_Dn:
8087 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8088 break;
5f4273c7 8089
5287ad62
JB
8090 case VFP_REG_Dm:
8091 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8092 break;
8093
c19d1205
ZW
8094 default:
8095 abort ();
09d92015 8096 }
09d92015
MM
8097}
8098
c19d1205 8099/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 8100 if any, is handled by md_apply_fix. */
09d92015 8101static void
c19d1205 8102encode_arm_shift (int i)
09d92015 8103{
008a97ef
RL
8104 /* register-shifted register. */
8105 if (inst.operands[i].immisreg)
8106 {
bf355b69
MR
8107 int op_index;
8108 for (op_index = 0; op_index <= i; ++op_index)
008a97ef 8109 {
5689c942
RL
8110 /* Check the operand only when it's presented. In pre-UAL syntax,
8111 if the destination register is the same as the first operand, two
8112 register form of the instruction can be used. */
bf355b69
MR
8113 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8114 && inst.operands[op_index].reg == REG_PC)
008a97ef
RL
8115 as_warn (UNPRED_REG ("r15"));
8116 }
8117
8118 if (inst.operands[i].imm == REG_PC)
8119 as_warn (UNPRED_REG ("r15"));
8120 }
8121
c19d1205
ZW
8122 if (inst.operands[i].shift_kind == SHIFT_RRX)
8123 inst.instruction |= SHIFT_ROR << 5;
8124 else
09d92015 8125 {
c19d1205
ZW
8126 inst.instruction |= inst.operands[i].shift_kind << 5;
8127 if (inst.operands[i].immisreg)
8128 {
8129 inst.instruction |= SHIFT_BY_REG;
8130 inst.instruction |= inst.operands[i].imm << 8;
8131 }
8132 else
e2b0ab59 8133 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 8134 }
c19d1205 8135}
09d92015 8136
c19d1205
ZW
8137static void
8138encode_arm_shifter_operand (int i)
8139{
8140 if (inst.operands[i].isreg)
09d92015 8141 {
c19d1205
ZW
8142 inst.instruction |= inst.operands[i].reg;
8143 encode_arm_shift (i);
09d92015 8144 }
c19d1205 8145 else
a415b1cd
JB
8146 {
8147 inst.instruction |= INST_IMMEDIATE;
e2b0ab59 8148 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
a415b1cd
JB
8149 inst.instruction |= inst.operands[i].imm;
8150 }
09d92015
MM
8151}
8152
c19d1205 8153/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 8154static void
c19d1205 8155encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 8156{
2b2f5df9
NC
8157 /* PR 14260:
8158 Generate an error if the operand is not a register. */
8159 constraint (!inst.operands[i].isreg,
8160 _("Instruction does not support =N addresses"));
8161
c19d1205 8162 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 8163
c19d1205 8164 if (inst.operands[i].preind)
09d92015 8165 {
c19d1205
ZW
8166 if (is_t)
8167 {
8168 inst.error = _("instruction does not accept preindexed addressing");
8169 return;
8170 }
8171 inst.instruction |= PRE_INDEX;
8172 if (inst.operands[i].writeback)
8173 inst.instruction |= WRITE_BACK;
09d92015 8174
c19d1205
ZW
8175 }
8176 else if (inst.operands[i].postind)
8177 {
9c2799c2 8178 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
8179 if (is_t)
8180 inst.instruction |= WRITE_BACK;
8181 }
8182 else /* unindexed - only for coprocessor */
09d92015 8183 {
c19d1205 8184 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
8185 return;
8186 }
8187
c19d1205
ZW
8188 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8189 && (((inst.instruction & 0x000f0000) >> 16)
8190 == ((inst.instruction & 0x0000f000) >> 12)))
8191 as_warn ((inst.instruction & LOAD_BIT)
8192 ? _("destination register same as write-back base")
8193 : _("source register same as write-back base"));
09d92015
MM
8194}
8195
c19d1205
ZW
8196/* inst.operands[i] was set up by parse_address. Encode it into an
8197 ARM-format mode 2 load or store instruction. If is_t is true,
8198 reject forms that cannot be used with a T instruction (i.e. not
8199 post-indexed). */
a737bd4d 8200static void
c19d1205 8201encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 8202{
5be8be5d
DG
8203 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8204
c19d1205 8205 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8206
c19d1205 8207 if (inst.operands[i].immisreg)
09d92015 8208 {
5be8be5d
DG
8209 constraint ((inst.operands[i].imm == REG_PC
8210 || (is_pc && inst.operands[i].writeback)),
8211 BAD_PC_ADDRESSING);
c19d1205
ZW
8212 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8213 inst.instruction |= inst.operands[i].imm;
8214 if (!inst.operands[i].negative)
8215 inst.instruction |= INDEX_UP;
8216 if (inst.operands[i].shifted)
8217 {
8218 if (inst.operands[i].shift_kind == SHIFT_RRX)
8219 inst.instruction |= SHIFT_ROR << 5;
8220 else
8221 {
8222 inst.instruction |= inst.operands[i].shift_kind << 5;
e2b0ab59 8223 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
c19d1205
ZW
8224 }
8225 }
09d92015 8226 }
e2b0ab59 8227 else /* immediate offset in inst.relocs[0] */
09d92015 8228 {
e2b0ab59 8229 if (is_pc && !inst.relocs[0].pc_rel)
5be8be5d
DG
8230 {
8231 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
8232
8233 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8234 cannot use PC in addressing.
8235 PC cannot be used in writeback addressing, either. */
8236 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 8237 BAD_PC_ADDRESSING);
23a10334 8238
dc5ec521 8239 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
8240 if (warn_on_deprecated
8241 && !is_load
8242 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
5c3696f8 8243 as_tsktsk (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
8244 }
8245
e2b0ab59 8246 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8247 {
8248 /* Prefer + for zero encoded value. */
8249 if (!inst.operands[i].negative)
8250 inst.instruction |= INDEX_UP;
e2b0ab59 8251 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
26d97720 8252 }
09d92015 8253 }
09d92015
MM
8254}
8255
c19d1205
ZW
8256/* inst.operands[i] was set up by parse_address. Encode it into an
8257 ARM-format mode 3 load or store instruction. Reject forms that
8258 cannot be used with such instructions. If is_t is true, reject
8259 forms that cannot be used with a T instruction (i.e. not
8260 post-indexed). */
8261static void
8262encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 8263{
c19d1205 8264 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 8265 {
c19d1205
ZW
8266 inst.error = _("instruction does not accept scaled register index");
8267 return;
09d92015 8268 }
a737bd4d 8269
c19d1205 8270 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8271
c19d1205
ZW
8272 if (inst.operands[i].immisreg)
8273 {
5be8be5d 8274 constraint ((inst.operands[i].imm == REG_PC
eb9f3f00 8275 || (is_t && inst.operands[i].reg == REG_PC)),
5be8be5d 8276 BAD_PC_ADDRESSING);
eb9f3f00
JB
8277 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8278 BAD_PC_WRITEBACK);
c19d1205
ZW
8279 inst.instruction |= inst.operands[i].imm;
8280 if (!inst.operands[i].negative)
8281 inst.instruction |= INDEX_UP;
8282 }
e2b0ab59 8283 else /* immediate offset in inst.relocs[0] */
c19d1205 8284 {
e2b0ab59 8285 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
5be8be5d
DG
8286 && inst.operands[i].writeback),
8287 BAD_PC_WRITEBACK);
c19d1205 8288 inst.instruction |= HWOFFSET_IMM;
e2b0ab59 8289 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8290 {
8291 /* Prefer + for zero encoded value. */
8292 if (!inst.operands[i].negative)
8293 inst.instruction |= INDEX_UP;
8294
e2b0ab59 8295 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
26d97720 8296 }
c19d1205 8297 }
a737bd4d
NC
8298}
8299
8335d6aa
JW
8300/* Write immediate bits [7:0] to the following locations:
8301
8302 |28/24|23 19|18 16|15 4|3 0|
8303 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8304
8305 This function is used by VMOV/VMVN/VORR/VBIC. */
8306
8307static void
8308neon_write_immbits (unsigned immbits)
8309{
8310 inst.instruction |= immbits & 0xf;
8311 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8312 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8313}
8314
8315/* Invert low-order SIZE bits of XHI:XLO. */
8316
8317static void
8318neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8319{
8320 unsigned immlo = xlo ? *xlo : 0;
8321 unsigned immhi = xhi ? *xhi : 0;
8322
8323 switch (size)
8324 {
8325 case 8:
8326 immlo = (~immlo) & 0xff;
8327 break;
8328
8329 case 16:
8330 immlo = (~immlo) & 0xffff;
8331 break;
8332
8333 case 64:
8334 immhi = (~immhi) & 0xffffffff;
8335 /* fall through. */
8336
8337 case 32:
8338 immlo = (~immlo) & 0xffffffff;
8339 break;
8340
8341 default:
8342 abort ();
8343 }
8344
8345 if (xlo)
8346 *xlo = immlo;
8347
8348 if (xhi)
8349 *xhi = immhi;
8350}
8351
8352/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8353 A, B, C, D. */
09d92015 8354
c19d1205 8355static int
8335d6aa 8356neon_bits_same_in_bytes (unsigned imm)
09d92015 8357{
8335d6aa
JW
8358 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8359 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8360 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8361 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8362}
a737bd4d 8363
8335d6aa 8364/* For immediate of above form, return 0bABCD. */
09d92015 8365
8335d6aa
JW
8366static unsigned
8367neon_squash_bits (unsigned imm)
8368{
8369 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8370 | ((imm & 0x01000000) >> 21);
8371}
8372
8373/* Compress quarter-float representation to 0b...000 abcdefgh. */
8374
8375static unsigned
8376neon_qfloat_bits (unsigned imm)
8377{
8378 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8379}
8380
8381/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8382 the instruction. *OP is passed as the initial value of the op field, and
8383 may be set to a different value depending on the constant (i.e.
8384 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8385 MVN). If the immediate looks like a repeated pattern then also
8386 try smaller element sizes. */
8387
8388static int
8389neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8390 unsigned *immbits, int *op, int size,
8391 enum neon_el_type type)
8392{
8393 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8394 float. */
8395 if (type == NT_float && !float_p)
8396 return FAIL;
8397
8398 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
09d92015 8399 {
8335d6aa
JW
8400 if (size != 32 || *op == 1)
8401 return FAIL;
8402 *immbits = neon_qfloat_bits (immlo);
8403 return 0xf;
8404 }
8405
8406 if (size == 64)
8407 {
8408 if (neon_bits_same_in_bytes (immhi)
8409 && neon_bits_same_in_bytes (immlo))
c19d1205 8410 {
8335d6aa
JW
8411 if (*op == 1)
8412 return FAIL;
8413 *immbits = (neon_squash_bits (immhi) << 4)
8414 | neon_squash_bits (immlo);
8415 *op = 1;
8416 return 0xe;
c19d1205 8417 }
a737bd4d 8418
8335d6aa
JW
8419 if (immhi != immlo)
8420 return FAIL;
8421 }
a737bd4d 8422
8335d6aa 8423 if (size >= 32)
09d92015 8424 {
8335d6aa 8425 if (immlo == (immlo & 0x000000ff))
c19d1205 8426 {
8335d6aa
JW
8427 *immbits = immlo;
8428 return 0x0;
c19d1205 8429 }
8335d6aa 8430 else if (immlo == (immlo & 0x0000ff00))
c19d1205 8431 {
8335d6aa
JW
8432 *immbits = immlo >> 8;
8433 return 0x2;
c19d1205 8434 }
8335d6aa
JW
8435 else if (immlo == (immlo & 0x00ff0000))
8436 {
8437 *immbits = immlo >> 16;
8438 return 0x4;
8439 }
8440 else if (immlo == (immlo & 0xff000000))
8441 {
8442 *immbits = immlo >> 24;
8443 return 0x6;
8444 }
8445 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8446 {
8447 *immbits = (immlo >> 8) & 0xff;
8448 return 0xc;
8449 }
8450 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8451 {
8452 *immbits = (immlo >> 16) & 0xff;
8453 return 0xd;
8454 }
8455
8456 if ((immlo & 0xffff) != (immlo >> 16))
8457 return FAIL;
8458 immlo &= 0xffff;
09d92015 8459 }
a737bd4d 8460
8335d6aa 8461 if (size >= 16)
4962c51a 8462 {
8335d6aa
JW
8463 if (immlo == (immlo & 0x000000ff))
8464 {
8465 *immbits = immlo;
8466 return 0x8;
8467 }
8468 else if (immlo == (immlo & 0x0000ff00))
8469 {
8470 *immbits = immlo >> 8;
8471 return 0xa;
8472 }
8473
8474 if ((immlo & 0xff) != (immlo >> 8))
8475 return FAIL;
8476 immlo &= 0xff;
4962c51a
MS
8477 }
8478
8335d6aa
JW
8479 if (immlo == (immlo & 0x000000ff))
8480 {
8481 /* Don't allow MVN with 8-bit immediate. */
8482 if (*op == 1)
8483 return FAIL;
8484 *immbits = immlo;
8485 return 0xe;
8486 }
26d97720 8487
8335d6aa 8488 return FAIL;
c19d1205 8489}
a737bd4d 8490
5fc177c8 8491#if defined BFD_HOST_64_BIT
ba592044
AM
8492/* Returns TRUE if double precision value V may be cast
8493 to single precision without loss of accuracy. */
8494
8495static bfd_boolean
5fc177c8 8496is_double_a_single (bfd_int64_t v)
ba592044 8497{
5fc177c8 8498 int exp = (int)((v >> 52) & 0x7FF);
8fe3f3d6 8499 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8500
8501 return (exp == 0 || exp == 0x7FF
8502 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8503 && (mantissa & 0x1FFFFFFFl) == 0;
8504}
8505
3739860c 8506/* Returns a double precision value casted to single precision
ba592044
AM
8507 (ignoring the least significant bits in exponent and mantissa). */
8508
8509static int
5fc177c8 8510double_to_single (bfd_int64_t v)
ba592044
AM
8511{
8512 int sign = (int) ((v >> 63) & 1l);
5fc177c8 8513 int exp = (int) ((v >> 52) & 0x7FF);
8fe3f3d6 8514 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8515
8516 if (exp == 0x7FF)
8517 exp = 0xFF;
8518 else
8519 {
8520 exp = exp - 1023 + 127;
8521 if (exp >= 0xFF)
8522 {
8523 /* Infinity. */
8524 exp = 0x7F;
8525 mantissa = 0;
8526 }
8527 else if (exp < 0)
8528 {
8529 /* No denormalized numbers. */
8530 exp = 0;
8531 mantissa = 0;
8532 }
8533 }
8534 mantissa >>= 29;
8535 return (sign << 31) | (exp << 23) | mantissa;
8536}
5fc177c8 8537#endif /* BFD_HOST_64_BIT */
ba592044 8538
8335d6aa
JW
8539enum lit_type
8540{
8541 CONST_THUMB,
8542 CONST_ARM,
8543 CONST_VEC
8544};
8545
ba592044
AM
8546static void do_vfp_nsyn_opcode (const char *);
8547
e2b0ab59 8548/* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
c19d1205
ZW
8549 Determine whether it can be performed with a move instruction; if
8550 it can, convert inst.instruction to that move instruction and
c921be7d
NC
8551 return TRUE; if it can't, convert inst.instruction to a literal-pool
8552 load and return FALSE. If this is not a valid thing to do in the
8553 current context, set inst.error and return TRUE.
a737bd4d 8554
c19d1205
ZW
8555 inst.operands[i] describes the destination register. */
8556
c921be7d 8557static bfd_boolean
8335d6aa 8558move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
c19d1205 8559{
53365c0d 8560 unsigned long tbit;
8335d6aa
JW
8561 bfd_boolean thumb_p = (t == CONST_THUMB);
8562 bfd_boolean arm_p = (t == CONST_ARM);
53365c0d
PB
8563
8564 if (thumb_p)
8565 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8566 else
8567 tbit = LOAD_BIT;
8568
8569 if ((inst.instruction & tbit) == 0)
09d92015 8570 {
c19d1205 8571 inst.error = _("invalid pseudo operation");
c921be7d 8572 return TRUE;
09d92015 8573 }
ba592044 8574
e2b0ab59
AV
8575 if (inst.relocs[0].exp.X_op != O_constant
8576 && inst.relocs[0].exp.X_op != O_symbol
8577 && inst.relocs[0].exp.X_op != O_big)
09d92015
MM
8578 {
8579 inst.error = _("constant expression expected");
c921be7d 8580 return TRUE;
09d92015 8581 }
ba592044 8582
e2b0ab59
AV
8583 if (inst.relocs[0].exp.X_op == O_constant
8584 || inst.relocs[0].exp.X_op == O_big)
8335d6aa 8585 {
5fc177c8
NC
8586#if defined BFD_HOST_64_BIT
8587 bfd_int64_t v;
8588#else
ba592044 8589 offsetT v;
5fc177c8 8590#endif
e2b0ab59 8591 if (inst.relocs[0].exp.X_op == O_big)
8335d6aa 8592 {
ba592044
AM
8593 LITTLENUM_TYPE w[X_PRECISION];
8594 LITTLENUM_TYPE * l;
8595
e2b0ab59 8596 if (inst.relocs[0].exp.X_add_number == -1)
8335d6aa 8597 {
ba592044
AM
8598 gen_to_words (w, X_PRECISION, E_PRECISION);
8599 l = w;
8600 /* FIXME: Should we check words w[2..5] ? */
8335d6aa 8601 }
ba592044
AM
8602 else
8603 l = generic_bignum;
3739860c 8604
5fc177c8
NC
8605#if defined BFD_HOST_64_BIT
8606 v =
8607 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8608 << LITTLENUM_NUMBER_OF_BITS)
8609 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8610 << LITTLENUM_NUMBER_OF_BITS)
8611 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8612 << LITTLENUM_NUMBER_OF_BITS)
8613 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8614#else
ba592044
AM
8615 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8616 | (l[0] & LITTLENUM_MASK);
5fc177c8 8617#endif
8335d6aa 8618 }
ba592044 8619 else
e2b0ab59 8620 v = inst.relocs[0].exp.X_add_number;
ba592044
AM
8621
8622 if (!inst.operands[i].issingle)
8335d6aa 8623 {
12569877 8624 if (thumb_p)
8335d6aa 8625 {
53445554
TP
8626 /* LDR should not use lead in a flag-setting instruction being
8627 chosen so we do not check whether movs can be used. */
12569877 8628
53445554 8629 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
ff8646ee 8630 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
53445554
TP
8631 && inst.operands[i].reg != 13
8632 && inst.operands[i].reg != 15)
12569877 8633 {
fc289b0a
TP
8634 /* Check if on thumb2 it can be done with a mov.w, mvn or
8635 movw instruction. */
12569877
AM
8636 unsigned int newimm;
8637 bfd_boolean isNegated;
8638
8639 newimm = encode_thumb32_immediate (v);
8640 if (newimm != (unsigned int) FAIL)
8641 isNegated = FALSE;
8642 else
8643 {
582cfe03 8644 newimm = encode_thumb32_immediate (~v);
12569877
AM
8645 if (newimm != (unsigned int) FAIL)
8646 isNegated = TRUE;
8647 }
8648
fc289b0a
TP
8649 /* The number can be loaded with a mov.w or mvn
8650 instruction. */
ff8646ee
TP
8651 if (newimm != (unsigned int) FAIL
8652 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
12569877 8653 {
fc289b0a 8654 inst.instruction = (0xf04f0000 /* MOV.W. */
582cfe03 8655 | (inst.operands[i].reg << 8));
fc289b0a 8656 /* Change to MOVN. */
582cfe03 8657 inst.instruction |= (isNegated ? 0x200000 : 0);
12569877
AM
8658 inst.instruction |= (newimm & 0x800) << 15;
8659 inst.instruction |= (newimm & 0x700) << 4;
8660 inst.instruction |= (newimm & 0x0ff);
8661 return TRUE;
8662 }
fc289b0a 8663 /* The number can be loaded with a movw instruction. */
ff8646ee
TP
8664 else if ((v & ~0xFFFF) == 0
8665 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
3739860c 8666 {
582cfe03 8667 int imm = v & 0xFFFF;
12569877 8668
582cfe03 8669 inst.instruction = 0xf2400000; /* MOVW. */
12569877
AM
8670 inst.instruction |= (inst.operands[i].reg << 8);
8671 inst.instruction |= (imm & 0xf000) << 4;
8672 inst.instruction |= (imm & 0x0800) << 15;
8673 inst.instruction |= (imm & 0x0700) << 4;
8674 inst.instruction |= (imm & 0x00ff);
8675 return TRUE;
8676 }
8677 }
8335d6aa 8678 }
12569877 8679 else if (arm_p)
ba592044
AM
8680 {
8681 int value = encode_arm_immediate (v);
12569877 8682
ba592044
AM
8683 if (value != FAIL)
8684 {
8685 /* This can be done with a mov instruction. */
8686 inst.instruction &= LITERAL_MASK;
8687 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8688 inst.instruction |= value & 0xfff;
8689 return TRUE;
8690 }
8335d6aa 8691
ba592044
AM
8692 value = encode_arm_immediate (~ v);
8693 if (value != FAIL)
8694 {
8695 /* This can be done with a mvn instruction. */
8696 inst.instruction &= LITERAL_MASK;
8697 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8698 inst.instruction |= value & 0xfff;
8699 return TRUE;
8700 }
8701 }
934c2632 8702 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8335d6aa 8703 {
ba592044
AM
8704 int op = 0;
8705 unsigned immbits = 0;
8706 unsigned immlo = inst.operands[1].imm;
8707 unsigned immhi = inst.operands[1].regisimm
8708 ? inst.operands[1].reg
e2b0ab59 8709 : inst.relocs[0].exp.X_unsigned
ba592044
AM
8710 ? 0
8711 : ((bfd_int64_t)((int) immlo)) >> 32;
8712 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8713 &op, 64, NT_invtype);
8714
8715 if (cmode == FAIL)
8716 {
8717 neon_invert_size (&immlo, &immhi, 64);
8718 op = !op;
8719 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8720 &op, 64, NT_invtype);
8721 }
8722
8723 if (cmode != FAIL)
8724 {
8725 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8726 | (1 << 23)
8727 | (cmode << 8)
8728 | (op << 5)
8729 | (1 << 4);
8730
8731 /* Fill other bits in vmov encoding for both thumb and arm. */
8732 if (thumb_mode)
eff0bc54 8733 inst.instruction |= (0x7U << 29) | (0xF << 24);
ba592044 8734 else
eff0bc54 8735 inst.instruction |= (0xFU << 28) | (0x1 << 25);
ba592044
AM
8736 neon_write_immbits (immbits);
8737 return TRUE;
8738 }
8335d6aa
JW
8739 }
8740 }
8335d6aa 8741
ba592044
AM
8742 if (t == CONST_VEC)
8743 {
8744 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8745 if (inst.operands[i].issingle
8746 && is_quarter_float (inst.operands[1].imm)
8747 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8335d6aa 8748 {
ba592044
AM
8749 inst.operands[1].imm =
8750 neon_qfloat_bits (v);
8751 do_vfp_nsyn_opcode ("fconsts");
8752 return TRUE;
8335d6aa 8753 }
5fc177c8
NC
8754
8755 /* If our host does not support a 64-bit type then we cannot perform
8756 the following optimization. This mean that there will be a
8757 discrepancy between the output produced by an assembler built for
8758 a 32-bit-only host and the output produced from a 64-bit host, but
8759 this cannot be helped. */
8760#if defined BFD_HOST_64_BIT
ba592044
AM
8761 else if (!inst.operands[1].issingle
8762 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8335d6aa 8763 {
ba592044
AM
8764 if (is_double_a_single (v)
8765 && is_quarter_float (double_to_single (v)))
8766 {
8767 inst.operands[1].imm =
8768 neon_qfloat_bits (double_to_single (v));
8769 do_vfp_nsyn_opcode ("fconstd");
8770 return TRUE;
8771 }
8335d6aa 8772 }
5fc177c8 8773#endif
8335d6aa
JW
8774 }
8775 }
8776
8777 if (add_to_lit_pool ((!inst.operands[i].isvec
8778 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8779 return TRUE;
8780
8781 inst.operands[1].reg = REG_PC;
8782 inst.operands[1].isreg = 1;
8783 inst.operands[1].preind = 1;
e2b0ab59
AV
8784 inst.relocs[0].pc_rel = 1;
8785 inst.relocs[0].type = (thumb_p
8335d6aa
JW
8786 ? BFD_RELOC_ARM_THUMB_OFFSET
8787 : (mode_3
8788 ? BFD_RELOC_ARM_HWLITERAL
8789 : BFD_RELOC_ARM_LITERAL));
8790 return FALSE;
8791}
8792
8793/* inst.operands[i] was set up by parse_address. Encode it into an
8794 ARM-format instruction. Reject all forms which cannot be encoded
8795 into a coprocessor load/store instruction. If wb_ok is false,
8796 reject use of writeback; if unind_ok is false, reject use of
8797 unindexed addressing. If reloc_override is not 0, use it instead
8798 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8799 (in which case it is preserved). */
8800
8801static int
8802encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8803{
8804 if (!inst.operands[i].isreg)
8805 {
99b2a2dd
NC
8806 /* PR 18256 */
8807 if (! inst.operands[0].isvec)
8808 {
8809 inst.error = _("invalid co-processor operand");
8810 return FAIL;
8811 }
8335d6aa
JW
8812 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8813 return SUCCESS;
8814 }
8815
8816 inst.instruction |= inst.operands[i].reg << 16;
8817
8818 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8819
8820 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8821 {
8822 gas_assert (!inst.operands[i].writeback);
8823 if (!unind_ok)
8824 {
8825 inst.error = _("instruction does not support unindexed addressing");
8826 return FAIL;
8827 }
8828 inst.instruction |= inst.operands[i].imm;
8829 inst.instruction |= INDEX_UP;
8830 return SUCCESS;
8831 }
8832
8833 if (inst.operands[i].preind)
8834 inst.instruction |= PRE_INDEX;
8835
8836 if (inst.operands[i].writeback)
09d92015 8837 {
8335d6aa 8838 if (inst.operands[i].reg == REG_PC)
c19d1205 8839 {
8335d6aa
JW
8840 inst.error = _("pc may not be used with write-back");
8841 return FAIL;
c19d1205 8842 }
8335d6aa 8843 if (!wb_ok)
c19d1205 8844 {
8335d6aa
JW
8845 inst.error = _("instruction does not support writeback");
8846 return FAIL;
c19d1205 8847 }
8335d6aa 8848 inst.instruction |= WRITE_BACK;
09d92015
MM
8849 }
8850
8335d6aa 8851 if (reloc_override)
e2b0ab59
AV
8852 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8853 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8854 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8855 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
c19d1205 8856 {
8335d6aa 8857 if (thumb_mode)
e2b0ab59 8858 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8335d6aa 8859 else
e2b0ab59 8860 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
c19d1205 8861 }
8335d6aa
JW
8862
8863 /* Prefer + for zero encoded value. */
8864 if (!inst.operands[i].negative)
8865 inst.instruction |= INDEX_UP;
8866
8867 return SUCCESS;
09d92015
MM
8868}
8869
5f4273c7 8870/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
8871 First some generics; their names are taken from the conventional
8872 bit positions for register arguments in ARM format instructions. */
09d92015 8873
a737bd4d 8874static void
c19d1205 8875do_noargs (void)
09d92015 8876{
c19d1205 8877}
a737bd4d 8878
c19d1205
ZW
8879static void
8880do_rd (void)
8881{
8882 inst.instruction |= inst.operands[0].reg << 12;
8883}
a737bd4d 8884
16a1fa25
TP
8885static void
8886do_rn (void)
8887{
8888 inst.instruction |= inst.operands[0].reg << 16;
8889}
8890
c19d1205
ZW
8891static void
8892do_rd_rm (void)
8893{
8894 inst.instruction |= inst.operands[0].reg << 12;
8895 inst.instruction |= inst.operands[1].reg;
8896}
09d92015 8897
9eb6c0f1
MGD
8898static void
8899do_rm_rn (void)
8900{
8901 inst.instruction |= inst.operands[0].reg;
8902 inst.instruction |= inst.operands[1].reg << 16;
8903}
8904
c19d1205
ZW
8905static void
8906do_rd_rn (void)
8907{
8908 inst.instruction |= inst.operands[0].reg << 12;
8909 inst.instruction |= inst.operands[1].reg << 16;
8910}
a737bd4d 8911
c19d1205
ZW
8912static void
8913do_rn_rd (void)
8914{
8915 inst.instruction |= inst.operands[0].reg << 16;
8916 inst.instruction |= inst.operands[1].reg << 12;
8917}
09d92015 8918
4ed7ed8d
TP
8919static void
8920do_tt (void)
8921{
8922 inst.instruction |= inst.operands[0].reg << 8;
8923 inst.instruction |= inst.operands[1].reg << 16;
8924}
8925
59d09be6
MGD
8926static bfd_boolean
8927check_obsolete (const arm_feature_set *feature, const char *msg)
8928{
8929 if (ARM_CPU_IS_ANY (cpu_variant))
8930 {
5c3696f8 8931 as_tsktsk ("%s", msg);
59d09be6
MGD
8932 return TRUE;
8933 }
8934 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8935 {
8936 as_bad ("%s", msg);
8937 return TRUE;
8938 }
8939
8940 return FALSE;
8941}
8942
c19d1205
ZW
8943static void
8944do_rd_rm_rn (void)
8945{
9a64e435 8946 unsigned Rn = inst.operands[2].reg;
708587a4 8947 /* Enforce restrictions on SWP instruction. */
9a64e435 8948 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
8949 {
8950 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8951 _("Rn must not overlap other operands"));
8952
59d09be6
MGD
8953 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8954 */
8955 if (!check_obsolete (&arm_ext_v8,
8956 _("swp{b} use is obsoleted for ARMv8 and later"))
8957 && warn_on_deprecated
8958 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
5c3696f8 8959 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 8960 }
59d09be6 8961
c19d1205
ZW
8962 inst.instruction |= inst.operands[0].reg << 12;
8963 inst.instruction |= inst.operands[1].reg;
9a64e435 8964 inst.instruction |= Rn << 16;
c19d1205 8965}
09d92015 8966
c19d1205
ZW
8967static void
8968do_rd_rn_rm (void)
8969{
8970 inst.instruction |= inst.operands[0].reg << 12;
8971 inst.instruction |= inst.operands[1].reg << 16;
8972 inst.instruction |= inst.operands[2].reg;
8973}
a737bd4d 8974
c19d1205
ZW
8975static void
8976do_rm_rd_rn (void)
8977{
5be8be5d 8978 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
e2b0ab59
AV
8979 constraint (((inst.relocs[0].exp.X_op != O_constant
8980 && inst.relocs[0].exp.X_op != O_illegal)
8981 || inst.relocs[0].exp.X_add_number != 0),
5be8be5d 8982 BAD_ADDR_MODE);
c19d1205
ZW
8983 inst.instruction |= inst.operands[0].reg;
8984 inst.instruction |= inst.operands[1].reg << 12;
8985 inst.instruction |= inst.operands[2].reg << 16;
8986}
09d92015 8987
c19d1205
ZW
8988static void
8989do_imm0 (void)
8990{
8991 inst.instruction |= inst.operands[0].imm;
8992}
09d92015 8993
c19d1205
ZW
8994static void
8995do_rd_cpaddr (void)
8996{
8997 inst.instruction |= inst.operands[0].reg << 12;
8998 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 8999}
a737bd4d 9000
c19d1205
ZW
9001/* ARM instructions, in alphabetical order by function name (except
9002 that wrapper functions appear immediately after the function they
9003 wrap). */
09d92015 9004
c19d1205
ZW
9005/* This is a pseudo-op of the form "adr rd, label" to be converted
9006 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
9007
9008static void
c19d1205 9009do_adr (void)
09d92015 9010{
c19d1205 9011 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9012
c19d1205
ZW
9013 /* Frag hacking will turn this into a sub instruction if the offset turns
9014 out to be negative. */
e2b0ab59
AV
9015 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9016 inst.relocs[0].pc_rel = 1;
9017 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9018
fc6141f0 9019 if (support_interwork
e2b0ab59
AV
9020 && inst.relocs[0].exp.X_op == O_symbol
9021 && inst.relocs[0].exp.X_add_symbol != NULL
9022 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9023 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9024 inst.relocs[0].exp.X_add_number |= 1;
c19d1205 9025}
b99bd4ef 9026
c19d1205
ZW
9027/* This is a pseudo-op of the form "adrl rd, label" to be converted
9028 into a relative address of the form:
9029 add rd, pc, #low(label-.-8)"
9030 add rd, rd, #high(label-.-8)" */
b99bd4ef 9031
c19d1205
ZW
9032static void
9033do_adrl (void)
9034{
9035 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9036
c19d1205
ZW
9037 /* Frag hacking will turn this into a sub instruction if the offset turns
9038 out to be negative. */
e2b0ab59
AV
9039 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9040 inst.relocs[0].pc_rel = 1;
c19d1205 9041 inst.size = INSN_SIZE * 2;
e2b0ab59 9042 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9043
fc6141f0 9044 if (support_interwork
e2b0ab59
AV
9045 && inst.relocs[0].exp.X_op == O_symbol
9046 && inst.relocs[0].exp.X_add_symbol != NULL
9047 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9048 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9049 inst.relocs[0].exp.X_add_number |= 1;
b99bd4ef
NC
9050}
9051
b99bd4ef 9052static void
c19d1205 9053do_arit (void)
b99bd4ef 9054{
e2b0ab59
AV
9055 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9056 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9057 THUMB1_RELOC_ONLY);
c19d1205
ZW
9058 if (!inst.operands[1].present)
9059 inst.operands[1].reg = inst.operands[0].reg;
9060 inst.instruction |= inst.operands[0].reg << 12;
9061 inst.instruction |= inst.operands[1].reg << 16;
9062 encode_arm_shifter_operand (2);
9063}
b99bd4ef 9064
62b3e311
PB
9065static void
9066do_barrier (void)
9067{
9068 if (inst.operands[0].present)
ccb84d65 9069 inst.instruction |= inst.operands[0].imm;
62b3e311
PB
9070 else
9071 inst.instruction |= 0xf;
9072}
9073
c19d1205
ZW
9074static void
9075do_bfc (void)
9076{
9077 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9078 constraint (msb > 32, _("bit-field extends past end of register"));
9079 /* The instruction encoding stores the LSB and MSB,
9080 not the LSB and width. */
9081 inst.instruction |= inst.operands[0].reg << 12;
9082 inst.instruction |= inst.operands[1].imm << 7;
9083 inst.instruction |= (msb - 1) << 16;
9084}
b99bd4ef 9085
c19d1205
ZW
9086static void
9087do_bfi (void)
9088{
9089 unsigned int msb;
b99bd4ef 9090
c19d1205
ZW
9091 /* #0 in second position is alternative syntax for bfc, which is
9092 the same instruction but with REG_PC in the Rm field. */
9093 if (!inst.operands[1].isreg)
9094 inst.operands[1].reg = REG_PC;
b99bd4ef 9095
c19d1205
ZW
9096 msb = inst.operands[2].imm + inst.operands[3].imm;
9097 constraint (msb > 32, _("bit-field extends past end of register"));
9098 /* The instruction encoding stores the LSB and MSB,
9099 not the LSB and width. */
9100 inst.instruction |= inst.operands[0].reg << 12;
9101 inst.instruction |= inst.operands[1].reg;
9102 inst.instruction |= inst.operands[2].imm << 7;
9103 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
9104}
9105
b99bd4ef 9106static void
c19d1205 9107do_bfx (void)
b99bd4ef 9108{
c19d1205
ZW
9109 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9110 _("bit-field extends past end of register"));
9111 inst.instruction |= inst.operands[0].reg << 12;
9112 inst.instruction |= inst.operands[1].reg;
9113 inst.instruction |= inst.operands[2].imm << 7;
9114 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9115}
09d92015 9116
c19d1205
ZW
9117/* ARM V5 breakpoint instruction (argument parse)
9118 BKPT <16 bit unsigned immediate>
9119 Instruction is not conditional.
9120 The bit pattern given in insns[] has the COND_ALWAYS condition,
9121 and it is an error if the caller tried to override that. */
b99bd4ef 9122
c19d1205
ZW
9123static void
9124do_bkpt (void)
9125{
9126 /* Top 12 of 16 bits to bits 19:8. */
9127 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 9128
c19d1205
ZW
9129 /* Bottom 4 of 16 bits to bits 3:0. */
9130 inst.instruction |= inst.operands[0].imm & 0xf;
9131}
09d92015 9132
c19d1205
ZW
9133static void
9134encode_branch (int default_reloc)
9135{
9136 if (inst.operands[0].hasreloc)
9137 {
0855e32b
NS
9138 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9139 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9140 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
e2b0ab59 9141 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
0855e32b
NS
9142 ? BFD_RELOC_ARM_PLT32
9143 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 9144 }
b99bd4ef 9145 else
e2b0ab59
AV
9146 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9147 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
9148}
9149
b99bd4ef 9150static void
c19d1205 9151do_branch (void)
b99bd4ef 9152{
39b41c9c
PB
9153#ifdef OBJ_ELF
9154 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9155 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9156 else
9157#endif
9158 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9159}
9160
9161static void
9162do_bl (void)
9163{
9164#ifdef OBJ_ELF
9165 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9166 {
9167 if (inst.cond == COND_ALWAYS)
9168 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9169 else
9170 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9171 }
9172 else
9173#endif
9174 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 9175}
b99bd4ef 9176
c19d1205
ZW
9177/* ARM V5 branch-link-exchange instruction (argument parse)
9178 BLX <target_addr> ie BLX(1)
9179 BLX{<condition>} <Rm> ie BLX(2)
9180 Unfortunately, there are two different opcodes for this mnemonic.
9181 So, the insns[].value is not used, and the code here zaps values
9182 into inst.instruction.
9183 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 9184
c19d1205
ZW
9185static void
9186do_blx (void)
9187{
9188 if (inst.operands[0].isreg)
b99bd4ef 9189 {
c19d1205
ZW
9190 /* Arg is a register; the opcode provided by insns[] is correct.
9191 It is not illegal to do "blx pc", just useless. */
9192 if (inst.operands[0].reg == REG_PC)
9193 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 9194
c19d1205
ZW
9195 inst.instruction |= inst.operands[0].reg;
9196 }
9197 else
b99bd4ef 9198 {
c19d1205 9199 /* Arg is an address; this instruction cannot be executed
267bf995
RR
9200 conditionally, and the opcode must be adjusted.
9201 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9202 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 9203 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 9204 inst.instruction = 0xfa000000;
267bf995 9205 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 9206 }
c19d1205
ZW
9207}
9208
9209static void
9210do_bx (void)
9211{
845b51d6
PB
9212 bfd_boolean want_reloc;
9213
c19d1205
ZW
9214 if (inst.operands[0].reg == REG_PC)
9215 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 9216
c19d1205 9217 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
9218 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9219 it is for ARMv4t or earlier. */
9220 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
4d354d8b
TP
9221 if (!ARM_FEATURE_ZERO (selected_object_arch)
9222 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
845b51d6
PB
9223 want_reloc = TRUE;
9224
5ad34203 9225#ifdef OBJ_ELF
845b51d6 9226 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 9227#endif
584206db 9228 want_reloc = FALSE;
845b51d6
PB
9229
9230 if (want_reloc)
e2b0ab59 9231 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
09d92015
MM
9232}
9233
c19d1205
ZW
9234
9235/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
9236
9237static void
c19d1205 9238do_bxj (void)
a737bd4d 9239{
c19d1205
ZW
9240 if (inst.operands[0].reg == REG_PC)
9241 as_tsktsk (_("use of r15 in bxj is not really useful"));
9242
9243 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
9244}
9245
c19d1205
ZW
9246/* Co-processor data operation:
9247 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9248 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9249static void
9250do_cdp (void)
9251{
9252 inst.instruction |= inst.operands[0].reg << 8;
9253 inst.instruction |= inst.operands[1].imm << 20;
9254 inst.instruction |= inst.operands[2].reg << 12;
9255 inst.instruction |= inst.operands[3].reg << 16;
9256 inst.instruction |= inst.operands[4].reg;
9257 inst.instruction |= inst.operands[5].imm << 5;
9258}
a737bd4d
NC
9259
9260static void
c19d1205 9261do_cmp (void)
a737bd4d 9262{
c19d1205
ZW
9263 inst.instruction |= inst.operands[0].reg << 16;
9264 encode_arm_shifter_operand (1);
a737bd4d
NC
9265}
9266
c19d1205
ZW
9267/* Transfer between coprocessor and ARM registers.
9268 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9269 MRC2
9270 MCR{cond}
9271 MCR2
9272
9273 No special properties. */
09d92015 9274
dcbd0d71
MGD
9275struct deprecated_coproc_regs_s
9276{
9277 unsigned cp;
9278 int opc1;
9279 unsigned crn;
9280 unsigned crm;
9281 int opc2;
9282 arm_feature_set deprecated;
9283 arm_feature_set obsoleted;
9284 const char *dep_msg;
9285 const char *obs_msg;
9286};
9287
9288#define DEPR_ACCESS_V8 \
9289 N_("This coprocessor register access is deprecated in ARMv8")
9290
9291/* Table of all deprecated coprocessor registers. */
9292static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9293{
9294 {15, 0, 7, 10, 5, /* CP15DMB. */
823d2571 9295 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9296 DEPR_ACCESS_V8, NULL},
9297 {15, 0, 7, 10, 4, /* CP15DSB. */
823d2571 9298 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9299 DEPR_ACCESS_V8, NULL},
9300 {15, 0, 7, 5, 4, /* CP15ISB. */
823d2571 9301 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9302 DEPR_ACCESS_V8, NULL},
9303 {14, 6, 1, 0, 0, /* TEEHBR. */
823d2571 9304 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9305 DEPR_ACCESS_V8, NULL},
9306 {14, 6, 0, 0, 0, /* TEECR. */
823d2571 9307 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9308 DEPR_ACCESS_V8, NULL},
9309};
9310
9311#undef DEPR_ACCESS_V8
9312
9313static const size_t deprecated_coproc_reg_count =
9314 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9315
09d92015 9316static void
c19d1205 9317do_co_reg (void)
09d92015 9318{
fdfde340 9319 unsigned Rd;
dcbd0d71 9320 size_t i;
fdfde340
JM
9321
9322 Rd = inst.operands[2].reg;
9323 if (thumb_mode)
9324 {
9325 if (inst.instruction == 0xee000010
9326 || inst.instruction == 0xfe000010)
9327 /* MCR, MCR2 */
9328 reject_bad_reg (Rd);
5c8ed6a4 9329 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
fdfde340
JM
9330 /* MRC, MRC2 */
9331 constraint (Rd == REG_SP, BAD_SP);
9332 }
9333 else
9334 {
9335 /* MCR */
9336 if (inst.instruction == 0xe000010)
9337 constraint (Rd == REG_PC, BAD_PC);
9338 }
9339
dcbd0d71
MGD
9340 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9341 {
9342 const struct deprecated_coproc_regs_s *r =
9343 deprecated_coproc_regs + i;
9344
9345 if (inst.operands[0].reg == r->cp
9346 && inst.operands[1].imm == r->opc1
9347 && inst.operands[3].reg == r->crn
9348 && inst.operands[4].reg == r->crm
9349 && inst.operands[5].imm == r->opc2)
9350 {
b10bf8c5 9351 if (! ARM_CPU_IS_ANY (cpu_variant)
477330fc 9352 && warn_on_deprecated
dcbd0d71 9353 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
5c3696f8 9354 as_tsktsk ("%s", r->dep_msg);
dcbd0d71
MGD
9355 }
9356 }
fdfde340 9357
c19d1205
ZW
9358 inst.instruction |= inst.operands[0].reg << 8;
9359 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 9360 inst.instruction |= Rd << 12;
c19d1205
ZW
9361 inst.instruction |= inst.operands[3].reg << 16;
9362 inst.instruction |= inst.operands[4].reg;
9363 inst.instruction |= inst.operands[5].imm << 5;
9364}
09d92015 9365
c19d1205
ZW
9366/* Transfer between coprocessor register and pair of ARM registers.
9367 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9368 MCRR2
9369 MRRC{cond}
9370 MRRC2
b99bd4ef 9371
c19d1205 9372 Two XScale instructions are special cases of these:
09d92015 9373
c19d1205
ZW
9374 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9375 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 9376
5f4273c7 9377 Result unpredictable if Rd or Rn is R15. */
a737bd4d 9378
c19d1205
ZW
9379static void
9380do_co_reg2c (void)
9381{
fdfde340
JM
9382 unsigned Rd, Rn;
9383
9384 Rd = inst.operands[2].reg;
9385 Rn = inst.operands[3].reg;
9386
9387 if (thumb_mode)
9388 {
9389 reject_bad_reg (Rd);
9390 reject_bad_reg (Rn);
9391 }
9392 else
9393 {
9394 constraint (Rd == REG_PC, BAD_PC);
9395 constraint (Rn == REG_PC, BAD_PC);
9396 }
9397
873f10f0
TC
9398 /* Only check the MRRC{2} variants. */
9399 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9400 {
9401 /* If Rd == Rn, error that the operation is
9402 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9403 constraint (Rd == Rn, BAD_OVERLAP);
9404 }
9405
c19d1205
ZW
9406 inst.instruction |= inst.operands[0].reg << 8;
9407 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
9408 inst.instruction |= Rd << 12;
9409 inst.instruction |= Rn << 16;
c19d1205 9410 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
9411}
9412
c19d1205
ZW
9413static void
9414do_cpsi (void)
9415{
9416 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
9417 if (inst.operands[1].present)
9418 {
9419 inst.instruction |= CPSI_MMOD;
9420 inst.instruction |= inst.operands[1].imm;
9421 }
c19d1205 9422}
b99bd4ef 9423
62b3e311
PB
9424static void
9425do_dbg (void)
9426{
9427 inst.instruction |= inst.operands[0].imm;
9428}
9429
eea54501
MGD
9430static void
9431do_div (void)
9432{
9433 unsigned Rd, Rn, Rm;
9434
9435 Rd = inst.operands[0].reg;
9436 Rn = (inst.operands[1].present
9437 ? inst.operands[1].reg : Rd);
9438 Rm = inst.operands[2].reg;
9439
9440 constraint ((Rd == REG_PC), BAD_PC);
9441 constraint ((Rn == REG_PC), BAD_PC);
9442 constraint ((Rm == REG_PC), BAD_PC);
9443
9444 inst.instruction |= Rd << 16;
9445 inst.instruction |= Rn << 0;
9446 inst.instruction |= Rm << 8;
9447}
9448
b99bd4ef 9449static void
c19d1205 9450do_it (void)
b99bd4ef 9451{
c19d1205 9452 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
9453 process it to do the validation as if in
9454 thumb mode, just in case the code gets
9455 assembled for thumb using the unified syntax. */
9456
c19d1205 9457 inst.size = 0;
e07e6e58
NC
9458 if (unified_syntax)
9459 {
5ee91343
AV
9460 set_pred_insn_type (IT_INSN);
9461 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9462 now_pred.cc = inst.operands[0].imm;
e07e6e58 9463 }
09d92015 9464}
b99bd4ef 9465
6530b175
NC
9466/* If there is only one register in the register list,
9467 then return its register number. Otherwise return -1. */
9468static int
9469only_one_reg_in_list (int range)
9470{
9471 int i = ffs (range) - 1;
9472 return (i > 15 || range != (1 << i)) ? -1 : i;
9473}
9474
09d92015 9475static void
6530b175 9476encode_ldmstm(int from_push_pop_mnem)
ea6ef066 9477{
c19d1205
ZW
9478 int base_reg = inst.operands[0].reg;
9479 int range = inst.operands[1].imm;
6530b175 9480 int one_reg;
ea6ef066 9481
c19d1205
ZW
9482 inst.instruction |= base_reg << 16;
9483 inst.instruction |= range;
ea6ef066 9484
c19d1205
ZW
9485 if (inst.operands[1].writeback)
9486 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 9487
c19d1205 9488 if (inst.operands[0].writeback)
ea6ef066 9489 {
c19d1205
ZW
9490 inst.instruction |= WRITE_BACK;
9491 /* Check for unpredictable uses of writeback. */
9492 if (inst.instruction & LOAD_BIT)
09d92015 9493 {
c19d1205
ZW
9494 /* Not allowed in LDM type 2. */
9495 if ((inst.instruction & LDM_TYPE_2_OR_3)
9496 && ((range & (1 << REG_PC)) == 0))
9497 as_warn (_("writeback of base register is UNPREDICTABLE"));
9498 /* Only allowed if base reg not in list for other types. */
9499 else if (range & (1 << base_reg))
9500 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9501 }
9502 else /* STM. */
9503 {
9504 /* Not allowed for type 2. */
9505 if (inst.instruction & LDM_TYPE_2_OR_3)
9506 as_warn (_("writeback of base register is UNPREDICTABLE"));
9507 /* Only allowed if base reg not in list, or first in list. */
9508 else if ((range & (1 << base_reg))
9509 && (range & ((1 << base_reg) - 1)))
9510 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 9511 }
ea6ef066 9512 }
6530b175
NC
9513
9514 /* If PUSH/POP has only one register, then use the A2 encoding. */
9515 one_reg = only_one_reg_in_list (range);
9516 if (from_push_pop_mnem && one_reg >= 0)
9517 {
9518 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9519
4f588891
NC
9520 if (is_push && one_reg == 13 /* SP */)
9521 /* PR 22483: The A2 encoding cannot be used when
9522 pushing the stack pointer as this is UNPREDICTABLE. */
9523 return;
9524
6530b175
NC
9525 inst.instruction &= A_COND_MASK;
9526 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9527 inst.instruction |= one_reg << 12;
9528 }
9529}
9530
9531static void
9532do_ldmstm (void)
9533{
9534 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
9535}
9536
c19d1205
ZW
9537/* ARMv5TE load-consecutive (argument parse)
9538 Mode is like LDRH.
9539
9540 LDRccD R, mode
9541 STRccD R, mode. */
9542
a737bd4d 9543static void
c19d1205 9544do_ldrd (void)
a737bd4d 9545{
c19d1205 9546 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 9547 _("first transfer register must be even"));
c19d1205
ZW
9548 constraint (inst.operands[1].present
9549 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 9550 _("can only transfer two consecutive registers"));
c19d1205
ZW
9551 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9552 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 9553
c19d1205
ZW
9554 if (!inst.operands[1].present)
9555 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 9556
c56791bb
RE
9557 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9558 register and the first register written; we have to diagnose
9559 overlap between the base and the second register written here. */
ea6ef066 9560
c56791bb
RE
9561 if (inst.operands[2].reg == inst.operands[1].reg
9562 && (inst.operands[2].writeback || inst.operands[2].postind))
9563 as_warn (_("base register written back, and overlaps "
9564 "second transfer register"));
b05fe5cf 9565
c56791bb
RE
9566 if (!(inst.instruction & V4_STR_BIT))
9567 {
c19d1205 9568 /* For an index-register load, the index register must not overlap the
c56791bb
RE
9569 destination (even if not write-back). */
9570 if (inst.operands[2].immisreg
9571 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9572 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9573 as_warn (_("index register overlaps transfer register"));
b05fe5cf 9574 }
c19d1205
ZW
9575 inst.instruction |= inst.operands[0].reg << 12;
9576 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
9577}
9578
9579static void
c19d1205 9580do_ldrex (void)
b05fe5cf 9581{
c19d1205
ZW
9582 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9583 || inst.operands[1].postind || inst.operands[1].writeback
9584 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
9585 || inst.operands[1].negative
9586 /* This can arise if the programmer has written
9587 strex rN, rM, foo
9588 or if they have mistakenly used a register name as the last
9589 operand, eg:
9590 strex rN, rM, rX
9591 It is very difficult to distinguish between these two cases
9592 because "rX" might actually be a label. ie the register
9593 name has been occluded by a symbol of the same name. So we
9594 just generate a general 'bad addressing mode' type error
9595 message and leave it up to the programmer to discover the
9596 true cause and fix their mistake. */
9597 || (inst.operands[1].reg == REG_PC),
9598 BAD_ADDR_MODE);
b05fe5cf 9599
e2b0ab59
AV
9600 constraint (inst.relocs[0].exp.X_op != O_constant
9601 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9602 _("offset must be zero in ARM encoding"));
b05fe5cf 9603
5be8be5d
DG
9604 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9605
c19d1205
ZW
9606 inst.instruction |= inst.operands[0].reg << 12;
9607 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 9608 inst.relocs[0].type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
9609}
9610
9611static void
c19d1205 9612do_ldrexd (void)
b05fe5cf 9613{
c19d1205
ZW
9614 constraint (inst.operands[0].reg % 2 != 0,
9615 _("even register required"));
9616 constraint (inst.operands[1].present
9617 && inst.operands[1].reg != inst.operands[0].reg + 1,
9618 _("can only load two consecutive registers"));
9619 /* If op 1 were present and equal to PC, this function wouldn't
9620 have been called in the first place. */
9621 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 9622
c19d1205
ZW
9623 inst.instruction |= inst.operands[0].reg << 12;
9624 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
9625}
9626
1be5fd2e
NC
9627/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9628 which is not a multiple of four is UNPREDICTABLE. */
9629static void
9630check_ldr_r15_aligned (void)
9631{
9632 constraint (!(inst.operands[1].immisreg)
9633 && (inst.operands[0].reg == REG_PC
9634 && inst.operands[1].reg == REG_PC
e2b0ab59 9635 && (inst.relocs[0].exp.X_add_number & 0x3)),
de194d85 9636 _("ldr to register 15 must be 4-byte aligned"));
1be5fd2e
NC
9637}
9638
b05fe5cf 9639static void
c19d1205 9640do_ldst (void)
b05fe5cf 9641{
c19d1205
ZW
9642 inst.instruction |= inst.operands[0].reg << 12;
9643 if (!inst.operands[1].isreg)
8335d6aa 9644 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
b05fe5cf 9645 return;
c19d1205 9646 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 9647 check_ldr_r15_aligned ();
b05fe5cf
ZW
9648}
9649
9650static void
c19d1205 9651do_ldstt (void)
b05fe5cf 9652{
c19d1205
ZW
9653 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9654 reject [Rn,...]. */
9655 if (inst.operands[1].preind)
b05fe5cf 9656 {
e2b0ab59
AV
9657 constraint (inst.relocs[0].exp.X_op != O_constant
9658 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9659 _("this instruction requires a post-indexed address"));
b05fe5cf 9660
c19d1205
ZW
9661 inst.operands[1].preind = 0;
9662 inst.operands[1].postind = 1;
9663 inst.operands[1].writeback = 1;
b05fe5cf 9664 }
c19d1205
ZW
9665 inst.instruction |= inst.operands[0].reg << 12;
9666 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9667}
b05fe5cf 9668
c19d1205 9669/* Halfword and signed-byte load/store operations. */
b05fe5cf 9670
c19d1205
ZW
9671static void
9672do_ldstv4 (void)
9673{
ff4a8d2b 9674 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
9675 inst.instruction |= inst.operands[0].reg << 12;
9676 if (!inst.operands[1].isreg)
8335d6aa 9677 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
b05fe5cf 9678 return;
c19d1205 9679 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
9680}
9681
9682static void
c19d1205 9683do_ldsttv4 (void)
b05fe5cf 9684{
c19d1205
ZW
9685 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9686 reject [Rn,...]. */
9687 if (inst.operands[1].preind)
b05fe5cf 9688 {
e2b0ab59
AV
9689 constraint (inst.relocs[0].exp.X_op != O_constant
9690 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9691 _("this instruction requires a post-indexed address"));
b05fe5cf 9692
c19d1205
ZW
9693 inst.operands[1].preind = 0;
9694 inst.operands[1].postind = 1;
9695 inst.operands[1].writeback = 1;
b05fe5cf 9696 }
c19d1205
ZW
9697 inst.instruction |= inst.operands[0].reg << 12;
9698 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9699}
b05fe5cf 9700
c19d1205
ZW
9701/* Co-processor register load/store.
9702 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9703static void
9704do_lstc (void)
9705{
9706 inst.instruction |= inst.operands[0].reg << 8;
9707 inst.instruction |= inst.operands[1].reg << 12;
9708 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
9709}
9710
b05fe5cf 9711static void
c19d1205 9712do_mlas (void)
b05fe5cf 9713{
8fb9d7b9 9714 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 9715 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 9716 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 9717 && !(inst.instruction & 0x00400000))
8fb9d7b9 9718 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 9719
c19d1205
ZW
9720 inst.instruction |= inst.operands[0].reg << 16;
9721 inst.instruction |= inst.operands[1].reg;
9722 inst.instruction |= inst.operands[2].reg << 8;
9723 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 9724}
b05fe5cf 9725
c19d1205
ZW
9726static void
9727do_mov (void)
9728{
e2b0ab59
AV
9729 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9730 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9731 THUMB1_RELOC_ONLY);
c19d1205
ZW
9732 inst.instruction |= inst.operands[0].reg << 12;
9733 encode_arm_shifter_operand (1);
9734}
b05fe5cf 9735
c19d1205
ZW
9736/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9737static void
9738do_mov16 (void)
9739{
b6895b4f
PB
9740 bfd_vma imm;
9741 bfd_boolean top;
9742
9743 top = (inst.instruction & 0x00400000) != 0;
e2b0ab59 9744 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
33eaf5de 9745 _(":lower16: not allowed in this instruction"));
e2b0ab59 9746 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
33eaf5de 9747 _(":upper16: not allowed in this instruction"));
c19d1205 9748 inst.instruction |= inst.operands[0].reg << 12;
e2b0ab59 9749 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 9750 {
e2b0ab59 9751 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
9752 /* The value is in two pieces: 0:11, 16:19. */
9753 inst.instruction |= (imm & 0x00000fff);
9754 inst.instruction |= (imm & 0x0000f000) << 4;
9755 }
b05fe5cf 9756}
b99bd4ef 9757
037e8744
JB
9758static int
9759do_vfp_nsyn_mrs (void)
9760{
9761 if (inst.operands[0].isvec)
9762 {
9763 if (inst.operands[1].reg != 1)
477330fc 9764 first_error (_("operand 1 must be FPSCR"));
037e8744
JB
9765 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9766 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9767 do_vfp_nsyn_opcode ("fmstat");
9768 }
9769 else if (inst.operands[1].isvec)
9770 do_vfp_nsyn_opcode ("fmrx");
9771 else
9772 return FAIL;
5f4273c7 9773
037e8744
JB
9774 return SUCCESS;
9775}
9776
9777static int
9778do_vfp_nsyn_msr (void)
9779{
9780 if (inst.operands[0].isvec)
9781 do_vfp_nsyn_opcode ("fmxr");
9782 else
9783 return FAIL;
9784
9785 return SUCCESS;
9786}
9787
f7c21dc7
NC
9788static void
9789do_vmrs (void)
9790{
9791 unsigned Rt = inst.operands[0].reg;
fa94de6b 9792
16d02dc9 9793 if (thumb_mode && Rt == REG_SP)
f7c21dc7
NC
9794 {
9795 inst.error = BAD_SP;
9796 return;
9797 }
9798
40c7d507
RR
9799 /* MVFR2 is only valid at ARMv8-A. */
9800 if (inst.operands[1].reg == 5)
9801 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9802 _(BAD_FPU));
9803
f7c21dc7 9804 /* APSR_ sets isvec. All other refs to PC are illegal. */
16d02dc9 9805 if (!inst.operands[0].isvec && Rt == REG_PC)
f7c21dc7
NC
9806 {
9807 inst.error = BAD_PC;
9808 return;
9809 }
9810
16d02dc9
JB
9811 /* If we get through parsing the register name, we just insert the number
9812 generated into the instruction without further validation. */
9813 inst.instruction |= (inst.operands[1].reg << 16);
f7c21dc7
NC
9814 inst.instruction |= (Rt << 12);
9815}
9816
9817static void
9818do_vmsr (void)
9819{
9820 unsigned Rt = inst.operands[1].reg;
fa94de6b 9821
f7c21dc7
NC
9822 if (thumb_mode)
9823 reject_bad_reg (Rt);
9824 else if (Rt == REG_PC)
9825 {
9826 inst.error = BAD_PC;
9827 return;
9828 }
9829
40c7d507
RR
9830 /* MVFR2 is only valid for ARMv8-A. */
9831 if (inst.operands[0].reg == 5)
9832 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9833 _(BAD_FPU));
9834
16d02dc9
JB
9835 /* If we get through parsing the register name, we just insert the number
9836 generated into the instruction without further validation. */
9837 inst.instruction |= (inst.operands[0].reg << 16);
f7c21dc7
NC
9838 inst.instruction |= (Rt << 12);
9839}
9840
b99bd4ef 9841static void
c19d1205 9842do_mrs (void)
b99bd4ef 9843{
90ec0d68
MGD
9844 unsigned br;
9845
037e8744
JB
9846 if (do_vfp_nsyn_mrs () == SUCCESS)
9847 return;
9848
ff4a8d2b 9849 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 9850 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
9851
9852 if (inst.operands[1].isreg)
9853 {
9854 br = inst.operands[1].reg;
806ab1c0 9855 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
90ec0d68
MGD
9856 as_bad (_("bad register for mrs"));
9857 }
9858 else
9859 {
9860 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9861 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9862 != (PSR_c|PSR_f),
d2cd1205 9863 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
9864 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9865 }
9866
9867 inst.instruction |= br;
c19d1205 9868}
b99bd4ef 9869
c19d1205
ZW
9870/* Two possible forms:
9871 "{C|S}PSR_<field>, Rm",
9872 "{C|S}PSR_f, #expression". */
b99bd4ef 9873
c19d1205
ZW
9874static void
9875do_msr (void)
9876{
037e8744
JB
9877 if (do_vfp_nsyn_msr () == SUCCESS)
9878 return;
9879
c19d1205
ZW
9880 inst.instruction |= inst.operands[0].imm;
9881 if (inst.operands[1].isreg)
9882 inst.instruction |= inst.operands[1].reg;
9883 else
b99bd4ef 9884 {
c19d1205 9885 inst.instruction |= INST_IMMEDIATE;
e2b0ab59
AV
9886 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9887 inst.relocs[0].pc_rel = 0;
b99bd4ef 9888 }
b99bd4ef
NC
9889}
9890
c19d1205
ZW
9891static void
9892do_mul (void)
a737bd4d 9893{
ff4a8d2b
NC
9894 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9895
c19d1205
ZW
9896 if (!inst.operands[2].present)
9897 inst.operands[2].reg = inst.operands[0].reg;
9898 inst.instruction |= inst.operands[0].reg << 16;
9899 inst.instruction |= inst.operands[1].reg;
9900 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 9901
8fb9d7b9
MS
9902 if (inst.operands[0].reg == inst.operands[1].reg
9903 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9904 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
9905}
9906
c19d1205
ZW
9907/* Long Multiply Parser
9908 UMULL RdLo, RdHi, Rm, Rs
9909 SMULL RdLo, RdHi, Rm, Rs
9910 UMLAL RdLo, RdHi, Rm, Rs
9911 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
9912
9913static void
c19d1205 9914do_mull (void)
b99bd4ef 9915{
c19d1205
ZW
9916 inst.instruction |= inst.operands[0].reg << 12;
9917 inst.instruction |= inst.operands[1].reg << 16;
9918 inst.instruction |= inst.operands[2].reg;
9919 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 9920
682b27ad
PB
9921 /* rdhi and rdlo must be different. */
9922 if (inst.operands[0].reg == inst.operands[1].reg)
9923 as_tsktsk (_("rdhi and rdlo must be different"));
9924
9925 /* rdhi, rdlo and rm must all be different before armv6. */
9926 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 9927 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 9928 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
9929 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9930}
b99bd4ef 9931
c19d1205
ZW
9932static void
9933do_nop (void)
9934{
e7495e45
NS
9935 if (inst.operands[0].present
9936 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
9937 {
9938 /* Architectural NOP hints are CPSR sets with no bits selected. */
9939 inst.instruction &= 0xf0000000;
e7495e45
NS
9940 inst.instruction |= 0x0320f000;
9941 if (inst.operands[0].present)
9942 inst.instruction |= inst.operands[0].imm;
c19d1205 9943 }
b99bd4ef
NC
9944}
9945
c19d1205
ZW
9946/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9947 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9948 Condition defaults to COND_ALWAYS.
9949 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
9950
9951static void
c19d1205 9952do_pkhbt (void)
b99bd4ef 9953{
c19d1205
ZW
9954 inst.instruction |= inst.operands[0].reg << 12;
9955 inst.instruction |= inst.operands[1].reg << 16;
9956 inst.instruction |= inst.operands[2].reg;
9957 if (inst.operands[3].present)
9958 encode_arm_shift (3);
9959}
b99bd4ef 9960
c19d1205 9961/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 9962
c19d1205
ZW
9963static void
9964do_pkhtb (void)
9965{
9966 if (!inst.operands[3].present)
b99bd4ef 9967 {
c19d1205
ZW
9968 /* If the shift specifier is omitted, turn the instruction
9969 into pkhbt rd, rm, rn. */
9970 inst.instruction &= 0xfff00010;
9971 inst.instruction |= inst.operands[0].reg << 12;
9972 inst.instruction |= inst.operands[1].reg;
9973 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9974 }
9975 else
9976 {
c19d1205
ZW
9977 inst.instruction |= inst.operands[0].reg << 12;
9978 inst.instruction |= inst.operands[1].reg << 16;
9979 inst.instruction |= inst.operands[2].reg;
9980 encode_arm_shift (3);
b99bd4ef
NC
9981 }
9982}
9983
c19d1205 9984/* ARMv5TE: Preload-Cache
60e5ef9f 9985 MP Extensions: Preload for write
c19d1205 9986
60e5ef9f 9987 PLD(W) <addr_mode>
c19d1205
ZW
9988
9989 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
9990
9991static void
c19d1205 9992do_pld (void)
b99bd4ef 9993{
c19d1205
ZW
9994 constraint (!inst.operands[0].isreg,
9995 _("'[' expected after PLD mnemonic"));
9996 constraint (inst.operands[0].postind,
9997 _("post-indexed expression used in preload instruction"));
9998 constraint (inst.operands[0].writeback,
9999 _("writeback used in preload instruction"));
10000 constraint (!inst.operands[0].preind,
10001 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
10002 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10003}
b99bd4ef 10004
62b3e311
PB
10005/* ARMv7: PLI <addr_mode> */
10006static void
10007do_pli (void)
10008{
10009 constraint (!inst.operands[0].isreg,
10010 _("'[' expected after PLI mnemonic"));
10011 constraint (inst.operands[0].postind,
10012 _("post-indexed expression used in preload instruction"));
10013 constraint (inst.operands[0].writeback,
10014 _("writeback used in preload instruction"));
10015 constraint (!inst.operands[0].preind,
10016 _("unindexed addressing used in preload instruction"));
10017 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10018 inst.instruction &= ~PRE_INDEX;
10019}
10020
c19d1205
ZW
10021static void
10022do_push_pop (void)
10023{
5e0d7f77
MP
10024 constraint (inst.operands[0].writeback,
10025 _("push/pop do not support {reglist}^"));
c19d1205
ZW
10026 inst.operands[1] = inst.operands[0];
10027 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10028 inst.operands[0].isreg = 1;
10029 inst.operands[0].writeback = 1;
10030 inst.operands[0].reg = REG_SP;
6530b175 10031 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 10032}
b99bd4ef 10033
c19d1205
ZW
10034/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10035 word at the specified address and the following word
10036 respectively.
10037 Unconditionally executed.
10038 Error if Rn is R15. */
b99bd4ef 10039
c19d1205
ZW
10040static void
10041do_rfe (void)
10042{
10043 inst.instruction |= inst.operands[0].reg << 16;
10044 if (inst.operands[0].writeback)
10045 inst.instruction |= WRITE_BACK;
10046}
b99bd4ef 10047
c19d1205 10048/* ARM V6 ssat (argument parse). */
b99bd4ef 10049
c19d1205
ZW
10050static void
10051do_ssat (void)
10052{
10053 inst.instruction |= inst.operands[0].reg << 12;
10054 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10055 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10056
c19d1205
ZW
10057 if (inst.operands[3].present)
10058 encode_arm_shift (3);
b99bd4ef
NC
10059}
10060
c19d1205 10061/* ARM V6 usat (argument parse). */
b99bd4ef
NC
10062
10063static void
c19d1205 10064do_usat (void)
b99bd4ef 10065{
c19d1205
ZW
10066 inst.instruction |= inst.operands[0].reg << 12;
10067 inst.instruction |= inst.operands[1].imm << 16;
10068 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10069
c19d1205
ZW
10070 if (inst.operands[3].present)
10071 encode_arm_shift (3);
b99bd4ef
NC
10072}
10073
c19d1205 10074/* ARM V6 ssat16 (argument parse). */
09d92015
MM
10075
10076static void
c19d1205 10077do_ssat16 (void)
09d92015 10078{
c19d1205
ZW
10079 inst.instruction |= inst.operands[0].reg << 12;
10080 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10081 inst.instruction |= inst.operands[2].reg;
09d92015
MM
10082}
10083
c19d1205
ZW
10084static void
10085do_usat16 (void)
a737bd4d 10086{
c19d1205
ZW
10087 inst.instruction |= inst.operands[0].reg << 12;
10088 inst.instruction |= inst.operands[1].imm << 16;
10089 inst.instruction |= inst.operands[2].reg;
10090}
a737bd4d 10091
c19d1205
ZW
10092/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10093 preserving the other bits.
a737bd4d 10094
c19d1205
ZW
10095 setend <endian_specifier>, where <endian_specifier> is either
10096 BE or LE. */
a737bd4d 10097
c19d1205
ZW
10098static void
10099do_setend (void)
10100{
12e37cbc
MGD
10101 if (warn_on_deprecated
10102 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 10103 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 10104
c19d1205
ZW
10105 if (inst.operands[0].imm)
10106 inst.instruction |= 0x200;
a737bd4d
NC
10107}
10108
10109static void
c19d1205 10110do_shift (void)
a737bd4d 10111{
c19d1205
ZW
10112 unsigned int Rm = (inst.operands[1].present
10113 ? inst.operands[1].reg
10114 : inst.operands[0].reg);
a737bd4d 10115
c19d1205
ZW
10116 inst.instruction |= inst.operands[0].reg << 12;
10117 inst.instruction |= Rm;
10118 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 10119 {
c19d1205
ZW
10120 inst.instruction |= inst.operands[2].reg << 8;
10121 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
10122 /* PR 12854: Error on extraneous shifts. */
10123 constraint (inst.operands[2].shifted,
10124 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
10125 }
10126 else
e2b0ab59 10127 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
10128}
10129
09d92015 10130static void
3eb17e6b 10131do_smc (void)
09d92015 10132{
e2b0ab59
AV
10133 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10134 inst.relocs[0].pc_rel = 0;
09d92015
MM
10135}
10136
90ec0d68
MGD
10137static void
10138do_hvc (void)
10139{
e2b0ab59
AV
10140 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10141 inst.relocs[0].pc_rel = 0;
90ec0d68
MGD
10142}
10143
09d92015 10144static void
c19d1205 10145do_swi (void)
09d92015 10146{
e2b0ab59
AV
10147 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10148 inst.relocs[0].pc_rel = 0;
09d92015
MM
10149}
10150
ddfded2f
MW
10151static void
10152do_setpan (void)
10153{
10154 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10155 _("selected processor does not support SETPAN instruction"));
10156
10157 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10158}
10159
10160static void
10161do_t_setpan (void)
10162{
10163 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10164 _("selected processor does not support SETPAN instruction"));
10165
10166 inst.instruction |= (inst.operands[0].imm << 3);
10167}
10168
c19d1205
ZW
10169/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10170 SMLAxy{cond} Rd,Rm,Rs,Rn
10171 SMLAWy{cond} Rd,Rm,Rs,Rn
10172 Error if any register is R15. */
e16bb312 10173
c19d1205
ZW
10174static void
10175do_smla (void)
e16bb312 10176{
c19d1205
ZW
10177 inst.instruction |= inst.operands[0].reg << 16;
10178 inst.instruction |= inst.operands[1].reg;
10179 inst.instruction |= inst.operands[2].reg << 8;
10180 inst.instruction |= inst.operands[3].reg << 12;
10181}
a737bd4d 10182
c19d1205
ZW
10183/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10184 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10185 Error if any register is R15.
10186 Warning if Rdlo == Rdhi. */
a737bd4d 10187
c19d1205
ZW
10188static void
10189do_smlal (void)
10190{
10191 inst.instruction |= inst.operands[0].reg << 12;
10192 inst.instruction |= inst.operands[1].reg << 16;
10193 inst.instruction |= inst.operands[2].reg;
10194 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 10195
c19d1205
ZW
10196 if (inst.operands[0].reg == inst.operands[1].reg)
10197 as_tsktsk (_("rdhi and rdlo must be different"));
10198}
a737bd4d 10199
c19d1205
ZW
10200/* ARM V5E (El Segundo) signed-multiply (argument parse)
10201 SMULxy{cond} Rd,Rm,Rs
10202 Error if any register is R15. */
a737bd4d 10203
c19d1205
ZW
10204static void
10205do_smul (void)
10206{
10207 inst.instruction |= inst.operands[0].reg << 16;
10208 inst.instruction |= inst.operands[1].reg;
10209 inst.instruction |= inst.operands[2].reg << 8;
10210}
a737bd4d 10211
b6702015
PB
10212/* ARM V6 srs (argument parse). The variable fields in the encoding are
10213 the same for both ARM and Thumb-2. */
a737bd4d 10214
c19d1205
ZW
10215static void
10216do_srs (void)
10217{
b6702015
PB
10218 int reg;
10219
10220 if (inst.operands[0].present)
10221 {
10222 reg = inst.operands[0].reg;
fdfde340 10223 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
10224 }
10225 else
fdfde340 10226 reg = REG_SP;
b6702015
PB
10227
10228 inst.instruction |= reg << 16;
10229 inst.instruction |= inst.operands[1].imm;
10230 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
10231 inst.instruction |= WRITE_BACK;
10232}
a737bd4d 10233
c19d1205 10234/* ARM V6 strex (argument parse). */
a737bd4d 10235
c19d1205
ZW
10236static void
10237do_strex (void)
10238{
10239 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10240 || inst.operands[2].postind || inst.operands[2].writeback
10241 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
10242 || inst.operands[2].negative
10243 /* See comment in do_ldrex(). */
10244 || (inst.operands[2].reg == REG_PC),
10245 BAD_ADDR_MODE);
a737bd4d 10246
c19d1205
ZW
10247 constraint (inst.operands[0].reg == inst.operands[1].reg
10248 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 10249
e2b0ab59
AV
10250 constraint (inst.relocs[0].exp.X_op != O_constant
10251 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10252 _("offset must be zero in ARM encoding"));
a737bd4d 10253
c19d1205
ZW
10254 inst.instruction |= inst.operands[0].reg << 12;
10255 inst.instruction |= inst.operands[1].reg;
10256 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 10257 inst.relocs[0].type = BFD_RELOC_UNUSED;
e16bb312
NC
10258}
10259
877807f8
NC
10260static void
10261do_t_strexbh (void)
10262{
10263 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10264 || inst.operands[2].postind || inst.operands[2].writeback
10265 || inst.operands[2].immisreg || inst.operands[2].shifted
10266 || inst.operands[2].negative,
10267 BAD_ADDR_MODE);
10268
10269 constraint (inst.operands[0].reg == inst.operands[1].reg
10270 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10271
10272 do_rm_rd_rn ();
10273}
10274
e16bb312 10275static void
c19d1205 10276do_strexd (void)
e16bb312 10277{
c19d1205
ZW
10278 constraint (inst.operands[1].reg % 2 != 0,
10279 _("even register required"));
10280 constraint (inst.operands[2].present
10281 && inst.operands[2].reg != inst.operands[1].reg + 1,
10282 _("can only store two consecutive registers"));
10283 /* If op 2 were present and equal to PC, this function wouldn't
10284 have been called in the first place. */
10285 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 10286
c19d1205
ZW
10287 constraint (inst.operands[0].reg == inst.operands[1].reg
10288 || inst.operands[0].reg == inst.operands[1].reg + 1
10289 || inst.operands[0].reg == inst.operands[3].reg,
10290 BAD_OVERLAP);
e16bb312 10291
c19d1205
ZW
10292 inst.instruction |= inst.operands[0].reg << 12;
10293 inst.instruction |= inst.operands[1].reg;
10294 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
10295}
10296
9eb6c0f1
MGD
10297/* ARM V8 STRL. */
10298static void
4b8c8c02 10299do_stlex (void)
9eb6c0f1
MGD
10300{
10301 constraint (inst.operands[0].reg == inst.operands[1].reg
10302 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10303
10304 do_rd_rm_rn ();
10305}
10306
10307static void
4b8c8c02 10308do_t_stlex (void)
9eb6c0f1
MGD
10309{
10310 constraint (inst.operands[0].reg == inst.operands[1].reg
10311 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10312
10313 do_rm_rd_rn ();
10314}
10315
c19d1205
ZW
10316/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10317 extends it to 32-bits, and adds the result to a value in another
10318 register. You can specify a rotation by 0, 8, 16, or 24 bits
10319 before extracting the 16-bit value.
10320 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10321 Condition defaults to COND_ALWAYS.
10322 Error if any register uses R15. */
10323
e16bb312 10324static void
c19d1205 10325do_sxtah (void)
e16bb312 10326{
c19d1205
ZW
10327 inst.instruction |= inst.operands[0].reg << 12;
10328 inst.instruction |= inst.operands[1].reg << 16;
10329 inst.instruction |= inst.operands[2].reg;
10330 inst.instruction |= inst.operands[3].imm << 10;
10331}
e16bb312 10332
c19d1205 10333/* ARM V6 SXTH.
e16bb312 10334
c19d1205
ZW
10335 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10336 Condition defaults to COND_ALWAYS.
10337 Error if any register uses R15. */
e16bb312
NC
10338
10339static void
c19d1205 10340do_sxth (void)
e16bb312 10341{
c19d1205
ZW
10342 inst.instruction |= inst.operands[0].reg << 12;
10343 inst.instruction |= inst.operands[1].reg;
10344 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 10345}
c19d1205
ZW
10346\f
10347/* VFP instructions. In a logical order: SP variant first, monad
10348 before dyad, arithmetic then move then load/store. */
e16bb312
NC
10349
10350static void
c19d1205 10351do_vfp_sp_monadic (void)
e16bb312 10352{
57785aa2
AV
10353 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10354 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10355 _(BAD_FPU));
10356
5287ad62
JB
10357 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10358 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10359}
10360
10361static void
c19d1205 10362do_vfp_sp_dyadic (void)
e16bb312 10363{
5287ad62
JB
10364 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10365 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10366 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10367}
10368
10369static void
c19d1205 10370do_vfp_sp_compare_z (void)
e16bb312 10371{
5287ad62 10372 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
10373}
10374
10375static void
c19d1205 10376do_vfp_dp_sp_cvt (void)
e16bb312 10377{
5287ad62
JB
10378 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10379 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10380}
10381
10382static void
c19d1205 10383do_vfp_sp_dp_cvt (void)
e16bb312 10384{
5287ad62
JB
10385 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10386 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
10387}
10388
10389static void
c19d1205 10390do_vfp_reg_from_sp (void)
e16bb312 10391{
57785aa2
AV
10392 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10393 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10394 _(BAD_FPU));
10395
c19d1205 10396 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 10397 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
10398}
10399
10400static void
c19d1205 10401do_vfp_reg2_from_sp2 (void)
e16bb312 10402{
c19d1205
ZW
10403 constraint (inst.operands[2].imm != 2,
10404 _("only two consecutive VFP SP registers allowed here"));
10405 inst.instruction |= inst.operands[0].reg << 12;
10406 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 10407 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10408}
10409
10410static void
c19d1205 10411do_vfp_sp_from_reg (void)
e16bb312 10412{
57785aa2
AV
10413 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10414 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10415 _(BAD_FPU));
10416
5287ad62 10417 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 10418 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
10419}
10420
10421static void
c19d1205 10422do_vfp_sp2_from_reg2 (void)
e16bb312 10423{
c19d1205
ZW
10424 constraint (inst.operands[0].imm != 2,
10425 _("only two consecutive VFP SP registers allowed here"));
5287ad62 10426 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
10427 inst.instruction |= inst.operands[1].reg << 12;
10428 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
10429}
10430
10431static void
c19d1205 10432do_vfp_sp_ldst (void)
e16bb312 10433{
5287ad62 10434 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 10435 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10436}
10437
10438static void
c19d1205 10439do_vfp_dp_ldst (void)
e16bb312 10440{
5287ad62 10441 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 10442 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10443}
10444
c19d1205 10445
e16bb312 10446static void
c19d1205 10447vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10448{
c19d1205
ZW
10449 if (inst.operands[0].writeback)
10450 inst.instruction |= WRITE_BACK;
10451 else
10452 constraint (ldstm_type != VFP_LDSTMIA,
10453 _("this addressing mode requires base-register writeback"));
10454 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10455 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 10456 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
10457}
10458
10459static void
c19d1205 10460vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10461{
c19d1205 10462 int count;
e16bb312 10463
c19d1205
ZW
10464 if (inst.operands[0].writeback)
10465 inst.instruction |= WRITE_BACK;
10466 else
10467 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10468 _("this addressing mode requires base-register writeback"));
e16bb312 10469
c19d1205 10470 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10471 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 10472
c19d1205
ZW
10473 count = inst.operands[1].imm << 1;
10474 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10475 count += 1;
e16bb312 10476
c19d1205 10477 inst.instruction |= count;
e16bb312
NC
10478}
10479
10480static void
c19d1205 10481do_vfp_sp_ldstmia (void)
e16bb312 10482{
c19d1205 10483 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10484}
10485
10486static void
c19d1205 10487do_vfp_sp_ldstmdb (void)
e16bb312 10488{
c19d1205 10489 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10490}
10491
10492static void
c19d1205 10493do_vfp_dp_ldstmia (void)
e16bb312 10494{
c19d1205 10495 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10496}
10497
10498static void
c19d1205 10499do_vfp_dp_ldstmdb (void)
e16bb312 10500{
c19d1205 10501 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10502}
10503
10504static void
c19d1205 10505do_vfp_xp_ldstmia (void)
e16bb312 10506{
c19d1205
ZW
10507 vfp_dp_ldstm (VFP_LDSTMIAX);
10508}
e16bb312 10509
c19d1205
ZW
10510static void
10511do_vfp_xp_ldstmdb (void)
10512{
10513 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 10514}
5287ad62
JB
10515
10516static void
10517do_vfp_dp_rd_rm (void)
10518{
57785aa2
AV
10519 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10520 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10521 _(BAD_FPU));
10522
5287ad62
JB
10523 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10524 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10525}
10526
10527static void
10528do_vfp_dp_rn_rd (void)
10529{
10530 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10531 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10532}
10533
10534static void
10535do_vfp_dp_rd_rn (void)
10536{
10537 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10538 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10539}
10540
10541static void
10542do_vfp_dp_rd_rn_rm (void)
10543{
57785aa2
AV
10544 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10545 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10546 _(BAD_FPU));
10547
5287ad62
JB
10548 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10549 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10550 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10551}
10552
10553static void
10554do_vfp_dp_rd (void)
10555{
10556 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10557}
10558
10559static void
10560do_vfp_dp_rm_rd_rn (void)
10561{
57785aa2
AV
10562 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10563 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10564 _(BAD_FPU));
10565
5287ad62
JB
10566 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10567 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10568 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10569}
10570
10571/* VFPv3 instructions. */
10572static void
10573do_vfp_sp_const (void)
10574{
10575 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
10576 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10577 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10578}
10579
10580static void
10581do_vfp_dp_const (void)
10582{
10583 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
10584 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10585 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10586}
10587
10588static void
10589vfp_conv (int srcsize)
10590{
5f1af56b
MGD
10591 int immbits = srcsize - inst.operands[1].imm;
10592
fa94de6b
RM
10593 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10594 {
5f1af56b 10595 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
477330fc 10596 i.e. immbits must be in range 0 - 16. */
5f1af56b
MGD
10597 inst.error = _("immediate value out of range, expected range [0, 16]");
10598 return;
10599 }
fa94de6b 10600 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
10601 {
10602 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
477330fc 10603 i.e. immbits must be in range 0 - 31. */
5f1af56b
MGD
10604 inst.error = _("immediate value out of range, expected range [1, 32]");
10605 return;
10606 }
10607
5287ad62
JB
10608 inst.instruction |= (immbits & 1) << 5;
10609 inst.instruction |= (immbits >> 1);
10610}
10611
10612static void
10613do_vfp_sp_conv_16 (void)
10614{
10615 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10616 vfp_conv (16);
10617}
10618
10619static void
10620do_vfp_dp_conv_16 (void)
10621{
10622 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10623 vfp_conv (16);
10624}
10625
10626static void
10627do_vfp_sp_conv_32 (void)
10628{
10629 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10630 vfp_conv (32);
10631}
10632
10633static void
10634do_vfp_dp_conv_32 (void)
10635{
10636 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10637 vfp_conv (32);
10638}
c19d1205
ZW
10639\f
10640/* FPA instructions. Also in a logical order. */
e16bb312 10641
c19d1205
ZW
10642static void
10643do_fpa_cmp (void)
10644{
10645 inst.instruction |= inst.operands[0].reg << 16;
10646 inst.instruction |= inst.operands[1].reg;
10647}
b99bd4ef
NC
10648
10649static void
c19d1205 10650do_fpa_ldmstm (void)
b99bd4ef 10651{
c19d1205
ZW
10652 inst.instruction |= inst.operands[0].reg << 12;
10653 switch (inst.operands[1].imm)
10654 {
10655 case 1: inst.instruction |= CP_T_X; break;
10656 case 2: inst.instruction |= CP_T_Y; break;
10657 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10658 case 4: break;
10659 default: abort ();
10660 }
b99bd4ef 10661
c19d1205
ZW
10662 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10663 {
10664 /* The instruction specified "ea" or "fd", so we can only accept
10665 [Rn]{!}. The instruction does not really support stacking or
10666 unstacking, so we have to emulate these by setting appropriate
10667 bits and offsets. */
e2b0ab59
AV
10668 constraint (inst.relocs[0].exp.X_op != O_constant
10669 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10670 _("this instruction does not support indexing"));
b99bd4ef 10671
c19d1205 10672 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
e2b0ab59 10673 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 10674
c19d1205 10675 if (!(inst.instruction & INDEX_UP))
e2b0ab59 10676 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
b99bd4ef 10677
c19d1205
ZW
10678 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10679 {
10680 inst.operands[2].preind = 0;
10681 inst.operands[2].postind = 1;
10682 }
10683 }
b99bd4ef 10684
c19d1205 10685 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 10686}
c19d1205
ZW
10687\f
10688/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 10689
c19d1205
ZW
10690static void
10691do_iwmmxt_tandorc (void)
10692{
10693 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10694}
b99bd4ef 10695
c19d1205
ZW
10696static void
10697do_iwmmxt_textrc (void)
10698{
10699 inst.instruction |= inst.operands[0].reg << 12;
10700 inst.instruction |= inst.operands[1].imm;
10701}
b99bd4ef
NC
10702
10703static void
c19d1205 10704do_iwmmxt_textrm (void)
b99bd4ef 10705{
c19d1205
ZW
10706 inst.instruction |= inst.operands[0].reg << 12;
10707 inst.instruction |= inst.operands[1].reg << 16;
10708 inst.instruction |= inst.operands[2].imm;
10709}
b99bd4ef 10710
c19d1205
ZW
10711static void
10712do_iwmmxt_tinsr (void)
10713{
10714 inst.instruction |= inst.operands[0].reg << 16;
10715 inst.instruction |= inst.operands[1].reg << 12;
10716 inst.instruction |= inst.operands[2].imm;
10717}
b99bd4ef 10718
c19d1205
ZW
10719static void
10720do_iwmmxt_tmia (void)
10721{
10722 inst.instruction |= inst.operands[0].reg << 5;
10723 inst.instruction |= inst.operands[1].reg;
10724 inst.instruction |= inst.operands[2].reg << 12;
10725}
b99bd4ef 10726
c19d1205
ZW
10727static void
10728do_iwmmxt_waligni (void)
10729{
10730 inst.instruction |= inst.operands[0].reg << 12;
10731 inst.instruction |= inst.operands[1].reg << 16;
10732 inst.instruction |= inst.operands[2].reg;
10733 inst.instruction |= inst.operands[3].imm << 20;
10734}
b99bd4ef 10735
2d447fca
JM
10736static void
10737do_iwmmxt_wmerge (void)
10738{
10739 inst.instruction |= inst.operands[0].reg << 12;
10740 inst.instruction |= inst.operands[1].reg << 16;
10741 inst.instruction |= inst.operands[2].reg;
10742 inst.instruction |= inst.operands[3].imm << 21;
10743}
10744
c19d1205
ZW
10745static void
10746do_iwmmxt_wmov (void)
10747{
10748 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10749 inst.instruction |= inst.operands[0].reg << 12;
10750 inst.instruction |= inst.operands[1].reg << 16;
10751 inst.instruction |= inst.operands[1].reg;
10752}
b99bd4ef 10753
c19d1205
ZW
10754static void
10755do_iwmmxt_wldstbh (void)
10756{
8f06b2d8 10757 int reloc;
c19d1205 10758 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
10759 if (thumb_mode)
10760 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10761 else
10762 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10763 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
10764}
10765
c19d1205
ZW
10766static void
10767do_iwmmxt_wldstw (void)
10768{
10769 /* RIWR_RIWC clears .isreg for a control register. */
10770 if (!inst.operands[0].isreg)
10771 {
10772 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10773 inst.instruction |= 0xf0000000;
10774 }
b99bd4ef 10775
c19d1205
ZW
10776 inst.instruction |= inst.operands[0].reg << 12;
10777 encode_arm_cp_address (1, TRUE, TRUE, 0);
10778}
b99bd4ef
NC
10779
10780static void
c19d1205 10781do_iwmmxt_wldstd (void)
b99bd4ef 10782{
c19d1205 10783 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
10784 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10785 && inst.operands[1].immisreg)
10786 {
10787 inst.instruction &= ~0x1a000ff;
eff0bc54 10788 inst.instruction |= (0xfU << 28);
2d447fca
JM
10789 if (inst.operands[1].preind)
10790 inst.instruction |= PRE_INDEX;
10791 if (!inst.operands[1].negative)
10792 inst.instruction |= INDEX_UP;
10793 if (inst.operands[1].writeback)
10794 inst.instruction |= WRITE_BACK;
10795 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 10796 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
2d447fca
JM
10797 inst.instruction |= inst.operands[1].imm;
10798 }
10799 else
10800 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 10801}
b99bd4ef 10802
c19d1205
ZW
10803static void
10804do_iwmmxt_wshufh (void)
10805{
10806 inst.instruction |= inst.operands[0].reg << 12;
10807 inst.instruction |= inst.operands[1].reg << 16;
10808 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10809 inst.instruction |= (inst.operands[2].imm & 0x0f);
10810}
b99bd4ef 10811
c19d1205
ZW
10812static void
10813do_iwmmxt_wzero (void)
10814{
10815 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10816 inst.instruction |= inst.operands[0].reg;
10817 inst.instruction |= inst.operands[0].reg << 12;
10818 inst.instruction |= inst.operands[0].reg << 16;
10819}
2d447fca
JM
10820
10821static void
10822do_iwmmxt_wrwrwr_or_imm5 (void)
10823{
10824 if (inst.operands[2].isreg)
10825 do_rd_rn_rm ();
10826 else {
10827 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10828 _("immediate operand requires iWMMXt2"));
10829 do_rd_rn ();
10830 if (inst.operands[2].imm == 0)
10831 {
10832 switch ((inst.instruction >> 20) & 0xf)
10833 {
10834 case 4:
10835 case 5:
10836 case 6:
5f4273c7 10837 case 7:
2d447fca
JM
10838 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10839 inst.operands[2].imm = 16;
10840 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10841 break;
10842 case 8:
10843 case 9:
10844 case 10:
10845 case 11:
10846 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10847 inst.operands[2].imm = 32;
10848 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10849 break;
10850 case 12:
10851 case 13:
10852 case 14:
10853 case 15:
10854 {
10855 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10856 unsigned long wrn;
10857 wrn = (inst.instruction >> 16) & 0xf;
10858 inst.instruction &= 0xff0fff0f;
10859 inst.instruction |= wrn;
10860 /* Bail out here; the instruction is now assembled. */
10861 return;
10862 }
10863 }
10864 }
10865 /* Map 32 -> 0, etc. */
10866 inst.operands[2].imm &= 0x1f;
eff0bc54 10867 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
2d447fca
JM
10868 }
10869}
c19d1205
ZW
10870\f
10871/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10872 operations first, then control, shift, and load/store. */
b99bd4ef 10873
c19d1205 10874/* Insns like "foo X,Y,Z". */
b99bd4ef 10875
c19d1205
ZW
10876static void
10877do_mav_triple (void)
10878{
10879 inst.instruction |= inst.operands[0].reg << 16;
10880 inst.instruction |= inst.operands[1].reg;
10881 inst.instruction |= inst.operands[2].reg << 12;
10882}
b99bd4ef 10883
c19d1205
ZW
10884/* Insns like "foo W,X,Y,Z".
10885 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 10886
c19d1205
ZW
10887static void
10888do_mav_quad (void)
10889{
10890 inst.instruction |= inst.operands[0].reg << 5;
10891 inst.instruction |= inst.operands[1].reg << 12;
10892 inst.instruction |= inst.operands[2].reg << 16;
10893 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
10894}
10895
c19d1205
ZW
10896/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10897static void
10898do_mav_dspsc (void)
a737bd4d 10899{
c19d1205
ZW
10900 inst.instruction |= inst.operands[1].reg << 12;
10901}
a737bd4d 10902
c19d1205
ZW
10903/* Maverick shift immediate instructions.
10904 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10905 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 10906
c19d1205
ZW
10907static void
10908do_mav_shift (void)
10909{
10910 int imm = inst.operands[2].imm;
a737bd4d 10911
c19d1205
ZW
10912 inst.instruction |= inst.operands[0].reg << 12;
10913 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 10914
c19d1205
ZW
10915 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10916 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10917 Bit 4 should be 0. */
10918 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 10919
c19d1205
ZW
10920 inst.instruction |= imm;
10921}
10922\f
10923/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 10924
c19d1205
ZW
10925/* Xscale multiply-accumulate (argument parse)
10926 MIAcc acc0,Rm,Rs
10927 MIAPHcc acc0,Rm,Rs
10928 MIAxycc acc0,Rm,Rs. */
a737bd4d 10929
c19d1205
ZW
10930static void
10931do_xsc_mia (void)
10932{
10933 inst.instruction |= inst.operands[1].reg;
10934 inst.instruction |= inst.operands[2].reg << 12;
10935}
a737bd4d 10936
c19d1205 10937/* Xscale move-accumulator-register (argument parse)
a737bd4d 10938
c19d1205 10939 MARcc acc0,RdLo,RdHi. */
b99bd4ef 10940
c19d1205
ZW
10941static void
10942do_xsc_mar (void)
10943{
10944 inst.instruction |= inst.operands[1].reg << 12;
10945 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10946}
10947
c19d1205 10948/* Xscale move-register-accumulator (argument parse)
b99bd4ef 10949
c19d1205 10950 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
10951
10952static void
c19d1205 10953do_xsc_mra (void)
b99bd4ef 10954{
c19d1205
ZW
10955 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10956 inst.instruction |= inst.operands[0].reg << 12;
10957 inst.instruction |= inst.operands[1].reg << 16;
10958}
10959\f
10960/* Encoding functions relevant only to Thumb. */
b99bd4ef 10961
c19d1205
ZW
10962/* inst.operands[i] is a shifted-register operand; encode
10963 it into inst.instruction in the format used by Thumb32. */
10964
10965static void
10966encode_thumb32_shifted_operand (int i)
10967{
e2b0ab59 10968 unsigned int value = inst.relocs[0].exp.X_add_number;
c19d1205 10969 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 10970
9c3c69f2
PB
10971 constraint (inst.operands[i].immisreg,
10972 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
10973 inst.instruction |= inst.operands[i].reg;
10974 if (shift == SHIFT_RRX)
10975 inst.instruction |= SHIFT_ROR << 4;
10976 else
b99bd4ef 10977 {
e2b0ab59 10978 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
10979 _("expression too complex"));
10980
10981 constraint (value > 32
10982 || (value == 32 && (shift == SHIFT_LSL
10983 || shift == SHIFT_ROR)),
10984 _("shift expression is too large"));
10985
10986 if (value == 0)
10987 shift = SHIFT_LSL;
10988 else if (value == 32)
10989 value = 0;
10990
10991 inst.instruction |= shift << 4;
10992 inst.instruction |= (value & 0x1c) << 10;
10993 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 10994 }
c19d1205 10995}
b99bd4ef 10996
b99bd4ef 10997
c19d1205
ZW
10998/* inst.operands[i] was set up by parse_address. Encode it into a
10999 Thumb32 format load or store instruction. Reject forms that cannot
11000 be used with such instructions. If is_t is true, reject forms that
11001 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
11002 that cannot be used with a D instruction. If it is a store insn,
11003 reject PC in Rn. */
b99bd4ef 11004
c19d1205
ZW
11005static void
11006encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11007{
5be8be5d 11008 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
11009
11010 constraint (!inst.operands[i].isreg,
53365c0d 11011 _("Instruction does not support =N addresses"));
b99bd4ef 11012
c19d1205
ZW
11013 inst.instruction |= inst.operands[i].reg << 16;
11014 if (inst.operands[i].immisreg)
b99bd4ef 11015 {
5be8be5d 11016 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
11017 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11018 constraint (inst.operands[i].negative,
11019 _("Thumb does not support negative register indexing"));
11020 constraint (inst.operands[i].postind,
11021 _("Thumb does not support register post-indexing"));
11022 constraint (inst.operands[i].writeback,
11023 _("Thumb does not support register indexing with writeback"));
11024 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11025 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 11026
f40d1643 11027 inst.instruction |= inst.operands[i].imm;
c19d1205 11028 if (inst.operands[i].shifted)
b99bd4ef 11029 {
e2b0ab59 11030 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 11031 _("expression too complex"));
e2b0ab59
AV
11032 constraint (inst.relocs[0].exp.X_add_number < 0
11033 || inst.relocs[0].exp.X_add_number > 3,
c19d1205 11034 _("shift out of range"));
e2b0ab59 11035 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
c19d1205 11036 }
e2b0ab59 11037 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
11038 }
11039 else if (inst.operands[i].preind)
11040 {
5be8be5d 11041 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 11042 constraint (is_t && inst.operands[i].writeback,
c19d1205 11043 _("cannot use writeback with this instruction"));
4755303e
WN
11044 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11045 BAD_PC_ADDRESSING);
c19d1205
ZW
11046
11047 if (is_d)
11048 {
11049 inst.instruction |= 0x01000000;
11050 if (inst.operands[i].writeback)
11051 inst.instruction |= 0x00200000;
b99bd4ef 11052 }
c19d1205 11053 else
b99bd4ef 11054 {
c19d1205
ZW
11055 inst.instruction |= 0x00000c00;
11056 if (inst.operands[i].writeback)
11057 inst.instruction |= 0x00000100;
b99bd4ef 11058 }
e2b0ab59 11059 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 11060 }
c19d1205 11061 else if (inst.operands[i].postind)
b99bd4ef 11062 {
9c2799c2 11063 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
11064 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11065 constraint (is_t, _("cannot use post-indexing with this instruction"));
11066
11067 if (is_d)
11068 inst.instruction |= 0x00200000;
11069 else
11070 inst.instruction |= 0x00000900;
e2b0ab59 11071 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
c19d1205
ZW
11072 }
11073 else /* unindexed - only for coprocessor */
11074 inst.error = _("instruction does not accept unindexed addressing");
11075}
11076
11077/* Table of Thumb instructions which exist in both 16- and 32-bit
11078 encodings (the latter only in post-V6T2 cores). The index is the
11079 value used in the insns table below. When there is more than one
11080 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
11081 holds variant (1).
11082 Also contains several pseudo-instructions used during relaxation. */
c19d1205 11083#define T16_32_TAB \
21d799b5
NC
11084 X(_adc, 4140, eb400000), \
11085 X(_adcs, 4140, eb500000), \
11086 X(_add, 1c00, eb000000), \
11087 X(_adds, 1c00, eb100000), \
11088 X(_addi, 0000, f1000000), \
11089 X(_addis, 0000, f1100000), \
11090 X(_add_pc,000f, f20f0000), \
11091 X(_add_sp,000d, f10d0000), \
11092 X(_adr, 000f, f20f0000), \
11093 X(_and, 4000, ea000000), \
11094 X(_ands, 4000, ea100000), \
11095 X(_asr, 1000, fa40f000), \
11096 X(_asrs, 1000, fa50f000), \
11097 X(_b, e000, f000b000), \
11098 X(_bcond, d000, f0008000), \
4389b29a 11099 X(_bf, 0000, f040e001), \
f6b2b12d 11100 X(_bfcsel,0000, f000e001), \
f1c7f421 11101 X(_bfx, 0000, f060e001), \
65d1bc05 11102 X(_bfl, 0000, f000c001), \
f1c7f421 11103 X(_bflx, 0000, f070e001), \
21d799b5
NC
11104 X(_bic, 4380, ea200000), \
11105 X(_bics, 4380, ea300000), \
11106 X(_cmn, 42c0, eb100f00), \
11107 X(_cmp, 2800, ebb00f00), \
11108 X(_cpsie, b660, f3af8400), \
11109 X(_cpsid, b670, f3af8600), \
11110 X(_cpy, 4600, ea4f0000), \
11111 X(_dec_sp,80dd, f1ad0d00), \
60f993ce 11112 X(_dls, 0000, f040e001), \
21d799b5
NC
11113 X(_eor, 4040, ea800000), \
11114 X(_eors, 4040, ea900000), \
11115 X(_inc_sp,00dd, f10d0d00), \
11116 X(_ldmia, c800, e8900000), \
11117 X(_ldr, 6800, f8500000), \
11118 X(_ldrb, 7800, f8100000), \
11119 X(_ldrh, 8800, f8300000), \
11120 X(_ldrsb, 5600, f9100000), \
11121 X(_ldrsh, 5e00, f9300000), \
11122 X(_ldr_pc,4800, f85f0000), \
11123 X(_ldr_pc2,4800, f85f0000), \
11124 X(_ldr_sp,9800, f85d0000), \
60f993ce 11125 X(_le, 0000, f00fc001), \
21d799b5
NC
11126 X(_lsl, 0000, fa00f000), \
11127 X(_lsls, 0000, fa10f000), \
11128 X(_lsr, 0800, fa20f000), \
11129 X(_lsrs, 0800, fa30f000), \
11130 X(_mov, 2000, ea4f0000), \
11131 X(_movs, 2000, ea5f0000), \
11132 X(_mul, 4340, fb00f000), \
11133 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11134 X(_mvn, 43c0, ea6f0000), \
11135 X(_mvns, 43c0, ea7f0000), \
11136 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11137 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11138 X(_orr, 4300, ea400000), \
11139 X(_orrs, 4300, ea500000), \
11140 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11141 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11142 X(_rev, ba00, fa90f080), \
11143 X(_rev16, ba40, fa90f090), \
11144 X(_revsh, bac0, fa90f0b0), \
11145 X(_ror, 41c0, fa60f000), \
11146 X(_rors, 41c0, fa70f000), \
11147 X(_sbc, 4180, eb600000), \
11148 X(_sbcs, 4180, eb700000), \
11149 X(_stmia, c000, e8800000), \
11150 X(_str, 6000, f8400000), \
11151 X(_strb, 7000, f8000000), \
11152 X(_strh, 8000, f8200000), \
11153 X(_str_sp,9000, f84d0000), \
11154 X(_sub, 1e00, eba00000), \
11155 X(_subs, 1e00, ebb00000), \
11156 X(_subi, 8000, f1a00000), \
11157 X(_subis, 8000, f1b00000), \
11158 X(_sxtb, b240, fa4ff080), \
11159 X(_sxth, b200, fa0ff080), \
11160 X(_tst, 4200, ea100f00), \
11161 X(_uxtb, b2c0, fa5ff080), \
11162 X(_uxth, b280, fa1ff080), \
11163 X(_nop, bf00, f3af8000), \
11164 X(_yield, bf10, f3af8001), \
11165 X(_wfe, bf20, f3af8002), \
11166 X(_wfi, bf30, f3af8003), \
60f993ce 11167 X(_wls, 0000, f040c001), \
53c4b28b 11168 X(_sev, bf40, f3af8004), \
74db7efb
NC
11169 X(_sevl, bf50, f3af8005), \
11170 X(_udf, de00, f7f0a000)
c19d1205
ZW
11171
11172/* To catch errors in encoding functions, the codes are all offset by
11173 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11174 as 16-bit instructions. */
21d799b5 11175#define X(a,b,c) T_MNEM##a
c19d1205
ZW
11176enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11177#undef X
11178
11179#define X(a,b,c) 0x##b
11180static const unsigned short thumb_op16[] = { T16_32_TAB };
11181#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11182#undef X
11183
11184#define X(a,b,c) 0x##c
11185static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
11186#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11187#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
11188#undef X
11189#undef T16_32_TAB
11190
11191/* Thumb instruction encoders, in alphabetical order. */
11192
92e90b6e 11193/* ADDW or SUBW. */
c921be7d 11194
92e90b6e
PB
11195static void
11196do_t_add_sub_w (void)
11197{
11198 int Rd, Rn;
11199
11200 Rd = inst.operands[0].reg;
11201 Rn = inst.operands[1].reg;
11202
539d4391
NC
11203 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11204 is the SP-{plus,minus}-immediate form of the instruction. */
11205 if (Rn == REG_SP)
11206 constraint (Rd == REG_PC, BAD_PC);
11207 else
11208 reject_bad_reg (Rd);
fdfde340 11209
92e90b6e 11210 inst.instruction |= (Rn << 16) | (Rd << 8);
e2b0ab59 11211 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
92e90b6e
PB
11212}
11213
c19d1205 11214/* Parse an add or subtract instruction. We get here with inst.instruction
33eaf5de 11215 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
c19d1205
ZW
11216
11217static void
11218do_t_add_sub (void)
11219{
11220 int Rd, Rs, Rn;
11221
11222 Rd = inst.operands[0].reg;
11223 Rs = (inst.operands[1].present
11224 ? inst.operands[1].reg /* Rd, Rs, foo */
11225 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11226
e07e6e58 11227 if (Rd == REG_PC)
5ee91343 11228 set_pred_insn_type_last ();
e07e6e58 11229
c19d1205
ZW
11230 if (unified_syntax)
11231 {
0110f2b8
PB
11232 bfd_boolean flags;
11233 bfd_boolean narrow;
11234 int opcode;
11235
11236 flags = (inst.instruction == T_MNEM_adds
11237 || inst.instruction == T_MNEM_subs);
11238 if (flags)
5ee91343 11239 narrow = !in_pred_block ();
0110f2b8 11240 else
5ee91343 11241 narrow = in_pred_block ();
c19d1205 11242 if (!inst.operands[2].isreg)
b99bd4ef 11243 {
16805f35
PB
11244 int add;
11245
5c8ed6a4
JW
11246 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11247 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340 11248
16805f35
PB
11249 add = (inst.instruction == T_MNEM_add
11250 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
11251 opcode = 0;
11252 if (inst.size_req != 4)
11253 {
0110f2b8 11254 /* Attempt to use a narrow opcode, with relaxation if
477330fc 11255 appropriate. */
0110f2b8
PB
11256 if (Rd == REG_SP && Rs == REG_SP && !flags)
11257 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11258 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11259 opcode = T_MNEM_add_sp;
11260 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11261 opcode = T_MNEM_add_pc;
11262 else if (Rd <= 7 && Rs <= 7 && narrow)
11263 {
11264 if (flags)
11265 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11266 else
11267 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11268 }
11269 if (opcode)
11270 {
11271 inst.instruction = THUMB_OP16(opcode);
11272 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59
AV
11273 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11274 || (inst.relocs[0].type
11275 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
a9f02af8
MG
11276 {
11277 if (inst.size_req == 2)
e2b0ab59 11278 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
a9f02af8
MG
11279 else
11280 inst.relax = opcode;
11281 }
0110f2b8
PB
11282 }
11283 else
11284 constraint (inst.size_req == 2, BAD_HIREG);
11285 }
11286 if (inst.size_req == 4
11287 || (inst.size_req != 2 && !opcode))
11288 {
e2b0ab59
AV
11289 constraint ((inst.relocs[0].type
11290 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11291 && (inst.relocs[0].type
11292 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8 11293 THUMB1_RELOC_ONLY);
efd81785
PB
11294 if (Rd == REG_PC)
11295 {
fdfde340 11296 constraint (add, BAD_PC);
efd81785
PB
11297 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11298 _("only SUBS PC, LR, #const allowed"));
e2b0ab59 11299 constraint (inst.relocs[0].exp.X_op != O_constant,
efd81785 11300 _("expression too complex"));
e2b0ab59
AV
11301 constraint (inst.relocs[0].exp.X_add_number < 0
11302 || inst.relocs[0].exp.X_add_number > 0xff,
efd81785
PB
11303 _("immediate value out of range"));
11304 inst.instruction = T2_SUBS_PC_LR
e2b0ab59
AV
11305 | inst.relocs[0].exp.X_add_number;
11306 inst.relocs[0].type = BFD_RELOC_UNUSED;
efd81785
PB
11307 return;
11308 }
11309 else if (Rs == REG_PC)
16805f35
PB
11310 {
11311 /* Always use addw/subw. */
11312 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
e2b0ab59 11313 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
16805f35
PB
11314 }
11315 else
11316 {
11317 inst.instruction = THUMB_OP32 (inst.instruction);
11318 inst.instruction = (inst.instruction & 0xe1ffffff)
11319 | 0x10000000;
11320 if (flags)
e2b0ab59 11321 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
16805f35 11322 else
e2b0ab59 11323 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
16805f35 11324 }
dc4503c6
PB
11325 inst.instruction |= Rd << 8;
11326 inst.instruction |= Rs << 16;
0110f2b8 11327 }
b99bd4ef 11328 }
c19d1205
ZW
11329 else
11330 {
e2b0ab59 11331 unsigned int value = inst.relocs[0].exp.X_add_number;
5f4cb198
NC
11332 unsigned int shift = inst.operands[2].shift_kind;
11333
c19d1205
ZW
11334 Rn = inst.operands[2].reg;
11335 /* See if we can do this with a 16-bit instruction. */
11336 if (!inst.operands[2].shifted && inst.size_req != 4)
11337 {
e27ec89e
PB
11338 if (Rd > 7 || Rs > 7 || Rn > 7)
11339 narrow = FALSE;
11340
11341 if (narrow)
c19d1205 11342 {
e27ec89e
PB
11343 inst.instruction = ((inst.instruction == T_MNEM_adds
11344 || inst.instruction == T_MNEM_add)
c19d1205
ZW
11345 ? T_OPCODE_ADD_R3
11346 : T_OPCODE_SUB_R3);
11347 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11348 return;
11349 }
b99bd4ef 11350
7e806470 11351 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 11352 {
7e806470
PB
11353 /* Thumb-1 cores (except v6-M) require at least one high
11354 register in a narrow non flag setting add. */
11355 if (Rd > 7 || Rn > 7
11356 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11357 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 11358 {
7e806470
PB
11359 if (Rd == Rn)
11360 {
11361 Rn = Rs;
11362 Rs = Rd;
11363 }
c19d1205
ZW
11364 inst.instruction = T_OPCODE_ADD_HI;
11365 inst.instruction |= (Rd & 8) << 4;
11366 inst.instruction |= (Rd & 7);
11367 inst.instruction |= Rn << 3;
11368 return;
11369 }
c19d1205
ZW
11370 }
11371 }
c921be7d 11372
fdfde340 11373 constraint (Rd == REG_PC, BAD_PC);
5c8ed6a4
JW
11374 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11375 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340
JM
11376 constraint (Rs == REG_PC, BAD_PC);
11377 reject_bad_reg (Rn);
11378
c19d1205
ZW
11379 /* If we get here, it can't be done in 16 bits. */
11380 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11381 _("shift must be constant"));
11382 inst.instruction = THUMB_OP32 (inst.instruction);
11383 inst.instruction |= Rd << 8;
11384 inst.instruction |= Rs << 16;
5f4cb198
NC
11385 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11386 _("shift value over 3 not allowed in thumb mode"));
11387 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11388 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
11389 encode_thumb32_shifted_operand (2);
11390 }
11391 }
11392 else
11393 {
11394 constraint (inst.instruction == T_MNEM_adds
11395 || inst.instruction == T_MNEM_subs,
11396 BAD_THUMB32);
b99bd4ef 11397
c19d1205 11398 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 11399 {
c19d1205
ZW
11400 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11401 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11402 BAD_HIREG);
11403
11404 inst.instruction = (inst.instruction == T_MNEM_add
11405 ? 0x0000 : 0x8000);
11406 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59 11407 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
11408 return;
11409 }
11410
c19d1205
ZW
11411 Rn = inst.operands[2].reg;
11412 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 11413
c19d1205
ZW
11414 /* We now have Rd, Rs, and Rn set to registers. */
11415 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 11416 {
c19d1205
ZW
11417 /* Can't do this for SUB. */
11418 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11419 inst.instruction = T_OPCODE_ADD_HI;
11420 inst.instruction |= (Rd & 8) << 4;
11421 inst.instruction |= (Rd & 7);
11422 if (Rs == Rd)
11423 inst.instruction |= Rn << 3;
11424 else if (Rn == Rd)
11425 inst.instruction |= Rs << 3;
11426 else
11427 constraint (1, _("dest must overlap one source register"));
11428 }
11429 else
11430 {
11431 inst.instruction = (inst.instruction == T_MNEM_add
11432 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11433 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 11434 }
b99bd4ef 11435 }
b99bd4ef
NC
11436}
11437
c19d1205
ZW
11438static void
11439do_t_adr (void)
11440{
fdfde340
JM
11441 unsigned Rd;
11442
11443 Rd = inst.operands[0].reg;
11444 reject_bad_reg (Rd);
11445
11446 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
11447 {
11448 /* Defer to section relaxation. */
11449 inst.relax = inst.instruction;
11450 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11451 inst.instruction |= Rd << 4;
0110f2b8
PB
11452 }
11453 else if (unified_syntax && inst.size_req != 2)
e9f89963 11454 {
0110f2b8 11455 /* Generate a 32-bit opcode. */
e9f89963 11456 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11457 inst.instruction |= Rd << 8;
e2b0ab59
AV
11458 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11459 inst.relocs[0].pc_rel = 1;
e9f89963
PB
11460 }
11461 else
11462 {
0110f2b8 11463 /* Generate a 16-bit opcode. */
e9f89963 11464 inst.instruction = THUMB_OP16 (inst.instruction);
e2b0ab59
AV
11465 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11466 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11467 inst.relocs[0].pc_rel = 1;
fdfde340 11468 inst.instruction |= Rd << 4;
e9f89963 11469 }
52a86f84 11470
e2b0ab59
AV
11471 if (inst.relocs[0].exp.X_op == O_symbol
11472 && inst.relocs[0].exp.X_add_symbol != NULL
11473 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11474 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11475 inst.relocs[0].exp.X_add_number += 1;
c19d1205 11476}
b99bd4ef 11477
c19d1205
ZW
11478/* Arithmetic instructions for which there is just one 16-bit
11479 instruction encoding, and it allows only two low registers.
11480 For maximal compatibility with ARM syntax, we allow three register
11481 operands even when Thumb-32 instructions are not available, as long
11482 as the first two are identical. For instance, both "sbc r0,r1" and
11483 "sbc r0,r0,r1" are allowed. */
b99bd4ef 11484static void
c19d1205 11485do_t_arit3 (void)
b99bd4ef 11486{
c19d1205 11487 int Rd, Rs, Rn;
b99bd4ef 11488
c19d1205
ZW
11489 Rd = inst.operands[0].reg;
11490 Rs = (inst.operands[1].present
11491 ? inst.operands[1].reg /* Rd, Rs, foo */
11492 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11493 Rn = inst.operands[2].reg;
b99bd4ef 11494
fdfde340
JM
11495 reject_bad_reg (Rd);
11496 reject_bad_reg (Rs);
11497 if (inst.operands[2].isreg)
11498 reject_bad_reg (Rn);
11499
c19d1205 11500 if (unified_syntax)
b99bd4ef 11501 {
c19d1205
ZW
11502 if (!inst.operands[2].isreg)
11503 {
11504 /* For an immediate, we always generate a 32-bit opcode;
11505 section relaxation will shrink it later if possible. */
11506 inst.instruction = THUMB_OP32 (inst.instruction);
11507 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11508 inst.instruction |= Rd << 8;
11509 inst.instruction |= Rs << 16;
e2b0ab59 11510 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
c19d1205
ZW
11511 }
11512 else
11513 {
e27ec89e
PB
11514 bfd_boolean narrow;
11515
c19d1205 11516 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11517 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11518 narrow = !in_pred_block ();
e27ec89e 11519 else
5ee91343 11520 narrow = in_pred_block ();
e27ec89e
PB
11521
11522 if (Rd > 7 || Rn > 7 || Rs > 7)
11523 narrow = FALSE;
11524 if (inst.operands[2].shifted)
11525 narrow = FALSE;
11526 if (inst.size_req == 4)
11527 narrow = FALSE;
11528
11529 if (narrow
c19d1205
ZW
11530 && Rd == Rs)
11531 {
11532 inst.instruction = THUMB_OP16 (inst.instruction);
11533 inst.instruction |= Rd;
11534 inst.instruction |= Rn << 3;
11535 return;
11536 }
b99bd4ef 11537
c19d1205
ZW
11538 /* If we get here, it can't be done in 16 bits. */
11539 constraint (inst.operands[2].shifted
11540 && inst.operands[2].immisreg,
11541 _("shift must be constant"));
11542 inst.instruction = THUMB_OP32 (inst.instruction);
11543 inst.instruction |= Rd << 8;
11544 inst.instruction |= Rs << 16;
11545 encode_thumb32_shifted_operand (2);
11546 }
a737bd4d 11547 }
c19d1205 11548 else
b99bd4ef 11549 {
c19d1205
ZW
11550 /* On its face this is a lie - the instruction does set the
11551 flags. However, the only supported mnemonic in this mode
11552 says it doesn't. */
11553 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11554
c19d1205
ZW
11555 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11556 _("unshifted register required"));
11557 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11558 constraint (Rd != Rs,
11559 _("dest and source1 must be the same register"));
a737bd4d 11560
c19d1205
ZW
11561 inst.instruction = THUMB_OP16 (inst.instruction);
11562 inst.instruction |= Rd;
11563 inst.instruction |= Rn << 3;
b99bd4ef 11564 }
a737bd4d 11565}
b99bd4ef 11566
c19d1205
ZW
11567/* Similarly, but for instructions where the arithmetic operation is
11568 commutative, so we can allow either of them to be different from
11569 the destination operand in a 16-bit instruction. For instance, all
11570 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11571 accepted. */
11572static void
11573do_t_arit3c (void)
a737bd4d 11574{
c19d1205 11575 int Rd, Rs, Rn;
b99bd4ef 11576
c19d1205
ZW
11577 Rd = inst.operands[0].reg;
11578 Rs = (inst.operands[1].present
11579 ? inst.operands[1].reg /* Rd, Rs, foo */
11580 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11581 Rn = inst.operands[2].reg;
c921be7d 11582
fdfde340
JM
11583 reject_bad_reg (Rd);
11584 reject_bad_reg (Rs);
11585 if (inst.operands[2].isreg)
11586 reject_bad_reg (Rn);
a737bd4d 11587
c19d1205 11588 if (unified_syntax)
a737bd4d 11589 {
c19d1205 11590 if (!inst.operands[2].isreg)
b99bd4ef 11591 {
c19d1205
ZW
11592 /* For an immediate, we always generate a 32-bit opcode;
11593 section relaxation will shrink it later if possible. */
11594 inst.instruction = THUMB_OP32 (inst.instruction);
11595 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11596 inst.instruction |= Rd << 8;
11597 inst.instruction |= Rs << 16;
e2b0ab59 11598 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11599 }
c19d1205 11600 else
a737bd4d 11601 {
e27ec89e
PB
11602 bfd_boolean narrow;
11603
c19d1205 11604 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11605 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11606 narrow = !in_pred_block ();
e27ec89e 11607 else
5ee91343 11608 narrow = in_pred_block ();
e27ec89e
PB
11609
11610 if (Rd > 7 || Rn > 7 || Rs > 7)
11611 narrow = FALSE;
11612 if (inst.operands[2].shifted)
11613 narrow = FALSE;
11614 if (inst.size_req == 4)
11615 narrow = FALSE;
11616
11617 if (narrow)
a737bd4d 11618 {
c19d1205 11619 if (Rd == Rs)
a737bd4d 11620 {
c19d1205
ZW
11621 inst.instruction = THUMB_OP16 (inst.instruction);
11622 inst.instruction |= Rd;
11623 inst.instruction |= Rn << 3;
11624 return;
a737bd4d 11625 }
c19d1205 11626 if (Rd == Rn)
a737bd4d 11627 {
c19d1205
ZW
11628 inst.instruction = THUMB_OP16 (inst.instruction);
11629 inst.instruction |= Rd;
11630 inst.instruction |= Rs << 3;
11631 return;
a737bd4d
NC
11632 }
11633 }
c19d1205
ZW
11634
11635 /* If we get here, it can't be done in 16 bits. */
11636 constraint (inst.operands[2].shifted
11637 && inst.operands[2].immisreg,
11638 _("shift must be constant"));
11639 inst.instruction = THUMB_OP32 (inst.instruction);
11640 inst.instruction |= Rd << 8;
11641 inst.instruction |= Rs << 16;
11642 encode_thumb32_shifted_operand (2);
a737bd4d 11643 }
b99bd4ef 11644 }
c19d1205
ZW
11645 else
11646 {
11647 /* On its face this is a lie - the instruction does set the
11648 flags. However, the only supported mnemonic in this mode
11649 says it doesn't. */
11650 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11651
c19d1205
ZW
11652 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11653 _("unshifted register required"));
11654 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11655
11656 inst.instruction = THUMB_OP16 (inst.instruction);
11657 inst.instruction |= Rd;
11658
11659 if (Rd == Rs)
11660 inst.instruction |= Rn << 3;
11661 else if (Rd == Rn)
11662 inst.instruction |= Rs << 3;
11663 else
11664 constraint (1, _("dest must overlap one source register"));
11665 }
a737bd4d
NC
11666}
11667
c19d1205
ZW
11668static void
11669do_t_bfc (void)
a737bd4d 11670{
fdfde340 11671 unsigned Rd;
c19d1205
ZW
11672 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11673 constraint (msb > 32, _("bit-field extends past end of register"));
11674 /* The instruction encoding stores the LSB and MSB,
11675 not the LSB and width. */
fdfde340
JM
11676 Rd = inst.operands[0].reg;
11677 reject_bad_reg (Rd);
11678 inst.instruction |= Rd << 8;
c19d1205
ZW
11679 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11680 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11681 inst.instruction |= msb - 1;
b99bd4ef
NC
11682}
11683
c19d1205
ZW
11684static void
11685do_t_bfi (void)
b99bd4ef 11686{
fdfde340 11687 int Rd, Rn;
c19d1205 11688 unsigned int msb;
b99bd4ef 11689
fdfde340
JM
11690 Rd = inst.operands[0].reg;
11691 reject_bad_reg (Rd);
11692
c19d1205
ZW
11693 /* #0 in second position is alternative syntax for bfc, which is
11694 the same instruction but with REG_PC in the Rm field. */
11695 if (!inst.operands[1].isreg)
fdfde340
JM
11696 Rn = REG_PC;
11697 else
11698 {
11699 Rn = inst.operands[1].reg;
11700 reject_bad_reg (Rn);
11701 }
b99bd4ef 11702
c19d1205
ZW
11703 msb = inst.operands[2].imm + inst.operands[3].imm;
11704 constraint (msb > 32, _("bit-field extends past end of register"));
11705 /* The instruction encoding stores the LSB and MSB,
11706 not the LSB and width. */
fdfde340
JM
11707 inst.instruction |= Rd << 8;
11708 inst.instruction |= Rn << 16;
c19d1205
ZW
11709 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11710 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11711 inst.instruction |= msb - 1;
b99bd4ef
NC
11712}
11713
c19d1205
ZW
11714static void
11715do_t_bfx (void)
b99bd4ef 11716{
fdfde340
JM
11717 unsigned Rd, Rn;
11718
11719 Rd = inst.operands[0].reg;
11720 Rn = inst.operands[1].reg;
11721
11722 reject_bad_reg (Rd);
11723 reject_bad_reg (Rn);
11724
c19d1205
ZW
11725 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11726 _("bit-field extends past end of register"));
fdfde340
JM
11727 inst.instruction |= Rd << 8;
11728 inst.instruction |= Rn << 16;
c19d1205
ZW
11729 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11730 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11731 inst.instruction |= inst.operands[3].imm - 1;
11732}
b99bd4ef 11733
c19d1205
ZW
11734/* ARM V5 Thumb BLX (argument parse)
11735 BLX <target_addr> which is BLX(1)
11736 BLX <Rm> which is BLX(2)
11737 Unfortunately, there are two different opcodes for this mnemonic.
11738 So, the insns[].value is not used, and the code here zaps values
11739 into inst.instruction.
b99bd4ef 11740
c19d1205
ZW
11741 ??? How to take advantage of the additional two bits of displacement
11742 available in Thumb32 mode? Need new relocation? */
b99bd4ef 11743
c19d1205
ZW
11744static void
11745do_t_blx (void)
11746{
5ee91343 11747 set_pred_insn_type_last ();
e07e6e58 11748
c19d1205 11749 if (inst.operands[0].isreg)
fdfde340
JM
11750 {
11751 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11752 /* We have a register, so this is BLX(2). */
11753 inst.instruction |= inst.operands[0].reg << 3;
11754 }
b99bd4ef
NC
11755 else
11756 {
c19d1205 11757 /* No register. This must be BLX(1). */
2fc8bdac 11758 inst.instruction = 0xf000e800;
0855e32b 11759 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
11760 }
11761}
11762
c19d1205
ZW
11763static void
11764do_t_branch (void)
b99bd4ef 11765{
0110f2b8 11766 int opcode;
dfa9f0d5 11767 int cond;
2fe88214 11768 bfd_reloc_code_real_type reloc;
dfa9f0d5 11769
e07e6e58 11770 cond = inst.cond;
5ee91343 11771 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
e07e6e58 11772
5ee91343 11773 if (in_pred_block ())
dfa9f0d5
PB
11774 {
11775 /* Conditional branches inside IT blocks are encoded as unconditional
477330fc 11776 branches. */
dfa9f0d5 11777 cond = COND_ALWAYS;
dfa9f0d5
PB
11778 }
11779 else
11780 cond = inst.cond;
11781
11782 if (cond != COND_ALWAYS)
0110f2b8
PB
11783 opcode = T_MNEM_bcond;
11784 else
11785 opcode = inst.instruction;
11786
12d6b0b7
RS
11787 if (unified_syntax
11788 && (inst.size_req == 4
10960bfb
PB
11789 || (inst.size_req != 2
11790 && (inst.operands[0].hasreloc
e2b0ab59 11791 || inst.relocs[0].exp.X_op == O_constant))))
c19d1205 11792 {
0110f2b8 11793 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 11794 if (cond == COND_ALWAYS)
9ae92b05 11795 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
11796 else
11797 {
ff8646ee
TP
11798 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11799 _("selected architecture does not support "
11800 "wide conditional branch instruction"));
11801
9c2799c2 11802 gas_assert (cond != 0xF);
dfa9f0d5 11803 inst.instruction |= cond << 22;
9ae92b05 11804 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
11805 }
11806 }
b99bd4ef
NC
11807 else
11808 {
0110f2b8 11809 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 11810 if (cond == COND_ALWAYS)
9ae92b05 11811 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 11812 else
b99bd4ef 11813 {
dfa9f0d5 11814 inst.instruction |= cond << 8;
9ae92b05 11815 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 11816 }
0110f2b8
PB
11817 /* Allow section relaxation. */
11818 if (unified_syntax && inst.size_req != 2)
11819 inst.relax = opcode;
b99bd4ef 11820 }
e2b0ab59
AV
11821 inst.relocs[0].type = reloc;
11822 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
11823}
11824
8884b720 11825/* Actually do the work for Thumb state bkpt and hlt. The only difference
bacebabc 11826 between the two is the maximum immediate allowed - which is passed in
8884b720 11827 RANGE. */
b99bd4ef 11828static void
8884b720 11829do_t_bkpt_hlt1 (int range)
b99bd4ef 11830{
dfa9f0d5
PB
11831 constraint (inst.cond != COND_ALWAYS,
11832 _("instruction is always unconditional"));
c19d1205 11833 if (inst.operands[0].present)
b99bd4ef 11834 {
8884b720 11835 constraint (inst.operands[0].imm > range,
c19d1205
ZW
11836 _("immediate value out of range"));
11837 inst.instruction |= inst.operands[0].imm;
b99bd4ef 11838 }
8884b720 11839
5ee91343 11840 set_pred_insn_type (NEUTRAL_IT_INSN);
8884b720
MGD
11841}
11842
11843static void
11844do_t_hlt (void)
11845{
11846 do_t_bkpt_hlt1 (63);
11847}
11848
11849static void
11850do_t_bkpt (void)
11851{
11852 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
11853}
11854
11855static void
c19d1205 11856do_t_branch23 (void)
b99bd4ef 11857{
5ee91343 11858 set_pred_insn_type_last ();
0855e32b 11859 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 11860
0855e32b
NS
11861 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11862 this file. We used to simply ignore the PLT reloc type here --
11863 the branch encoding is now needed to deal with TLSCALL relocs.
11864 So if we see a PLT reloc now, put it back to how it used to be to
11865 keep the preexisting behaviour. */
e2b0ab59
AV
11866 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11867 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 11868
4343666d 11869#if defined(OBJ_COFF)
c19d1205
ZW
11870 /* If the destination of the branch is a defined symbol which does not have
11871 the THUMB_FUNC attribute, then we must be calling a function which has
11872 the (interfacearm) attribute. We look for the Thumb entry point to that
11873 function and change the branch to refer to that function instead. */
e2b0ab59
AV
11874 if ( inst.relocs[0].exp.X_op == O_symbol
11875 && inst.relocs[0].exp.X_add_symbol != NULL
11876 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11877 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11878 inst.relocs[0].exp.X_add_symbol
11879 = find_real_start (inst.relocs[0].exp.X_add_symbol);
4343666d 11880#endif
90e4755a
RE
11881}
11882
11883static void
c19d1205 11884do_t_bx (void)
90e4755a 11885{
5ee91343 11886 set_pred_insn_type_last ();
c19d1205
ZW
11887 inst.instruction |= inst.operands[0].reg << 3;
11888 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11889 should cause the alignment to be checked once it is known. This is
11890 because BX PC only works if the instruction is word aligned. */
11891}
90e4755a 11892
c19d1205
ZW
11893static void
11894do_t_bxj (void)
11895{
fdfde340 11896 int Rm;
90e4755a 11897
5ee91343 11898 set_pred_insn_type_last ();
fdfde340
JM
11899 Rm = inst.operands[0].reg;
11900 reject_bad_reg (Rm);
11901 inst.instruction |= Rm << 16;
90e4755a
RE
11902}
11903
11904static void
c19d1205 11905do_t_clz (void)
90e4755a 11906{
fdfde340
JM
11907 unsigned Rd;
11908 unsigned Rm;
11909
11910 Rd = inst.operands[0].reg;
11911 Rm = inst.operands[1].reg;
11912
11913 reject_bad_reg (Rd);
11914 reject_bad_reg (Rm);
11915
11916 inst.instruction |= Rd << 8;
11917 inst.instruction |= Rm << 16;
11918 inst.instruction |= Rm;
c19d1205 11919}
90e4755a 11920
91d8b670
JG
11921static void
11922do_t_csdb (void)
11923{
5ee91343 11924 set_pred_insn_type (OUTSIDE_PRED_INSN);
91d8b670
JG
11925}
11926
dfa9f0d5
PB
11927static void
11928do_t_cps (void)
11929{
5ee91343 11930 set_pred_insn_type (OUTSIDE_PRED_INSN);
dfa9f0d5
PB
11931 inst.instruction |= inst.operands[0].imm;
11932}
11933
c19d1205
ZW
11934static void
11935do_t_cpsi (void)
11936{
5ee91343 11937 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205 11938 if (unified_syntax
62b3e311
PB
11939 && (inst.operands[1].present || inst.size_req == 4)
11940 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 11941 {
c19d1205
ZW
11942 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11943 inst.instruction = 0xf3af8000;
11944 inst.instruction |= imod << 9;
11945 inst.instruction |= inst.operands[0].imm << 5;
11946 if (inst.operands[1].present)
11947 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 11948 }
c19d1205 11949 else
90e4755a 11950 {
62b3e311
PB
11951 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11952 && (inst.operands[0].imm & 4),
11953 _("selected processor does not support 'A' form "
11954 "of this instruction"));
11955 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
11956 _("Thumb does not support the 2-argument "
11957 "form of this instruction"));
11958 inst.instruction |= inst.operands[0].imm;
90e4755a 11959 }
90e4755a
RE
11960}
11961
c19d1205
ZW
11962/* THUMB CPY instruction (argument parse). */
11963
90e4755a 11964static void
c19d1205 11965do_t_cpy (void)
90e4755a 11966{
c19d1205 11967 if (inst.size_req == 4)
90e4755a 11968 {
c19d1205
ZW
11969 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11970 inst.instruction |= inst.operands[0].reg << 8;
11971 inst.instruction |= inst.operands[1].reg;
90e4755a 11972 }
c19d1205 11973 else
90e4755a 11974 {
c19d1205
ZW
11975 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11976 inst.instruction |= (inst.operands[0].reg & 0x7);
11977 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 11978 }
90e4755a
RE
11979}
11980
90e4755a 11981static void
25fe350b 11982do_t_cbz (void)
90e4755a 11983{
5ee91343 11984 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
11985 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11986 inst.instruction |= inst.operands[0].reg;
e2b0ab59
AV
11987 inst.relocs[0].pc_rel = 1;
11988 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
c19d1205 11989}
90e4755a 11990
62b3e311
PB
11991static void
11992do_t_dbg (void)
11993{
11994 inst.instruction |= inst.operands[0].imm;
11995}
11996
11997static void
11998do_t_div (void)
11999{
fdfde340
JM
12000 unsigned Rd, Rn, Rm;
12001
12002 Rd = inst.operands[0].reg;
12003 Rn = (inst.operands[1].present
12004 ? inst.operands[1].reg : Rd);
12005 Rm = inst.operands[2].reg;
12006
12007 reject_bad_reg (Rd);
12008 reject_bad_reg (Rn);
12009 reject_bad_reg (Rm);
12010
12011 inst.instruction |= Rd << 8;
12012 inst.instruction |= Rn << 16;
12013 inst.instruction |= Rm;
62b3e311
PB
12014}
12015
c19d1205
ZW
12016static void
12017do_t_hint (void)
12018{
12019 if (unified_syntax && inst.size_req == 4)
12020 inst.instruction = THUMB_OP32 (inst.instruction);
12021 else
12022 inst.instruction = THUMB_OP16 (inst.instruction);
12023}
90e4755a 12024
c19d1205
ZW
12025static void
12026do_t_it (void)
12027{
12028 unsigned int cond = inst.operands[0].imm;
e27ec89e 12029
5ee91343
AV
12030 set_pred_insn_type (IT_INSN);
12031 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12032 now_pred.cc = cond;
12033 now_pred.warn_deprecated = FALSE;
12034 now_pred.type = SCALAR_PRED;
e27ec89e
PB
12035
12036 /* If the condition is a negative condition, invert the mask. */
c19d1205 12037 if ((cond & 0x1) == 0x0)
90e4755a 12038 {
c19d1205 12039 unsigned int mask = inst.instruction & 0x000f;
90e4755a 12040
c19d1205 12041 if ((mask & 0x7) == 0)
5a01bb1d
MGD
12042 {
12043 /* No conversion needed. */
5ee91343 12044 now_pred.block_length = 1;
5a01bb1d 12045 }
c19d1205 12046 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
12047 {
12048 mask ^= 0x8;
5ee91343 12049 now_pred.block_length = 2;
5a01bb1d 12050 }
e27ec89e 12051 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
12052 {
12053 mask ^= 0xC;
5ee91343 12054 now_pred.block_length = 3;
5a01bb1d 12055 }
c19d1205 12056 else
5a01bb1d
MGD
12057 {
12058 mask ^= 0xE;
5ee91343 12059 now_pred.block_length = 4;
5a01bb1d 12060 }
90e4755a 12061
e27ec89e
PB
12062 inst.instruction &= 0xfff0;
12063 inst.instruction |= mask;
c19d1205 12064 }
90e4755a 12065
c19d1205
ZW
12066 inst.instruction |= cond << 4;
12067}
90e4755a 12068
3c707909
PB
12069/* Helper function used for both push/pop and ldm/stm. */
12070static void
4b5a202f
AV
12071encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12072 bfd_boolean writeback)
3c707909 12073{
4b5a202f 12074 bfd_boolean load, store;
3c707909 12075
4b5a202f
AV
12076 gas_assert (base != -1 || !do_io);
12077 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12078 store = do_io && !load;
3c707909
PB
12079
12080 if (mask & (1 << 13))
12081 inst.error = _("SP not allowed in register list");
1e5b0379 12082
4b5a202f 12083 if (do_io && (mask & (1 << base)) != 0
1e5b0379
NC
12084 && writeback)
12085 inst.error = _("having the base register in the register list when "
12086 "using write back is UNPREDICTABLE");
12087
3c707909
PB
12088 if (load)
12089 {
e07e6e58 12090 if (mask & (1 << 15))
477330fc
RM
12091 {
12092 if (mask & (1 << 14))
12093 inst.error = _("LR and PC should not both be in register list");
12094 else
5ee91343 12095 set_pred_insn_type_last ();
477330fc 12096 }
3c707909 12097 }
4b5a202f 12098 else if (store)
3c707909
PB
12099 {
12100 if (mask & (1 << 15))
12101 inst.error = _("PC not allowed in register list");
3c707909
PB
12102 }
12103
4b5a202f 12104 if (do_io && ((mask & (mask - 1)) == 0))
3c707909
PB
12105 {
12106 /* Single register transfers implemented as str/ldr. */
12107 if (writeback)
12108 {
12109 if (inst.instruction & (1 << 23))
12110 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12111 else
12112 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12113 }
12114 else
12115 {
12116 if (inst.instruction & (1 << 23))
12117 inst.instruction = 0x00800000; /* ia -> [base] */
12118 else
12119 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12120 }
12121
12122 inst.instruction |= 0xf8400000;
12123 if (load)
12124 inst.instruction |= 0x00100000;
12125
5f4273c7 12126 mask = ffs (mask) - 1;
3c707909
PB
12127 mask <<= 12;
12128 }
12129 else if (writeback)
12130 inst.instruction |= WRITE_BACK;
12131
12132 inst.instruction |= mask;
4b5a202f
AV
12133 if (do_io)
12134 inst.instruction |= base << 16;
3c707909
PB
12135}
12136
c19d1205
ZW
12137static void
12138do_t_ldmstm (void)
12139{
12140 /* This really doesn't seem worth it. */
e2b0ab59 12141 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205
ZW
12142 _("expression too complex"));
12143 constraint (inst.operands[1].writeback,
12144 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 12145
c19d1205
ZW
12146 if (unified_syntax)
12147 {
3c707909
PB
12148 bfd_boolean narrow;
12149 unsigned mask;
12150
12151 narrow = FALSE;
c19d1205
ZW
12152 /* See if we can use a 16-bit instruction. */
12153 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12154 && inst.size_req != 4
3c707909 12155 && !(inst.operands[1].imm & ~0xff))
90e4755a 12156 {
3c707909 12157 mask = 1 << inst.operands[0].reg;
90e4755a 12158
eab4f823 12159 if (inst.operands[0].reg <= 7)
90e4755a 12160 {
3c707909 12161 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
12162 ? inst.operands[0].writeback
12163 : (inst.operands[0].writeback
12164 == !(inst.operands[1].imm & mask)))
477330fc 12165 {
eab4f823
MGD
12166 if (inst.instruction == T_MNEM_stmia
12167 && (inst.operands[1].imm & mask)
12168 && (inst.operands[1].imm & (mask - 1)))
12169 as_warn (_("value stored for r%d is UNKNOWN"),
12170 inst.operands[0].reg);
3c707909 12171
eab4f823
MGD
12172 inst.instruction = THUMB_OP16 (inst.instruction);
12173 inst.instruction |= inst.operands[0].reg << 8;
12174 inst.instruction |= inst.operands[1].imm;
12175 narrow = TRUE;
12176 }
12177 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12178 {
12179 /* This means 1 register in reg list one of 3 situations:
12180 1. Instruction is stmia, but without writeback.
12181 2. lmdia without writeback, but with Rn not in
477330fc 12182 reglist.
eab4f823
MGD
12183 3. ldmia with writeback, but with Rn in reglist.
12184 Case 3 is UNPREDICTABLE behaviour, so we handle
12185 case 1 and 2 which can be converted into a 16-bit
12186 str or ldr. The SP cases are handled below. */
12187 unsigned long opcode;
12188 /* First, record an error for Case 3. */
12189 if (inst.operands[1].imm & mask
12190 && inst.operands[0].writeback)
fa94de6b 12191 inst.error =
eab4f823
MGD
12192 _("having the base register in the register list when "
12193 "using write back is UNPREDICTABLE");
fa94de6b
RM
12194
12195 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
12196 : T_MNEM_ldr);
12197 inst.instruction = THUMB_OP16 (opcode);
12198 inst.instruction |= inst.operands[0].reg << 3;
12199 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12200 narrow = TRUE;
12201 }
90e4755a 12202 }
eab4f823 12203 else if (inst.operands[0] .reg == REG_SP)
90e4755a 12204 {
eab4f823
MGD
12205 if (inst.operands[0].writeback)
12206 {
fa94de6b 12207 inst.instruction =
eab4f823 12208 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12209 ? T_MNEM_push : T_MNEM_pop);
eab4f823 12210 inst.instruction |= inst.operands[1].imm;
477330fc 12211 narrow = TRUE;
eab4f823
MGD
12212 }
12213 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12214 {
fa94de6b 12215 inst.instruction =
eab4f823 12216 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12217 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
eab4f823 12218 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
477330fc 12219 narrow = TRUE;
eab4f823 12220 }
90e4755a 12221 }
3c707909
PB
12222 }
12223
12224 if (!narrow)
12225 {
c19d1205
ZW
12226 if (inst.instruction < 0xffff)
12227 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 12228
4b5a202f
AV
12229 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12230 inst.operands[1].imm,
12231 inst.operands[0].writeback);
90e4755a
RE
12232 }
12233 }
c19d1205 12234 else
90e4755a 12235 {
c19d1205
ZW
12236 constraint (inst.operands[0].reg > 7
12237 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
12238 constraint (inst.instruction != T_MNEM_ldmia
12239 && inst.instruction != T_MNEM_stmia,
12240 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 12241 if (inst.instruction == T_MNEM_stmia)
f03698e6 12242 {
c19d1205
ZW
12243 if (!inst.operands[0].writeback)
12244 as_warn (_("this instruction will write back the base register"));
12245 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12246 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 12247 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 12248 inst.operands[0].reg);
f03698e6 12249 }
c19d1205 12250 else
90e4755a 12251 {
c19d1205
ZW
12252 if (!inst.operands[0].writeback
12253 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12254 as_warn (_("this instruction will write back the base register"));
12255 else if (inst.operands[0].writeback
12256 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12257 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
12258 }
12259
c19d1205
ZW
12260 inst.instruction = THUMB_OP16 (inst.instruction);
12261 inst.instruction |= inst.operands[0].reg << 8;
12262 inst.instruction |= inst.operands[1].imm;
12263 }
12264}
e28cd48c 12265
c19d1205
ZW
12266static void
12267do_t_ldrex (void)
12268{
12269 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12270 || inst.operands[1].postind || inst.operands[1].writeback
12271 || inst.operands[1].immisreg || inst.operands[1].shifted
12272 || inst.operands[1].negative,
01cfc07f 12273 BAD_ADDR_MODE);
e28cd48c 12274
5be8be5d
DG
12275 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12276
c19d1205
ZW
12277 inst.instruction |= inst.operands[0].reg << 12;
12278 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 12279 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
c19d1205 12280}
e28cd48c 12281
c19d1205
ZW
12282static void
12283do_t_ldrexd (void)
12284{
12285 if (!inst.operands[1].present)
1cac9012 12286 {
c19d1205
ZW
12287 constraint (inst.operands[0].reg == REG_LR,
12288 _("r14 not allowed as first register "
12289 "when second register is omitted"));
12290 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 12291 }
c19d1205
ZW
12292 constraint (inst.operands[0].reg == inst.operands[1].reg,
12293 BAD_OVERLAP);
b99bd4ef 12294
c19d1205
ZW
12295 inst.instruction |= inst.operands[0].reg << 12;
12296 inst.instruction |= inst.operands[1].reg << 8;
12297 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
12298}
12299
12300static void
c19d1205 12301do_t_ldst (void)
b99bd4ef 12302{
0110f2b8
PB
12303 unsigned long opcode;
12304 int Rn;
12305
e07e6e58
NC
12306 if (inst.operands[0].isreg
12307 && !inst.operands[0].preind
12308 && inst.operands[0].reg == REG_PC)
5ee91343 12309 set_pred_insn_type_last ();
e07e6e58 12310
0110f2b8 12311 opcode = inst.instruction;
c19d1205 12312 if (unified_syntax)
b99bd4ef 12313 {
53365c0d
PB
12314 if (!inst.operands[1].isreg)
12315 {
12316 if (opcode <= 0xffff)
12317 inst.instruction = THUMB_OP32 (opcode);
8335d6aa 12318 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
53365c0d
PB
12319 return;
12320 }
0110f2b8
PB
12321 if (inst.operands[1].isreg
12322 && !inst.operands[1].writeback
c19d1205
ZW
12323 && !inst.operands[1].shifted && !inst.operands[1].postind
12324 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
12325 && opcode <= 0xffff
12326 && inst.size_req != 4)
c19d1205 12327 {
0110f2b8
PB
12328 /* Insn may have a 16-bit form. */
12329 Rn = inst.operands[1].reg;
12330 if (inst.operands[1].immisreg)
12331 {
12332 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 12333 /* [Rn, Rik] */
0110f2b8
PB
12334 if (Rn <= 7 && inst.operands[1].imm <= 7)
12335 goto op16;
5be8be5d
DG
12336 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12337 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
12338 }
12339 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12340 && opcode != T_MNEM_ldrsb)
12341 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12342 || (Rn == REG_SP && opcode == T_MNEM_str))
12343 {
12344 /* [Rn, #const] */
12345 if (Rn > 7)
12346 {
12347 if (Rn == REG_PC)
12348 {
e2b0ab59 12349 if (inst.relocs[0].pc_rel)
0110f2b8
PB
12350 opcode = T_MNEM_ldr_pc2;
12351 else
12352 opcode = T_MNEM_ldr_pc;
12353 }
12354 else
12355 {
12356 if (opcode == T_MNEM_ldr)
12357 opcode = T_MNEM_ldr_sp;
12358 else
12359 opcode = T_MNEM_str_sp;
12360 }
12361 inst.instruction = inst.operands[0].reg << 8;
12362 }
12363 else
12364 {
12365 inst.instruction = inst.operands[0].reg;
12366 inst.instruction |= inst.operands[1].reg << 3;
12367 }
12368 inst.instruction |= THUMB_OP16 (opcode);
12369 if (inst.size_req == 2)
e2b0ab59 12370 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
0110f2b8
PB
12371 else
12372 inst.relax = opcode;
12373 return;
12374 }
c19d1205 12375 }
0110f2b8 12376 /* Definitely a 32-bit variant. */
5be8be5d 12377
8d67f500
NC
12378 /* Warning for Erratum 752419. */
12379 if (opcode == T_MNEM_ldr
12380 && inst.operands[0].reg == REG_SP
12381 && inst.operands[1].writeback == 1
12382 && !inst.operands[1].immisreg)
12383 {
12384 if (no_cpu_selected ()
12385 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
477330fc
RM
12386 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12387 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
8d67f500
NC
12388 as_warn (_("This instruction may be unpredictable "
12389 "if executed on M-profile cores "
12390 "with interrupts enabled."));
12391 }
12392
5be8be5d 12393 /* Do some validations regarding addressing modes. */
1be5fd2e 12394 if (inst.operands[1].immisreg)
5be8be5d
DG
12395 reject_bad_reg (inst.operands[1].imm);
12396
1be5fd2e
NC
12397 constraint (inst.operands[1].writeback == 1
12398 && inst.operands[0].reg == inst.operands[1].reg,
12399 BAD_OVERLAP);
12400
0110f2b8 12401 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
12402 inst.instruction |= inst.operands[0].reg << 12;
12403 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 12404 check_ldr_r15_aligned ();
b99bd4ef
NC
12405 return;
12406 }
12407
c19d1205
ZW
12408 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12409
12410 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 12411 {
c19d1205
ZW
12412 /* Only [Rn,Rm] is acceptable. */
12413 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12414 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12415 || inst.operands[1].postind || inst.operands[1].shifted
12416 || inst.operands[1].negative,
12417 _("Thumb does not support this addressing mode"));
12418 inst.instruction = THUMB_OP16 (inst.instruction);
12419 goto op16;
b99bd4ef 12420 }
5f4273c7 12421
c19d1205
ZW
12422 inst.instruction = THUMB_OP16 (inst.instruction);
12423 if (!inst.operands[1].isreg)
8335d6aa 12424 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
c19d1205 12425 return;
b99bd4ef 12426
c19d1205
ZW
12427 constraint (!inst.operands[1].preind
12428 || inst.operands[1].shifted
12429 || inst.operands[1].writeback,
12430 _("Thumb does not support this addressing mode"));
12431 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 12432 {
c19d1205
ZW
12433 constraint (inst.instruction & 0x0600,
12434 _("byte or halfword not valid for base register"));
12435 constraint (inst.operands[1].reg == REG_PC
12436 && !(inst.instruction & THUMB_LOAD_BIT),
12437 _("r15 based store not allowed"));
12438 constraint (inst.operands[1].immisreg,
12439 _("invalid base register for register offset"));
b99bd4ef 12440
c19d1205
ZW
12441 if (inst.operands[1].reg == REG_PC)
12442 inst.instruction = T_OPCODE_LDR_PC;
12443 else if (inst.instruction & THUMB_LOAD_BIT)
12444 inst.instruction = T_OPCODE_LDR_SP;
12445 else
12446 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 12447
c19d1205 12448 inst.instruction |= inst.operands[0].reg << 8;
e2b0ab59 12449 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12450 return;
12451 }
90e4755a 12452
c19d1205
ZW
12453 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12454 if (!inst.operands[1].immisreg)
12455 {
12456 /* Immediate offset. */
12457 inst.instruction |= inst.operands[0].reg;
12458 inst.instruction |= inst.operands[1].reg << 3;
e2b0ab59 12459 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12460 return;
12461 }
90e4755a 12462
c19d1205
ZW
12463 /* Register offset. */
12464 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12465 constraint (inst.operands[1].negative,
12466 _("Thumb does not support this addressing mode"));
90e4755a 12467
c19d1205
ZW
12468 op16:
12469 switch (inst.instruction)
12470 {
12471 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12472 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12473 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12474 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12475 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12476 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12477 case 0x5600 /* ldrsb */:
12478 case 0x5e00 /* ldrsh */: break;
12479 default: abort ();
12480 }
90e4755a 12481
c19d1205
ZW
12482 inst.instruction |= inst.operands[0].reg;
12483 inst.instruction |= inst.operands[1].reg << 3;
12484 inst.instruction |= inst.operands[1].imm << 6;
12485}
90e4755a 12486
c19d1205
ZW
12487static void
12488do_t_ldstd (void)
12489{
12490 if (!inst.operands[1].present)
b99bd4ef 12491 {
c19d1205
ZW
12492 inst.operands[1].reg = inst.operands[0].reg + 1;
12493 constraint (inst.operands[0].reg == REG_LR,
12494 _("r14 not allowed here"));
bd340a04 12495 constraint (inst.operands[0].reg == REG_R12,
477330fc 12496 _("r12 not allowed here"));
b99bd4ef 12497 }
bd340a04
MGD
12498
12499 if (inst.operands[2].writeback
12500 && (inst.operands[0].reg == inst.operands[2].reg
12501 || inst.operands[1].reg == inst.operands[2].reg))
12502 as_warn (_("base register written back, and overlaps "
477330fc 12503 "one of transfer registers"));
bd340a04 12504
c19d1205
ZW
12505 inst.instruction |= inst.operands[0].reg << 12;
12506 inst.instruction |= inst.operands[1].reg << 8;
12507 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
12508}
12509
c19d1205
ZW
12510static void
12511do_t_ldstt (void)
12512{
12513 inst.instruction |= inst.operands[0].reg << 12;
12514 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12515}
a737bd4d 12516
b99bd4ef 12517static void
c19d1205 12518do_t_mla (void)
b99bd4ef 12519{
fdfde340 12520 unsigned Rd, Rn, Rm, Ra;
c921be7d 12521
fdfde340
JM
12522 Rd = inst.operands[0].reg;
12523 Rn = inst.operands[1].reg;
12524 Rm = inst.operands[2].reg;
12525 Ra = inst.operands[3].reg;
12526
12527 reject_bad_reg (Rd);
12528 reject_bad_reg (Rn);
12529 reject_bad_reg (Rm);
12530 reject_bad_reg (Ra);
12531
12532 inst.instruction |= Rd << 8;
12533 inst.instruction |= Rn << 16;
12534 inst.instruction |= Rm;
12535 inst.instruction |= Ra << 12;
c19d1205 12536}
b99bd4ef 12537
c19d1205
ZW
12538static void
12539do_t_mlal (void)
12540{
fdfde340
JM
12541 unsigned RdLo, RdHi, Rn, Rm;
12542
12543 RdLo = inst.operands[0].reg;
12544 RdHi = inst.operands[1].reg;
12545 Rn = inst.operands[2].reg;
12546 Rm = inst.operands[3].reg;
12547
12548 reject_bad_reg (RdLo);
12549 reject_bad_reg (RdHi);
12550 reject_bad_reg (Rn);
12551 reject_bad_reg (Rm);
12552
12553 inst.instruction |= RdLo << 12;
12554 inst.instruction |= RdHi << 8;
12555 inst.instruction |= Rn << 16;
12556 inst.instruction |= Rm;
c19d1205 12557}
b99bd4ef 12558
c19d1205
ZW
12559static void
12560do_t_mov_cmp (void)
12561{
fdfde340
JM
12562 unsigned Rn, Rm;
12563
12564 Rn = inst.operands[0].reg;
12565 Rm = inst.operands[1].reg;
12566
e07e6e58 12567 if (Rn == REG_PC)
5ee91343 12568 set_pred_insn_type_last ();
e07e6e58 12569
c19d1205 12570 if (unified_syntax)
b99bd4ef 12571 {
c19d1205
ZW
12572 int r0off = (inst.instruction == T_MNEM_mov
12573 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 12574 unsigned long opcode;
3d388997
PB
12575 bfd_boolean narrow;
12576 bfd_boolean low_regs;
12577
fdfde340 12578 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 12579 opcode = inst.instruction;
5ee91343 12580 if (in_pred_block ())
0110f2b8 12581 narrow = opcode != T_MNEM_movs;
3d388997 12582 else
0110f2b8 12583 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
12584 if (inst.size_req == 4
12585 || inst.operands[1].shifted)
12586 narrow = FALSE;
12587
efd81785
PB
12588 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12589 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12590 && !inst.operands[1].shifted
fdfde340
JM
12591 && Rn == REG_PC
12592 && Rm == REG_LR)
efd81785
PB
12593 {
12594 inst.instruction = T2_SUBS_PC_LR;
12595 return;
12596 }
12597
fdfde340
JM
12598 if (opcode == T_MNEM_cmp)
12599 {
12600 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
12601 if (narrow)
12602 {
12603 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12604 but valid. */
12605 warn_deprecated_sp (Rm);
12606 /* R15 was documented as a valid choice for Rm in ARMv6,
12607 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12608 tools reject R15, so we do too. */
12609 constraint (Rm == REG_PC, BAD_PC);
12610 }
12611 else
12612 reject_bad_reg (Rm);
fdfde340
JM
12613 }
12614 else if (opcode == T_MNEM_mov
12615 || opcode == T_MNEM_movs)
12616 {
12617 if (inst.operands[1].isreg)
12618 {
12619 if (opcode == T_MNEM_movs)
12620 {
12621 reject_bad_reg (Rn);
12622 reject_bad_reg (Rm);
12623 }
76fa04a4
MGD
12624 else if (narrow)
12625 {
12626 /* This is mov.n. */
12627 if ((Rn == REG_SP || Rn == REG_PC)
12628 && (Rm == REG_SP || Rm == REG_PC))
12629 {
5c3696f8 12630 as_tsktsk (_("Use of r%u as a source register is "
76fa04a4
MGD
12631 "deprecated when r%u is the destination "
12632 "register."), Rm, Rn);
12633 }
12634 }
12635 else
12636 {
12637 /* This is mov.w. */
12638 constraint (Rn == REG_PC, BAD_PC);
12639 constraint (Rm == REG_PC, BAD_PC);
5c8ed6a4
JW
12640 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12641 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
76fa04a4 12642 }
fdfde340
JM
12643 }
12644 else
12645 reject_bad_reg (Rn);
12646 }
12647
c19d1205
ZW
12648 if (!inst.operands[1].isreg)
12649 {
0110f2b8 12650 /* Immediate operand. */
5ee91343 12651 if (!in_pred_block () && opcode == T_MNEM_mov)
0110f2b8
PB
12652 narrow = 0;
12653 if (low_regs && narrow)
12654 {
12655 inst.instruction = THUMB_OP16 (opcode);
fdfde340 12656 inst.instruction |= Rn << 8;
e2b0ab59
AV
12657 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12658 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
72d98d16 12659 {
a9f02af8 12660 if (inst.size_req == 2)
e2b0ab59 12661 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
a9f02af8
MG
12662 else
12663 inst.relax = opcode;
72d98d16 12664 }
0110f2b8
PB
12665 }
12666 else
12667 {
e2b0ab59
AV
12668 constraint ((inst.relocs[0].type
12669 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12670 && (inst.relocs[0].type
12671 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8
MG
12672 THUMB1_RELOC_ONLY);
12673
0110f2b8
PB
12674 inst.instruction = THUMB_OP32 (inst.instruction);
12675 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12676 inst.instruction |= Rn << r0off;
e2b0ab59 12677 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8 12678 }
c19d1205 12679 }
728ca7c9
PB
12680 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12681 && (inst.instruction == T_MNEM_mov
12682 || inst.instruction == T_MNEM_movs))
12683 {
12684 /* Register shifts are encoded as separate shift instructions. */
12685 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12686
5ee91343 12687 if (in_pred_block ())
728ca7c9
PB
12688 narrow = !flags;
12689 else
12690 narrow = flags;
12691
12692 if (inst.size_req == 4)
12693 narrow = FALSE;
12694
12695 if (!low_regs || inst.operands[1].imm > 7)
12696 narrow = FALSE;
12697
fdfde340 12698 if (Rn != Rm)
728ca7c9
PB
12699 narrow = FALSE;
12700
12701 switch (inst.operands[1].shift_kind)
12702 {
12703 case SHIFT_LSL:
12704 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12705 break;
12706 case SHIFT_ASR:
12707 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12708 break;
12709 case SHIFT_LSR:
12710 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12711 break;
12712 case SHIFT_ROR:
12713 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12714 break;
12715 default:
5f4273c7 12716 abort ();
728ca7c9
PB
12717 }
12718
12719 inst.instruction = opcode;
12720 if (narrow)
12721 {
fdfde340 12722 inst.instruction |= Rn;
728ca7c9
PB
12723 inst.instruction |= inst.operands[1].imm << 3;
12724 }
12725 else
12726 {
12727 if (flags)
12728 inst.instruction |= CONDS_BIT;
12729
fdfde340
JM
12730 inst.instruction |= Rn << 8;
12731 inst.instruction |= Rm << 16;
728ca7c9
PB
12732 inst.instruction |= inst.operands[1].imm;
12733 }
12734 }
3d388997 12735 else if (!narrow)
c19d1205 12736 {
728ca7c9
PB
12737 /* Some mov with immediate shift have narrow variants.
12738 Register shifts are handled above. */
12739 if (low_regs && inst.operands[1].shifted
12740 && (inst.instruction == T_MNEM_mov
12741 || inst.instruction == T_MNEM_movs))
12742 {
5ee91343 12743 if (in_pred_block ())
728ca7c9
PB
12744 narrow = (inst.instruction == T_MNEM_mov);
12745 else
12746 narrow = (inst.instruction == T_MNEM_movs);
12747 }
12748
12749 if (narrow)
12750 {
12751 switch (inst.operands[1].shift_kind)
12752 {
12753 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12754 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12755 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12756 default: narrow = FALSE; break;
12757 }
12758 }
12759
12760 if (narrow)
12761 {
fdfde340
JM
12762 inst.instruction |= Rn;
12763 inst.instruction |= Rm << 3;
e2b0ab59 12764 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
728ca7c9
PB
12765 }
12766 else
12767 {
12768 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12769 inst.instruction |= Rn << r0off;
728ca7c9
PB
12770 encode_thumb32_shifted_operand (1);
12771 }
c19d1205
ZW
12772 }
12773 else
12774 switch (inst.instruction)
12775 {
12776 case T_MNEM_mov:
837b3435 12777 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
12778 results. Don't allow this. */
12779 if (low_regs)
12780 {
12781 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12782 "MOV Rd, Rs with two low registers is not "
12783 "permitted on this architecture");
fa94de6b 12784 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
12785 arm_ext_v6);
12786 }
12787
c19d1205 12788 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
12789 inst.instruction |= (Rn & 0x8) << 4;
12790 inst.instruction |= (Rn & 0x7);
12791 inst.instruction |= Rm << 3;
c19d1205 12792 break;
b99bd4ef 12793
c19d1205
ZW
12794 case T_MNEM_movs:
12795 /* We know we have low registers at this point.
941a8a52
MGD
12796 Generate LSLS Rd, Rs, #0. */
12797 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
12798 inst.instruction |= Rn;
12799 inst.instruction |= Rm << 3;
c19d1205
ZW
12800 break;
12801
12802 case T_MNEM_cmp:
3d388997 12803 if (low_regs)
c19d1205
ZW
12804 {
12805 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
12806 inst.instruction |= Rn;
12807 inst.instruction |= Rm << 3;
c19d1205
ZW
12808 }
12809 else
12810 {
12811 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
12812 inst.instruction |= (Rn & 0x8) << 4;
12813 inst.instruction |= (Rn & 0x7);
12814 inst.instruction |= Rm << 3;
c19d1205
ZW
12815 }
12816 break;
12817 }
b99bd4ef
NC
12818 return;
12819 }
12820
c19d1205 12821 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
12822
12823 /* PR 10443: Do not silently ignore shifted operands. */
12824 constraint (inst.operands[1].shifted,
12825 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12826
c19d1205 12827 if (inst.operands[1].isreg)
b99bd4ef 12828 {
fdfde340 12829 if (Rn < 8 && Rm < 8)
b99bd4ef 12830 {
c19d1205
ZW
12831 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12832 since a MOV instruction produces unpredictable results. */
12833 if (inst.instruction == T_OPCODE_MOV_I8)
12834 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 12835 else
c19d1205 12836 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 12837
fdfde340
JM
12838 inst.instruction |= Rn;
12839 inst.instruction |= Rm << 3;
b99bd4ef
NC
12840 }
12841 else
12842 {
c19d1205
ZW
12843 if (inst.instruction == T_OPCODE_MOV_I8)
12844 inst.instruction = T_OPCODE_MOV_HR;
12845 else
12846 inst.instruction = T_OPCODE_CMP_HR;
12847 do_t_cpy ();
b99bd4ef
NC
12848 }
12849 }
c19d1205 12850 else
b99bd4ef 12851 {
fdfde340 12852 constraint (Rn > 7,
c19d1205 12853 _("only lo regs allowed with immediate"));
fdfde340 12854 inst.instruction |= Rn << 8;
e2b0ab59 12855 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
c19d1205
ZW
12856 }
12857}
b99bd4ef 12858
c19d1205
ZW
12859static void
12860do_t_mov16 (void)
12861{
fdfde340 12862 unsigned Rd;
b6895b4f
PB
12863 bfd_vma imm;
12864 bfd_boolean top;
12865
12866 top = (inst.instruction & 0x00800000) != 0;
e2b0ab59 12867 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
b6895b4f 12868 {
33eaf5de 12869 constraint (top, _(":lower16: not allowed in this instruction"));
e2b0ab59 12870 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
b6895b4f 12871 }
e2b0ab59 12872 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
b6895b4f 12873 {
33eaf5de 12874 constraint (!top, _(":upper16: not allowed in this instruction"));
e2b0ab59 12875 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
b6895b4f
PB
12876 }
12877
fdfde340
JM
12878 Rd = inst.operands[0].reg;
12879 reject_bad_reg (Rd);
12880
12881 inst.instruction |= Rd << 8;
e2b0ab59 12882 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 12883 {
e2b0ab59 12884 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
12885 inst.instruction |= (imm & 0xf000) << 4;
12886 inst.instruction |= (imm & 0x0800) << 15;
12887 inst.instruction |= (imm & 0x0700) << 4;
12888 inst.instruction |= (imm & 0x00ff);
12889 }
c19d1205 12890}
b99bd4ef 12891
c19d1205
ZW
12892static void
12893do_t_mvn_tst (void)
12894{
fdfde340 12895 unsigned Rn, Rm;
c921be7d 12896
fdfde340
JM
12897 Rn = inst.operands[0].reg;
12898 Rm = inst.operands[1].reg;
12899
12900 if (inst.instruction == T_MNEM_cmp
12901 || inst.instruction == T_MNEM_cmn)
12902 constraint (Rn == REG_PC, BAD_PC);
12903 else
12904 reject_bad_reg (Rn);
12905 reject_bad_reg (Rm);
12906
c19d1205
ZW
12907 if (unified_syntax)
12908 {
12909 int r0off = (inst.instruction == T_MNEM_mvn
12910 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
12911 bfd_boolean narrow;
12912
12913 if (inst.size_req == 4
12914 || inst.instruction > 0xffff
12915 || inst.operands[1].shifted
fdfde340 12916 || Rn > 7 || Rm > 7)
3d388997 12917 narrow = FALSE;
fe8b4cc3
KT
12918 else if (inst.instruction == T_MNEM_cmn
12919 || inst.instruction == T_MNEM_tst)
3d388997
PB
12920 narrow = TRUE;
12921 else if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 12922 narrow = !in_pred_block ();
3d388997 12923 else
5ee91343 12924 narrow = in_pred_block ();
3d388997 12925
c19d1205 12926 if (!inst.operands[1].isreg)
b99bd4ef 12927 {
c19d1205
ZW
12928 /* For an immediate, we always generate a 32-bit opcode;
12929 section relaxation will shrink it later if possible. */
12930 if (inst.instruction < 0xffff)
12931 inst.instruction = THUMB_OP32 (inst.instruction);
12932 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12933 inst.instruction |= Rn << r0off;
e2b0ab59 12934 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 12935 }
c19d1205 12936 else
b99bd4ef 12937 {
c19d1205 12938 /* See if we can do this with a 16-bit instruction. */
3d388997 12939 if (narrow)
b99bd4ef 12940 {
c19d1205 12941 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12942 inst.instruction |= Rn;
12943 inst.instruction |= Rm << 3;
b99bd4ef 12944 }
c19d1205 12945 else
b99bd4ef 12946 {
c19d1205
ZW
12947 constraint (inst.operands[1].shifted
12948 && inst.operands[1].immisreg,
12949 _("shift must be constant"));
12950 if (inst.instruction < 0xffff)
12951 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12952 inst.instruction |= Rn << r0off;
c19d1205 12953 encode_thumb32_shifted_operand (1);
b99bd4ef 12954 }
b99bd4ef
NC
12955 }
12956 }
12957 else
12958 {
c19d1205
ZW
12959 constraint (inst.instruction > 0xffff
12960 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12961 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12962 _("unshifted register required"));
fdfde340 12963 constraint (Rn > 7 || Rm > 7,
c19d1205 12964 BAD_HIREG);
b99bd4ef 12965
c19d1205 12966 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12967 inst.instruction |= Rn;
12968 inst.instruction |= Rm << 3;
b99bd4ef 12969 }
b99bd4ef
NC
12970}
12971
b05fe5cf 12972static void
c19d1205 12973do_t_mrs (void)
b05fe5cf 12974{
fdfde340 12975 unsigned Rd;
037e8744
JB
12976
12977 if (do_vfp_nsyn_mrs () == SUCCESS)
12978 return;
12979
90ec0d68
MGD
12980 Rd = inst.operands[0].reg;
12981 reject_bad_reg (Rd);
12982 inst.instruction |= Rd << 8;
12983
12984 if (inst.operands[1].isreg)
62b3e311 12985 {
90ec0d68
MGD
12986 unsigned br = inst.operands[1].reg;
12987 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12988 as_bad (_("bad register for mrs"));
12989
12990 inst.instruction |= br & (0xf << 16);
12991 inst.instruction |= (br & 0x300) >> 4;
12992 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
12993 }
12994 else
12995 {
90ec0d68 12996 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 12997
d2cd1205 12998 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
12999 {
13000 /* PR gas/12698: The constraint is only applied for m_profile.
13001 If the user has specified -march=all, we want to ignore it as
13002 we are building for any CPU type, including non-m variants. */
823d2571
TG
13003 bfd_boolean m_profile =
13004 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf
NC
13005 constraint ((flags != 0) && m_profile, _("selected processor does "
13006 "not support requested special purpose register"));
13007 }
90ec0d68 13008 else
d2cd1205
JB
13009 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13010 devices). */
13011 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13012 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 13013
90ec0d68
MGD
13014 inst.instruction |= (flags & SPSR_BIT) >> 2;
13015 inst.instruction |= inst.operands[1].imm & 0xff;
13016 inst.instruction |= 0xf0000;
13017 }
c19d1205 13018}
b05fe5cf 13019
c19d1205
ZW
13020static void
13021do_t_msr (void)
13022{
62b3e311 13023 int flags;
fdfde340 13024 unsigned Rn;
62b3e311 13025
037e8744
JB
13026 if (do_vfp_nsyn_msr () == SUCCESS)
13027 return;
13028
c19d1205
ZW
13029 constraint (!inst.operands[1].isreg,
13030 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
13031
13032 if (inst.operands[0].isreg)
13033 flags = (int)(inst.operands[0].reg);
13034 else
13035 flags = inst.operands[0].imm;
13036
d2cd1205 13037 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 13038 {
d2cd1205
JB
13039 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13040
1a43faaf 13041 /* PR gas/12698: The constraint is only applied for m_profile.
477330fc
RM
13042 If the user has specified -march=all, we want to ignore it as
13043 we are building for any CPU type, including non-m variants. */
823d2571
TG
13044 bfd_boolean m_profile =
13045 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf 13046 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
477330fc
RM
13047 && (bits & ~(PSR_s | PSR_f)) != 0)
13048 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13049 && bits != PSR_f)) && m_profile,
13050 _("selected processor does not support requested special "
13051 "purpose register"));
62b3e311
PB
13052 }
13053 else
d2cd1205
JB
13054 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13055 "requested special purpose register"));
c921be7d 13056
fdfde340
JM
13057 Rn = inst.operands[1].reg;
13058 reject_bad_reg (Rn);
13059
62b3e311 13060 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
13061 inst.instruction |= (flags & 0xf0000) >> 8;
13062 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 13063 inst.instruction |= (flags & 0xff);
fdfde340 13064 inst.instruction |= Rn << 16;
c19d1205 13065}
b05fe5cf 13066
c19d1205
ZW
13067static void
13068do_t_mul (void)
13069{
17828f45 13070 bfd_boolean narrow;
fdfde340 13071 unsigned Rd, Rn, Rm;
17828f45 13072
c19d1205
ZW
13073 if (!inst.operands[2].present)
13074 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 13075
fdfde340
JM
13076 Rd = inst.operands[0].reg;
13077 Rn = inst.operands[1].reg;
13078 Rm = inst.operands[2].reg;
13079
17828f45 13080 if (unified_syntax)
b05fe5cf 13081 {
17828f45 13082 if (inst.size_req == 4
fdfde340
JM
13083 || (Rd != Rn
13084 && Rd != Rm)
13085 || Rn > 7
13086 || Rm > 7)
17828f45
JM
13087 narrow = FALSE;
13088 else if (inst.instruction == T_MNEM_muls)
5ee91343 13089 narrow = !in_pred_block ();
17828f45 13090 else
5ee91343 13091 narrow = in_pred_block ();
b05fe5cf 13092 }
c19d1205 13093 else
b05fe5cf 13094 {
17828f45 13095 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 13096 constraint (Rn > 7 || Rm > 7,
c19d1205 13097 BAD_HIREG);
17828f45
JM
13098 narrow = TRUE;
13099 }
b05fe5cf 13100
17828f45
JM
13101 if (narrow)
13102 {
13103 /* 16-bit MULS/Conditional MUL. */
c19d1205 13104 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 13105 inst.instruction |= Rd;
b05fe5cf 13106
fdfde340
JM
13107 if (Rd == Rn)
13108 inst.instruction |= Rm << 3;
13109 else if (Rd == Rm)
13110 inst.instruction |= Rn << 3;
c19d1205
ZW
13111 else
13112 constraint (1, _("dest must overlap one source register"));
13113 }
17828f45
JM
13114 else
13115 {
e07e6e58
NC
13116 constraint (inst.instruction != T_MNEM_mul,
13117 _("Thumb-2 MUL must not set flags"));
17828f45
JM
13118 /* 32-bit MUL. */
13119 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13120 inst.instruction |= Rd << 8;
13121 inst.instruction |= Rn << 16;
13122 inst.instruction |= Rm << 0;
13123
13124 reject_bad_reg (Rd);
13125 reject_bad_reg (Rn);
13126 reject_bad_reg (Rm);
17828f45 13127 }
c19d1205 13128}
b05fe5cf 13129
c19d1205
ZW
13130static void
13131do_t_mull (void)
13132{
fdfde340 13133 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 13134
fdfde340
JM
13135 RdLo = inst.operands[0].reg;
13136 RdHi = inst.operands[1].reg;
13137 Rn = inst.operands[2].reg;
13138 Rm = inst.operands[3].reg;
13139
13140 reject_bad_reg (RdLo);
13141 reject_bad_reg (RdHi);
13142 reject_bad_reg (Rn);
13143 reject_bad_reg (Rm);
13144
13145 inst.instruction |= RdLo << 12;
13146 inst.instruction |= RdHi << 8;
13147 inst.instruction |= Rn << 16;
13148 inst.instruction |= Rm;
13149
13150 if (RdLo == RdHi)
c19d1205
ZW
13151 as_tsktsk (_("rdhi and rdlo must be different"));
13152}
b05fe5cf 13153
c19d1205
ZW
13154static void
13155do_t_nop (void)
13156{
5ee91343 13157 set_pred_insn_type (NEUTRAL_IT_INSN);
e07e6e58 13158
c19d1205
ZW
13159 if (unified_syntax)
13160 {
13161 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 13162 {
c19d1205
ZW
13163 inst.instruction = THUMB_OP32 (inst.instruction);
13164 inst.instruction |= inst.operands[0].imm;
13165 }
13166 else
13167 {
bc2d1808
NC
13168 /* PR9722: Check for Thumb2 availability before
13169 generating a thumb2 nop instruction. */
afa62d5e 13170 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
13171 {
13172 inst.instruction = THUMB_OP16 (inst.instruction);
13173 inst.instruction |= inst.operands[0].imm << 4;
13174 }
13175 else
13176 inst.instruction = 0x46c0;
c19d1205
ZW
13177 }
13178 }
13179 else
13180 {
13181 constraint (inst.operands[0].present,
13182 _("Thumb does not support NOP with hints"));
13183 inst.instruction = 0x46c0;
13184 }
13185}
b05fe5cf 13186
c19d1205
ZW
13187static void
13188do_t_neg (void)
13189{
13190 if (unified_syntax)
13191 {
3d388997
PB
13192 bfd_boolean narrow;
13193
13194 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13195 narrow = !in_pred_block ();
3d388997 13196 else
5ee91343 13197 narrow = in_pred_block ();
3d388997
PB
13198 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13199 narrow = FALSE;
13200 if (inst.size_req == 4)
13201 narrow = FALSE;
13202
13203 if (!narrow)
c19d1205
ZW
13204 {
13205 inst.instruction = THUMB_OP32 (inst.instruction);
13206 inst.instruction |= inst.operands[0].reg << 8;
13207 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
13208 }
13209 else
13210 {
c19d1205
ZW
13211 inst.instruction = THUMB_OP16 (inst.instruction);
13212 inst.instruction |= inst.operands[0].reg;
13213 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
13214 }
13215 }
13216 else
13217 {
c19d1205
ZW
13218 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13219 BAD_HIREG);
13220 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13221
13222 inst.instruction = THUMB_OP16 (inst.instruction);
13223 inst.instruction |= inst.operands[0].reg;
13224 inst.instruction |= inst.operands[1].reg << 3;
13225 }
13226}
13227
1c444d06
JM
13228static void
13229do_t_orn (void)
13230{
13231 unsigned Rd, Rn;
13232
13233 Rd = inst.operands[0].reg;
13234 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13235
fdfde340
JM
13236 reject_bad_reg (Rd);
13237 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13238 reject_bad_reg (Rn);
13239
1c444d06
JM
13240 inst.instruction |= Rd << 8;
13241 inst.instruction |= Rn << 16;
13242
13243 if (!inst.operands[2].isreg)
13244 {
13245 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13246 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
1c444d06
JM
13247 }
13248 else
13249 {
13250 unsigned Rm;
13251
13252 Rm = inst.operands[2].reg;
fdfde340 13253 reject_bad_reg (Rm);
1c444d06
JM
13254
13255 constraint (inst.operands[2].shifted
13256 && inst.operands[2].immisreg,
13257 _("shift must be constant"));
13258 encode_thumb32_shifted_operand (2);
13259 }
13260}
13261
c19d1205
ZW
13262static void
13263do_t_pkhbt (void)
13264{
fdfde340
JM
13265 unsigned Rd, Rn, Rm;
13266
13267 Rd = inst.operands[0].reg;
13268 Rn = inst.operands[1].reg;
13269 Rm = inst.operands[2].reg;
13270
13271 reject_bad_reg (Rd);
13272 reject_bad_reg (Rn);
13273 reject_bad_reg (Rm);
13274
13275 inst.instruction |= Rd << 8;
13276 inst.instruction |= Rn << 16;
13277 inst.instruction |= Rm;
c19d1205
ZW
13278 if (inst.operands[3].present)
13279 {
e2b0ab59
AV
13280 unsigned int val = inst.relocs[0].exp.X_add_number;
13281 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
13282 _("expression too complex"));
13283 inst.instruction |= (val & 0x1c) << 10;
13284 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 13285 }
c19d1205 13286}
b05fe5cf 13287
c19d1205
ZW
13288static void
13289do_t_pkhtb (void)
13290{
13291 if (!inst.operands[3].present)
1ef52f49
NC
13292 {
13293 unsigned Rtmp;
13294
13295 inst.instruction &= ~0x00000020;
13296
13297 /* PR 10168. Swap the Rm and Rn registers. */
13298 Rtmp = inst.operands[1].reg;
13299 inst.operands[1].reg = inst.operands[2].reg;
13300 inst.operands[2].reg = Rtmp;
13301 }
c19d1205 13302 do_t_pkhbt ();
b05fe5cf
ZW
13303}
13304
c19d1205
ZW
13305static void
13306do_t_pld (void)
13307{
fdfde340
JM
13308 if (inst.operands[0].immisreg)
13309 reject_bad_reg (inst.operands[0].imm);
13310
c19d1205
ZW
13311 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13312}
b05fe5cf 13313
c19d1205
ZW
13314static void
13315do_t_push_pop (void)
b99bd4ef 13316{
e9f89963 13317 unsigned mask;
5f4273c7 13318
c19d1205
ZW
13319 constraint (inst.operands[0].writeback,
13320 _("push/pop do not support {reglist}^"));
e2b0ab59 13321 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205 13322 _("expression too complex"));
b99bd4ef 13323
e9f89963 13324 mask = inst.operands[0].imm;
d3bfe16e 13325 if (inst.size_req != 4 && (mask & ~0xff) == 0)
3c707909 13326 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
d3bfe16e 13327 else if (inst.size_req != 4
c6025a80 13328 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
d3bfe16e 13329 ? REG_LR : REG_PC)))
b99bd4ef 13330 {
c19d1205
ZW
13331 inst.instruction = THUMB_OP16 (inst.instruction);
13332 inst.instruction |= THUMB_PP_PC_LR;
3c707909 13333 inst.instruction |= mask & 0xff;
c19d1205
ZW
13334 }
13335 else if (unified_syntax)
13336 {
3c707909 13337 inst.instruction = THUMB_OP32 (inst.instruction);
4b5a202f
AV
13338 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13339 }
13340 else
13341 {
13342 inst.error = _("invalid register list to push/pop instruction");
13343 return;
c19d1205 13344 }
4b5a202f
AV
13345}
13346
13347static void
13348do_t_clrm (void)
13349{
13350 if (unified_syntax)
13351 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
c19d1205
ZW
13352 else
13353 {
13354 inst.error = _("invalid register list to push/pop instruction");
13355 return;
13356 }
c19d1205 13357}
b99bd4ef 13358
efd6b359
AV
13359static void
13360do_t_vscclrm (void)
13361{
13362 if (inst.operands[0].issingle)
13363 {
13364 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13365 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13366 inst.instruction |= inst.operands[0].imm;
13367 }
13368 else
13369 {
13370 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13371 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13372 inst.instruction |= 1 << 8;
13373 inst.instruction |= inst.operands[0].imm << 1;
13374 }
13375}
13376
c19d1205
ZW
13377static void
13378do_t_rbit (void)
13379{
fdfde340
JM
13380 unsigned Rd, Rm;
13381
13382 Rd = inst.operands[0].reg;
13383 Rm = inst.operands[1].reg;
13384
13385 reject_bad_reg (Rd);
13386 reject_bad_reg (Rm);
13387
13388 inst.instruction |= Rd << 8;
13389 inst.instruction |= Rm << 16;
13390 inst.instruction |= Rm;
c19d1205 13391}
b99bd4ef 13392
c19d1205
ZW
13393static void
13394do_t_rev (void)
13395{
fdfde340
JM
13396 unsigned Rd, Rm;
13397
13398 Rd = inst.operands[0].reg;
13399 Rm = inst.operands[1].reg;
13400
13401 reject_bad_reg (Rd);
13402 reject_bad_reg (Rm);
13403
13404 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
13405 && inst.size_req != 4)
13406 {
13407 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13408 inst.instruction |= Rd;
13409 inst.instruction |= Rm << 3;
c19d1205
ZW
13410 }
13411 else if (unified_syntax)
13412 {
13413 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13414 inst.instruction |= Rd << 8;
13415 inst.instruction |= Rm << 16;
13416 inst.instruction |= Rm;
c19d1205
ZW
13417 }
13418 else
13419 inst.error = BAD_HIREG;
13420}
b99bd4ef 13421
1c444d06
JM
13422static void
13423do_t_rrx (void)
13424{
13425 unsigned Rd, Rm;
13426
13427 Rd = inst.operands[0].reg;
13428 Rm = inst.operands[1].reg;
13429
fdfde340
JM
13430 reject_bad_reg (Rd);
13431 reject_bad_reg (Rm);
c921be7d 13432
1c444d06
JM
13433 inst.instruction |= Rd << 8;
13434 inst.instruction |= Rm;
13435}
13436
c19d1205
ZW
13437static void
13438do_t_rsb (void)
13439{
fdfde340 13440 unsigned Rd, Rs;
b99bd4ef 13441
c19d1205
ZW
13442 Rd = inst.operands[0].reg;
13443 Rs = (inst.operands[1].present
13444 ? inst.operands[1].reg /* Rd, Rs, foo */
13445 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 13446
fdfde340
JM
13447 reject_bad_reg (Rd);
13448 reject_bad_reg (Rs);
13449 if (inst.operands[2].isreg)
13450 reject_bad_reg (inst.operands[2].reg);
13451
c19d1205
ZW
13452 inst.instruction |= Rd << 8;
13453 inst.instruction |= Rs << 16;
13454 if (!inst.operands[2].isreg)
13455 {
026d3abb
PB
13456 bfd_boolean narrow;
13457
13458 if ((inst.instruction & 0x00100000) != 0)
5ee91343 13459 narrow = !in_pred_block ();
026d3abb 13460 else
5ee91343 13461 narrow = in_pred_block ();
026d3abb
PB
13462
13463 if (Rd > 7 || Rs > 7)
13464 narrow = FALSE;
13465
13466 if (inst.size_req == 4 || !unified_syntax)
13467 narrow = FALSE;
13468
e2b0ab59
AV
13469 if (inst.relocs[0].exp.X_op != O_constant
13470 || inst.relocs[0].exp.X_add_number != 0)
026d3abb
PB
13471 narrow = FALSE;
13472
13473 /* Turn rsb #0 into 16-bit neg. We should probably do this via
477330fc 13474 relaxation, but it doesn't seem worth the hassle. */
026d3abb
PB
13475 if (narrow)
13476 {
e2b0ab59 13477 inst.relocs[0].type = BFD_RELOC_UNUSED;
026d3abb
PB
13478 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13479 inst.instruction |= Rs << 3;
13480 inst.instruction |= Rd;
13481 }
13482 else
13483 {
13484 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13485 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
026d3abb 13486 }
c19d1205
ZW
13487 }
13488 else
13489 encode_thumb32_shifted_operand (2);
13490}
b99bd4ef 13491
c19d1205
ZW
13492static void
13493do_t_setend (void)
13494{
12e37cbc
MGD
13495 if (warn_on_deprecated
13496 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 13497 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 13498
5ee91343 13499 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
13500 if (inst.operands[0].imm)
13501 inst.instruction |= 0x8;
13502}
b99bd4ef 13503
c19d1205
ZW
13504static void
13505do_t_shift (void)
13506{
13507 if (!inst.operands[1].present)
13508 inst.operands[1].reg = inst.operands[0].reg;
13509
13510 if (unified_syntax)
13511 {
3d388997
PB
13512 bfd_boolean narrow;
13513 int shift_kind;
13514
13515 switch (inst.instruction)
13516 {
13517 case T_MNEM_asr:
13518 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13519 case T_MNEM_lsl:
13520 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13521 case T_MNEM_lsr:
13522 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13523 case T_MNEM_ror:
13524 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13525 default: abort ();
13526 }
13527
13528 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13529 narrow = !in_pred_block ();
3d388997 13530 else
5ee91343 13531 narrow = in_pred_block ();
3d388997
PB
13532 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13533 narrow = FALSE;
13534 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13535 narrow = FALSE;
13536 if (inst.operands[2].isreg
13537 && (inst.operands[1].reg != inst.operands[0].reg
13538 || inst.operands[2].reg > 7))
13539 narrow = FALSE;
13540 if (inst.size_req == 4)
13541 narrow = FALSE;
13542
fdfde340
JM
13543 reject_bad_reg (inst.operands[0].reg);
13544 reject_bad_reg (inst.operands[1].reg);
c921be7d 13545
3d388997 13546 if (!narrow)
c19d1205
ZW
13547 {
13548 if (inst.operands[2].isreg)
b99bd4ef 13549 {
fdfde340 13550 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
13551 inst.instruction = THUMB_OP32 (inst.instruction);
13552 inst.instruction |= inst.operands[0].reg << 8;
13553 inst.instruction |= inst.operands[1].reg << 16;
13554 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
13555
13556 /* PR 12854: Error on extraneous shifts. */
13557 constraint (inst.operands[2].shifted,
13558 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13559 }
13560 else
13561 {
13562 inst.operands[1].shifted = 1;
3d388997 13563 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
13564 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13565 ? T_MNEM_movs : T_MNEM_mov);
13566 inst.instruction |= inst.operands[0].reg << 8;
13567 encode_thumb32_shifted_operand (1);
13568 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
e2b0ab59 13569 inst.relocs[0].type = BFD_RELOC_UNUSED;
b99bd4ef
NC
13570 }
13571 }
13572 else
13573 {
c19d1205 13574 if (inst.operands[2].isreg)
b99bd4ef 13575 {
3d388997 13576 switch (shift_kind)
b99bd4ef 13577 {
3d388997
PB
13578 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13579 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13580 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13581 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 13582 default: abort ();
b99bd4ef 13583 }
5f4273c7 13584
c19d1205
ZW
13585 inst.instruction |= inst.operands[0].reg;
13586 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13587
13588 /* PR 12854: Error on extraneous shifts. */
13589 constraint (inst.operands[2].shifted,
13590 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
13591 }
13592 else
13593 {
3d388997 13594 switch (shift_kind)
b99bd4ef 13595 {
3d388997
PB
13596 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13597 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13598 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 13599 default: abort ();
b99bd4ef 13600 }
e2b0ab59 13601 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13602 inst.instruction |= inst.operands[0].reg;
13603 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13604 }
13605 }
c19d1205
ZW
13606 }
13607 else
13608 {
13609 constraint (inst.operands[0].reg > 7
13610 || inst.operands[1].reg > 7, BAD_HIREG);
13611 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 13612
c19d1205
ZW
13613 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13614 {
13615 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13616 constraint (inst.operands[0].reg != inst.operands[1].reg,
13617 _("source1 and dest must be same register"));
b99bd4ef 13618
c19d1205
ZW
13619 switch (inst.instruction)
13620 {
13621 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13622 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13623 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13624 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13625 default: abort ();
13626 }
5f4273c7 13627
c19d1205
ZW
13628 inst.instruction |= inst.operands[0].reg;
13629 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13630
13631 /* PR 12854: Error on extraneous shifts. */
13632 constraint (inst.operands[2].shifted,
13633 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13634 }
13635 else
b99bd4ef 13636 {
c19d1205
ZW
13637 switch (inst.instruction)
13638 {
13639 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13640 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13641 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13642 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13643 default: abort ();
13644 }
e2b0ab59 13645 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13646 inst.instruction |= inst.operands[0].reg;
13647 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13648 }
13649 }
b99bd4ef
NC
13650}
13651
13652static void
c19d1205 13653do_t_simd (void)
b99bd4ef 13654{
fdfde340
JM
13655 unsigned Rd, Rn, Rm;
13656
13657 Rd = inst.operands[0].reg;
13658 Rn = inst.operands[1].reg;
13659 Rm = inst.operands[2].reg;
13660
13661 reject_bad_reg (Rd);
13662 reject_bad_reg (Rn);
13663 reject_bad_reg (Rm);
13664
13665 inst.instruction |= Rd << 8;
13666 inst.instruction |= Rn << 16;
13667 inst.instruction |= Rm;
c19d1205 13668}
b99bd4ef 13669
03ee1b7f
NC
13670static void
13671do_t_simd2 (void)
13672{
13673 unsigned Rd, Rn, Rm;
13674
13675 Rd = inst.operands[0].reg;
13676 Rm = inst.operands[1].reg;
13677 Rn = inst.operands[2].reg;
13678
13679 reject_bad_reg (Rd);
13680 reject_bad_reg (Rn);
13681 reject_bad_reg (Rm);
13682
13683 inst.instruction |= Rd << 8;
13684 inst.instruction |= Rn << 16;
13685 inst.instruction |= Rm;
13686}
13687
c19d1205 13688static void
3eb17e6b 13689do_t_smc (void)
c19d1205 13690{
e2b0ab59 13691 unsigned int value = inst.relocs[0].exp.X_add_number;
f4c65163
MGD
13692 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13693 _("SMC is not permitted on this architecture"));
e2b0ab59 13694 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13695 _("expression too complex"));
e2b0ab59 13696 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
13697 inst.instruction |= (value & 0xf000) >> 12;
13698 inst.instruction |= (value & 0x0ff0);
13699 inst.instruction |= (value & 0x000f) << 16;
24382199 13700 /* PR gas/15623: SMC instructions must be last in an IT block. */
5ee91343 13701 set_pred_insn_type_last ();
c19d1205 13702}
b99bd4ef 13703
90ec0d68
MGD
13704static void
13705do_t_hvc (void)
13706{
e2b0ab59 13707 unsigned int value = inst.relocs[0].exp.X_add_number;
90ec0d68 13708
e2b0ab59 13709 inst.relocs[0].type = BFD_RELOC_UNUSED;
90ec0d68
MGD
13710 inst.instruction |= (value & 0x0fff);
13711 inst.instruction |= (value & 0xf000) << 4;
13712}
13713
c19d1205 13714static void
3a21c15a 13715do_t_ssat_usat (int bias)
c19d1205 13716{
fdfde340
JM
13717 unsigned Rd, Rn;
13718
13719 Rd = inst.operands[0].reg;
13720 Rn = inst.operands[2].reg;
13721
13722 reject_bad_reg (Rd);
13723 reject_bad_reg (Rn);
13724
13725 inst.instruction |= Rd << 8;
3a21c15a 13726 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 13727 inst.instruction |= Rn << 16;
b99bd4ef 13728
c19d1205 13729 if (inst.operands[3].present)
b99bd4ef 13730 {
e2b0ab59 13731 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
3a21c15a 13732
e2b0ab59 13733 inst.relocs[0].type = BFD_RELOC_UNUSED;
3a21c15a 13734
e2b0ab59 13735 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13736 _("expression too complex"));
b99bd4ef 13737
3a21c15a 13738 if (shift_amount != 0)
6189168b 13739 {
3a21c15a
NC
13740 constraint (shift_amount > 31,
13741 _("shift expression is too large"));
13742
c19d1205 13743 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
13744 inst.instruction |= 0x00200000; /* sh bit. */
13745
13746 inst.instruction |= (shift_amount & 0x1c) << 10;
13747 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
13748 }
13749 }
b99bd4ef 13750}
c921be7d 13751
3a21c15a
NC
13752static void
13753do_t_ssat (void)
13754{
13755 do_t_ssat_usat (1);
13756}
b99bd4ef 13757
0dd132b6 13758static void
c19d1205 13759do_t_ssat16 (void)
0dd132b6 13760{
fdfde340
JM
13761 unsigned Rd, Rn;
13762
13763 Rd = inst.operands[0].reg;
13764 Rn = inst.operands[2].reg;
13765
13766 reject_bad_reg (Rd);
13767 reject_bad_reg (Rn);
13768
13769 inst.instruction |= Rd << 8;
c19d1205 13770 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 13771 inst.instruction |= Rn << 16;
c19d1205 13772}
0dd132b6 13773
c19d1205
ZW
13774static void
13775do_t_strex (void)
13776{
13777 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13778 || inst.operands[2].postind || inst.operands[2].writeback
13779 || inst.operands[2].immisreg || inst.operands[2].shifted
13780 || inst.operands[2].negative,
01cfc07f 13781 BAD_ADDR_MODE);
0dd132b6 13782
5be8be5d
DG
13783 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13784
c19d1205
ZW
13785 inst.instruction |= inst.operands[0].reg << 8;
13786 inst.instruction |= inst.operands[1].reg << 12;
13787 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 13788 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
13789}
13790
b99bd4ef 13791static void
c19d1205 13792do_t_strexd (void)
b99bd4ef 13793{
c19d1205
ZW
13794 if (!inst.operands[2].present)
13795 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 13796
c19d1205
ZW
13797 constraint (inst.operands[0].reg == inst.operands[1].reg
13798 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 13799 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 13800 BAD_OVERLAP);
b99bd4ef 13801
c19d1205
ZW
13802 inst.instruction |= inst.operands[0].reg;
13803 inst.instruction |= inst.operands[1].reg << 12;
13804 inst.instruction |= inst.operands[2].reg << 8;
13805 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
13806}
13807
13808static void
c19d1205 13809do_t_sxtah (void)
b99bd4ef 13810{
fdfde340
JM
13811 unsigned Rd, Rn, Rm;
13812
13813 Rd = inst.operands[0].reg;
13814 Rn = inst.operands[1].reg;
13815 Rm = inst.operands[2].reg;
13816
13817 reject_bad_reg (Rd);
13818 reject_bad_reg (Rn);
13819 reject_bad_reg (Rm);
13820
13821 inst.instruction |= Rd << 8;
13822 inst.instruction |= Rn << 16;
13823 inst.instruction |= Rm;
c19d1205
ZW
13824 inst.instruction |= inst.operands[3].imm << 4;
13825}
b99bd4ef 13826
c19d1205
ZW
13827static void
13828do_t_sxth (void)
13829{
fdfde340
JM
13830 unsigned Rd, Rm;
13831
13832 Rd = inst.operands[0].reg;
13833 Rm = inst.operands[1].reg;
13834
13835 reject_bad_reg (Rd);
13836 reject_bad_reg (Rm);
c921be7d
NC
13837
13838 if (inst.instruction <= 0xffff
13839 && inst.size_req != 4
fdfde340 13840 && Rd <= 7 && Rm <= 7
c19d1205 13841 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 13842 {
c19d1205 13843 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13844 inst.instruction |= Rd;
13845 inst.instruction |= Rm << 3;
b99bd4ef 13846 }
c19d1205 13847 else if (unified_syntax)
b99bd4ef 13848 {
c19d1205
ZW
13849 if (inst.instruction <= 0xffff)
13850 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13851 inst.instruction |= Rd << 8;
13852 inst.instruction |= Rm;
c19d1205 13853 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 13854 }
c19d1205 13855 else
b99bd4ef 13856 {
c19d1205
ZW
13857 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13858 _("Thumb encoding does not support rotation"));
13859 constraint (1, BAD_HIREG);
b99bd4ef 13860 }
c19d1205 13861}
b99bd4ef 13862
c19d1205
ZW
13863static void
13864do_t_swi (void)
13865{
e2b0ab59 13866 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
c19d1205 13867}
b99bd4ef 13868
92e90b6e
PB
13869static void
13870do_t_tb (void)
13871{
fdfde340 13872 unsigned Rn, Rm;
92e90b6e
PB
13873 int half;
13874
13875 half = (inst.instruction & 0x10) != 0;
5ee91343 13876 set_pred_insn_type_last ();
dfa9f0d5
PB
13877 constraint (inst.operands[0].immisreg,
13878 _("instruction requires register index"));
fdfde340
JM
13879
13880 Rn = inst.operands[0].reg;
13881 Rm = inst.operands[0].imm;
c921be7d 13882
5c8ed6a4
JW
13883 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13884 constraint (Rn == REG_SP, BAD_SP);
fdfde340
JM
13885 reject_bad_reg (Rm);
13886
92e90b6e
PB
13887 constraint (!half && inst.operands[0].shifted,
13888 _("instruction does not allow shifted index"));
fdfde340 13889 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
13890}
13891
74db7efb
NC
13892static void
13893do_t_udf (void)
13894{
13895 if (!inst.operands[0].present)
13896 inst.operands[0].imm = 0;
13897
13898 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13899 {
13900 constraint (inst.size_req == 2,
13901 _("immediate value out of range"));
13902 inst.instruction = THUMB_OP32 (inst.instruction);
13903 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13904 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13905 }
13906 else
13907 {
13908 inst.instruction = THUMB_OP16 (inst.instruction);
13909 inst.instruction |= inst.operands[0].imm;
13910 }
13911
5ee91343 13912 set_pred_insn_type (NEUTRAL_IT_INSN);
74db7efb
NC
13913}
13914
13915
c19d1205
ZW
13916static void
13917do_t_usat (void)
13918{
3a21c15a 13919 do_t_ssat_usat (0);
b99bd4ef
NC
13920}
13921
13922static void
c19d1205 13923do_t_usat16 (void)
b99bd4ef 13924{
fdfde340
JM
13925 unsigned Rd, Rn;
13926
13927 Rd = inst.operands[0].reg;
13928 Rn = inst.operands[2].reg;
13929
13930 reject_bad_reg (Rd);
13931 reject_bad_reg (Rn);
13932
13933 inst.instruction |= Rd << 8;
c19d1205 13934 inst.instruction |= inst.operands[1].imm;
fdfde340 13935 inst.instruction |= Rn << 16;
b99bd4ef 13936}
c19d1205 13937
e12437dc
AV
13938/* Checking the range of the branch offset (VAL) with NBITS bits
13939 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13940static int
13941v8_1_branch_value_check (int val, int nbits, int is_signed)
13942{
13943 gas_assert (nbits > 0 && nbits <= 32);
13944 if (is_signed)
13945 {
13946 int cmp = (1 << (nbits - 1));
13947 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13948 return FAIL;
13949 }
13950 else
13951 {
13952 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13953 return FAIL;
13954 }
13955 return SUCCESS;
13956}
13957
4389b29a
AV
13958/* For branches in Armv8.1-M Mainline. */
13959static void
13960do_t_branch_future (void)
13961{
13962 unsigned long insn = inst.instruction;
13963
13964 inst.instruction = THUMB_OP32 (inst.instruction);
13965 if (inst.operands[0].hasreloc == 0)
13966 {
13967 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13968 as_bad (BAD_BRANCH_OFF);
13969
13970 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13971 }
13972 else
13973 {
13974 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13975 inst.relocs[0].pc_rel = 1;
13976 }
13977
13978 switch (insn)
13979 {
13980 case T_MNEM_bf:
13981 if (inst.operands[1].hasreloc == 0)
13982 {
13983 int val = inst.operands[1].imm;
13984 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
13985 as_bad (BAD_BRANCH_OFF);
13986
13987 int immA = (val & 0x0001f000) >> 12;
13988 int immB = (val & 0x00000ffc) >> 2;
13989 int immC = (val & 0x00000002) >> 1;
13990 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13991 }
13992 else
13993 {
13994 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
13995 inst.relocs[1].pc_rel = 1;
13996 }
13997 break;
13998
65d1bc05
AV
13999 case T_MNEM_bfl:
14000 if (inst.operands[1].hasreloc == 0)
14001 {
14002 int val = inst.operands[1].imm;
14003 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14004 as_bad (BAD_BRANCH_OFF);
14005
14006 int immA = (val & 0x0007f000) >> 12;
14007 int immB = (val & 0x00000ffc) >> 2;
14008 int immC = (val & 0x00000002) >> 1;
14009 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14010 }
14011 else
14012 {
14013 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14014 inst.relocs[1].pc_rel = 1;
14015 }
14016 break;
14017
f6b2b12d
AV
14018 case T_MNEM_bfcsel:
14019 /* Operand 1. */
14020 if (inst.operands[1].hasreloc == 0)
14021 {
14022 int val = inst.operands[1].imm;
14023 int immA = (val & 0x00001000) >> 12;
14024 int immB = (val & 0x00000ffc) >> 2;
14025 int immC = (val & 0x00000002) >> 1;
14026 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14027 }
14028 else
14029 {
14030 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14031 inst.relocs[1].pc_rel = 1;
14032 }
14033
14034 /* Operand 2. */
14035 if (inst.operands[2].hasreloc == 0)
14036 {
14037 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14038 int val2 = inst.operands[2].imm;
14039 int val0 = inst.operands[0].imm & 0x1f;
14040 int diff = val2 - val0;
14041 if (diff == 4)
14042 inst.instruction |= 1 << 17; /* T bit. */
14043 else if (diff != 2)
14044 as_bad (_("out of range label-relative fixup value"));
14045 }
14046 else
14047 {
14048 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14049 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14050 inst.relocs[2].pc_rel = 1;
14051 }
14052
14053 /* Operand 3. */
14054 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14055 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14056 break;
14057
f1c7f421
AV
14058 case T_MNEM_bfx:
14059 case T_MNEM_bflx:
14060 inst.instruction |= inst.operands[1].reg << 16;
14061 break;
14062
4389b29a
AV
14063 default: abort ();
14064 }
14065}
14066
60f993ce
AV
14067/* Helper function for do_t_loloop to handle relocations. */
14068static void
14069v8_1_loop_reloc (int is_le)
14070{
14071 if (inst.relocs[0].exp.X_op == O_constant)
14072 {
14073 int value = inst.relocs[0].exp.X_add_number;
14074 value = (is_le) ? -value : value;
14075
14076 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14077 as_bad (BAD_BRANCH_OFF);
14078
14079 int imml, immh;
14080
14081 immh = (value & 0x00000ffc) >> 2;
14082 imml = (value & 0x00000002) >> 1;
14083
14084 inst.instruction |= (imml << 11) | (immh << 1);
14085 }
14086 else
14087 {
14088 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14089 inst.relocs[0].pc_rel = 1;
14090 }
14091}
14092
14093/* To handle the Scalar Low Overhead Loop instructions
14094 in Armv8.1-M Mainline. */
14095static void
14096do_t_loloop (void)
14097{
14098 unsigned long insn = inst.instruction;
14099
5ee91343 14100 set_pred_insn_type (OUTSIDE_PRED_INSN);
60f993ce
AV
14101 inst.instruction = THUMB_OP32 (inst.instruction);
14102
14103 switch (insn)
14104 {
14105 case T_MNEM_le:
14106 /* le <label>. */
14107 if (!inst.operands[0].present)
14108 inst.instruction |= 1 << 21;
14109
14110 v8_1_loop_reloc (TRUE);
14111 break;
14112
14113 case T_MNEM_wls:
14114 v8_1_loop_reloc (FALSE);
14115 /* Fall through. */
14116 case T_MNEM_dls:
14117 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14118 inst.instruction |= (inst.operands[1].reg << 16);
14119 break;
14120
14121 default: abort();
14122 }
14123}
14124
a302e574
AV
14125/* MVE instruction encoder helpers. */
14126#define M_MNEM_vabav 0xee800f01
14127#define M_MNEM_vmladav 0xeef00e00
14128#define M_MNEM_vmladava 0xeef00e20
14129#define M_MNEM_vmladavx 0xeef01e00
14130#define M_MNEM_vmladavax 0xeef01e20
14131#define M_MNEM_vmlsdav 0xeef00e01
14132#define M_MNEM_vmlsdava 0xeef00e21
14133#define M_MNEM_vmlsdavx 0xeef01e01
14134#define M_MNEM_vmlsdavax 0xeef01e21
886e1c73
AV
14135#define M_MNEM_vmullt 0xee011e00
14136#define M_MNEM_vmullb 0xee010e00
35c228db
AV
14137#define M_MNEM_vst20 0xfc801e00
14138#define M_MNEM_vst21 0xfc801e20
14139#define M_MNEM_vst40 0xfc801e01
14140#define M_MNEM_vst41 0xfc801e21
14141#define M_MNEM_vst42 0xfc801e41
14142#define M_MNEM_vst43 0xfc801e61
14143#define M_MNEM_vld20 0xfc901e00
14144#define M_MNEM_vld21 0xfc901e20
14145#define M_MNEM_vld40 0xfc901e01
14146#define M_MNEM_vld41 0xfc901e21
14147#define M_MNEM_vld42 0xfc901e41
14148#define M_MNEM_vld43 0xfc901e61
f5f10c66
AV
14149#define M_MNEM_vstrb 0xec000e00
14150#define M_MNEM_vstrh 0xec000e10
14151#define M_MNEM_vstrw 0xec000e40
14152#define M_MNEM_vstrd 0xec000e50
14153#define M_MNEM_vldrb 0xec100e00
14154#define M_MNEM_vldrh 0xec100e10
14155#define M_MNEM_vldrw 0xec100e40
14156#define M_MNEM_vldrd 0xec100e50
57785aa2
AV
14157#define M_MNEM_vmovlt 0xeea01f40
14158#define M_MNEM_vmovlb 0xeea00f40
14159#define M_MNEM_vmovnt 0xfe311e81
14160#define M_MNEM_vmovnb 0xfe310e81
c2dafc2a
AV
14161#define M_MNEM_vadc 0xee300f00
14162#define M_MNEM_vadci 0xee301f00
14163#define M_MNEM_vbrsr 0xfe011e60
26c1e780
AV
14164#define M_MNEM_vaddlv 0xee890f00
14165#define M_MNEM_vaddlva 0xee890f20
14166#define M_MNEM_vaddv 0xeef10f00
14167#define M_MNEM_vaddva 0xeef10f20
b409bdb6
AV
14168#define M_MNEM_vddup 0xee011f6e
14169#define M_MNEM_vdwdup 0xee011f60
14170#define M_MNEM_vidup 0xee010f6e
14171#define M_MNEM_viwdup 0xee010f60
13ccd4c0
AV
14172#define M_MNEM_vmaxv 0xeee20f00
14173#define M_MNEM_vmaxav 0xeee00f00
14174#define M_MNEM_vminv 0xeee20f80
14175#define M_MNEM_vminav 0xeee00f80
93925576
AV
14176#define M_MNEM_vmlaldav 0xee800e00
14177#define M_MNEM_vmlaldava 0xee800e20
14178#define M_MNEM_vmlaldavx 0xee801e00
14179#define M_MNEM_vmlaldavax 0xee801e20
14180#define M_MNEM_vmlsldav 0xee800e01
14181#define M_MNEM_vmlsldava 0xee800e21
14182#define M_MNEM_vmlsldavx 0xee801e01
14183#define M_MNEM_vmlsldavax 0xee801e21
14184#define M_MNEM_vrmlaldavhx 0xee801f00
14185#define M_MNEM_vrmlaldavhax 0xee801f20
14186#define M_MNEM_vrmlsldavh 0xfe800e01
14187#define M_MNEM_vrmlsldavha 0xfe800e21
14188#define M_MNEM_vrmlsldavhx 0xfe801e01
14189#define M_MNEM_vrmlsldavhax 0xfe801e21
a302e574 14190
5287ad62 14191/* Neon instruction encoder helpers. */
5f4273c7 14192
5287ad62 14193/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 14194
5287ad62
JB
14195/* An "invalid" code for the following tables. */
14196#define N_INV -1u
14197
14198struct neon_tab_entry
b99bd4ef 14199{
5287ad62
JB
14200 unsigned integer;
14201 unsigned float_or_poly;
14202 unsigned scalar_or_imm;
14203};
5f4273c7 14204
5287ad62
JB
14205/* Map overloaded Neon opcodes to their respective encodings. */
14206#define NEON_ENC_TAB \
14207 X(vabd, 0x0000700, 0x1200d00, N_INV), \
5ee91343 14208 X(vabdl, 0x0800700, N_INV, N_INV), \
5287ad62
JB
14209 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14210 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14211 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14212 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14213 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14214 X(vadd, 0x0000800, 0x0000d00, N_INV), \
5ee91343 14215 X(vaddl, 0x0800000, N_INV, N_INV), \
5287ad62 14216 X(vsub, 0x1000800, 0x0200d00, N_INV), \
5ee91343 14217 X(vsubl, 0x0800200, N_INV, N_INV), \
5287ad62
JB
14218 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14219 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14220 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14221 /* Register variants of the following two instructions are encoded as
e07e6e58 14222 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
14223 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14224 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
14225 X(vfma, N_INV, 0x0000c10, N_INV), \
14226 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
14227 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14228 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14229 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14230 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14231 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14232 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14233 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14234 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14235 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14236 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14237 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
d6b4b13e
MW
14238 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14239 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
5287ad62
JB
14240 X(vshl, 0x0000400, N_INV, 0x0800510), \
14241 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14242 X(vand, 0x0000110, N_INV, 0x0800030), \
14243 X(vbic, 0x0100110, N_INV, 0x0800030), \
14244 X(veor, 0x1000110, N_INV, N_INV), \
14245 X(vorn, 0x0300110, N_INV, 0x0800010), \
14246 X(vorr, 0x0200110, N_INV, 0x0800010), \
14247 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14248 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14249 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14250 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14251 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14252 X(vst1, 0x0000000, 0x0800000, N_INV), \
14253 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14254 X(vst2, 0x0000100, 0x0800100, N_INV), \
14255 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14256 X(vst3, 0x0000200, 0x0800200, N_INV), \
14257 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14258 X(vst4, 0x0000300, 0x0800300, N_INV), \
14259 X(vmovn, 0x1b20200, N_INV, N_INV), \
14260 X(vtrn, 0x1b20080, N_INV, N_INV), \
14261 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
14262 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14263 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
14264 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14265 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
14266 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14267 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
14268 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14269 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14270 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
14271 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14272 X(vseleq, 0xe000a00, N_INV, N_INV), \
14273 X(vselvs, 0xe100a00, N_INV, N_INV), \
14274 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
14275 X(vselgt, 0xe300a00, N_INV, N_INV), \
14276 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
7e8e6784 14277 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
30bdf752
MGD
14278 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14279 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
91ff7894 14280 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
48adcd8e 14281 X(aes, 0x3b00300, N_INV, N_INV), \
3c9017d2
MGD
14282 X(sha3op, 0x2000c00, N_INV, N_INV), \
14283 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14284 X(sha2op, 0x3ba0380, N_INV, N_INV)
5287ad62
JB
14285
14286enum neon_opc
14287{
14288#define X(OPC,I,F,S) N_MNEM_##OPC
14289NEON_ENC_TAB
14290#undef X
14291};
b99bd4ef 14292
5287ad62
JB
14293static const struct neon_tab_entry neon_enc_tab[] =
14294{
14295#define X(OPC,I,F,S) { (I), (F), (S) }
14296NEON_ENC_TAB
14297#undef X
14298};
b99bd4ef 14299
88714cb8
DG
14300/* Do not use these macros; instead, use NEON_ENCODE defined below. */
14301#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14302#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14303#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14304#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14305#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14306#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14307#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14308#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14309#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14310#define NEON_ENC_SINGLE_(X) \
037e8744 14311 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 14312#define NEON_ENC_DOUBLE_(X) \
037e8744 14313 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
14314#define NEON_ENC_FPV8_(X) \
14315 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 14316
88714cb8
DG
14317#define NEON_ENCODE(type, inst) \
14318 do \
14319 { \
14320 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14321 inst.is_neon = 1; \
14322 } \
14323 while (0)
14324
14325#define check_neon_suffixes \
14326 do \
14327 { \
14328 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14329 { \
14330 as_bad (_("invalid neon suffix for non neon instruction")); \
14331 return; \
14332 } \
14333 } \
14334 while (0)
14335
037e8744
JB
14336/* Define shapes for instruction operands. The following mnemonic characters
14337 are used in this table:
5287ad62 14338
037e8744 14339 F - VFP S<n> register
5287ad62
JB
14340 D - Neon D<n> register
14341 Q - Neon Q<n> register
14342 I - Immediate
14343 S - Scalar
14344 R - ARM register
14345 L - D<n> register list
5f4273c7 14346
037e8744
JB
14347 This table is used to generate various data:
14348 - enumerations of the form NS_DDR to be used as arguments to
14349 neon_select_shape.
14350 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 14351 - a table used to drive neon_select_shape. */
b99bd4ef 14352
037e8744 14353#define NEON_SHAPE_DEF \
93925576 14354 X(4, (R, R, Q, Q), QUAD), \
b409bdb6 14355 X(4, (Q, R, R, I), QUAD), \
57785aa2
AV
14356 X(4, (R, R, S, S), QUAD), \
14357 X(4, (S, S, R, R), QUAD), \
b409bdb6 14358 X(3, (Q, R, I), QUAD), \
1b883319
AV
14359 X(3, (I, Q, Q), QUAD), \
14360 X(3, (I, Q, R), QUAD), \
a302e574 14361 X(3, (R, Q, Q), QUAD), \
037e8744
JB
14362 X(3, (D, D, D), DOUBLE), \
14363 X(3, (Q, Q, Q), QUAD), \
14364 X(3, (D, D, I), DOUBLE), \
14365 X(3, (Q, Q, I), QUAD), \
14366 X(3, (D, D, S), DOUBLE), \
14367 X(3, (Q, Q, S), QUAD), \
5ee91343 14368 X(3, (Q, Q, R), QUAD), \
26c1e780
AV
14369 X(3, (R, R, Q), QUAD), \
14370 X(2, (R, Q), QUAD), \
037e8744
JB
14371 X(2, (D, D), DOUBLE), \
14372 X(2, (Q, Q), QUAD), \
14373 X(2, (D, S), DOUBLE), \
14374 X(2, (Q, S), QUAD), \
14375 X(2, (D, R), DOUBLE), \
14376 X(2, (Q, R), QUAD), \
14377 X(2, (D, I), DOUBLE), \
14378 X(2, (Q, I), QUAD), \
14379 X(3, (D, L, D), DOUBLE), \
14380 X(2, (D, Q), MIXED), \
14381 X(2, (Q, D), MIXED), \
14382 X(3, (D, Q, I), MIXED), \
14383 X(3, (Q, D, I), MIXED), \
14384 X(3, (Q, D, D), MIXED), \
14385 X(3, (D, Q, Q), MIXED), \
14386 X(3, (Q, Q, D), MIXED), \
14387 X(3, (Q, D, S), MIXED), \
14388 X(3, (D, Q, S), MIXED), \
14389 X(4, (D, D, D, I), DOUBLE), \
14390 X(4, (Q, Q, Q, I), QUAD), \
c28eeff2
SN
14391 X(4, (D, D, S, I), DOUBLE), \
14392 X(4, (Q, Q, S, I), QUAD), \
037e8744
JB
14393 X(2, (F, F), SINGLE), \
14394 X(3, (F, F, F), SINGLE), \
14395 X(2, (F, I), SINGLE), \
14396 X(2, (F, D), MIXED), \
14397 X(2, (D, F), MIXED), \
14398 X(3, (F, F, I), MIXED), \
14399 X(4, (R, R, F, F), SINGLE), \
14400 X(4, (F, F, R, R), SINGLE), \
14401 X(3, (D, R, R), DOUBLE), \
14402 X(3, (R, R, D), DOUBLE), \
14403 X(2, (S, R), SINGLE), \
14404 X(2, (R, S), SINGLE), \
14405 X(2, (F, R), SINGLE), \
d54af2d0
RL
14406 X(2, (R, F), SINGLE), \
14407/* Half float shape supported so far. */\
14408 X (2, (H, D), MIXED), \
14409 X (2, (D, H), MIXED), \
14410 X (2, (H, F), MIXED), \
14411 X (2, (F, H), MIXED), \
14412 X (2, (H, H), HALF), \
14413 X (2, (H, R), HALF), \
14414 X (2, (R, H), HALF), \
14415 X (2, (H, I), HALF), \
14416 X (3, (H, H, H), HALF), \
14417 X (3, (H, F, I), MIXED), \
dec41383
JW
14418 X (3, (F, H, I), MIXED), \
14419 X (3, (D, H, H), MIXED), \
14420 X (3, (D, H, S), MIXED)
037e8744
JB
14421
14422#define S2(A,B) NS_##A##B
14423#define S3(A,B,C) NS_##A##B##C
14424#define S4(A,B,C,D) NS_##A##B##C##D
14425
14426#define X(N, L, C) S##N L
14427
5287ad62
JB
14428enum neon_shape
14429{
037e8744
JB
14430 NEON_SHAPE_DEF,
14431 NS_NULL
5287ad62 14432};
b99bd4ef 14433
037e8744
JB
14434#undef X
14435#undef S2
14436#undef S3
14437#undef S4
14438
14439enum neon_shape_class
14440{
d54af2d0 14441 SC_HALF,
037e8744
JB
14442 SC_SINGLE,
14443 SC_DOUBLE,
14444 SC_QUAD,
14445 SC_MIXED
14446};
14447
14448#define X(N, L, C) SC_##C
14449
14450static enum neon_shape_class neon_shape_class[] =
14451{
14452 NEON_SHAPE_DEF
14453};
14454
14455#undef X
14456
14457enum neon_shape_el
14458{
d54af2d0 14459 SE_H,
037e8744
JB
14460 SE_F,
14461 SE_D,
14462 SE_Q,
14463 SE_I,
14464 SE_S,
14465 SE_R,
14466 SE_L
14467};
14468
14469/* Register widths of above. */
14470static unsigned neon_shape_el_size[] =
14471{
d54af2d0 14472 16,
037e8744
JB
14473 32,
14474 64,
14475 128,
14476 0,
14477 32,
14478 32,
14479 0
14480};
14481
14482struct neon_shape_info
14483{
14484 unsigned els;
14485 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14486};
14487
14488#define S2(A,B) { SE_##A, SE_##B }
14489#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14490#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14491
14492#define X(N, L, C) { N, S##N L }
14493
14494static struct neon_shape_info neon_shape_tab[] =
14495{
14496 NEON_SHAPE_DEF
14497};
14498
14499#undef X
14500#undef S2
14501#undef S3
14502#undef S4
14503
5287ad62
JB
14504/* Bit masks used in type checking given instructions.
14505 'N_EQK' means the type must be the same as (or based on in some way) the key
14506 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14507 set, various other bits can be set as well in order to modify the meaning of
14508 the type constraint. */
14509
14510enum neon_type_mask
14511{
8e79c3df
CM
14512 N_S8 = 0x0000001,
14513 N_S16 = 0x0000002,
14514 N_S32 = 0x0000004,
14515 N_S64 = 0x0000008,
14516 N_U8 = 0x0000010,
14517 N_U16 = 0x0000020,
14518 N_U32 = 0x0000040,
14519 N_U64 = 0x0000080,
14520 N_I8 = 0x0000100,
14521 N_I16 = 0x0000200,
14522 N_I32 = 0x0000400,
14523 N_I64 = 0x0000800,
14524 N_8 = 0x0001000,
14525 N_16 = 0x0002000,
14526 N_32 = 0x0004000,
14527 N_64 = 0x0008000,
14528 N_P8 = 0x0010000,
14529 N_P16 = 0x0020000,
14530 N_F16 = 0x0040000,
14531 N_F32 = 0x0080000,
14532 N_F64 = 0x0100000,
4f51b4bd 14533 N_P64 = 0x0200000,
c921be7d
NC
14534 N_KEY = 0x1000000, /* Key element (main type specifier). */
14535 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 14536 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
91ff7894 14537 N_UNT = 0x8000000, /* Must be explicitly untyped. */
c921be7d
NC
14538 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14539 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14540 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14541 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14542 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14543 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14544 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 14545 N_UTYP = 0,
4f51b4bd 14546 N_MAX_NONSPECIAL = N_P64
5287ad62
JB
14547};
14548
dcbf9037
JB
14549#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14550
5287ad62
JB
14551#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14552#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14553#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
cc933301
JW
14554#define N_S_32 (N_S8 | N_S16 | N_S32)
14555#define N_F_16_32 (N_F16 | N_F32)
14556#define N_SUF_32 (N_SU_32 | N_F_16_32)
5287ad62 14557#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
cc933301 14558#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
d54af2d0 14559#define N_F_ALL (N_F16 | N_F32 | N_F64)
5ee91343
AV
14560#define N_I_MVE (N_I8 | N_I16 | N_I32)
14561#define N_F_MVE (N_F16 | N_F32)
14562#define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
5287ad62
JB
14563
14564/* Pass this as the first type argument to neon_check_type to ignore types
14565 altogether. */
14566#define N_IGNORE_TYPE (N_KEY | N_EQK)
14567
037e8744
JB
14568/* Select a "shape" for the current instruction (describing register types or
14569 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14570 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14571 function of operand parsing, so this function doesn't need to be called.
14572 Shapes should be listed in order of decreasing length. */
5287ad62
JB
14573
14574static enum neon_shape
037e8744 14575neon_select_shape (enum neon_shape shape, ...)
5287ad62 14576{
037e8744
JB
14577 va_list ap;
14578 enum neon_shape first_shape = shape;
5287ad62
JB
14579
14580 /* Fix missing optional operands. FIXME: we don't know at this point how
14581 many arguments we should have, so this makes the assumption that we have
14582 > 1. This is true of all current Neon opcodes, I think, but may not be
14583 true in the future. */
14584 if (!inst.operands[1].present)
14585 inst.operands[1] = inst.operands[0];
14586
037e8744 14587 va_start (ap, shape);
5f4273c7 14588
21d799b5 14589 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
14590 {
14591 unsigned j;
14592 int matches = 1;
14593
14594 for (j = 0; j < neon_shape_tab[shape].els; j++)
477330fc
RM
14595 {
14596 if (!inst.operands[j].present)
14597 {
14598 matches = 0;
14599 break;
14600 }
14601
14602 switch (neon_shape_tab[shape].el[j])
14603 {
d54af2d0
RL
14604 /* If a .f16, .16, .u16, .s16 type specifier is given over
14605 a VFP single precision register operand, it's essentially
14606 means only half of the register is used.
14607
14608 If the type specifier is given after the mnemonics, the
14609 information is stored in inst.vectype. If the type specifier
14610 is given after register operand, the information is stored
14611 in inst.operands[].vectype.
14612
14613 When there is only one type specifier, and all the register
14614 operands are the same type of hardware register, the type
14615 specifier applies to all register operands.
14616
14617 If no type specifier is given, the shape is inferred from
14618 operand information.
14619
14620 for example:
14621 vadd.f16 s0, s1, s2: NS_HHH
14622 vabs.f16 s0, s1: NS_HH
14623 vmov.f16 s0, r1: NS_HR
14624 vmov.f16 r0, s1: NS_RH
14625 vcvt.f16 r0, s1: NS_RH
14626 vcvt.f16.s32 s2, s2, #29: NS_HFI
14627 vcvt.f16.s32 s2, s2: NS_HF
14628 */
14629 case SE_H:
14630 if (!(inst.operands[j].isreg
14631 && inst.operands[j].isvec
14632 && inst.operands[j].issingle
14633 && !inst.operands[j].isquad
14634 && ((inst.vectype.elems == 1
14635 && inst.vectype.el[0].size == 16)
14636 || (inst.vectype.elems > 1
14637 && inst.vectype.el[j].size == 16)
14638 || (inst.vectype.elems == 0
14639 && inst.operands[j].vectype.type != NT_invtype
14640 && inst.operands[j].vectype.size == 16))))
14641 matches = 0;
14642 break;
14643
477330fc
RM
14644 case SE_F:
14645 if (!(inst.operands[j].isreg
14646 && inst.operands[j].isvec
14647 && inst.operands[j].issingle
d54af2d0
RL
14648 && !inst.operands[j].isquad
14649 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14650 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14651 || (inst.vectype.elems == 0
14652 && (inst.operands[j].vectype.size == 32
14653 || inst.operands[j].vectype.type == NT_invtype)))))
477330fc
RM
14654 matches = 0;
14655 break;
14656
14657 case SE_D:
14658 if (!(inst.operands[j].isreg
14659 && inst.operands[j].isvec
14660 && !inst.operands[j].isquad
14661 && !inst.operands[j].issingle))
14662 matches = 0;
14663 break;
14664
14665 case SE_R:
14666 if (!(inst.operands[j].isreg
14667 && !inst.operands[j].isvec))
14668 matches = 0;
14669 break;
14670
14671 case SE_Q:
14672 if (!(inst.operands[j].isreg
14673 && inst.operands[j].isvec
14674 && inst.operands[j].isquad
14675 && !inst.operands[j].issingle))
14676 matches = 0;
14677 break;
14678
14679 case SE_I:
14680 if (!(!inst.operands[j].isreg
14681 && !inst.operands[j].isscalar))
14682 matches = 0;
14683 break;
14684
14685 case SE_S:
14686 if (!(!inst.operands[j].isreg
14687 && inst.operands[j].isscalar))
14688 matches = 0;
14689 break;
14690
14691 case SE_L:
14692 break;
14693 }
3fde54a2
JZ
14694 if (!matches)
14695 break;
477330fc 14696 }
ad6cec43
MGD
14697 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14698 /* We've matched all the entries in the shape table, and we don't
14699 have any left over operands which have not been matched. */
477330fc 14700 break;
037e8744 14701 }
5f4273c7 14702
037e8744 14703 va_end (ap);
5287ad62 14704
037e8744
JB
14705 if (shape == NS_NULL && first_shape != NS_NULL)
14706 first_error (_("invalid instruction shape"));
5287ad62 14707
037e8744
JB
14708 return shape;
14709}
5287ad62 14710
037e8744
JB
14711/* True if SHAPE is predominantly a quadword operation (most of the time, this
14712 means the Q bit should be set). */
14713
14714static int
14715neon_quad (enum neon_shape shape)
14716{
14717 return neon_shape_class[shape] == SC_QUAD;
5287ad62 14718}
037e8744 14719
5287ad62
JB
14720static void
14721neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
477330fc 14722 unsigned *g_size)
5287ad62
JB
14723{
14724 /* Allow modification to be made to types which are constrained to be
14725 based on the key element, based on bits set alongside N_EQK. */
14726 if ((typebits & N_EQK) != 0)
14727 {
14728 if ((typebits & N_HLF) != 0)
14729 *g_size /= 2;
14730 else if ((typebits & N_DBL) != 0)
14731 *g_size *= 2;
14732 if ((typebits & N_SGN) != 0)
14733 *g_type = NT_signed;
14734 else if ((typebits & N_UNS) != 0)
477330fc 14735 *g_type = NT_unsigned;
5287ad62 14736 else if ((typebits & N_INT) != 0)
477330fc 14737 *g_type = NT_integer;
5287ad62 14738 else if ((typebits & N_FLT) != 0)
477330fc 14739 *g_type = NT_float;
dcbf9037 14740 else if ((typebits & N_SIZ) != 0)
477330fc 14741 *g_type = NT_untyped;
5287ad62
JB
14742 }
14743}
5f4273c7 14744
5287ad62
JB
14745/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14746 operand type, i.e. the single type specified in a Neon instruction when it
14747 is the only one given. */
14748
14749static struct neon_type_el
14750neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14751{
14752 struct neon_type_el dest = *key;
5f4273c7 14753
9c2799c2 14754 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 14755
5287ad62
JB
14756 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14757
14758 return dest;
14759}
14760
14761/* Convert Neon type and size into compact bitmask representation. */
14762
14763static enum neon_type_mask
14764type_chk_of_el_type (enum neon_el_type type, unsigned size)
14765{
14766 switch (type)
14767 {
14768 case NT_untyped:
14769 switch (size)
477330fc
RM
14770 {
14771 case 8: return N_8;
14772 case 16: return N_16;
14773 case 32: return N_32;
14774 case 64: return N_64;
14775 default: ;
14776 }
5287ad62
JB
14777 break;
14778
14779 case NT_integer:
14780 switch (size)
477330fc
RM
14781 {
14782 case 8: return N_I8;
14783 case 16: return N_I16;
14784 case 32: return N_I32;
14785 case 64: return N_I64;
14786 default: ;
14787 }
5287ad62
JB
14788 break;
14789
14790 case NT_float:
037e8744 14791 switch (size)
477330fc 14792 {
8e79c3df 14793 case 16: return N_F16;
477330fc
RM
14794 case 32: return N_F32;
14795 case 64: return N_F64;
14796 default: ;
14797 }
5287ad62
JB
14798 break;
14799
14800 case NT_poly:
14801 switch (size)
477330fc
RM
14802 {
14803 case 8: return N_P8;
14804 case 16: return N_P16;
4f51b4bd 14805 case 64: return N_P64;
477330fc
RM
14806 default: ;
14807 }
5287ad62
JB
14808 break;
14809
14810 case NT_signed:
14811 switch (size)
477330fc
RM
14812 {
14813 case 8: return N_S8;
14814 case 16: return N_S16;
14815 case 32: return N_S32;
14816 case 64: return N_S64;
14817 default: ;
14818 }
5287ad62
JB
14819 break;
14820
14821 case NT_unsigned:
14822 switch (size)
477330fc
RM
14823 {
14824 case 8: return N_U8;
14825 case 16: return N_U16;
14826 case 32: return N_U32;
14827 case 64: return N_U64;
14828 default: ;
14829 }
5287ad62
JB
14830 break;
14831
14832 default: ;
14833 }
5f4273c7 14834
5287ad62
JB
14835 return N_UTYP;
14836}
14837
14838/* Convert compact Neon bitmask type representation to a type and size. Only
14839 handles the case where a single bit is set in the mask. */
14840
dcbf9037 14841static int
5287ad62 14842el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
477330fc 14843 enum neon_type_mask mask)
5287ad62 14844{
dcbf9037
JB
14845 if ((mask & N_EQK) != 0)
14846 return FAIL;
14847
5287ad62
JB
14848 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14849 *size = 8;
c70a8987 14850 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
5287ad62 14851 *size = 16;
dcbf9037 14852 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 14853 *size = 32;
4f51b4bd 14854 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
5287ad62 14855 *size = 64;
dcbf9037
JB
14856 else
14857 return FAIL;
14858
5287ad62
JB
14859 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14860 *type = NT_signed;
dcbf9037 14861 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 14862 *type = NT_unsigned;
dcbf9037 14863 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 14864 *type = NT_integer;
dcbf9037 14865 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 14866 *type = NT_untyped;
4f51b4bd 14867 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
5287ad62 14868 *type = NT_poly;
d54af2d0 14869 else if ((mask & (N_F_ALL)) != 0)
5287ad62 14870 *type = NT_float;
dcbf9037
JB
14871 else
14872 return FAIL;
5f4273c7 14873
dcbf9037 14874 return SUCCESS;
5287ad62
JB
14875}
14876
14877/* Modify a bitmask of allowed types. This is only needed for type
14878 relaxation. */
14879
14880static unsigned
14881modify_types_allowed (unsigned allowed, unsigned mods)
14882{
14883 unsigned size;
14884 enum neon_el_type type;
14885 unsigned destmask;
14886 int i;
5f4273c7 14887
5287ad62 14888 destmask = 0;
5f4273c7 14889
5287ad62
JB
14890 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14891 {
21d799b5 14892 if (el_type_of_type_chk (&type, &size,
477330fc
RM
14893 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14894 {
14895 neon_modify_type_size (mods, &type, &size);
14896 destmask |= type_chk_of_el_type (type, size);
14897 }
5287ad62 14898 }
5f4273c7 14899
5287ad62
JB
14900 return destmask;
14901}
14902
14903/* Check type and return type classification.
14904 The manual states (paraphrase): If one datatype is given, it indicates the
14905 type given in:
14906 - the second operand, if there is one
14907 - the operand, if there is no second operand
14908 - the result, if there are no operands.
14909 This isn't quite good enough though, so we use a concept of a "key" datatype
14910 which is set on a per-instruction basis, which is the one which matters when
14911 only one data type is written.
14912 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 14913 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
14914
14915static struct neon_type_el
14916neon_check_type (unsigned els, enum neon_shape ns, ...)
14917{
14918 va_list ap;
14919 unsigned i, pass, key_el = 0;
14920 unsigned types[NEON_MAX_TYPE_ELS];
14921 enum neon_el_type k_type = NT_invtype;
14922 unsigned k_size = -1u;
14923 struct neon_type_el badtype = {NT_invtype, -1};
14924 unsigned key_allowed = 0;
14925
14926 /* Optional registers in Neon instructions are always (not) in operand 1.
14927 Fill in the missing operand here, if it was omitted. */
14928 if (els > 1 && !inst.operands[1].present)
14929 inst.operands[1] = inst.operands[0];
14930
14931 /* Suck up all the varargs. */
14932 va_start (ap, ns);
14933 for (i = 0; i < els; i++)
14934 {
14935 unsigned thisarg = va_arg (ap, unsigned);
14936 if (thisarg == N_IGNORE_TYPE)
477330fc
RM
14937 {
14938 va_end (ap);
14939 return badtype;
14940 }
5287ad62
JB
14941 types[i] = thisarg;
14942 if ((thisarg & N_KEY) != 0)
477330fc 14943 key_el = i;
5287ad62
JB
14944 }
14945 va_end (ap);
14946
dcbf9037
JB
14947 if (inst.vectype.elems > 0)
14948 for (i = 0; i < els; i++)
14949 if (inst.operands[i].vectype.type != NT_invtype)
477330fc
RM
14950 {
14951 first_error (_("types specified in both the mnemonic and operands"));
14952 return badtype;
14953 }
dcbf9037 14954
5287ad62
JB
14955 /* Duplicate inst.vectype elements here as necessary.
14956 FIXME: No idea if this is exactly the same as the ARM assembler,
14957 particularly when an insn takes one register and one non-register
14958 operand. */
14959 if (inst.vectype.elems == 1 && els > 1)
14960 {
14961 unsigned j;
14962 inst.vectype.elems = els;
14963 inst.vectype.el[key_el] = inst.vectype.el[0];
14964 for (j = 0; j < els; j++)
477330fc
RM
14965 if (j != key_el)
14966 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14967 types[j]);
dcbf9037
JB
14968 }
14969 else if (inst.vectype.elems == 0 && els > 0)
14970 {
14971 unsigned j;
14972 /* No types were given after the mnemonic, so look for types specified
477330fc
RM
14973 after each operand. We allow some flexibility here; as long as the
14974 "key" operand has a type, we can infer the others. */
dcbf9037 14975 for (j = 0; j < els; j++)
477330fc
RM
14976 if (inst.operands[j].vectype.type != NT_invtype)
14977 inst.vectype.el[j] = inst.operands[j].vectype;
dcbf9037
JB
14978
14979 if (inst.operands[key_el].vectype.type != NT_invtype)
477330fc
RM
14980 {
14981 for (j = 0; j < els; j++)
14982 if (inst.operands[j].vectype.type == NT_invtype)
14983 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14984 types[j]);
14985 }
dcbf9037 14986 else
477330fc
RM
14987 {
14988 first_error (_("operand types can't be inferred"));
14989 return badtype;
14990 }
5287ad62
JB
14991 }
14992 else if (inst.vectype.elems != els)
14993 {
dcbf9037 14994 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
14995 return badtype;
14996 }
14997
14998 for (pass = 0; pass < 2; pass++)
14999 {
15000 for (i = 0; i < els; i++)
477330fc
RM
15001 {
15002 unsigned thisarg = types[i];
15003 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15004 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15005 enum neon_el_type g_type = inst.vectype.el[i].type;
15006 unsigned g_size = inst.vectype.el[i].size;
15007
15008 /* Decay more-specific signed & unsigned types to sign-insensitive
5287ad62 15009 integer types if sign-specific variants are unavailable. */
477330fc 15010 if ((g_type == NT_signed || g_type == NT_unsigned)
5287ad62
JB
15011 && (types_allowed & N_SU_ALL) == 0)
15012 g_type = NT_integer;
15013
477330fc 15014 /* If only untyped args are allowed, decay any more specific types to
5287ad62
JB
15015 them. Some instructions only care about signs for some element
15016 sizes, so handle that properly. */
477330fc 15017 if (((types_allowed & N_UNT) == 0)
91ff7894
MGD
15018 && ((g_size == 8 && (types_allowed & N_8) != 0)
15019 || (g_size == 16 && (types_allowed & N_16) != 0)
15020 || (g_size == 32 && (types_allowed & N_32) != 0)
15021 || (g_size == 64 && (types_allowed & N_64) != 0)))
5287ad62
JB
15022 g_type = NT_untyped;
15023
477330fc
RM
15024 if (pass == 0)
15025 {
15026 if ((thisarg & N_KEY) != 0)
15027 {
15028 k_type = g_type;
15029 k_size = g_size;
15030 key_allowed = thisarg & ~N_KEY;
cc933301
JW
15031
15032 /* Check architecture constraint on FP16 extension. */
15033 if (k_size == 16
15034 && k_type == NT_float
15035 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15036 {
15037 inst.error = _(BAD_FP16);
15038 return badtype;
15039 }
477330fc
RM
15040 }
15041 }
15042 else
15043 {
15044 if ((thisarg & N_VFP) != 0)
15045 {
15046 enum neon_shape_el regshape;
15047 unsigned regwidth, match;
99b253c5
NC
15048
15049 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15050 if (ns == NS_NULL)
15051 {
15052 first_error (_("invalid instruction shape"));
15053 return badtype;
15054 }
477330fc
RM
15055 regshape = neon_shape_tab[ns].el[i];
15056 regwidth = neon_shape_el_size[regshape];
15057
15058 /* In VFP mode, operands must match register widths. If we
15059 have a key operand, use its width, else use the width of
15060 the current operand. */
15061 if (k_size != -1u)
15062 match = k_size;
15063 else
15064 match = g_size;
15065
9db2f6b4
RL
15066 /* FP16 will use a single precision register. */
15067 if (regwidth == 32 && match == 16)
15068 {
15069 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15070 match = regwidth;
15071 else
15072 {
15073 inst.error = _(BAD_FP16);
15074 return badtype;
15075 }
15076 }
15077
477330fc
RM
15078 if (regwidth != match)
15079 {
15080 first_error (_("operand size must match register width"));
15081 return badtype;
15082 }
15083 }
15084
15085 if ((thisarg & N_EQK) == 0)
15086 {
15087 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15088
15089 if ((given_type & types_allowed) == 0)
15090 {
a302e574 15091 first_error (BAD_SIMD_TYPE);
477330fc
RM
15092 return badtype;
15093 }
15094 }
15095 else
15096 {
15097 enum neon_el_type mod_k_type = k_type;
15098 unsigned mod_k_size = k_size;
15099 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15100 if (g_type != mod_k_type || g_size != mod_k_size)
15101 {
15102 first_error (_("inconsistent types in Neon instruction"));
15103 return badtype;
15104 }
15105 }
15106 }
15107 }
5287ad62
JB
15108 }
15109
15110 return inst.vectype.el[key_el];
15111}
15112
037e8744 15113/* Neon-style VFP instruction forwarding. */
5287ad62 15114
037e8744
JB
15115/* Thumb VFP instructions have 0xE in the condition field. */
15116
15117static void
15118do_vfp_cond_or_thumb (void)
5287ad62 15119{
88714cb8
DG
15120 inst.is_neon = 1;
15121
5287ad62 15122 if (thumb_mode)
037e8744 15123 inst.instruction |= 0xe0000000;
5287ad62 15124 else
037e8744 15125 inst.instruction |= inst.cond << 28;
5287ad62
JB
15126}
15127
037e8744
JB
15128/* Look up and encode a simple mnemonic, for use as a helper function for the
15129 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15130 etc. It is assumed that operand parsing has already been done, and that the
15131 operands are in the form expected by the given opcode (this isn't necessarily
15132 the same as the form in which they were parsed, hence some massaging must
15133 take place before this function is called).
15134 Checks current arch version against that in the looked-up opcode. */
5287ad62 15135
037e8744
JB
15136static void
15137do_vfp_nsyn_opcode (const char *opname)
5287ad62 15138{
037e8744 15139 const struct asm_opcode *opcode;
5f4273c7 15140
21d799b5 15141 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 15142
037e8744
JB
15143 if (!opcode)
15144 abort ();
5287ad62 15145
037e8744 15146 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
477330fc
RM
15147 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15148 _(BAD_FPU));
5287ad62 15149
88714cb8
DG
15150 inst.is_neon = 1;
15151
037e8744
JB
15152 if (thumb_mode)
15153 {
15154 inst.instruction = opcode->tvalue;
15155 opcode->tencode ();
15156 }
15157 else
15158 {
15159 inst.instruction = (inst.cond << 28) | opcode->avalue;
15160 opcode->aencode ();
15161 }
15162}
5287ad62
JB
15163
15164static void
037e8744 15165do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 15166{
037e8744
JB
15167 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15168
9db2f6b4 15169 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15170 {
15171 if (is_add)
477330fc 15172 do_vfp_nsyn_opcode ("fadds");
037e8744 15173 else
477330fc 15174 do_vfp_nsyn_opcode ("fsubs");
9db2f6b4
RL
15175
15176 /* ARMv8.2 fp16 instruction. */
15177 if (rs == NS_HHH)
15178 do_scalar_fp16_v82_encode ();
037e8744
JB
15179 }
15180 else
15181 {
15182 if (is_add)
477330fc 15183 do_vfp_nsyn_opcode ("faddd");
037e8744 15184 else
477330fc 15185 do_vfp_nsyn_opcode ("fsubd");
037e8744
JB
15186 }
15187}
15188
15189/* Check operand types to see if this is a VFP instruction, and if so call
15190 PFN (). */
15191
15192static int
15193try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15194{
15195 enum neon_shape rs;
15196 struct neon_type_el et;
15197
15198 switch (args)
15199 {
15200 case 2:
9db2f6b4
RL
15201 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15202 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
037e8744 15203 break;
5f4273c7 15204
037e8744 15205 case 3:
9db2f6b4
RL
15206 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15207 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15208 N_F_ALL | N_KEY | N_VFP);
037e8744
JB
15209 break;
15210
15211 default:
15212 abort ();
15213 }
15214
15215 if (et.type != NT_invtype)
15216 {
15217 pfn (rs);
15218 return SUCCESS;
15219 }
037e8744 15220
99b253c5 15221 inst.error = NULL;
037e8744
JB
15222 return FAIL;
15223}
15224
15225static void
15226do_vfp_nsyn_mla_mls (enum neon_shape rs)
15227{
15228 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 15229
9db2f6b4 15230 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15231 {
15232 if (is_mla)
477330fc 15233 do_vfp_nsyn_opcode ("fmacs");
037e8744 15234 else
477330fc 15235 do_vfp_nsyn_opcode ("fnmacs");
9db2f6b4
RL
15236
15237 /* ARMv8.2 fp16 instruction. */
15238 if (rs == NS_HHH)
15239 do_scalar_fp16_v82_encode ();
037e8744
JB
15240 }
15241 else
15242 {
15243 if (is_mla)
477330fc 15244 do_vfp_nsyn_opcode ("fmacd");
037e8744 15245 else
477330fc 15246 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
15247 }
15248}
15249
62f3b8c8
PB
15250static void
15251do_vfp_nsyn_fma_fms (enum neon_shape rs)
15252{
15253 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15254
9db2f6b4 15255 if (rs == NS_FFF || rs == NS_HHH)
62f3b8c8
PB
15256 {
15257 if (is_fma)
477330fc 15258 do_vfp_nsyn_opcode ("ffmas");
62f3b8c8 15259 else
477330fc 15260 do_vfp_nsyn_opcode ("ffnmas");
9db2f6b4
RL
15261
15262 /* ARMv8.2 fp16 instruction. */
15263 if (rs == NS_HHH)
15264 do_scalar_fp16_v82_encode ();
62f3b8c8
PB
15265 }
15266 else
15267 {
15268 if (is_fma)
477330fc 15269 do_vfp_nsyn_opcode ("ffmad");
62f3b8c8 15270 else
477330fc 15271 do_vfp_nsyn_opcode ("ffnmad");
62f3b8c8
PB
15272 }
15273}
15274
037e8744
JB
15275static void
15276do_vfp_nsyn_mul (enum neon_shape rs)
15277{
9db2f6b4
RL
15278 if (rs == NS_FFF || rs == NS_HHH)
15279 {
15280 do_vfp_nsyn_opcode ("fmuls");
15281
15282 /* ARMv8.2 fp16 instruction. */
15283 if (rs == NS_HHH)
15284 do_scalar_fp16_v82_encode ();
15285 }
037e8744
JB
15286 else
15287 do_vfp_nsyn_opcode ("fmuld");
15288}
15289
15290static void
15291do_vfp_nsyn_abs_neg (enum neon_shape rs)
15292{
15293 int is_neg = (inst.instruction & 0x80) != 0;
9db2f6b4 15294 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
037e8744 15295
9db2f6b4 15296 if (rs == NS_FF || rs == NS_HH)
037e8744
JB
15297 {
15298 if (is_neg)
477330fc 15299 do_vfp_nsyn_opcode ("fnegs");
037e8744 15300 else
477330fc 15301 do_vfp_nsyn_opcode ("fabss");
9db2f6b4
RL
15302
15303 /* ARMv8.2 fp16 instruction. */
15304 if (rs == NS_HH)
15305 do_scalar_fp16_v82_encode ();
037e8744
JB
15306 }
15307 else
15308 {
15309 if (is_neg)
477330fc 15310 do_vfp_nsyn_opcode ("fnegd");
037e8744 15311 else
477330fc 15312 do_vfp_nsyn_opcode ("fabsd");
037e8744
JB
15313 }
15314}
15315
15316/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15317 insns belong to Neon, and are handled elsewhere. */
15318
15319static void
15320do_vfp_nsyn_ldm_stm (int is_dbmode)
15321{
15322 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15323 if (is_ldm)
15324 {
15325 if (is_dbmode)
477330fc 15326 do_vfp_nsyn_opcode ("fldmdbs");
037e8744 15327 else
477330fc 15328 do_vfp_nsyn_opcode ("fldmias");
037e8744
JB
15329 }
15330 else
15331 {
15332 if (is_dbmode)
477330fc 15333 do_vfp_nsyn_opcode ("fstmdbs");
037e8744 15334 else
477330fc 15335 do_vfp_nsyn_opcode ("fstmias");
037e8744
JB
15336 }
15337}
15338
037e8744
JB
15339static void
15340do_vfp_nsyn_sqrt (void)
15341{
9db2f6b4
RL
15342 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15343 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15344
9db2f6b4
RL
15345 if (rs == NS_FF || rs == NS_HH)
15346 {
15347 do_vfp_nsyn_opcode ("fsqrts");
15348
15349 /* ARMv8.2 fp16 instruction. */
15350 if (rs == NS_HH)
15351 do_scalar_fp16_v82_encode ();
15352 }
037e8744
JB
15353 else
15354 do_vfp_nsyn_opcode ("fsqrtd");
15355}
15356
15357static void
15358do_vfp_nsyn_div (void)
15359{
9db2f6b4 15360 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15361 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15362 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15363
9db2f6b4
RL
15364 if (rs == NS_FFF || rs == NS_HHH)
15365 {
15366 do_vfp_nsyn_opcode ("fdivs");
15367
15368 /* ARMv8.2 fp16 instruction. */
15369 if (rs == NS_HHH)
15370 do_scalar_fp16_v82_encode ();
15371 }
037e8744
JB
15372 else
15373 do_vfp_nsyn_opcode ("fdivd");
15374}
15375
15376static void
15377do_vfp_nsyn_nmul (void)
15378{
9db2f6b4 15379 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15380 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15381 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15382
9db2f6b4 15383 if (rs == NS_FFF || rs == NS_HHH)
037e8744 15384 {
88714cb8 15385 NEON_ENCODE (SINGLE, inst);
037e8744 15386 do_vfp_sp_dyadic ();
9db2f6b4
RL
15387
15388 /* ARMv8.2 fp16 instruction. */
15389 if (rs == NS_HHH)
15390 do_scalar_fp16_v82_encode ();
037e8744
JB
15391 }
15392 else
15393 {
88714cb8 15394 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
15395 do_vfp_dp_rd_rn_rm ();
15396 }
15397 do_vfp_cond_or_thumb ();
9db2f6b4 15398
037e8744
JB
15399}
15400
1b883319
AV
15401/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15402 (0, 1, 2, 3). */
15403
15404static unsigned
15405neon_logbits (unsigned x)
15406{
15407 return ffs (x) - 4;
15408}
15409
15410#define LOW4(R) ((R) & 0xf)
15411#define HI1(R) (((R) >> 4) & 1)
15412
15413static unsigned
15414mve_get_vcmp_vpt_cond (struct neon_type_el et)
15415{
15416 switch (et.type)
15417 {
15418 default:
15419 first_error (BAD_EL_TYPE);
15420 return 0;
15421 case NT_float:
15422 switch (inst.operands[0].imm)
15423 {
15424 default:
15425 first_error (_("invalid condition"));
15426 return 0;
15427 case 0x0:
15428 /* eq. */
15429 return 0;
15430 case 0x1:
15431 /* ne. */
15432 return 1;
15433 case 0xa:
15434 /* ge/ */
15435 return 4;
15436 case 0xb:
15437 /* lt. */
15438 return 5;
15439 case 0xc:
15440 /* gt. */
15441 return 6;
15442 case 0xd:
15443 /* le. */
15444 return 7;
15445 }
15446 case NT_integer:
15447 /* only accept eq and ne. */
15448 if (inst.operands[0].imm > 1)
15449 {
15450 first_error (_("invalid condition"));
15451 return 0;
15452 }
15453 return inst.operands[0].imm;
15454 case NT_unsigned:
15455 if (inst.operands[0].imm == 0x2)
15456 return 2;
15457 else if (inst.operands[0].imm == 0x8)
15458 return 3;
15459 else
15460 {
15461 first_error (_("invalid condition"));
15462 return 0;
15463 }
15464 case NT_signed:
15465 switch (inst.operands[0].imm)
15466 {
15467 default:
15468 first_error (_("invalid condition"));
15469 return 0;
15470 case 0xa:
15471 /* ge. */
15472 return 4;
15473 case 0xb:
15474 /* lt. */
15475 return 5;
15476 case 0xc:
15477 /* gt. */
15478 return 6;
15479 case 0xd:
15480 /* le. */
15481 return 7;
15482 }
15483 }
15484 /* Should be unreachable. */
15485 abort ();
15486}
15487
15488static void
15489do_mve_vpt (void)
15490{
15491 /* We are dealing with a vector predicated block. */
15492 if (inst.operands[0].present)
15493 {
15494 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15495 struct neon_type_el et
15496 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15497 N_EQK);
15498
15499 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15500
15501 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15502
15503 if (et.type == NT_invtype)
15504 return;
15505
15506 if (et.type == NT_float)
15507 {
15508 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15509 BAD_FPU);
15510 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15511 inst.instruction |= (et.size == 16) << 28;
15512 inst.instruction |= 0x3 << 20;
15513 }
15514 else
15515 {
15516 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15517 BAD_EL_TYPE);
15518 inst.instruction |= 1 << 28;
15519 inst.instruction |= neon_logbits (et.size) << 20;
15520 }
15521
15522 if (inst.operands[2].isquad)
15523 {
15524 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15525 inst.instruction |= LOW4 (inst.operands[2].reg);
15526 inst.instruction |= (fcond & 0x2) >> 1;
15527 }
15528 else
15529 {
15530 if (inst.operands[2].reg == REG_SP)
15531 as_tsktsk (MVE_BAD_SP);
15532 inst.instruction |= 1 << 6;
15533 inst.instruction |= (fcond & 0x2) << 4;
15534 inst.instruction |= inst.operands[2].reg;
15535 }
15536 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15537 inst.instruction |= (fcond & 0x4) << 10;
15538 inst.instruction |= (fcond & 0x1) << 7;
15539
15540 }
15541 set_pred_insn_type (VPT_INSN);
15542 now_pred.cc = 0;
15543 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15544 | ((inst.instruction & 0xe000) >> 13);
15545 now_pred.warn_deprecated = FALSE;
15546 now_pred.type = VECTOR_PRED;
15547 inst.is_neon = 1;
15548}
15549
15550static void
15551do_mve_vcmp (void)
15552{
15553 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15554 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15555 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15556 if (!inst.operands[2].present)
15557 first_error (_("MVE vector or ARM register expected"));
15558 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15559
15560 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15561 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15562 && inst.operands[1].isquad)
15563 {
15564 inst.instruction = N_MNEM_vcmp;
15565 inst.cond = 0x10;
15566 }
15567
15568 if (inst.cond > COND_ALWAYS)
15569 inst.pred_insn_type = INSIDE_VPT_INSN;
15570 else
15571 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15572
15573 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15574 struct neon_type_el et
15575 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15576 N_EQK);
15577
15578 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15579 && !inst.operands[2].iszr, BAD_PC);
15580
15581 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15582
15583 inst.instruction = 0xee010f00;
15584 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15585 inst.instruction |= (fcond & 0x4) << 10;
15586 inst.instruction |= (fcond & 0x1) << 7;
15587 if (et.type == NT_float)
15588 {
15589 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15590 BAD_FPU);
15591 inst.instruction |= (et.size == 16) << 28;
15592 inst.instruction |= 0x3 << 20;
15593 }
15594 else
15595 {
15596 inst.instruction |= 1 << 28;
15597 inst.instruction |= neon_logbits (et.size) << 20;
15598 }
15599 if (inst.operands[2].isquad)
15600 {
15601 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15602 inst.instruction |= (fcond & 0x2) >> 1;
15603 inst.instruction |= LOW4 (inst.operands[2].reg);
15604 }
15605 else
15606 {
15607 if (inst.operands[2].reg == REG_SP)
15608 as_tsktsk (MVE_BAD_SP);
15609 inst.instruction |= 1 << 6;
15610 inst.instruction |= (fcond & 0x2) << 4;
15611 inst.instruction |= inst.operands[2].reg;
15612 }
15613
15614 inst.is_neon = 1;
15615 return;
15616}
15617
935295b5
AV
15618static void
15619do_mve_vmaxa_vmina (void)
15620{
15621 if (inst.cond > COND_ALWAYS)
15622 inst.pred_insn_type = INSIDE_VPT_INSN;
15623 else
15624 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15625
15626 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15627 struct neon_type_el et
15628 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
15629
15630 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15631 inst.instruction |= neon_logbits (et.size) << 18;
15632 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15633 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15634 inst.instruction |= LOW4 (inst.operands[1].reg);
15635 inst.is_neon = 1;
15636}
15637
f30ee27c
AV
15638static void
15639do_mve_vfmas (void)
15640{
15641 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15642 struct neon_type_el et
15643 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15644
15645 if (inst.cond > COND_ALWAYS)
15646 inst.pred_insn_type = INSIDE_VPT_INSN;
15647 else
15648 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15649
15650 if (inst.operands[2].reg == REG_SP)
15651 as_tsktsk (MVE_BAD_SP);
15652 else if (inst.operands[2].reg == REG_PC)
15653 as_tsktsk (MVE_BAD_PC);
15654
15655 inst.instruction |= (et.size == 16) << 28;
15656 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15657 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15658 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15659 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15660 inst.instruction |= inst.operands[2].reg;
15661 inst.is_neon = 1;
15662}
15663
b409bdb6
AV
15664static void
15665do_mve_viddup (void)
15666{
15667 if (inst.cond > COND_ALWAYS)
15668 inst.pred_insn_type = INSIDE_VPT_INSN;
15669 else
15670 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15671
15672 unsigned imm = inst.relocs[0].exp.X_add_number;
15673 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15674 _("immediate must be either 1, 2, 4 or 8"));
15675
15676 enum neon_shape rs;
15677 struct neon_type_el et;
15678 unsigned Rm;
15679 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15680 {
15681 rs = neon_select_shape (NS_QRI, NS_NULL);
15682 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15683 Rm = 7;
15684 }
15685 else
15686 {
15687 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15688 if (inst.operands[2].reg == REG_SP)
15689 as_tsktsk (MVE_BAD_SP);
15690 else if (inst.operands[2].reg == REG_PC)
15691 first_error (BAD_PC);
15692
15693 rs = neon_select_shape (NS_QRRI, NS_NULL);
15694 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
15695 Rm = inst.operands[2].reg >> 1;
15696 }
15697 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15698 inst.instruction |= neon_logbits (et.size) << 20;
15699 inst.instruction |= inst.operands[1].reg << 16;
15700 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15701 inst.instruction |= (imm > 2) << 7;
15702 inst.instruction |= Rm << 1;
15703 inst.instruction |= (imm == 2 || imm == 8);
15704 inst.is_neon = 1;
15705}
15706
935295b5
AV
15707static void
15708do_mve_vmaxnma_vminnma (void)
15709{
15710 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15711 struct neon_type_el et
15712 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
15713
15714 if (inst.cond > COND_ALWAYS)
15715 inst.pred_insn_type = INSIDE_VPT_INSN;
15716 else
15717 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15718
15719 inst.instruction |= (et.size == 16) << 28;
15720 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15721 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15722 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15723 inst.instruction |= LOW4 (inst.operands[1].reg);
15724 inst.is_neon = 1;
15725}
15726
5d281bf0
AV
15727static void
15728do_mve_vcmul (void)
15729{
15730 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15731 struct neon_type_el et
15732 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15733
15734 if (inst.cond > COND_ALWAYS)
15735 inst.pred_insn_type = INSIDE_VPT_INSN;
15736 else
15737 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15738
15739 unsigned rot = inst.relocs[0].exp.X_add_number;
15740 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15741 _("immediate out of range"));
15742
15743 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15744 || inst.operands[0].reg == inst.operands[2].reg))
15745 as_tsktsk (BAD_MVE_SRCDEST);
15746
15747 inst.instruction |= (et.size == 32) << 28;
15748 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15749 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15750 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15751 inst.instruction |= (rot > 90) << 12;
15752 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15753 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15754 inst.instruction |= LOW4 (inst.operands[2].reg);
15755 inst.instruction |= (rot == 90 || rot == 270);
15756 inst.is_neon = 1;
15757}
15758
037e8744
JB
15759static void
15760do_vfp_nsyn_cmp (void)
15761{
9db2f6b4 15762 enum neon_shape rs;
1b883319
AV
15763 if (!inst.operands[0].isreg)
15764 {
15765 do_mve_vcmp ();
15766 return;
15767 }
15768 else
15769 {
15770 constraint (inst.operands[2].present, BAD_SYNTAX);
15771 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15772 BAD_FPU);
15773 }
15774
037e8744
JB
15775 if (inst.operands[1].isreg)
15776 {
9db2f6b4
RL
15777 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15778 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15779
9db2f6b4 15780 if (rs == NS_FF || rs == NS_HH)
477330fc
RM
15781 {
15782 NEON_ENCODE (SINGLE, inst);
15783 do_vfp_sp_monadic ();
15784 }
037e8744 15785 else
477330fc
RM
15786 {
15787 NEON_ENCODE (DOUBLE, inst);
15788 do_vfp_dp_rd_rm ();
15789 }
037e8744
JB
15790 }
15791 else
15792 {
9db2f6b4
RL
15793 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15794 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
037e8744
JB
15795
15796 switch (inst.instruction & 0x0fffffff)
477330fc
RM
15797 {
15798 case N_MNEM_vcmp:
15799 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15800 break;
15801 case N_MNEM_vcmpe:
15802 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15803 break;
15804 default:
15805 abort ();
15806 }
5f4273c7 15807
9db2f6b4 15808 if (rs == NS_FI || rs == NS_HI)
477330fc
RM
15809 {
15810 NEON_ENCODE (SINGLE, inst);
15811 do_vfp_sp_compare_z ();
15812 }
037e8744 15813 else
477330fc
RM
15814 {
15815 NEON_ENCODE (DOUBLE, inst);
15816 do_vfp_dp_rd ();
15817 }
037e8744
JB
15818 }
15819 do_vfp_cond_or_thumb ();
9db2f6b4
RL
15820
15821 /* ARMv8.2 fp16 instruction. */
15822 if (rs == NS_HI || rs == NS_HH)
15823 do_scalar_fp16_v82_encode ();
037e8744
JB
15824}
15825
15826static void
15827nsyn_insert_sp (void)
15828{
15829 inst.operands[1] = inst.operands[0];
15830 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 15831 inst.operands[0].reg = REG_SP;
037e8744
JB
15832 inst.operands[0].isreg = 1;
15833 inst.operands[0].writeback = 1;
15834 inst.operands[0].present = 1;
15835}
15836
15837static void
15838do_vfp_nsyn_push (void)
15839{
15840 nsyn_insert_sp ();
b126985e
NC
15841
15842 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15843 _("register list must contain at least 1 and at most 16 "
15844 "registers"));
15845
037e8744
JB
15846 if (inst.operands[1].issingle)
15847 do_vfp_nsyn_opcode ("fstmdbs");
15848 else
15849 do_vfp_nsyn_opcode ("fstmdbd");
15850}
15851
15852static void
15853do_vfp_nsyn_pop (void)
15854{
15855 nsyn_insert_sp ();
b126985e
NC
15856
15857 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15858 _("register list must contain at least 1 and at most 16 "
15859 "registers"));
15860
037e8744 15861 if (inst.operands[1].issingle)
22b5b651 15862 do_vfp_nsyn_opcode ("fldmias");
037e8744 15863 else
22b5b651 15864 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
15865}
15866
15867/* Fix up Neon data-processing instructions, ORing in the correct bits for
15868 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15869
88714cb8
DG
15870static void
15871neon_dp_fixup (struct arm_it* insn)
037e8744 15872{
88714cb8
DG
15873 unsigned int i = insn->instruction;
15874 insn->is_neon = 1;
15875
037e8744
JB
15876 if (thumb_mode)
15877 {
15878 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15879 if (i & (1 << 24))
477330fc 15880 i |= 1 << 28;
5f4273c7 15881
037e8744 15882 i &= ~(1 << 24);
5f4273c7 15883
037e8744
JB
15884 i |= 0xef000000;
15885 }
15886 else
15887 i |= 0xf2000000;
5f4273c7 15888
88714cb8 15889 insn->instruction = i;
037e8744
JB
15890}
15891
5ee91343 15892static void
7df54120 15893mve_encode_qqr (int size, int U, int fp)
5ee91343
AV
15894{
15895 if (inst.operands[2].reg == REG_SP)
15896 as_tsktsk (MVE_BAD_SP);
15897 else if (inst.operands[2].reg == REG_PC)
15898 as_tsktsk (MVE_BAD_PC);
15899
15900 if (fp)
15901 {
15902 /* vadd. */
15903 if (((unsigned)inst.instruction) == 0xd00)
15904 inst.instruction = 0xee300f40;
15905 /* vsub. */
15906 else if (((unsigned)inst.instruction) == 0x200d00)
15907 inst.instruction = 0xee301f40;
a8465a06
AV
15908 /* vmul. */
15909 else if (((unsigned)inst.instruction) == 0x1000d10)
15910 inst.instruction = 0xee310e60;
5ee91343
AV
15911
15912 /* Setting size which is 1 for F16 and 0 for F32. */
15913 inst.instruction |= (size == 16) << 28;
15914 }
15915 else
15916 {
15917 /* vadd. */
15918 if (((unsigned)inst.instruction) == 0x800)
15919 inst.instruction = 0xee010f40;
15920 /* vsub. */
15921 else if (((unsigned)inst.instruction) == 0x1000800)
15922 inst.instruction = 0xee011f40;
7df54120
AV
15923 /* vhadd. */
15924 else if (((unsigned)inst.instruction) == 0)
15925 inst.instruction = 0xee000f40;
15926 /* vhsub. */
15927 else if (((unsigned)inst.instruction) == 0x200)
15928 inst.instruction = 0xee001f40;
a8465a06
AV
15929 /* vmla. */
15930 else if (((unsigned)inst.instruction) == 0x900)
15931 inst.instruction = 0xee010e40;
15932 /* vmul. */
15933 else if (((unsigned)inst.instruction) == 0x910)
15934 inst.instruction = 0xee011e60;
15935 /* vqadd. */
15936 else if (((unsigned)inst.instruction) == 0x10)
15937 inst.instruction = 0xee000f60;
15938 /* vqsub. */
15939 else if (((unsigned)inst.instruction) == 0x210)
15940 inst.instruction = 0xee001f60;
7df54120
AV
15941
15942 /* Set U-bit. */
15943 inst.instruction |= U << 28;
15944
5ee91343
AV
15945 /* Setting bits for size. */
15946 inst.instruction |= neon_logbits (size) << 20;
15947 }
15948 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15949 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15950 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15951 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15952 inst.instruction |= inst.operands[2].reg;
15953 inst.is_neon = 1;
15954}
15955
a302e574
AV
15956static void
15957mve_encode_rqq (unsigned bit28, unsigned size)
15958{
15959 inst.instruction |= bit28 << 28;
15960 inst.instruction |= neon_logbits (size) << 20;
15961 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15962 inst.instruction |= inst.operands[0].reg << 12;
15963 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15964 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15965 inst.instruction |= LOW4 (inst.operands[2].reg);
15966 inst.is_neon = 1;
15967}
15968
886e1c73
AV
15969static void
15970mve_encode_qqq (int ubit, int size)
15971{
15972
15973 inst.instruction |= (ubit != 0) << 28;
15974 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15975 inst.instruction |= neon_logbits (size) << 20;
15976 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15977 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15978 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15979 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15980 inst.instruction |= LOW4 (inst.operands[2].reg);
15981
15982 inst.is_neon = 1;
15983}
15984
26c1e780
AV
15985static void
15986mve_encode_rq (unsigned bit28, unsigned size)
15987{
15988 inst.instruction |= bit28 << 28;
15989 inst.instruction |= neon_logbits (size) << 18;
15990 inst.instruction |= inst.operands[0].reg << 12;
15991 inst.instruction |= LOW4 (inst.operands[1].reg);
15992 inst.is_neon = 1;
15993}
886e1c73 15994
93925576
AV
15995static void
15996mve_encode_rrqq (unsigned U, unsigned size)
15997{
15998 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
15999
16000 inst.instruction |= U << 28;
16001 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16002 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16003 inst.instruction |= (size == 32) << 16;
16004 inst.instruction |= inst.operands[0].reg << 12;
16005 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16006 inst.instruction |= inst.operands[3].reg;
16007 inst.is_neon = 1;
16008}
16009
037e8744
JB
16010/* Encode insns with bit pattern:
16011
16012 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16013 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 16014
037e8744
JB
16015 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16016 different meaning for some instruction. */
16017
16018static void
16019neon_three_same (int isquad, int ubit, int size)
16020{
16021 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16022 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16023 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16024 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16025 inst.instruction |= LOW4 (inst.operands[2].reg);
16026 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16027 inst.instruction |= (isquad != 0) << 6;
16028 inst.instruction |= (ubit != 0) << 24;
16029 if (size != -1)
16030 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 16031
88714cb8 16032 neon_dp_fixup (&inst);
037e8744
JB
16033}
16034
16035/* Encode instructions of the form:
16036
16037 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16038 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
16039
16040 Don't write size if SIZE == -1. */
16041
16042static void
16043neon_two_same (int qbit, int ubit, int size)
16044{
16045 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16046 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16047 inst.instruction |= LOW4 (inst.operands[1].reg);
16048 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16049 inst.instruction |= (qbit != 0) << 6;
16050 inst.instruction |= (ubit != 0) << 24;
16051
16052 if (size != -1)
16053 inst.instruction |= neon_logbits (size) << 18;
16054
88714cb8 16055 neon_dp_fixup (&inst);
5287ad62
JB
16056}
16057
7df54120
AV
16058enum vfp_or_neon_is_neon_bits
16059{
16060NEON_CHECK_CC = 1,
16061NEON_CHECK_ARCH = 2,
16062NEON_CHECK_ARCH8 = 4
16063};
16064
16065/* Call this function if an instruction which may have belonged to the VFP or
16066 Neon instruction sets, but turned out to be a Neon instruction (due to the
16067 operand types involved, etc.). We have to check and/or fix-up a couple of
16068 things:
16069
16070 - Make sure the user hasn't attempted to make a Neon instruction
16071 conditional.
16072 - Alter the value in the condition code field if necessary.
16073 - Make sure that the arch supports Neon instructions.
16074
16075 Which of these operations take place depends on bits from enum
16076 vfp_or_neon_is_neon_bits.
16077
16078 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16079 current instruction's condition is COND_ALWAYS, the condition field is
16080 changed to inst.uncond_value. This is necessary because instructions shared
16081 between VFP and Neon may be conditional for the VFP variants only, and the
16082 unconditional Neon version must have, e.g., 0xF in the condition field. */
16083
16084static int
16085vfp_or_neon_is_neon (unsigned check)
16086{
16087/* Conditions are always legal in Thumb mode (IT blocks). */
16088if (!thumb_mode && (check & NEON_CHECK_CC))
16089 {
16090 if (inst.cond != COND_ALWAYS)
16091 {
16092 first_error (_(BAD_COND));
16093 return FAIL;
16094 }
16095 if (inst.uncond_value != -1)
16096 inst.instruction |= inst.uncond_value << 28;
16097 }
16098
16099
16100 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16101 || ((check & NEON_CHECK_ARCH8)
16102 && !mark_feature_used (&fpu_neon_ext_armv8)))
16103 {
16104 first_error (_(BAD_FPU));
16105 return FAIL;
16106 }
16107
16108return SUCCESS;
16109}
16110
16111static int
16112check_simd_pred_availability (int fp, unsigned check)
16113{
16114if (inst.cond > COND_ALWAYS)
16115 {
16116 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16117 {
16118 inst.error = BAD_FPU;
16119 return 1;
16120 }
16121 inst.pred_insn_type = INSIDE_VPT_INSN;
16122 }
16123else if (inst.cond < COND_ALWAYS)
16124 {
16125 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16126 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16127 else if (vfp_or_neon_is_neon (check) == FAIL)
16128 return 2;
16129 }
16130else
16131 {
16132 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16133 && vfp_or_neon_is_neon (check) == FAIL)
16134 return 3;
16135
16136 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16137 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16138 }
16139return 0;
16140}
16141
5287ad62
JB
16142/* Neon instruction encoders, in approximate order of appearance. */
16143
16144static void
16145do_neon_dyadic_i_su (void)
16146{
7df54120
AV
16147 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16148 return;
16149
16150 enum neon_shape rs;
16151 struct neon_type_el et;
16152 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16153 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16154 else
16155 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16156
16157 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16158
16159
16160 if (rs != NS_QQR)
16161 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16162 else
16163 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
5287ad62
JB
16164}
16165
16166static void
16167do_neon_dyadic_i64_su (void)
16168{
a8465a06
AV
16169 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
16170 return;
16171 enum neon_shape rs;
16172 struct neon_type_el et;
16173 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16174 {
16175 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16176 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16177 }
16178 else
16179 {
16180 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16181 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16182 }
16183 if (rs == NS_QQR)
16184 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16185 else
16186 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16187}
16188
16189static void
16190neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
477330fc 16191 unsigned immbits)
5287ad62
JB
16192{
16193 unsigned size = et.size >> 3;
16194 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16195 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16196 inst.instruction |= LOW4 (inst.operands[1].reg);
16197 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16198 inst.instruction |= (isquad != 0) << 6;
16199 inst.instruction |= immbits << 16;
16200 inst.instruction |= (size >> 3) << 7;
16201 inst.instruction |= (size & 0x7) << 19;
16202 if (write_ubit)
16203 inst.instruction |= (uval != 0) << 24;
16204
88714cb8 16205 neon_dp_fixup (&inst);
5287ad62
JB
16206}
16207
16208static void
16209do_neon_shl_imm (void)
16210{
16211 if (!inst.operands[2].isreg)
16212 {
037e8744 16213 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 16214 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
cb3b1e65
JB
16215 int imm = inst.operands[2].imm;
16216
16217 constraint (imm < 0 || (unsigned)imm >= et.size,
16218 _("immediate out of range for shift"));
88714cb8 16219 NEON_ENCODE (IMMED, inst);
cb3b1e65 16220 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
16221 }
16222 else
16223 {
037e8744 16224 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 16225 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16226 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
16227 unsigned int tmp;
16228
16229 /* VSHL/VQSHL 3-register variants have syntax such as:
477330fc
RM
16230 vshl.xx Dd, Dm, Dn
16231 whereas other 3-register operations encoded by neon_three_same have
16232 syntax like:
16233 vadd.xx Dd, Dn, Dm
16234 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
16235 here. */
627907b7
JB
16236 tmp = inst.operands[2].reg;
16237 inst.operands[2].reg = inst.operands[1].reg;
16238 inst.operands[1].reg = tmp;
88714cb8 16239 NEON_ENCODE (INTEGER, inst);
037e8744 16240 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16241 }
16242}
16243
16244static void
16245do_neon_qshl_imm (void)
16246{
16247 if (!inst.operands[2].isreg)
16248 {
037e8744 16249 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 16250 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
cb3b1e65 16251 int imm = inst.operands[2].imm;
627907b7 16252
cb3b1e65
JB
16253 constraint (imm < 0 || (unsigned)imm >= et.size,
16254 _("immediate out of range for shift"));
88714cb8 16255 NEON_ENCODE (IMMED, inst);
cb3b1e65 16256 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
5287ad62
JB
16257 }
16258 else
16259 {
037e8744 16260 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 16261 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16262 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
16263 unsigned int tmp;
16264
16265 /* See note in do_neon_shl_imm. */
16266 tmp = inst.operands[2].reg;
16267 inst.operands[2].reg = inst.operands[1].reg;
16268 inst.operands[1].reg = tmp;
88714cb8 16269 NEON_ENCODE (INTEGER, inst);
037e8744 16270 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16271 }
16272}
16273
627907b7
JB
16274static void
16275do_neon_rshl (void)
16276{
16277 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16278 struct neon_type_el et = neon_check_type (3, rs,
16279 N_EQK, N_EQK, N_SU_ALL | N_KEY);
16280 unsigned int tmp;
16281
16282 tmp = inst.operands[2].reg;
16283 inst.operands[2].reg = inst.operands[1].reg;
16284 inst.operands[1].reg = tmp;
16285 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16286}
16287
5287ad62
JB
16288static int
16289neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16290{
036dc3f7
PB
16291 /* Handle .I8 pseudo-instructions. */
16292 if (size == 8)
5287ad62 16293 {
5287ad62 16294 /* Unfortunately, this will make everything apart from zero out-of-range.
477330fc
RM
16295 FIXME is this the intended semantics? There doesn't seem much point in
16296 accepting .I8 if so. */
5287ad62
JB
16297 immediate |= immediate << 8;
16298 size = 16;
036dc3f7
PB
16299 }
16300
16301 if (size >= 32)
16302 {
16303 if (immediate == (immediate & 0x000000ff))
16304 {
16305 *immbits = immediate;
16306 return 0x1;
16307 }
16308 else if (immediate == (immediate & 0x0000ff00))
16309 {
16310 *immbits = immediate >> 8;
16311 return 0x3;
16312 }
16313 else if (immediate == (immediate & 0x00ff0000))
16314 {
16315 *immbits = immediate >> 16;
16316 return 0x5;
16317 }
16318 else if (immediate == (immediate & 0xff000000))
16319 {
16320 *immbits = immediate >> 24;
16321 return 0x7;
16322 }
16323 if ((immediate & 0xffff) != (immediate >> 16))
16324 goto bad_immediate;
16325 immediate &= 0xffff;
5287ad62
JB
16326 }
16327
16328 if (immediate == (immediate & 0x000000ff))
16329 {
16330 *immbits = immediate;
036dc3f7 16331 return 0x9;
5287ad62
JB
16332 }
16333 else if (immediate == (immediate & 0x0000ff00))
16334 {
16335 *immbits = immediate >> 8;
036dc3f7 16336 return 0xb;
5287ad62
JB
16337 }
16338
16339 bad_immediate:
dcbf9037 16340 first_error (_("immediate value out of range"));
5287ad62
JB
16341 return FAIL;
16342}
16343
5287ad62
JB
16344static void
16345do_neon_logic (void)
16346{
16347 if (inst.operands[2].present && inst.operands[2].isreg)
16348 {
037e8744 16349 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
f601a00c
AV
16350 if (rs == NS_QQQ
16351 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16352 == FAIL)
16353 return;
16354 else if (rs != NS_QQQ
16355 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16356 first_error (BAD_FPU);
16357
5287ad62
JB
16358 neon_check_type (3, rs, N_IGNORE_TYPE);
16359 /* U bit and size field were set as part of the bitmask. */
88714cb8 16360 NEON_ENCODE (INTEGER, inst);
037e8744 16361 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16362 }
16363 else
16364 {
4316f0d2
DG
16365 const int three_ops_form = (inst.operands[2].present
16366 && !inst.operands[2].isreg);
16367 const int immoperand = (three_ops_form ? 2 : 1);
16368 enum neon_shape rs = (three_ops_form
16369 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16370 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
f601a00c
AV
16371 /* Because neon_select_shape makes the second operand a copy of the first
16372 if the second operand is not present. */
16373 if (rs == NS_QQI
16374 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16375 == FAIL)
16376 return;
16377 else if (rs != NS_QQI
16378 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16379 first_error (BAD_FPU);
16380
16381 struct neon_type_el et;
16382 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16383 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16384 else
16385 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16386 | N_KEY, N_EQK);
16387
16388 if (et.type == NT_invtype)
16389 return;
21d799b5 16390 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
16391 unsigned immbits;
16392 int cmode;
5f4273c7 16393
5f4273c7 16394
4316f0d2
DG
16395 if (three_ops_form)
16396 constraint (inst.operands[0].reg != inst.operands[1].reg,
16397 _("first and second operands shall be the same register"));
16398
88714cb8 16399 NEON_ENCODE (IMMED, inst);
5287ad62 16400
4316f0d2 16401 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
16402 if (et.size == 64)
16403 {
16404 /* .i64 is a pseudo-op, so the immediate must be a repeating
16405 pattern. */
4316f0d2
DG
16406 if (immbits != (inst.operands[immoperand].regisimm ?
16407 inst.operands[immoperand].reg : 0))
036dc3f7
PB
16408 {
16409 /* Set immbits to an invalid constant. */
16410 immbits = 0xdeadbeef;
16411 }
16412 }
16413
5287ad62 16414 switch (opcode)
477330fc
RM
16415 {
16416 case N_MNEM_vbic:
16417 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16418 break;
16419
16420 case N_MNEM_vorr:
16421 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16422 break;
16423
16424 case N_MNEM_vand:
16425 /* Pseudo-instruction for VBIC. */
16426 neon_invert_size (&immbits, 0, et.size);
16427 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16428 break;
16429
16430 case N_MNEM_vorn:
16431 /* Pseudo-instruction for VORR. */
16432 neon_invert_size (&immbits, 0, et.size);
16433 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16434 break;
16435
16436 default:
16437 abort ();
16438 }
5287ad62
JB
16439
16440 if (cmode == FAIL)
477330fc 16441 return;
5287ad62 16442
037e8744 16443 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16444 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16445 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16446 inst.instruction |= cmode << 8;
16447 neon_write_immbits (immbits);
5f4273c7 16448
88714cb8 16449 neon_dp_fixup (&inst);
5287ad62
JB
16450 }
16451}
16452
16453static void
16454do_neon_bitfield (void)
16455{
037e8744 16456 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 16457 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 16458 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16459}
16460
16461static void
dcbf9037 16462neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
477330fc 16463 unsigned destbits)
5287ad62 16464{
5ee91343 16465 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
dcbf9037 16466 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
477330fc 16467 types | N_KEY);
5287ad62
JB
16468 if (et.type == NT_float)
16469 {
88714cb8 16470 NEON_ENCODE (FLOAT, inst);
5ee91343 16471 if (rs == NS_QQR)
7df54120 16472 mve_encode_qqr (et.size, 0, 1);
5ee91343
AV
16473 else
16474 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
16475 }
16476 else
16477 {
88714cb8 16478 NEON_ENCODE (INTEGER, inst);
5ee91343 16479 if (rs == NS_QQR)
a8465a06 16480 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
5ee91343
AV
16481 else
16482 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
16483 }
16484}
16485
5287ad62
JB
16486
16487static void
16488do_neon_dyadic_if_su_d (void)
16489{
16490 /* This version only allow D registers, but that constraint is enforced during
16491 operand parsing so we don't need to do anything extra here. */
dcbf9037 16492 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
16493}
16494
5287ad62
JB
16495static void
16496do_neon_dyadic_if_i_d (void)
16497{
428e3f1f
PB
16498 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16499 affected if we specify unsigned args. */
16500 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
16501}
16502
f5f10c66
AV
16503static void
16504do_mve_vstr_vldr_QI (int size, int elsize, int load)
16505{
16506 constraint (size < 32, BAD_ADDR_MODE);
16507 constraint (size != elsize, BAD_EL_TYPE);
16508 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16509 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16510 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16511 _("destination register and offset register may not be the"
16512 " same"));
16513
16514 int imm = inst.relocs[0].exp.X_add_number;
16515 int add = 1;
16516 if (imm < 0)
16517 {
16518 add = 0;
16519 imm = -imm;
16520 }
16521 constraint ((imm % (size / 8) != 0)
16522 || imm > (0x7f << neon_logbits (size)),
16523 (size == 32) ? _("immediate must be a multiple of 4 in the"
16524 " range of +/-[0,508]")
16525 : _("immediate must be a multiple of 8 in the"
16526 " range of +/-[0,1016]"));
16527 inst.instruction |= 0x11 << 24;
16528 inst.instruction |= add << 23;
16529 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16530 inst.instruction |= inst.operands[1].writeback << 21;
16531 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16532 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16533 inst.instruction |= 1 << 12;
16534 inst.instruction |= (size == 64) << 8;
16535 inst.instruction &= 0xffffff00;
16536 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16537 inst.instruction |= imm >> neon_logbits (size);
16538}
16539
16540static void
16541do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16542{
16543 unsigned os = inst.operands[1].imm >> 5;
16544 constraint (os != 0 && size == 8,
16545 _("can not shift offsets when accessing less than half-word"));
16546 constraint (os && os != neon_logbits (size),
16547 _("shift immediate must be 1, 2 or 3 for half-word, word"
16548 " or double-word accesses respectively"));
16549 if (inst.operands[1].reg == REG_PC)
16550 as_tsktsk (MVE_BAD_PC);
16551
16552 switch (size)
16553 {
16554 case 8:
16555 constraint (elsize >= 64, BAD_EL_TYPE);
16556 break;
16557 case 16:
16558 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16559 break;
16560 case 32:
16561 case 64:
16562 constraint (elsize != size, BAD_EL_TYPE);
16563 break;
16564 default:
16565 break;
16566 }
16567 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16568 BAD_ADDR_MODE);
16569 if (load)
16570 {
16571 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16572 _("destination register and offset register may not be"
16573 " the same"));
16574 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16575 BAD_EL_TYPE);
16576 constraint (inst.vectype.el[0].type != NT_unsigned
16577 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16578 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16579 }
16580 else
16581 {
16582 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16583 }
16584
16585 inst.instruction |= 1 << 23;
16586 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16587 inst.instruction |= inst.operands[1].reg << 16;
16588 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16589 inst.instruction |= neon_logbits (elsize) << 7;
16590 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16591 inst.instruction |= LOW4 (inst.operands[1].imm);
16592 inst.instruction |= !!os;
16593}
16594
16595static void
16596do_mve_vstr_vldr_RI (int size, int elsize, int load)
16597{
16598 enum neon_el_type type = inst.vectype.el[0].type;
16599
16600 constraint (size >= 64, BAD_ADDR_MODE);
16601 switch (size)
16602 {
16603 case 16:
16604 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16605 break;
16606 case 32:
16607 constraint (elsize != size, BAD_EL_TYPE);
16608 break;
16609 default:
16610 break;
16611 }
16612 if (load)
16613 {
16614 constraint (elsize != size && type != NT_unsigned
16615 && type != NT_signed, BAD_EL_TYPE);
16616 }
16617 else
16618 {
16619 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16620 }
16621
16622 int imm = inst.relocs[0].exp.X_add_number;
16623 int add = 1;
16624 if (imm < 0)
16625 {
16626 add = 0;
16627 imm = -imm;
16628 }
16629
16630 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16631 {
16632 switch (size)
16633 {
16634 case 8:
16635 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16636 break;
16637 case 16:
16638 constraint (1, _("immediate must be a multiple of 2 in the"
16639 " range of +/-[0,254]"));
16640 break;
16641 case 32:
16642 constraint (1, _("immediate must be a multiple of 4 in the"
16643 " range of +/-[0,508]"));
16644 break;
16645 }
16646 }
16647
16648 if (size != elsize)
16649 {
16650 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16651 constraint (inst.operands[0].reg > 14,
16652 _("MVE vector register in the range [Q0..Q7] expected"));
16653 inst.instruction |= (load && type == NT_unsigned) << 28;
16654 inst.instruction |= (size == 16) << 19;
16655 inst.instruction |= neon_logbits (elsize) << 7;
16656 }
16657 else
16658 {
16659 if (inst.operands[1].reg == REG_PC)
16660 as_tsktsk (MVE_BAD_PC);
16661 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16662 as_tsktsk (MVE_BAD_SP);
16663 inst.instruction |= 1 << 12;
16664 inst.instruction |= neon_logbits (size) << 7;
16665 }
16666 inst.instruction |= inst.operands[1].preind << 24;
16667 inst.instruction |= add << 23;
16668 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16669 inst.instruction |= inst.operands[1].writeback << 21;
16670 inst.instruction |= inst.operands[1].reg << 16;
16671 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16672 inst.instruction &= 0xffffff80;
16673 inst.instruction |= imm >> neon_logbits (size);
16674
16675}
16676
16677static void
16678do_mve_vstr_vldr (void)
16679{
16680 unsigned size;
16681 int load = 0;
16682
16683 if (inst.cond > COND_ALWAYS)
16684 inst.pred_insn_type = INSIDE_VPT_INSN;
16685 else
16686 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16687
16688 switch (inst.instruction)
16689 {
16690 default:
16691 gas_assert (0);
16692 break;
16693 case M_MNEM_vldrb:
16694 load = 1;
16695 /* fall through. */
16696 case M_MNEM_vstrb:
16697 size = 8;
16698 break;
16699 case M_MNEM_vldrh:
16700 load = 1;
16701 /* fall through. */
16702 case M_MNEM_vstrh:
16703 size = 16;
16704 break;
16705 case M_MNEM_vldrw:
16706 load = 1;
16707 /* fall through. */
16708 case M_MNEM_vstrw:
16709 size = 32;
16710 break;
16711 case M_MNEM_vldrd:
16712 load = 1;
16713 /* fall through. */
16714 case M_MNEM_vstrd:
16715 size = 64;
16716 break;
16717 }
16718 unsigned elsize = inst.vectype.el[0].size;
16719
16720 if (inst.operands[1].isquad)
16721 {
16722 /* We are dealing with [Q, imm]{!} cases. */
16723 do_mve_vstr_vldr_QI (size, elsize, load);
16724 }
16725 else
16726 {
16727 if (inst.operands[1].immisreg == 2)
16728 {
16729 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16730 do_mve_vstr_vldr_RQ (size, elsize, load);
16731 }
16732 else if (!inst.operands[1].immisreg)
16733 {
16734 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16735 do_mve_vstr_vldr_RI (size, elsize, load);
16736 }
16737 else
16738 constraint (1, BAD_ADDR_MODE);
16739 }
16740
16741 inst.is_neon = 1;
16742}
16743
35c228db
AV
16744static void
16745do_mve_vst_vld (void)
16746{
16747 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16748 return;
16749
16750 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16751 || inst.relocs[0].exp.X_add_number != 0
16752 || inst.operands[1].immisreg != 0,
16753 BAD_ADDR_MODE);
16754 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16755 if (inst.operands[1].reg == REG_PC)
16756 as_tsktsk (MVE_BAD_PC);
16757 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16758 as_tsktsk (MVE_BAD_SP);
16759
16760
16761 /* These instructions are one of the "exceptions" mentioned in
16762 handle_pred_state. They are MVE instructions that are not VPT compatible
16763 and do not accept a VPT code, thus appending such a code is a syntax
16764 error. */
16765 if (inst.cond > COND_ALWAYS)
16766 first_error (BAD_SYNTAX);
16767 /* If we append a scalar condition code we can set this to
16768 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16769 else if (inst.cond < COND_ALWAYS)
16770 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16771 else
16772 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16773
16774 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16775 inst.instruction |= inst.operands[1].writeback << 21;
16776 inst.instruction |= inst.operands[1].reg << 16;
16777 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16778 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16779 inst.is_neon = 1;
16780}
16781
26c1e780
AV
16782static void
16783do_mve_vaddlv (void)
16784{
16785 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
16786 struct neon_type_el et
16787 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
16788
16789 if (et.type == NT_invtype)
16790 first_error (BAD_EL_TYPE);
16791
16792 if (inst.cond > COND_ALWAYS)
16793 inst.pred_insn_type = INSIDE_VPT_INSN;
16794 else
16795 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16796
16797 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16798
16799 inst.instruction |= (et.type == NT_unsigned) << 28;
16800 inst.instruction |= inst.operands[1].reg << 19;
16801 inst.instruction |= inst.operands[0].reg << 12;
16802 inst.instruction |= inst.operands[2].reg;
16803 inst.is_neon = 1;
16804}
16805
5287ad62 16806static void
5ee91343 16807do_neon_dyadic_if_su (void)
5287ad62 16808{
5ee91343
AV
16809 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16810 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16811 N_SUF_32 | N_KEY);
16812
935295b5
AV
16813 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
16814 || inst.instruction == ((unsigned) N_MNEM_vmin))
16815 && et.type == NT_float
16816 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
16817
5ee91343
AV
16818 if (check_simd_pred_availability (et.type == NT_float,
16819 NEON_CHECK_ARCH | NEON_CHECK_CC))
037e8744
JB
16820 return;
16821
5ee91343
AV
16822 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16823}
16824
16825static void
16826do_neon_addsub_if_i (void)
16827{
16828 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
16829 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
037e8744
JB
16830 return;
16831
5ee91343
AV
16832 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16833 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
16834 N_EQK, N_IF_32 | N_I64 | N_KEY);
16835
16836 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
16837 /* If we are parsing Q registers and the element types match MVE, which NEON
16838 also supports, then we must check whether this is an instruction that can
16839 be used by both MVE/NEON. This distinction can be made based on whether
16840 they are predicated or not. */
16841 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
16842 {
16843 if (check_simd_pred_availability (et.type == NT_float,
16844 NEON_CHECK_ARCH | NEON_CHECK_CC))
16845 return;
16846 }
16847 else
16848 {
16849 /* If they are either in a D register or are using an unsupported. */
16850 if (rs != NS_QQR
16851 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16852 return;
16853 }
16854
5287ad62
JB
16855 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16856 affected if we specify unsigned args. */
dcbf9037 16857 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
16858}
16859
16860/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
16861 result to be:
16862 V<op> A,B (A is operand 0, B is operand 2)
16863 to mean:
16864 V<op> A,B,A
16865 not:
16866 V<op> A,B,B
16867 so handle that case specially. */
16868
16869static void
16870neon_exchange_operands (void)
16871{
5287ad62
JB
16872 if (inst.operands[1].present)
16873 {
e1fa0163
NC
16874 void *scratch = xmalloc (sizeof (inst.operands[0]));
16875
5287ad62
JB
16876 /* Swap operands[1] and operands[2]. */
16877 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
16878 inst.operands[1] = inst.operands[2];
16879 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
e1fa0163 16880 free (scratch);
5287ad62
JB
16881 }
16882 else
16883 {
16884 inst.operands[1] = inst.operands[2];
16885 inst.operands[2] = inst.operands[0];
16886 }
16887}
16888
16889static void
16890neon_compare (unsigned regtypes, unsigned immtypes, int invert)
16891{
16892 if (inst.operands[2].isreg)
16893 {
16894 if (invert)
477330fc 16895 neon_exchange_operands ();
dcbf9037 16896 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
16897 }
16898 else
16899 {
037e8744 16900 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037 16901 struct neon_type_el et = neon_check_type (2, rs,
477330fc 16902 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 16903
88714cb8 16904 NEON_ENCODE (IMMED, inst);
5287ad62
JB
16905 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16906 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16907 inst.instruction |= LOW4 (inst.operands[1].reg);
16908 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 16909 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16910 inst.instruction |= (et.type == NT_float) << 10;
16911 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 16912
88714cb8 16913 neon_dp_fixup (&inst);
5287ad62
JB
16914 }
16915}
16916
16917static void
16918do_neon_cmp (void)
16919{
cc933301 16920 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
5287ad62
JB
16921}
16922
16923static void
16924do_neon_cmp_inv (void)
16925{
cc933301 16926 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
5287ad62
JB
16927}
16928
16929static void
16930do_neon_ceq (void)
16931{
16932 neon_compare (N_IF_32, N_IF_32, FALSE);
16933}
16934
16935/* For multiply instructions, we have the possibility of 16-bit or 32-bit
16936 scalars, which are encoded in 5 bits, M : Rm.
16937 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
16938 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
c604a79a
JW
16939 index in M.
16940
16941 Dot Product instructions are similar to multiply instructions except elsize
16942 should always be 32.
16943
16944 This function translates SCALAR, which is GAS's internal encoding of indexed
16945 scalar register, to raw encoding. There is also register and index range
16946 check based on ELSIZE. */
5287ad62
JB
16947
16948static unsigned
16949neon_scalar_for_mul (unsigned scalar, unsigned elsize)
16950{
dcbf9037
JB
16951 unsigned regno = NEON_SCALAR_REG (scalar);
16952 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
16953
16954 switch (elsize)
16955 {
16956 case 16:
16957 if (regno > 7 || elno > 3)
477330fc 16958 goto bad_scalar;
5287ad62 16959 return regno | (elno << 3);
5f4273c7 16960
5287ad62
JB
16961 case 32:
16962 if (regno > 15 || elno > 1)
477330fc 16963 goto bad_scalar;
5287ad62
JB
16964 return regno | (elno << 4);
16965
16966 default:
16967 bad_scalar:
dcbf9037 16968 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
16969 }
16970
16971 return 0;
16972}
16973
16974/* Encode multiply / multiply-accumulate scalar instructions. */
16975
16976static void
16977neon_mul_mac (struct neon_type_el et, int ubit)
16978{
dcbf9037
JB
16979 unsigned scalar;
16980
16981 /* Give a more helpful error message if we have an invalid type. */
16982 if (et.type == NT_invtype)
16983 return;
5f4273c7 16984
dcbf9037 16985 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
16986 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16987 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16988 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16989 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16990 inst.instruction |= LOW4 (scalar);
16991 inst.instruction |= HI1 (scalar) << 5;
16992 inst.instruction |= (et.type == NT_float) << 8;
16993 inst.instruction |= neon_logbits (et.size) << 20;
16994 inst.instruction |= (ubit != 0) << 24;
16995
88714cb8 16996 neon_dp_fixup (&inst);
5287ad62
JB
16997}
16998
16999static void
17000do_neon_mac_maybe_scalar (void)
17001{
037e8744
JB
17002 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17003 return;
17004
a8465a06 17005 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
037e8744
JB
17006 return;
17007
5287ad62
JB
17008 if (inst.operands[2].isscalar)
17009 {
a8465a06 17010 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
037e8744 17011 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 17012 struct neon_type_el et = neon_check_type (3, rs,
589a7d88 17013 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
88714cb8 17014 NEON_ENCODE (SCALAR, inst);
037e8744 17015 neon_mul_mac (et, neon_quad (rs));
5287ad62 17016 }
a8465a06
AV
17017 else if (!inst.operands[2].isvec)
17018 {
17019 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17020
17021 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17022 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17023
17024 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17025 }
5287ad62 17026 else
428e3f1f 17027 {
a8465a06 17028 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
428e3f1f
PB
17029 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17030 affected if we specify unsigned args. */
17031 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17032 }
5287ad62
JB
17033}
17034
62f3b8c8
PB
17035static void
17036do_neon_fmac (void)
17037{
d58196e0
AV
17038 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17039 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
62f3b8c8
PB
17040 return;
17041
d58196e0 17042 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
62f3b8c8
PB
17043 return;
17044
d58196e0
AV
17045 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17046 {
17047 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17048 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17049 N_EQK);
17050
17051 if (rs == NS_QQR)
17052 {
17053 if (inst.operands[2].reg == REG_SP)
17054 as_tsktsk (MVE_BAD_SP);
17055 else if (inst.operands[2].reg == REG_PC)
17056 as_tsktsk (MVE_BAD_PC);
17057
17058 inst.instruction = 0xee310e40;
17059 inst.instruction |= (et.size == 16) << 28;
17060 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17061 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17062 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17063 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17064 inst.instruction |= inst.operands[2].reg;
17065 inst.is_neon = 1;
17066 return;
17067 }
17068 }
17069 else
17070 {
17071 constraint (!inst.operands[2].isvec, BAD_FPU);
17072 }
17073
62f3b8c8
PB
17074 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17075}
17076
5287ad62
JB
17077static void
17078do_neon_tst (void)
17079{
037e8744 17080 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
17081 struct neon_type_el et = neon_check_type (3, rs,
17082 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 17083 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
17084}
17085
17086/* VMUL with 3 registers allows the P8 type. The scalar version supports the
17087 same types as the MAC equivalents. The polynomial type for this instruction
17088 is encoded the same as the integer type. */
17089
17090static void
17091do_neon_mul (void)
17092{
037e8744
JB
17093 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17094 return;
17095
a8465a06 17096 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
037e8744
JB
17097 return;
17098
5287ad62 17099 if (inst.operands[2].isscalar)
a8465a06
AV
17100 {
17101 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17102 do_neon_mac_maybe_scalar ();
17103 }
5287ad62 17104 else
a8465a06
AV
17105 {
17106 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17107 {
17108 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17109 struct neon_type_el et
17110 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
17111 if (et.type == NT_float)
17112 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
17113 BAD_FPU);
17114
17115 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
17116 }
17117 else
17118 {
17119 constraint (!inst.operands[2].isvec, BAD_FPU);
17120 neon_dyadic_misc (NT_poly,
17121 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
17122 }
17123 }
5287ad62
JB
17124}
17125
17126static void
17127do_neon_qdmulh (void)
17128{
17129 if (inst.operands[2].isscalar)
17130 {
037e8744 17131 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 17132 struct neon_type_el et = neon_check_type (3, rs,
477330fc 17133 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 17134 NEON_ENCODE (SCALAR, inst);
037e8744 17135 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
17136 }
17137 else
17138 {
037e8744 17139 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 17140 struct neon_type_el et = neon_check_type (3, rs,
477330fc 17141 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 17142 NEON_ENCODE (INTEGER, inst);
5287ad62 17143 /* The U bit (rounding) comes from bit mask. */
037e8744 17144 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
17145 }
17146}
17147
26c1e780
AV
17148static void
17149do_mve_vaddv (void)
17150{
17151 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17152 struct neon_type_el et
17153 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17154
17155 if (et.type == NT_invtype)
17156 first_error (BAD_EL_TYPE);
17157
17158 if (inst.cond > COND_ALWAYS)
17159 inst.pred_insn_type = INSIDE_VPT_INSN;
17160 else
17161 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17162
17163 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17164
17165 mve_encode_rq (et.type == NT_unsigned, et.size);
17166}
17167
7df54120
AV
17168static void
17169do_mve_vhcadd (void)
17170{
17171 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
17172 struct neon_type_el et
17173 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17174
17175 if (inst.cond > COND_ALWAYS)
17176 inst.pred_insn_type = INSIDE_VPT_INSN;
17177 else
17178 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17179
17180 unsigned rot = inst.relocs[0].exp.X_add_number;
17181 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17182
17183 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
17184 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17185 "operand makes instruction UNPREDICTABLE"));
17186
17187 mve_encode_qqq (0, et.size);
17188 inst.instruction |= (rot == 270) << 12;
17189 inst.is_neon = 1;
17190}
17191
c2dafc2a
AV
17192static void
17193do_mve_vadc (void)
17194{
17195 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17196 struct neon_type_el et
17197 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17198
17199 if (et.type == NT_invtype)
17200 first_error (BAD_EL_TYPE);
17201
17202 if (inst.cond > COND_ALWAYS)
17203 inst.pred_insn_type = INSIDE_VPT_INSN;
17204 else
17205 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17206
17207 mve_encode_qqq (0, 64);
17208}
17209
17210static void
17211do_mve_vbrsr (void)
17212{
17213 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17214 struct neon_type_el et
17215 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17216
17217 if (inst.cond > COND_ALWAYS)
17218 inst.pred_insn_type = INSIDE_VPT_INSN;
17219 else
17220 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17221
7df54120 17222 mve_encode_qqr (et.size, 0, 0);
c2dafc2a
AV
17223}
17224
17225static void
17226do_mve_vsbc (void)
17227{
17228 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17229
17230 if (inst.cond > COND_ALWAYS)
17231 inst.pred_insn_type = INSIDE_VPT_INSN;
17232 else
17233 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17234
17235 mve_encode_qqq (1, 64);
17236}
17237
886e1c73
AV
17238static void
17239do_mve_vmull (void)
17240{
17241
17242 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
17243 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
17244 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17245 && inst.cond == COND_ALWAYS
17246 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
17247 {
17248 if (rs == NS_QQQ)
17249 {
17250
17251 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17252 N_SUF_32 | N_F64 | N_P8
17253 | N_P16 | N_I_MVE | N_KEY);
17254 if (((et.type == NT_poly) && et.size == 8
17255 && ARM_CPU_IS_ANY (cpu_variant))
17256 || (et.type == NT_integer) || (et.type == NT_float))
17257 goto neon_vmul;
17258 }
17259 else
17260 goto neon_vmul;
17261 }
17262
17263 constraint (rs != NS_QQQ, BAD_FPU);
17264 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17265 N_SU_32 | N_P8 | N_P16 | N_KEY);
17266
17267 /* We are dealing with MVE's vmullt. */
17268 if (et.size == 32
17269 && (inst.operands[0].reg == inst.operands[1].reg
17270 || inst.operands[0].reg == inst.operands[2].reg))
17271 as_tsktsk (BAD_MVE_SRCDEST);
17272
17273 if (inst.cond > COND_ALWAYS)
17274 inst.pred_insn_type = INSIDE_VPT_INSN;
17275 else
17276 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17277
17278 if (et.type == NT_poly)
17279 mve_encode_qqq (neon_logbits (et.size), 64);
17280 else
17281 mve_encode_qqq (et.type == NT_unsigned, et.size);
17282
17283 return;
17284
17285neon_vmul:
17286 inst.instruction = N_MNEM_vmul;
17287 inst.cond = 0xb;
17288 if (thumb_mode)
17289 inst.pred_insn_type = INSIDE_IT_INSN;
17290 do_neon_mul ();
17291}
17292
a302e574
AV
17293static void
17294do_mve_vabav (void)
17295{
17296 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17297
17298 if (rs == NS_NULL)
17299 return;
17300
17301 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17302 return;
17303
17304 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17305 | N_S16 | N_S32 | N_U8 | N_U16
17306 | N_U32);
17307
17308 if (inst.cond > COND_ALWAYS)
17309 inst.pred_insn_type = INSIDE_VPT_INSN;
17310 else
17311 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17312
17313 mve_encode_rqq (et.type == NT_unsigned, et.size);
17314}
17315
17316static void
17317do_mve_vmladav (void)
17318{
17319 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17320 struct neon_type_el et = neon_check_type (3, rs,
17321 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17322
17323 if (et.type == NT_unsigned
17324 && (inst.instruction == M_MNEM_vmladavx
17325 || inst.instruction == M_MNEM_vmladavax
17326 || inst.instruction == M_MNEM_vmlsdav
17327 || inst.instruction == M_MNEM_vmlsdava
17328 || inst.instruction == M_MNEM_vmlsdavx
17329 || inst.instruction == M_MNEM_vmlsdavax))
17330 first_error (BAD_SIMD_TYPE);
17331
17332 constraint (inst.operands[2].reg > 14,
17333 _("MVE vector register in the range [Q0..Q7] expected"));
17334
17335 if (inst.cond > COND_ALWAYS)
17336 inst.pred_insn_type = INSIDE_VPT_INSN;
17337 else
17338 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17339
17340 if (inst.instruction == M_MNEM_vmlsdav
17341 || inst.instruction == M_MNEM_vmlsdava
17342 || inst.instruction == M_MNEM_vmlsdavx
17343 || inst.instruction == M_MNEM_vmlsdavax)
17344 inst.instruction |= (et.size == 8) << 28;
17345 else
17346 inst.instruction |= (et.size == 8) << 8;
17347
17348 mve_encode_rqq (et.type == NT_unsigned, 64);
17349 inst.instruction |= (et.size == 32) << 16;
17350}
17351
93925576
AV
17352static void
17353do_mve_vmlaldav (void)
17354{
17355 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
17356 struct neon_type_el et
17357 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
17358 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
17359
17360 if (et.type == NT_unsigned
17361 && (inst.instruction == M_MNEM_vmlsldav
17362 || inst.instruction == M_MNEM_vmlsldava
17363 || inst.instruction == M_MNEM_vmlsldavx
17364 || inst.instruction == M_MNEM_vmlsldavax))
17365 first_error (BAD_SIMD_TYPE);
17366
17367 if (inst.cond > COND_ALWAYS)
17368 inst.pred_insn_type = INSIDE_VPT_INSN;
17369 else
17370 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17371
17372 mve_encode_rrqq (et.type == NT_unsigned, et.size);
17373}
17374
17375static void
17376do_mve_vrmlaldavh (void)
17377{
17378 struct neon_type_el et;
17379 if (inst.instruction == M_MNEM_vrmlsldavh
17380 || inst.instruction == M_MNEM_vrmlsldavha
17381 || inst.instruction == M_MNEM_vrmlsldavhx
17382 || inst.instruction == M_MNEM_vrmlsldavhax)
17383 {
17384 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17385 if (inst.operands[1].reg == REG_SP)
17386 as_tsktsk (MVE_BAD_SP);
17387 }
17388 else
17389 {
17390 if (inst.instruction == M_MNEM_vrmlaldavhx
17391 || inst.instruction == M_MNEM_vrmlaldavhax)
17392 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17393 else
17394 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
17395 N_U32 | N_S32 | N_KEY);
17396 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
17397 with vmax/min instructions, making the use of SP in assembly really
17398 nonsensical, so instead of issuing a warning like we do for other uses
17399 of SP for the odd register operand we error out. */
17400 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
17401 }
17402
17403 /* Make sure we still check the second operand is an odd one and that PC is
17404 disallowed. This because we are parsing for any GPR operand, to be able
17405 to distinguish between giving a warning or an error for SP as described
17406 above. */
17407 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
17408 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17409
17410 if (inst.cond > COND_ALWAYS)
17411 inst.pred_insn_type = INSIDE_VPT_INSN;
17412 else
17413 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17414
17415 mve_encode_rrqq (et.type == NT_unsigned, 0);
17416}
17417
17418
8cd78170
AV
17419static void
17420do_mve_vmaxnmv (void)
17421{
17422 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17423 struct neon_type_el et
17424 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
17425
17426 if (inst.cond > COND_ALWAYS)
17427 inst.pred_insn_type = INSIDE_VPT_INSN;
17428 else
17429 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17430
17431 if (inst.operands[0].reg == REG_SP)
17432 as_tsktsk (MVE_BAD_SP);
17433 else if (inst.operands[0].reg == REG_PC)
17434 as_tsktsk (MVE_BAD_PC);
17435
17436 mve_encode_rq (et.size == 16, 64);
17437}
17438
13ccd4c0
AV
17439static void
17440do_mve_vmaxv (void)
17441{
17442 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17443 struct neon_type_el et;
17444
17445 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
17446 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
17447 else
17448 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17449
17450 if (inst.cond > COND_ALWAYS)
17451 inst.pred_insn_type = INSIDE_VPT_INSN;
17452 else
17453 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17454
17455 if (inst.operands[0].reg == REG_SP)
17456 as_tsktsk (MVE_BAD_SP);
17457 else if (inst.operands[0].reg == REG_PC)
17458 as_tsktsk (MVE_BAD_PC);
17459
17460 mve_encode_rq (et.type == NT_unsigned, et.size);
17461}
17462
17463
643afb90
MW
17464static void
17465do_neon_qrdmlah (void)
17466{
17467 /* Check we're on the correct architecture. */
17468 if (!mark_feature_used (&fpu_neon_ext_armv8))
17469 inst.error =
17470 _("instruction form not available on this architecture.");
17471 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17472 {
17473 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17474 record_feature_use (&fpu_neon_ext_v8_1);
17475 }
17476
17477 if (inst.operands[2].isscalar)
17478 {
17479 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17480 struct neon_type_el et = neon_check_type (3, rs,
17481 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17482 NEON_ENCODE (SCALAR, inst);
17483 neon_mul_mac (et, neon_quad (rs));
17484 }
17485 else
17486 {
17487 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17488 struct neon_type_el et = neon_check_type (3, rs,
17489 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17490 NEON_ENCODE (INTEGER, inst);
17491 /* The U bit (rounding) comes from bit mask. */
17492 neon_three_same (neon_quad (rs), 0, et.size);
17493 }
17494}
17495
5287ad62
JB
17496static void
17497do_neon_fcmp_absolute (void)
17498{
037e8744 17499 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
17500 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17501 N_F_16_32 | N_KEY);
5287ad62 17502 /* Size field comes from bit mask. */
cc933301 17503 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
17504}
17505
17506static void
17507do_neon_fcmp_absolute_inv (void)
17508{
17509 neon_exchange_operands ();
17510 do_neon_fcmp_absolute ();
17511}
17512
17513static void
17514do_neon_step (void)
17515{
037e8744 17516 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
17517 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17518 N_F_16_32 | N_KEY);
17519 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
17520}
17521
17522static void
17523do_neon_abs_neg (void)
17524{
037e8744
JB
17525 enum neon_shape rs;
17526 struct neon_type_el et;
5f4273c7 17527
037e8744
JB
17528 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
17529 return;
17530
037e8744 17531 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
cc933301 17532 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
5f4273c7 17533
485dee97
AV
17534 if (check_simd_pred_availability (et.type == NT_float,
17535 NEON_CHECK_ARCH | NEON_CHECK_CC))
17536 return;
17537
5287ad62
JB
17538 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17539 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17540 inst.instruction |= LOW4 (inst.operands[1].reg);
17541 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 17542 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
17543 inst.instruction |= (et.type == NT_float) << 10;
17544 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17545
88714cb8 17546 neon_dp_fixup (&inst);
5287ad62
JB
17547}
17548
17549static void
17550do_neon_sli (void)
17551{
037e8744 17552 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17553 struct neon_type_el et = neon_check_type (2, rs,
17554 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17555 int imm = inst.operands[2].imm;
17556 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 17557 _("immediate out of range for insert"));
037e8744 17558 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
17559}
17560
17561static void
17562do_neon_sri (void)
17563{
037e8744 17564 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17565 struct neon_type_el et = neon_check_type (2, rs,
17566 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17567 int imm = inst.operands[2].imm;
17568 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17569 _("immediate out of range for insert"));
037e8744 17570 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
17571}
17572
17573static void
17574do_neon_qshlu_imm (void)
17575{
037e8744 17576 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17577 struct neon_type_el et = neon_check_type (2, rs,
17578 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
17579 int imm = inst.operands[2].imm;
17580 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 17581 _("immediate out of range for shift"));
5287ad62
JB
17582 /* Only encodes the 'U present' variant of the instruction.
17583 In this case, signed types have OP (bit 8) set to 0.
17584 Unsigned types have OP set to 1. */
17585 inst.instruction |= (et.type == NT_unsigned) << 8;
17586 /* The rest of the bits are the same as other immediate shifts. */
037e8744 17587 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
17588}
17589
17590static void
17591do_neon_qmovn (void)
17592{
17593 struct neon_type_el et = neon_check_type (2, NS_DQ,
17594 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17595 /* Saturating move where operands can be signed or unsigned, and the
17596 destination has the same signedness. */
88714cb8 17597 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17598 if (et.type == NT_unsigned)
17599 inst.instruction |= 0xc0;
17600 else
17601 inst.instruction |= 0x80;
17602 neon_two_same (0, 1, et.size / 2);
17603}
17604
17605static void
17606do_neon_qmovun (void)
17607{
17608 struct neon_type_el et = neon_check_type (2, NS_DQ,
17609 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17610 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 17611 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17612 neon_two_same (0, 1, et.size / 2);
17613}
17614
17615static void
17616do_neon_rshift_sat_narrow (void)
17617{
17618 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17619 or unsigned. If operands are unsigned, results must also be unsigned. */
17620 struct neon_type_el et = neon_check_type (2, NS_DQI,
17621 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17622 int imm = inst.operands[2].imm;
17623 /* This gets the bounds check, size encoding and immediate bits calculation
17624 right. */
17625 et.size /= 2;
5f4273c7 17626
5287ad62
JB
17627 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17628 VQMOVN.I<size> <Dd>, <Qm>. */
17629 if (imm == 0)
17630 {
17631 inst.operands[2].present = 0;
17632 inst.instruction = N_MNEM_vqmovn;
17633 do_neon_qmovn ();
17634 return;
17635 }
5f4273c7 17636
5287ad62 17637 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17638 _("immediate out of range"));
5287ad62
JB
17639 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17640}
17641
17642static void
17643do_neon_rshift_sat_narrow_u (void)
17644{
17645 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17646 or unsigned. If operands are unsigned, results must also be unsigned. */
17647 struct neon_type_el et = neon_check_type (2, NS_DQI,
17648 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17649 int imm = inst.operands[2].imm;
17650 /* This gets the bounds check, size encoding and immediate bits calculation
17651 right. */
17652 et.size /= 2;
17653
17654 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17655 VQMOVUN.I<size> <Dd>, <Qm>. */
17656 if (imm == 0)
17657 {
17658 inst.operands[2].present = 0;
17659 inst.instruction = N_MNEM_vqmovun;
17660 do_neon_qmovun ();
17661 return;
17662 }
17663
17664 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17665 _("immediate out of range"));
5287ad62
JB
17666 /* FIXME: The manual is kind of unclear about what value U should have in
17667 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17668 must be 1. */
17669 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
17670}
17671
17672static void
17673do_neon_movn (void)
17674{
17675 struct neon_type_el et = neon_check_type (2, NS_DQ,
17676 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 17677 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17678 neon_two_same (0, 1, et.size / 2);
17679}
17680
17681static void
17682do_neon_rshift_narrow (void)
17683{
17684 struct neon_type_el et = neon_check_type (2, NS_DQI,
17685 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17686 int imm = inst.operands[2].imm;
17687 /* This gets the bounds check, size encoding and immediate bits calculation
17688 right. */
17689 et.size /= 2;
5f4273c7 17690
5287ad62
JB
17691 /* If immediate is zero then we are a pseudo-instruction for
17692 VMOVN.I<size> <Dd>, <Qm> */
17693 if (imm == 0)
17694 {
17695 inst.operands[2].present = 0;
17696 inst.instruction = N_MNEM_vmovn;
17697 do_neon_movn ();
17698 return;
17699 }
5f4273c7 17700
5287ad62 17701 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17702 _("immediate out of range for narrowing operation"));
5287ad62
JB
17703 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
17704}
17705
17706static void
17707do_neon_shll (void)
17708{
17709 /* FIXME: Type checking when lengthening. */
17710 struct neon_type_el et = neon_check_type (2, NS_QDI,
17711 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
17712 unsigned imm = inst.operands[2].imm;
17713
17714 if (imm == et.size)
17715 {
17716 /* Maximum shift variant. */
88714cb8 17717 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17718 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17719 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17720 inst.instruction |= LOW4 (inst.operands[1].reg);
17721 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17722 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17723
88714cb8 17724 neon_dp_fixup (&inst);
5287ad62
JB
17725 }
17726 else
17727 {
17728 /* A more-specific type check for non-max versions. */
17729 et = neon_check_type (2, NS_QDI,
477330fc 17730 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 17731 NEON_ENCODE (IMMED, inst);
5287ad62
JB
17732 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
17733 }
17734}
17735
037e8744 17736/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
17737 the current instruction is. */
17738
6b9a8b67
MGD
17739#define CVT_FLAVOUR_VAR \
17740 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
17741 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
17742 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
17743 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
17744 /* Half-precision conversions. */ \
cc933301
JW
17745 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17746 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17747 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
17748 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
6b9a8b67
MGD
17749 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
17750 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
9db2f6b4
RL
17751 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
17752 Compared with single/double precision variants, only the co-processor \
17753 field is different, so the encoding flow is reused here. */ \
17754 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
17755 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
17756 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
17757 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
6b9a8b67
MGD
17758 /* VFP instructions. */ \
17759 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
17760 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
17761 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
17762 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
17763 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
17764 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
17765 /* VFP instructions with bitshift. */ \
17766 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
17767 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
17768 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
17769 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
17770 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
17771 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
17772 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
17773 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
17774
17775#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
17776 neon_cvt_flavour_##C,
17777
17778/* The different types of conversions we can do. */
17779enum neon_cvt_flavour
17780{
17781 CVT_FLAVOUR_VAR
17782 neon_cvt_flavour_invalid,
17783 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
17784};
17785
17786#undef CVT_VAR
17787
17788static enum neon_cvt_flavour
17789get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 17790{
6b9a8b67
MGD
17791#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
17792 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
17793 if (et.type != NT_invtype) \
17794 { \
17795 inst.error = NULL; \
17796 return (neon_cvt_flavour_##C); \
5287ad62 17797 }
6b9a8b67 17798
5287ad62 17799 struct neon_type_el et;
037e8744 17800 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
477330fc 17801 || rs == NS_FF) ? N_VFP : 0;
037e8744
JB
17802 /* The instruction versions which take an immediate take one register
17803 argument, which is extended to the width of the full register. Thus the
17804 "source" and "destination" registers must have the same width. Hack that
17805 here by making the size equal to the key (wider, in this case) operand. */
17806 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 17807
6b9a8b67
MGD
17808 CVT_FLAVOUR_VAR;
17809
17810 return neon_cvt_flavour_invalid;
5287ad62
JB
17811#undef CVT_VAR
17812}
17813
7e8e6784
MGD
17814enum neon_cvt_mode
17815{
17816 neon_cvt_mode_a,
17817 neon_cvt_mode_n,
17818 neon_cvt_mode_p,
17819 neon_cvt_mode_m,
17820 neon_cvt_mode_z,
30bdf752
MGD
17821 neon_cvt_mode_x,
17822 neon_cvt_mode_r
7e8e6784
MGD
17823};
17824
037e8744
JB
17825/* Neon-syntax VFP conversions. */
17826
5287ad62 17827static void
6b9a8b67 17828do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 17829{
037e8744 17830 const char *opname = 0;
5f4273c7 17831
d54af2d0
RL
17832 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
17833 || rs == NS_FHI || rs == NS_HFI)
5287ad62 17834 {
037e8744
JB
17835 /* Conversions with immediate bitshift. */
17836 const char *enc[] =
477330fc 17837 {
6b9a8b67
MGD
17838#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
17839 CVT_FLAVOUR_VAR
17840 NULL
17841#undef CVT_VAR
477330fc 17842 };
037e8744 17843
6b9a8b67 17844 if (flavour < (int) ARRAY_SIZE (enc))
477330fc
RM
17845 {
17846 opname = enc[flavour];
17847 constraint (inst.operands[0].reg != inst.operands[1].reg,
17848 _("operands 0 and 1 must be the same register"));
17849 inst.operands[1] = inst.operands[2];
17850 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
17851 }
5287ad62
JB
17852 }
17853 else
17854 {
037e8744
JB
17855 /* Conversions without bitshift. */
17856 const char *enc[] =
477330fc 17857 {
6b9a8b67
MGD
17858#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
17859 CVT_FLAVOUR_VAR
17860 NULL
17861#undef CVT_VAR
477330fc 17862 };
037e8744 17863
6b9a8b67 17864 if (flavour < (int) ARRAY_SIZE (enc))
477330fc 17865 opname = enc[flavour];
037e8744
JB
17866 }
17867
17868 if (opname)
17869 do_vfp_nsyn_opcode (opname);
9db2f6b4
RL
17870
17871 /* ARMv8.2 fp16 VCVT instruction. */
17872 if (flavour == neon_cvt_flavour_s32_f16
17873 || flavour == neon_cvt_flavour_u32_f16
17874 || flavour == neon_cvt_flavour_f16_u32
17875 || flavour == neon_cvt_flavour_f16_s32)
17876 do_scalar_fp16_v82_encode ();
037e8744
JB
17877}
17878
17879static void
17880do_vfp_nsyn_cvtz (void)
17881{
d54af2d0 17882 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
6b9a8b67 17883 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
17884 const char *enc[] =
17885 {
6b9a8b67
MGD
17886#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
17887 CVT_FLAVOUR_VAR
17888 NULL
17889#undef CVT_VAR
037e8744
JB
17890 };
17891
6b9a8b67 17892 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
17893 do_vfp_nsyn_opcode (enc[flavour]);
17894}
f31fef98 17895
037e8744 17896static void
bacebabc 17897do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
7e8e6784
MGD
17898 enum neon_cvt_mode mode)
17899{
17900 int sz, op;
17901 int rm;
17902
a715796b
TG
17903 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17904 D register operands. */
17905 if (flavour == neon_cvt_flavour_s32_f64
17906 || flavour == neon_cvt_flavour_u32_f64)
17907 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17908 _(BAD_FPU));
17909
9db2f6b4
RL
17910 if (flavour == neon_cvt_flavour_s32_f16
17911 || flavour == neon_cvt_flavour_u32_f16)
17912 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
17913 _(BAD_FP16));
17914
5ee91343 17915 set_pred_insn_type (OUTSIDE_PRED_INSN);
7e8e6784
MGD
17916
17917 switch (flavour)
17918 {
17919 case neon_cvt_flavour_s32_f64:
17920 sz = 1;
827f64ff 17921 op = 1;
7e8e6784
MGD
17922 break;
17923 case neon_cvt_flavour_s32_f32:
17924 sz = 0;
17925 op = 1;
17926 break;
9db2f6b4
RL
17927 case neon_cvt_flavour_s32_f16:
17928 sz = 0;
17929 op = 1;
17930 break;
7e8e6784
MGD
17931 case neon_cvt_flavour_u32_f64:
17932 sz = 1;
17933 op = 0;
17934 break;
17935 case neon_cvt_flavour_u32_f32:
17936 sz = 0;
17937 op = 0;
17938 break;
9db2f6b4
RL
17939 case neon_cvt_flavour_u32_f16:
17940 sz = 0;
17941 op = 0;
17942 break;
7e8e6784
MGD
17943 default:
17944 first_error (_("invalid instruction shape"));
17945 return;
17946 }
17947
17948 switch (mode)
17949 {
17950 case neon_cvt_mode_a: rm = 0; break;
17951 case neon_cvt_mode_n: rm = 1; break;
17952 case neon_cvt_mode_p: rm = 2; break;
17953 case neon_cvt_mode_m: rm = 3; break;
17954 default: first_error (_("invalid rounding mode")); return;
17955 }
17956
17957 NEON_ENCODE (FPV8, inst);
17958 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
17959 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
17960 inst.instruction |= sz << 8;
9db2f6b4
RL
17961
17962 /* ARMv8.2 fp16 VCVT instruction. */
17963 if (flavour == neon_cvt_flavour_s32_f16
17964 ||flavour == neon_cvt_flavour_u32_f16)
17965 do_scalar_fp16_v82_encode ();
7e8e6784
MGD
17966 inst.instruction |= op << 7;
17967 inst.instruction |= rm << 16;
17968 inst.instruction |= 0xf0000000;
17969 inst.is_neon = TRUE;
17970}
17971
17972static void
17973do_neon_cvt_1 (enum neon_cvt_mode mode)
037e8744
JB
17974{
17975 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
d54af2d0
RL
17976 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
17977 NS_FH, NS_HF, NS_FHI, NS_HFI,
17978 NS_NULL);
6b9a8b67 17979 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 17980
cc933301
JW
17981 if (flavour == neon_cvt_flavour_invalid)
17982 return;
17983
e3e535bc 17984 /* PR11109: Handle round-to-zero for VCVT conversions. */
7e8e6784 17985 if (mode == neon_cvt_mode_z
e3e535bc 17986 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
cc933301
JW
17987 && (flavour == neon_cvt_flavour_s16_f16
17988 || flavour == neon_cvt_flavour_u16_f16
17989 || flavour == neon_cvt_flavour_s32_f32
bacebabc
RM
17990 || flavour == neon_cvt_flavour_u32_f32
17991 || flavour == neon_cvt_flavour_s32_f64
6b9a8b67 17992 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
17993 && (rs == NS_FD || rs == NS_FF))
17994 {
17995 do_vfp_nsyn_cvtz ();
17996 return;
17997 }
17998
9db2f6b4
RL
17999 /* ARMv8.2 fp16 VCVT conversions. */
18000 if (mode == neon_cvt_mode_z
18001 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
18002 && (flavour == neon_cvt_flavour_s32_f16
18003 || flavour == neon_cvt_flavour_u32_f16)
18004 && (rs == NS_FH))
18005 {
18006 do_vfp_nsyn_cvtz ();
18007 do_scalar_fp16_v82_encode ();
18008 return;
18009 }
18010
037e8744 18011 /* VFP rather than Neon conversions. */
6b9a8b67 18012 if (flavour >= neon_cvt_flavour_first_fp)
037e8744 18013 {
7e8e6784
MGD
18014 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18015 do_vfp_nsyn_cvt (rs, flavour);
18016 else
18017 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18018
037e8744
JB
18019 return;
18020 }
18021
18022 switch (rs)
18023 {
037e8744 18024 case NS_QQI:
dd9634d9
AV
18025 if (mode == neon_cvt_mode_z
18026 && (flavour == neon_cvt_flavour_f16_s16
18027 || flavour == neon_cvt_flavour_f16_u16
18028 || flavour == neon_cvt_flavour_s16_f16
18029 || flavour == neon_cvt_flavour_u16_f16
18030 || flavour == neon_cvt_flavour_f32_u32
18031 || flavour == neon_cvt_flavour_f32_s32
18032 || flavour == neon_cvt_flavour_s32_f32
18033 || flavour == neon_cvt_flavour_u32_f32))
18034 {
18035 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
18036 return;
18037 }
18038 else if (mode == neon_cvt_mode_n)
18039 {
18040 /* We are dealing with vcvt with the 'ne' condition. */
18041 inst.cond = 0x1;
18042 inst.instruction = N_MNEM_vcvt;
18043 do_neon_cvt_1 (neon_cvt_mode_z);
18044 return;
18045 }
18046 /* fall through. */
18047 case NS_DDI:
037e8744 18048 {
477330fc 18049 unsigned immbits;
cc933301
JW
18050 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
18051 0x0000100, 0x1000100, 0x0, 0x1000000};
35997600 18052
dd9634d9
AV
18053 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18054 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18055 return;
18056
18057 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18058 {
18059 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
18060 _("immediate value out of range"));
18061 switch (flavour)
18062 {
18063 case neon_cvt_flavour_f16_s16:
18064 case neon_cvt_flavour_f16_u16:
18065 case neon_cvt_flavour_s16_f16:
18066 case neon_cvt_flavour_u16_f16:
18067 constraint (inst.operands[2].imm > 16,
18068 _("immediate value out of range"));
18069 break;
18070 case neon_cvt_flavour_f32_u32:
18071 case neon_cvt_flavour_f32_s32:
18072 case neon_cvt_flavour_s32_f32:
18073 case neon_cvt_flavour_u32_f32:
18074 constraint (inst.operands[2].imm > 32,
18075 _("immediate value out of range"));
18076 break;
18077 default:
18078 inst.error = BAD_FPU;
18079 return;
18080 }
18081 }
037e8744 18082
477330fc
RM
18083 /* Fixed-point conversion with #0 immediate is encoded as an
18084 integer conversion. */
18085 if (inst.operands[2].present && inst.operands[2].imm == 0)
18086 goto int_encode;
477330fc
RM
18087 NEON_ENCODE (IMMED, inst);
18088 if (flavour != neon_cvt_flavour_invalid)
18089 inst.instruction |= enctab[flavour];
18090 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18091 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18092 inst.instruction |= LOW4 (inst.operands[1].reg);
18093 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18094 inst.instruction |= neon_quad (rs) << 6;
18095 inst.instruction |= 1 << 21;
cc933301
JW
18096 if (flavour < neon_cvt_flavour_s16_f16)
18097 {
18098 inst.instruction |= 1 << 21;
18099 immbits = 32 - inst.operands[2].imm;
18100 inst.instruction |= immbits << 16;
18101 }
18102 else
18103 {
18104 inst.instruction |= 3 << 20;
18105 immbits = 16 - inst.operands[2].imm;
18106 inst.instruction |= immbits << 16;
18107 inst.instruction &= ~(1 << 9);
18108 }
477330fc
RM
18109
18110 neon_dp_fixup (&inst);
037e8744
JB
18111 }
18112 break;
18113
037e8744 18114 case NS_QQ:
dd9634d9
AV
18115 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
18116 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
18117 && (flavour == neon_cvt_flavour_s16_f16
18118 || flavour == neon_cvt_flavour_u16_f16
18119 || flavour == neon_cvt_flavour_s32_f32
18120 || flavour == neon_cvt_flavour_u32_f32))
18121 {
18122 if (check_simd_pred_availability (1,
18123 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18124 return;
18125 }
18126 else if (mode == neon_cvt_mode_z
18127 && (flavour == neon_cvt_flavour_f16_s16
18128 || flavour == neon_cvt_flavour_f16_u16
18129 || flavour == neon_cvt_flavour_s16_f16
18130 || flavour == neon_cvt_flavour_u16_f16
18131 || flavour == neon_cvt_flavour_f32_u32
18132 || flavour == neon_cvt_flavour_f32_s32
18133 || flavour == neon_cvt_flavour_s32_f32
18134 || flavour == neon_cvt_flavour_u32_f32))
18135 {
18136 if (check_simd_pred_availability (1,
18137 NEON_CHECK_CC | NEON_CHECK_ARCH))
18138 return;
18139 }
18140 /* fall through. */
18141 case NS_DD:
7e8e6784
MGD
18142 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
18143 {
7e8e6784 18144
dd9634d9
AV
18145 NEON_ENCODE (FLOAT, inst);
18146 if (check_simd_pred_availability (1,
18147 NEON_CHECK_CC | NEON_CHECK_ARCH8))
7e8e6784
MGD
18148 return;
18149
18150 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18151 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18152 inst.instruction |= LOW4 (inst.operands[1].reg);
18153 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18154 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
18155 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
18156 || flavour == neon_cvt_flavour_u32_f32) << 7;
7e8e6784 18157 inst.instruction |= mode << 8;
cc933301
JW
18158 if (flavour == neon_cvt_flavour_u16_f16
18159 || flavour == neon_cvt_flavour_s16_f16)
18160 /* Mask off the original size bits and reencode them. */
18161 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
18162
7e8e6784
MGD
18163 if (thumb_mode)
18164 inst.instruction |= 0xfc000000;
18165 else
18166 inst.instruction |= 0xf0000000;
18167 }
18168 else
18169 {
037e8744 18170 int_encode:
7e8e6784 18171 {
cc933301
JW
18172 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
18173 0x100, 0x180, 0x0, 0x080};
037e8744 18174
7e8e6784 18175 NEON_ENCODE (INTEGER, inst);
037e8744 18176
dd9634d9
AV
18177 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18178 {
18179 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18180 return;
18181 }
037e8744 18182
7e8e6784
MGD
18183 if (flavour != neon_cvt_flavour_invalid)
18184 inst.instruction |= enctab[flavour];
037e8744 18185
7e8e6784
MGD
18186 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18187 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18188 inst.instruction |= LOW4 (inst.operands[1].reg);
18189 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18190 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
18191 if (flavour >= neon_cvt_flavour_s16_f16
18192 && flavour <= neon_cvt_flavour_f16_u16)
18193 /* Half precision. */
18194 inst.instruction |= 1 << 18;
18195 else
18196 inst.instruction |= 2 << 18;
037e8744 18197
7e8e6784
MGD
18198 neon_dp_fixup (&inst);
18199 }
18200 }
18201 break;
037e8744 18202
8e79c3df
CM
18203 /* Half-precision conversions for Advanced SIMD -- neon. */
18204 case NS_QD:
18205 case NS_DQ:
bc52d49c
MM
18206 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18207 return;
8e79c3df
CM
18208
18209 if ((rs == NS_DQ)
18210 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
18211 {
18212 as_bad (_("operand size must match register width"));
18213 break;
18214 }
18215
18216 if ((rs == NS_QD)
18217 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
18218 {
18219 as_bad (_("operand size must match register width"));
18220 break;
18221 }
18222
18223 if (rs == NS_DQ)
477330fc 18224 inst.instruction = 0x3b60600;
8e79c3df
CM
18225 else
18226 inst.instruction = 0x3b60700;
18227
18228 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18229 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18230 inst.instruction |= LOW4 (inst.operands[1].reg);
18231 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 18232 neon_dp_fixup (&inst);
8e79c3df
CM
18233 break;
18234
037e8744
JB
18235 default:
18236 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
7e8e6784
MGD
18237 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18238 do_vfp_nsyn_cvt (rs, flavour);
18239 else
18240 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
5287ad62 18241 }
5287ad62
JB
18242}
18243
e3e535bc
NC
18244static void
18245do_neon_cvtr (void)
18246{
7e8e6784 18247 do_neon_cvt_1 (neon_cvt_mode_x);
e3e535bc
NC
18248}
18249
18250static void
18251do_neon_cvt (void)
18252{
7e8e6784
MGD
18253 do_neon_cvt_1 (neon_cvt_mode_z);
18254}
18255
18256static void
18257do_neon_cvta (void)
18258{
18259 do_neon_cvt_1 (neon_cvt_mode_a);
18260}
18261
18262static void
18263do_neon_cvtn (void)
18264{
18265 do_neon_cvt_1 (neon_cvt_mode_n);
18266}
18267
18268static void
18269do_neon_cvtp (void)
18270{
18271 do_neon_cvt_1 (neon_cvt_mode_p);
18272}
18273
18274static void
18275do_neon_cvtm (void)
18276{
18277 do_neon_cvt_1 (neon_cvt_mode_m);
e3e535bc
NC
18278}
18279
8e79c3df 18280static void
c70a8987 18281do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
8e79c3df 18282{
c70a8987
MGD
18283 if (is_double)
18284 mark_feature_used (&fpu_vfp_ext_armv8);
8e79c3df 18285
c70a8987
MGD
18286 encode_arm_vfp_reg (inst.operands[0].reg,
18287 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
18288 encode_arm_vfp_reg (inst.operands[1].reg,
18289 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
18290 inst.instruction |= to ? 0x10000 : 0;
18291 inst.instruction |= t ? 0x80 : 0;
18292 inst.instruction |= is_double ? 0x100 : 0;
18293 do_vfp_cond_or_thumb ();
18294}
8e79c3df 18295
c70a8987
MGD
18296static void
18297do_neon_cvttb_1 (bfd_boolean t)
18298{
d54af2d0 18299 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
dd9634d9 18300 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
8e79c3df 18301
c70a8987
MGD
18302 if (rs == NS_NULL)
18303 return;
dd9634d9
AV
18304 else if (rs == NS_QQ || rs == NS_QQI)
18305 {
18306 int single_to_half = 0;
18307 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
18308 return;
18309
18310 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18311
18312 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18313 && (flavour == neon_cvt_flavour_u16_f16
18314 || flavour == neon_cvt_flavour_s16_f16
18315 || flavour == neon_cvt_flavour_f16_s16
18316 || flavour == neon_cvt_flavour_f16_u16
18317 || flavour == neon_cvt_flavour_u32_f32
18318 || flavour == neon_cvt_flavour_s32_f32
18319 || flavour == neon_cvt_flavour_f32_s32
18320 || flavour == neon_cvt_flavour_f32_u32))
18321 {
18322 inst.cond = 0xf;
18323 inst.instruction = N_MNEM_vcvt;
18324 set_pred_insn_type (INSIDE_VPT_INSN);
18325 do_neon_cvt_1 (neon_cvt_mode_z);
18326 return;
18327 }
18328 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
18329 single_to_half = 1;
18330 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
18331 {
18332 first_error (BAD_FPU);
18333 return;
18334 }
18335
18336 inst.instruction = 0xee3f0e01;
18337 inst.instruction |= single_to_half << 28;
18338 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18339 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
18340 inst.instruction |= t << 12;
18341 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18342 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
18343 inst.is_neon = 1;
18344 }
c70a8987
MGD
18345 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
18346 {
18347 inst.error = NULL;
18348 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
18349 }
18350 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
18351 {
18352 inst.error = NULL;
18353 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
18354 }
18355 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
18356 {
a715796b
TG
18357 /* The VCVTB and VCVTT instructions with D-register operands
18358 don't work for SP only targets. */
18359 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18360 _(BAD_FPU));
18361
c70a8987
MGD
18362 inst.error = NULL;
18363 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
18364 }
18365 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
18366 {
a715796b
TG
18367 /* The VCVTB and VCVTT instructions with D-register operands
18368 don't work for SP only targets. */
18369 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18370 _(BAD_FPU));
18371
c70a8987
MGD
18372 inst.error = NULL;
18373 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
18374 }
18375 else
18376 return;
18377}
18378
18379static void
18380do_neon_cvtb (void)
18381{
18382 do_neon_cvttb_1 (FALSE);
8e79c3df
CM
18383}
18384
18385
18386static void
18387do_neon_cvtt (void)
18388{
c70a8987 18389 do_neon_cvttb_1 (TRUE);
8e79c3df
CM
18390}
18391
5287ad62
JB
18392static void
18393neon_move_immediate (void)
18394{
037e8744
JB
18395 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
18396 struct neon_type_el et = neon_check_type (2, rs,
18397 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 18398 unsigned immlo, immhi = 0, immbits;
c96612cc 18399 int op, cmode, float_p;
5287ad62 18400
037e8744 18401 constraint (et.type == NT_invtype,
477330fc 18402 _("operand size must be specified for immediate VMOV"));
037e8744 18403
5287ad62
JB
18404 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
18405 op = (inst.instruction & (1 << 5)) != 0;
18406
18407 immlo = inst.operands[1].imm;
18408 if (inst.operands[1].regisimm)
18409 immhi = inst.operands[1].reg;
18410
18411 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
477330fc 18412 _("immediate has bits set outside the operand size"));
5287ad62 18413
c96612cc
JB
18414 float_p = inst.operands[1].immisfloat;
18415
18416 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
477330fc 18417 et.size, et.type)) == FAIL)
5287ad62
JB
18418 {
18419 /* Invert relevant bits only. */
18420 neon_invert_size (&immlo, &immhi, et.size);
18421 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
477330fc
RM
18422 with one or the other; those cases are caught by
18423 neon_cmode_for_move_imm. */
5287ad62 18424 op = !op;
c96612cc
JB
18425 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
18426 &op, et.size, et.type)) == FAIL)
477330fc
RM
18427 {
18428 first_error (_("immediate out of range"));
18429 return;
18430 }
5287ad62
JB
18431 }
18432
18433 inst.instruction &= ~(1 << 5);
18434 inst.instruction |= op << 5;
18435
18436 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18437 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 18438 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18439 inst.instruction |= cmode << 8;
18440
18441 neon_write_immbits (immbits);
18442}
18443
18444static void
18445do_neon_mvn (void)
18446{
18447 if (inst.operands[1].isreg)
18448 {
037e8744 18449 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 18450
88714cb8 18451 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18452 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18453 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18454 inst.instruction |= LOW4 (inst.operands[1].reg);
18455 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 18456 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18457 }
18458 else
18459 {
88714cb8 18460 NEON_ENCODE (IMMED, inst);
5287ad62
JB
18461 neon_move_immediate ();
18462 }
18463
88714cb8 18464 neon_dp_fixup (&inst);
5287ad62
JB
18465}
18466
18467/* Encode instructions of form:
18468
18469 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 18470 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
18471
18472static void
18473neon_mixed_length (struct neon_type_el et, unsigned size)
18474{
18475 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18476 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18477 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18478 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18479 inst.instruction |= LOW4 (inst.operands[2].reg);
18480 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18481 inst.instruction |= (et.type == NT_unsigned) << 24;
18482 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 18483
88714cb8 18484 neon_dp_fixup (&inst);
5287ad62
JB
18485}
18486
18487static void
18488do_neon_dyadic_long (void)
18489{
5ee91343
AV
18490 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
18491 if (rs == NS_QDD)
18492 {
18493 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
18494 return;
18495
18496 NEON_ENCODE (INTEGER, inst);
18497 /* FIXME: Type checking for lengthening op. */
18498 struct neon_type_el et = neon_check_type (3, NS_QDD,
18499 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
18500 neon_mixed_length (et, et.size);
18501 }
18502 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18503 && (inst.cond == 0xf || inst.cond == 0x10))
18504 {
18505 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18506 in an IT block with le/lt conditions. */
18507
18508 if (inst.cond == 0xf)
18509 inst.cond = 0xb;
18510 else if (inst.cond == 0x10)
18511 inst.cond = 0xd;
18512
18513 inst.pred_insn_type = INSIDE_IT_INSN;
18514
18515 if (inst.instruction == N_MNEM_vaddl)
18516 {
18517 inst.instruction = N_MNEM_vadd;
18518 do_neon_addsub_if_i ();
18519 }
18520 else if (inst.instruction == N_MNEM_vsubl)
18521 {
18522 inst.instruction = N_MNEM_vsub;
18523 do_neon_addsub_if_i ();
18524 }
18525 else if (inst.instruction == N_MNEM_vabdl)
18526 {
18527 inst.instruction = N_MNEM_vabd;
18528 do_neon_dyadic_if_su ();
18529 }
18530 }
18531 else
18532 first_error (BAD_FPU);
5287ad62
JB
18533}
18534
18535static void
18536do_neon_abal (void)
18537{
18538 struct neon_type_el et = neon_check_type (3, NS_QDD,
18539 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
18540 neon_mixed_length (et, et.size);
18541}
18542
18543static void
18544neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
18545{
18546 if (inst.operands[2].isscalar)
18547 {
dcbf9037 18548 struct neon_type_el et = neon_check_type (3, NS_QDS,
477330fc 18549 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 18550 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
18551 neon_mul_mac (et, et.type == NT_unsigned);
18552 }
18553 else
18554 {
18555 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 18556 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 18557 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18558 neon_mixed_length (et, et.size);
18559 }
18560}
18561
18562static void
18563do_neon_mac_maybe_scalar_long (void)
18564{
18565 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
18566}
18567
dec41383
JW
18568/* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18569 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18570
18571static unsigned
18572neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
18573{
18574 unsigned regno = NEON_SCALAR_REG (scalar);
18575 unsigned elno = NEON_SCALAR_INDEX (scalar);
18576
18577 if (quad_p)
18578 {
18579 if (regno > 7 || elno > 3)
18580 goto bad_scalar;
18581
18582 return ((regno & 0x7)
18583 | ((elno & 0x1) << 3)
18584 | (((elno >> 1) & 0x1) << 5));
18585 }
18586 else
18587 {
18588 if (regno > 15 || elno > 1)
18589 goto bad_scalar;
18590
18591 return (((regno & 0x1) << 5)
18592 | ((regno >> 1) & 0x7)
18593 | ((elno & 0x1) << 3));
18594 }
18595
18596bad_scalar:
18597 first_error (_("scalar out of range for multiply instruction"));
18598 return 0;
18599}
18600
18601static void
18602do_neon_fmac_maybe_scalar_long (int subtype)
18603{
18604 enum neon_shape rs;
18605 int high8;
18606 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18607 field (bits[21:20]) has different meaning. For scalar index variant, it's
18608 used to differentiate add and subtract, otherwise it's with fixed value
18609 0x2. */
18610 int size = -1;
18611
18612 if (inst.cond != COND_ALWAYS)
18613 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18614 "behaviour is UNPREDICTABLE"));
18615
01f48020 18616 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
dec41383
JW
18617 _(BAD_FP16));
18618
18619 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18620 _(BAD_FPU));
18621
18622 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18623 be a scalar index register. */
18624 if (inst.operands[2].isscalar)
18625 {
18626 high8 = 0xfe000000;
18627 if (subtype)
18628 size = 16;
18629 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18630 }
18631 else
18632 {
18633 high8 = 0xfc000000;
18634 size = 32;
18635 if (subtype)
18636 inst.instruction |= (0x1 << 23);
18637 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
18638 }
18639
18640 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
18641
18642 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18643 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18644 so we simply pass -1 as size. */
18645 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
18646 neon_three_same (quad_p, 0, size);
18647
18648 /* Undo neon_dp_fixup. Redo the high eight bits. */
18649 inst.instruction &= 0x00ffffff;
18650 inst.instruction |= high8;
18651
18652#define LOW1(R) ((R) & 0x1)
18653#define HI4(R) (((R) >> 1) & 0xf)
18654 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18655 whether the instruction is in Q form and whether Vm is a scalar indexed
18656 operand. */
18657 if (inst.operands[2].isscalar)
18658 {
18659 unsigned rm
18660 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
18661 inst.instruction &= 0xffffffd0;
18662 inst.instruction |= rm;
18663
18664 if (!quad_p)
18665 {
18666 /* Redo Rn as well. */
18667 inst.instruction &= 0xfff0ff7f;
18668 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18669 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18670 }
18671 }
18672 else if (!quad_p)
18673 {
18674 /* Redo Rn and Rm. */
18675 inst.instruction &= 0xfff0ff50;
18676 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18677 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18678 inst.instruction |= HI4 (inst.operands[2].reg);
18679 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
18680 }
18681}
18682
18683static void
18684do_neon_vfmal (void)
18685{
18686 return do_neon_fmac_maybe_scalar_long (0);
18687}
18688
18689static void
18690do_neon_vfmsl (void)
18691{
18692 return do_neon_fmac_maybe_scalar_long (1);
18693}
18694
5287ad62
JB
18695static void
18696do_neon_dyadic_wide (void)
18697{
18698 struct neon_type_el et = neon_check_type (3, NS_QQD,
18699 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
18700 neon_mixed_length (et, et.size);
18701}
18702
18703static void
18704do_neon_dyadic_narrow (void)
18705{
18706 struct neon_type_el et = neon_check_type (3, NS_QDD,
18707 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
18708 /* Operand sign is unimportant, and the U bit is part of the opcode,
18709 so force the operand type to integer. */
18710 et.type = NT_integer;
5287ad62
JB
18711 neon_mixed_length (et, et.size / 2);
18712}
18713
18714static void
18715do_neon_mul_sat_scalar_long (void)
18716{
18717 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
18718}
18719
18720static void
18721do_neon_vmull (void)
18722{
18723 if (inst.operands[2].isscalar)
18724 do_neon_mac_maybe_scalar_long ();
18725 else
18726 {
18727 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 18728 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
4f51b4bd 18729
5287ad62 18730 if (et.type == NT_poly)
477330fc 18731 NEON_ENCODE (POLY, inst);
5287ad62 18732 else
477330fc 18733 NEON_ENCODE (INTEGER, inst);
4f51b4bd
MGD
18734
18735 /* For polynomial encoding the U bit must be zero, and the size must
18736 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
18737 obviously, as 0b10). */
18738 if (et.size == 64)
18739 {
18740 /* Check we're on the correct architecture. */
18741 if (!mark_feature_used (&fpu_crypto_ext_armv8))
18742 inst.error =
18743 _("Instruction form not available on this architecture.");
18744
18745 et.size = 32;
18746 }
18747
5287ad62
JB
18748 neon_mixed_length (et, et.size);
18749 }
18750}
18751
18752static void
18753do_neon_ext (void)
18754{
037e8744 18755 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
18756 struct neon_type_el et = neon_check_type (3, rs,
18757 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18758 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
18759
18760 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
18761 _("shift out of range"));
5287ad62
JB
18762 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18763 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18764 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18765 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18766 inst.instruction |= LOW4 (inst.operands[2].reg);
18767 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 18768 inst.instruction |= neon_quad (rs) << 6;
5287ad62 18769 inst.instruction |= imm << 8;
5f4273c7 18770
88714cb8 18771 neon_dp_fixup (&inst);
5287ad62
JB
18772}
18773
18774static void
18775do_neon_rev (void)
18776{
037e8744 18777 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
18778 struct neon_type_el et = neon_check_type (2, rs,
18779 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18780 unsigned op = (inst.instruction >> 7) & 3;
18781 /* N (width of reversed regions) is encoded as part of the bitmask. We
18782 extract it here to check the elements to be reversed are smaller.
18783 Otherwise we'd get a reserved instruction. */
18784 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 18785 gas_assert (elsize != 0);
5287ad62 18786 constraint (et.size >= elsize,
477330fc 18787 _("elements must be smaller than reversal region"));
037e8744 18788 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
18789}
18790
18791static void
18792do_neon_dup (void)
18793{
18794 if (inst.operands[1].isscalar)
18795 {
b409bdb6
AV
18796 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
18797 BAD_FPU);
037e8744 18798 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037 18799 struct neon_type_el et = neon_check_type (2, rs,
477330fc 18800 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 18801 unsigned sizebits = et.size >> 3;
dcbf9037 18802 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 18803 int logsize = neon_logbits (et.size);
dcbf9037 18804 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
18805
18806 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
477330fc 18807 return;
037e8744 18808
88714cb8 18809 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
18810 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18811 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18812 inst.instruction |= LOW4 (dm);
18813 inst.instruction |= HI1 (dm) << 5;
037e8744 18814 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18815 inst.instruction |= x << 17;
18816 inst.instruction |= sizebits << 16;
5f4273c7 18817
88714cb8 18818 neon_dp_fixup (&inst);
5287ad62
JB
18819 }
18820 else
18821 {
037e8744
JB
18822 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
18823 struct neon_type_el et = neon_check_type (2, rs,
477330fc 18824 N_8 | N_16 | N_32 | N_KEY, N_EQK);
b409bdb6
AV
18825 if (rs == NS_QR)
18826 {
18827 if (check_simd_pred_availability (0, NEON_CHECK_ARCH))
18828 return;
18829 }
18830 else
18831 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
18832 BAD_FPU);
18833
18834 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18835 {
18836 if (inst.operands[1].reg == REG_SP)
18837 as_tsktsk (MVE_BAD_SP);
18838 else if (inst.operands[1].reg == REG_PC)
18839 as_tsktsk (MVE_BAD_PC);
18840 }
18841
5287ad62 18842 /* Duplicate ARM register to lanes of vector. */
88714cb8 18843 NEON_ENCODE (ARMREG, inst);
5287ad62 18844 switch (et.size)
477330fc
RM
18845 {
18846 case 8: inst.instruction |= 0x400000; break;
18847 case 16: inst.instruction |= 0x000020; break;
18848 case 32: inst.instruction |= 0x000000; break;
18849 default: break;
18850 }
5287ad62
JB
18851 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
18852 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
18853 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 18854 inst.instruction |= neon_quad (rs) << 21;
5287ad62 18855 /* The encoding for this instruction is identical for the ARM and Thumb
477330fc 18856 variants, except for the condition field. */
037e8744 18857 do_vfp_cond_or_thumb ();
5287ad62
JB
18858 }
18859}
18860
57785aa2
AV
18861static void
18862do_mve_mov (int toQ)
18863{
18864 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18865 return;
18866 if (inst.cond > COND_ALWAYS)
18867 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
18868
18869 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
18870 if (toQ)
18871 {
18872 Q0 = 0;
18873 Q1 = 1;
18874 Rt = 2;
18875 Rt2 = 3;
18876 }
18877
18878 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
18879 _("Index one must be [2,3] and index two must be two less than"
18880 " index one."));
18881 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
18882 _("General purpose registers may not be the same"));
18883 constraint (inst.operands[Rt].reg == REG_SP
18884 || inst.operands[Rt2].reg == REG_SP,
18885 BAD_SP);
18886 constraint (inst.operands[Rt].reg == REG_PC
18887 || inst.operands[Rt2].reg == REG_PC,
18888 BAD_PC);
18889
18890 inst.instruction = 0xec000f00;
18891 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
18892 inst.instruction |= !!toQ << 20;
18893 inst.instruction |= inst.operands[Rt2].reg << 16;
18894 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
18895 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
18896 inst.instruction |= inst.operands[Rt].reg;
18897}
18898
18899static void
18900do_mve_movn (void)
18901{
18902 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18903 return;
18904
18905 if (inst.cond > COND_ALWAYS)
18906 inst.pred_insn_type = INSIDE_VPT_INSN;
18907 else
18908 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18909
18910 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
18911 | N_KEY);
18912
18913 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18914 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
18915 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18916 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18917 inst.instruction |= LOW4 (inst.operands[1].reg);
18918 inst.is_neon = 1;
18919
18920}
18921
5287ad62
JB
18922/* VMOV has particularly many variations. It can be one of:
18923 0. VMOV<c><q> <Qd>, <Qm>
18924 1. VMOV<c><q> <Dd>, <Dm>
18925 (Register operations, which are VORR with Rm = Rn.)
18926 2. VMOV<c><q>.<dt> <Qd>, #<imm>
18927 3. VMOV<c><q>.<dt> <Dd>, #<imm>
18928 (Immediate loads.)
18929 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
18930 (ARM register to scalar.)
18931 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
18932 (Two ARM registers to vector.)
18933 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
18934 (Scalar to ARM register.)
18935 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
18936 (Vector to two ARM registers.)
037e8744
JB
18937 8. VMOV.F32 <Sd>, <Sm>
18938 9. VMOV.F64 <Dd>, <Dm>
18939 (VFP register moves.)
18940 10. VMOV.F32 <Sd>, #imm
18941 11. VMOV.F64 <Dd>, #imm
18942 (VFP float immediate load.)
18943 12. VMOV <Rd>, <Sm>
18944 (VFP single to ARM reg.)
18945 13. VMOV <Sd>, <Rm>
18946 (ARM reg to VFP single.)
18947 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
18948 (Two ARM regs to two VFP singles.)
18949 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
18950 (Two VFP singles to two ARM regs.)
57785aa2
AV
18951 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
18952 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
18953 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
18954 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
5f4273c7 18955
037e8744
JB
18956 These cases can be disambiguated using neon_select_shape, except cases 1/9
18957 and 3/11 which depend on the operand type too.
5f4273c7 18958
5287ad62 18959 All the encoded bits are hardcoded by this function.
5f4273c7 18960
b7fc2769
JB
18961 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
18962 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 18963
5287ad62 18964 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 18965 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
18966
18967static void
18968do_neon_mov (void)
18969{
57785aa2
AV
18970 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
18971 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
18972 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
18973 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
18974 NS_NULL);
037e8744
JB
18975 struct neon_type_el et;
18976 const char *ldconst = 0;
5287ad62 18977
037e8744 18978 switch (rs)
5287ad62 18979 {
037e8744
JB
18980 case NS_DD: /* case 1/9. */
18981 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18982 /* It is not an error here if no type is given. */
18983 inst.error = NULL;
18984 if (et.type == NT_float && et.size == 64)
477330fc
RM
18985 {
18986 do_vfp_nsyn_opcode ("fcpyd");
18987 break;
18988 }
037e8744 18989 /* fall through. */
5287ad62 18990
037e8744
JB
18991 case NS_QQ: /* case 0/1. */
18992 {
57785aa2 18993 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc
RM
18994 return;
18995 /* The architecture manual I have doesn't explicitly state which
18996 value the U bit should have for register->register moves, but
18997 the equivalent VORR instruction has U = 0, so do that. */
18998 inst.instruction = 0x0200110;
18999 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19000 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19001 inst.instruction |= LOW4 (inst.operands[1].reg);
19002 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19003 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19004 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19005 inst.instruction |= neon_quad (rs) << 6;
19006
19007 neon_dp_fixup (&inst);
037e8744
JB
19008 }
19009 break;
5f4273c7 19010
037e8744
JB
19011 case NS_DI: /* case 3/11. */
19012 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19013 inst.error = NULL;
19014 if (et.type == NT_float && et.size == 64)
477330fc
RM
19015 {
19016 /* case 11 (fconstd). */
19017 ldconst = "fconstd";
19018 goto encode_fconstd;
19019 }
037e8744
JB
19020 /* fall through. */
19021
19022 case NS_QI: /* case 2/3. */
57785aa2 19023 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc 19024 return;
037e8744
JB
19025 inst.instruction = 0x0800010;
19026 neon_move_immediate ();
88714cb8 19027 neon_dp_fixup (&inst);
5287ad62 19028 break;
5f4273c7 19029
037e8744
JB
19030 case NS_SR: /* case 4. */
19031 {
477330fc
RM
19032 unsigned bcdebits = 0;
19033 int logsize;
19034 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
19035 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
037e8744 19036
05ac0ffb
JB
19037 /* .<size> is optional here, defaulting to .32. */
19038 if (inst.vectype.elems == 0
19039 && inst.operands[0].vectype.type == NT_invtype
19040 && inst.operands[1].vectype.type == NT_invtype)
19041 {
19042 inst.vectype.el[0].type = NT_untyped;
19043 inst.vectype.el[0].size = 32;
19044 inst.vectype.elems = 1;
19045 }
19046
477330fc
RM
19047 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
19048 logsize = neon_logbits (et.size);
19049
57785aa2
AV
19050 if (et.size != 32)
19051 {
19052 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19053 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
19054 return;
19055 }
19056 else
19057 {
19058 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19059 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19060 _(BAD_FPU));
19061 }
19062
19063 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19064 {
19065 if (inst.operands[1].reg == REG_SP)
19066 as_tsktsk (MVE_BAD_SP);
19067 else if (inst.operands[1].reg == REG_PC)
19068 as_tsktsk (MVE_BAD_PC);
19069 }
19070 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
19071
477330fc 19072 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2
AV
19073 constraint (x >= size / et.size, _("scalar index out of range"));
19074
477330fc
RM
19075
19076 switch (et.size)
19077 {
19078 case 8: bcdebits = 0x8; break;
19079 case 16: bcdebits = 0x1; break;
19080 case 32: bcdebits = 0x0; break;
19081 default: ;
19082 }
19083
57785aa2 19084 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
19085
19086 inst.instruction = 0xe000b10;
19087 do_vfp_cond_or_thumb ();
19088 inst.instruction |= LOW4 (dn) << 16;
19089 inst.instruction |= HI1 (dn) << 7;
19090 inst.instruction |= inst.operands[1].reg << 12;
19091 inst.instruction |= (bcdebits & 3) << 5;
57785aa2
AV
19092 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
19093 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
19094 }
19095 break;
5f4273c7 19096
037e8744 19097 case NS_DRR: /* case 5 (fmdrr). */
57785aa2
AV
19098 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19099 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 19100 _(BAD_FPU));
b7fc2769 19101
037e8744
JB
19102 inst.instruction = 0xc400b10;
19103 do_vfp_cond_or_thumb ();
19104 inst.instruction |= LOW4 (inst.operands[0].reg);
19105 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
19106 inst.instruction |= inst.operands[1].reg << 12;
19107 inst.instruction |= inst.operands[2].reg << 16;
19108 break;
5f4273c7 19109
037e8744
JB
19110 case NS_RS: /* case 6. */
19111 {
477330fc
RM
19112 unsigned logsize;
19113 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
19114 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
19115 unsigned abcdebits = 0;
037e8744 19116
05ac0ffb
JB
19117 /* .<dt> is optional here, defaulting to .32. */
19118 if (inst.vectype.elems == 0
19119 && inst.operands[0].vectype.type == NT_invtype
19120 && inst.operands[1].vectype.type == NT_invtype)
19121 {
19122 inst.vectype.el[0].type = NT_untyped;
19123 inst.vectype.el[0].size = 32;
19124 inst.vectype.elems = 1;
19125 }
19126
91d6fa6a
NC
19127 et = neon_check_type (2, NS_NULL,
19128 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
477330fc
RM
19129 logsize = neon_logbits (et.size);
19130
57785aa2
AV
19131 if (et.size != 32)
19132 {
19133 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19134 && vfp_or_neon_is_neon (NEON_CHECK_CC
19135 | NEON_CHECK_ARCH) == FAIL)
19136 return;
19137 }
19138 else
19139 {
19140 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19141 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19142 _(BAD_FPU));
19143 }
19144
19145 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19146 {
19147 if (inst.operands[0].reg == REG_SP)
19148 as_tsktsk (MVE_BAD_SP);
19149 else if (inst.operands[0].reg == REG_PC)
19150 as_tsktsk (MVE_BAD_PC);
19151 }
19152
19153 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
19154
477330fc 19155 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2 19156 constraint (x >= size / et.size, _("scalar index out of range"));
477330fc
RM
19157
19158 switch (et.size)
19159 {
19160 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
19161 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
19162 case 32: abcdebits = 0x00; break;
19163 default: ;
19164 }
19165
57785aa2 19166 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
19167 inst.instruction = 0xe100b10;
19168 do_vfp_cond_or_thumb ();
19169 inst.instruction |= LOW4 (dn) << 16;
19170 inst.instruction |= HI1 (dn) << 7;
19171 inst.instruction |= inst.operands[0].reg << 12;
19172 inst.instruction |= (abcdebits & 3) << 5;
19173 inst.instruction |= (abcdebits >> 2) << 21;
57785aa2 19174 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
19175 }
19176 break;
5f4273c7 19177
037e8744 19178 case NS_RRD: /* case 7 (fmrrd). */
57785aa2
AV
19179 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19180 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 19181 _(BAD_FPU));
037e8744
JB
19182
19183 inst.instruction = 0xc500b10;
19184 do_vfp_cond_or_thumb ();
19185 inst.instruction |= inst.operands[0].reg << 12;
19186 inst.instruction |= inst.operands[1].reg << 16;
19187 inst.instruction |= LOW4 (inst.operands[2].reg);
19188 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19189 break;
5f4273c7 19190
037e8744
JB
19191 case NS_FF: /* case 8 (fcpys). */
19192 do_vfp_nsyn_opcode ("fcpys");
19193 break;
5f4273c7 19194
9db2f6b4 19195 case NS_HI:
037e8744
JB
19196 case NS_FI: /* case 10 (fconsts). */
19197 ldconst = "fconsts";
4ef4710f 19198 encode_fconstd:
58ed5c38
TC
19199 if (!inst.operands[1].immisfloat)
19200 {
4ef4710f 19201 unsigned new_imm;
58ed5c38 19202 /* Immediate has to fit in 8 bits so float is enough. */
4ef4710f
NC
19203 float imm = (float) inst.operands[1].imm;
19204 memcpy (&new_imm, &imm, sizeof (float));
19205 /* But the assembly may have been written to provide an integer
19206 bit pattern that equates to a float, so check that the
19207 conversion has worked. */
19208 if (is_quarter_float (new_imm))
19209 {
19210 if (is_quarter_float (inst.operands[1].imm))
19211 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
19212
19213 inst.operands[1].imm = new_imm;
19214 inst.operands[1].immisfloat = 1;
19215 }
58ed5c38
TC
19216 }
19217
037e8744 19218 if (is_quarter_float (inst.operands[1].imm))
477330fc
RM
19219 {
19220 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
19221 do_vfp_nsyn_opcode (ldconst);
9db2f6b4
RL
19222
19223 /* ARMv8.2 fp16 vmov.f16 instruction. */
19224 if (rs == NS_HI)
19225 do_scalar_fp16_v82_encode ();
477330fc 19226 }
5287ad62 19227 else
477330fc 19228 first_error (_("immediate out of range"));
037e8744 19229 break;
5f4273c7 19230
9db2f6b4 19231 case NS_RH:
037e8744
JB
19232 case NS_RF: /* case 12 (fmrs). */
19233 do_vfp_nsyn_opcode ("fmrs");
9db2f6b4
RL
19234 /* ARMv8.2 fp16 vmov.f16 instruction. */
19235 if (rs == NS_RH)
19236 do_scalar_fp16_v82_encode ();
037e8744 19237 break;
5f4273c7 19238
9db2f6b4 19239 case NS_HR:
037e8744
JB
19240 case NS_FR: /* case 13 (fmsr). */
19241 do_vfp_nsyn_opcode ("fmsr");
9db2f6b4
RL
19242 /* ARMv8.2 fp16 vmov.f16 instruction. */
19243 if (rs == NS_HR)
19244 do_scalar_fp16_v82_encode ();
037e8744 19245 break;
5f4273c7 19246
57785aa2
AV
19247 case NS_RRSS:
19248 do_mve_mov (0);
19249 break;
19250 case NS_SSRR:
19251 do_mve_mov (1);
19252 break;
19253
037e8744
JB
19254 /* The encoders for the fmrrs and fmsrr instructions expect three operands
19255 (one of which is a list), but we have parsed four. Do some fiddling to
19256 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
19257 expect. */
19258 case NS_RRFF: /* case 14 (fmrrs). */
57785aa2
AV
19259 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19260 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19261 _(BAD_FPU));
037e8744 19262 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
477330fc 19263 _("VFP registers must be adjacent"));
037e8744
JB
19264 inst.operands[2].imm = 2;
19265 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19266 do_vfp_nsyn_opcode ("fmrrs");
19267 break;
5f4273c7 19268
037e8744 19269 case NS_FFRR: /* case 15 (fmsrr). */
57785aa2
AV
19270 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19271 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19272 _(BAD_FPU));
037e8744 19273 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
477330fc 19274 _("VFP registers must be adjacent"));
037e8744
JB
19275 inst.operands[1] = inst.operands[2];
19276 inst.operands[2] = inst.operands[3];
19277 inst.operands[0].imm = 2;
19278 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19279 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 19280 break;
5f4273c7 19281
4c261dff
NC
19282 case NS_NULL:
19283 /* neon_select_shape has determined that the instruction
19284 shape is wrong and has already set the error message. */
19285 break;
19286
5287ad62
JB
19287 default:
19288 abort ();
19289 }
19290}
19291
57785aa2
AV
19292static void
19293do_mve_movl (void)
19294{
19295 if (!(inst.operands[0].present && inst.operands[0].isquad
19296 && inst.operands[1].present && inst.operands[1].isquad
19297 && !inst.operands[2].present))
19298 {
19299 inst.instruction = 0;
19300 inst.cond = 0xb;
19301 if (thumb_mode)
19302 set_pred_insn_type (INSIDE_IT_INSN);
19303 do_neon_mov ();
19304 return;
19305 }
19306
19307 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19308 return;
19309
19310 if (inst.cond != COND_ALWAYS)
19311 inst.pred_insn_type = INSIDE_VPT_INSN;
19312
19313 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
19314 | N_S16 | N_U16 | N_KEY);
19315
19316 inst.instruction |= (et.type == NT_unsigned) << 28;
19317 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19318 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
19319 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19320 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19321 inst.instruction |= LOW4 (inst.operands[1].reg);
19322 inst.is_neon = 1;
19323}
19324
5287ad62
JB
19325static void
19326do_neon_rshift_round_imm (void)
19327{
037e8744 19328 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
19329 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
19330 int imm = inst.operands[2].imm;
19331
19332 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
19333 if (imm == 0)
19334 {
19335 inst.operands[2].present = 0;
19336 do_neon_mov ();
19337 return;
19338 }
19339
19340 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 19341 _("immediate out of range for shift"));
037e8744 19342 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
477330fc 19343 et.size - imm);
5287ad62
JB
19344}
19345
9db2f6b4
RL
19346static void
19347do_neon_movhf (void)
19348{
19349 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
19350 constraint (rs != NS_HH, _("invalid suffix"));
19351
7bdf778b
ASDV
19352 if (inst.cond != COND_ALWAYS)
19353 {
19354 if (thumb_mode)
19355 {
19356 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
19357 " the behaviour is UNPREDICTABLE"));
19358 }
19359 else
19360 {
19361 inst.error = BAD_COND;
19362 return;
19363 }
19364 }
19365
9db2f6b4
RL
19366 do_vfp_sp_monadic ();
19367
19368 inst.is_neon = 1;
19369 inst.instruction |= 0xf0000000;
19370}
19371
5287ad62
JB
19372static void
19373do_neon_movl (void)
19374{
19375 struct neon_type_el et = neon_check_type (2, NS_QD,
19376 N_EQK | N_DBL, N_SU_32 | N_KEY);
19377 unsigned sizebits = et.size >> 3;
19378 inst.instruction |= sizebits << 19;
19379 neon_two_same (0, et.type == NT_unsigned, -1);
19380}
19381
19382static void
19383do_neon_trn (void)
19384{
037e8744 19385 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19386 struct neon_type_el et = neon_check_type (2, rs,
19387 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 19388 NEON_ENCODE (INTEGER, inst);
037e8744 19389 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19390}
19391
19392static void
19393do_neon_zip_uzp (void)
19394{
037e8744 19395 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19396 struct neon_type_el et = neon_check_type (2, rs,
19397 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19398 if (rs == NS_DD && et.size == 32)
19399 {
19400 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
19401 inst.instruction = N_MNEM_vtrn;
19402 do_neon_trn ();
19403 return;
19404 }
037e8744 19405 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19406}
19407
19408static void
19409do_neon_sat_abs_neg (void)
19410{
037e8744 19411 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19412 struct neon_type_el et = neon_check_type (2, rs,
19413 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 19414 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19415}
19416
19417static void
19418do_neon_pair_long (void)
19419{
037e8744 19420 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19421 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
19422 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
19423 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 19424 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19425}
19426
19427static void
19428do_neon_recip_est (void)
19429{
037e8744 19430 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62 19431 struct neon_type_el et = neon_check_type (2, rs,
cc933301 19432 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
5287ad62 19433 inst.instruction |= (et.type == NT_float) << 8;
037e8744 19434 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19435}
19436
19437static void
19438do_neon_cls (void)
19439{
f30ee27c
AV
19440 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19441 return;
19442
19443 enum neon_shape rs;
19444 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19445 rs = neon_select_shape (NS_QQ, NS_NULL);
19446 else
19447 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19448
5287ad62
JB
19449 struct neon_type_el et = neon_check_type (2, rs,
19450 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 19451 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19452}
19453
19454static void
19455do_neon_clz (void)
19456{
f30ee27c
AV
19457 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19458 return;
19459
19460 enum neon_shape rs;
19461 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19462 rs = neon_select_shape (NS_QQ, NS_NULL);
19463 else
19464 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19465
5287ad62
JB
19466 struct neon_type_el et = neon_check_type (2, rs,
19467 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 19468 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19469}
19470
19471static void
19472do_neon_cnt (void)
19473{
037e8744 19474 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19475 struct neon_type_el et = neon_check_type (2, rs,
19476 N_EQK | N_INT, N_8 | N_KEY);
037e8744 19477 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19478}
19479
19480static void
19481do_neon_swp (void)
19482{
037e8744
JB
19483 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19484 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
19485}
19486
19487static void
19488do_neon_tbl_tbx (void)
19489{
19490 unsigned listlenbits;
dcbf9037 19491 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 19492
5287ad62
JB
19493 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
19494 {
dcbf9037 19495 first_error (_("bad list length for table lookup"));
5287ad62
JB
19496 return;
19497 }
5f4273c7 19498
5287ad62
JB
19499 listlenbits = inst.operands[1].imm - 1;
19500 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19501 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19502 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19503 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19504 inst.instruction |= LOW4 (inst.operands[2].reg);
19505 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19506 inst.instruction |= listlenbits << 8;
5f4273c7 19507
88714cb8 19508 neon_dp_fixup (&inst);
5287ad62
JB
19509}
19510
19511static void
19512do_neon_ldm_stm (void)
19513{
19514 /* P, U and L bits are part of bitmask. */
19515 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
19516 unsigned offsetbits = inst.operands[1].imm * 2;
19517
037e8744
JB
19518 if (inst.operands[1].issingle)
19519 {
19520 do_vfp_nsyn_ldm_stm (is_dbmode);
19521 return;
19522 }
19523
5287ad62 19524 constraint (is_dbmode && !inst.operands[0].writeback,
477330fc 19525 _("writeback (!) must be used for VLDMDB and VSTMDB"));
5287ad62
JB
19526
19527 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
477330fc
RM
19528 _("register list must contain at least 1 and at most 16 "
19529 "registers"));
5287ad62
JB
19530
19531 inst.instruction |= inst.operands[0].reg << 16;
19532 inst.instruction |= inst.operands[0].writeback << 21;
19533 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19534 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
19535
19536 inst.instruction |= offsetbits;
5f4273c7 19537
037e8744 19538 do_vfp_cond_or_thumb ();
5287ad62
JB
19539}
19540
19541static void
19542do_neon_ldr_str (void)
19543{
5287ad62 19544 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 19545
6844b2c2
MGD
19546 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19547 And is UNPREDICTABLE in thumb mode. */
fa94de6b 19548 if (!is_ldr
6844b2c2 19549 && inst.operands[1].reg == REG_PC
ba86b375 19550 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
6844b2c2 19551 {
94dcf8bf 19552 if (thumb_mode)
6844b2c2 19553 inst.error = _("Use of PC here is UNPREDICTABLE");
94dcf8bf 19554 else if (warn_on_deprecated)
5c3696f8 19555 as_tsktsk (_("Use of PC here is deprecated"));
6844b2c2
MGD
19556 }
19557
037e8744
JB
19558 if (inst.operands[0].issingle)
19559 {
cd2f129f 19560 if (is_ldr)
477330fc 19561 do_vfp_nsyn_opcode ("flds");
cd2f129f 19562 else
477330fc 19563 do_vfp_nsyn_opcode ("fsts");
9db2f6b4
RL
19564
19565 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19566 if (inst.vectype.el[0].size == 16)
19567 do_scalar_fp16_v82_encode ();
5287ad62
JB
19568 }
19569 else
5287ad62 19570 {
cd2f129f 19571 if (is_ldr)
477330fc 19572 do_vfp_nsyn_opcode ("fldd");
5287ad62 19573 else
477330fc 19574 do_vfp_nsyn_opcode ("fstd");
5287ad62 19575 }
5287ad62
JB
19576}
19577
32c36c3c
AV
19578static void
19579do_t_vldr_vstr_sysreg (void)
19580{
19581 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
19582 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
19583
19584 /* Use of PC is UNPREDICTABLE. */
19585 if (inst.operands[1].reg == REG_PC)
19586 inst.error = _("Use of PC here is UNPREDICTABLE");
19587
19588 if (inst.operands[1].immisreg)
19589 inst.error = _("instruction does not accept register index");
19590
19591 if (!inst.operands[1].isreg)
19592 inst.error = _("instruction does not accept PC-relative addressing");
19593
19594 if (abs (inst.operands[1].imm) >= (1 << 7))
19595 inst.error = _("immediate value out of range");
19596
19597 inst.instruction = 0xec000f80;
19598 if (is_vldr)
19599 inst.instruction |= 1 << sysreg_vldr_bitno;
19600 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
19601 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
19602 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
19603}
19604
19605static void
19606do_vldr_vstr (void)
19607{
19608 bfd_boolean sysreg_op = !inst.operands[0].isreg;
19609
19610 /* VLDR/VSTR (System Register). */
19611 if (sysreg_op)
19612 {
19613 if (!mark_feature_used (&arm_ext_v8_1m_main))
19614 as_bad (_("Instruction not permitted on this architecture"));
19615
19616 do_t_vldr_vstr_sysreg ();
19617 }
19618 /* VLDR/VSTR. */
19619 else
19620 {
19621 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
19622 as_bad (_("Instruction not permitted on this architecture"));
19623 do_neon_ldr_str ();
19624 }
19625}
19626
5287ad62
JB
19627/* "interleave" version also handles non-interleaving register VLD1/VST1
19628 instructions. */
19629
19630static void
19631do_neon_ld_st_interleave (void)
19632{
037e8744 19633 struct neon_type_el et = neon_check_type (1, NS_NULL,
477330fc 19634 N_8 | N_16 | N_32 | N_64);
5287ad62
JB
19635 unsigned alignbits = 0;
19636 unsigned idx;
19637 /* The bits in this table go:
19638 0: register stride of one (0) or two (1)
19639 1,2: register list length, minus one (1, 2, 3, 4).
19640 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19641 We use -1 for invalid entries. */
19642 const int typetable[] =
19643 {
19644 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19645 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19646 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19647 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19648 };
19649 int typebits;
19650
dcbf9037
JB
19651 if (et.type == NT_invtype)
19652 return;
19653
5287ad62
JB
19654 if (inst.operands[1].immisalign)
19655 switch (inst.operands[1].imm >> 8)
19656 {
19657 case 64: alignbits = 1; break;
19658 case 128:
477330fc 19659 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
e23c0ad8 19660 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
477330fc
RM
19661 goto bad_alignment;
19662 alignbits = 2;
19663 break;
5287ad62 19664 case 256:
477330fc
RM
19665 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19666 goto bad_alignment;
19667 alignbits = 3;
19668 break;
5287ad62
JB
19669 default:
19670 bad_alignment:
477330fc
RM
19671 first_error (_("bad alignment"));
19672 return;
5287ad62
JB
19673 }
19674
19675 inst.instruction |= alignbits << 4;
19676 inst.instruction |= neon_logbits (et.size) << 6;
19677
19678 /* Bits [4:6] of the immediate in a list specifier encode register stride
19679 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19680 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19681 up the right value for "type" in a table based on this value and the given
19682 list style, then stick it back. */
19683 idx = ((inst.operands[0].imm >> 4) & 7)
477330fc 19684 | (((inst.instruction >> 8) & 3) << 3);
5287ad62
JB
19685
19686 typebits = typetable[idx];
5f4273c7 19687
5287ad62 19688 constraint (typebits == -1, _("bad list type for instruction"));
1d50d57c 19689 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
35c228db 19690 BAD_EL_TYPE);
5287ad62
JB
19691
19692 inst.instruction &= ~0xf00;
19693 inst.instruction |= typebits << 8;
19694}
19695
19696/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19697 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19698 otherwise. The variable arguments are a list of pairs of legal (size, align)
19699 values, terminated with -1. */
19700
19701static int
aa8a0863 19702neon_alignment_bit (int size, int align, int *do_alignment, ...)
5287ad62
JB
19703{
19704 va_list ap;
19705 int result = FAIL, thissize, thisalign;
5f4273c7 19706
5287ad62
JB
19707 if (!inst.operands[1].immisalign)
19708 {
aa8a0863 19709 *do_alignment = 0;
5287ad62
JB
19710 return SUCCESS;
19711 }
5f4273c7 19712
aa8a0863 19713 va_start (ap, do_alignment);
5287ad62
JB
19714
19715 do
19716 {
19717 thissize = va_arg (ap, int);
19718 if (thissize == -1)
477330fc 19719 break;
5287ad62
JB
19720 thisalign = va_arg (ap, int);
19721
19722 if (size == thissize && align == thisalign)
477330fc 19723 result = SUCCESS;
5287ad62
JB
19724 }
19725 while (result != SUCCESS);
19726
19727 va_end (ap);
19728
19729 if (result == SUCCESS)
aa8a0863 19730 *do_alignment = 1;
5287ad62 19731 else
dcbf9037 19732 first_error (_("unsupported alignment for instruction"));
5f4273c7 19733
5287ad62
JB
19734 return result;
19735}
19736
19737static void
19738do_neon_ld_st_lane (void)
19739{
037e8744 19740 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 19741 int align_good, do_alignment = 0;
5287ad62
JB
19742 int logsize = neon_logbits (et.size);
19743 int align = inst.operands[1].imm >> 8;
19744 int n = (inst.instruction >> 8) & 3;
19745 int max_el = 64 / et.size;
5f4273c7 19746
dcbf9037
JB
19747 if (et.type == NT_invtype)
19748 return;
5f4273c7 19749
5287ad62 19750 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
477330fc 19751 _("bad list length"));
5287ad62 19752 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
477330fc 19753 _("scalar index out of range"));
5287ad62 19754 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
477330fc
RM
19755 && et.size == 8,
19756 _("stride of 2 unavailable when element size is 8"));
5f4273c7 19757
5287ad62
JB
19758 switch (n)
19759 {
19760 case 0: /* VLD1 / VST1. */
aa8a0863 19761 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
477330fc 19762 32, 32, -1);
5287ad62 19763 if (align_good == FAIL)
477330fc 19764 return;
aa8a0863 19765 if (do_alignment)
477330fc
RM
19766 {
19767 unsigned alignbits = 0;
19768 switch (et.size)
19769 {
19770 case 16: alignbits = 0x1; break;
19771 case 32: alignbits = 0x3; break;
19772 default: ;
19773 }
19774 inst.instruction |= alignbits << 4;
19775 }
5287ad62
JB
19776 break;
19777
19778 case 1: /* VLD2 / VST2. */
aa8a0863
TS
19779 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
19780 16, 32, 32, 64, -1);
5287ad62 19781 if (align_good == FAIL)
477330fc 19782 return;
aa8a0863 19783 if (do_alignment)
477330fc 19784 inst.instruction |= 1 << 4;
5287ad62
JB
19785 break;
19786
19787 case 2: /* VLD3 / VST3. */
19788 constraint (inst.operands[1].immisalign,
477330fc 19789 _("can't use alignment with this instruction"));
5287ad62
JB
19790 break;
19791
19792 case 3: /* VLD4 / VST4. */
aa8a0863 19793 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc 19794 16, 64, 32, 64, 32, 128, -1);
5287ad62 19795 if (align_good == FAIL)
477330fc 19796 return;
aa8a0863 19797 if (do_alignment)
477330fc
RM
19798 {
19799 unsigned alignbits = 0;
19800 switch (et.size)
19801 {
19802 case 8: alignbits = 0x1; break;
19803 case 16: alignbits = 0x1; break;
19804 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
19805 default: ;
19806 }
19807 inst.instruction |= alignbits << 4;
19808 }
5287ad62
JB
19809 break;
19810
19811 default: ;
19812 }
19813
19814 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
19815 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19816 inst.instruction |= 1 << (4 + logsize);
5f4273c7 19817
5287ad62
JB
19818 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
19819 inst.instruction |= logsize << 10;
19820}
19821
19822/* Encode single n-element structure to all lanes VLD<n> instructions. */
19823
19824static void
19825do_neon_ld_dup (void)
19826{
037e8744 19827 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 19828 int align_good, do_alignment = 0;
5287ad62 19829
dcbf9037
JB
19830 if (et.type == NT_invtype)
19831 return;
19832
5287ad62
JB
19833 switch ((inst.instruction >> 8) & 3)
19834 {
19835 case 0: /* VLD1. */
9c2799c2 19836 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62 19837 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863 19838 &do_alignment, 16, 16, 32, 32, -1);
5287ad62 19839 if (align_good == FAIL)
477330fc 19840 return;
5287ad62 19841 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
477330fc
RM
19842 {
19843 case 1: break;
19844 case 2: inst.instruction |= 1 << 5; break;
19845 default: first_error (_("bad list length")); return;
19846 }
5287ad62
JB
19847 inst.instruction |= neon_logbits (et.size) << 6;
19848 break;
19849
19850 case 1: /* VLD2. */
19851 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863
TS
19852 &do_alignment, 8, 16, 16, 32, 32, 64,
19853 -1);
5287ad62 19854 if (align_good == FAIL)
477330fc 19855 return;
5287ad62 19856 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
477330fc 19857 _("bad list length"));
5287ad62 19858 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 19859 inst.instruction |= 1 << 5;
5287ad62
JB
19860 inst.instruction |= neon_logbits (et.size) << 6;
19861 break;
19862
19863 case 2: /* VLD3. */
19864 constraint (inst.operands[1].immisalign,
477330fc 19865 _("can't use alignment with this instruction"));
5287ad62 19866 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
477330fc 19867 _("bad list length"));
5287ad62 19868 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 19869 inst.instruction |= 1 << 5;
5287ad62
JB
19870 inst.instruction |= neon_logbits (et.size) << 6;
19871 break;
19872
19873 case 3: /* VLD4. */
19874 {
477330fc 19875 int align = inst.operands[1].imm >> 8;
aa8a0863 19876 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc
RM
19877 16, 64, 32, 64, 32, 128, -1);
19878 if (align_good == FAIL)
19879 return;
19880 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
19881 _("bad list length"));
19882 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19883 inst.instruction |= 1 << 5;
19884 if (et.size == 32 && align == 128)
19885 inst.instruction |= 0x3 << 6;
19886 else
19887 inst.instruction |= neon_logbits (et.size) << 6;
5287ad62
JB
19888 }
19889 break;
19890
19891 default: ;
19892 }
19893
aa8a0863 19894 inst.instruction |= do_alignment << 4;
5287ad62
JB
19895}
19896
19897/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
19898 apart from bits [11:4]. */
19899
19900static void
19901do_neon_ldx_stx (void)
19902{
b1a769ed
DG
19903 if (inst.operands[1].isreg)
19904 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
19905
5287ad62
JB
19906 switch (NEON_LANE (inst.operands[0].imm))
19907 {
19908 case NEON_INTERLEAVE_LANES:
88714cb8 19909 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
19910 do_neon_ld_st_interleave ();
19911 break;
5f4273c7 19912
5287ad62 19913 case NEON_ALL_LANES:
88714cb8 19914 NEON_ENCODE (DUP, inst);
2d51fb74
JB
19915 if (inst.instruction == N_INV)
19916 {
19917 first_error ("only loads support such operands");
19918 break;
19919 }
5287ad62
JB
19920 do_neon_ld_dup ();
19921 break;
5f4273c7 19922
5287ad62 19923 default:
88714cb8 19924 NEON_ENCODE (LANE, inst);
5287ad62
JB
19925 do_neon_ld_st_lane ();
19926 }
19927
19928 /* L bit comes from bit mask. */
19929 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19930 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19931 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 19932
5287ad62
JB
19933 if (inst.operands[1].postind)
19934 {
19935 int postreg = inst.operands[1].imm & 0xf;
19936 constraint (!inst.operands[1].immisreg,
477330fc 19937 _("post-index must be a register"));
5287ad62 19938 constraint (postreg == 0xd || postreg == 0xf,
477330fc 19939 _("bad register for post-index"));
5287ad62
JB
19940 inst.instruction |= postreg;
19941 }
4f2374c7 19942 else
5287ad62 19943 {
4f2374c7 19944 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
e2b0ab59
AV
19945 constraint (inst.relocs[0].exp.X_op != O_constant
19946 || inst.relocs[0].exp.X_add_number != 0,
4f2374c7
WN
19947 BAD_ADDR_MODE);
19948
19949 if (inst.operands[1].writeback)
19950 {
19951 inst.instruction |= 0xd;
19952 }
19953 else
19954 inst.instruction |= 0xf;
5287ad62 19955 }
5f4273c7 19956
5287ad62
JB
19957 if (thumb_mode)
19958 inst.instruction |= 0xf9000000;
19959 else
19960 inst.instruction |= 0xf4000000;
19961}
33399f07
MGD
19962
19963/* FP v8. */
19964static void
19965do_vfp_nsyn_fpv8 (enum neon_shape rs)
19966{
a715796b
TG
19967 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19968 D register operands. */
19969 if (neon_shape_class[rs] == SC_DOUBLE)
19970 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19971 _(BAD_FPU));
19972
33399f07
MGD
19973 NEON_ENCODE (FPV8, inst);
19974
9db2f6b4
RL
19975 if (rs == NS_FFF || rs == NS_HHH)
19976 {
19977 do_vfp_sp_dyadic ();
19978
19979 /* ARMv8.2 fp16 instruction. */
19980 if (rs == NS_HHH)
19981 do_scalar_fp16_v82_encode ();
19982 }
33399f07
MGD
19983 else
19984 do_vfp_dp_rd_rn_rm ();
19985
19986 if (rs == NS_DDD)
19987 inst.instruction |= 0x100;
19988
19989 inst.instruction |= 0xf0000000;
19990}
19991
19992static void
19993do_vsel (void)
19994{
5ee91343 19995 set_pred_insn_type (OUTSIDE_PRED_INSN);
33399f07
MGD
19996
19997 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
19998 first_error (_("invalid instruction shape"));
19999}
20000
73924fbc
MGD
20001static void
20002do_vmaxnm (void)
20003{
935295b5
AV
20004 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20005 set_pred_insn_type (OUTSIDE_PRED_INSN);
73924fbc
MGD
20006
20007 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
20008 return;
20009
935295b5 20010 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH8))
73924fbc
MGD
20011 return;
20012
cc933301 20013 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
73924fbc
MGD
20014}
20015
30bdf752
MGD
20016static void
20017do_vrint_1 (enum neon_cvt_mode mode)
20018{
9db2f6b4 20019 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
30bdf752
MGD
20020 struct neon_type_el et;
20021
20022 if (rs == NS_NULL)
20023 return;
20024
a715796b
TG
20025 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20026 D register operands. */
20027 if (neon_shape_class[rs] == SC_DOUBLE)
20028 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20029 _(BAD_FPU));
20030
9db2f6b4
RL
20031 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
20032 | N_VFP);
30bdf752
MGD
20033 if (et.type != NT_invtype)
20034 {
20035 /* VFP encodings. */
20036 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
20037 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
5ee91343 20038 set_pred_insn_type (OUTSIDE_PRED_INSN);
30bdf752
MGD
20039
20040 NEON_ENCODE (FPV8, inst);
9db2f6b4 20041 if (rs == NS_FF || rs == NS_HH)
30bdf752
MGD
20042 do_vfp_sp_monadic ();
20043 else
20044 do_vfp_dp_rd_rm ();
20045
20046 switch (mode)
20047 {
20048 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
20049 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
20050 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
20051 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
20052 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
20053 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
20054 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
20055 default: abort ();
20056 }
20057
20058 inst.instruction |= (rs == NS_DD) << 8;
20059 do_vfp_cond_or_thumb ();
9db2f6b4
RL
20060
20061 /* ARMv8.2 fp16 vrint instruction. */
20062 if (rs == NS_HH)
20063 do_scalar_fp16_v82_encode ();
30bdf752
MGD
20064 }
20065 else
20066 {
20067 /* Neon encodings (or something broken...). */
20068 inst.error = NULL;
cc933301 20069 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
30bdf752
MGD
20070
20071 if (et.type == NT_invtype)
20072 return;
20073
5ee91343 20074 set_pred_insn_type (OUTSIDE_PRED_INSN);
30bdf752
MGD
20075 NEON_ENCODE (FLOAT, inst);
20076
20077 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
20078 return;
20079
20080 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20081 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20082 inst.instruction |= LOW4 (inst.operands[1].reg);
20083 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20084 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
20085 /* Mask off the original size bits and reencode them. */
20086 inst.instruction = ((inst.instruction & 0xfff3ffff)
20087 | neon_logbits (et.size) << 18);
20088
30bdf752
MGD
20089 switch (mode)
20090 {
20091 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
20092 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
20093 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
20094 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
20095 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
20096 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
20097 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
20098 default: abort ();
20099 }
20100
20101 if (thumb_mode)
20102 inst.instruction |= 0xfc000000;
20103 else
20104 inst.instruction |= 0xf0000000;
20105 }
20106}
20107
20108static void
20109do_vrintx (void)
20110{
20111 do_vrint_1 (neon_cvt_mode_x);
20112}
20113
20114static void
20115do_vrintz (void)
20116{
20117 do_vrint_1 (neon_cvt_mode_z);
20118}
20119
20120static void
20121do_vrintr (void)
20122{
20123 do_vrint_1 (neon_cvt_mode_r);
20124}
20125
20126static void
20127do_vrinta (void)
20128{
20129 do_vrint_1 (neon_cvt_mode_a);
20130}
20131
20132static void
20133do_vrintn (void)
20134{
20135 do_vrint_1 (neon_cvt_mode_n);
20136}
20137
20138static void
20139do_vrintp (void)
20140{
20141 do_vrint_1 (neon_cvt_mode_p);
20142}
20143
20144static void
20145do_vrintm (void)
20146{
20147 do_vrint_1 (neon_cvt_mode_m);
20148}
20149
c28eeff2
SN
20150static unsigned
20151neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
20152{
20153 unsigned regno = NEON_SCALAR_REG (opnd);
20154 unsigned elno = NEON_SCALAR_INDEX (opnd);
20155
20156 if (elsize == 16 && elno < 2 && regno < 16)
20157 return regno | (elno << 4);
20158 else if (elsize == 32 && elno == 0)
20159 return regno;
20160
20161 first_error (_("scalar out of range"));
20162 return 0;
20163}
20164
20165static void
20166do_vcmla (void)
20167{
5d281bf0
AV
20168 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
20169 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20170 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
20171 constraint (inst.relocs[0].exp.X_op != O_constant,
20172 _("expression too complex"));
20173 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2
SN
20174 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
20175 _("immediate out of range"));
20176 rot /= 90;
5d281bf0
AV
20177
20178 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8 | NEON_CHECK_CC))
20179 return;
20180
c28eeff2
SN
20181 if (inst.operands[2].isscalar)
20182 {
5d281bf0
AV
20183 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20184 first_error (_("invalid instruction shape"));
c28eeff2
SN
20185 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
20186 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20187 N_KEY | N_F16 | N_F32).size;
20188 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
20189 inst.is_neon = 1;
20190 inst.instruction = 0xfe000800;
20191 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20192 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20193 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20194 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20195 inst.instruction |= LOW4 (m);
20196 inst.instruction |= HI1 (m) << 5;
20197 inst.instruction |= neon_quad (rs) << 6;
20198 inst.instruction |= rot << 20;
20199 inst.instruction |= (size == 32) << 23;
20200 }
20201 else
20202 {
5d281bf0
AV
20203 enum neon_shape rs;
20204 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20205 rs = neon_select_shape (NS_QQQI, NS_NULL);
20206 else
20207 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20208
c28eeff2
SN
20209 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20210 N_KEY | N_F16 | N_F32).size;
5d281bf0
AV
20211 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
20212 && (inst.operands[0].reg == inst.operands[1].reg
20213 || inst.operands[0].reg == inst.operands[2].reg))
20214 as_tsktsk (BAD_MVE_SRCDEST);
20215
c28eeff2
SN
20216 neon_three_same (neon_quad (rs), 0, -1);
20217 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20218 inst.instruction |= 0xfc200800;
20219 inst.instruction |= rot << 23;
20220 inst.instruction |= (size == 32) << 20;
20221 }
20222}
20223
20224static void
20225do_vcadd (void)
20226{
5d281bf0
AV
20227 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20228 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20229 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
20230 constraint (inst.relocs[0].exp.X_op != O_constant,
20231 _("expression too complex"));
5d281bf0 20232
e2b0ab59 20233 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2 20234 constraint (rot != 90 && rot != 270, _("immediate out of range"));
5d281bf0
AV
20235 enum neon_shape rs;
20236 struct neon_type_el et;
20237 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20238 {
20239 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20240 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
20241 }
20242 else
20243 {
20244 rs = neon_select_shape (NS_QQQI, NS_NULL);
20245 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
20246 | N_I16 | N_I32);
20247 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
20248 as_tsktsk (_("Warning: 32-bit element size and same first and third "
20249 "operand makes instruction UNPREDICTABLE"));
20250 }
20251
20252 if (et.type == NT_invtype)
20253 return;
20254
20255 if (check_simd_pred_availability (et.type == NT_float, NEON_CHECK_ARCH8
20256 | NEON_CHECK_CC))
20257 return;
20258
20259 if (et.type == NT_float)
20260 {
20261 neon_three_same (neon_quad (rs), 0, -1);
20262 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20263 inst.instruction |= 0xfc800800;
20264 inst.instruction |= (rot == 270) << 24;
20265 inst.instruction |= (et.size == 32) << 20;
20266 }
20267 else
20268 {
20269 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
20270 inst.instruction = 0xfe000f00;
20271 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20272 inst.instruction |= neon_logbits (et.size) << 20;
20273 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20274 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20275 inst.instruction |= (rot == 270) << 12;
20276 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20277 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20278 inst.instruction |= LOW4 (inst.operands[2].reg);
20279 inst.is_neon = 1;
20280 }
c28eeff2
SN
20281}
20282
c604a79a
JW
20283/* Dot Product instructions encoding support. */
20284
20285static void
20286do_neon_dotproduct (int unsigned_p)
20287{
20288 enum neon_shape rs;
20289 unsigned scalar_oprd2 = 0;
20290 int high8;
20291
20292 if (inst.cond != COND_ALWAYS)
20293 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
20294 "is UNPREDICTABLE"));
20295
20296 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
20297 _(BAD_FPU));
20298
20299 /* Dot Product instructions are in three-same D/Q register format or the third
20300 operand can be a scalar index register. */
20301 if (inst.operands[2].isscalar)
20302 {
20303 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
20304 high8 = 0xfe000000;
20305 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
20306 }
20307 else
20308 {
20309 high8 = 0xfc000000;
20310 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
20311 }
20312
20313 if (unsigned_p)
20314 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
20315 else
20316 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
20317
20318 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
20319 Product instruction, so we pass 0 as the "ubit" parameter. And the
20320 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
20321 neon_three_same (neon_quad (rs), 0, 32);
20322
20323 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
20324 different NEON three-same encoding. */
20325 inst.instruction &= 0x00ffffff;
20326 inst.instruction |= high8;
20327 /* Encode 'U' bit which indicates signedness. */
20328 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
20329 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
20330 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
20331 the instruction encoding. */
20332 if (inst.operands[2].isscalar)
20333 {
20334 inst.instruction &= 0xffffffd0;
20335 inst.instruction |= LOW4 (scalar_oprd2);
20336 inst.instruction |= HI1 (scalar_oprd2) << 5;
20337 }
20338}
20339
20340/* Dot Product instructions for signed integer. */
20341
20342static void
20343do_neon_dotproduct_s (void)
20344{
20345 return do_neon_dotproduct (0);
20346}
20347
20348/* Dot Product instructions for unsigned integer. */
20349
20350static void
20351do_neon_dotproduct_u (void)
20352{
20353 return do_neon_dotproduct (1);
20354}
20355
91ff7894
MGD
20356/* Crypto v1 instructions. */
20357static void
20358do_crypto_2op_1 (unsigned elttype, int op)
20359{
5ee91343 20360 set_pred_insn_type (OUTSIDE_PRED_INSN);
91ff7894
MGD
20361
20362 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
20363 == NT_invtype)
20364 return;
20365
20366 inst.error = NULL;
20367
20368 NEON_ENCODE (INTEGER, inst);
20369 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20370 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20371 inst.instruction |= LOW4 (inst.operands[1].reg);
20372 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20373 if (op != -1)
20374 inst.instruction |= op << 6;
20375
20376 if (thumb_mode)
20377 inst.instruction |= 0xfc000000;
20378 else
20379 inst.instruction |= 0xf0000000;
20380}
20381
48adcd8e
MGD
20382static void
20383do_crypto_3op_1 (int u, int op)
20384{
5ee91343 20385 set_pred_insn_type (OUTSIDE_PRED_INSN);
48adcd8e
MGD
20386
20387 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
20388 N_32 | N_UNT | N_KEY).type == NT_invtype)
20389 return;
20390
20391 inst.error = NULL;
20392
20393 NEON_ENCODE (INTEGER, inst);
20394 neon_three_same (1, u, 8 << op);
20395}
20396
91ff7894
MGD
20397static void
20398do_aese (void)
20399{
20400 do_crypto_2op_1 (N_8, 0);
20401}
20402
20403static void
20404do_aesd (void)
20405{
20406 do_crypto_2op_1 (N_8, 1);
20407}
20408
20409static void
20410do_aesmc (void)
20411{
20412 do_crypto_2op_1 (N_8, 2);
20413}
20414
20415static void
20416do_aesimc (void)
20417{
20418 do_crypto_2op_1 (N_8, 3);
20419}
20420
48adcd8e
MGD
20421static void
20422do_sha1c (void)
20423{
20424 do_crypto_3op_1 (0, 0);
20425}
20426
20427static void
20428do_sha1p (void)
20429{
20430 do_crypto_3op_1 (0, 1);
20431}
20432
20433static void
20434do_sha1m (void)
20435{
20436 do_crypto_3op_1 (0, 2);
20437}
20438
20439static void
20440do_sha1su0 (void)
20441{
20442 do_crypto_3op_1 (0, 3);
20443}
91ff7894 20444
48adcd8e
MGD
20445static void
20446do_sha256h (void)
20447{
20448 do_crypto_3op_1 (1, 0);
20449}
20450
20451static void
20452do_sha256h2 (void)
20453{
20454 do_crypto_3op_1 (1, 1);
20455}
20456
20457static void
20458do_sha256su1 (void)
20459{
20460 do_crypto_3op_1 (1, 2);
20461}
3c9017d2
MGD
20462
20463static void
20464do_sha1h (void)
20465{
20466 do_crypto_2op_1 (N_32, -1);
20467}
20468
20469static void
20470do_sha1su1 (void)
20471{
20472 do_crypto_2op_1 (N_32, 0);
20473}
20474
20475static void
20476do_sha256su0 (void)
20477{
20478 do_crypto_2op_1 (N_32, 1);
20479}
dd5181d5
KT
20480
20481static void
20482do_crc32_1 (unsigned int poly, unsigned int sz)
20483{
20484 unsigned int Rd = inst.operands[0].reg;
20485 unsigned int Rn = inst.operands[1].reg;
20486 unsigned int Rm = inst.operands[2].reg;
20487
5ee91343 20488 set_pred_insn_type (OUTSIDE_PRED_INSN);
dd5181d5
KT
20489 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
20490 inst.instruction |= LOW4 (Rn) << 16;
20491 inst.instruction |= LOW4 (Rm);
20492 inst.instruction |= sz << (thumb_mode ? 4 : 21);
20493 inst.instruction |= poly << (thumb_mode ? 20 : 9);
20494
20495 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
20496 as_warn (UNPRED_REG ("r15"));
dd5181d5
KT
20497}
20498
20499static void
20500do_crc32b (void)
20501{
20502 do_crc32_1 (0, 0);
20503}
20504
20505static void
20506do_crc32h (void)
20507{
20508 do_crc32_1 (0, 1);
20509}
20510
20511static void
20512do_crc32w (void)
20513{
20514 do_crc32_1 (0, 2);
20515}
20516
20517static void
20518do_crc32cb (void)
20519{
20520 do_crc32_1 (1, 0);
20521}
20522
20523static void
20524do_crc32ch (void)
20525{
20526 do_crc32_1 (1, 1);
20527}
20528
20529static void
20530do_crc32cw (void)
20531{
20532 do_crc32_1 (1, 2);
20533}
20534
49e8a725
SN
20535static void
20536do_vjcvt (void)
20537{
20538 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20539 _(BAD_FPU));
20540 neon_check_type (2, NS_FD, N_S32, N_F64);
20541 do_vfp_sp_dp_cvt ();
20542 do_vfp_cond_or_thumb ();
20543}
20544
5287ad62
JB
20545\f
20546/* Overall per-instruction processing. */
20547
20548/* We need to be able to fix up arbitrary expressions in some statements.
20549 This is so that we can handle symbols that are an arbitrary distance from
20550 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20551 which returns part of an address in a form which will be valid for
20552 a data instruction. We do this by pushing the expression into a symbol
20553 in the expr_section, and creating a fix for that. */
20554
20555static void
20556fix_new_arm (fragS * frag,
20557 int where,
20558 short int size,
20559 expressionS * exp,
20560 int pc_rel,
20561 int reloc)
20562{
20563 fixS * new_fix;
20564
20565 switch (exp->X_op)
20566 {
20567 case O_constant:
6e7ce2cd
PB
20568 if (pc_rel)
20569 {
20570 /* Create an absolute valued symbol, so we have something to
477330fc
RM
20571 refer to in the object file. Unfortunately for us, gas's
20572 generic expression parsing will already have folded out
20573 any use of .set foo/.type foo %function that may have
20574 been used to set type information of the target location,
20575 that's being specified symbolically. We have to presume
20576 the user knows what they are doing. */
6e7ce2cd
PB
20577 char name[16 + 8];
20578 symbolS *symbol;
20579
20580 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
20581
20582 symbol = symbol_find_or_make (name);
20583 S_SET_SEGMENT (symbol, absolute_section);
20584 symbol_set_frag (symbol, &zero_address_frag);
20585 S_SET_VALUE (symbol, exp->X_add_number);
20586 exp->X_op = O_symbol;
20587 exp->X_add_symbol = symbol;
20588 exp->X_add_number = 0;
20589 }
20590 /* FALLTHROUGH */
5287ad62
JB
20591 case O_symbol:
20592 case O_add:
20593 case O_subtract:
21d799b5 20594 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
477330fc 20595 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
20596 break;
20597
20598 default:
21d799b5 20599 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
477330fc 20600 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
20601 break;
20602 }
20603
20604 /* Mark whether the fix is to a THUMB instruction, or an ARM
20605 instruction. */
20606 new_fix->tc_fix_data = thumb_mode;
20607}
20608
20609/* Create a frg for an instruction requiring relaxation. */
20610static void
20611output_relax_insn (void)
20612{
20613 char * to;
20614 symbolS *sym;
0110f2b8
PB
20615 int offset;
20616
6e1cb1a6
PB
20617 /* The size of the instruction is unknown, so tie the debug info to the
20618 start of the instruction. */
20619 dwarf2_emit_insn (0);
6e1cb1a6 20620
e2b0ab59 20621 switch (inst.relocs[0].exp.X_op)
0110f2b8
PB
20622 {
20623 case O_symbol:
e2b0ab59
AV
20624 sym = inst.relocs[0].exp.X_add_symbol;
20625 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
20626 break;
20627 case O_constant:
20628 sym = NULL;
e2b0ab59 20629 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
20630 break;
20631 default:
e2b0ab59 20632 sym = make_expr_symbol (&inst.relocs[0].exp);
0110f2b8
PB
20633 offset = 0;
20634 break;
20635 }
20636 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
20637 inst.relax, sym, offset, NULL/*offset, opcode*/);
20638 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
20639}
20640
20641/* Write a 32-bit thumb instruction to buf. */
20642static void
20643put_thumb32_insn (char * buf, unsigned long insn)
20644{
20645 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
20646 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
20647}
20648
b99bd4ef 20649static void
c19d1205 20650output_inst (const char * str)
b99bd4ef 20651{
c19d1205 20652 char * to = NULL;
b99bd4ef 20653
c19d1205 20654 if (inst.error)
b99bd4ef 20655 {
c19d1205 20656 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
20657 return;
20658 }
5f4273c7
NC
20659 if (inst.relax)
20660 {
20661 output_relax_insn ();
0110f2b8 20662 return;
5f4273c7 20663 }
c19d1205
ZW
20664 if (inst.size == 0)
20665 return;
b99bd4ef 20666
c19d1205 20667 to = frag_more (inst.size);
8dc2430f
NC
20668 /* PR 9814: Record the thumb mode into the current frag so that we know
20669 what type of NOP padding to use, if necessary. We override any previous
20670 setting so that if the mode has changed then the NOPS that we use will
20671 match the encoding of the last instruction in the frag. */
cd000bff 20672 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
20673
20674 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 20675 {
9c2799c2 20676 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 20677 put_thumb32_insn (to, inst.instruction);
b99bd4ef 20678 }
c19d1205 20679 else if (inst.size > INSN_SIZE)
b99bd4ef 20680 {
9c2799c2 20681 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
20682 md_number_to_chars (to, inst.instruction, INSN_SIZE);
20683 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 20684 }
c19d1205
ZW
20685 else
20686 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 20687
e2b0ab59
AV
20688 int r;
20689 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
20690 {
20691 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
20692 fix_new_arm (frag_now, to - frag_now->fr_literal,
20693 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
20694 inst.relocs[r].type);
20695 }
b99bd4ef 20696
c19d1205 20697 dwarf2_emit_insn (inst.size);
c19d1205 20698}
b99bd4ef 20699
e07e6e58
NC
20700static char *
20701output_it_inst (int cond, int mask, char * to)
20702{
20703 unsigned long instruction = 0xbf00;
20704
20705 mask &= 0xf;
20706 instruction |= mask;
20707 instruction |= cond << 4;
20708
20709 if (to == NULL)
20710 {
20711 to = frag_more (2);
20712#ifdef OBJ_ELF
20713 dwarf2_emit_insn (2);
20714#endif
20715 }
20716
20717 md_number_to_chars (to, instruction, 2);
20718
20719 return to;
20720}
20721
c19d1205
ZW
20722/* Tag values used in struct asm_opcode's tag field. */
20723enum opcode_tag
20724{
20725 OT_unconditional, /* Instruction cannot be conditionalized.
20726 The ARM condition field is still 0xE. */
20727 OT_unconditionalF, /* Instruction cannot be conditionalized
20728 and carries 0xF in its ARM condition field. */
20729 OT_csuffix, /* Instruction takes a conditional suffix. */
5ee91343
AV
20730 OT_csuffixF, /* Some forms of the instruction take a scalar
20731 conditional suffix, others place 0xF where the
20732 condition field would be, others take a vector
20733 conditional suffix. */
c19d1205
ZW
20734 OT_cinfix3, /* Instruction takes a conditional infix,
20735 beginning at character index 3. (In
20736 unified mode, it becomes a suffix.) */
088fa78e
KH
20737 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
20738 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
20739 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
20740 character index 3, even in unified mode. Used for
20741 legacy instructions where suffix and infix forms
20742 may be ambiguous. */
c19d1205 20743 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 20744 suffix or an infix at character index 3. */
c19d1205
ZW
20745 OT_odd_infix_unc, /* This is the unconditional variant of an
20746 instruction that takes a conditional infix
20747 at an unusual position. In unified mode,
20748 this variant will accept a suffix. */
20749 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
20750 are the conditional variants of instructions that
20751 take conditional infixes in unusual positions.
20752 The infix appears at character index
20753 (tag - OT_odd_infix_0). These are not accepted
20754 in unified mode. */
20755};
b99bd4ef 20756
c19d1205
ZW
20757/* Subroutine of md_assemble, responsible for looking up the primary
20758 opcode from the mnemonic the user wrote. STR points to the
20759 beginning of the mnemonic.
20760
20761 This is not simply a hash table lookup, because of conditional
20762 variants. Most instructions have conditional variants, which are
20763 expressed with a _conditional affix_ to the mnemonic. If we were
20764 to encode each conditional variant as a literal string in the opcode
20765 table, it would have approximately 20,000 entries.
20766
20767 Most mnemonics take this affix as a suffix, and in unified syntax,
20768 'most' is upgraded to 'all'. However, in the divided syntax, some
20769 instructions take the affix as an infix, notably the s-variants of
20770 the arithmetic instructions. Of those instructions, all but six
20771 have the infix appear after the third character of the mnemonic.
20772
20773 Accordingly, the algorithm for looking up primary opcodes given
20774 an identifier is:
20775
20776 1. Look up the identifier in the opcode table.
20777 If we find a match, go to step U.
20778
20779 2. Look up the last two characters of the identifier in the
20780 conditions table. If we find a match, look up the first N-2
20781 characters of the identifier in the opcode table. If we
20782 find a match, go to step CE.
20783
20784 3. Look up the fourth and fifth characters of the identifier in
20785 the conditions table. If we find a match, extract those
20786 characters from the identifier, and look up the remaining
20787 characters in the opcode table. If we find a match, go
20788 to step CM.
20789
20790 4. Fail.
20791
20792 U. Examine the tag field of the opcode structure, in case this is
20793 one of the six instructions with its conditional infix in an
20794 unusual place. If it is, the tag tells us where to find the
20795 infix; look it up in the conditions table and set inst.cond
20796 accordingly. Otherwise, this is an unconditional instruction.
20797 Again set inst.cond accordingly. Return the opcode structure.
20798
20799 CE. Examine the tag field to make sure this is an instruction that
20800 should receive a conditional suffix. If it is not, fail.
20801 Otherwise, set inst.cond from the suffix we already looked up,
20802 and return the opcode structure.
20803
20804 CM. Examine the tag field to make sure this is an instruction that
20805 should receive a conditional infix after the third character.
20806 If it is not, fail. Otherwise, undo the edits to the current
20807 line of input and proceed as for case CE. */
20808
20809static const struct asm_opcode *
20810opcode_lookup (char **str)
20811{
20812 char *end, *base;
20813 char *affix;
20814 const struct asm_opcode *opcode;
20815 const struct asm_cond *cond;
e3cb604e 20816 char save[2];
c19d1205
ZW
20817
20818 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 20819 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 20820 for (base = end = *str; *end != '\0'; end++)
721a8186 20821 if (*end == ' ' || *end == '.')
c19d1205 20822 break;
b99bd4ef 20823
c19d1205 20824 if (end == base)
c921be7d 20825 return NULL;
b99bd4ef 20826
5287ad62 20827 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 20828 if (end[0] == '.')
b99bd4ef 20829 {
5287ad62 20830 int offset = 2;
5f4273c7 20831
267d2029 20832 /* The .w and .n suffixes are only valid if the unified syntax is in
477330fc 20833 use. */
267d2029 20834 if (unified_syntax && end[1] == 'w')
c19d1205 20835 inst.size_req = 4;
267d2029 20836 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
20837 inst.size_req = 2;
20838 else
477330fc 20839 offset = 0;
5287ad62
JB
20840
20841 inst.vectype.elems = 0;
20842
20843 *str = end + offset;
b99bd4ef 20844
5f4273c7 20845 if (end[offset] == '.')
5287ad62 20846 {
267d2029 20847 /* See if we have a Neon type suffix (possible in either unified or
477330fc
RM
20848 non-unified ARM syntax mode). */
20849 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 20850 return NULL;
477330fc 20851 }
5287ad62 20852 else if (end[offset] != '\0' && end[offset] != ' ')
477330fc 20853 return NULL;
b99bd4ef 20854 }
c19d1205
ZW
20855 else
20856 *str = end;
b99bd4ef 20857
c19d1205 20858 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5 20859 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 20860 end - base);
c19d1205 20861 if (opcode)
b99bd4ef 20862 {
c19d1205
ZW
20863 /* step U */
20864 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 20865 {
c19d1205
ZW
20866 inst.cond = COND_ALWAYS;
20867 return opcode;
b99bd4ef 20868 }
b99bd4ef 20869
278df34e 20870 if (warn_on_deprecated && unified_syntax)
5c3696f8 20871 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205 20872 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 20873 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 20874 gas_assert (cond);
b99bd4ef 20875
c19d1205
ZW
20876 inst.cond = cond->value;
20877 return opcode;
20878 }
5ee91343
AV
20879 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20880 {
20881 /* Cannot have a conditional suffix on a mnemonic of less than a character.
20882 */
20883 if (end - base < 2)
20884 return NULL;
20885 affix = end - 1;
20886 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
20887 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20888 affix - base);
20889 /* If this opcode can not be vector predicated then don't accept it with a
20890 vector predication code. */
20891 if (opcode && !opcode->mayBeVecPred)
20892 opcode = NULL;
20893 }
20894 if (!opcode || !cond)
20895 {
20896 /* Cannot have a conditional suffix on a mnemonic of less than two
20897 characters. */
20898 if (end - base < 3)
20899 return NULL;
b99bd4ef 20900
5ee91343
AV
20901 /* Look for suffixed mnemonic. */
20902 affix = end - 2;
20903 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20904 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20905 affix - base);
20906 }
b99bd4ef 20907
c19d1205
ZW
20908 if (opcode && cond)
20909 {
20910 /* step CE */
20911 switch (opcode->tag)
20912 {
e3cb604e
PB
20913 case OT_cinfix3_legacy:
20914 /* Ignore conditional suffixes matched on infix only mnemonics. */
20915 break;
20916
c19d1205 20917 case OT_cinfix3:
088fa78e 20918 case OT_cinfix3_deprecated:
c19d1205
ZW
20919 case OT_odd_infix_unc:
20920 if (!unified_syntax)
0198d5e6 20921 return NULL;
1a0670f3 20922 /* Fall through. */
c19d1205
ZW
20923
20924 case OT_csuffix:
477330fc 20925 case OT_csuffixF:
c19d1205
ZW
20926 case OT_csuf_or_in3:
20927 inst.cond = cond->value;
20928 return opcode;
20929
20930 case OT_unconditional:
20931 case OT_unconditionalF:
dfa9f0d5 20932 if (thumb_mode)
c921be7d 20933 inst.cond = cond->value;
dfa9f0d5
PB
20934 else
20935 {
c921be7d 20936 /* Delayed diagnostic. */
dfa9f0d5
PB
20937 inst.error = BAD_COND;
20938 inst.cond = COND_ALWAYS;
20939 }
c19d1205 20940 return opcode;
b99bd4ef 20941
c19d1205 20942 default:
c921be7d 20943 return NULL;
c19d1205
ZW
20944 }
20945 }
b99bd4ef 20946
c19d1205
ZW
20947 /* Cannot have a usual-position infix on a mnemonic of less than
20948 six characters (five would be a suffix). */
20949 if (end - base < 6)
c921be7d 20950 return NULL;
b99bd4ef 20951
c19d1205
ZW
20952 /* Look for infixed mnemonic in the usual position. */
20953 affix = base + 3;
21d799b5 20954 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 20955 if (!cond)
c921be7d 20956 return NULL;
e3cb604e
PB
20957
20958 memcpy (save, affix, 2);
20959 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5 20960 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 20961 (end - base) - 2);
e3cb604e
PB
20962 memmove (affix + 2, affix, (end - affix) - 2);
20963 memcpy (affix, save, 2);
20964
088fa78e
KH
20965 if (opcode
20966 && (opcode->tag == OT_cinfix3
20967 || opcode->tag == OT_cinfix3_deprecated
20968 || opcode->tag == OT_csuf_or_in3
20969 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 20970 {
c921be7d 20971 /* Step CM. */
278df34e 20972 if (warn_on_deprecated && unified_syntax
088fa78e
KH
20973 && (opcode->tag == OT_cinfix3
20974 || opcode->tag == OT_cinfix3_deprecated))
5c3696f8 20975 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205
ZW
20976
20977 inst.cond = cond->value;
20978 return opcode;
b99bd4ef
NC
20979 }
20980
c921be7d 20981 return NULL;
b99bd4ef
NC
20982}
20983
e07e6e58
NC
20984/* This function generates an initial IT instruction, leaving its block
20985 virtually open for the new instructions. Eventually,
5ee91343 20986 the mask will be updated by now_pred_add_mask () each time
e07e6e58
NC
20987 a new instruction needs to be included in the IT block.
20988 Finally, the block is closed with close_automatic_it_block ().
20989 The block closure can be requested either from md_assemble (),
20990 a tencode (), or due to a label hook. */
20991
20992static void
20993new_automatic_it_block (int cond)
20994{
5ee91343
AV
20995 now_pred.state = AUTOMATIC_PRED_BLOCK;
20996 now_pred.mask = 0x18;
20997 now_pred.cc = cond;
20998 now_pred.block_length = 1;
cd000bff 20999 mapping_state (MAP_THUMB);
5ee91343
AV
21000 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
21001 now_pred.warn_deprecated = FALSE;
21002 now_pred.insn_cond = TRUE;
e07e6e58
NC
21003}
21004
21005/* Close an automatic IT block.
21006 See comments in new_automatic_it_block (). */
21007
21008static void
21009close_automatic_it_block (void)
21010{
5ee91343
AV
21011 now_pred.mask = 0x10;
21012 now_pred.block_length = 0;
e07e6e58
NC
21013}
21014
21015/* Update the mask of the current automatically-generated IT
21016 instruction. See comments in new_automatic_it_block (). */
21017
21018static void
5ee91343 21019now_pred_add_mask (int cond)
e07e6e58
NC
21020{
21021#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
21022#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
477330fc 21023 | ((bitvalue) << (nbit)))
e07e6e58 21024 const int resulting_bit = (cond & 1);
c921be7d 21025
5ee91343
AV
21026 now_pred.mask &= 0xf;
21027 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 21028 resulting_bit,
5ee91343
AV
21029 (5 - now_pred.block_length));
21030 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 21031 1,
5ee91343
AV
21032 ((5 - now_pred.block_length) - 1));
21033 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
e07e6e58
NC
21034
21035#undef CLEAR_BIT
21036#undef SET_BIT_VALUE
e07e6e58
NC
21037}
21038
21039/* The IT blocks handling machinery is accessed through the these functions:
21040 it_fsm_pre_encode () from md_assemble ()
5ee91343
AV
21041 set_pred_insn_type () optional, from the tencode functions
21042 set_pred_insn_type_last () ditto
21043 in_pred_block () ditto
e07e6e58 21044 it_fsm_post_encode () from md_assemble ()
33eaf5de 21045 force_automatic_it_block_close () from label handling functions
e07e6e58
NC
21046
21047 Rationale:
21048 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
477330fc
RM
21049 initializing the IT insn type with a generic initial value depending
21050 on the inst.condition.
e07e6e58 21051 2) During the tencode function, two things may happen:
477330fc 21052 a) The tencode function overrides the IT insn type by
5ee91343
AV
21053 calling either set_pred_insn_type (type) or
21054 set_pred_insn_type_last ().
477330fc 21055 b) The tencode function queries the IT block state by
5ee91343 21056 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
477330fc 21057
5ee91343
AV
21058 Both set_pred_insn_type and in_pred_block run the internal FSM state
21059 handling function (handle_pred_state), because: a) setting the IT insn
477330fc
RM
21060 type may incur in an invalid state (exiting the function),
21061 and b) querying the state requires the FSM to be updated.
21062 Specifically we want to avoid creating an IT block for conditional
21063 branches, so it_fsm_pre_encode is actually a guess and we can't
21064 determine whether an IT block is required until the tencode () routine
21065 has decided what type of instruction this actually it.
5ee91343
AV
21066 Because of this, if set_pred_insn_type and in_pred_block have to be
21067 used, set_pred_insn_type has to be called first.
477330fc 21068
5ee91343
AV
21069 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
21070 that determines the insn IT type depending on the inst.cond code.
477330fc
RM
21071 When a tencode () routine encodes an instruction that can be
21072 either outside an IT block, or, in the case of being inside, has to be
5ee91343 21073 the last one, set_pred_insn_type_last () will determine the proper
477330fc 21074 IT instruction type based on the inst.cond code. Otherwise,
5ee91343 21075 set_pred_insn_type can be called for overriding that logic or
477330fc
RM
21076 for covering other cases.
21077
5ee91343
AV
21078 Calling handle_pred_state () may not transition the IT block state to
21079 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
477330fc 21080 still queried. Instead, if the FSM determines that the state should
5ee91343 21081 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
477330fc
RM
21082 after the tencode () function: that's what it_fsm_post_encode () does.
21083
5ee91343 21084 Since in_pred_block () calls the state handling function to get an
477330fc
RM
21085 updated state, an error may occur (due to invalid insns combination).
21086 In that case, inst.error is set.
21087 Therefore, inst.error has to be checked after the execution of
21088 the tencode () routine.
e07e6e58
NC
21089
21090 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
477330fc 21091 any pending state change (if any) that didn't take place in
5ee91343 21092 handle_pred_state () as explained above. */
e07e6e58
NC
21093
21094static void
21095it_fsm_pre_encode (void)
21096{
21097 if (inst.cond != COND_ALWAYS)
5ee91343 21098 inst.pred_insn_type = INSIDE_IT_INSN;
e07e6e58 21099 else
5ee91343 21100 inst.pred_insn_type = OUTSIDE_PRED_INSN;
e07e6e58 21101
5ee91343 21102 now_pred.state_handled = 0;
e07e6e58
NC
21103}
21104
21105/* IT state FSM handling function. */
5ee91343
AV
21106/* MVE instructions and non-MVE instructions are handled differently because of
21107 the introduction of VPT blocks.
21108 Specifications say that any non-MVE instruction inside a VPT block is
21109 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
21110 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
35c228db 21111 few exceptions we have MVE_UNPREDICABLE_INSN.
5ee91343
AV
21112 The error messages provided depending on the different combinations possible
21113 are described in the cases below:
21114 For 'most' MVE instructions:
21115 1) In an IT block, with an IT code: syntax error
21116 2) In an IT block, with a VPT code: error: must be in a VPT block
21117 3) In an IT block, with no code: warning: UNPREDICTABLE
21118 4) In a VPT block, with an IT code: syntax error
21119 5) In a VPT block, with a VPT code: OK!
21120 6) In a VPT block, with no code: error: missing code
21121 7) Outside a pred block, with an IT code: error: syntax error
21122 8) Outside a pred block, with a VPT code: error: should be in a VPT block
21123 9) Outside a pred block, with no code: OK!
21124 For non-MVE instructions:
21125 10) In an IT block, with an IT code: OK!
21126 11) In an IT block, with a VPT code: syntax error
21127 12) In an IT block, with no code: error: missing code
21128 13) In a VPT block, with an IT code: error: should be in an IT block
21129 14) In a VPT block, with a VPT code: syntax error
21130 15) In a VPT block, with no code: UNPREDICTABLE
21131 16) Outside a pred block, with an IT code: error: should be in an IT block
21132 17) Outside a pred block, with a VPT code: syntax error
21133 18) Outside a pred block, with no code: OK!
21134 */
21135
e07e6e58
NC
21136
21137static int
5ee91343 21138handle_pred_state (void)
e07e6e58 21139{
5ee91343
AV
21140 now_pred.state_handled = 1;
21141 now_pred.insn_cond = FALSE;
e07e6e58 21142
5ee91343 21143 switch (now_pred.state)
e07e6e58 21144 {
5ee91343
AV
21145 case OUTSIDE_PRED_BLOCK:
21146 switch (inst.pred_insn_type)
e07e6e58 21147 {
35c228db 21148 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
21149 case MVE_OUTSIDE_PRED_INSN:
21150 if (inst.cond < COND_ALWAYS)
21151 {
21152 /* Case 7: Outside a pred block, with an IT code: error: syntax
21153 error. */
21154 inst.error = BAD_SYNTAX;
21155 return FAIL;
21156 }
21157 /* Case 9: Outside a pred block, with no code: OK! */
21158 break;
21159 case OUTSIDE_PRED_INSN:
21160 if (inst.cond > COND_ALWAYS)
21161 {
21162 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21163 */
21164 inst.error = BAD_SYNTAX;
21165 return FAIL;
21166 }
21167 /* Case 18: Outside a pred block, with no code: OK! */
e07e6e58
NC
21168 break;
21169
5ee91343
AV
21170 case INSIDE_VPT_INSN:
21171 /* Case 8: Outside a pred block, with a VPT code: error: should be in
21172 a VPT block. */
21173 inst.error = BAD_OUT_VPT;
21174 return FAIL;
21175
e07e6e58
NC
21176 case INSIDE_IT_INSN:
21177 case INSIDE_IT_LAST_INSN:
5ee91343 21178 if (inst.cond < COND_ALWAYS)
e07e6e58 21179 {
5ee91343
AV
21180 /* Case 16: Outside a pred block, with an IT code: error: should
21181 be in an IT block. */
21182 if (thumb_mode == 0)
e07e6e58 21183 {
5ee91343
AV
21184 if (unified_syntax
21185 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
21186 as_tsktsk (_("Warning: conditional outside an IT block"\
21187 " for Thumb."));
e07e6e58
NC
21188 }
21189 else
21190 {
5ee91343
AV
21191 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
21192 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
21193 {
21194 /* Automatically generate the IT instruction. */
21195 new_automatic_it_block (inst.cond);
21196 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
21197 close_automatic_it_block ();
21198 }
21199 else
21200 {
21201 inst.error = BAD_OUT_IT;
21202 return FAIL;
21203 }
e07e6e58 21204 }
5ee91343 21205 break;
e07e6e58 21206 }
5ee91343
AV
21207 else if (inst.cond > COND_ALWAYS)
21208 {
21209 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21210 */
21211 inst.error = BAD_SYNTAX;
21212 return FAIL;
21213 }
21214 else
21215 gas_assert (0);
e07e6e58
NC
21216 case IF_INSIDE_IT_LAST_INSN:
21217 case NEUTRAL_IT_INSN:
21218 break;
21219
5ee91343
AV
21220 case VPT_INSN:
21221 if (inst.cond != COND_ALWAYS)
21222 first_error (BAD_SYNTAX);
21223 now_pred.state = MANUAL_PRED_BLOCK;
21224 now_pred.block_length = 0;
21225 now_pred.type = VECTOR_PRED;
21226 now_pred.cc = 0;
21227 break;
e07e6e58 21228 case IT_INSN:
5ee91343
AV
21229 now_pred.state = MANUAL_PRED_BLOCK;
21230 now_pred.block_length = 0;
21231 now_pred.type = SCALAR_PRED;
e07e6e58
NC
21232 break;
21233 }
21234 break;
21235
5ee91343 21236 case AUTOMATIC_PRED_BLOCK:
e07e6e58
NC
21237 /* Three things may happen now:
21238 a) We should increment current it block size;
21239 b) We should close current it block (closing insn or 4 insns);
21240 c) We should close current it block and start a new one (due
21241 to incompatible conditions or
21242 4 insns-length block reached). */
21243
5ee91343 21244 switch (inst.pred_insn_type)
e07e6e58 21245 {
5ee91343
AV
21246 case INSIDE_VPT_INSN:
21247 case VPT_INSN:
35c228db 21248 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
21249 case MVE_OUTSIDE_PRED_INSN:
21250 gas_assert (0);
21251 case OUTSIDE_PRED_INSN:
2b0f3761 21252 /* The closure of the block shall happen immediately,
5ee91343 21253 so any in_pred_block () call reports the block as closed. */
e07e6e58
NC
21254 force_automatic_it_block_close ();
21255 break;
21256
21257 case INSIDE_IT_INSN:
21258 case INSIDE_IT_LAST_INSN:
21259 case IF_INSIDE_IT_LAST_INSN:
5ee91343 21260 now_pred.block_length++;
e07e6e58 21261
5ee91343
AV
21262 if (now_pred.block_length > 4
21263 || !now_pred_compatible (inst.cond))
e07e6e58
NC
21264 {
21265 force_automatic_it_block_close ();
5ee91343 21266 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
e07e6e58
NC
21267 new_automatic_it_block (inst.cond);
21268 }
21269 else
21270 {
5ee91343
AV
21271 now_pred.insn_cond = TRUE;
21272 now_pred_add_mask (inst.cond);
e07e6e58
NC
21273 }
21274
5ee91343
AV
21275 if (now_pred.state == AUTOMATIC_PRED_BLOCK
21276 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
21277 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
e07e6e58
NC
21278 close_automatic_it_block ();
21279 break;
21280
21281 case NEUTRAL_IT_INSN:
5ee91343
AV
21282 now_pred.block_length++;
21283 now_pred.insn_cond = TRUE;
e07e6e58 21284
5ee91343 21285 if (now_pred.block_length > 4)
e07e6e58
NC
21286 force_automatic_it_block_close ();
21287 else
5ee91343 21288 now_pred_add_mask (now_pred.cc & 1);
e07e6e58
NC
21289 break;
21290
21291 case IT_INSN:
21292 close_automatic_it_block ();
5ee91343 21293 now_pred.state = MANUAL_PRED_BLOCK;
e07e6e58
NC
21294 break;
21295 }
21296 break;
21297
5ee91343 21298 case MANUAL_PRED_BLOCK:
e07e6e58 21299 {
5ee91343
AV
21300 int cond, is_last;
21301 if (now_pred.type == SCALAR_PRED)
e07e6e58 21302 {
5ee91343
AV
21303 /* Check conditional suffixes. */
21304 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
21305 now_pred.mask <<= 1;
21306 now_pred.mask &= 0x1f;
21307 is_last = (now_pred.mask == 0x10);
21308 }
21309 else
21310 {
21311 now_pred.cc ^= (now_pred.mask >> 4);
21312 cond = now_pred.cc + 0xf;
21313 now_pred.mask <<= 1;
21314 now_pred.mask &= 0x1f;
21315 is_last = now_pred.mask == 0x10;
21316 }
21317 now_pred.insn_cond = TRUE;
e07e6e58 21318
5ee91343
AV
21319 switch (inst.pred_insn_type)
21320 {
21321 case OUTSIDE_PRED_INSN:
21322 if (now_pred.type == SCALAR_PRED)
21323 {
21324 if (inst.cond == COND_ALWAYS)
21325 {
21326 /* Case 12: In an IT block, with no code: error: missing
21327 code. */
21328 inst.error = BAD_NOT_IT;
21329 return FAIL;
21330 }
21331 else if (inst.cond > COND_ALWAYS)
21332 {
21333 /* Case 11: In an IT block, with a VPT code: syntax error.
21334 */
21335 inst.error = BAD_SYNTAX;
21336 return FAIL;
21337 }
21338 else if (thumb_mode)
21339 {
21340 /* This is for some special cases where a non-MVE
21341 instruction is not allowed in an IT block, such as cbz,
21342 but are put into one with a condition code.
21343 You could argue this should be a syntax error, but we
21344 gave the 'not allowed in IT block' diagnostic in the
21345 past so we will keep doing so. */
21346 inst.error = BAD_NOT_IT;
21347 return FAIL;
21348 }
21349 break;
21350 }
21351 else
21352 {
21353 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
21354 as_tsktsk (MVE_NOT_VPT);
21355 return SUCCESS;
21356 }
21357 case MVE_OUTSIDE_PRED_INSN:
21358 if (now_pred.type == SCALAR_PRED)
21359 {
21360 if (inst.cond == COND_ALWAYS)
21361 {
21362 /* Case 3: In an IT block, with no code: warning:
21363 UNPREDICTABLE. */
21364 as_tsktsk (MVE_NOT_IT);
21365 return SUCCESS;
21366 }
21367 else if (inst.cond < COND_ALWAYS)
21368 {
21369 /* Case 1: In an IT block, with an IT code: syntax error.
21370 */
21371 inst.error = BAD_SYNTAX;
21372 return FAIL;
21373 }
21374 else
21375 gas_assert (0);
21376 }
21377 else
21378 {
21379 if (inst.cond < COND_ALWAYS)
21380 {
21381 /* Case 4: In a VPT block, with an IT code: syntax error.
21382 */
21383 inst.error = BAD_SYNTAX;
21384 return FAIL;
21385 }
21386 else if (inst.cond == COND_ALWAYS)
21387 {
21388 /* Case 6: In a VPT block, with no code: error: missing
21389 code. */
21390 inst.error = BAD_NOT_VPT;
21391 return FAIL;
21392 }
21393 else
21394 {
21395 gas_assert (0);
21396 }
21397 }
35c228db
AV
21398 case MVE_UNPREDICABLE_INSN:
21399 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
21400 return SUCCESS;
e07e6e58 21401 case INSIDE_IT_INSN:
5ee91343 21402 if (inst.cond > COND_ALWAYS)
e07e6e58 21403 {
5ee91343
AV
21404 /* Case 11: In an IT block, with a VPT code: syntax error. */
21405 /* Case 14: In a VPT block, with a VPT code: syntax error. */
21406 inst.error = BAD_SYNTAX;
21407 return FAIL;
21408 }
21409 else if (now_pred.type == SCALAR_PRED)
21410 {
21411 /* Case 10: In an IT block, with an IT code: OK! */
21412 if (cond != inst.cond)
21413 {
21414 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
21415 BAD_VPT_COND;
21416 return FAIL;
21417 }
21418 }
21419 else
21420 {
21421 /* Case 13: In a VPT block, with an IT code: error: should be
21422 in an IT block. */
21423 inst.error = BAD_OUT_IT;
e07e6e58
NC
21424 return FAIL;
21425 }
21426 break;
21427
5ee91343
AV
21428 case INSIDE_VPT_INSN:
21429 if (now_pred.type == SCALAR_PRED)
21430 {
21431 /* Case 2: In an IT block, with a VPT code: error: must be in a
21432 VPT block. */
21433 inst.error = BAD_OUT_VPT;
21434 return FAIL;
21435 }
21436 /* Case 5: In a VPT block, with a VPT code: OK! */
21437 else if (cond != inst.cond)
21438 {
21439 inst.error = BAD_VPT_COND;
21440 return FAIL;
21441 }
21442 break;
e07e6e58
NC
21443 case INSIDE_IT_LAST_INSN:
21444 case IF_INSIDE_IT_LAST_INSN:
5ee91343
AV
21445 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
21446 {
21447 /* Case 4: In a VPT block, with an IT code: syntax error. */
21448 /* Case 11: In an IT block, with a VPT code: syntax error. */
21449 inst.error = BAD_SYNTAX;
21450 return FAIL;
21451 }
21452 else if (cond != inst.cond)
e07e6e58
NC
21453 {
21454 inst.error = BAD_IT_COND;
21455 return FAIL;
21456 }
21457 if (!is_last)
21458 {
21459 inst.error = BAD_BRANCH;
21460 return FAIL;
21461 }
21462 break;
21463
21464 case NEUTRAL_IT_INSN:
5ee91343
AV
21465 /* The BKPT instruction is unconditional even in a IT or VPT
21466 block. */
e07e6e58
NC
21467 break;
21468
21469 case IT_INSN:
5ee91343
AV
21470 if (now_pred.type == SCALAR_PRED)
21471 {
21472 inst.error = BAD_IT_IT;
21473 return FAIL;
21474 }
21475 /* fall through. */
21476 case VPT_INSN:
21477 if (inst.cond == COND_ALWAYS)
21478 {
21479 /* Executing a VPT/VPST instruction inside an IT block or a
21480 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21481 */
21482 if (now_pred.type == SCALAR_PRED)
21483 as_tsktsk (MVE_NOT_IT);
21484 else
21485 as_tsktsk (MVE_NOT_VPT);
21486 return SUCCESS;
21487 }
21488 else
21489 {
21490 /* VPT/VPST do not accept condition codes. */
21491 inst.error = BAD_SYNTAX;
21492 return FAIL;
21493 }
e07e6e58 21494 }
5ee91343 21495 }
e07e6e58
NC
21496 break;
21497 }
21498
21499 return SUCCESS;
21500}
21501
5a01bb1d
MGD
21502struct depr_insn_mask
21503{
21504 unsigned long pattern;
21505 unsigned long mask;
21506 const char* description;
21507};
21508
21509/* List of 16-bit instruction patterns deprecated in an IT block in
21510 ARMv8. */
21511static const struct depr_insn_mask depr_it_insns[] = {
21512 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
21513 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
21514 { 0xa000, 0xb800, N_("ADR") },
21515 { 0x4800, 0xf800, N_("Literal loads") },
21516 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
21517 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
c8de034b
JW
21518 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
21519 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
21520 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
5a01bb1d
MGD
21521 { 0, 0, NULL }
21522};
21523
e07e6e58
NC
21524static void
21525it_fsm_post_encode (void)
21526{
21527 int is_last;
21528
5ee91343
AV
21529 if (!now_pred.state_handled)
21530 handle_pred_state ();
e07e6e58 21531
5ee91343
AV
21532 if (now_pred.insn_cond
21533 && !now_pred.warn_deprecated
5a01bb1d 21534 && warn_on_deprecated
df9909b8
TP
21535 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
21536 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
5a01bb1d
MGD
21537 {
21538 if (inst.instruction >= 0x10000)
21539 {
5c3696f8 21540 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
df9909b8 21541 "performance deprecated in ARMv8-A and ARMv8-R"));
5ee91343 21542 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21543 }
21544 else
21545 {
21546 const struct depr_insn_mask *p = depr_it_insns;
21547
21548 while (p->mask != 0)
21549 {
21550 if ((inst.instruction & p->mask) == p->pattern)
21551 {
df9909b8
TP
21552 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21553 "instructions of the following class are "
21554 "performance deprecated in ARMv8-A and "
21555 "ARMv8-R: %s"), p->description);
5ee91343 21556 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21557 break;
21558 }
21559
21560 ++p;
21561 }
21562 }
21563
5ee91343 21564 if (now_pred.block_length > 1)
5a01bb1d 21565 {
5c3696f8 21566 as_tsktsk (_("IT blocks containing more than one conditional "
df9909b8
TP
21567 "instruction are performance deprecated in ARMv8-A and "
21568 "ARMv8-R"));
5ee91343 21569 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21570 }
21571 }
21572
5ee91343
AV
21573 is_last = (now_pred.mask == 0x10);
21574 if (is_last)
21575 {
21576 now_pred.state = OUTSIDE_PRED_BLOCK;
21577 now_pred.mask = 0;
21578 }
e07e6e58
NC
21579}
21580
21581static void
21582force_automatic_it_block_close (void)
21583{
5ee91343 21584 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
e07e6e58
NC
21585 {
21586 close_automatic_it_block ();
5ee91343
AV
21587 now_pred.state = OUTSIDE_PRED_BLOCK;
21588 now_pred.mask = 0;
e07e6e58
NC
21589 }
21590}
21591
21592static int
5ee91343 21593in_pred_block (void)
e07e6e58 21594{
5ee91343
AV
21595 if (!now_pred.state_handled)
21596 handle_pred_state ();
e07e6e58 21597
5ee91343 21598 return now_pred.state != OUTSIDE_PRED_BLOCK;
e07e6e58
NC
21599}
21600
ff8646ee
TP
21601/* Whether OPCODE only has T32 encoding. Since this function is only used by
21602 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21603 here, hence the "known" in the function name. */
fc289b0a
TP
21604
21605static bfd_boolean
ff8646ee 21606known_t32_only_insn (const struct asm_opcode *opcode)
fc289b0a
TP
21607{
21608 /* Original Thumb-1 wide instruction. */
21609 if (opcode->tencode == do_t_blx
21610 || opcode->tencode == do_t_branch23
21611 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
21612 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
21613 return TRUE;
21614
16a1fa25
TP
21615 /* Wide-only instruction added to ARMv8-M Baseline. */
21616 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
ff8646ee
TP
21617 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
21618 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
21619 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
21620 return TRUE;
21621
21622 return FALSE;
21623}
21624
21625/* Whether wide instruction variant can be used if available for a valid OPCODE
21626 in ARCH. */
21627
21628static bfd_boolean
21629t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
21630{
21631 if (known_t32_only_insn (opcode))
21632 return TRUE;
21633
21634 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21635 of variant T3 of B.W is checked in do_t_branch. */
21636 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21637 && opcode->tencode == do_t_branch)
21638 return TRUE;
21639
bada4342
JW
21640 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21641 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21642 && opcode->tencode == do_t_mov_cmp
21643 /* Make sure CMP instruction is not affected. */
21644 && opcode->aencode == do_mov)
21645 return TRUE;
21646
ff8646ee
TP
21647 /* Wide instruction variants of all instructions with narrow *and* wide
21648 variants become available with ARMv6t2. Other opcodes are either
21649 narrow-only or wide-only and are thus available if OPCODE is valid. */
21650 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
21651 return TRUE;
21652
21653 /* OPCODE with narrow only instruction variant or wide variant not
21654 available. */
fc289b0a
TP
21655 return FALSE;
21656}
21657
c19d1205
ZW
21658void
21659md_assemble (char *str)
b99bd4ef 21660{
c19d1205
ZW
21661 char *p = str;
21662 const struct asm_opcode * opcode;
b99bd4ef 21663
c19d1205
ZW
21664 /* Align the previous label if needed. */
21665 if (last_label_seen != NULL)
b99bd4ef 21666 {
c19d1205
ZW
21667 symbol_set_frag (last_label_seen, frag_now);
21668 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
21669 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
21670 }
21671
c19d1205 21672 memset (&inst, '\0', sizeof (inst));
e2b0ab59
AV
21673 int r;
21674 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21675 inst.relocs[r].type = BFD_RELOC_UNUSED;
b99bd4ef 21676
c19d1205
ZW
21677 opcode = opcode_lookup (&p);
21678 if (!opcode)
b99bd4ef 21679 {
c19d1205 21680 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 21681 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d 21682 if (! create_register_alias (str, p)
477330fc 21683 && ! create_neon_reg_alias (str, p))
c19d1205 21684 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 21685
b99bd4ef
NC
21686 return;
21687 }
21688
278df34e 21689 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
5c3696f8 21690 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
088fa78e 21691
037e8744
JB
21692 /* The value which unconditional instructions should have in place of the
21693 condition field. */
21694 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
21695
c19d1205 21696 if (thumb_mode)
b99bd4ef 21697 {
e74cfd16 21698 arm_feature_set variant;
8f06b2d8
PB
21699
21700 variant = cpu_variant;
21701 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
21702 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
21703 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 21704 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
21705 if (!opcode->tvariant
21706 || (thumb_mode == 1
21707 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 21708 {
173205ca
TP
21709 if (opcode->tencode == do_t_swi)
21710 as_bad (_("SVC is not permitted on this architecture"));
21711 else
21712 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
b99bd4ef
NC
21713 return;
21714 }
c19d1205
ZW
21715 if (inst.cond != COND_ALWAYS && !unified_syntax
21716 && opcode->tencode != do_t_branch)
b99bd4ef 21717 {
c19d1205 21718 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
21719 return;
21720 }
21721
fc289b0a
TP
21722 /* Two things are addressed here:
21723 1) Implicit require narrow instructions on Thumb-1.
21724 This avoids relaxation accidentally introducing Thumb-2
21725 instructions.
21726 2) Reject wide instructions in non Thumb-2 cores.
21727
21728 Only instructions with narrow and wide variants need to be handled
21729 but selecting all non wide-only instructions is easier. */
21730 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
ff8646ee 21731 && !t32_insn_ok (variant, opcode))
076d447c 21732 {
fc289b0a
TP
21733 if (inst.size_req == 0)
21734 inst.size_req = 2;
21735 else if (inst.size_req == 4)
752d5da4 21736 {
ff8646ee
TP
21737 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
21738 as_bad (_("selected processor does not support 32bit wide "
21739 "variant of instruction `%s'"), str);
21740 else
21741 as_bad (_("selected processor does not support `%s' in "
21742 "Thumb-2 mode"), str);
fc289b0a 21743 return;
752d5da4 21744 }
076d447c
PB
21745 }
21746
c19d1205
ZW
21747 inst.instruction = opcode->tvalue;
21748
5be8be5d 21749 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
477330fc 21750 {
5ee91343 21751 /* Prepare the pred_insn_type for those encodings that don't set
477330fc
RM
21752 it. */
21753 it_fsm_pre_encode ();
c19d1205 21754
477330fc 21755 opcode->tencode ();
e07e6e58 21756
477330fc
RM
21757 it_fsm_post_encode ();
21758 }
e27ec89e 21759
0110f2b8 21760 if (!(inst.error || inst.relax))
b99bd4ef 21761 {
9c2799c2 21762 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
21763 inst.size = (inst.instruction > 0xffff ? 4 : 2);
21764 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 21765 {
c19d1205 21766 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
21767 return;
21768 }
21769 }
076d447c
PB
21770
21771 /* Something has gone badly wrong if we try to relax a fixed size
477330fc 21772 instruction. */
9c2799c2 21773 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 21774
e74cfd16
PB
21775 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21776 *opcode->tvariant);
ee065d83 21777 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
fc289b0a
TP
21778 set those bits when Thumb-2 32-bit instructions are seen. The impact
21779 of relaxable instructions will be considered later after we finish all
21780 relaxation. */
ff8646ee
TP
21781 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
21782 variant = arm_arch_none;
21783 else
21784 variant = cpu_variant;
21785 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
e74cfd16
PB
21786 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21787 arm_ext_v6t2);
cd000bff 21788
88714cb8
DG
21789 check_neon_suffixes;
21790
cd000bff 21791 if (!inst.error)
c877a2f2
NC
21792 {
21793 mapping_state (MAP_THUMB);
21794 }
c19d1205 21795 }
3e9e4fcf 21796 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 21797 {
845b51d6
PB
21798 bfd_boolean is_bx;
21799
21800 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
21801 is_bx = (opcode->aencode == do_bx);
21802
c19d1205 21803 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
21804 if (!(is_bx && fix_v4bx)
21805 && !(opcode->avariant &&
21806 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 21807 {
84b52b66 21808 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
c19d1205 21809 return;
b99bd4ef 21810 }
c19d1205 21811 if (inst.size_req)
b99bd4ef 21812 {
c19d1205
ZW
21813 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
21814 return;
b99bd4ef
NC
21815 }
21816
c19d1205
ZW
21817 inst.instruction = opcode->avalue;
21818 if (opcode->tag == OT_unconditionalF)
eff0bc54 21819 inst.instruction |= 0xFU << 28;
c19d1205
ZW
21820 else
21821 inst.instruction |= inst.cond << 28;
21822 inst.size = INSN_SIZE;
5be8be5d 21823 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
477330fc
RM
21824 {
21825 it_fsm_pre_encode ();
21826 opcode->aencode ();
21827 it_fsm_post_encode ();
21828 }
ee065d83 21829 /* Arm mode bx is marked as both v4T and v5 because it's still required
477330fc 21830 on a hypothetical non-thumb v5 core. */
845b51d6 21831 if (is_bx)
e74cfd16 21832 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 21833 else
e74cfd16
PB
21834 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
21835 *opcode->avariant);
88714cb8
DG
21836
21837 check_neon_suffixes;
21838
cd000bff 21839 if (!inst.error)
c877a2f2
NC
21840 {
21841 mapping_state (MAP_ARM);
21842 }
b99bd4ef 21843 }
3e9e4fcf
JB
21844 else
21845 {
21846 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
21847 "-- `%s'"), str);
21848 return;
21849 }
c19d1205
ZW
21850 output_inst (str);
21851}
b99bd4ef 21852
e07e6e58 21853static void
5ee91343 21854check_pred_blocks_finished (void)
e07e6e58
NC
21855{
21856#ifdef OBJ_ELF
21857 asection *sect;
21858
21859 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
5ee91343
AV
21860 if (seg_info (sect)->tc_segment_info_data.current_pred.state
21861 == MANUAL_PRED_BLOCK)
e07e6e58 21862 {
5ee91343
AV
21863 if (now_pred.type == SCALAR_PRED)
21864 as_warn (_("section '%s' finished with an open IT block."),
21865 sect->name);
21866 else
21867 as_warn (_("section '%s' finished with an open VPT/VPST block."),
21868 sect->name);
e07e6e58
NC
21869 }
21870#else
5ee91343
AV
21871 if (now_pred.state == MANUAL_PRED_BLOCK)
21872 {
21873 if (now_pred.type == SCALAR_PRED)
21874 as_warn (_("file finished with an open IT block."));
21875 else
21876 as_warn (_("file finished with an open VPT/VPST block."));
21877 }
e07e6e58
NC
21878#endif
21879}
21880
c19d1205
ZW
21881/* Various frobbings of labels and their addresses. */
21882
21883void
21884arm_start_line_hook (void)
21885{
21886 last_label_seen = NULL;
b99bd4ef
NC
21887}
21888
c19d1205
ZW
21889void
21890arm_frob_label (symbolS * sym)
b99bd4ef 21891{
c19d1205 21892 last_label_seen = sym;
b99bd4ef 21893
c19d1205 21894 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 21895
c19d1205
ZW
21896#if defined OBJ_COFF || defined OBJ_ELF
21897 ARM_SET_INTERWORK (sym, support_interwork);
21898#endif
b99bd4ef 21899
e07e6e58
NC
21900 force_automatic_it_block_close ();
21901
5f4273c7 21902 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
21903 as Thumb functions. This is because these labels, whilst
21904 they exist inside Thumb code, are not the entry points for
21905 possible ARM->Thumb calls. Also, these labels can be used
21906 as part of a computed goto or switch statement. eg gcc
21907 can generate code that looks like this:
b99bd4ef 21908
c19d1205
ZW
21909 ldr r2, [pc, .Laaa]
21910 lsl r3, r3, #2
21911 ldr r2, [r3, r2]
21912 mov pc, r2
b99bd4ef 21913
c19d1205
ZW
21914 .Lbbb: .word .Lxxx
21915 .Lccc: .word .Lyyy
21916 ..etc...
21917 .Laaa: .word Lbbb
b99bd4ef 21918
c19d1205
ZW
21919 The first instruction loads the address of the jump table.
21920 The second instruction converts a table index into a byte offset.
21921 The third instruction gets the jump address out of the table.
21922 The fourth instruction performs the jump.
b99bd4ef 21923
c19d1205
ZW
21924 If the address stored at .Laaa is that of a symbol which has the
21925 Thumb_Func bit set, then the linker will arrange for this address
21926 to have the bottom bit set, which in turn would mean that the
21927 address computation performed by the third instruction would end
21928 up with the bottom bit set. Since the ARM is capable of unaligned
21929 word loads, the instruction would then load the incorrect address
21930 out of the jump table, and chaos would ensue. */
21931 if (label_is_thumb_function_name
21932 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
21933 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 21934 {
c19d1205
ZW
21935 /* When the address of a Thumb function is taken the bottom
21936 bit of that address should be set. This will allow
21937 interworking between Arm and Thumb functions to work
21938 correctly. */
b99bd4ef 21939
c19d1205 21940 THUMB_SET_FUNC (sym, 1);
b99bd4ef 21941
c19d1205 21942 label_is_thumb_function_name = FALSE;
b99bd4ef 21943 }
07a53e5c 21944
07a53e5c 21945 dwarf2_emit_label (sym);
b99bd4ef
NC
21946}
21947
c921be7d 21948bfd_boolean
c19d1205 21949arm_data_in_code (void)
b99bd4ef 21950{
c19d1205 21951 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 21952 {
c19d1205
ZW
21953 *input_line_pointer = '/';
21954 input_line_pointer += 5;
21955 *input_line_pointer = 0;
c921be7d 21956 return TRUE;
b99bd4ef
NC
21957 }
21958
c921be7d 21959 return FALSE;
b99bd4ef
NC
21960}
21961
c19d1205
ZW
21962char *
21963arm_canonicalize_symbol_name (char * name)
b99bd4ef 21964{
c19d1205 21965 int len;
b99bd4ef 21966
c19d1205
ZW
21967 if (thumb_mode && (len = strlen (name)) > 5
21968 && streq (name + len - 5, "/data"))
21969 *(name + len - 5) = 0;
b99bd4ef 21970
c19d1205 21971 return name;
b99bd4ef 21972}
c19d1205
ZW
21973\f
21974/* Table of all register names defined by default. The user can
21975 define additional names with .req. Note that all register names
21976 should appear in both upper and lowercase variants. Some registers
21977 also have mixed-case names. */
b99bd4ef 21978
dcbf9037 21979#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 21980#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 21981#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
21982#define REGSET(p,t) \
21983 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
21984 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
21985 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
21986 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
21987#define REGSETH(p,t) \
21988 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
21989 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
21990 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
21991 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
21992#define REGSET2(p,t) \
21993 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
21994 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
21995 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
21996 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
21997#define SPLRBANK(base,bank,t) \
21998 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
21999 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
22000 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
22001 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
22002 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
22003 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 22004
c19d1205 22005static const struct reg_entry reg_names[] =
7ed4c4c5 22006{
c19d1205
ZW
22007 /* ARM integer registers. */
22008 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 22009
c19d1205
ZW
22010 /* ATPCS synonyms. */
22011 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
22012 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
22013 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 22014
c19d1205
ZW
22015 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
22016 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
22017 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 22018
c19d1205
ZW
22019 /* Well-known aliases. */
22020 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
22021 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
22022
22023 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
22024 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
22025
1b883319
AV
22026 /* Defining the new Zero register from ARMv8.1-M. */
22027 REGDEF(zr,15,ZR),
22028 REGDEF(ZR,15,ZR),
22029
c19d1205
ZW
22030 /* Coprocessor numbers. */
22031 REGSET(p, CP), REGSET(P, CP),
22032
22033 /* Coprocessor register numbers. The "cr" variants are for backward
22034 compatibility. */
22035 REGSET(c, CN), REGSET(C, CN),
22036 REGSET(cr, CN), REGSET(CR, CN),
22037
90ec0d68
MGD
22038 /* ARM banked registers. */
22039 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
22040 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
22041 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
22042 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
22043 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
22044 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
22045 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
22046
22047 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
22048 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
22049 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
22050 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
22051 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
1472d06f 22052 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
90ec0d68
MGD
22053 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
22054 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
22055
22056 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
22057 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
22058 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
22059 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
22060 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
22061 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
22062 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 22063 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
22064 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
22065
c19d1205
ZW
22066 /* FPA registers. */
22067 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
22068 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
22069
22070 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
22071 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
22072
22073 /* VFP SP registers. */
5287ad62
JB
22074 REGSET(s,VFS), REGSET(S,VFS),
22075 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
22076
22077 /* VFP DP Registers. */
5287ad62
JB
22078 REGSET(d,VFD), REGSET(D,VFD),
22079 /* Extra Neon DP registers. */
22080 REGSETH(d,VFD), REGSETH(D,VFD),
22081
22082 /* Neon QP registers. */
22083 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
22084
22085 /* VFP control registers. */
22086 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
22087 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
22088 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
22089 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
22090 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
22091 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
40c7d507 22092 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
c19d1205
ZW
22093
22094 /* Maverick DSP coprocessor registers. */
22095 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
22096 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
22097
22098 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
22099 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
22100 REGDEF(dspsc,0,DSPSC),
22101
22102 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
22103 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
22104 REGDEF(DSPSC,0,DSPSC),
22105
22106 /* iWMMXt data registers - p0, c0-15. */
22107 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
22108
22109 /* iWMMXt control registers - p1, c0-3. */
22110 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
22111 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
22112 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
22113 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
22114
22115 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
22116 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
22117 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
22118 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
22119 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
22120
22121 /* XScale accumulator registers. */
22122 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
22123};
22124#undef REGDEF
22125#undef REGNUM
22126#undef REGSET
7ed4c4c5 22127
c19d1205
ZW
22128/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
22129 within psr_required_here. */
22130static const struct asm_psr psrs[] =
22131{
22132 /* Backward compatibility notation. Note that "all" is no longer
22133 truly all possible PSR bits. */
22134 {"all", PSR_c | PSR_f},
22135 {"flg", PSR_f},
22136 {"ctl", PSR_c},
22137
22138 /* Individual flags. */
22139 {"f", PSR_f},
22140 {"c", PSR_c},
22141 {"x", PSR_x},
22142 {"s", PSR_s},
59b42a0d 22143
c19d1205
ZW
22144 /* Combinations of flags. */
22145 {"fs", PSR_f | PSR_s},
22146 {"fx", PSR_f | PSR_x},
22147 {"fc", PSR_f | PSR_c},
22148 {"sf", PSR_s | PSR_f},
22149 {"sx", PSR_s | PSR_x},
22150 {"sc", PSR_s | PSR_c},
22151 {"xf", PSR_x | PSR_f},
22152 {"xs", PSR_x | PSR_s},
22153 {"xc", PSR_x | PSR_c},
22154 {"cf", PSR_c | PSR_f},
22155 {"cs", PSR_c | PSR_s},
22156 {"cx", PSR_c | PSR_x},
22157 {"fsx", PSR_f | PSR_s | PSR_x},
22158 {"fsc", PSR_f | PSR_s | PSR_c},
22159 {"fxs", PSR_f | PSR_x | PSR_s},
22160 {"fxc", PSR_f | PSR_x | PSR_c},
22161 {"fcs", PSR_f | PSR_c | PSR_s},
22162 {"fcx", PSR_f | PSR_c | PSR_x},
22163 {"sfx", PSR_s | PSR_f | PSR_x},
22164 {"sfc", PSR_s | PSR_f | PSR_c},
22165 {"sxf", PSR_s | PSR_x | PSR_f},
22166 {"sxc", PSR_s | PSR_x | PSR_c},
22167 {"scf", PSR_s | PSR_c | PSR_f},
22168 {"scx", PSR_s | PSR_c | PSR_x},
22169 {"xfs", PSR_x | PSR_f | PSR_s},
22170 {"xfc", PSR_x | PSR_f | PSR_c},
22171 {"xsf", PSR_x | PSR_s | PSR_f},
22172 {"xsc", PSR_x | PSR_s | PSR_c},
22173 {"xcf", PSR_x | PSR_c | PSR_f},
22174 {"xcs", PSR_x | PSR_c | PSR_s},
22175 {"cfs", PSR_c | PSR_f | PSR_s},
22176 {"cfx", PSR_c | PSR_f | PSR_x},
22177 {"csf", PSR_c | PSR_s | PSR_f},
22178 {"csx", PSR_c | PSR_s | PSR_x},
22179 {"cxf", PSR_c | PSR_x | PSR_f},
22180 {"cxs", PSR_c | PSR_x | PSR_s},
22181 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
22182 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
22183 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
22184 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
22185 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
22186 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
22187 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
22188 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
22189 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
22190 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
22191 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
22192 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
22193 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
22194 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
22195 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
22196 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
22197 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
22198 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
22199 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
22200 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
22201 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
22202 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
22203 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
22204 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
22205};
22206
62b3e311
PB
22207/* Table of V7M psr names. */
22208static const struct asm_psr v7m_psrs[] =
22209{
1a336194
TP
22210 {"apsr", 0x0 }, {"APSR", 0x0 },
22211 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
22212 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
22213 {"psr", 0x3 }, {"PSR", 0x3 },
22214 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
22215 {"ipsr", 0x5 }, {"IPSR", 0x5 },
22216 {"epsr", 0x6 }, {"EPSR", 0x6 },
22217 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
22218 {"msp", 0x8 }, {"MSP", 0x8 },
22219 {"psp", 0x9 }, {"PSP", 0x9 },
22220 {"msplim", 0xa }, {"MSPLIM", 0xa },
22221 {"psplim", 0xb }, {"PSPLIM", 0xb },
22222 {"primask", 0x10}, {"PRIMASK", 0x10},
22223 {"basepri", 0x11}, {"BASEPRI", 0x11},
22224 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
1a336194
TP
22225 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
22226 {"control", 0x14}, {"CONTROL", 0x14},
22227 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
22228 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
22229 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
22230 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
22231 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
22232 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
22233 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
22234 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
22235 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
62b3e311
PB
22236};
22237
c19d1205
ZW
22238/* Table of all shift-in-operand names. */
22239static const struct asm_shift_name shift_names [] =
b99bd4ef 22240{
c19d1205
ZW
22241 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
22242 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
22243 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
22244 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
22245 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
f5f10c66
AV
22246 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
22247 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
c19d1205 22248};
b99bd4ef 22249
c19d1205
ZW
22250/* Table of all explicit relocation names. */
22251#ifdef OBJ_ELF
22252static struct reloc_entry reloc_names[] =
22253{
22254 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
22255 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
22256 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
22257 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
22258 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
22259 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
22260 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
22261 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
22262 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
22263 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 22264 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
22265 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
22266 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
477330fc 22267 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
0855e32b 22268 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
477330fc 22269 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
0855e32b 22270 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
188fd7ae
CL
22271 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
22272 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
22273 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
22274 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22275 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22276 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
5c5a4843
CL
22277 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
22278 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
22279 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
22280 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
c19d1205
ZW
22281};
22282#endif
b99bd4ef 22283
5ee91343 22284/* Table of all conditional affixes. */
c19d1205
ZW
22285static const struct asm_cond conds[] =
22286{
22287 {"eq", 0x0},
22288 {"ne", 0x1},
22289 {"cs", 0x2}, {"hs", 0x2},
22290 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
22291 {"mi", 0x4},
22292 {"pl", 0x5},
22293 {"vs", 0x6},
22294 {"vc", 0x7},
22295 {"hi", 0x8},
22296 {"ls", 0x9},
22297 {"ge", 0xa},
22298 {"lt", 0xb},
22299 {"gt", 0xc},
22300 {"le", 0xd},
22301 {"al", 0xe}
22302};
5ee91343
AV
22303static const struct asm_cond vconds[] =
22304{
22305 {"t", 0xf},
22306 {"e", 0x10}
22307};
bfae80f2 22308
e797f7e0 22309#define UL_BARRIER(L,U,CODE,FEAT) \
823d2571
TG
22310 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
22311 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
e797f7e0 22312
62b3e311
PB
22313static struct asm_barrier_opt barrier_opt_names[] =
22314{
e797f7e0
MGD
22315 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
22316 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
22317 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
22318 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
22319 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
22320 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
22321 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
22322 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
22323 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
22324 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
22325 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
22326 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
22327 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
22328 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
22329 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
22330 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
22331};
22332
e797f7e0
MGD
22333#undef UL_BARRIER
22334
c19d1205
ZW
22335/* Table of ARM-format instructions. */
22336
22337/* Macros for gluing together operand strings. N.B. In all cases
22338 other than OPS0, the trailing OP_stop comes from default
22339 zero-initialization of the unspecified elements of the array. */
22340#define OPS0() { OP_stop, }
22341#define OPS1(a) { OP_##a, }
22342#define OPS2(a,b) { OP_##a,OP_##b, }
22343#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
22344#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
22345#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
22346#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
22347
5be8be5d
DG
22348/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
22349 This is useful when mixing operands for ARM and THUMB, i.e. using the
22350 MIX_ARM_THUMB_OPERANDS macro.
22351 In order to use these macros, prefix the number of operands with _
22352 e.g. _3. */
22353#define OPS_1(a) { a, }
22354#define OPS_2(a,b) { a,b, }
22355#define OPS_3(a,b,c) { a,b,c, }
22356#define OPS_4(a,b,c,d) { a,b,c,d, }
22357#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
22358#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
22359
c19d1205
ZW
22360/* These macros abstract out the exact format of the mnemonic table and
22361 save some repeated characters. */
22362
22363/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
22364#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 22365 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
5ee91343 22366 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
22367
22368/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
22369 a T_MNEM_xyz enumerator. */
22370#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22371 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 22372#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22373 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
22374
22375/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
22376 infix after the third character. */
22377#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 22378 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
5ee91343 22379 THUMB_VARIANT, do_##ae, do_##te, 0 }
088fa78e 22380#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 22381 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
5ee91343 22382 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 22383#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22384 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 22385#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22386 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 22387#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22388 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 22389#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22390 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205 22391
c19d1205 22392/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
22393 field is still 0xE. Many of the Thumb variants can be executed
22394 conditionally, so this is checked separately. */
c19d1205 22395#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 22396 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22397 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 22398
dd5181d5
KT
22399/* Same as TUE but the encoding function for ARM and Thumb modes is the same.
22400 Used by mnemonics that have very minimal differences in the encoding for
22401 ARM and Thumb variants and can be handled in a common function. */
22402#define TUEc(mnem, op, top, nops, ops, en) \
22403 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22404 THUMB_VARIANT, do_##en, do_##en, 0 }
dd5181d5 22405
c19d1205
ZW
22406/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
22407 condition code field. */
22408#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 22409 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22410 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
22411
22412/* ARM-only variants of all the above. */
6a86118a 22413#define CE(mnem, op, nops, ops, ae) \
5ee91343 22414 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22415
22416#define C3(mnem, op, nops, ops, ae) \
5ee91343 22417 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 22418
cf3cf39d
TP
22419/* Thumb-only variants of TCE and TUE. */
22420#define ToC(mnem, top, nops, ops, te) \
22421 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
5ee91343 22422 do_##te, 0 }
cf3cf39d
TP
22423
22424#define ToU(mnem, top, nops, ops, te) \
22425 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
5ee91343 22426 NULL, do_##te, 0 }
cf3cf39d 22427
4389b29a
AV
22428/* T_MNEM_xyz enumerator variants of ToC. */
22429#define toC(mnem, top, nops, ops, te) \
22430 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
5ee91343 22431 do_##te, 0 }
4389b29a 22432
f6b2b12d
AV
22433/* T_MNEM_xyz enumerator variants of ToU. */
22434#define toU(mnem, top, nops, ops, te) \
22435 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
5ee91343 22436 NULL, do_##te, 0 }
f6b2b12d 22437
e3cb604e
PB
22438/* Legacy mnemonics that always have conditional infix after the third
22439 character. */
22440#define CL(mnem, op, nops, ops, ae) \
21d799b5 22441 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 22442 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
e3cb604e 22443
8f06b2d8
PB
22444/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
22445#define cCE(mnem, op, nops, ops, ae) \
5ee91343 22446 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 22447
57785aa2
AV
22448/* mov instructions that are shared between coprocessor and MVE. */
22449#define mcCE(mnem, op, nops, ops, ae) \
22450 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22451
e3cb604e
PB
22452/* Legacy coprocessor instructions where conditional infix and conditional
22453 suffix are ambiguous. For consistency this includes all FPA instructions,
22454 not just the potentially ambiguous ones. */
22455#define cCL(mnem, op, nops, ops, ae) \
21d799b5 22456 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 22457 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
e3cb604e
PB
22458
22459/* Coprocessor, takes either a suffix or a position-3 infix
22460 (for an FPA corner case). */
22461#define C3E(mnem, op, nops, ops, ae) \
21d799b5 22462 { mnem, OPS##nops ops, OT_csuf_or_in3, \
5ee91343 22463 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 22464
6a86118a 22465#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
22466 { m1 #m2 m3, OPS##nops ops, \
22467 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
5ee91343 22468 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22469
22470#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
22471 xCM_ (m1, , m2, op, nops, ops, ae), \
22472 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22473 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22474 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22475 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22476 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22477 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22478 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22479 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22480 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22481 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22482 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22483 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22484 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22485 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22486 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22487 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22488 xCM_ (m1, le, m2, op, nops, ops, ae), \
22489 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
22490
22491#define UE(mnem, op, nops, ops, ae) \
5ee91343 22492 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22493
22494#define UF(mnem, op, nops, ops, ae) \
5ee91343 22495 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 22496
5287ad62
JB
22497/* Neon data-processing. ARM versions are unconditional with cond=0xf.
22498 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
22499 use the same encoding function for each. */
22500#define NUF(mnem, op, nops, ops, enc) \
22501 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
5ee91343 22502 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
22503
22504/* Neon data processing, version which indirects through neon_enc_tab for
22505 the various overloaded versions of opcodes. */
22506#define nUF(mnem, op, nops, ops, enc) \
21d799b5 22507 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5ee91343 22508 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
22509
22510/* Neon insn with conditional suffix for the ARM version, non-overloaded
22511 version. */
5ee91343 22512#define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
037e8744 22513 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5ee91343 22514 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 22515
037e8744 22516#define NCE(mnem, op, nops, ops, enc) \
5ee91343 22517 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
22518
22519#define NCEF(mnem, op, nops, ops, enc) \
5ee91343 22520 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
037e8744 22521
5287ad62 22522/* Neon insn with conditional suffix for the ARM version, overloaded types. */
5ee91343 22523#define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
21d799b5 22524 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5ee91343 22525 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 22526
037e8744 22527#define nCE(mnem, op, nops, ops, enc) \
5ee91343 22528 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
22529
22530#define nCEF(mnem, op, nops, ops, enc) \
5ee91343
AV
22531 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22532
22533/* */
22534#define mCEF(mnem, op, nops, ops, enc) \
a302e574 22535 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
5ee91343
AV
22536 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22537
22538
22539/* nCEF but for MVE predicated instructions. */
22540#define mnCEF(mnem, op, nops, ops, enc) \
22541 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22542
22543/* nCE but for MVE predicated instructions. */
22544#define mnCE(mnem, op, nops, ops, enc) \
22545 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
037e8744 22546
5ee91343
AV
22547/* NUF but for potentially MVE predicated instructions. */
22548#define MNUF(mnem, op, nops, ops, enc) \
22549 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22550 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22551
22552/* nUF but for potentially MVE predicated instructions. */
22553#define mnUF(mnem, op, nops, ops, enc) \
22554 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22555 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22556
22557/* ToC but for potentially MVE predicated instructions. */
22558#define mToC(mnem, top, nops, ops, te) \
22559 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22560 do_##te, 1 }
22561
22562/* NCE but for MVE predicated instructions. */
22563#define MNCE(mnem, op, nops, ops, enc) \
22564 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22565
22566/* NCEF but for MVE predicated instructions. */
22567#define MNCEF(mnem, op, nops, ops, enc) \
22568 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
c19d1205
ZW
22569#define do_0 0
22570
c19d1205 22571static const struct asm_opcode insns[] =
bfae80f2 22572{
74db7efb
NC
22573#define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22574#define THUMB_VARIANT & arm_ext_v4t
21d799b5
NC
22575 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
22576 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
22577 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
22578 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
22579 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
22580 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
22581 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
22582 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
22583 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
22584 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
22585 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
22586 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
22587 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
22588 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
22589 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
22590 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
22591
22592 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22593 for setting PSR flag bits. They are obsolete in V6 and do not
22594 have Thumb equivalents. */
21d799b5
NC
22595 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22596 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22597 CL("tstp", 110f000, 2, (RR, SH), cmp),
22598 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22599 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22600 CL("cmpp", 150f000, 2, (RR, SH), cmp),
22601 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22602 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22603 CL("cmnp", 170f000, 2, (RR, SH), cmp),
22604
22605 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
72d98d16 22606 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
21d799b5
NC
22607 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
22608 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
22609
22610 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
22611 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22612 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
22613 OP_RRnpc),
22614 OP_ADDRGLDR),ldst, t_ldst),
22615 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
22616
22617 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22618 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22619 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22620 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22621 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22622 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22623
21d799b5
NC
22624 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
22625 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 22626
c19d1205 22627 /* Pseudo ops. */
21d799b5 22628 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 22629 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 22630 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
74db7efb 22631 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
c19d1205
ZW
22632
22633 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
22634 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
22635 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
22636 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
22637 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
22638 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
22639 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
22640 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
22641 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
22642 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
22643 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
22644 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
22645 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 22646
16a4cf17 22647 /* These may simplify to neg. */
21d799b5
NC
22648 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
22649 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 22650
173205ca
TP
22651#undef THUMB_VARIANT
22652#define THUMB_VARIANT & arm_ext_os
22653
22654 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
22655 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
22656
c921be7d
NC
22657#undef THUMB_VARIANT
22658#define THUMB_VARIANT & arm_ext_v6
22659
21d799b5 22660 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
22661
22662 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
22663#undef THUMB_VARIANT
22664#define THUMB_VARIANT & arm_ext_v6t2
22665
21d799b5
NC
22666 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22667 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22668 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 22669
5be8be5d
DG
22670 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22671 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22672 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
22673 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 22674
21d799b5
NC
22675 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22676 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 22677
21d799b5
NC
22678 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22679 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
22680
22681 /* V1 instructions with no Thumb analogue at all. */
21d799b5 22682 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
22683 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
22684
22685 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
22686 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
22687 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
22688 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
22689 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
22690 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
22691 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
22692 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
22693
c921be7d
NC
22694#undef ARM_VARIANT
22695#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22696#undef THUMB_VARIANT
22697#define THUMB_VARIANT & arm_ext_v4t
22698
21d799b5
NC
22699 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22700 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 22701
c921be7d
NC
22702#undef THUMB_VARIANT
22703#define THUMB_VARIANT & arm_ext_v6t2
22704
21d799b5 22705 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
22706 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
22707
22708 /* Generic coprocessor instructions. */
21d799b5
NC
22709 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22710 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22711 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22712 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22713 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22714 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 22715 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 22716
c921be7d
NC
22717#undef ARM_VARIANT
22718#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
22719
21d799b5 22720 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
22721 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22722
c921be7d
NC
22723#undef ARM_VARIANT
22724#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
22725#undef THUMB_VARIANT
22726#define THUMB_VARIANT & arm_ext_msr
22727
d2cd1205
JB
22728 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
22729 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 22730
c921be7d
NC
22731#undef ARM_VARIANT
22732#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
22733#undef THUMB_VARIANT
22734#define THUMB_VARIANT & arm_ext_v6t2
22735
21d799b5
NC
22736 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22737 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22738 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22739 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22740 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22741 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22742 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22743 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 22744
c921be7d
NC
22745#undef ARM_VARIANT
22746#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
22747#undef THUMB_VARIANT
22748#define THUMB_VARIANT & arm_ext_v4t
22749
5be8be5d
DG
22750 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22751 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22752 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22753 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
56c0a61f
RE
22754 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22755 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 22756
c921be7d
NC
22757#undef ARM_VARIANT
22758#define ARM_VARIANT & arm_ext_v4t_5
22759
c19d1205
ZW
22760 /* ARM Architecture 4T. */
22761 /* Note: bx (and blx) are required on V5, even if the processor does
22762 not support Thumb. */
21d799b5 22763 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 22764
c921be7d
NC
22765#undef ARM_VARIANT
22766#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
22767#undef THUMB_VARIANT
22768#define THUMB_VARIANT & arm_ext_v5t
22769
c19d1205
ZW
22770 /* Note: blx has 2 variants; the .value coded here is for
22771 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
22772 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
22773 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 22774
c921be7d
NC
22775#undef THUMB_VARIANT
22776#define THUMB_VARIANT & arm_ext_v6t2
22777
21d799b5
NC
22778 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
22779 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22780 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22781 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22782 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22783 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22784 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22785 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 22786
c921be7d 22787#undef ARM_VARIANT
74db7efb
NC
22788#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
22789#undef THUMB_VARIANT
22790#define THUMB_VARIANT & arm_ext_v5exp
c921be7d 22791
21d799b5
NC
22792 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22793 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22794 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22795 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 22796
21d799b5
NC
22797 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22798 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 22799
21d799b5
NC
22800 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22801 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22802 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22803 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 22804
21d799b5
NC
22805 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22806 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22807 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22808 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 22809
21d799b5
NC
22810 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22811 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 22812
03ee1b7f
NC
22813 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22814 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22815 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22816 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 22817
c921be7d 22818#undef ARM_VARIANT
74db7efb
NC
22819#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
22820#undef THUMB_VARIANT
22821#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 22822
21d799b5 22823 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
22824 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
22825 ldrd, t_ldstd),
22826 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
22827 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 22828
21d799b5
NC
22829 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22830 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 22831
c921be7d
NC
22832#undef ARM_VARIANT
22833#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
22834
21d799b5 22835 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 22836
c921be7d
NC
22837#undef ARM_VARIANT
22838#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
22839#undef THUMB_VARIANT
22840#define THUMB_VARIANT & arm_ext_v6
22841
21d799b5
NC
22842 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
22843 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
22844 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22845 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22846 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22847 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22848 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22849 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22850 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22851 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 22852
c921be7d 22853#undef THUMB_VARIANT
ff8646ee 22854#define THUMB_VARIANT & arm_ext_v6t2_v8m
c921be7d 22855
5be8be5d
DG
22856 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
22857 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22858 strex, t_strex),
ff8646ee
TP
22859#undef THUMB_VARIANT
22860#define THUMB_VARIANT & arm_ext_v6t2
22861
21d799b5
NC
22862 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22863 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 22864
21d799b5
NC
22865 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
22866 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 22867
9e3c6df6 22868/* ARM V6 not included in V7M. */
c921be7d
NC
22869#undef THUMB_VARIANT
22870#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6 22871 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6 22872 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
9e3c6df6
PB
22873 UF(rfeib, 9900a00, 1, (RRw), rfe),
22874 UF(rfeda, 8100a00, 1, (RRw), rfe),
22875 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22876 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6
RE
22877 UF(rfefa, 8100a00, 1, (RRw), rfe),
22878 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22879 UF(rfeed, 9900a00, 1, (RRw), rfe),
9e3c6df6 22880 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
d709e4e6
RE
22881 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22882 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
9e3c6df6 22883 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
d709e4e6 22884 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
9e3c6df6 22885 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
d709e4e6 22886 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
9e3c6df6 22887 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
d709e4e6 22888 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
941c9cad 22889 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c921be7d 22890
9e3c6df6
PB
22891/* ARM V6 not included in V7M (eg. integer SIMD). */
22892#undef THUMB_VARIANT
22893#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
22894 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
22895 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
22896 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22897 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22898 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22899 /* Old name for QASX. */
74db7efb 22900 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 22901 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22902 /* Old name for QSAX. */
74db7efb 22903 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22904 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22905 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22906 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22907 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22908 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22909 /* Old name for SASX. */
74db7efb 22910 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22911 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22912 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22913 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22914 /* Old name for SHASX. */
21d799b5 22915 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22916 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22917 /* Old name for SHSAX. */
21d799b5
NC
22918 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22919 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22920 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22921 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22922 /* Old name for SSAX. */
74db7efb 22923 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22924 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22925 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22926 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22927 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22928 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22929 /* Old name for UASX. */
74db7efb 22930 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22931 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22932 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22933 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22934 /* Old name for UHASX. */
21d799b5
NC
22935 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22936 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22937 /* Old name for UHSAX. */
21d799b5
NC
22938 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22939 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22940 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22941 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22942 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22943 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22944 /* Old name for UQASX. */
21d799b5
NC
22945 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22946 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22947 /* Old name for UQSAX. */
21d799b5
NC
22948 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22949 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22950 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22951 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22952 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22953 /* Old name for USAX. */
74db7efb 22954 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 22955 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22956 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22957 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22958 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22959 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22960 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22961 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22962 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22963 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22964 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22965 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22966 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22967 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22968 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22969 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22970 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22971 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22972 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22973 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22974 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22975 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22976 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22977 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22978 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22979 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22980 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22981 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22982 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
22983 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
22984 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
22985 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22986 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22987 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 22988
c921be7d 22989#undef ARM_VARIANT
55e8aae7 22990#define ARM_VARIANT & arm_ext_v6k_v6t2
c921be7d 22991#undef THUMB_VARIANT
55e8aae7 22992#define THUMB_VARIANT & arm_ext_v6k_v6t2
c921be7d 22993
21d799b5
NC
22994 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
22995 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
22996 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
22997 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 22998
c921be7d
NC
22999#undef THUMB_VARIANT
23000#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
23001 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
23002 ldrexd, t_ldrexd),
23003 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
23004 RRnpcb), strexd, t_strexd),
ebdca51a 23005
c921be7d 23006#undef THUMB_VARIANT
ff8646ee 23007#define THUMB_VARIANT & arm_ext_v6t2_v8m
5be8be5d
DG
23008 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
23009 rd_rn, rd_rn),
23010 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
23011 rd_rn, rd_rn),
23012 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 23013 strex, t_strexbh),
5be8be5d 23014 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 23015 strex, t_strexbh),
21d799b5 23016 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 23017
c921be7d 23018#undef ARM_VARIANT
f4c65163 23019#define ARM_VARIANT & arm_ext_sec
74db7efb 23020#undef THUMB_VARIANT
f4c65163 23021#define THUMB_VARIANT & arm_ext_sec
c921be7d 23022
21d799b5 23023 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 23024
90ec0d68
MGD
23025#undef ARM_VARIANT
23026#define ARM_VARIANT & arm_ext_virt
23027#undef THUMB_VARIANT
23028#define THUMB_VARIANT & arm_ext_virt
23029
23030 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
23031 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
23032
ddfded2f
MW
23033#undef ARM_VARIANT
23034#define ARM_VARIANT & arm_ext_pan
23035#undef THUMB_VARIANT
23036#define THUMB_VARIANT & arm_ext_pan
23037
23038 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
23039
c921be7d 23040#undef ARM_VARIANT
74db7efb 23041#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
23042#undef THUMB_VARIANT
23043#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 23044
21d799b5
NC
23045 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
23046 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
23047 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23048 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 23049
21d799b5 23050 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
21d799b5 23051 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 23052
5be8be5d
DG
23053 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23054 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23055 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23056 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 23057
91d8b670
JG
23058#undef ARM_VARIANT
23059#define ARM_VARIANT & arm_ext_v3
23060#undef THUMB_VARIANT
23061#define THUMB_VARIANT & arm_ext_v6t2
23062
23063 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
c597cc3d
SD
23064 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
23065 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
91d8b670
JG
23066
23067#undef ARM_VARIANT
23068#define ARM_VARIANT & arm_ext_v6t2
ff8646ee
TP
23069#undef THUMB_VARIANT
23070#define THUMB_VARIANT & arm_ext_v6t2_v8m
23071 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
23072 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
23073
bf3eeda7 23074 /* Thumb-only instructions. */
74db7efb 23075#undef ARM_VARIANT
bf3eeda7
NS
23076#define ARM_VARIANT NULL
23077 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
23078 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
23079
23080 /* ARM does not really have an IT instruction, so always allow it.
23081 The opcode is copied from Thumb in order to allow warnings in
23082 -mimplicit-it=[never | arm] modes. */
23083#undef ARM_VARIANT
23084#define ARM_VARIANT & arm_ext_v1
ff8646ee
TP
23085#undef THUMB_VARIANT
23086#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 23087
21d799b5
NC
23088 TUE("it", bf08, bf08, 1, (COND), it, t_it),
23089 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
23090 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
23091 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
23092 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
23093 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
23094 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
23095 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
23096 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
23097 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
23098 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
23099 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
23100 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
23101 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
23102 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 23103 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
23104 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
23105 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 23106
92e90b6e 23107 /* Thumb2 only instructions. */
c921be7d
NC
23108#undef ARM_VARIANT
23109#define ARM_VARIANT NULL
92e90b6e 23110
21d799b5
NC
23111 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23112 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23113 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
23114 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
23115 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
23116 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 23117
eea54501
MGD
23118 /* Hardware division instructions. */
23119#undef ARM_VARIANT
23120#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
23121#undef THUMB_VARIANT
23122#define THUMB_VARIANT & arm_ext_div
23123
eea54501
MGD
23124 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
23125 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 23126
7e806470 23127 /* ARM V6M/V7 instructions. */
c921be7d
NC
23128#undef ARM_VARIANT
23129#define ARM_VARIANT & arm_ext_barrier
23130#undef THUMB_VARIANT
23131#define THUMB_VARIANT & arm_ext_barrier
23132
ccb84d65
JB
23133 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
23134 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
23135 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
7e806470 23136
62b3e311 23137 /* ARM V7 instructions. */
c921be7d
NC
23138#undef ARM_VARIANT
23139#define ARM_VARIANT & arm_ext_v7
23140#undef THUMB_VARIANT
23141#define THUMB_VARIANT & arm_ext_v7
23142
21d799b5
NC
23143 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
23144 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 23145
74db7efb 23146#undef ARM_VARIANT
60e5ef9f 23147#define ARM_VARIANT & arm_ext_mp
74db7efb 23148#undef THUMB_VARIANT
60e5ef9f
MGD
23149#define THUMB_VARIANT & arm_ext_mp
23150
23151 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
23152
53c4b28b
MGD
23153 /* AArchv8 instructions. */
23154#undef ARM_VARIANT
23155#define ARM_VARIANT & arm_ext_v8
4ed7ed8d
TP
23156
23157/* Instructions shared between armv8-a and armv8-m. */
53c4b28b 23158#undef THUMB_VARIANT
4ed7ed8d 23159#define THUMB_VARIANT & arm_ext_atomics
53c4b28b 23160
4ed7ed8d
TP
23161 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23162 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23163 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23164 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23165 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23166 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
4b8c8c02 23167 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
4b8c8c02
RE
23168 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
23169 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23170 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
23171 stlex, t_stlex),
4b8c8c02
RE
23172 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
23173 stlex, t_stlex),
23174 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
23175 stlex, t_stlex),
4ed7ed8d
TP
23176#undef THUMB_VARIANT
23177#define THUMB_VARIANT & arm_ext_v8
53c4b28b 23178
4ed7ed8d 23179 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
4ed7ed8d
TP
23180 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
23181 ldrexd, t_ldrexd),
23182 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
23183 strexd, t_strexd),
f7dd2fb2
TC
23184
23185/* Defined in V8 but is in undefined encoding space for earlier
23186 architectures. However earlier architectures are required to treat
23187 this instuction as a semihosting trap as well. Hence while not explicitly
23188 defined as such, it is in fact correct to define the instruction for all
23189 architectures. */
23190#undef THUMB_VARIANT
23191#define THUMB_VARIANT & arm_ext_v1
23192#undef ARM_VARIANT
23193#define ARM_VARIANT & arm_ext_v1
23194 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
23195
8884b720 23196 /* ARMv8 T32 only. */
74db7efb 23197#undef ARM_VARIANT
b79f7053
MGD
23198#define ARM_VARIANT NULL
23199 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
23200 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
23201 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
23202
33399f07
MGD
23203 /* FP for ARMv8. */
23204#undef ARM_VARIANT
a715796b 23205#define ARM_VARIANT & fpu_vfp_ext_armv8xd
33399f07 23206#undef THUMB_VARIANT
a715796b 23207#define THUMB_VARIANT & fpu_vfp_ext_armv8xd
33399f07
MGD
23208
23209 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
23210 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
23211 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
23212 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
30bdf752
MGD
23213 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
23214 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
23215 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
23216 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
23217 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
23218 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
23219 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
33399f07 23220
91ff7894
MGD
23221 /* Crypto v1 extensions. */
23222#undef ARM_VARIANT
23223#define ARM_VARIANT & fpu_crypto_ext_armv8
23224#undef THUMB_VARIANT
23225#define THUMB_VARIANT & fpu_crypto_ext_armv8
23226
23227 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
23228 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
23229 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
23230 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
48adcd8e
MGD
23231 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
23232 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
23233 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
23234 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
23235 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
23236 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
23237 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
3c9017d2
MGD
23238 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
23239 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
23240 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
91ff7894 23241
dd5181d5 23242#undef ARM_VARIANT
74db7efb 23243#define ARM_VARIANT & crc_ext_armv8
dd5181d5
KT
23244#undef THUMB_VARIANT
23245#define THUMB_VARIANT & crc_ext_armv8
23246 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
23247 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
23248 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
23249 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
23250 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
23251 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
23252
105bde57
MW
23253 /* ARMv8.2 RAS extension. */
23254#undef ARM_VARIANT
4d1464f2 23255#define ARM_VARIANT & arm_ext_ras
105bde57 23256#undef THUMB_VARIANT
4d1464f2 23257#define THUMB_VARIANT & arm_ext_ras
105bde57
MW
23258 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
23259
49e8a725
SN
23260#undef ARM_VARIANT
23261#define ARM_VARIANT & arm_ext_v8_3
23262#undef THUMB_VARIANT
23263#define THUMB_VARIANT & arm_ext_v8_3
23264 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
23265
c604a79a
JW
23266#undef ARM_VARIANT
23267#define ARM_VARIANT & fpu_neon_ext_dotprod
23268#undef THUMB_VARIANT
23269#define THUMB_VARIANT & fpu_neon_ext_dotprod
23270 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
23271 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
23272
c921be7d
NC
23273#undef ARM_VARIANT
23274#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
23275#undef THUMB_VARIANT
23276#define THUMB_VARIANT NULL
c921be7d 23277
21d799b5
NC
23278 cCE("wfs", e200110, 1, (RR), rd),
23279 cCE("rfs", e300110, 1, (RR), rd),
23280 cCE("wfc", e400110, 1, (RR), rd),
23281 cCE("rfc", e500110, 1, (RR), rd),
23282
23283 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
23284 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
23285 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
23286 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
23287
23288 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
23289 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
23290 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
23291 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
23292
23293 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
23294 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
23295 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
23296 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
23297 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
23298 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
23299 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
23300 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
23301 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
23302 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
23303 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
23304 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
23305
23306 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
23307 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
23308 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
23309 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
23310 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
23311 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
23312 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
23313 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
23314 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
23315 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
23316 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
23317 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
23318
23319 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
23320 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
23321 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
23322 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
23323 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
23324 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
23325 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
23326 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
23327 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
23328 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
23329 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
23330 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
23331
23332 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
23333 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
23334 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
23335 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
23336 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
23337 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
23338 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
23339 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
23340 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
23341 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
23342 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
23343 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
23344
23345 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
23346 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
23347 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
23348 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
23349 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
23350 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
23351 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
23352 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
23353 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
23354 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
23355 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
23356 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
23357
23358 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
23359 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
23360 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
23361 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
23362 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
23363 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
23364 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
23365 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
23366 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
23367 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
23368 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
23369 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
23370
23371 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
23372 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
23373 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
23374 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
23375 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
23376 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
23377 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
23378 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
23379 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
23380 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
23381 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
23382 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
23383
23384 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
23385 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
23386 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
23387 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
23388 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
23389 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
23390 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
23391 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
23392 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
23393 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
23394 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
23395 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
23396
23397 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
23398 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
23399 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
23400 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
23401 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
23402 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
23403 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
23404 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
23405 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
23406 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
23407 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
23408 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
23409
23410 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
23411 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
23412 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
23413 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
23414 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
23415 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
23416 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
23417 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
23418 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
23419 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
23420 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
23421 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
23422
23423 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
23424 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
23425 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
23426 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
23427 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
23428 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
23429 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
23430 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
23431 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
23432 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
23433 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
23434 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
23435
23436 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
23437 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
23438 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
23439 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
23440 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
23441 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
23442 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
23443 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
23444 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
23445 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
23446 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
23447 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
23448
23449 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
23450 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
23451 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
23452 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
23453 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
23454 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
23455 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
23456 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
23457 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
23458 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
23459 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
23460 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
23461
23462 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
23463 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
23464 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
23465 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
23466 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
23467 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
23468 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
23469 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
23470 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
23471 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
23472 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
23473 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
23474
23475 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
23476 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
23477 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
23478 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
23479 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
23480 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
23481 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
23482 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
23483 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
23484 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
23485 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
23486 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
23487
23488 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
23489 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
23490 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
23491 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
23492 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
23493 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
23494 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
23495 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
23496 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
23497 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
23498 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
23499 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
23500
23501 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
23502 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
23503 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
23504 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
23505 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
23506 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23507 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23508 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23509 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
23510 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
23511 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
23512 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
23513
23514 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
23515 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
23516 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
23517 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
23518 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
23519 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23520 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23521 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23522 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
23523 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
23524 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
23525 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
23526
23527 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
23528 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
23529 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
23530 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
23531 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
23532 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23533 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23534 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23535 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
23536 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
23537 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
23538 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
23539
23540 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
23541 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
23542 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
23543 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
23544 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
23545 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23546 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23547 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23548 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
23549 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
23550 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
23551 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
23552
23553 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
23554 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
23555 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
23556 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
23557 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
23558 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23559 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23560 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23561 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
23562 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
23563 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
23564 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
23565
23566 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
23567 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
23568 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
23569 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
23570 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
23571 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23572 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23573 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23574 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
23575 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
23576 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
23577 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
23578
23579 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
23580 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
23581 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
23582 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
23583 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
23584 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23585 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23586 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23587 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
23588 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
23589 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
23590 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
23591
23592 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
23593 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
23594 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
23595 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
23596 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
23597 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23598 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23599 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23600 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
23601 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
23602 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
23603 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
23604
23605 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
23606 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
23607 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
23608 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
23609 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
23610 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23611 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23612 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23613 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
23614 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
23615 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
23616 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
23617
23618 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
23619 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
23620 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
23621 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
23622 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
23623 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23624 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23625 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23626 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
23627 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
23628 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
23629 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
23630
23631 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23632 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23633 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23634 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23635 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23636 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23637 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23638 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23639 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23640 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23641 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23642 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23643
23644 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23645 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23646 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23647 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23648 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23649 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23650 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23651 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23652 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23653 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23654 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23655 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23656
23657 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23658 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23659 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23660 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23661 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23662 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23663 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23664 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23665 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23666 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23667 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23668 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23669
23670 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
23671 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
23672 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
23673 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
23674
23675 cCL("flts", e000110, 2, (RF, RR), rn_rd),
23676 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
23677 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
23678 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
23679 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
23680 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
23681 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
23682 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
23683 cCL("flte", e080110, 2, (RF, RR), rn_rd),
23684 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
23685 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
23686 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 23687
c19d1205
ZW
23688 /* The implementation of the FIX instruction is broken on some
23689 assemblers, in that it accepts a precision specifier as well as a
23690 rounding specifier, despite the fact that this is meaningless.
23691 To be more compatible, we accept it as well, though of course it
23692 does not set any bits. */
21d799b5
NC
23693 cCE("fix", e100110, 2, (RR, RF), rd_rm),
23694 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
23695 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
23696 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
23697 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
23698 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
23699 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
23700 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
23701 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
23702 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
23703 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
23704 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
23705 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 23706
c19d1205 23707 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
23708#undef ARM_VARIANT
23709#define ARM_VARIANT & fpu_fpa_ext_v2
23710
21d799b5
NC
23711 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23712 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23713 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23714 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23715 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23716 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 23717
c921be7d
NC
23718#undef ARM_VARIANT
23719#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
23720
c19d1205 23721 /* Moves and type conversions. */
21d799b5 23722 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
23723 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
23724 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
23725 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
23726 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
23727 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
23728 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23729 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
23730 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23731 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
23732 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
23733
23734 /* Memory operations. */
21d799b5
NC
23735 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23736 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
23737 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23738 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23739 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23740 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23741 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23742 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23743 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23744 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23745 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23746 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23747 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23748 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23749 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23750 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23751 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23752 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 23753
c19d1205 23754 /* Monadic operations. */
21d799b5
NC
23755 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
23756 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
23757 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
23758
23759 /* Dyadic operations. */
21d799b5
NC
23760 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23761 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23762 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23763 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23764 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23765 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23766 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23767 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23768 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 23769
c19d1205 23770 /* Comparisons. */
21d799b5
NC
23771 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
23772 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
23773 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
23774 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 23775
62f3b8c8
PB
23776 /* Double precision load/store are still present on single precision
23777 implementations. */
23778 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23779 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
23780 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23781 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23782 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23783 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23784 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23785 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23786 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23787 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 23788
c921be7d
NC
23789#undef ARM_VARIANT
23790#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
23791
c19d1205 23792 /* Moves and type conversions. */
21d799b5
NC
23793 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23794 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23795 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
23796 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
23797 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
23798 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
23799 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23800 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
23801 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23802 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23803 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23804 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 23805
c19d1205 23806 /* Monadic operations. */
21d799b5
NC
23807 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23808 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23809 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
23810
23811 /* Dyadic operations. */
21d799b5
NC
23812 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23813 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23814 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23815 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23816 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23817 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23818 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23819 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23820 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 23821
c19d1205 23822 /* Comparisons. */
21d799b5
NC
23823 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23824 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
23825 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23826 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 23827
037e8744
JB
23828/* Instructions which may belong to either the Neon or VFP instruction sets.
23829 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
23830#undef ARM_VARIANT
23831#define ARM_VARIANT & fpu_vfp_ext_v1xd
23832#undef THUMB_VARIANT
23833#define THUMB_VARIANT & fpu_vfp_ext_v1xd
23834
037e8744
JB
23835 /* These mnemonics are unique to VFP. */
23836 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
23837 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
23838 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23839 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23840 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
037e8744
JB
23841 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
23842 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
23843 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
23844
23845 /* Mnemonics shared by Neon and VFP. */
21d799b5 23846 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 23847
55881a11
MGD
23848 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23849 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23850 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23851 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23852 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23853 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
037e8744 23854
dd9634d9 23855 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
e3e535bc 23856 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
dd9634d9
AV
23857 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
23858 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
f31fef98 23859
037e8744
JB
23860
23861 /* NOTE: All VMOV encoding is special-cased! */
037e8744
JB
23862 NCE(vmovq, 0, 1, (VMOV), neon_mov),
23863
32c36c3c
AV
23864#undef THUMB_VARIANT
23865/* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
23866 by different feature bits. Since we are setting the Thumb guard, we can
23867 require Thumb-1 which makes it a nop guard and set the right feature bit in
23868 do_vldr_vstr (). */
23869#define THUMB_VARIANT & arm_ext_v4t
23870 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23871 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23872
9db2f6b4
RL
23873#undef ARM_VARIANT
23874#define ARM_VARIANT & arm_ext_fp16
23875#undef THUMB_VARIANT
23876#define THUMB_VARIANT & arm_ext_fp16
23877 /* New instructions added from v8.2, allowing the extraction and insertion of
23878 the upper 16 bits of a 32-bit vector register. */
23879 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
23880 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
23881
dec41383
JW
23882 /* New backported fma/fms instructions optional in v8.2. */
23883 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
23884 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
23885
c921be7d
NC
23886#undef THUMB_VARIANT
23887#define THUMB_VARIANT & fpu_neon_ext_v1
23888#undef ARM_VARIANT
23889#define ARM_VARIANT & fpu_neon_ext_v1
23890
5287ad62
JB
23891 /* Data processing with three registers of the same length. */
23892 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
23893 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
23894 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
5287ad62 23895 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
5287ad62 23896 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
5287ad62
JB
23897 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23898 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
5287ad62 23899 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
5287ad62 23900 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
23901 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23902 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
23903 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23904 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
23905 /* If not immediate, fall back to neon_dyadic_i64_su.
23906 shl_imm should accept I8 I16 I32 I64,
23907 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
23908 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
23909 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
23910 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
23911 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 23912 /* Logic ops, types optional & ignored. */
4316f0d2 23913 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 23914 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 23915 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 23916 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 23917 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
23918 /* Bitfield ops, untyped. */
23919 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23920 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23921 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23922 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23923 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23924 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
cc933301 23925 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
21d799b5 23926 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21d799b5 23927 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21d799b5 23928 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
23929 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
23930 back to neon_dyadic_if_su. */
21d799b5
NC
23931 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23932 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23933 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23934 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23935 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23936 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
23937 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23938 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 23939 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
23940 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
23941 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 23942 /* As above, D registers only. */
21d799b5
NC
23943 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
23944 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 23945 /* Int and float variants, signedness unimportant. */
21d799b5
NC
23946 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23947 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23948 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 23949 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
23950 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
23951 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
23952 /* vtst takes sizes 8, 16, 32. */
23953 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
23954 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
23955 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 23956 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 23957 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
23958 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23959 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
23960 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23961 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
23962 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23963 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
23964 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23965 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
23966 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23967 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
23968 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23969 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
23970 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23971 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
23972 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23973 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
d6b4b13e 23974 /* ARM v8.1 extension. */
643afb90
MW
23975 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23976 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
23977 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23978 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
5287ad62
JB
23979
23980 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 23981 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
23982 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
23983
23984 /* Data processing with two registers and a shift amount. */
23985 /* Right shifts, and variants with rounding.
23986 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
23987 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23988 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23989 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23990 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23991 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23992 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23993 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23994 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23995 /* Shift and insert. Sizes accepted 8 16 32 64. */
23996 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
23997 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
23998 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
23999 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
24000 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
24001 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
24002 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
24003 /* Right shift immediate, saturating & narrowing, with rounding variants.
24004 Types accepted S16 S32 S64 U16 U32 U64. */
24005 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24006 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24007 /* As above, unsigned. Types accepted S16 S32 S64. */
24008 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24009 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24010 /* Right shift narrowing. Types accepted I16 I32 I64. */
24011 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24012 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24013 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 24014 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 24015 /* CVT with optional immediate for fixed-point variant. */
21d799b5 24016 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 24017
4316f0d2
DG
24018 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
24019 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
24020
24021 /* Data processing, three registers of different lengths. */
24022 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
24023 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
5287ad62
JB
24024 /* If not scalar, fall back to neon_dyadic_long.
24025 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
24026 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24027 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
24028 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
24029 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24030 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24031 /* Dyadic, narrowing insns. Types I16 I32 I64. */
24032 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24033 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24034 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24035 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24036 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
24037 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24038 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24039 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
24040 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
24041 S16 S32 U16 U32. */
21d799b5 24042 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
24043
24044 /* Extract. Size 8. */
3b8d421e
PB
24045 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
24046 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
24047
24048 /* Two registers, miscellaneous. */
24049 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
24050 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
24051 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
24052 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
24053 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
24054 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
24055 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
24056 /* Vector replicate. Sizes 8 16 32. */
21d799b5 24057 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
24058 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
24059 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
24060 /* VMOVN. Types I16 I32 I64. */
21d799b5 24061 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 24062 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 24063 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 24064 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 24065 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
24066 /* VZIP / VUZP. Sizes 8 16 32. */
24067 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
24068 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
24069 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
24070 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
24071 /* VQABS / VQNEG. Types S8 S16 S32. */
24072 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
24073 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
24074 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
24075 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
24076 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
24077 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
24078 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
24079 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
24080 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
cc933301 24081 /* Reciprocal estimates. Types U32 F16 F32. */
5287ad62
JB
24082 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
24083 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
24084 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
24085 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
24086 /* VCLS. Types S8 S16 S32. */
5287ad62
JB
24087 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
24088 /* VCLZ. Types I8 I16 I32. */
5287ad62
JB
24089 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
24090 /* VCNT. Size 8. */
24091 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
24092 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
24093 /* Two address, untyped. */
24094 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
24095 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
24096 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
24097 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
24098 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
24099
24100 /* Table lookup. Size 8. */
24101 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24102 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24103
c921be7d
NC
24104#undef THUMB_VARIANT
24105#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
24106#undef ARM_VARIANT
24107#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
24108
5287ad62 24109 /* Neon element/structure load/store. */
21d799b5
NC
24110 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24111 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24112 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24113 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24114 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24115 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24116 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24117 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 24118
c921be7d 24119#undef THUMB_VARIANT
74db7efb
NC
24120#define THUMB_VARIANT & fpu_vfp_ext_v3xd
24121#undef ARM_VARIANT
24122#define ARM_VARIANT & fpu_vfp_ext_v3xd
62f3b8c8
PB
24123 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
24124 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24125 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24126 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24127 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24128 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24129 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24130 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24131 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24132
74db7efb 24133#undef THUMB_VARIANT
c921be7d
NC
24134#define THUMB_VARIANT & fpu_vfp_ext_v3
24135#undef ARM_VARIANT
24136#define ARM_VARIANT & fpu_vfp_ext_v3
24137
21d799b5 24138 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 24139 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24140 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 24141 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24142 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 24143 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24144 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 24145 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24146 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 24147
74db7efb
NC
24148#undef ARM_VARIANT
24149#define ARM_VARIANT & fpu_vfp_ext_fma
24150#undef THUMB_VARIANT
24151#define THUMB_VARIANT & fpu_vfp_ext_fma
d58196e0 24152 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
62f3b8c8
PB
24153 VFP FMA variant; NEON and VFP FMA always includes the NEON
24154 FMA instructions. */
d58196e0
AV
24155 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
24156 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
24157
62f3b8c8
PB
24158 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
24159 the v form should always be used. */
24160 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24161 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24162 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24163 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24164 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24165 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24166
5287ad62 24167#undef THUMB_VARIANT
c921be7d
NC
24168#undef ARM_VARIANT
24169#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
24170
21d799b5
NC
24171 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24172 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24173 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24174 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24175 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24176 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24177 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
24178 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 24179
c921be7d
NC
24180#undef ARM_VARIANT
24181#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
24182
21d799b5
NC
24183 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
24184 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
24185 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
24186 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
24187 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
24188 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
24189 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
24190 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
24191 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
74db7efb
NC
24192 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24193 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24194 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24195 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24196 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24197 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21d799b5
NC
24198 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24199 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24200 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24201 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
24202 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
24203 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24204 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24205 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24206 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24207 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24208 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
74db7efb
NC
24209 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
24210 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
24211 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21d799b5
NC
24212 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
24213 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
24214 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
24215 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
24216 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
24217 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
24218 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
24219 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
24220 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24221 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24222 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24223 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24224 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24225 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24226 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24227 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24228 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24229 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
74db7efb
NC
24230 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24231 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24232 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24233 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24234 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24235 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24236 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24237 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24238 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24239 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24240 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24241 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24242 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
24243 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24244 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24245 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24246 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24247 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24248 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24249 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24250 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24251 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24252 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24253 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24254 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24255 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24256 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24257 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24258 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24259 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24260 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24261 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24262 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24263 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24264 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24265 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24266 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24267 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24268 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24269 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24270 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24271 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
24272 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24273 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24274 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24275 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24276 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
24277 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24278 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24279 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24280 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24281 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24282 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24283 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24284 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24285 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24286 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24287 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24288 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24289 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24290 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24291 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24292 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24293 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
24294 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24295 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24296 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24297 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24298 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24299 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24300 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24301 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24302 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24303 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24304 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24305 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24306 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24307 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24308 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24309 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24310 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24311 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24312 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24313 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24314 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24315 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24316 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24317 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24318 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24319 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24320 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24321 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24322 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24323 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24324 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24325 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
24326 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
24327 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
24328 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
24329 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
24330 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
24331 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24332 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24333 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24334 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
24335 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
24336 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
24337 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
24338 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
24339 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
24340 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24341 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24342 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24343 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24344 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 24345
c921be7d
NC
24346#undef ARM_VARIANT
24347#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
24348
21d799b5
NC
24349 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
24350 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
24351 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
24352 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
24353 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
24354 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
24355 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24356 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24357 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24358 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24359 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24360 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24361 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24362 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24363 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24364 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24365 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24366 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24367 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24368 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24369 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
24370 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24371 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24372 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24373 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24374 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24375 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24376 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24377 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24378 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24379 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24380 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24381 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24382 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24383 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24384 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24385 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24386 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24387 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24388 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24389 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24390 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24391 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24392 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24393 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24394 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24395 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24396 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24397 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24398 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24399 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24400 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24401 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24402 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24403 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24404 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24405 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 24406
c921be7d
NC
24407#undef ARM_VARIANT
24408#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
24409
21d799b5
NC
24410 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24411 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24412 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24413 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24414 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24415 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24416 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24417 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24418 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
24419 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
24420 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
24421 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
24422 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
24423 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
74db7efb
NC
24424 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
24425 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
24426 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
24427 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
24428 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
24429 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
24430 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
24431 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
24432 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
24433 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21d799b5
NC
24434 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
24435 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
24436 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
24437 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
74db7efb
NC
24438 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
24439 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21d799b5
NC
24440 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
24441 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
24442 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
24443 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
74db7efb
NC
24444 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
24445 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
24446 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
24447 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
24448 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
24449 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21d799b5
NC
24450 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
24451 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
74db7efb
NC
24452 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
24453 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21d799b5
NC
24454 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
24455 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
24456 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
24457 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
24458 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
24459 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
24460 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
24461 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
24462 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
24463 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
24464 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
24465 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
24466 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
24467 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
24468 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
24469 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
24470 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
24471 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
24472 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
24473 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
24474 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24475 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24476 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24477 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24478 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24479 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24480 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24481 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
74db7efb
NC
24482 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24483 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21d799b5
NC
24484 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24485 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
4ed7ed8d 24486
7fadb25d
SD
24487 /* ARMv8.5-A instructions. */
24488#undef ARM_VARIANT
24489#define ARM_VARIANT & arm_ext_sb
24490#undef THUMB_VARIANT
24491#define THUMB_VARIANT & arm_ext_sb
24492 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
24493
dad0c3bf
SD
24494#undef ARM_VARIANT
24495#define ARM_VARIANT & arm_ext_predres
24496#undef THUMB_VARIANT
24497#define THUMB_VARIANT & arm_ext_predres
24498 CE("cfprctx", e070f93, 1, (RRnpc), rd),
24499 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
24500 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
24501
16a1fa25 24502 /* ARMv8-M instructions. */
4ed7ed8d
TP
24503#undef ARM_VARIANT
24504#define ARM_VARIANT NULL
24505#undef THUMB_VARIANT
24506#define THUMB_VARIANT & arm_ext_v8m
cf3cf39d
TP
24507 ToU("sg", e97fe97f, 0, (), noargs),
24508 ToC("blxns", 4784, 1, (RRnpc), t_blx),
24509 ToC("bxns", 4704, 1, (RRnpc), t_bx),
24510 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
24511 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
24512 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
24513 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
16a1fa25
TP
24514
24515 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
24516 instructions behave as nop if no VFP is present. */
24517#undef THUMB_VARIANT
24518#define THUMB_VARIANT & arm_ext_v8m_main
cf3cf39d
TP
24519 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
24520 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
4389b29a
AV
24521
24522 /* Armv8.1-M Mainline instructions. */
24523#undef THUMB_VARIANT
24524#define THUMB_VARIANT & arm_ext_v8_1m_main
24525 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
f6b2b12d 24526 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
f1c7f421 24527 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
65d1bc05 24528 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
f1c7f421 24529 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
60f993ce
AV
24530
24531 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
24532 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
24533 toU("le", _le, 2, (oLR, EXP), t_loloop),
4b5a202f 24534
efd6b359 24535 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
5ee91343
AV
24536 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
24537
24538#undef THUMB_VARIANT
24539#define THUMB_VARIANT & mve_ext
1b883319
AV
24540
24541 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24542 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24543 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24544 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24545 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24546 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24547 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24548 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24549 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24550 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24551 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24552 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24553 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24554 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24555 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24556
5ee91343
AV
24557 ToC("vpst", fe710f4d, 0, (), mve_vpt),
24558 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
24559 ToC("vpste", fe718f4d, 0, (), mve_vpt),
24560 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
24561 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
24562 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
24563 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
24564 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
24565 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
24566 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
24567 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
24568 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
24569 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
24570 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
24571 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
24572
a302e574 24573 /* MVE and MVE FP only. */
7df54120 24574 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
c2dafc2a
AV
24575 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
24576 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
24577 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24578 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
886e1c73 24579 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
a302e574
AV
24580 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
24581 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24582 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24583 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24584 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24585 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24586 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24587 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24588 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24589 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24590 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24591
35c228db
AV
24592 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24593 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24594 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24595 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24596 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24597 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24598 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24599 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24600 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24601 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24602 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24603 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
f5f10c66
AV
24604 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24605 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24606 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24607 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24608 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24609 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24610 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24611 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
35c228db 24612
57785aa2
AV
24613 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
24614 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
c2dafc2a 24615 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
26c1e780
AV
24616 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
24617 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
24618 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
24619 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
b409bdb6
AV
24620 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
24621 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24622 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
24623 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
935295b5
AV
24624 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
24625 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
13ccd4c0
AV
24626 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
24627 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
24628 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
24629 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
57785aa2 24630
93925576
AV
24631 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24632 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24633 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24634 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24635 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24636 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24637 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24638 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24639 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24640 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24641 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24642 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24643 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24644 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24645 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24646 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24647 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24648 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24649 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24650 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24651
5d281bf0
AV
24652#undef THUMB_VARIANT
24653#define THUMB_VARIANT & mve_fp_ext
24654 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
f30ee27c 24655 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
935295b5
AV
24656 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
24657 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
8cd78170
AV
24658 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
24659 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
24660 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
24661 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
5d281bf0 24662
5ee91343 24663#undef ARM_VARIANT
57785aa2 24664#define ARM_VARIANT & fpu_vfp_ext_v1
5ee91343
AV
24665#undef THUMB_VARIANT
24666#define THUMB_VARIANT & arm_ext_v6t2
a8465a06
AV
24667 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
24668 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
5ee91343 24669
57785aa2
AV
24670 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24671
24672#undef ARM_VARIANT
24673#define ARM_VARIANT & fpu_vfp_ext_v1xd
24674
24675 MNCE(vmov, 0, 1, (VMOV), neon_mov),
24676 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
24677 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
24678 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
24679
886e1c73
AV
24680 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
24681 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24682 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
5ee91343 24683
485dee97
AV
24684 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24685 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24686
57785aa2
AV
24687 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
24688 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
24689
1b883319
AV
24690 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24691 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24692
57785aa2
AV
24693#undef ARM_VARIANT
24694#define ARM_VARIANT & fpu_vfp_ext_v2
24695
24696 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
24697 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
24698 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
24699 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
24700
dd9634d9
AV
24701#undef ARM_VARIANT
24702#define ARM_VARIANT & fpu_vfp_ext_armv8xd
24703 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
24704 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
24705 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
24706 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
935295b5
AV
24707 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
24708 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
dd9634d9
AV
24709
24710#undef ARM_VARIANT
5ee91343 24711#define ARM_VARIANT & fpu_neon_ext_v1
f601a00c 24712 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
5ee91343
AV
24713 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
24714 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24715 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
f601a00c
AV
24716 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24717 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24718 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24719 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24720 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
f30ee27c
AV
24721 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
24722 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
b409bdb6 24723 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
7df54120
AV
24724 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
24725 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
24726 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
935295b5
AV
24727 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
24728 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
a8465a06
AV
24729 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
24730 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
5d281bf0
AV
24731
24732#undef ARM_VARIANT
24733#define ARM_VARIANT & arm_ext_v8_3
24734#undef THUMB_VARIANT
24735#define THUMB_VARIANT & arm_ext_v6t2_v8m
24736 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
24737 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
c19d1205
ZW
24738};
24739#undef ARM_VARIANT
24740#undef THUMB_VARIANT
24741#undef TCE
c19d1205
ZW
24742#undef TUE
24743#undef TUF
24744#undef TCC
8f06b2d8 24745#undef cCE
e3cb604e
PB
24746#undef cCL
24747#undef C3E
4389b29a 24748#undef C3
c19d1205
ZW
24749#undef CE
24750#undef CM
4389b29a 24751#undef CL
c19d1205
ZW
24752#undef UE
24753#undef UF
24754#undef UT
5287ad62
JB
24755#undef NUF
24756#undef nUF
24757#undef NCE
24758#undef nCE
c19d1205
ZW
24759#undef OPS0
24760#undef OPS1
24761#undef OPS2
24762#undef OPS3
24763#undef OPS4
24764#undef OPS5
24765#undef OPS6
24766#undef do_0
4389b29a
AV
24767#undef ToC
24768#undef toC
24769#undef ToU
f6b2b12d 24770#undef toU
c19d1205
ZW
24771\f
24772/* MD interface: bits in the object file. */
bfae80f2 24773
c19d1205
ZW
24774/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
24775 for use in the a.out file, and stores them in the array pointed to by buf.
24776 This knows about the endian-ness of the target machine and does
24777 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
24778 2 (short) and 4 (long) Floating numbers are put out as a series of
24779 LITTLENUMS (shorts, here at least). */
b99bd4ef 24780
c19d1205
ZW
24781void
24782md_number_to_chars (char * buf, valueT val, int n)
24783{
24784 if (target_big_endian)
24785 number_to_chars_bigendian (buf, val, n);
24786 else
24787 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
24788}
24789
c19d1205
ZW
24790static valueT
24791md_chars_to_number (char * buf, int n)
bfae80f2 24792{
c19d1205
ZW
24793 valueT result = 0;
24794 unsigned char * where = (unsigned char *) buf;
bfae80f2 24795
c19d1205 24796 if (target_big_endian)
b99bd4ef 24797 {
c19d1205
ZW
24798 while (n--)
24799 {
24800 result <<= 8;
24801 result |= (*where++ & 255);
24802 }
b99bd4ef 24803 }
c19d1205 24804 else
b99bd4ef 24805 {
c19d1205
ZW
24806 while (n--)
24807 {
24808 result <<= 8;
24809 result |= (where[n] & 255);
24810 }
bfae80f2 24811 }
b99bd4ef 24812
c19d1205 24813 return result;
bfae80f2 24814}
b99bd4ef 24815
c19d1205 24816/* MD interface: Sections. */
b99bd4ef 24817
fa94de6b
RM
24818/* Calculate the maximum variable size (i.e., excluding fr_fix)
24819 that an rs_machine_dependent frag may reach. */
24820
24821unsigned int
24822arm_frag_max_var (fragS *fragp)
24823{
24824 /* We only use rs_machine_dependent for variable-size Thumb instructions,
24825 which are either THUMB_SIZE (2) or INSN_SIZE (4).
24826
24827 Note that we generate relaxable instructions even for cases that don't
24828 really need it, like an immediate that's a trivial constant. So we're
24829 overestimating the instruction size for some of those cases. Rather
24830 than putting more intelligence here, it would probably be better to
24831 avoid generating a relaxation frag in the first place when it can be
24832 determined up front that a short instruction will suffice. */
24833
24834 gas_assert (fragp->fr_type == rs_machine_dependent);
24835 return INSN_SIZE;
24836}
24837
0110f2b8
PB
24838/* Estimate the size of a frag before relaxing. Assume everything fits in
24839 2 bytes. */
24840
c19d1205 24841int
0110f2b8 24842md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
24843 segT segtype ATTRIBUTE_UNUSED)
24844{
0110f2b8
PB
24845 fragp->fr_var = 2;
24846 return 2;
24847}
24848
24849/* Convert a machine dependent frag. */
24850
24851void
24852md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
24853{
24854 unsigned long insn;
24855 unsigned long old_op;
24856 char *buf;
24857 expressionS exp;
24858 fixS *fixp;
24859 int reloc_type;
24860 int pc_rel;
24861 int opcode;
24862
24863 buf = fragp->fr_literal + fragp->fr_fix;
24864
24865 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
24866 if (fragp->fr_symbol)
24867 {
0110f2b8
PB
24868 exp.X_op = O_symbol;
24869 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
24870 }
24871 else
24872 {
0110f2b8 24873 exp.X_op = O_constant;
5f4273c7 24874 }
0110f2b8
PB
24875 exp.X_add_number = fragp->fr_offset;
24876 opcode = fragp->fr_subtype;
24877 switch (opcode)
24878 {
24879 case T_MNEM_ldr_pc:
24880 case T_MNEM_ldr_pc2:
24881 case T_MNEM_ldr_sp:
24882 case T_MNEM_str_sp:
24883 case T_MNEM_ldr:
24884 case T_MNEM_ldrb:
24885 case T_MNEM_ldrh:
24886 case T_MNEM_str:
24887 case T_MNEM_strb:
24888 case T_MNEM_strh:
24889 if (fragp->fr_var == 4)
24890 {
5f4273c7 24891 insn = THUMB_OP32 (opcode);
0110f2b8
PB
24892 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
24893 {
24894 insn |= (old_op & 0x700) << 4;
24895 }
24896 else
24897 {
24898 insn |= (old_op & 7) << 12;
24899 insn |= (old_op & 0x38) << 13;
24900 }
24901 insn |= 0x00000c00;
24902 put_thumb32_insn (buf, insn);
24903 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
24904 }
24905 else
24906 {
24907 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
24908 }
24909 pc_rel = (opcode == T_MNEM_ldr_pc2);
24910 break;
24911 case T_MNEM_adr:
24912 if (fragp->fr_var == 4)
24913 {
24914 insn = THUMB_OP32 (opcode);
24915 insn |= (old_op & 0xf0) << 4;
24916 put_thumb32_insn (buf, insn);
24917 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
24918 }
24919 else
24920 {
24921 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24922 exp.X_add_number -= 4;
24923 }
24924 pc_rel = 1;
24925 break;
24926 case T_MNEM_mov:
24927 case T_MNEM_movs:
24928 case T_MNEM_cmp:
24929 case T_MNEM_cmn:
24930 if (fragp->fr_var == 4)
24931 {
24932 int r0off = (opcode == T_MNEM_mov
24933 || opcode == T_MNEM_movs) ? 0 : 8;
24934 insn = THUMB_OP32 (opcode);
24935 insn = (insn & 0xe1ffffff) | 0x10000000;
24936 insn |= (old_op & 0x700) << r0off;
24937 put_thumb32_insn (buf, insn);
24938 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
24939 }
24940 else
24941 {
24942 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
24943 }
24944 pc_rel = 0;
24945 break;
24946 case T_MNEM_b:
24947 if (fragp->fr_var == 4)
24948 {
24949 insn = THUMB_OP32(opcode);
24950 put_thumb32_insn (buf, insn);
24951 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
24952 }
24953 else
24954 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
24955 pc_rel = 1;
24956 break;
24957 case T_MNEM_bcond:
24958 if (fragp->fr_var == 4)
24959 {
24960 insn = THUMB_OP32(opcode);
24961 insn |= (old_op & 0xf00) << 14;
24962 put_thumb32_insn (buf, insn);
24963 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
24964 }
24965 else
24966 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
24967 pc_rel = 1;
24968 break;
24969 case T_MNEM_add_sp:
24970 case T_MNEM_add_pc:
24971 case T_MNEM_inc_sp:
24972 case T_MNEM_dec_sp:
24973 if (fragp->fr_var == 4)
24974 {
24975 /* ??? Choose between add and addw. */
24976 insn = THUMB_OP32 (opcode);
24977 insn |= (old_op & 0xf0) << 4;
24978 put_thumb32_insn (buf, insn);
16805f35
PB
24979 if (opcode == T_MNEM_add_pc)
24980 reloc_type = BFD_RELOC_ARM_T32_IMM12;
24981 else
24982 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
24983 }
24984 else
24985 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24986 pc_rel = 0;
24987 break;
24988
24989 case T_MNEM_addi:
24990 case T_MNEM_addis:
24991 case T_MNEM_subi:
24992 case T_MNEM_subis:
24993 if (fragp->fr_var == 4)
24994 {
24995 insn = THUMB_OP32 (opcode);
24996 insn |= (old_op & 0xf0) << 4;
24997 insn |= (old_op & 0xf) << 16;
24998 put_thumb32_insn (buf, insn);
16805f35
PB
24999 if (insn & (1 << 20))
25000 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25001 else
25002 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
25003 }
25004 else
25005 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25006 pc_rel = 0;
25007 break;
25008 default:
5f4273c7 25009 abort ();
0110f2b8
PB
25010 }
25011 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 25012 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
25013 fixp->fx_file = fragp->fr_file;
25014 fixp->fx_line = fragp->fr_line;
25015 fragp->fr_fix += fragp->fr_var;
3cfdb781
TG
25016
25017 /* Set whether we use thumb-2 ISA based on final relaxation results. */
25018 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
25019 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
25020 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
0110f2b8
PB
25021}
25022
25023/* Return the size of a relaxable immediate operand instruction.
25024 SHIFT and SIZE specify the form of the allowable immediate. */
25025static int
25026relax_immediate (fragS *fragp, int size, int shift)
25027{
25028 offsetT offset;
25029 offsetT mask;
25030 offsetT low;
25031
25032 /* ??? Should be able to do better than this. */
25033 if (fragp->fr_symbol)
25034 return 4;
25035
25036 low = (1 << shift) - 1;
25037 mask = (1 << (shift + size)) - (1 << shift);
25038 offset = fragp->fr_offset;
25039 /* Force misaligned offsets to 32-bit variant. */
25040 if (offset & low)
5e77afaa 25041 return 4;
0110f2b8
PB
25042 if (offset & ~mask)
25043 return 4;
25044 return 2;
25045}
25046
5e77afaa
PB
25047/* Get the address of a symbol during relaxation. */
25048static addressT
5f4273c7 25049relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
25050{
25051 fragS *sym_frag;
25052 addressT addr;
25053 symbolS *sym;
25054
25055 sym = fragp->fr_symbol;
25056 sym_frag = symbol_get_frag (sym);
25057 know (S_GET_SEGMENT (sym) != absolute_section
25058 || sym_frag == &zero_address_frag);
25059 addr = S_GET_VALUE (sym) + fragp->fr_offset;
25060
25061 /* If frag has yet to be reached on this pass, assume it will
25062 move by STRETCH just as we did. If this is not so, it will
25063 be because some frag between grows, and that will force
25064 another pass. */
25065
25066 if (stretch != 0
25067 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
25068 {
25069 fragS *f;
25070
25071 /* Adjust stretch for any alignment frag. Note that if have
25072 been expanding the earlier code, the symbol may be
25073 defined in what appears to be an earlier frag. FIXME:
25074 This doesn't handle the fr_subtype field, which specifies
25075 a maximum number of bytes to skip when doing an
25076 alignment. */
25077 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
25078 {
25079 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
25080 {
25081 if (stretch < 0)
25082 stretch = - ((- stretch)
25083 & ~ ((1 << (int) f->fr_offset) - 1));
25084 else
25085 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
25086 if (stretch == 0)
25087 break;
25088 }
25089 }
25090 if (f != NULL)
25091 addr += stretch;
25092 }
5e77afaa
PB
25093
25094 return addr;
25095}
25096
0110f2b8
PB
25097/* Return the size of a relaxable adr pseudo-instruction or PC-relative
25098 load. */
25099static int
5e77afaa 25100relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
25101{
25102 addressT addr;
25103 offsetT val;
25104
25105 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
25106 if (fragp->fr_symbol == NULL
25107 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
25108 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25109 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
25110 return 4;
25111
5f4273c7 25112 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
25113 addr = fragp->fr_address + fragp->fr_fix;
25114 addr = (addr + 4) & ~3;
5e77afaa 25115 /* Force misaligned targets to 32-bit variant. */
0110f2b8 25116 if (val & 3)
5e77afaa 25117 return 4;
0110f2b8
PB
25118 val -= addr;
25119 if (val < 0 || val > 1020)
25120 return 4;
25121 return 2;
25122}
25123
25124/* Return the size of a relaxable add/sub immediate instruction. */
25125static int
25126relax_addsub (fragS *fragp, asection *sec)
25127{
25128 char *buf;
25129 int op;
25130
25131 buf = fragp->fr_literal + fragp->fr_fix;
25132 op = bfd_get_16(sec->owner, buf);
25133 if ((op & 0xf) == ((op >> 4) & 0xf))
25134 return relax_immediate (fragp, 8, 0);
25135 else
25136 return relax_immediate (fragp, 3, 0);
25137}
25138
e83a675f
RE
25139/* Return TRUE iff the definition of symbol S could be pre-empted
25140 (overridden) at link or load time. */
25141static bfd_boolean
25142symbol_preemptible (symbolS *s)
25143{
25144 /* Weak symbols can always be pre-empted. */
25145 if (S_IS_WEAK (s))
25146 return TRUE;
25147
25148 /* Non-global symbols cannot be pre-empted. */
25149 if (! S_IS_EXTERNAL (s))
25150 return FALSE;
25151
25152#ifdef OBJ_ELF
25153 /* In ELF, a global symbol can be marked protected, or private. In that
25154 case it can't be pre-empted (other definitions in the same link unit
25155 would violate the ODR). */
25156 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
25157 return FALSE;
25158#endif
25159
25160 /* Other global symbols might be pre-empted. */
25161 return TRUE;
25162}
0110f2b8
PB
25163
25164/* Return the size of a relaxable branch instruction. BITS is the
25165 size of the offset field in the narrow instruction. */
25166
25167static int
5e77afaa 25168relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
25169{
25170 addressT addr;
25171 offsetT val;
25172 offsetT limit;
25173
25174 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 25175 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
25176 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25177 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
25178 return 4;
25179
267bf995 25180#ifdef OBJ_ELF
e83a675f 25181 /* A branch to a function in ARM state will require interworking. */
267bf995
RR
25182 if (S_IS_DEFINED (fragp->fr_symbol)
25183 && ARM_IS_FUNC (fragp->fr_symbol))
25184 return 4;
e83a675f 25185#endif
0d9b4b55 25186
e83a675f 25187 if (symbol_preemptible (fragp->fr_symbol))
0d9b4b55 25188 return 4;
267bf995 25189
5f4273c7 25190 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
25191 addr = fragp->fr_address + fragp->fr_fix + 4;
25192 val -= addr;
25193
25194 /* Offset is a signed value *2 */
25195 limit = 1 << bits;
25196 if (val >= limit || val < -limit)
25197 return 4;
25198 return 2;
25199}
25200
25201
25202/* Relax a machine dependent frag. This returns the amount by which
25203 the current size of the frag should change. */
25204
25205int
5e77afaa 25206arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
25207{
25208 int oldsize;
25209 int newsize;
25210
25211 oldsize = fragp->fr_var;
25212 switch (fragp->fr_subtype)
25213 {
25214 case T_MNEM_ldr_pc2:
5f4273c7 25215 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
25216 break;
25217 case T_MNEM_ldr_pc:
25218 case T_MNEM_ldr_sp:
25219 case T_MNEM_str_sp:
5f4273c7 25220 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
25221 break;
25222 case T_MNEM_ldr:
25223 case T_MNEM_str:
5f4273c7 25224 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
25225 break;
25226 case T_MNEM_ldrh:
25227 case T_MNEM_strh:
5f4273c7 25228 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
25229 break;
25230 case T_MNEM_ldrb:
25231 case T_MNEM_strb:
5f4273c7 25232 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
25233 break;
25234 case T_MNEM_adr:
5f4273c7 25235 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
25236 break;
25237 case T_MNEM_mov:
25238 case T_MNEM_movs:
25239 case T_MNEM_cmp:
25240 case T_MNEM_cmn:
5f4273c7 25241 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
25242 break;
25243 case T_MNEM_b:
5f4273c7 25244 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
25245 break;
25246 case T_MNEM_bcond:
5f4273c7 25247 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
25248 break;
25249 case T_MNEM_add_sp:
25250 case T_MNEM_add_pc:
25251 newsize = relax_immediate (fragp, 8, 2);
25252 break;
25253 case T_MNEM_inc_sp:
25254 case T_MNEM_dec_sp:
25255 newsize = relax_immediate (fragp, 7, 2);
25256 break;
25257 case T_MNEM_addi:
25258 case T_MNEM_addis:
25259 case T_MNEM_subi:
25260 case T_MNEM_subis:
25261 newsize = relax_addsub (fragp, sec);
25262 break;
25263 default:
5f4273c7 25264 abort ();
0110f2b8 25265 }
5e77afaa
PB
25266
25267 fragp->fr_var = newsize;
25268 /* Freeze wide instructions that are at or before the same location as
25269 in the previous pass. This avoids infinite loops.
5f4273c7
NC
25270 Don't freeze them unconditionally because targets may be artificially
25271 misaligned by the expansion of preceding frags. */
5e77afaa 25272 if (stretch <= 0 && newsize > 2)
0110f2b8 25273 {
0110f2b8 25274 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 25275 frag_wane (fragp);
0110f2b8 25276 }
5e77afaa 25277
0110f2b8 25278 return newsize - oldsize;
c19d1205 25279}
b99bd4ef 25280
c19d1205 25281/* Round up a section size to the appropriate boundary. */
b99bd4ef 25282
c19d1205
ZW
25283valueT
25284md_section_align (segT segment ATTRIBUTE_UNUSED,
25285 valueT size)
25286{
6844c0cc 25287 return size;
bfae80f2 25288}
b99bd4ef 25289
c19d1205
ZW
25290/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
25291 of an rs_align_code fragment. */
25292
25293void
25294arm_handle_align (fragS * fragP)
bfae80f2 25295{
d9235011 25296 static unsigned char const arm_noop[2][2][4] =
e7495e45
NS
25297 {
25298 { /* ARMv1 */
25299 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
25300 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
25301 },
25302 { /* ARMv6k */
25303 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
25304 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
25305 },
25306 };
d9235011 25307 static unsigned char const thumb_noop[2][2][2] =
e7495e45
NS
25308 {
25309 { /* Thumb-1 */
25310 {0xc0, 0x46}, /* LE */
25311 {0x46, 0xc0}, /* BE */
25312 },
25313 { /* Thumb-2 */
25314 {0x00, 0xbf}, /* LE */
25315 {0xbf, 0x00} /* BE */
25316 }
25317 };
d9235011 25318 static unsigned char const wide_thumb_noop[2][4] =
e7495e45
NS
25319 { /* Wide Thumb-2 */
25320 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
25321 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
25322 };
c921be7d 25323
e7495e45 25324 unsigned bytes, fix, noop_size;
c19d1205 25325 char * p;
d9235011
TS
25326 const unsigned char * noop;
25327 const unsigned char *narrow_noop = NULL;
cd000bff
DJ
25328#ifdef OBJ_ELF
25329 enum mstate state;
25330#endif
bfae80f2 25331
c19d1205 25332 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
25333 return;
25334
c19d1205
ZW
25335 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
25336 p = fragP->fr_literal + fragP->fr_fix;
25337 fix = 0;
bfae80f2 25338
c19d1205
ZW
25339 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
25340 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 25341
cd000bff 25342 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 25343
cd000bff 25344 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 25345 {
7f78eb34
JW
25346 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25347 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
e7495e45
NS
25348 {
25349 narrow_noop = thumb_noop[1][target_big_endian];
25350 noop = wide_thumb_noop[target_big_endian];
25351 }
c19d1205 25352 else
e7495e45
NS
25353 noop = thumb_noop[0][target_big_endian];
25354 noop_size = 2;
cd000bff
DJ
25355#ifdef OBJ_ELF
25356 state = MAP_THUMB;
25357#endif
7ed4c4c5
NC
25358 }
25359 else
25360 {
7f78eb34
JW
25361 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25362 ? selected_cpu : arm_arch_none,
25363 arm_ext_v6k) != 0]
e7495e45
NS
25364 [target_big_endian];
25365 noop_size = 4;
cd000bff
DJ
25366#ifdef OBJ_ELF
25367 state = MAP_ARM;
25368#endif
7ed4c4c5 25369 }
c921be7d 25370
e7495e45 25371 fragP->fr_var = noop_size;
c921be7d 25372
c19d1205 25373 if (bytes & (noop_size - 1))
7ed4c4c5 25374 {
c19d1205 25375 fix = bytes & (noop_size - 1);
cd000bff
DJ
25376#ifdef OBJ_ELF
25377 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
25378#endif
c19d1205
ZW
25379 memset (p, 0, fix);
25380 p += fix;
25381 bytes -= fix;
a737bd4d 25382 }
a737bd4d 25383
e7495e45
NS
25384 if (narrow_noop)
25385 {
25386 if (bytes & noop_size)
25387 {
25388 /* Insert a narrow noop. */
25389 memcpy (p, narrow_noop, noop_size);
25390 p += noop_size;
25391 bytes -= noop_size;
25392 fix += noop_size;
25393 }
25394
25395 /* Use wide noops for the remainder */
25396 noop_size = 4;
25397 }
25398
c19d1205 25399 while (bytes >= noop_size)
a737bd4d 25400 {
c19d1205
ZW
25401 memcpy (p, noop, noop_size);
25402 p += noop_size;
25403 bytes -= noop_size;
25404 fix += noop_size;
a737bd4d
NC
25405 }
25406
c19d1205 25407 fragP->fr_fix += fix;
a737bd4d
NC
25408}
25409
c19d1205
ZW
25410/* Called from md_do_align. Used to create an alignment
25411 frag in a code section. */
25412
25413void
25414arm_frag_align_code (int n, int max)
bfae80f2 25415{
c19d1205 25416 char * p;
7ed4c4c5 25417
c19d1205 25418 /* We assume that there will never be a requirement
6ec8e702 25419 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 25420 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
25421 {
25422 char err_msg[128];
25423
fa94de6b 25424 sprintf (err_msg,
477330fc
RM
25425 _("alignments greater than %d bytes not supported in .text sections."),
25426 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 25427 as_fatal ("%s", err_msg);
6ec8e702 25428 }
bfae80f2 25429
c19d1205
ZW
25430 p = frag_var (rs_align_code,
25431 MAX_MEM_FOR_RS_ALIGN_CODE,
25432 1,
25433 (relax_substateT) max,
25434 (symbolS *) NULL,
25435 (offsetT) n,
25436 (char *) NULL);
25437 *p = 0;
25438}
bfae80f2 25439
8dc2430f
NC
25440/* Perform target specific initialisation of a frag.
25441 Note - despite the name this initialisation is not done when the frag
25442 is created, but only when its type is assigned. A frag can be created
25443 and used a long time before its type is set, so beware of assuming that
33eaf5de 25444 this initialisation is performed first. */
bfae80f2 25445
cd000bff
DJ
25446#ifndef OBJ_ELF
25447void
25448arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
25449{
25450 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 25451 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
25452}
25453
25454#else /* OBJ_ELF is defined. */
c19d1205 25455void
cd000bff 25456arm_init_frag (fragS * fragP, int max_chars)
c19d1205 25457{
e8d84ca1 25458 bfd_boolean frag_thumb_mode;
b968d18a 25459
8dc2430f
NC
25460 /* If the current ARM vs THUMB mode has not already
25461 been recorded into this frag then do so now. */
cd000bff 25462 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
b968d18a
JW
25463 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25464
e8d84ca1
NC
25465 /* PR 21809: Do not set a mapping state for debug sections
25466 - it just confuses other tools. */
25467 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
25468 return;
25469
b968d18a 25470 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
cd000bff 25471
f9c1b181
RL
25472 /* Record a mapping symbol for alignment frags. We will delete this
25473 later if the alignment ends up empty. */
25474 switch (fragP->fr_type)
25475 {
25476 case rs_align:
25477 case rs_align_test:
25478 case rs_fill:
25479 mapping_state_2 (MAP_DATA, max_chars);
25480 break;
25481 case rs_align_code:
b968d18a 25482 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
f9c1b181
RL
25483 break;
25484 default:
25485 break;
cd000bff 25486 }
bfae80f2
RE
25487}
25488
c19d1205
ZW
25489/* When we change sections we need to issue a new mapping symbol. */
25490
25491void
25492arm_elf_change_section (void)
bfae80f2 25493{
c19d1205
ZW
25494 /* Link an unlinked unwind index table section to the .text section. */
25495 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
25496 && elf_linked_to_section (now_seg) == NULL)
25497 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
25498}
25499
c19d1205
ZW
25500int
25501arm_elf_section_type (const char * str, size_t len)
e45d0630 25502{
c19d1205
ZW
25503 if (len == 5 && strncmp (str, "exidx", 5) == 0)
25504 return SHT_ARM_EXIDX;
e45d0630 25505
c19d1205
ZW
25506 return -1;
25507}
25508\f
25509/* Code to deal with unwinding tables. */
e45d0630 25510
c19d1205 25511static void add_unwind_adjustsp (offsetT);
e45d0630 25512
5f4273c7 25513/* Generate any deferred unwind frame offset. */
e45d0630 25514
bfae80f2 25515static void
c19d1205 25516flush_pending_unwind (void)
bfae80f2 25517{
c19d1205 25518 offsetT offset;
bfae80f2 25519
c19d1205
ZW
25520 offset = unwind.pending_offset;
25521 unwind.pending_offset = 0;
25522 if (offset != 0)
25523 add_unwind_adjustsp (offset);
bfae80f2
RE
25524}
25525
c19d1205
ZW
25526/* Add an opcode to this list for this function. Two-byte opcodes should
25527 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
25528 order. */
25529
bfae80f2 25530static void
c19d1205 25531add_unwind_opcode (valueT op, int length)
bfae80f2 25532{
c19d1205
ZW
25533 /* Add any deferred stack adjustment. */
25534 if (unwind.pending_offset)
25535 flush_pending_unwind ();
bfae80f2 25536
c19d1205 25537 unwind.sp_restored = 0;
bfae80f2 25538
c19d1205 25539 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 25540 {
c19d1205
ZW
25541 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
25542 if (unwind.opcodes)
325801bd
TS
25543 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
25544 unwind.opcode_alloc);
c19d1205 25545 else
325801bd 25546 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
bfae80f2 25547 }
c19d1205 25548 while (length > 0)
bfae80f2 25549 {
c19d1205
ZW
25550 length--;
25551 unwind.opcodes[unwind.opcode_count] = op & 0xff;
25552 op >>= 8;
25553 unwind.opcode_count++;
bfae80f2 25554 }
bfae80f2
RE
25555}
25556
c19d1205
ZW
25557/* Add unwind opcodes to adjust the stack pointer. */
25558
bfae80f2 25559static void
c19d1205 25560add_unwind_adjustsp (offsetT offset)
bfae80f2 25561{
c19d1205 25562 valueT op;
bfae80f2 25563
c19d1205 25564 if (offset > 0x200)
bfae80f2 25565 {
c19d1205
ZW
25566 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
25567 char bytes[5];
25568 int n;
25569 valueT o;
bfae80f2 25570
c19d1205
ZW
25571 /* Long form: 0xb2, uleb128. */
25572 /* This might not fit in a word so add the individual bytes,
25573 remembering the list is built in reverse order. */
25574 o = (valueT) ((offset - 0x204) >> 2);
25575 if (o == 0)
25576 add_unwind_opcode (0, 1);
bfae80f2 25577
c19d1205
ZW
25578 /* Calculate the uleb128 encoding of the offset. */
25579 n = 0;
25580 while (o)
25581 {
25582 bytes[n] = o & 0x7f;
25583 o >>= 7;
25584 if (o)
25585 bytes[n] |= 0x80;
25586 n++;
25587 }
25588 /* Add the insn. */
25589 for (; n; n--)
25590 add_unwind_opcode (bytes[n - 1], 1);
25591 add_unwind_opcode (0xb2, 1);
25592 }
25593 else if (offset > 0x100)
bfae80f2 25594 {
c19d1205
ZW
25595 /* Two short opcodes. */
25596 add_unwind_opcode (0x3f, 1);
25597 op = (offset - 0x104) >> 2;
25598 add_unwind_opcode (op, 1);
bfae80f2 25599 }
c19d1205
ZW
25600 else if (offset > 0)
25601 {
25602 /* Short opcode. */
25603 op = (offset - 4) >> 2;
25604 add_unwind_opcode (op, 1);
25605 }
25606 else if (offset < 0)
bfae80f2 25607 {
c19d1205
ZW
25608 offset = -offset;
25609 while (offset > 0x100)
bfae80f2 25610 {
c19d1205
ZW
25611 add_unwind_opcode (0x7f, 1);
25612 offset -= 0x100;
bfae80f2 25613 }
c19d1205
ZW
25614 op = ((offset - 4) >> 2) | 0x40;
25615 add_unwind_opcode (op, 1);
bfae80f2 25616 }
bfae80f2
RE
25617}
25618
c19d1205 25619/* Finish the list of unwind opcodes for this function. */
0198d5e6 25620
c19d1205
ZW
25621static void
25622finish_unwind_opcodes (void)
bfae80f2 25623{
c19d1205 25624 valueT op;
bfae80f2 25625
c19d1205 25626 if (unwind.fp_used)
bfae80f2 25627 {
708587a4 25628 /* Adjust sp as necessary. */
c19d1205
ZW
25629 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
25630 flush_pending_unwind ();
bfae80f2 25631
c19d1205
ZW
25632 /* After restoring sp from the frame pointer. */
25633 op = 0x90 | unwind.fp_reg;
25634 add_unwind_opcode (op, 1);
25635 }
25636 else
25637 flush_pending_unwind ();
bfae80f2
RE
25638}
25639
bfae80f2 25640
c19d1205
ZW
25641/* Start an exception table entry. If idx is nonzero this is an index table
25642 entry. */
bfae80f2
RE
25643
25644static void
c19d1205 25645start_unwind_section (const segT text_seg, int idx)
bfae80f2 25646{
c19d1205
ZW
25647 const char * text_name;
25648 const char * prefix;
25649 const char * prefix_once;
25650 const char * group_name;
c19d1205 25651 char * sec_name;
c19d1205
ZW
25652 int type;
25653 int flags;
25654 int linkonce;
bfae80f2 25655
c19d1205 25656 if (idx)
bfae80f2 25657 {
c19d1205
ZW
25658 prefix = ELF_STRING_ARM_unwind;
25659 prefix_once = ELF_STRING_ARM_unwind_once;
25660 type = SHT_ARM_EXIDX;
bfae80f2 25661 }
c19d1205 25662 else
bfae80f2 25663 {
c19d1205
ZW
25664 prefix = ELF_STRING_ARM_unwind_info;
25665 prefix_once = ELF_STRING_ARM_unwind_info_once;
25666 type = SHT_PROGBITS;
bfae80f2
RE
25667 }
25668
c19d1205
ZW
25669 text_name = segment_name (text_seg);
25670 if (streq (text_name, ".text"))
25671 text_name = "";
25672
25673 if (strncmp (text_name, ".gnu.linkonce.t.",
25674 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 25675 {
c19d1205
ZW
25676 prefix = prefix_once;
25677 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
25678 }
25679
29a2809e 25680 sec_name = concat (prefix, text_name, (char *) NULL);
bfae80f2 25681
c19d1205
ZW
25682 flags = SHF_ALLOC;
25683 linkonce = 0;
25684 group_name = 0;
bfae80f2 25685
c19d1205
ZW
25686 /* Handle COMDAT group. */
25687 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 25688 {
c19d1205
ZW
25689 group_name = elf_group_name (text_seg);
25690 if (group_name == NULL)
25691 {
bd3ba5d1 25692 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
25693 segment_name (text_seg));
25694 ignore_rest_of_line ();
25695 return;
25696 }
25697 flags |= SHF_GROUP;
25698 linkonce = 1;
bfae80f2
RE
25699 }
25700
a91e1603
L
25701 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
25702 linkonce, 0);
bfae80f2 25703
5f4273c7 25704 /* Set the section link for index tables. */
c19d1205
ZW
25705 if (idx)
25706 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
25707}
25708
bfae80f2 25709
c19d1205
ZW
25710/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
25711 personality routine data. Returns zero, or the index table value for
cad0da33 25712 an inline entry. */
c19d1205
ZW
25713
25714static valueT
25715create_unwind_entry (int have_data)
bfae80f2 25716{
c19d1205
ZW
25717 int size;
25718 addressT where;
25719 char *ptr;
25720 /* The current word of data. */
25721 valueT data;
25722 /* The number of bytes left in this word. */
25723 int n;
bfae80f2 25724
c19d1205 25725 finish_unwind_opcodes ();
bfae80f2 25726
c19d1205
ZW
25727 /* Remember the current text section. */
25728 unwind.saved_seg = now_seg;
25729 unwind.saved_subseg = now_subseg;
bfae80f2 25730
c19d1205 25731 start_unwind_section (now_seg, 0);
bfae80f2 25732
c19d1205 25733 if (unwind.personality_routine == NULL)
bfae80f2 25734 {
c19d1205
ZW
25735 if (unwind.personality_index == -2)
25736 {
25737 if (have_data)
5f4273c7 25738 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
25739 return 1; /* EXIDX_CANTUNWIND. */
25740 }
bfae80f2 25741
c19d1205
ZW
25742 /* Use a default personality routine if none is specified. */
25743 if (unwind.personality_index == -1)
25744 {
25745 if (unwind.opcode_count > 3)
25746 unwind.personality_index = 1;
25747 else
25748 unwind.personality_index = 0;
25749 }
bfae80f2 25750
c19d1205
ZW
25751 /* Space for the personality routine entry. */
25752 if (unwind.personality_index == 0)
25753 {
25754 if (unwind.opcode_count > 3)
25755 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 25756
c19d1205
ZW
25757 if (!have_data)
25758 {
25759 /* All the data is inline in the index table. */
25760 data = 0x80;
25761 n = 3;
25762 while (unwind.opcode_count > 0)
25763 {
25764 unwind.opcode_count--;
25765 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25766 n--;
25767 }
bfae80f2 25768
c19d1205
ZW
25769 /* Pad with "finish" opcodes. */
25770 while (n--)
25771 data = (data << 8) | 0xb0;
bfae80f2 25772
c19d1205
ZW
25773 return data;
25774 }
25775 size = 0;
25776 }
25777 else
25778 /* We get two opcodes "free" in the first word. */
25779 size = unwind.opcode_count - 2;
25780 }
25781 else
5011093d 25782 {
cad0da33
NC
25783 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
25784 if (unwind.personality_index != -1)
25785 {
25786 as_bad (_("attempt to recreate an unwind entry"));
25787 return 1;
25788 }
5011093d
NC
25789
25790 /* An extra byte is required for the opcode count. */
25791 size = unwind.opcode_count + 1;
25792 }
bfae80f2 25793
c19d1205
ZW
25794 size = (size + 3) >> 2;
25795 if (size > 0xff)
25796 as_bad (_("too many unwind opcodes"));
bfae80f2 25797
c19d1205
ZW
25798 frag_align (2, 0, 0);
25799 record_alignment (now_seg, 2);
25800 unwind.table_entry = expr_build_dot ();
25801
25802 /* Allocate the table entry. */
25803 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
25804 /* PR 13449: Zero the table entries in case some of them are not used. */
25805 memset (ptr, 0, (size << 2) + 4);
c19d1205 25806 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 25807
c19d1205 25808 switch (unwind.personality_index)
bfae80f2 25809 {
c19d1205
ZW
25810 case -1:
25811 /* ??? Should this be a PLT generating relocation? */
25812 /* Custom personality routine. */
25813 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
25814 BFD_RELOC_ARM_PREL31);
bfae80f2 25815
c19d1205
ZW
25816 where += 4;
25817 ptr += 4;
bfae80f2 25818
c19d1205 25819 /* Set the first byte to the number of additional words. */
5011093d 25820 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
25821 n = 3;
25822 break;
bfae80f2 25823
c19d1205
ZW
25824 /* ABI defined personality routines. */
25825 case 0:
25826 /* Three opcodes bytes are packed into the first word. */
25827 data = 0x80;
25828 n = 3;
25829 break;
bfae80f2 25830
c19d1205
ZW
25831 case 1:
25832 case 2:
25833 /* The size and first two opcode bytes go in the first word. */
25834 data = ((0x80 + unwind.personality_index) << 8) | size;
25835 n = 2;
25836 break;
bfae80f2 25837
c19d1205
ZW
25838 default:
25839 /* Should never happen. */
25840 abort ();
25841 }
bfae80f2 25842
c19d1205
ZW
25843 /* Pack the opcodes into words (MSB first), reversing the list at the same
25844 time. */
25845 while (unwind.opcode_count > 0)
25846 {
25847 if (n == 0)
25848 {
25849 md_number_to_chars (ptr, data, 4);
25850 ptr += 4;
25851 n = 4;
25852 data = 0;
25853 }
25854 unwind.opcode_count--;
25855 n--;
25856 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25857 }
25858
25859 /* Finish off the last word. */
25860 if (n < 4)
25861 {
25862 /* Pad with "finish" opcodes. */
25863 while (n--)
25864 data = (data << 8) | 0xb0;
25865
25866 md_number_to_chars (ptr, data, 4);
25867 }
25868
25869 if (!have_data)
25870 {
25871 /* Add an empty descriptor if there is no user-specified data. */
25872 ptr = frag_more (4);
25873 md_number_to_chars (ptr, 0, 4);
25874 }
25875
25876 return 0;
bfae80f2
RE
25877}
25878
f0927246
NC
25879
25880/* Initialize the DWARF-2 unwind information for this procedure. */
25881
25882void
25883tc_arm_frame_initial_instructions (void)
25884{
25885 cfi_add_CFA_def_cfa (REG_SP, 0);
25886}
25887#endif /* OBJ_ELF */
25888
c19d1205
ZW
25889/* Convert REGNAME to a DWARF-2 register number. */
25890
25891int
1df69f4f 25892tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 25893{
1df69f4f 25894 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
1f5afe1c
NC
25895 if (reg != FAIL)
25896 return reg;
c19d1205 25897
1f5afe1c
NC
25898 /* PR 16694: Allow VFP registers as well. */
25899 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
25900 if (reg != FAIL)
25901 return 64 + reg;
c19d1205 25902
1f5afe1c
NC
25903 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
25904 if (reg != FAIL)
25905 return reg + 256;
25906
0198d5e6 25907 return FAIL;
bfae80f2
RE
25908}
25909
f0927246 25910#ifdef TE_PE
c19d1205 25911void
f0927246 25912tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 25913{
91d6fa6a 25914 expressionS exp;
bfae80f2 25915
91d6fa6a
NC
25916 exp.X_op = O_secrel;
25917 exp.X_add_symbol = symbol;
25918 exp.X_add_number = 0;
25919 emit_expr (&exp, size);
f0927246
NC
25920}
25921#endif
bfae80f2 25922
c19d1205 25923/* MD interface: Symbol and relocation handling. */
bfae80f2 25924
2fc8bdac
ZW
25925/* Return the address within the segment that a PC-relative fixup is
25926 relative to. For ARM, PC-relative fixups applied to instructions
25927 are generally relative to the location of the fixup plus 8 bytes.
25928 Thumb branches are offset by 4, and Thumb loads relative to PC
25929 require special handling. */
bfae80f2 25930
c19d1205 25931long
2fc8bdac 25932md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 25933{
2fc8bdac
ZW
25934 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
25935
25936 /* If this is pc-relative and we are going to emit a relocation
25937 then we just want to put out any pipeline compensation that the linker
53baae48
NC
25938 will need. Otherwise we want to use the calculated base.
25939 For WinCE we skip the bias for externals as well, since this
25940 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 25941 if (fixP->fx_pcrel
2fc8bdac 25942 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
25943 || (arm_force_relocation (fixP)
25944#ifdef TE_WINCE
25945 && !S_IS_EXTERNAL (fixP->fx_addsy)
25946#endif
25947 )))
2fc8bdac 25948 base = 0;
bfae80f2 25949
267bf995 25950
c19d1205 25951 switch (fixP->fx_r_type)
bfae80f2 25952 {
2fc8bdac
ZW
25953 /* PC relative addressing on the Thumb is slightly odd as the
25954 bottom two bits of the PC are forced to zero for the
25955 calculation. This happens *after* application of the
25956 pipeline offset. However, Thumb adrl already adjusts for
25957 this, so we need not do it again. */
c19d1205 25958 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 25959 return base & ~3;
c19d1205
ZW
25960
25961 case BFD_RELOC_ARM_THUMB_OFFSET:
25962 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 25963 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 25964 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 25965 return (base + 4) & ~3;
c19d1205 25966
2fc8bdac 25967 /* Thumb branches are simply offset by +4. */
e12437dc 25968 case BFD_RELOC_THUMB_PCREL_BRANCH5:
2fc8bdac
ZW
25969 case BFD_RELOC_THUMB_PCREL_BRANCH7:
25970 case BFD_RELOC_THUMB_PCREL_BRANCH9:
25971 case BFD_RELOC_THUMB_PCREL_BRANCH12:
25972 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 25973 case BFD_RELOC_THUMB_PCREL_BRANCH25:
f6b2b12d 25974 case BFD_RELOC_THUMB_PCREL_BFCSEL:
e5d6e09e 25975 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 25976 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 25977 case BFD_RELOC_ARM_THUMB_BF13:
60f993ce 25978 case BFD_RELOC_ARM_THUMB_LOOP12:
2fc8bdac 25979 return base + 4;
bfae80f2 25980
267bf995 25981 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
25982 if (fixP->fx_addsy
25983 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25984 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995 25985 && ARM_IS_FUNC (fixP->fx_addsy)
477330fc
RM
25986 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25987 base = fixP->fx_where + fixP->fx_frag->fr_address;
267bf995
RR
25988 return base + 4;
25989
00adf2d4
JB
25990 /* BLX is like branches above, but forces the low two bits of PC to
25991 zero. */
486499d0
CL
25992 case BFD_RELOC_THUMB_PCREL_BLX:
25993 if (fixP->fx_addsy
25994 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25995 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
25996 && THUMB_IS_FUNC (fixP->fx_addsy)
25997 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25998 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
25999 return (base + 4) & ~3;
26000
2fc8bdac
ZW
26001 /* ARM mode branches are offset by +8. However, the Windows CE
26002 loader expects the relocation not to take this into account. */
267bf995 26003 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
26004 if (fixP->fx_addsy
26005 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26006 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
26007 && ARM_IS_FUNC (fixP->fx_addsy)
26008 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26009 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 26010 return base + 8;
267bf995 26011
486499d0
CL
26012 case BFD_RELOC_ARM_PCREL_CALL:
26013 if (fixP->fx_addsy
26014 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26015 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
26016 && THUMB_IS_FUNC (fixP->fx_addsy)
26017 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26018 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 26019 return base + 8;
267bf995 26020
2fc8bdac 26021 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 26022 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 26023 case BFD_RELOC_ARM_PLT32:
c19d1205 26024#ifdef TE_WINCE
5f4273c7 26025 /* When handling fixups immediately, because we have already
477330fc 26026 discovered the value of a symbol, or the address of the frag involved
53baae48 26027 we must account for the offset by +8, as the OS loader will never see the reloc.
477330fc
RM
26028 see fixup_segment() in write.c
26029 The S_IS_EXTERNAL test handles the case of global symbols.
26030 Those need the calculated base, not just the pipe compensation the linker will need. */
53baae48
NC
26031 if (fixP->fx_pcrel
26032 && fixP->fx_addsy != NULL
26033 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26034 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
26035 return base + 8;
2fc8bdac 26036 return base;
c19d1205 26037#else
2fc8bdac 26038 return base + 8;
c19d1205 26039#endif
2fc8bdac 26040
267bf995 26041
2fc8bdac
ZW
26042 /* ARM mode loads relative to PC are also offset by +8. Unlike
26043 branches, the Windows CE loader *does* expect the relocation
26044 to take this into account. */
26045 case BFD_RELOC_ARM_OFFSET_IMM:
26046 case BFD_RELOC_ARM_OFFSET_IMM8:
26047 case BFD_RELOC_ARM_HWLITERAL:
26048 case BFD_RELOC_ARM_LITERAL:
26049 case BFD_RELOC_ARM_CP_OFF_IMM:
26050 return base + 8;
26051
26052
26053 /* Other PC-relative relocations are un-offset. */
26054 default:
26055 return base;
26056 }
bfae80f2
RE
26057}
26058
8b2d793c
NC
26059static bfd_boolean flag_warn_syms = TRUE;
26060
ae8714c2
NC
26061bfd_boolean
26062arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
bfae80f2 26063{
8b2d793c
NC
26064 /* PR 18347 - Warn if the user attempts to create a symbol with the same
26065 name as an ARM instruction. Whilst strictly speaking it is allowed, it
26066 does mean that the resulting code might be very confusing to the reader.
26067 Also this warning can be triggered if the user omits an operand before
26068 an immediate address, eg:
26069
26070 LDR =foo
26071
26072 GAS treats this as an assignment of the value of the symbol foo to a
26073 symbol LDR, and so (without this code) it will not issue any kind of
26074 warning or error message.
26075
26076 Note - ARM instructions are case-insensitive but the strings in the hash
26077 table are all stored in lower case, so we must first ensure that name is
ae8714c2
NC
26078 lower case too. */
26079 if (flag_warn_syms && arm_ops_hsh)
8b2d793c
NC
26080 {
26081 char * nbuf = strdup (name);
26082 char * p;
26083
26084 for (p = nbuf; *p; p++)
26085 *p = TOLOWER (*p);
26086 if (hash_find (arm_ops_hsh, nbuf) != NULL)
26087 {
26088 static struct hash_control * already_warned = NULL;
26089
26090 if (already_warned == NULL)
26091 already_warned = hash_new ();
26092 /* Only warn about the symbol once. To keep the code
26093 simple we let hash_insert do the lookup for us. */
3076e594 26094 if (hash_insert (already_warned, nbuf, NULL) == NULL)
ae8714c2 26095 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
8b2d793c
NC
26096 }
26097 else
26098 free (nbuf);
26099 }
3739860c 26100
ae8714c2
NC
26101 return FALSE;
26102}
26103
26104/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
26105 Otherwise we have no need to default values of symbols. */
26106
26107symbolS *
26108md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
26109{
26110#ifdef OBJ_ELF
26111 if (name[0] == '_' && name[1] == 'G'
26112 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
26113 {
26114 if (!GOT_symbol)
26115 {
26116 if (symbol_find (name))
26117 as_bad (_("GOT already in the symbol table"));
26118
26119 GOT_symbol = symbol_new (name, undefined_section,
26120 (valueT) 0, & zero_address_frag);
26121 }
26122
26123 return GOT_symbol;
26124 }
26125#endif
26126
c921be7d 26127 return NULL;
bfae80f2
RE
26128}
26129
55cf6793 26130/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
26131 computed as two separate immediate values, added together. We
26132 already know that this value cannot be computed by just one ARM
26133 instruction. */
26134
26135static unsigned int
26136validate_immediate_twopart (unsigned int val,
26137 unsigned int * highpart)
bfae80f2 26138{
c19d1205
ZW
26139 unsigned int a;
26140 unsigned int i;
bfae80f2 26141
c19d1205
ZW
26142 for (i = 0; i < 32; i += 2)
26143 if (((a = rotate_left (val, i)) & 0xff) != 0)
26144 {
26145 if (a & 0xff00)
26146 {
26147 if (a & ~ 0xffff)
26148 continue;
26149 * highpart = (a >> 8) | ((i + 24) << 7);
26150 }
26151 else if (a & 0xff0000)
26152 {
26153 if (a & 0xff000000)
26154 continue;
26155 * highpart = (a >> 16) | ((i + 16) << 7);
26156 }
26157 else
26158 {
9c2799c2 26159 gas_assert (a & 0xff000000);
c19d1205
ZW
26160 * highpart = (a >> 24) | ((i + 8) << 7);
26161 }
bfae80f2 26162
c19d1205
ZW
26163 return (a & 0xff) | (i << 7);
26164 }
bfae80f2 26165
c19d1205 26166 return FAIL;
bfae80f2
RE
26167}
26168
c19d1205
ZW
26169static int
26170validate_offset_imm (unsigned int val, int hwse)
26171{
26172 if ((hwse && val > 255) || val > 4095)
26173 return FAIL;
26174 return val;
26175}
bfae80f2 26176
55cf6793 26177/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
26178 negative immediate constant by altering the instruction. A bit of
26179 a hack really.
26180 MOV <-> MVN
26181 AND <-> BIC
26182 ADC <-> SBC
26183 by inverting the second operand, and
26184 ADD <-> SUB
26185 CMP <-> CMN
26186 by negating the second operand. */
bfae80f2 26187
c19d1205
ZW
26188static int
26189negate_data_op (unsigned long * instruction,
26190 unsigned long value)
bfae80f2 26191{
c19d1205
ZW
26192 int op, new_inst;
26193 unsigned long negated, inverted;
bfae80f2 26194
c19d1205
ZW
26195 negated = encode_arm_immediate (-value);
26196 inverted = encode_arm_immediate (~value);
bfae80f2 26197
c19d1205
ZW
26198 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
26199 switch (op)
bfae80f2 26200 {
c19d1205
ZW
26201 /* First negates. */
26202 case OPCODE_SUB: /* ADD <-> SUB */
26203 new_inst = OPCODE_ADD;
26204 value = negated;
26205 break;
bfae80f2 26206
c19d1205
ZW
26207 case OPCODE_ADD:
26208 new_inst = OPCODE_SUB;
26209 value = negated;
26210 break;
bfae80f2 26211
c19d1205
ZW
26212 case OPCODE_CMP: /* CMP <-> CMN */
26213 new_inst = OPCODE_CMN;
26214 value = negated;
26215 break;
bfae80f2 26216
c19d1205
ZW
26217 case OPCODE_CMN:
26218 new_inst = OPCODE_CMP;
26219 value = negated;
26220 break;
bfae80f2 26221
c19d1205
ZW
26222 /* Now Inverted ops. */
26223 case OPCODE_MOV: /* MOV <-> MVN */
26224 new_inst = OPCODE_MVN;
26225 value = inverted;
26226 break;
bfae80f2 26227
c19d1205
ZW
26228 case OPCODE_MVN:
26229 new_inst = OPCODE_MOV;
26230 value = inverted;
26231 break;
bfae80f2 26232
c19d1205
ZW
26233 case OPCODE_AND: /* AND <-> BIC */
26234 new_inst = OPCODE_BIC;
26235 value = inverted;
26236 break;
bfae80f2 26237
c19d1205
ZW
26238 case OPCODE_BIC:
26239 new_inst = OPCODE_AND;
26240 value = inverted;
26241 break;
bfae80f2 26242
c19d1205
ZW
26243 case OPCODE_ADC: /* ADC <-> SBC */
26244 new_inst = OPCODE_SBC;
26245 value = inverted;
26246 break;
bfae80f2 26247
c19d1205
ZW
26248 case OPCODE_SBC:
26249 new_inst = OPCODE_ADC;
26250 value = inverted;
26251 break;
bfae80f2 26252
c19d1205
ZW
26253 /* We cannot do anything. */
26254 default:
26255 return FAIL;
b99bd4ef
NC
26256 }
26257
c19d1205
ZW
26258 if (value == (unsigned) FAIL)
26259 return FAIL;
26260
26261 *instruction &= OPCODE_MASK;
26262 *instruction |= new_inst << DATA_OP_SHIFT;
26263 return value;
b99bd4ef
NC
26264}
26265
ef8d22e6
PB
26266/* Like negate_data_op, but for Thumb-2. */
26267
26268static unsigned int
16dd5e42 26269thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
26270{
26271 int op, new_inst;
26272 int rd;
16dd5e42 26273 unsigned int negated, inverted;
ef8d22e6
PB
26274
26275 negated = encode_thumb32_immediate (-value);
26276 inverted = encode_thumb32_immediate (~value);
26277
26278 rd = (*instruction >> 8) & 0xf;
26279 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
26280 switch (op)
26281 {
26282 /* ADD <-> SUB. Includes CMP <-> CMN. */
26283 case T2_OPCODE_SUB:
26284 new_inst = T2_OPCODE_ADD;
26285 value = negated;
26286 break;
26287
26288 case T2_OPCODE_ADD:
26289 new_inst = T2_OPCODE_SUB;
26290 value = negated;
26291 break;
26292
26293 /* ORR <-> ORN. Includes MOV <-> MVN. */
26294 case T2_OPCODE_ORR:
26295 new_inst = T2_OPCODE_ORN;
26296 value = inverted;
26297 break;
26298
26299 case T2_OPCODE_ORN:
26300 new_inst = T2_OPCODE_ORR;
26301 value = inverted;
26302 break;
26303
26304 /* AND <-> BIC. TST has no inverted equivalent. */
26305 case T2_OPCODE_AND:
26306 new_inst = T2_OPCODE_BIC;
26307 if (rd == 15)
26308 value = FAIL;
26309 else
26310 value = inverted;
26311 break;
26312
26313 case T2_OPCODE_BIC:
26314 new_inst = T2_OPCODE_AND;
26315 value = inverted;
26316 break;
26317
26318 /* ADC <-> SBC */
26319 case T2_OPCODE_ADC:
26320 new_inst = T2_OPCODE_SBC;
26321 value = inverted;
26322 break;
26323
26324 case T2_OPCODE_SBC:
26325 new_inst = T2_OPCODE_ADC;
26326 value = inverted;
26327 break;
26328
26329 /* We cannot do anything. */
26330 default:
26331 return FAIL;
26332 }
26333
16dd5e42 26334 if (value == (unsigned int)FAIL)
ef8d22e6
PB
26335 return FAIL;
26336
26337 *instruction &= T2_OPCODE_MASK;
26338 *instruction |= new_inst << T2_DATA_OP_SHIFT;
26339 return value;
26340}
26341
8f06b2d8 26342/* Read a 32-bit thumb instruction from buf. */
0198d5e6 26343
8f06b2d8
PB
26344static unsigned long
26345get_thumb32_insn (char * buf)
26346{
26347 unsigned long insn;
26348 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
26349 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26350
26351 return insn;
26352}
26353
a8bc6c78
PB
26354/* We usually want to set the low bit on the address of thumb function
26355 symbols. In particular .word foo - . should have the low bit set.
26356 Generic code tries to fold the difference of two symbols to
26357 a constant. Prevent this and force a relocation when the first symbols
26358 is a thumb function. */
c921be7d
NC
26359
26360bfd_boolean
a8bc6c78
PB
26361arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
26362{
26363 if (op == O_subtract
26364 && l->X_op == O_symbol
26365 && r->X_op == O_symbol
26366 && THUMB_IS_FUNC (l->X_add_symbol))
26367 {
26368 l->X_op = O_subtract;
26369 l->X_op_symbol = r->X_add_symbol;
26370 l->X_add_number -= r->X_add_number;
c921be7d 26371 return TRUE;
a8bc6c78 26372 }
c921be7d 26373
a8bc6c78 26374 /* Process as normal. */
c921be7d 26375 return FALSE;
a8bc6c78
PB
26376}
26377
4a42ebbc
RR
26378/* Encode Thumb2 unconditional branches and calls. The encoding
26379 for the 2 are identical for the immediate values. */
26380
26381static void
26382encode_thumb2_b_bl_offset (char * buf, offsetT value)
26383{
26384#define T2I1I2MASK ((1 << 13) | (1 << 11))
26385 offsetT newval;
26386 offsetT newval2;
26387 addressT S, I1, I2, lo, hi;
26388
26389 S = (value >> 24) & 0x01;
26390 I1 = (value >> 23) & 0x01;
26391 I2 = (value >> 22) & 0x01;
26392 hi = (value >> 12) & 0x3ff;
fa94de6b 26393 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
26394 newval = md_chars_to_number (buf, THUMB_SIZE);
26395 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26396 newval |= (S << 10) | hi;
26397 newval2 &= ~T2I1I2MASK;
26398 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
26399 md_number_to_chars (buf, newval, THUMB_SIZE);
26400 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26401}
26402
c19d1205 26403void
55cf6793 26404md_apply_fix (fixS * fixP,
c19d1205
ZW
26405 valueT * valP,
26406 segT seg)
26407{
26408 offsetT value = * valP;
26409 offsetT newval;
26410 unsigned int newimm;
26411 unsigned long temp;
26412 int sign;
26413 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 26414
9c2799c2 26415 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 26416
c19d1205 26417 /* Note whether this will delete the relocation. */
4962c51a 26418
c19d1205
ZW
26419 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
26420 fixP->fx_done = 1;
b99bd4ef 26421
adbaf948 26422 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 26423 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
26424 for emit_reloc. */
26425 value &= 0xffffffff;
26426 value ^= 0x80000000;
5f4273c7 26427 value -= 0x80000000;
adbaf948
ZW
26428
26429 *valP = value;
c19d1205 26430 fixP->fx_addnumber = value;
b99bd4ef 26431
adbaf948
ZW
26432 /* Same treatment for fixP->fx_offset. */
26433 fixP->fx_offset &= 0xffffffff;
26434 fixP->fx_offset ^= 0x80000000;
26435 fixP->fx_offset -= 0x80000000;
26436
c19d1205 26437 switch (fixP->fx_r_type)
b99bd4ef 26438 {
c19d1205
ZW
26439 case BFD_RELOC_NONE:
26440 /* This will need to go in the object file. */
26441 fixP->fx_done = 0;
26442 break;
b99bd4ef 26443
c19d1205
ZW
26444 case BFD_RELOC_ARM_IMMEDIATE:
26445 /* We claim that this fixup has been processed here,
26446 even if in fact we generate an error because we do
26447 not have a reloc for it, so tc_gen_reloc will reject it. */
26448 fixP->fx_done = 1;
b99bd4ef 26449
77db8e2e 26450 if (fixP->fx_addsy)
b99bd4ef 26451 {
77db8e2e 26452 const char *msg = 0;
b99bd4ef 26453
77db8e2e
NC
26454 if (! S_IS_DEFINED (fixP->fx_addsy))
26455 msg = _("undefined symbol %s used as an immediate value");
26456 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26457 msg = _("symbol %s is in a different section");
26458 else if (S_IS_WEAK (fixP->fx_addsy))
26459 msg = _("symbol %s is weak and may be overridden later");
26460
26461 if (msg)
26462 {
26463 as_bad_where (fixP->fx_file, fixP->fx_line,
26464 msg, S_GET_NAME (fixP->fx_addsy));
26465 break;
26466 }
42e5fcbf
AS
26467 }
26468
c19d1205
ZW
26469 temp = md_chars_to_number (buf, INSN_SIZE);
26470
5e73442d
SL
26471 /* If the offset is negative, we should use encoding A2 for ADR. */
26472 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
26473 newimm = negate_data_op (&temp, value);
26474 else
26475 {
26476 newimm = encode_arm_immediate (value);
26477
26478 /* If the instruction will fail, see if we can fix things up by
26479 changing the opcode. */
26480 if (newimm == (unsigned int) FAIL)
26481 newimm = negate_data_op (&temp, value);
bada4342
JW
26482 /* MOV accepts both ARM modified immediate (A1 encoding) and
26483 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
26484 When disassembling, MOV is preferred when there is no encoding
26485 overlap. */
26486 if (newimm == (unsigned int) FAIL
26487 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
26488 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
26489 && !((temp >> SBIT_SHIFT) & 0x1)
26490 && value >= 0 && value <= 0xffff)
26491 {
26492 /* Clear bits[23:20] to change encoding from A1 to A2. */
26493 temp &= 0xff0fffff;
26494 /* Encoding high 4bits imm. Code below will encode the remaining
26495 low 12bits. */
26496 temp |= (value & 0x0000f000) << 4;
26497 newimm = value & 0x00000fff;
26498 }
5e73442d
SL
26499 }
26500
26501 if (newimm == (unsigned int) FAIL)
b99bd4ef 26502 {
c19d1205
ZW
26503 as_bad_where (fixP->fx_file, fixP->fx_line,
26504 _("invalid constant (%lx) after fixup"),
26505 (unsigned long) value);
26506 break;
b99bd4ef 26507 }
b99bd4ef 26508
c19d1205
ZW
26509 newimm |= (temp & 0xfffff000);
26510 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26511 break;
b99bd4ef 26512
c19d1205
ZW
26513 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
26514 {
26515 unsigned int highpart = 0;
26516 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 26517
77db8e2e 26518 if (fixP->fx_addsy)
42e5fcbf 26519 {
77db8e2e 26520 const char *msg = 0;
42e5fcbf 26521
77db8e2e
NC
26522 if (! S_IS_DEFINED (fixP->fx_addsy))
26523 msg = _("undefined symbol %s used as an immediate value");
26524 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26525 msg = _("symbol %s is in a different section");
26526 else if (S_IS_WEAK (fixP->fx_addsy))
26527 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 26528
77db8e2e
NC
26529 if (msg)
26530 {
26531 as_bad_where (fixP->fx_file, fixP->fx_line,
26532 msg, S_GET_NAME (fixP->fx_addsy));
26533 break;
26534 }
26535 }
fa94de6b 26536
c19d1205
ZW
26537 newimm = encode_arm_immediate (value);
26538 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 26539
c19d1205
ZW
26540 /* If the instruction will fail, see if we can fix things up by
26541 changing the opcode. */
26542 if (newimm == (unsigned int) FAIL
26543 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
26544 {
26545 /* No ? OK - try using two ADD instructions to generate
26546 the value. */
26547 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 26548
c19d1205
ZW
26549 /* Yes - then make sure that the second instruction is
26550 also an add. */
26551 if (newimm != (unsigned int) FAIL)
26552 newinsn = temp;
26553 /* Still No ? Try using a negated value. */
26554 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
26555 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
26556 /* Otherwise - give up. */
26557 else
26558 {
26559 as_bad_where (fixP->fx_file, fixP->fx_line,
26560 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
26561 (long) value);
26562 break;
26563 }
b99bd4ef 26564
c19d1205
ZW
26565 /* Replace the first operand in the 2nd instruction (which
26566 is the PC) with the destination register. We have
26567 already added in the PC in the first instruction and we
26568 do not want to do it again. */
26569 newinsn &= ~ 0xf0000;
26570 newinsn |= ((newinsn & 0x0f000) << 4);
26571 }
b99bd4ef 26572
c19d1205
ZW
26573 newimm |= (temp & 0xfffff000);
26574 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 26575
c19d1205
ZW
26576 highpart |= (newinsn & 0xfffff000);
26577 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
26578 }
26579 break;
b99bd4ef 26580
c19d1205 26581 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
26582 if (!fixP->fx_done && seg->use_rela_p)
26583 value = 0;
1a0670f3 26584 /* Fall through. */
00a97672 26585
c19d1205 26586 case BFD_RELOC_ARM_LITERAL:
26d97720 26587 sign = value > 0;
b99bd4ef 26588
c19d1205
ZW
26589 if (value < 0)
26590 value = - value;
b99bd4ef 26591
c19d1205 26592 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 26593 {
c19d1205
ZW
26594 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
26595 as_bad_where (fixP->fx_file, fixP->fx_line,
26596 _("invalid literal constant: pool needs to be closer"));
26597 else
26598 as_bad_where (fixP->fx_file, fixP->fx_line,
26599 _("bad immediate value for offset (%ld)"),
26600 (long) value);
26601 break;
f03698e6
RE
26602 }
26603
c19d1205 26604 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
26605 if (value == 0)
26606 newval &= 0xfffff000;
26607 else
26608 {
26609 newval &= 0xff7ff000;
26610 newval |= value | (sign ? INDEX_UP : 0);
26611 }
c19d1205
ZW
26612 md_number_to_chars (buf, newval, INSN_SIZE);
26613 break;
b99bd4ef 26614
c19d1205
ZW
26615 case BFD_RELOC_ARM_OFFSET_IMM8:
26616 case BFD_RELOC_ARM_HWLITERAL:
26d97720 26617 sign = value > 0;
b99bd4ef 26618
c19d1205
ZW
26619 if (value < 0)
26620 value = - value;
b99bd4ef 26621
c19d1205 26622 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 26623 {
c19d1205
ZW
26624 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
26625 as_bad_where (fixP->fx_file, fixP->fx_line,
26626 _("invalid literal constant: pool needs to be closer"));
26627 else
427d0db6
RM
26628 as_bad_where (fixP->fx_file, fixP->fx_line,
26629 _("bad immediate value for 8-bit offset (%ld)"),
26630 (long) value);
c19d1205 26631 break;
b99bd4ef
NC
26632 }
26633
c19d1205 26634 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
26635 if (value == 0)
26636 newval &= 0xfffff0f0;
26637 else
26638 {
26639 newval &= 0xff7ff0f0;
26640 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
26641 }
c19d1205
ZW
26642 md_number_to_chars (buf, newval, INSN_SIZE);
26643 break;
b99bd4ef 26644
c19d1205
ZW
26645 case BFD_RELOC_ARM_T32_OFFSET_U8:
26646 if (value < 0 || value > 1020 || value % 4 != 0)
26647 as_bad_where (fixP->fx_file, fixP->fx_line,
26648 _("bad immediate value for offset (%ld)"), (long) value);
26649 value /= 4;
b99bd4ef 26650
c19d1205 26651 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
26652 newval |= value;
26653 md_number_to_chars (buf+2, newval, THUMB_SIZE);
26654 break;
b99bd4ef 26655
c19d1205
ZW
26656 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26657 /* This is a complicated relocation used for all varieties of Thumb32
26658 load/store instruction with immediate offset:
26659
26660 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
477330fc 26661 *4, optional writeback(W)
c19d1205
ZW
26662 (doubleword load/store)
26663
26664 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
26665 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
26666 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
26667 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
26668 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
26669
26670 Uppercase letters indicate bits that are already encoded at
26671 this point. Lowercase letters are our problem. For the
26672 second block of instructions, the secondary opcode nybble
26673 (bits 8..11) is present, and bit 23 is zero, even if this is
26674 a PC-relative operation. */
26675 newval = md_chars_to_number (buf, THUMB_SIZE);
26676 newval <<= 16;
26677 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 26678
c19d1205 26679 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 26680 {
c19d1205
ZW
26681 /* Doubleword load/store: 8-bit offset, scaled by 4. */
26682 if (value >= 0)
26683 newval |= (1 << 23);
26684 else
26685 value = -value;
26686 if (value % 4 != 0)
26687 {
26688 as_bad_where (fixP->fx_file, fixP->fx_line,
26689 _("offset not a multiple of 4"));
26690 break;
26691 }
26692 value /= 4;
216d22bc 26693 if (value > 0xff)
c19d1205
ZW
26694 {
26695 as_bad_where (fixP->fx_file, fixP->fx_line,
26696 _("offset out of range"));
26697 break;
26698 }
26699 newval &= ~0xff;
b99bd4ef 26700 }
c19d1205 26701 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 26702 {
c19d1205
ZW
26703 /* PC-relative, 12-bit offset. */
26704 if (value >= 0)
26705 newval |= (1 << 23);
26706 else
26707 value = -value;
216d22bc 26708 if (value > 0xfff)
c19d1205
ZW
26709 {
26710 as_bad_where (fixP->fx_file, fixP->fx_line,
26711 _("offset out of range"));
26712 break;
26713 }
26714 newval &= ~0xfff;
b99bd4ef 26715 }
c19d1205 26716 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 26717 {
c19d1205
ZW
26718 /* Writeback: 8-bit, +/- offset. */
26719 if (value >= 0)
26720 newval |= (1 << 9);
26721 else
26722 value = -value;
216d22bc 26723 if (value > 0xff)
c19d1205
ZW
26724 {
26725 as_bad_where (fixP->fx_file, fixP->fx_line,
26726 _("offset out of range"));
26727 break;
26728 }
26729 newval &= ~0xff;
b99bd4ef 26730 }
c19d1205 26731 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 26732 {
c19d1205 26733 /* T-instruction: positive 8-bit offset. */
216d22bc 26734 if (value < 0 || value > 0xff)
b99bd4ef 26735 {
c19d1205
ZW
26736 as_bad_where (fixP->fx_file, fixP->fx_line,
26737 _("offset out of range"));
26738 break;
b99bd4ef 26739 }
c19d1205
ZW
26740 newval &= ~0xff;
26741 newval |= value;
b99bd4ef
NC
26742 }
26743 else
b99bd4ef 26744 {
c19d1205
ZW
26745 /* Positive 12-bit or negative 8-bit offset. */
26746 int limit;
26747 if (value >= 0)
b99bd4ef 26748 {
c19d1205
ZW
26749 newval |= (1 << 23);
26750 limit = 0xfff;
26751 }
26752 else
26753 {
26754 value = -value;
26755 limit = 0xff;
26756 }
26757 if (value > limit)
26758 {
26759 as_bad_where (fixP->fx_file, fixP->fx_line,
26760 _("offset out of range"));
26761 break;
b99bd4ef 26762 }
c19d1205 26763 newval &= ~limit;
b99bd4ef 26764 }
b99bd4ef 26765
c19d1205
ZW
26766 newval |= value;
26767 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
26768 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
26769 break;
404ff6b5 26770
c19d1205
ZW
26771 case BFD_RELOC_ARM_SHIFT_IMM:
26772 newval = md_chars_to_number (buf, INSN_SIZE);
26773 if (((unsigned long) value) > 32
26774 || (value == 32
26775 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
26776 {
26777 as_bad_where (fixP->fx_file, fixP->fx_line,
26778 _("shift expression is too large"));
26779 break;
26780 }
404ff6b5 26781
c19d1205
ZW
26782 if (value == 0)
26783 /* Shifts of zero must be done as lsl. */
26784 newval &= ~0x60;
26785 else if (value == 32)
26786 value = 0;
26787 newval &= 0xfffff07f;
26788 newval |= (value & 0x1f) << 7;
26789 md_number_to_chars (buf, newval, INSN_SIZE);
26790 break;
404ff6b5 26791
c19d1205 26792 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 26793 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 26794 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 26795 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
26796 /* We claim that this fixup has been processed here,
26797 even if in fact we generate an error because we do
26798 not have a reloc for it, so tc_gen_reloc will reject it. */
26799 fixP->fx_done = 1;
404ff6b5 26800
c19d1205
ZW
26801 if (fixP->fx_addsy
26802 && ! S_IS_DEFINED (fixP->fx_addsy))
26803 {
26804 as_bad_where (fixP->fx_file, fixP->fx_line,
26805 _("undefined symbol %s used as an immediate value"),
26806 S_GET_NAME (fixP->fx_addsy));
26807 break;
26808 }
404ff6b5 26809
c19d1205
ZW
26810 newval = md_chars_to_number (buf, THUMB_SIZE);
26811 newval <<= 16;
26812 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 26813
16805f35 26814 newimm = FAIL;
bada4342
JW
26815 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
26816 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
26817 Thumb2 modified immediate encoding (T2). */
26818 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
16805f35 26819 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
26820 {
26821 newimm = encode_thumb32_immediate (value);
26822 if (newimm == (unsigned int) FAIL)
26823 newimm = thumb32_negate_data_op (&newval, value);
26824 }
bada4342 26825 if (newimm == (unsigned int) FAIL)
92e90b6e 26826 {
bada4342 26827 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
e9f89963 26828 {
bada4342
JW
26829 /* Turn add/sum into addw/subw. */
26830 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
26831 newval = (newval & 0xfeffffff) | 0x02000000;
26832 /* No flat 12-bit imm encoding for addsw/subsw. */
26833 if ((newval & 0x00100000) == 0)
40f246e3 26834 {
bada4342
JW
26835 /* 12 bit immediate for addw/subw. */
26836 if (value < 0)
26837 {
26838 value = -value;
26839 newval ^= 0x00a00000;
26840 }
26841 if (value > 0xfff)
26842 newimm = (unsigned int) FAIL;
26843 else
26844 newimm = value;
26845 }
26846 }
26847 else
26848 {
26849 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
26850 UINT16 (T3 encoding), MOVW only accepts UINT16. When
26851 disassembling, MOV is preferred when there is no encoding
db7bf105 26852 overlap. */
bada4342 26853 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
db7bf105
NC
26854 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
26855 but with the Rn field [19:16] set to 1111. */
26856 && (((newval >> 16) & 0xf) == 0xf)
bada4342
JW
26857 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
26858 && !((newval >> T2_SBIT_SHIFT) & 0x1)
db7bf105 26859 && value >= 0 && value <= 0xffff)
bada4342
JW
26860 {
26861 /* Toggle bit[25] to change encoding from T2 to T3. */
26862 newval ^= 1 << 25;
26863 /* Clear bits[19:16]. */
26864 newval &= 0xfff0ffff;
26865 /* Encoding high 4bits imm. Code below will encode the
26866 remaining low 12bits. */
26867 newval |= (value & 0x0000f000) << 4;
26868 newimm = value & 0x00000fff;
40f246e3 26869 }
e9f89963 26870 }
92e90b6e 26871 }
cc8a6dd0 26872
c19d1205 26873 if (newimm == (unsigned int)FAIL)
3631a3c8 26874 {
c19d1205
ZW
26875 as_bad_where (fixP->fx_file, fixP->fx_line,
26876 _("invalid constant (%lx) after fixup"),
26877 (unsigned long) value);
26878 break;
3631a3c8
NC
26879 }
26880
c19d1205
ZW
26881 newval |= (newimm & 0x800) << 15;
26882 newval |= (newimm & 0x700) << 4;
26883 newval |= (newimm & 0x0ff);
cc8a6dd0 26884
c19d1205
ZW
26885 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
26886 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
26887 break;
a737bd4d 26888
3eb17e6b 26889 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
26890 if (((unsigned long) value) > 0xffff)
26891 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 26892 _("invalid smc expression"));
2fc8bdac 26893 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
26894 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26895 md_number_to_chars (buf, newval, INSN_SIZE);
26896 break;
a737bd4d 26897
90ec0d68
MGD
26898 case BFD_RELOC_ARM_HVC:
26899 if (((unsigned long) value) > 0xffff)
26900 as_bad_where (fixP->fx_file, fixP->fx_line,
26901 _("invalid hvc expression"));
26902 newval = md_chars_to_number (buf, INSN_SIZE);
26903 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26904 md_number_to_chars (buf, newval, INSN_SIZE);
26905 break;
26906
c19d1205 26907 case BFD_RELOC_ARM_SWI:
adbaf948 26908 if (fixP->tc_fix_data != 0)
c19d1205
ZW
26909 {
26910 if (((unsigned long) value) > 0xff)
26911 as_bad_where (fixP->fx_file, fixP->fx_line,
26912 _("invalid swi expression"));
2fc8bdac 26913 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
26914 newval |= value;
26915 md_number_to_chars (buf, newval, THUMB_SIZE);
26916 }
26917 else
26918 {
26919 if (((unsigned long) value) > 0x00ffffff)
26920 as_bad_where (fixP->fx_file, fixP->fx_line,
26921 _("invalid swi expression"));
2fc8bdac 26922 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
26923 newval |= value;
26924 md_number_to_chars (buf, newval, INSN_SIZE);
26925 }
26926 break;
a737bd4d 26927
c19d1205
ZW
26928 case BFD_RELOC_ARM_MULTI:
26929 if (((unsigned long) value) > 0xffff)
26930 as_bad_where (fixP->fx_file, fixP->fx_line,
26931 _("invalid expression in load/store multiple"));
26932 newval = value | md_chars_to_number (buf, INSN_SIZE);
26933 md_number_to_chars (buf, newval, INSN_SIZE);
26934 break;
a737bd4d 26935
c19d1205 26936#ifdef OBJ_ELF
39b41c9c 26937 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
26938
26939 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26940 && fixP->fx_addsy
34e77a92 26941 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26942 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26943 && THUMB_IS_FUNC (fixP->fx_addsy))
26944 /* Flip the bl to blx. This is a simple flip
26945 bit here because we generate PCREL_CALL for
26946 unconditional bls. */
26947 {
26948 newval = md_chars_to_number (buf, INSN_SIZE);
26949 newval = newval | 0x10000000;
26950 md_number_to_chars (buf, newval, INSN_SIZE);
26951 temp = 1;
26952 fixP->fx_done = 1;
26953 }
39b41c9c
PB
26954 else
26955 temp = 3;
26956 goto arm_branch_common;
26957
26958 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
26959 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26960 && fixP->fx_addsy
34e77a92 26961 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26962 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26963 && THUMB_IS_FUNC (fixP->fx_addsy))
26964 {
26965 /* This would map to a bl<cond>, b<cond>,
26966 b<always> to a Thumb function. We
26967 need to force a relocation for this particular
26968 case. */
26969 newval = md_chars_to_number (buf, INSN_SIZE);
26970 fixP->fx_done = 0;
26971 }
1a0670f3 26972 /* Fall through. */
267bf995 26973
2fc8bdac 26974 case BFD_RELOC_ARM_PLT32:
c19d1205 26975#endif
39b41c9c
PB
26976 case BFD_RELOC_ARM_PCREL_BRANCH:
26977 temp = 3;
26978 goto arm_branch_common;
a737bd4d 26979
39b41c9c 26980 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 26981
39b41c9c 26982 temp = 1;
267bf995
RR
26983 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26984 && fixP->fx_addsy
34e77a92 26985 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26986 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26987 && ARM_IS_FUNC (fixP->fx_addsy))
26988 {
26989 /* Flip the blx to a bl and warn. */
26990 const char *name = S_GET_NAME (fixP->fx_addsy);
26991 newval = 0xeb000000;
26992 as_warn_where (fixP->fx_file, fixP->fx_line,
26993 _("blx to '%s' an ARM ISA state function changed to bl"),
26994 name);
26995 md_number_to_chars (buf, newval, INSN_SIZE);
26996 temp = 3;
26997 fixP->fx_done = 1;
26998 }
26999
27000#ifdef OBJ_ELF
27001 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
477330fc 27002 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
267bf995
RR
27003#endif
27004
39b41c9c 27005 arm_branch_common:
c19d1205 27006 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
27007 instruction, in a 24 bit, signed field. Bits 26 through 32 either
27008 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
de194d85 27009 also be clear. */
39b41c9c 27010 if (value & temp)
c19d1205 27011 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
27012 _("misaligned branch destination"));
27013 if ((value & (offsetT)0xfe000000) != (offsetT)0
27014 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 27015 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 27016
2fc8bdac 27017 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 27018 {
2fc8bdac
ZW
27019 newval = md_chars_to_number (buf, INSN_SIZE);
27020 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
27021 /* Set the H bit on BLX instructions. */
27022 if (temp == 1)
27023 {
27024 if (value & 2)
27025 newval |= 0x01000000;
27026 else
27027 newval &= ~0x01000000;
27028 }
2fc8bdac 27029 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 27030 }
c19d1205 27031 break;
a737bd4d 27032
25fe350b
MS
27033 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
27034 /* CBZ can only branch forward. */
a737bd4d 27035
738755b0 27036 /* Attempts to use CBZ to branch to the next instruction
477330fc
RM
27037 (which, strictly speaking, are prohibited) will be turned into
27038 no-ops.
738755b0
MS
27039
27040 FIXME: It may be better to remove the instruction completely and
27041 perform relaxation. */
27042 if (value == -2)
2fc8bdac
ZW
27043 {
27044 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 27045 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
27046 md_number_to_chars (buf, newval, THUMB_SIZE);
27047 }
738755b0
MS
27048 else
27049 {
27050 if (value & ~0x7e)
08f10d51 27051 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0 27052
477330fc 27053 if (fixP->fx_done || !seg->use_rela_p)
738755b0
MS
27054 {
27055 newval = md_chars_to_number (buf, THUMB_SIZE);
27056 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
27057 md_number_to_chars (buf, newval, THUMB_SIZE);
27058 }
27059 }
c19d1205 27060 break;
a737bd4d 27061
c19d1205 27062 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 27063 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 27064 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 27065
2fc8bdac
ZW
27066 if (fixP->fx_done || !seg->use_rela_p)
27067 {
27068 newval = md_chars_to_number (buf, THUMB_SIZE);
27069 newval |= (value & 0x1ff) >> 1;
27070 md_number_to_chars (buf, newval, THUMB_SIZE);
27071 }
c19d1205 27072 break;
a737bd4d 27073
c19d1205 27074 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 27075 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 27076 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 27077
2fc8bdac
ZW
27078 if (fixP->fx_done || !seg->use_rela_p)
27079 {
27080 newval = md_chars_to_number (buf, THUMB_SIZE);
27081 newval |= (value & 0xfff) >> 1;
27082 md_number_to_chars (buf, newval, THUMB_SIZE);
27083 }
c19d1205 27084 break;
a737bd4d 27085
c19d1205 27086 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
27087 if (fixP->fx_addsy
27088 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 27089 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27090 && ARM_IS_FUNC (fixP->fx_addsy)
27091 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27092 {
27093 /* Force a relocation for a branch 20 bits wide. */
27094 fixP->fx_done = 0;
27095 }
08f10d51 27096 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
27097 as_bad_where (fixP->fx_file, fixP->fx_line,
27098 _("conditional branch out of range"));
404ff6b5 27099
2fc8bdac
ZW
27100 if (fixP->fx_done || !seg->use_rela_p)
27101 {
27102 offsetT newval2;
27103 addressT S, J1, J2, lo, hi;
404ff6b5 27104
2fc8bdac
ZW
27105 S = (value & 0x00100000) >> 20;
27106 J2 = (value & 0x00080000) >> 19;
27107 J1 = (value & 0x00040000) >> 18;
27108 hi = (value & 0x0003f000) >> 12;
27109 lo = (value & 0x00000ffe) >> 1;
6c43fab6 27110
2fc8bdac
ZW
27111 newval = md_chars_to_number (buf, THUMB_SIZE);
27112 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27113 newval |= (S << 10) | hi;
27114 newval2 |= (J1 << 13) | (J2 << 11) | lo;
27115 md_number_to_chars (buf, newval, THUMB_SIZE);
27116 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27117 }
c19d1205 27118 break;
6c43fab6 27119
c19d1205 27120 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
27121 /* If there is a blx from a thumb state function to
27122 another thumb function flip this to a bl and warn
27123 about it. */
27124
27125 if (fixP->fx_addsy
34e77a92 27126 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27127 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27128 && THUMB_IS_FUNC (fixP->fx_addsy))
27129 {
27130 const char *name = S_GET_NAME (fixP->fx_addsy);
27131 as_warn_where (fixP->fx_file, fixP->fx_line,
27132 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
27133 name);
27134 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27135 newval = newval | 0x1000;
27136 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27137 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27138 fixP->fx_done = 1;
27139 }
27140
27141
27142 goto thumb_bl_common;
27143
c19d1205 27144 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
27145 /* A bl from Thumb state ISA to an internal ARM state function
27146 is converted to a blx. */
27147 if (fixP->fx_addsy
27148 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 27149 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27150 && ARM_IS_FUNC (fixP->fx_addsy)
27151 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27152 {
27153 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27154 newval = newval & ~0x1000;
27155 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27156 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
27157 fixP->fx_done = 1;
27158 }
27159
27160 thumb_bl_common:
27161
2fc8bdac
ZW
27162 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27163 /* For a BLX instruction, make sure that the relocation is rounded up
27164 to a word boundary. This follows the semantics of the instruction
27165 which specifies that bit 1 of the target address will come from bit
27166 1 of the base address. */
d406f3e4
JB
27167 value = (value + 3) & ~ 3;
27168
27169#ifdef OBJ_ELF
27170 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
27171 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27172 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27173#endif
404ff6b5 27174
2b2f5df9
NC
27175 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
27176 {
fc289b0a 27177 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
2b2f5df9
NC
27178 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27179 else if ((value & ~0x1ffffff)
27180 && ((value & ~0x1ffffff) != ~0x1ffffff))
27181 as_bad_where (fixP->fx_file, fixP->fx_line,
27182 _("Thumb2 branch out of range"));
27183 }
4a42ebbc
RR
27184
27185 if (fixP->fx_done || !seg->use_rela_p)
27186 encode_thumb2_b_bl_offset (buf, value);
27187
c19d1205 27188 break;
404ff6b5 27189
c19d1205 27190 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
27191 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
27192 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 27193
2fc8bdac 27194 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 27195 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 27196
2fc8bdac 27197 break;
a737bd4d 27198
2fc8bdac
ZW
27199 case BFD_RELOC_8:
27200 if (fixP->fx_done || !seg->use_rela_p)
4b1a927e 27201 *buf = value;
c19d1205 27202 break;
a737bd4d 27203
c19d1205 27204 case BFD_RELOC_16:
2fc8bdac 27205 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 27206 md_number_to_chars (buf, value, 2);
c19d1205 27207 break;
a737bd4d 27208
c19d1205 27209#ifdef OBJ_ELF
0855e32b
NS
27210 case BFD_RELOC_ARM_TLS_CALL:
27211 case BFD_RELOC_ARM_THM_TLS_CALL:
27212 case BFD_RELOC_ARM_TLS_DESCSEQ:
27213 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
0855e32b 27214 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
27215 case BFD_RELOC_ARM_TLS_GD32:
27216 case BFD_RELOC_ARM_TLS_LE32:
27217 case BFD_RELOC_ARM_TLS_IE32:
27218 case BFD_RELOC_ARM_TLS_LDM32:
27219 case BFD_RELOC_ARM_TLS_LDO32:
27220 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4b1a927e 27221 break;
6c43fab6 27222
5c5a4843
CL
27223 /* Same handling as above, but with the arm_fdpic guard. */
27224 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
27225 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
27226 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
27227 if (arm_fdpic)
27228 {
27229 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27230 }
27231 else
27232 {
27233 as_bad_where (fixP->fx_file, fixP->fx_line,
27234 _("Relocation supported only in FDPIC mode"));
27235 }
27236 break;
27237
c19d1205
ZW
27238 case BFD_RELOC_ARM_GOT32:
27239 case BFD_RELOC_ARM_GOTOFF:
c19d1205 27240 break;
b43420e6
NC
27241
27242 case BFD_RELOC_ARM_GOT_PREL:
27243 if (fixP->fx_done || !seg->use_rela_p)
477330fc 27244 md_number_to_chars (buf, value, 4);
b43420e6
NC
27245 break;
27246
9a6f4e97
NS
27247 case BFD_RELOC_ARM_TARGET2:
27248 /* TARGET2 is not partial-inplace, so we need to write the
477330fc
RM
27249 addend here for REL targets, because it won't be written out
27250 during reloc processing later. */
9a6f4e97
NS
27251 if (fixP->fx_done || !seg->use_rela_p)
27252 md_number_to_chars (buf, fixP->fx_offset, 4);
27253 break;
188fd7ae
CL
27254
27255 /* Relocations for FDPIC. */
27256 case BFD_RELOC_ARM_GOTFUNCDESC:
27257 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27258 case BFD_RELOC_ARM_FUNCDESC:
27259 if (arm_fdpic)
27260 {
27261 if (fixP->fx_done || !seg->use_rela_p)
27262 md_number_to_chars (buf, 0, 4);
27263 }
27264 else
27265 {
27266 as_bad_where (fixP->fx_file, fixP->fx_line,
27267 _("Relocation supported only in FDPIC mode"));
27268 }
27269 break;
c19d1205 27270#endif
6c43fab6 27271
c19d1205
ZW
27272 case BFD_RELOC_RVA:
27273 case BFD_RELOC_32:
27274 case BFD_RELOC_ARM_TARGET1:
27275 case BFD_RELOC_ARM_ROSEGREL32:
27276 case BFD_RELOC_ARM_SBREL32:
27277 case BFD_RELOC_32_PCREL:
f0927246
NC
27278#ifdef TE_PE
27279 case BFD_RELOC_32_SECREL:
27280#endif
2fc8bdac 27281 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
27282#ifdef TE_WINCE
27283 /* For WinCE we only do this for pcrel fixups. */
27284 if (fixP->fx_done || fixP->fx_pcrel)
27285#endif
27286 md_number_to_chars (buf, value, 4);
c19d1205 27287 break;
6c43fab6 27288
c19d1205
ZW
27289#ifdef OBJ_ELF
27290 case BFD_RELOC_ARM_PREL31:
2fc8bdac 27291 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
27292 {
27293 newval = md_chars_to_number (buf, 4) & 0x80000000;
27294 if ((value ^ (value >> 1)) & 0x40000000)
27295 {
27296 as_bad_where (fixP->fx_file, fixP->fx_line,
27297 _("rel31 relocation overflow"));
27298 }
27299 newval |= value & 0x7fffffff;
27300 md_number_to_chars (buf, newval, 4);
27301 }
27302 break;
c19d1205 27303#endif
a737bd4d 27304
c19d1205 27305 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 27306 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
32c36c3c 27307 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
9db2f6b4
RL
27308 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
27309 newval = md_chars_to_number (buf, INSN_SIZE);
27310 else
27311 newval = get_thumb32_insn (buf);
27312 if ((newval & 0x0f200f00) == 0x0d000900)
27313 {
27314 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
27315 has permitted values that are multiples of 2, in the range 0
27316 to 510. */
27317 if (value < -510 || value > 510 || (value & 1))
27318 as_bad_where (fixP->fx_file, fixP->fx_line,
27319 _("co-processor offset out of range"));
27320 }
32c36c3c
AV
27321 else if ((newval & 0xfe001f80) == 0xec000f80)
27322 {
27323 if (value < -511 || value > 512 || (value & 3))
27324 as_bad_where (fixP->fx_file, fixP->fx_line,
27325 _("co-processor offset out of range"));
27326 }
9db2f6b4 27327 else if (value < -1023 || value > 1023 || (value & 3))
c19d1205
ZW
27328 as_bad_where (fixP->fx_file, fixP->fx_line,
27329 _("co-processor offset out of range"));
27330 cp_off_common:
26d97720 27331 sign = value > 0;
c19d1205
ZW
27332 if (value < 0)
27333 value = -value;
8f06b2d8
PB
27334 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27335 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27336 newval = md_chars_to_number (buf, INSN_SIZE);
27337 else
27338 newval = get_thumb32_insn (buf);
26d97720 27339 if (value == 0)
32c36c3c
AV
27340 {
27341 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27342 newval &= 0xffffff80;
27343 else
27344 newval &= 0xffffff00;
27345 }
26d97720
NS
27346 else
27347 {
32c36c3c
AV
27348 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27349 newval &= 0xff7fff80;
27350 else
27351 newval &= 0xff7fff00;
9db2f6b4
RL
27352 if ((newval & 0x0f200f00) == 0x0d000900)
27353 {
27354 /* This is a fp16 vstr/vldr.
27355
27356 It requires the immediate offset in the instruction is shifted
27357 left by 1 to be a half-word offset.
27358
27359 Here, left shift by 1 first, and later right shift by 2
27360 should get the right offset. */
27361 value <<= 1;
27362 }
26d97720
NS
27363 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
27364 }
8f06b2d8
PB
27365 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27366 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27367 md_number_to_chars (buf, newval, INSN_SIZE);
27368 else
27369 put_thumb32_insn (buf, newval);
c19d1205 27370 break;
a737bd4d 27371
c19d1205 27372 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 27373 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
27374 if (value < -255 || value > 255)
27375 as_bad_where (fixP->fx_file, fixP->fx_line,
27376 _("co-processor offset out of range"));
df7849c5 27377 value *= 4;
c19d1205 27378 goto cp_off_common;
6c43fab6 27379
c19d1205
ZW
27380 case BFD_RELOC_ARM_THUMB_OFFSET:
27381 newval = md_chars_to_number (buf, THUMB_SIZE);
27382 /* Exactly what ranges, and where the offset is inserted depends
27383 on the type of instruction, we can establish this from the
27384 top 4 bits. */
27385 switch (newval >> 12)
27386 {
27387 case 4: /* PC load. */
27388 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
27389 forced to zero for these loads; md_pcrel_from has already
27390 compensated for this. */
27391 if (value & 3)
27392 as_bad_where (fixP->fx_file, fixP->fx_line,
27393 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
27394 (((unsigned long) fixP->fx_frag->fr_address
27395 + (unsigned long) fixP->fx_where) & ~3)
27396 + (unsigned long) value);
a737bd4d 27397
c19d1205
ZW
27398 if (value & ~0x3fc)
27399 as_bad_where (fixP->fx_file, fixP->fx_line,
27400 _("invalid offset, value too big (0x%08lX)"),
27401 (long) value);
a737bd4d 27402
c19d1205
ZW
27403 newval |= value >> 2;
27404 break;
a737bd4d 27405
c19d1205
ZW
27406 case 9: /* SP load/store. */
27407 if (value & ~0x3fc)
27408 as_bad_where (fixP->fx_file, fixP->fx_line,
27409 _("invalid offset, value too big (0x%08lX)"),
27410 (long) value);
27411 newval |= value >> 2;
27412 break;
6c43fab6 27413
c19d1205
ZW
27414 case 6: /* Word load/store. */
27415 if (value & ~0x7c)
27416 as_bad_where (fixP->fx_file, fixP->fx_line,
27417 _("invalid offset, value too big (0x%08lX)"),
27418 (long) value);
27419 newval |= value << 4; /* 6 - 2. */
27420 break;
a737bd4d 27421
c19d1205
ZW
27422 case 7: /* Byte load/store. */
27423 if (value & ~0x1f)
27424 as_bad_where (fixP->fx_file, fixP->fx_line,
27425 _("invalid offset, value too big (0x%08lX)"),
27426 (long) value);
27427 newval |= value << 6;
27428 break;
a737bd4d 27429
c19d1205
ZW
27430 case 8: /* Halfword load/store. */
27431 if (value & ~0x3e)
27432 as_bad_where (fixP->fx_file, fixP->fx_line,
27433 _("invalid offset, value too big (0x%08lX)"),
27434 (long) value);
27435 newval |= value << 5; /* 6 - 1. */
27436 break;
a737bd4d 27437
c19d1205
ZW
27438 default:
27439 as_bad_where (fixP->fx_file, fixP->fx_line,
27440 "Unable to process relocation for thumb opcode: %lx",
27441 (unsigned long) newval);
27442 break;
27443 }
27444 md_number_to_chars (buf, newval, THUMB_SIZE);
27445 break;
a737bd4d 27446
c19d1205
ZW
27447 case BFD_RELOC_ARM_THUMB_ADD:
27448 /* This is a complicated relocation, since we use it for all of
27449 the following immediate relocations:
a737bd4d 27450
c19d1205
ZW
27451 3bit ADD/SUB
27452 8bit ADD/SUB
27453 9bit ADD/SUB SP word-aligned
27454 10bit ADD PC/SP word-aligned
a737bd4d 27455
c19d1205
ZW
27456 The type of instruction being processed is encoded in the
27457 instruction field:
a737bd4d 27458
c19d1205
ZW
27459 0x8000 SUB
27460 0x00F0 Rd
27461 0x000F Rs
27462 */
27463 newval = md_chars_to_number (buf, THUMB_SIZE);
27464 {
27465 int rd = (newval >> 4) & 0xf;
27466 int rs = newval & 0xf;
27467 int subtract = !!(newval & 0x8000);
a737bd4d 27468
c19d1205
ZW
27469 /* Check for HI regs, only very restricted cases allowed:
27470 Adjusting SP, and using PC or SP to get an address. */
27471 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
27472 || (rs > 7 && rs != REG_SP && rs != REG_PC))
27473 as_bad_where (fixP->fx_file, fixP->fx_line,
27474 _("invalid Hi register with immediate"));
a737bd4d 27475
c19d1205
ZW
27476 /* If value is negative, choose the opposite instruction. */
27477 if (value < 0)
27478 {
27479 value = -value;
27480 subtract = !subtract;
27481 if (value < 0)
27482 as_bad_where (fixP->fx_file, fixP->fx_line,
27483 _("immediate value out of range"));
27484 }
a737bd4d 27485
c19d1205
ZW
27486 if (rd == REG_SP)
27487 {
75c11999 27488 if (value & ~0x1fc)
c19d1205
ZW
27489 as_bad_where (fixP->fx_file, fixP->fx_line,
27490 _("invalid immediate for stack address calculation"));
27491 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
27492 newval |= value >> 2;
27493 }
27494 else if (rs == REG_PC || rs == REG_SP)
27495 {
c12d2c9d
NC
27496 /* PR gas/18541. If the addition is for a defined symbol
27497 within range of an ADR instruction then accept it. */
27498 if (subtract
27499 && value == 4
27500 && fixP->fx_addsy != NULL)
27501 {
27502 subtract = 0;
27503
27504 if (! S_IS_DEFINED (fixP->fx_addsy)
27505 || S_GET_SEGMENT (fixP->fx_addsy) != seg
27506 || S_IS_WEAK (fixP->fx_addsy))
27507 {
27508 as_bad_where (fixP->fx_file, fixP->fx_line,
27509 _("address calculation needs a strongly defined nearby symbol"));
27510 }
27511 else
27512 {
27513 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
27514
27515 /* Round up to the next 4-byte boundary. */
27516 if (v & 3)
27517 v = (v + 3) & ~ 3;
27518 else
27519 v += 4;
27520 v = S_GET_VALUE (fixP->fx_addsy) - v;
27521
27522 if (v & ~0x3fc)
27523 {
27524 as_bad_where (fixP->fx_file, fixP->fx_line,
27525 _("symbol too far away"));
27526 }
27527 else
27528 {
27529 fixP->fx_done = 1;
27530 value = v;
27531 }
27532 }
27533 }
27534
c19d1205
ZW
27535 if (subtract || value & ~0x3fc)
27536 as_bad_where (fixP->fx_file, fixP->fx_line,
27537 _("invalid immediate for address calculation (value = 0x%08lX)"),
5fc177c8 27538 (unsigned long) (subtract ? - value : value));
c19d1205
ZW
27539 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
27540 newval |= rd << 8;
27541 newval |= value >> 2;
27542 }
27543 else if (rs == rd)
27544 {
27545 if (value & ~0xff)
27546 as_bad_where (fixP->fx_file, fixP->fx_line,
27547 _("immediate value out of range"));
27548 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
27549 newval |= (rd << 8) | value;
27550 }
27551 else
27552 {
27553 if (value & ~0x7)
27554 as_bad_where (fixP->fx_file, fixP->fx_line,
27555 _("immediate value out of range"));
27556 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
27557 newval |= rd | (rs << 3) | (value << 6);
27558 }
27559 }
27560 md_number_to_chars (buf, newval, THUMB_SIZE);
27561 break;
a737bd4d 27562
c19d1205
ZW
27563 case BFD_RELOC_ARM_THUMB_IMM:
27564 newval = md_chars_to_number (buf, THUMB_SIZE);
27565 if (value < 0 || value > 255)
27566 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 27567 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
27568 (long) value);
27569 newval |= value;
27570 md_number_to_chars (buf, newval, THUMB_SIZE);
27571 break;
a737bd4d 27572
c19d1205
ZW
27573 case BFD_RELOC_ARM_THUMB_SHIFT:
27574 /* 5bit shift value (0..32). LSL cannot take 32. */
27575 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
27576 temp = newval & 0xf800;
27577 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
27578 as_bad_where (fixP->fx_file, fixP->fx_line,
27579 _("invalid shift value: %ld"), (long) value);
27580 /* Shifts of zero must be encoded as LSL. */
27581 if (value == 0)
27582 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
27583 /* Shifts of 32 are encoded as zero. */
27584 else if (value == 32)
27585 value = 0;
27586 newval |= value << 6;
27587 md_number_to_chars (buf, newval, THUMB_SIZE);
27588 break;
a737bd4d 27589
c19d1205
ZW
27590 case BFD_RELOC_VTABLE_INHERIT:
27591 case BFD_RELOC_VTABLE_ENTRY:
27592 fixP->fx_done = 0;
27593 return;
6c43fab6 27594
b6895b4f
PB
27595 case BFD_RELOC_ARM_MOVW:
27596 case BFD_RELOC_ARM_MOVT:
27597 case BFD_RELOC_ARM_THUMB_MOVW:
27598 case BFD_RELOC_ARM_THUMB_MOVT:
27599 if (fixP->fx_done || !seg->use_rela_p)
27600 {
27601 /* REL format relocations are limited to a 16-bit addend. */
27602 if (!fixP->fx_done)
27603 {
39623e12 27604 if (value < -0x8000 || value > 0x7fff)
b6895b4f 27605 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 27606 _("offset out of range"));
b6895b4f
PB
27607 }
27608 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27609 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27610 {
27611 value >>= 16;
27612 }
27613
27614 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27615 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27616 {
27617 newval = get_thumb32_insn (buf);
27618 newval &= 0xfbf08f00;
27619 newval |= (value & 0xf000) << 4;
27620 newval |= (value & 0x0800) << 15;
27621 newval |= (value & 0x0700) << 4;
27622 newval |= (value & 0x00ff);
27623 put_thumb32_insn (buf, newval);
27624 }
27625 else
27626 {
27627 newval = md_chars_to_number (buf, 4);
27628 newval &= 0xfff0f000;
27629 newval |= value & 0x0fff;
27630 newval |= (value & 0xf000) << 4;
27631 md_number_to_chars (buf, newval, 4);
27632 }
27633 }
27634 return;
27635
72d98d16
MG
27636 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27637 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27638 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27639 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27640 gas_assert (!fixP->fx_done);
27641 {
27642 bfd_vma insn;
27643 bfd_boolean is_mov;
27644 bfd_vma encoded_addend = value;
27645
27646 /* Check that addend can be encoded in instruction. */
27647 if (!seg->use_rela_p && (value < 0 || value > 255))
27648 as_bad_where (fixP->fx_file, fixP->fx_line,
27649 _("the offset 0x%08lX is not representable"),
27650 (unsigned long) encoded_addend);
27651
27652 /* Extract the instruction. */
27653 insn = md_chars_to_number (buf, THUMB_SIZE);
27654 is_mov = (insn & 0xf800) == 0x2000;
27655
27656 /* Encode insn. */
27657 if (is_mov)
27658 {
27659 if (!seg->use_rela_p)
27660 insn |= encoded_addend;
27661 }
27662 else
27663 {
27664 int rd, rs;
27665
27666 /* Extract the instruction. */
27667 /* Encoding is the following
27668 0x8000 SUB
27669 0x00F0 Rd
27670 0x000F Rs
27671 */
27672 /* The following conditions must be true :
27673 - ADD
27674 - Rd == Rs
27675 - Rd <= 7
27676 */
27677 rd = (insn >> 4) & 0xf;
27678 rs = insn & 0xf;
27679 if ((insn & 0x8000) || (rd != rs) || rd > 7)
27680 as_bad_where (fixP->fx_file, fixP->fx_line,
27681 _("Unable to process relocation for thumb opcode: %lx"),
27682 (unsigned long) insn);
27683
27684 /* Encode as ADD immediate8 thumb 1 code. */
27685 insn = 0x3000 | (rd << 8);
27686
27687 /* Place the encoded addend into the first 8 bits of the
27688 instruction. */
27689 if (!seg->use_rela_p)
27690 insn |= encoded_addend;
27691 }
27692
27693 /* Update the instruction. */
27694 md_number_to_chars (buf, insn, THUMB_SIZE);
27695 }
27696 break;
27697
4962c51a
MS
27698 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27699 case BFD_RELOC_ARM_ALU_PC_G0:
27700 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27701 case BFD_RELOC_ARM_ALU_PC_G1:
27702 case BFD_RELOC_ARM_ALU_PC_G2:
27703 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27704 case BFD_RELOC_ARM_ALU_SB_G0:
27705 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27706 case BFD_RELOC_ARM_ALU_SB_G1:
27707 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 27708 gas_assert (!fixP->fx_done);
4962c51a
MS
27709 if (!seg->use_rela_p)
27710 {
477330fc
RM
27711 bfd_vma insn;
27712 bfd_vma encoded_addend;
3ca4a8ec 27713 bfd_vma addend_abs = llabs (value);
477330fc
RM
27714
27715 /* Check that the absolute value of the addend can be
27716 expressed as an 8-bit constant plus a rotation. */
27717 encoded_addend = encode_arm_immediate (addend_abs);
27718 if (encoded_addend == (unsigned int) FAIL)
4962c51a 27719 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27720 _("the offset 0x%08lX is not representable"),
27721 (unsigned long) addend_abs);
27722
27723 /* Extract the instruction. */
27724 insn = md_chars_to_number (buf, INSN_SIZE);
27725
27726 /* If the addend is positive, use an ADD instruction.
27727 Otherwise use a SUB. Take care not to destroy the S bit. */
27728 insn &= 0xff1fffff;
27729 if (value < 0)
27730 insn |= 1 << 22;
27731 else
27732 insn |= 1 << 23;
27733
27734 /* Place the encoded addend into the first 12 bits of the
27735 instruction. */
27736 insn &= 0xfffff000;
27737 insn |= encoded_addend;
27738
27739 /* Update the instruction. */
27740 md_number_to_chars (buf, insn, INSN_SIZE);
4962c51a
MS
27741 }
27742 break;
27743
27744 case BFD_RELOC_ARM_LDR_PC_G0:
27745 case BFD_RELOC_ARM_LDR_PC_G1:
27746 case BFD_RELOC_ARM_LDR_PC_G2:
27747 case BFD_RELOC_ARM_LDR_SB_G0:
27748 case BFD_RELOC_ARM_LDR_SB_G1:
27749 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 27750 gas_assert (!fixP->fx_done);
4962c51a 27751 if (!seg->use_rela_p)
477330fc
RM
27752 {
27753 bfd_vma insn;
3ca4a8ec 27754 bfd_vma addend_abs = llabs (value);
4962c51a 27755
477330fc
RM
27756 /* Check that the absolute value of the addend can be
27757 encoded in 12 bits. */
27758 if (addend_abs >= 0x1000)
4962c51a 27759 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27760 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
27761 (unsigned long) addend_abs);
27762
27763 /* Extract the instruction. */
27764 insn = md_chars_to_number (buf, INSN_SIZE);
27765
27766 /* If the addend is negative, clear bit 23 of the instruction.
27767 Otherwise set it. */
27768 if (value < 0)
27769 insn &= ~(1 << 23);
27770 else
27771 insn |= 1 << 23;
27772
27773 /* Place the absolute value of the addend into the first 12 bits
27774 of the instruction. */
27775 insn &= 0xfffff000;
27776 insn |= addend_abs;
27777
27778 /* Update the instruction. */
27779 md_number_to_chars (buf, insn, INSN_SIZE);
27780 }
4962c51a
MS
27781 break;
27782
27783 case BFD_RELOC_ARM_LDRS_PC_G0:
27784 case BFD_RELOC_ARM_LDRS_PC_G1:
27785 case BFD_RELOC_ARM_LDRS_PC_G2:
27786 case BFD_RELOC_ARM_LDRS_SB_G0:
27787 case BFD_RELOC_ARM_LDRS_SB_G1:
27788 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 27789 gas_assert (!fixP->fx_done);
4962c51a 27790 if (!seg->use_rela_p)
477330fc
RM
27791 {
27792 bfd_vma insn;
3ca4a8ec 27793 bfd_vma addend_abs = llabs (value);
4962c51a 27794
477330fc
RM
27795 /* Check that the absolute value of the addend can be
27796 encoded in 8 bits. */
27797 if (addend_abs >= 0x100)
4962c51a 27798 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27799 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
27800 (unsigned long) addend_abs);
27801
27802 /* Extract the instruction. */
27803 insn = md_chars_to_number (buf, INSN_SIZE);
27804
27805 /* If the addend is negative, clear bit 23 of the instruction.
27806 Otherwise set it. */
27807 if (value < 0)
27808 insn &= ~(1 << 23);
27809 else
27810 insn |= 1 << 23;
27811
27812 /* Place the first four bits of the absolute value of the addend
27813 into the first 4 bits of the instruction, and the remaining
27814 four into bits 8 .. 11. */
27815 insn &= 0xfffff0f0;
27816 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
27817
27818 /* Update the instruction. */
27819 md_number_to_chars (buf, insn, INSN_SIZE);
27820 }
4962c51a
MS
27821 break;
27822
27823 case BFD_RELOC_ARM_LDC_PC_G0:
27824 case BFD_RELOC_ARM_LDC_PC_G1:
27825 case BFD_RELOC_ARM_LDC_PC_G2:
27826 case BFD_RELOC_ARM_LDC_SB_G0:
27827 case BFD_RELOC_ARM_LDC_SB_G1:
27828 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 27829 gas_assert (!fixP->fx_done);
4962c51a 27830 if (!seg->use_rela_p)
477330fc
RM
27831 {
27832 bfd_vma insn;
3ca4a8ec 27833 bfd_vma addend_abs = llabs (value);
4962c51a 27834
477330fc
RM
27835 /* Check that the absolute value of the addend is a multiple of
27836 four and, when divided by four, fits in 8 bits. */
27837 if (addend_abs & 0x3)
4962c51a 27838 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27839 _("bad offset 0x%08lX (must be word-aligned)"),
27840 (unsigned long) addend_abs);
4962c51a 27841
477330fc 27842 if ((addend_abs >> 2) > 0xff)
4962c51a 27843 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27844 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
27845 (unsigned long) addend_abs);
27846
27847 /* Extract the instruction. */
27848 insn = md_chars_to_number (buf, INSN_SIZE);
27849
27850 /* If the addend is negative, clear bit 23 of the instruction.
27851 Otherwise set it. */
27852 if (value < 0)
27853 insn &= ~(1 << 23);
27854 else
27855 insn |= 1 << 23;
27856
27857 /* Place the addend (divided by four) into the first eight
27858 bits of the instruction. */
27859 insn &= 0xfffffff0;
27860 insn |= addend_abs >> 2;
27861
27862 /* Update the instruction. */
27863 md_number_to_chars (buf, insn, INSN_SIZE);
27864 }
4962c51a
MS
27865 break;
27866
e12437dc
AV
27867 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27868 if (fixP->fx_addsy
27869 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27870 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27871 && ARM_IS_FUNC (fixP->fx_addsy)
27872 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27873 {
27874 /* Force a relocation for a branch 5 bits wide. */
27875 fixP->fx_done = 0;
27876 }
27877 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
27878 as_bad_where (fixP->fx_file, fixP->fx_line,
27879 BAD_BRANCH_OFF);
27880
27881 if (fixP->fx_done || !seg->use_rela_p)
27882 {
27883 addressT boff = value >> 1;
27884
27885 newval = md_chars_to_number (buf, THUMB_SIZE);
27886 newval |= (boff << 7);
27887 md_number_to_chars (buf, newval, THUMB_SIZE);
27888 }
27889 break;
27890
f6b2b12d
AV
27891 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27892 if (fixP->fx_addsy
27893 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27894 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27895 && ARM_IS_FUNC (fixP->fx_addsy)
27896 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27897 {
27898 fixP->fx_done = 0;
27899 }
27900 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
27901 as_bad_where (fixP->fx_file, fixP->fx_line,
27902 _("branch out of range"));
27903
27904 if (fixP->fx_done || !seg->use_rela_p)
27905 {
27906 newval = md_chars_to_number (buf, THUMB_SIZE);
27907
27908 addressT boff = ((newval & 0x0780) >> 7) << 1;
27909 addressT diff = value - boff;
27910
27911 if (diff == 4)
27912 {
27913 newval |= 1 << 1; /* T bit. */
27914 }
27915 else if (diff != 2)
27916 {
27917 as_bad_where (fixP->fx_file, fixP->fx_line,
27918 _("out of range label-relative fixup value"));
27919 }
27920 md_number_to_chars (buf, newval, THUMB_SIZE);
27921 }
27922 break;
27923
e5d6e09e
AV
27924 case BFD_RELOC_ARM_THUMB_BF17:
27925 if (fixP->fx_addsy
27926 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27927 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27928 && ARM_IS_FUNC (fixP->fx_addsy)
27929 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27930 {
27931 /* Force a relocation for a branch 17 bits wide. */
27932 fixP->fx_done = 0;
27933 }
27934
27935 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
27936 as_bad_where (fixP->fx_file, fixP->fx_line,
27937 BAD_BRANCH_OFF);
27938
27939 if (fixP->fx_done || !seg->use_rela_p)
27940 {
27941 offsetT newval2;
27942 addressT immA, immB, immC;
27943
27944 immA = (value & 0x0001f000) >> 12;
27945 immB = (value & 0x00000ffc) >> 2;
27946 immC = (value & 0x00000002) >> 1;
27947
27948 newval = md_chars_to_number (buf, THUMB_SIZE);
27949 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27950 newval |= immA;
27951 newval2 |= (immC << 11) | (immB << 1);
27952 md_number_to_chars (buf, newval, THUMB_SIZE);
27953 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27954 }
27955 break;
27956
1caf72a5
AV
27957 case BFD_RELOC_ARM_THUMB_BF19:
27958 if (fixP->fx_addsy
27959 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27960 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27961 && ARM_IS_FUNC (fixP->fx_addsy)
27962 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27963 {
27964 /* Force a relocation for a branch 19 bits wide. */
27965 fixP->fx_done = 0;
27966 }
27967
27968 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
27969 as_bad_where (fixP->fx_file, fixP->fx_line,
27970 BAD_BRANCH_OFF);
27971
27972 if (fixP->fx_done || !seg->use_rela_p)
27973 {
27974 offsetT newval2;
27975 addressT immA, immB, immC;
27976
27977 immA = (value & 0x0007f000) >> 12;
27978 immB = (value & 0x00000ffc) >> 2;
27979 immC = (value & 0x00000002) >> 1;
27980
27981 newval = md_chars_to_number (buf, THUMB_SIZE);
27982 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27983 newval |= immA;
27984 newval2 |= (immC << 11) | (immB << 1);
27985 md_number_to_chars (buf, newval, THUMB_SIZE);
27986 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27987 }
27988 break;
27989
1889da70
AV
27990 case BFD_RELOC_ARM_THUMB_BF13:
27991 if (fixP->fx_addsy
27992 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27993 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27994 && ARM_IS_FUNC (fixP->fx_addsy)
27995 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27996 {
27997 /* Force a relocation for a branch 13 bits wide. */
27998 fixP->fx_done = 0;
27999 }
28000
28001 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
28002 as_bad_where (fixP->fx_file, fixP->fx_line,
28003 BAD_BRANCH_OFF);
28004
28005 if (fixP->fx_done || !seg->use_rela_p)
28006 {
28007 offsetT newval2;
28008 addressT immA, immB, immC;
28009
28010 immA = (value & 0x00001000) >> 12;
28011 immB = (value & 0x00000ffc) >> 2;
28012 immC = (value & 0x00000002) >> 1;
28013
28014 newval = md_chars_to_number (buf, THUMB_SIZE);
28015 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28016 newval |= immA;
28017 newval2 |= (immC << 11) | (immB << 1);
28018 md_number_to_chars (buf, newval, THUMB_SIZE);
28019 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28020 }
28021 break;
28022
60f993ce
AV
28023 case BFD_RELOC_ARM_THUMB_LOOP12:
28024 if (fixP->fx_addsy
28025 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28026 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28027 && ARM_IS_FUNC (fixP->fx_addsy)
28028 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28029 {
28030 /* Force a relocation for a branch 12 bits wide. */
28031 fixP->fx_done = 0;
28032 }
28033
28034 bfd_vma insn = get_thumb32_insn (buf);
28035 /* le lr, <label> or le <label> */
28036 if (((insn & 0xffffffff) == 0xf00fc001)
28037 || ((insn & 0xffffffff) == 0xf02fc001))
28038 value = -value;
28039
28040 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
28041 as_bad_where (fixP->fx_file, fixP->fx_line,
28042 BAD_BRANCH_OFF);
28043 if (fixP->fx_done || !seg->use_rela_p)
28044 {
28045 addressT imml, immh;
28046
28047 immh = (value & 0x00000ffc) >> 2;
28048 imml = (value & 0x00000002) >> 1;
28049
28050 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28051 newval |= (imml << 11) | (immh << 1);
28052 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
28053 }
28054 break;
28055
845b51d6
PB
28056 case BFD_RELOC_ARM_V4BX:
28057 /* This will need to go in the object file. */
28058 fixP->fx_done = 0;
28059 break;
28060
c19d1205
ZW
28061 case BFD_RELOC_UNUSED:
28062 default:
28063 as_bad_where (fixP->fx_file, fixP->fx_line,
28064 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
28065 }
6c43fab6
RE
28066}
28067
c19d1205
ZW
28068/* Translate internal representation of relocation info to BFD target
28069 format. */
a737bd4d 28070
c19d1205 28071arelent *
00a97672 28072tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 28073{
c19d1205
ZW
28074 arelent * reloc;
28075 bfd_reloc_code_real_type code;
a737bd4d 28076
325801bd 28077 reloc = XNEW (arelent);
a737bd4d 28078
325801bd 28079 reloc->sym_ptr_ptr = XNEW (asymbol *);
c19d1205
ZW
28080 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
28081 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 28082
2fc8bdac 28083 if (fixp->fx_pcrel)
00a97672
RS
28084 {
28085 if (section->use_rela_p)
28086 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
28087 else
28088 fixp->fx_offset = reloc->address;
28089 }
c19d1205 28090 reloc->addend = fixp->fx_offset;
a737bd4d 28091
c19d1205 28092 switch (fixp->fx_r_type)
a737bd4d 28093 {
c19d1205
ZW
28094 case BFD_RELOC_8:
28095 if (fixp->fx_pcrel)
28096 {
28097 code = BFD_RELOC_8_PCREL;
28098 break;
28099 }
1a0670f3 28100 /* Fall through. */
a737bd4d 28101
c19d1205
ZW
28102 case BFD_RELOC_16:
28103 if (fixp->fx_pcrel)
28104 {
28105 code = BFD_RELOC_16_PCREL;
28106 break;
28107 }
1a0670f3 28108 /* Fall through. */
6c43fab6 28109
c19d1205
ZW
28110 case BFD_RELOC_32:
28111 if (fixp->fx_pcrel)
28112 {
28113 code = BFD_RELOC_32_PCREL;
28114 break;
28115 }
1a0670f3 28116 /* Fall through. */
a737bd4d 28117
b6895b4f
PB
28118 case BFD_RELOC_ARM_MOVW:
28119 if (fixp->fx_pcrel)
28120 {
28121 code = BFD_RELOC_ARM_MOVW_PCREL;
28122 break;
28123 }
1a0670f3 28124 /* Fall through. */
b6895b4f
PB
28125
28126 case BFD_RELOC_ARM_MOVT:
28127 if (fixp->fx_pcrel)
28128 {
28129 code = BFD_RELOC_ARM_MOVT_PCREL;
28130 break;
28131 }
1a0670f3 28132 /* Fall through. */
b6895b4f
PB
28133
28134 case BFD_RELOC_ARM_THUMB_MOVW:
28135 if (fixp->fx_pcrel)
28136 {
28137 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
28138 break;
28139 }
1a0670f3 28140 /* Fall through. */
b6895b4f
PB
28141
28142 case BFD_RELOC_ARM_THUMB_MOVT:
28143 if (fixp->fx_pcrel)
28144 {
28145 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
28146 break;
28147 }
1a0670f3 28148 /* Fall through. */
b6895b4f 28149
c19d1205
ZW
28150 case BFD_RELOC_NONE:
28151 case BFD_RELOC_ARM_PCREL_BRANCH:
28152 case BFD_RELOC_ARM_PCREL_BLX:
28153 case BFD_RELOC_RVA:
28154 case BFD_RELOC_THUMB_PCREL_BRANCH7:
28155 case BFD_RELOC_THUMB_PCREL_BRANCH9:
28156 case BFD_RELOC_THUMB_PCREL_BRANCH12:
28157 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28158 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28159 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
28160 case BFD_RELOC_VTABLE_ENTRY:
28161 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
28162#ifdef TE_PE
28163 case BFD_RELOC_32_SECREL:
28164#endif
c19d1205
ZW
28165 code = fixp->fx_r_type;
28166 break;
a737bd4d 28167
00adf2d4
JB
28168 case BFD_RELOC_THUMB_PCREL_BLX:
28169#ifdef OBJ_ELF
28170 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
28171 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
28172 else
28173#endif
28174 code = BFD_RELOC_THUMB_PCREL_BLX;
28175 break;
28176
c19d1205
ZW
28177 case BFD_RELOC_ARM_LITERAL:
28178 case BFD_RELOC_ARM_HWLITERAL:
28179 /* If this is called then the a literal has
28180 been referenced across a section boundary. */
28181 as_bad_where (fixp->fx_file, fixp->fx_line,
28182 _("literal referenced across section boundary"));
28183 return NULL;
a737bd4d 28184
c19d1205 28185#ifdef OBJ_ELF
0855e32b
NS
28186 case BFD_RELOC_ARM_TLS_CALL:
28187 case BFD_RELOC_ARM_THM_TLS_CALL:
28188 case BFD_RELOC_ARM_TLS_DESCSEQ:
28189 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
28190 case BFD_RELOC_ARM_GOT32:
28191 case BFD_RELOC_ARM_GOTOFF:
b43420e6 28192 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
28193 case BFD_RELOC_ARM_PLT32:
28194 case BFD_RELOC_ARM_TARGET1:
28195 case BFD_RELOC_ARM_ROSEGREL32:
28196 case BFD_RELOC_ARM_SBREL32:
28197 case BFD_RELOC_ARM_PREL31:
28198 case BFD_RELOC_ARM_TARGET2:
c19d1205 28199 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
28200 case BFD_RELOC_ARM_PCREL_CALL:
28201 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
28202 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28203 case BFD_RELOC_ARM_ALU_PC_G0:
28204 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28205 case BFD_RELOC_ARM_ALU_PC_G1:
28206 case BFD_RELOC_ARM_ALU_PC_G2:
28207 case BFD_RELOC_ARM_LDR_PC_G0:
28208 case BFD_RELOC_ARM_LDR_PC_G1:
28209 case BFD_RELOC_ARM_LDR_PC_G2:
28210 case BFD_RELOC_ARM_LDRS_PC_G0:
28211 case BFD_RELOC_ARM_LDRS_PC_G1:
28212 case BFD_RELOC_ARM_LDRS_PC_G2:
28213 case BFD_RELOC_ARM_LDC_PC_G0:
28214 case BFD_RELOC_ARM_LDC_PC_G1:
28215 case BFD_RELOC_ARM_LDC_PC_G2:
28216 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28217 case BFD_RELOC_ARM_ALU_SB_G0:
28218 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28219 case BFD_RELOC_ARM_ALU_SB_G1:
28220 case BFD_RELOC_ARM_ALU_SB_G2:
28221 case BFD_RELOC_ARM_LDR_SB_G0:
28222 case BFD_RELOC_ARM_LDR_SB_G1:
28223 case BFD_RELOC_ARM_LDR_SB_G2:
28224 case BFD_RELOC_ARM_LDRS_SB_G0:
28225 case BFD_RELOC_ARM_LDRS_SB_G1:
28226 case BFD_RELOC_ARM_LDRS_SB_G2:
28227 case BFD_RELOC_ARM_LDC_SB_G0:
28228 case BFD_RELOC_ARM_LDC_SB_G1:
28229 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 28230 case BFD_RELOC_ARM_V4BX:
72d98d16
MG
28231 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28232 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28233 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28234 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
188fd7ae
CL
28235 case BFD_RELOC_ARM_GOTFUNCDESC:
28236 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28237 case BFD_RELOC_ARM_FUNCDESC:
e5d6e09e 28238 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 28239 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 28240 case BFD_RELOC_ARM_THUMB_BF13:
c19d1205
ZW
28241 code = fixp->fx_r_type;
28242 break;
a737bd4d 28243
0855e32b 28244 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205 28245 case BFD_RELOC_ARM_TLS_GD32:
5c5a4843 28246 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
75c11999 28247 case BFD_RELOC_ARM_TLS_LE32:
c19d1205 28248 case BFD_RELOC_ARM_TLS_IE32:
5c5a4843 28249 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
c19d1205 28250 case BFD_RELOC_ARM_TLS_LDM32:
5c5a4843 28251 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
c19d1205
ZW
28252 /* BFD will include the symbol's address in the addend.
28253 But we don't want that, so subtract it out again here. */
28254 if (!S_IS_COMMON (fixp->fx_addsy))
28255 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
28256 code = fixp->fx_r_type;
28257 break;
28258#endif
a737bd4d 28259
c19d1205
ZW
28260 case BFD_RELOC_ARM_IMMEDIATE:
28261 as_bad_where (fixp->fx_file, fixp->fx_line,
28262 _("internal relocation (type: IMMEDIATE) not fixed up"));
28263 return NULL;
a737bd4d 28264
c19d1205
ZW
28265 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
28266 as_bad_where (fixp->fx_file, fixp->fx_line,
28267 _("ADRL used for a symbol not defined in the same file"));
28268 return NULL;
a737bd4d 28269
e12437dc 28270 case BFD_RELOC_THUMB_PCREL_BRANCH5:
f6b2b12d 28271 case BFD_RELOC_THUMB_PCREL_BFCSEL:
60f993ce 28272 case BFD_RELOC_ARM_THUMB_LOOP12:
e12437dc
AV
28273 as_bad_where (fixp->fx_file, fixp->fx_line,
28274 _("%s used for a symbol not defined in the same file"),
28275 bfd_get_reloc_code_name (fixp->fx_r_type));
28276 return NULL;
28277
c19d1205 28278 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
28279 if (section->use_rela_p)
28280 {
28281 code = fixp->fx_r_type;
28282 break;
28283 }
28284
c19d1205
ZW
28285 if (fixp->fx_addsy != NULL
28286 && !S_IS_DEFINED (fixp->fx_addsy)
28287 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 28288 {
c19d1205
ZW
28289 as_bad_where (fixp->fx_file, fixp->fx_line,
28290 _("undefined local label `%s'"),
28291 S_GET_NAME (fixp->fx_addsy));
28292 return NULL;
a737bd4d
NC
28293 }
28294
c19d1205
ZW
28295 as_bad_where (fixp->fx_file, fixp->fx_line,
28296 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
28297 return NULL;
a737bd4d 28298
c19d1205
ZW
28299 default:
28300 {
e0471c16 28301 const char * type;
6c43fab6 28302
c19d1205
ZW
28303 switch (fixp->fx_r_type)
28304 {
28305 case BFD_RELOC_NONE: type = "NONE"; break;
28306 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
28307 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 28308 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
28309 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
28310 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
28311 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 28312 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 28313 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
28314 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
28315 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
28316 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
28317 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
28318 default: type = _("<unknown>"); break;
28319 }
28320 as_bad_where (fixp->fx_file, fixp->fx_line,
28321 _("cannot represent %s relocation in this object file format"),
28322 type);
28323 return NULL;
28324 }
a737bd4d 28325 }
6c43fab6 28326
c19d1205
ZW
28327#ifdef OBJ_ELF
28328 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
28329 && GOT_symbol
28330 && fixp->fx_addsy == GOT_symbol)
28331 {
28332 code = BFD_RELOC_ARM_GOTPC;
28333 reloc->addend = fixp->fx_offset = reloc->address;
28334 }
28335#endif
6c43fab6 28336
c19d1205 28337 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 28338
c19d1205
ZW
28339 if (reloc->howto == NULL)
28340 {
28341 as_bad_where (fixp->fx_file, fixp->fx_line,
28342 _("cannot represent %s relocation in this object file format"),
28343 bfd_get_reloc_code_name (code));
28344 return NULL;
28345 }
6c43fab6 28346
c19d1205
ZW
28347 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
28348 vtable entry to be used in the relocation's section offset. */
28349 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28350 reloc->address = fixp->fx_offset;
6c43fab6 28351
c19d1205 28352 return reloc;
6c43fab6
RE
28353}
28354
c19d1205 28355/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 28356
c19d1205
ZW
28357void
28358cons_fix_new_arm (fragS * frag,
28359 int where,
28360 int size,
62ebcb5c
AM
28361 expressionS * exp,
28362 bfd_reloc_code_real_type reloc)
6c43fab6 28363{
c19d1205 28364 int pcrel = 0;
6c43fab6 28365
c19d1205
ZW
28366 /* Pick a reloc.
28367 FIXME: @@ Should look at CPU word size. */
28368 switch (size)
28369 {
28370 case 1:
62ebcb5c 28371 reloc = BFD_RELOC_8;
c19d1205
ZW
28372 break;
28373 case 2:
62ebcb5c 28374 reloc = BFD_RELOC_16;
c19d1205
ZW
28375 break;
28376 case 4:
28377 default:
62ebcb5c 28378 reloc = BFD_RELOC_32;
c19d1205
ZW
28379 break;
28380 case 8:
62ebcb5c 28381 reloc = BFD_RELOC_64;
c19d1205
ZW
28382 break;
28383 }
6c43fab6 28384
f0927246
NC
28385#ifdef TE_PE
28386 if (exp->X_op == O_secrel)
28387 {
28388 exp->X_op = O_symbol;
62ebcb5c 28389 reloc = BFD_RELOC_32_SECREL;
f0927246
NC
28390 }
28391#endif
28392
62ebcb5c 28393 fix_new_exp (frag, where, size, exp, pcrel, reloc);
c19d1205 28394}
6c43fab6 28395
4343666d 28396#if defined (OBJ_COFF)
c19d1205
ZW
28397void
28398arm_validate_fix (fixS * fixP)
6c43fab6 28399{
c19d1205
ZW
28400 /* If the destination of the branch is a defined symbol which does not have
28401 the THUMB_FUNC attribute, then we must be calling a function which has
28402 the (interfacearm) attribute. We look for the Thumb entry point to that
28403 function and change the branch to refer to that function instead. */
28404 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
28405 && fixP->fx_addsy != NULL
28406 && S_IS_DEFINED (fixP->fx_addsy)
28407 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 28408 {
c19d1205 28409 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 28410 }
c19d1205
ZW
28411}
28412#endif
6c43fab6 28413
267bf995 28414
c19d1205
ZW
28415int
28416arm_force_relocation (struct fix * fixp)
28417{
28418#if defined (OBJ_COFF) && defined (TE_PE)
28419 if (fixp->fx_r_type == BFD_RELOC_RVA)
28420 return 1;
28421#endif
6c43fab6 28422
267bf995
RR
28423 /* In case we have a call or a branch to a function in ARM ISA mode from
28424 a thumb function or vice-versa force the relocation. These relocations
28425 are cleared off for some cores that might have blx and simple transformations
28426 are possible. */
28427
28428#ifdef OBJ_ELF
28429 switch (fixp->fx_r_type)
28430 {
28431 case BFD_RELOC_ARM_PCREL_JUMP:
28432 case BFD_RELOC_ARM_PCREL_CALL:
28433 case BFD_RELOC_THUMB_PCREL_BLX:
28434 if (THUMB_IS_FUNC (fixp->fx_addsy))
28435 return 1;
28436 break;
28437
28438 case BFD_RELOC_ARM_PCREL_BLX:
28439 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28440 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28441 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28442 if (ARM_IS_FUNC (fixp->fx_addsy))
28443 return 1;
28444 break;
28445
28446 default:
28447 break;
28448 }
28449#endif
28450
b5884301
PB
28451 /* Resolve these relocations even if the symbol is extern or weak.
28452 Technically this is probably wrong due to symbol preemption.
28453 In practice these relocations do not have enough range to be useful
28454 at dynamic link time, and some code (e.g. in the Linux kernel)
28455 expects these references to be resolved. */
c19d1205
ZW
28456 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
28457 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 28458 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 28459 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
28460 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28461 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
28462 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 28463 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
28464 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28465 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
28466 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
28467 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
28468 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
28469 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 28470 return 0;
a737bd4d 28471
4962c51a
MS
28472 /* Always leave these relocations for the linker. */
28473 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28474 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28475 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28476 return 1;
28477
f0291e4c
PB
28478 /* Always generate relocations against function symbols. */
28479 if (fixp->fx_r_type == BFD_RELOC_32
28480 && fixp->fx_addsy
28481 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
28482 return 1;
28483
c19d1205 28484 return generic_force_reloc (fixp);
404ff6b5
AH
28485}
28486
0ffdc86c 28487#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
28488/* Relocations against function names must be left unadjusted,
28489 so that the linker can use this information to generate interworking
28490 stubs. The MIPS version of this function
c19d1205
ZW
28491 also prevents relocations that are mips-16 specific, but I do not
28492 know why it does this.
404ff6b5 28493
c19d1205
ZW
28494 FIXME:
28495 There is one other problem that ought to be addressed here, but
28496 which currently is not: Taking the address of a label (rather
28497 than a function) and then later jumping to that address. Such
28498 addresses also ought to have their bottom bit set (assuming that
28499 they reside in Thumb code), but at the moment they will not. */
404ff6b5 28500
c19d1205
ZW
28501bfd_boolean
28502arm_fix_adjustable (fixS * fixP)
404ff6b5 28503{
c19d1205
ZW
28504 if (fixP->fx_addsy == NULL)
28505 return 1;
404ff6b5 28506
e28387c3
PB
28507 /* Preserve relocations against symbols with function type. */
28508 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 28509 return FALSE;
e28387c3 28510
c19d1205
ZW
28511 if (THUMB_IS_FUNC (fixP->fx_addsy)
28512 && fixP->fx_subsy == NULL)
c921be7d 28513 return FALSE;
a737bd4d 28514
c19d1205
ZW
28515 /* We need the symbol name for the VTABLE entries. */
28516 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
28517 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 28518 return FALSE;
404ff6b5 28519
c19d1205
ZW
28520 /* Don't allow symbols to be discarded on GOT related relocs. */
28521 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
28522 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
28523 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
28524 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
5c5a4843 28525 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
c19d1205
ZW
28526 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
28527 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
5c5a4843 28528 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
c19d1205 28529 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
5c5a4843 28530 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
c19d1205 28531 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
28532 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
28533 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
28534 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
28535 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
28536 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 28537 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 28538 return FALSE;
a737bd4d 28539
4962c51a
MS
28540 /* Similarly for group relocations. */
28541 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28542 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28543 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 28544 return FALSE;
4962c51a 28545
79947c54
CD
28546 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
28547 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
28548 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28549 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
28550 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
28551 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28552 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
28553 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
28554 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 28555 return FALSE;
79947c54 28556
72d98d16
MG
28557 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
28558 offsets, so keep these symbols. */
28559 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
28560 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
28561 return FALSE;
28562
c921be7d 28563 return TRUE;
a737bd4d 28564}
0ffdc86c
NC
28565#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
28566
28567#ifdef OBJ_ELF
c19d1205
ZW
28568const char *
28569elf32_arm_target_format (void)
404ff6b5 28570{
c19d1205
ZW
28571#ifdef TE_SYMBIAN
28572 return (target_big_endian
28573 ? "elf32-bigarm-symbian"
28574 : "elf32-littlearm-symbian");
28575#elif defined (TE_VXWORKS)
28576 return (target_big_endian
28577 ? "elf32-bigarm-vxworks"
28578 : "elf32-littlearm-vxworks");
b38cadfb
NC
28579#elif defined (TE_NACL)
28580 return (target_big_endian
28581 ? "elf32-bigarm-nacl"
28582 : "elf32-littlearm-nacl");
c19d1205 28583#else
18a20338
CL
28584 if (arm_fdpic)
28585 {
28586 if (target_big_endian)
28587 return "elf32-bigarm-fdpic";
28588 else
28589 return "elf32-littlearm-fdpic";
28590 }
c19d1205 28591 else
18a20338
CL
28592 {
28593 if (target_big_endian)
28594 return "elf32-bigarm";
28595 else
28596 return "elf32-littlearm";
28597 }
c19d1205 28598#endif
404ff6b5
AH
28599}
28600
c19d1205
ZW
28601void
28602armelf_frob_symbol (symbolS * symp,
28603 int * puntp)
404ff6b5 28604{
c19d1205
ZW
28605 elf_frob_symbol (symp, puntp);
28606}
28607#endif
404ff6b5 28608
c19d1205 28609/* MD interface: Finalization. */
a737bd4d 28610
c19d1205
ZW
28611void
28612arm_cleanup (void)
28613{
28614 literal_pool * pool;
a737bd4d 28615
5ee91343
AV
28616 /* Ensure that all the predication blocks are properly closed. */
28617 check_pred_blocks_finished ();
e07e6e58 28618
c19d1205
ZW
28619 for (pool = list_of_pools; pool; pool = pool->next)
28620 {
5f4273c7 28621 /* Put it at the end of the relevant section. */
c19d1205
ZW
28622 subseg_set (pool->section, pool->sub_section);
28623#ifdef OBJ_ELF
28624 arm_elf_change_section ();
28625#endif
28626 s_ltorg (0);
28627 }
404ff6b5
AH
28628}
28629
cd000bff
DJ
28630#ifdef OBJ_ELF
28631/* Remove any excess mapping symbols generated for alignment frags in
28632 SEC. We may have created a mapping symbol before a zero byte
28633 alignment; remove it if there's a mapping symbol after the
28634 alignment. */
28635static void
28636check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
28637 void *dummy ATTRIBUTE_UNUSED)
28638{
28639 segment_info_type *seginfo = seg_info (sec);
28640 fragS *fragp;
28641
28642 if (seginfo == NULL || seginfo->frchainP == NULL)
28643 return;
28644
28645 for (fragp = seginfo->frchainP->frch_root;
28646 fragp != NULL;
28647 fragp = fragp->fr_next)
28648 {
28649 symbolS *sym = fragp->tc_frag_data.last_map;
28650 fragS *next = fragp->fr_next;
28651
28652 /* Variable-sized frags have been converted to fixed size by
28653 this point. But if this was variable-sized to start with,
28654 there will be a fixed-size frag after it. So don't handle
28655 next == NULL. */
28656 if (sym == NULL || next == NULL)
28657 continue;
28658
28659 if (S_GET_VALUE (sym) < next->fr_address)
28660 /* Not at the end of this frag. */
28661 continue;
28662 know (S_GET_VALUE (sym) == next->fr_address);
28663
28664 do
28665 {
28666 if (next->tc_frag_data.first_map != NULL)
28667 {
28668 /* Next frag starts with a mapping symbol. Discard this
28669 one. */
28670 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28671 break;
28672 }
28673
28674 if (next->fr_next == NULL)
28675 {
28676 /* This mapping symbol is at the end of the section. Discard
28677 it. */
28678 know (next->fr_fix == 0 && next->fr_var == 0);
28679 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28680 break;
28681 }
28682
28683 /* As long as we have empty frags without any mapping symbols,
28684 keep looking. */
28685 /* If the next frag is non-empty and does not start with a
28686 mapping symbol, then this mapping symbol is required. */
28687 if (next->fr_address != next->fr_next->fr_address)
28688 break;
28689
28690 next = next->fr_next;
28691 }
28692 while (next != NULL);
28693 }
28694}
28695#endif
28696
c19d1205
ZW
28697/* Adjust the symbol table. This marks Thumb symbols as distinct from
28698 ARM ones. */
404ff6b5 28699
c19d1205
ZW
28700void
28701arm_adjust_symtab (void)
404ff6b5 28702{
c19d1205
ZW
28703#ifdef OBJ_COFF
28704 symbolS * sym;
404ff6b5 28705
c19d1205
ZW
28706 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28707 {
28708 if (ARM_IS_THUMB (sym))
28709 {
28710 if (THUMB_IS_FUNC (sym))
28711 {
28712 /* Mark the symbol as a Thumb function. */
28713 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
28714 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
28715 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 28716
c19d1205
ZW
28717 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
28718 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
28719 else
28720 as_bad (_("%s: unexpected function type: %d"),
28721 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
28722 }
28723 else switch (S_GET_STORAGE_CLASS (sym))
28724 {
28725 case C_EXT:
28726 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
28727 break;
28728 case C_STAT:
28729 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
28730 break;
28731 case C_LABEL:
28732 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
28733 break;
28734 default:
28735 /* Do nothing. */
28736 break;
28737 }
28738 }
a737bd4d 28739
c19d1205
ZW
28740 if (ARM_IS_INTERWORK (sym))
28741 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 28742 }
c19d1205
ZW
28743#endif
28744#ifdef OBJ_ELF
28745 symbolS * sym;
28746 char bind;
404ff6b5 28747
c19d1205 28748 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 28749 {
c19d1205
ZW
28750 if (ARM_IS_THUMB (sym))
28751 {
28752 elf_symbol_type * elf_sym;
404ff6b5 28753
c19d1205
ZW
28754 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
28755 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 28756
b0796911
PB
28757 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
28758 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
28759 {
28760 /* If it's a .thumb_func, declare it as so,
28761 otherwise tag label as .code 16. */
28762 if (THUMB_IS_FUNC (sym))
39d911fc
TP
28763 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
28764 ST_BRANCH_TO_THUMB);
3ba67470 28765 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
28766 elf_sym->internal_elf_sym.st_info =
28767 ELF_ST_INFO (bind, STT_ARM_16BIT);
28768 }
28769 }
28770 }
cd000bff
DJ
28771
28772 /* Remove any overlapping mapping symbols generated by alignment frags. */
28773 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
28774 /* Now do generic ELF adjustments. */
28775 elf_adjust_symtab ();
c19d1205 28776#endif
404ff6b5
AH
28777}
28778
c19d1205 28779/* MD interface: Initialization. */
404ff6b5 28780
a737bd4d 28781static void
c19d1205 28782set_constant_flonums (void)
a737bd4d 28783{
c19d1205 28784 int i;
404ff6b5 28785
c19d1205
ZW
28786 for (i = 0; i < NUM_FLOAT_VALS; i++)
28787 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
28788 abort ();
a737bd4d 28789}
404ff6b5 28790
3e9e4fcf
JB
28791/* Auto-select Thumb mode if it's the only available instruction set for the
28792 given architecture. */
28793
28794static void
28795autoselect_thumb_from_cpu_variant (void)
28796{
28797 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
28798 opcode_select (16);
28799}
28800
c19d1205
ZW
28801void
28802md_begin (void)
a737bd4d 28803{
c19d1205
ZW
28804 unsigned mach;
28805 unsigned int i;
404ff6b5 28806
c19d1205
ZW
28807 if ( (arm_ops_hsh = hash_new ()) == NULL
28808 || (arm_cond_hsh = hash_new ()) == NULL
5ee91343 28809 || (arm_vcond_hsh = hash_new ()) == NULL
c19d1205
ZW
28810 || (arm_shift_hsh = hash_new ()) == NULL
28811 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 28812 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 28813 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
28814 || (arm_reloc_hsh = hash_new ()) == NULL
28815 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
28816 as_fatal (_("virtual memory exhausted"));
28817
28818 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 28819 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 28820 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 28821 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
5ee91343
AV
28822 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
28823 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
c19d1205 28824 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 28825 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 28826 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 28827 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 28828 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 28829 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
477330fc 28830 (void *) (v7m_psrs + i));
c19d1205 28831 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 28832 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
28833 for (i = 0;
28834 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
28835 i++)
d3ce72d0 28836 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 28837 (void *) (barrier_opt_names + i));
c19d1205 28838#ifdef OBJ_ELF
3da1d841
NC
28839 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
28840 {
28841 struct reloc_entry * entry = reloc_names + i;
28842
28843 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
28844 /* This makes encode_branch() use the EABI versions of this relocation. */
28845 entry->reloc = BFD_RELOC_UNUSED;
28846
28847 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
28848 }
c19d1205
ZW
28849#endif
28850
28851 set_constant_flonums ();
404ff6b5 28852
c19d1205
ZW
28853 /* Set the cpu variant based on the command-line options. We prefer
28854 -mcpu= over -march= if both are set (as for GCC); and we prefer
28855 -mfpu= over any other way of setting the floating point unit.
28856 Use of legacy options with new options are faulted. */
e74cfd16 28857 if (legacy_cpu)
404ff6b5 28858 {
e74cfd16 28859 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
28860 as_bad (_("use of old and new-style options to set CPU type"));
28861
4d354d8b 28862 selected_arch = *legacy_cpu;
404ff6b5 28863 }
4d354d8b
TP
28864 else if (mcpu_cpu_opt)
28865 {
28866 selected_arch = *mcpu_cpu_opt;
28867 selected_ext = *mcpu_ext_opt;
28868 }
28869 else if (march_cpu_opt)
c168ce07 28870 {
4d354d8b
TP
28871 selected_arch = *march_cpu_opt;
28872 selected_ext = *march_ext_opt;
c168ce07 28873 }
4d354d8b 28874 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
404ff6b5 28875
e74cfd16 28876 if (legacy_fpu)
c19d1205 28877 {
e74cfd16 28878 if (mfpu_opt)
c19d1205 28879 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f 28880
4d354d8b 28881 selected_fpu = *legacy_fpu;
03b1477f 28882 }
4d354d8b
TP
28883 else if (mfpu_opt)
28884 selected_fpu = *mfpu_opt;
28885 else
03b1477f 28886 {
45eb4c1b
NS
28887#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
28888 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
28889 /* Some environments specify a default FPU. If they don't, infer it
28890 from the processor. */
e74cfd16 28891 if (mcpu_fpu_opt)
4d354d8b 28892 selected_fpu = *mcpu_fpu_opt;
e7da50fa 28893 else if (march_fpu_opt)
4d354d8b 28894 selected_fpu = *march_fpu_opt;
39c2da32 28895#else
4d354d8b 28896 selected_fpu = fpu_default;
39c2da32 28897#endif
03b1477f
RE
28898 }
28899
4d354d8b 28900 if (ARM_FEATURE_ZERO (selected_fpu))
03b1477f 28901 {
4d354d8b
TP
28902 if (!no_cpu_selected ())
28903 selected_fpu = fpu_default;
03b1477f 28904 else
4d354d8b 28905 selected_fpu = fpu_arch_fpa;
03b1477f
RE
28906 }
28907
ee065d83 28908#ifdef CPU_DEFAULT
4d354d8b 28909 if (ARM_FEATURE_ZERO (selected_arch))
ee065d83 28910 {
4d354d8b
TP
28911 selected_arch = cpu_default;
28912 selected_cpu = selected_arch;
ee065d83 28913 }
4d354d8b 28914 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
e74cfd16 28915#else
4d354d8b
TP
28916 /* Autodection of feature mode: allow all features in cpu_variant but leave
28917 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
28918 after all instruction have been processed and we can decide what CPU
28919 should be selected. */
28920 if (ARM_FEATURE_ZERO (selected_arch))
28921 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
ee065d83 28922 else
4d354d8b 28923 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83 28924#endif
03b1477f 28925
3e9e4fcf
JB
28926 autoselect_thumb_from_cpu_variant ();
28927
e74cfd16 28928 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 28929
f17c130b 28930#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 28931 {
7cc69913
NC
28932 unsigned int flags = 0;
28933
28934#if defined OBJ_ELF
28935 flags = meabi_flags;
d507cf36
PB
28936
28937 switch (meabi_flags)
33a392fb 28938 {
d507cf36 28939 case EF_ARM_EABI_UNKNOWN:
7cc69913 28940#endif
d507cf36
PB
28941 /* Set the flags in the private structure. */
28942 if (uses_apcs_26) flags |= F_APCS26;
28943 if (support_interwork) flags |= F_INTERWORK;
28944 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 28945 if (pic_code) flags |= F_PIC;
e74cfd16 28946 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
28947 flags |= F_SOFT_FLOAT;
28948
d507cf36
PB
28949 switch (mfloat_abi_opt)
28950 {
28951 case ARM_FLOAT_ABI_SOFT:
28952 case ARM_FLOAT_ABI_SOFTFP:
28953 flags |= F_SOFT_FLOAT;
28954 break;
33a392fb 28955
d507cf36
PB
28956 case ARM_FLOAT_ABI_HARD:
28957 if (flags & F_SOFT_FLOAT)
28958 as_bad (_("hard-float conflicts with specified fpu"));
28959 break;
28960 }
03b1477f 28961
e74cfd16
PB
28962 /* Using pure-endian doubles (even if soft-float). */
28963 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 28964 flags |= F_VFP_FLOAT;
f17c130b 28965
fde78edd 28966#if defined OBJ_ELF
e74cfd16 28967 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 28968 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
28969 break;
28970
8cb51566 28971 case EF_ARM_EABI_VER4:
3a4a14e9 28972 case EF_ARM_EABI_VER5:
c19d1205 28973 /* No additional flags to set. */
d507cf36
PB
28974 break;
28975
28976 default:
28977 abort ();
28978 }
7cc69913 28979#endif
b99bd4ef
NC
28980 bfd_set_private_flags (stdoutput, flags);
28981
28982 /* We have run out flags in the COFF header to encode the
28983 status of ATPCS support, so instead we create a dummy,
c19d1205 28984 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
28985 if (atpcs)
28986 {
28987 asection * sec;
28988
28989 sec = bfd_make_section (stdoutput, ".arm.atpcs");
28990
28991 if (sec != NULL)
28992 {
28993 bfd_set_section_flags
28994 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
28995 bfd_set_section_size (stdoutput, sec, 0);
28996 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
28997 }
28998 }
7cc69913 28999 }
f17c130b 29000#endif
b99bd4ef
NC
29001
29002 /* Record the CPU type as well. */
2d447fca
JM
29003 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
29004 mach = bfd_mach_arm_iWMMXt2;
29005 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 29006 mach = bfd_mach_arm_iWMMXt;
e74cfd16 29007 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 29008 mach = bfd_mach_arm_XScale;
e74cfd16 29009 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 29010 mach = bfd_mach_arm_ep9312;
e74cfd16 29011 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 29012 mach = bfd_mach_arm_5TE;
e74cfd16 29013 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 29014 {
e74cfd16 29015 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
29016 mach = bfd_mach_arm_5T;
29017 else
29018 mach = bfd_mach_arm_5;
29019 }
e74cfd16 29020 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 29021 {
e74cfd16 29022 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
29023 mach = bfd_mach_arm_4T;
29024 else
29025 mach = bfd_mach_arm_4;
29026 }
e74cfd16 29027 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 29028 mach = bfd_mach_arm_3M;
e74cfd16
PB
29029 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
29030 mach = bfd_mach_arm_3;
29031 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
29032 mach = bfd_mach_arm_2a;
29033 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
29034 mach = bfd_mach_arm_2;
29035 else
29036 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
29037
29038 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
29039}
29040
c19d1205 29041/* Command line processing. */
b99bd4ef 29042
c19d1205
ZW
29043/* md_parse_option
29044 Invocation line includes a switch not recognized by the base assembler.
29045 See if it's a processor-specific option.
b99bd4ef 29046
c19d1205
ZW
29047 This routine is somewhat complicated by the need for backwards
29048 compatibility (since older releases of gcc can't be changed).
29049 The new options try to make the interface as compatible as
29050 possible with GCC.
b99bd4ef 29051
c19d1205 29052 New options (supported) are:
b99bd4ef 29053
c19d1205
ZW
29054 -mcpu=<cpu name> Assemble for selected processor
29055 -march=<architecture name> Assemble for selected architecture
29056 -mfpu=<fpu architecture> Assemble for selected FPU.
29057 -EB/-mbig-endian Big-endian
29058 -EL/-mlittle-endian Little-endian
29059 -k Generate PIC code
29060 -mthumb Start in Thumb mode
29061 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 29062
278df34e 29063 -m[no-]warn-deprecated Warn about deprecated features
8b2d793c 29064 -m[no-]warn-syms Warn when symbols match instructions
267bf995 29065
c19d1205 29066 For now we will also provide support for:
b99bd4ef 29067
c19d1205
ZW
29068 -mapcs-32 32-bit Program counter
29069 -mapcs-26 26-bit Program counter
29070 -macps-float Floats passed in FP registers
29071 -mapcs-reentrant Reentrant code
29072 -matpcs
29073 (sometime these will probably be replaced with -mapcs=<list of options>
29074 and -matpcs=<list of options>)
b99bd4ef 29075
c19d1205
ZW
29076 The remaining options are only supported for back-wards compatibility.
29077 Cpu variants, the arm part is optional:
29078 -m[arm]1 Currently not supported.
29079 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
29080 -m[arm]3 Arm 3 processor
29081 -m[arm]6[xx], Arm 6 processors
29082 -m[arm]7[xx][t][[d]m] Arm 7 processors
29083 -m[arm]8[10] Arm 8 processors
29084 -m[arm]9[20][tdmi] Arm 9 processors
29085 -mstrongarm[110[0]] StrongARM processors
29086 -mxscale XScale processors
29087 -m[arm]v[2345[t[e]]] Arm architectures
29088 -mall All (except the ARM1)
29089 FP variants:
29090 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
29091 -mfpe-old (No float load/store multiples)
29092 -mvfpxd VFP Single precision
29093 -mvfp All VFP
29094 -mno-fpu Disable all floating point instructions
b99bd4ef 29095
c19d1205
ZW
29096 The following CPU names are recognized:
29097 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
29098 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
29099 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
29100 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
29101 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
29102 arm10t arm10e, arm1020t, arm1020e, arm10200e,
29103 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 29104
c19d1205 29105 */
b99bd4ef 29106
c19d1205 29107const char * md_shortopts = "m:k";
b99bd4ef 29108
c19d1205
ZW
29109#ifdef ARM_BI_ENDIAN
29110#define OPTION_EB (OPTION_MD_BASE + 0)
29111#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 29112#else
c19d1205
ZW
29113#if TARGET_BYTES_BIG_ENDIAN
29114#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 29115#else
c19d1205
ZW
29116#define OPTION_EL (OPTION_MD_BASE + 1)
29117#endif
b99bd4ef 29118#endif
845b51d6 29119#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
18a20338 29120#define OPTION_FDPIC (OPTION_MD_BASE + 3)
b99bd4ef 29121
c19d1205 29122struct option md_longopts[] =
b99bd4ef 29123{
c19d1205
ZW
29124#ifdef OPTION_EB
29125 {"EB", no_argument, NULL, OPTION_EB},
29126#endif
29127#ifdef OPTION_EL
29128 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 29129#endif
845b51d6 29130 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
18a20338
CL
29131#ifdef OBJ_ELF
29132 {"fdpic", no_argument, NULL, OPTION_FDPIC},
29133#endif
c19d1205
ZW
29134 {NULL, no_argument, NULL, 0}
29135};
b99bd4ef 29136
c19d1205 29137size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 29138
c19d1205 29139struct arm_option_table
b99bd4ef 29140{
0198d5e6
TC
29141 const char * option; /* Option name to match. */
29142 const char * help; /* Help information. */
29143 int * var; /* Variable to change. */
29144 int value; /* What to change it to. */
29145 const char * deprecated; /* If non-null, print this message. */
c19d1205 29146};
b99bd4ef 29147
c19d1205
ZW
29148struct arm_option_table arm_opts[] =
29149{
29150 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
29151 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
29152 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
29153 &support_interwork, 1, NULL},
29154 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
29155 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
29156 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
29157 1, NULL},
29158 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
29159 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
29160 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
29161 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
29162 NULL},
b99bd4ef 29163
c19d1205
ZW
29164 /* These are recognized by the assembler, but have no affect on code. */
29165 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
29166 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
29167
29168 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
29169 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
29170 &warn_on_deprecated, 0, NULL},
8b2d793c
NC
29171 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
29172 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
e74cfd16
PB
29173 {NULL, NULL, NULL, 0, NULL}
29174};
29175
29176struct arm_legacy_option_table
29177{
0198d5e6
TC
29178 const char * option; /* Option name to match. */
29179 const arm_feature_set ** var; /* Variable to change. */
29180 const arm_feature_set value; /* What to change it to. */
29181 const char * deprecated; /* If non-null, print this message. */
e74cfd16 29182};
b99bd4ef 29183
e74cfd16
PB
29184const struct arm_legacy_option_table arm_legacy_opts[] =
29185{
c19d1205
ZW
29186 /* DON'T add any new processors to this list -- we want the whole list
29187 to go away... Add them to the processors table instead. */
e74cfd16
PB
29188 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29189 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29190 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29191 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29192 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29193 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29194 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29195 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29196 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29197 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29198 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29199 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29200 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29201 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29202 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29203 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29204 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29205 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29206 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29207 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29208 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29209 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29210 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29211 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29212 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29213 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29214 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29215 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29216 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29217 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29218 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29219 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29220 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29221 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29222 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29223 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29224 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29225 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29226 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29227 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29228 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29229 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29230 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29231 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29232 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29233 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29234 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29235 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29236 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29237 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29238 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29239 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29240 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29241 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29242 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29243 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29244 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29245 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29246 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29247 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29248 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29249 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29250 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29251 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29252 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29253 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29254 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29255 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29256 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
29257 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29258 N_("use -mcpu=strongarm110")},
e74cfd16 29259 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29260 N_("use -mcpu=strongarm1100")},
e74cfd16 29261 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29262 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
29263 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
29264 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
29265 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 29266
c19d1205 29267 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
29268 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29269 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29270 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29271 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29272 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29273 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29274 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29275 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29276 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29277 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29278 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29279 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29280 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29281 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29282 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29283 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29284 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29285 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 29286
c19d1205 29287 /* Floating point variants -- don't add any more to this list either. */
0198d5e6
TC
29288 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
29289 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
29290 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
29291 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 29292 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 29293
e74cfd16 29294 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 29295};
7ed4c4c5 29296
c19d1205 29297struct arm_cpu_option_table
7ed4c4c5 29298{
0198d5e6
TC
29299 const char * name;
29300 size_t name_len;
29301 const arm_feature_set value;
29302 const arm_feature_set ext;
c19d1205
ZW
29303 /* For some CPUs we assume an FPU unless the user explicitly sets
29304 -mfpu=... */
0198d5e6 29305 const arm_feature_set default_fpu;
ee065d83
PB
29306 /* The canonical name of the CPU, or NULL to use NAME converted to upper
29307 case. */
0198d5e6 29308 const char * canonical_name;
c19d1205 29309};
7ed4c4c5 29310
c19d1205
ZW
29311/* This list should, at a minimum, contain all the cpu names
29312 recognized by GCC. */
996b5569 29313#define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
0198d5e6 29314
e74cfd16 29315static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 29316{
996b5569
TP
29317 ARM_CPU_OPT ("all", NULL, ARM_ANY,
29318 ARM_ARCH_NONE,
29319 FPU_ARCH_FPA),
29320 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
29321 ARM_ARCH_NONE,
29322 FPU_ARCH_FPA),
29323 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
29324 ARM_ARCH_NONE,
29325 FPU_ARCH_FPA),
29326 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
29327 ARM_ARCH_NONE,
29328 FPU_ARCH_FPA),
29329 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
29330 ARM_ARCH_NONE,
29331 FPU_ARCH_FPA),
29332 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
29333 ARM_ARCH_NONE,
29334 FPU_ARCH_FPA),
29335 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
29336 ARM_ARCH_NONE,
29337 FPU_ARCH_FPA),
29338 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
29339 ARM_ARCH_NONE,
29340 FPU_ARCH_FPA),
29341 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
29342 ARM_ARCH_NONE,
29343 FPU_ARCH_FPA),
29344 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
29345 ARM_ARCH_NONE,
29346 FPU_ARCH_FPA),
29347 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
29348 ARM_ARCH_NONE,
29349 FPU_ARCH_FPA),
29350 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
29351 ARM_ARCH_NONE,
29352 FPU_ARCH_FPA),
29353 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
29354 ARM_ARCH_NONE,
29355 FPU_ARCH_FPA),
29356 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
29357 ARM_ARCH_NONE,
29358 FPU_ARCH_FPA),
29359 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
29360 ARM_ARCH_NONE,
29361 FPU_ARCH_FPA),
29362 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
29363 ARM_ARCH_NONE,
29364 FPU_ARCH_FPA),
29365 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
29366 ARM_ARCH_NONE,
29367 FPU_ARCH_FPA),
29368 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
29369 ARM_ARCH_NONE,
29370 FPU_ARCH_FPA),
29371 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
29372 ARM_ARCH_NONE,
29373 FPU_ARCH_FPA),
29374 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
29375 ARM_ARCH_NONE,
29376 FPU_ARCH_FPA),
29377 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
29378 ARM_ARCH_NONE,
29379 FPU_ARCH_FPA),
29380 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
29381 ARM_ARCH_NONE,
29382 FPU_ARCH_FPA),
29383 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
29384 ARM_ARCH_NONE,
29385 FPU_ARCH_FPA),
29386 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
29387 ARM_ARCH_NONE,
29388 FPU_ARCH_FPA),
29389 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
29390 ARM_ARCH_NONE,
29391 FPU_ARCH_FPA),
29392 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
29393 ARM_ARCH_NONE,
29394 FPU_ARCH_FPA),
29395 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
29396 ARM_ARCH_NONE,
29397 FPU_ARCH_FPA),
29398 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
29399 ARM_ARCH_NONE,
29400 FPU_ARCH_FPA),
29401 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
29402 ARM_ARCH_NONE,
29403 FPU_ARCH_FPA),
29404 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
29405 ARM_ARCH_NONE,
29406 FPU_ARCH_FPA),
29407 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
29408 ARM_ARCH_NONE,
29409 FPU_ARCH_FPA),
29410 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
29411 ARM_ARCH_NONE,
29412 FPU_ARCH_FPA),
29413 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
29414 ARM_ARCH_NONE,
29415 FPU_ARCH_FPA),
29416 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
29417 ARM_ARCH_NONE,
29418 FPU_ARCH_FPA),
29419 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
29420 ARM_ARCH_NONE,
29421 FPU_ARCH_FPA),
29422 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
29423 ARM_ARCH_NONE,
29424 FPU_ARCH_FPA),
29425 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
29426 ARM_ARCH_NONE,
29427 FPU_ARCH_FPA),
29428 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
29429 ARM_ARCH_NONE,
29430 FPU_ARCH_FPA),
29431 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
29432 ARM_ARCH_NONE,
29433 FPU_ARCH_FPA),
29434 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
29435 ARM_ARCH_NONE,
29436 FPU_ARCH_FPA),
29437 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
29438 ARM_ARCH_NONE,
29439 FPU_ARCH_FPA),
29440 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
29441 ARM_ARCH_NONE,
29442 FPU_ARCH_FPA),
29443 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
29444 ARM_ARCH_NONE,
29445 FPU_ARCH_FPA),
29446 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
29447 ARM_ARCH_NONE,
29448 FPU_ARCH_FPA),
29449 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
29450 ARM_ARCH_NONE,
29451 FPU_ARCH_FPA),
29452 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
29453 ARM_ARCH_NONE,
29454 FPU_ARCH_FPA),
29455
c19d1205
ZW
29456 /* For V5 or later processors we default to using VFP; but the user
29457 should really set the FPU type explicitly. */
996b5569
TP
29458 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
29459 ARM_ARCH_NONE,
29460 FPU_ARCH_VFP_V2),
29461 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
29462 ARM_ARCH_NONE,
29463 FPU_ARCH_VFP_V2),
29464 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29465 ARM_ARCH_NONE,
29466 FPU_ARCH_VFP_V2),
29467 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29468 ARM_ARCH_NONE,
29469 FPU_ARCH_VFP_V2),
29470 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
29471 ARM_ARCH_NONE,
29472 FPU_ARCH_VFP_V2),
29473 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
29474 ARM_ARCH_NONE,
29475 FPU_ARCH_VFP_V2),
29476 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
29477 ARM_ARCH_NONE,
29478 FPU_ARCH_VFP_V2),
29479 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
29480 ARM_ARCH_NONE,
29481 FPU_ARCH_VFP_V2),
29482 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
29483 ARM_ARCH_NONE,
29484 FPU_ARCH_VFP_V2),
29485 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
29486 ARM_ARCH_NONE,
29487 FPU_ARCH_VFP_V2),
29488 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
29489 ARM_ARCH_NONE,
29490 FPU_ARCH_VFP_V2),
29491 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
29492 ARM_ARCH_NONE,
29493 FPU_ARCH_VFP_V2),
29494 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
29495 ARM_ARCH_NONE,
29496 FPU_ARCH_VFP_V1),
29497 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
29498 ARM_ARCH_NONE,
29499 FPU_ARCH_VFP_V1),
29500 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
29501 ARM_ARCH_NONE,
29502 FPU_ARCH_VFP_V2),
29503 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
29504 ARM_ARCH_NONE,
29505 FPU_ARCH_VFP_V2),
29506 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
29507 ARM_ARCH_NONE,
29508 FPU_ARCH_VFP_V1),
29509 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
29510 ARM_ARCH_NONE,
29511 FPU_ARCH_VFP_V2),
29512 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
29513 ARM_ARCH_NONE,
29514 FPU_ARCH_VFP_V2),
29515 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
29516 ARM_ARCH_NONE,
29517 FPU_ARCH_VFP_V2),
29518 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
29519 ARM_ARCH_NONE,
29520 FPU_ARCH_VFP_V2),
29521 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
29522 ARM_ARCH_NONE,
29523 FPU_ARCH_VFP_V2),
29524 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
29525 ARM_ARCH_NONE,
29526 FPU_ARCH_VFP_V2),
29527 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
29528 ARM_ARCH_NONE,
29529 FPU_ARCH_VFP_V2),
29530 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
29531 ARM_ARCH_NONE,
29532 FPU_ARCH_VFP_V2),
29533 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
29534 ARM_ARCH_NONE,
29535 FPU_ARCH_VFP_V2),
29536 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
29537 ARM_ARCH_NONE,
29538 FPU_NONE),
29539 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
29540 ARM_ARCH_NONE,
29541 FPU_NONE),
29542 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
29543 ARM_ARCH_NONE,
29544 FPU_ARCH_VFP_V2),
29545 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
29546 ARM_ARCH_NONE,
29547 FPU_ARCH_VFP_V2),
29548 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
29549 ARM_ARCH_NONE,
29550 FPU_ARCH_VFP_V2),
29551 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
29552 ARM_ARCH_NONE,
29553 FPU_NONE),
29554 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
29555 ARM_ARCH_NONE,
29556 FPU_NONE),
29557 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
29558 ARM_ARCH_NONE,
29559 FPU_ARCH_VFP_V2),
29560 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
29561 ARM_ARCH_NONE,
29562 FPU_NONE),
29563 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
29564 ARM_ARCH_NONE,
29565 FPU_ARCH_VFP_V2),
29566 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
29567 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29568 FPU_NONE),
29569 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
29570 ARM_ARCH_NONE,
29571 FPU_ARCH_NEON_VFP_V4),
29572 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
29573 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29574 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29575 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
29576 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29577 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29578 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
29579 ARM_ARCH_NONE,
29580 FPU_ARCH_NEON_VFP_V4),
29581 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
29582 ARM_ARCH_NONE,
29583 FPU_ARCH_NEON_VFP_V4),
29584 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
29585 ARM_ARCH_NONE,
29586 FPU_ARCH_NEON_VFP_V4),
29587 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
29588 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29589 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29590 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
29591 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29592 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29593 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
29594 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29595 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
29596 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
29597 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 29598 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
29599 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
29600 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29601 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29602 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
29603 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29604 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29605 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
29606 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29607 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
29608 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
29609 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 29610 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
7ebd1359 29611 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
29612 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29613 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
ef8df4ca
KT
29614 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
29615 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29616 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
29617 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
29618 ARM_ARCH_NONE,
29619 FPU_NONE),
29620 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
29621 ARM_ARCH_NONE,
29622 FPU_ARCH_VFP_V3D16),
29623 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
29624 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29625 FPU_NONE),
29626 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
29627 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29628 FPU_ARCH_VFP_V3D16),
29629 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
29630 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29631 FPU_ARCH_VFP_V3D16),
0cda1e19
TP
29632 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
29633 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29634 FPU_ARCH_NEON_VFP_ARMV8),
996b5569
TP
29635 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
29636 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29637 FPU_NONE),
29638 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
29639 ARM_ARCH_NONE,
29640 FPU_NONE),
29641 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
29642 ARM_ARCH_NONE,
29643 FPU_NONE),
29644 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
29645 ARM_ARCH_NONE,
29646 FPU_NONE),
29647 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
29648 ARM_ARCH_NONE,
29649 FPU_NONE),
29650 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
29651 ARM_ARCH_NONE,
29652 FPU_NONE),
29653 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
29654 ARM_ARCH_NONE,
29655 FPU_NONE),
29656 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
29657 ARM_ARCH_NONE,
29658 FPU_NONE),
29659 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
29660 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29661 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
83f43c83
KT
29662 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
29663 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29664 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
c19d1205 29665 /* ??? XSCALE is really an architecture. */
996b5569
TP
29666 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
29667 ARM_ARCH_NONE,
29668 FPU_ARCH_VFP_V2),
29669
c19d1205 29670 /* ??? iwmmxt is not a processor. */
996b5569
TP
29671 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
29672 ARM_ARCH_NONE,
29673 FPU_ARCH_VFP_V2),
29674 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
29675 ARM_ARCH_NONE,
29676 FPU_ARCH_VFP_V2),
29677 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
29678 ARM_ARCH_NONE,
29679 FPU_ARCH_VFP_V2),
29680
0198d5e6 29681 /* Maverick. */
996b5569
TP
29682 ARM_CPU_OPT ("ep9312", "ARM920T",
29683 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
29684 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
29685
da4339ed 29686 /* Marvell processors. */
996b5569
TP
29687 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
29688 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29689 FPU_ARCH_VFP_V3D16),
29690 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
29691 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29692 FPU_ARCH_NEON_VFP_V4),
da4339ed 29693
996b5569
TP
29694 /* APM X-Gene family. */
29695 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
29696 ARM_ARCH_NONE,
29697 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29698 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
29699 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29700 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29701
29702 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 29703};
f3bad469 29704#undef ARM_CPU_OPT
7ed4c4c5 29705
34ef62f4
AV
29706struct arm_ext_table
29707{
29708 const char * name;
29709 size_t name_len;
29710 const arm_feature_set merge;
29711 const arm_feature_set clear;
29712};
29713
c19d1205 29714struct arm_arch_option_table
7ed4c4c5 29715{
34ef62f4
AV
29716 const char * name;
29717 size_t name_len;
29718 const arm_feature_set value;
29719 const arm_feature_set default_fpu;
29720 const struct arm_ext_table * ext_table;
29721};
29722
29723/* Used to add support for +E and +noE extension. */
29724#define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
29725/* Used to add support for a +E extension. */
29726#define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
29727/* Used to add support for a +noE extension. */
29728#define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
29729
29730#define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
29731 ~0 & ~FPU_ENDIAN_PURE)
29732
29733static const struct arm_ext_table armv5te_ext_table[] =
29734{
29735 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
29736 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29737};
29738
29739static const struct arm_ext_table armv7_ext_table[] =
29740{
29741 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29742 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29743};
29744
29745static const struct arm_ext_table armv7ve_ext_table[] =
29746{
29747 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
29748 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
29749 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29750 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29751 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29752 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
29753 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29754
29755 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
29756 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29757
29758 /* Aliases for +simd. */
29759 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29760
29761 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29762 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29763 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29764
29765 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29766};
29767
29768static const struct arm_ext_table armv7a_ext_table[] =
29769{
29770 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29771 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29772 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29773 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29774 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29775 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
29776 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29777
29778 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
29779 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29780
29781 /* Aliases for +simd. */
29782 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29783 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29784
29785 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29786 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29787
29788 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
29789 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
29790 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29791};
29792
29793static const struct arm_ext_table armv7r_ext_table[] =
29794{
29795 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
29796 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
29797 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29798 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29799 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
29800 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29801 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29802 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
29803 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29804};
29805
29806static const struct arm_ext_table armv7em_ext_table[] =
29807{
29808 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
29809 /* Alias for +fp, used to be known as fpv4-sp-d16. */
29810 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
29811 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
29812 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29813 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
29814 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29815};
29816
29817static const struct arm_ext_table armv8a_ext_table[] =
29818{
29819 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29820 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29821 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29822 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29823
29824 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29825 should use the +simd option to turn on FP. */
29826 ARM_REMOVE ("fp", ALL_FP),
29827 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29828 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29829 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29830};
29831
29832
29833static const struct arm_ext_table armv81a_ext_table[] =
29834{
29835 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29836 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29837 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29838
29839 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29840 should use the +simd option to turn on FP. */
29841 ARM_REMOVE ("fp", ALL_FP),
29842 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29843 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29844 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29845};
29846
29847static const struct arm_ext_table armv82a_ext_table[] =
29848{
29849 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29850 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
29851 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
29852 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29853 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29854 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29855
29856 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29857 should use the +simd option to turn on FP. */
29858 ARM_REMOVE ("fp", ALL_FP),
29859 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29860 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29861 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29862};
29863
29864static const struct arm_ext_table armv84a_ext_table[] =
29865{
29866 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29867 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29868 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29869 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29870
29871 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29872 should use the +simd option to turn on FP. */
29873 ARM_REMOVE ("fp", ALL_FP),
29874 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29875 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29876 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29877};
29878
29879static const struct arm_ext_table armv85a_ext_table[] =
29880{
29881 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29882 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29883 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29884 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29885
29886 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29887 should use the +simd option to turn on FP. */
29888 ARM_REMOVE ("fp", ALL_FP),
29889 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29890};
29891
29892static const struct arm_ext_table armv8m_main_ext_table[] =
29893{
29894 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29895 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29896 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
29897 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29898 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29899};
29900
e0991585
AV
29901static const struct arm_ext_table armv8_1m_main_ext_table[] =
29902{
29903 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29904 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29905 ARM_EXT ("fp",
29906 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29907 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
29908 ALL_FP),
29909 ARM_ADD ("fp.dp",
29910 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29911 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
a7ad558c
AV
29912 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
29913 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
29914 ARM_ADD ("mve.fp",
29915 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29916 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
29917 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
e0991585
AV
29918 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29919};
29920
34ef62f4
AV
29921static const struct arm_ext_table armv8r_ext_table[] =
29922{
29923 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29924 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29925 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29926 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29927 ARM_REMOVE ("fp", ALL_FP),
29928 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
29929 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 29930};
7ed4c4c5 29931
c19d1205
ZW
29932/* This list should, at a minimum, contain all the architecture names
29933 recognized by GCC. */
34ef62f4
AV
29934#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
29935#define ARM_ARCH_OPT2(N, V, DF, ext) \
29936 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
0198d5e6 29937
e74cfd16 29938static const struct arm_arch_option_table arm_archs[] =
c19d1205 29939{
497d849d
TP
29940 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
29941 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
29942 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
29943 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
29944 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
29945 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
29946 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
29947 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
29948 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
29949 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
29950 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
29951 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
29952 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
29953 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
34ef62f4
AV
29954 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
29955 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
29956 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
29957 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29958 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29959 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
29960 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
f33026a9
MW
29961 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
29962 kept to preserve existing behaviour. */
34ef62f4
AV
29963 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29964 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29965 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
29966 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
29967 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
f33026a9
MW
29968 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
29969 kept to preserve existing behaviour. */
34ef62f4
AV
29970 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
29971 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
497d849d
TP
29972 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
29973 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
34ef62f4 29974 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
c450d570
PB
29975 /* The official spelling of the ARMv7 profile variants is the dashed form.
29976 Accept the non-dashed form for compatibility with old toolchains. */
34ef62f4
AV
29977 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29978 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
29979 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 29980 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4
AV
29981 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29982 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 29983 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4 29984 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
497d849d 29985 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
34ef62f4
AV
29986 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
29987 armv8m_main),
e0991585
AV
29988 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
29989 armv8_1m_main),
34ef62f4
AV
29990 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
29991 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
29992 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
29993 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
29994 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
29995 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
29996 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
497d849d
TP
29997 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
29998 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
29999 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
34ef62f4 30000 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 30001};
f3bad469 30002#undef ARM_ARCH_OPT
7ed4c4c5 30003
69133863 30004/* ISA extensions in the co-processor and main instruction set space. */
0198d5e6 30005
69133863 30006struct arm_option_extension_value_table
c19d1205 30007{
0198d5e6
TC
30008 const char * name;
30009 size_t name_len;
30010 const arm_feature_set merge_value;
30011 const arm_feature_set clear_value;
d942732e
TP
30012 /* List of architectures for which an extension is available. ARM_ARCH_NONE
30013 indicates that an extension is available for all architectures while
30014 ARM_ANY marks an empty entry. */
0198d5e6 30015 const arm_feature_set allowed_archs[2];
c19d1205 30016};
7ed4c4c5 30017
0198d5e6
TC
30018/* The following table must be in alphabetical order with a NULL last entry. */
30019
d942732e
TP
30020#define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
30021#define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
0198d5e6 30022
34ef62f4
AV
30023/* DEPRECATED: Refrain from using this table to add any new extensions, instead
30024 use the context sensitive approach using arm_ext_table's. */
69133863 30025static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 30026{
823d2571
TG
30027 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30028 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
bca38921 30029 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
823d2571
TG
30030 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
30031 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
c604a79a
JW
30032 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
30033 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
30034 ARM_ARCH_V8_2A),
15afaa63
TP
30035 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30036 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30037 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
823d2571
TG
30038 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
30039 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
b8ec4e87
JW
30040 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30041 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30042 ARM_ARCH_V8_2A),
01f48020
TC
30043 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30044 | ARM_EXT2_FP16_FML),
30045 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30046 | ARM_EXT2_FP16_FML),
30047 ARM_ARCH_V8_2A),
d942732e 30048 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
823d2571 30049 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
d942732e
TP
30050 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30051 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
3d030cdb
TP
30052 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
30053 Thumb divide instruction. Due to this having the same name as the
30054 previous entry, this will be ignored when doing command-line parsing and
30055 only considered by build attribute selection code. */
30056 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30057 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30058 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
823d2571 30059 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
d942732e 30060 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
823d2571 30061 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
d942732e 30062 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
823d2571 30063 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
d942732e
TP
30064 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
30065 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
823d2571 30066 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
d942732e
TP
30067 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30068 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
823d2571
TG
30069 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30070 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30071 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
ddfded2f
MW
30072 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
30073 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
ced40572 30074 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
dad0c3bf
SD
30075 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30076 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30077 ARM_ARCH_V8A),
4d1464f2
MW
30078 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
30079 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
ced40572 30080 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
643afb90
MW
30081 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
30082 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
ced40572 30083 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
7fadb25d
SD
30084 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30085 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30086 ARM_ARCH_V8A),
d942732e 30087 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
823d2571 30088 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
d942732e
TP
30089 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
30090 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
643afb90
MW
30091 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
30092 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
30093 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
823d2571
TG
30094 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
30095 | ARM_EXT_DIV),
30096 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
30097 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30098 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
d942732e
TP
30099 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
30100 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
69133863 30101};
f3bad469 30102#undef ARM_EXT_OPT
69133863
MGD
30103
30104/* ISA floating-point and Advanced SIMD extensions. */
30105struct arm_option_fpu_value_table
30106{
0198d5e6
TC
30107 const char * name;
30108 const arm_feature_set value;
c19d1205 30109};
7ed4c4c5 30110
c19d1205
ZW
30111/* This list should, at a minimum, contain all the fpu names
30112 recognized by GCC. */
69133863 30113static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
30114{
30115 {"softfpa", FPU_NONE},
30116 {"fpe", FPU_ARCH_FPE},
30117 {"fpe2", FPU_ARCH_FPE},
30118 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
30119 {"fpa", FPU_ARCH_FPA},
30120 {"fpa10", FPU_ARCH_FPA},
30121 {"fpa11", FPU_ARCH_FPA},
30122 {"arm7500fe", FPU_ARCH_FPA},
30123 {"softvfp", FPU_ARCH_VFP},
30124 {"softvfp+vfp", FPU_ARCH_VFP_V2},
30125 {"vfp", FPU_ARCH_VFP_V2},
30126 {"vfp9", FPU_ARCH_VFP_V2},
d5e0ba9c 30127 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
c19d1205
ZW
30128 {"vfp10", FPU_ARCH_VFP_V2},
30129 {"vfp10-r0", FPU_ARCH_VFP_V1},
30130 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
30131 {"vfpv2", FPU_ARCH_VFP_V2},
30132 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 30133 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 30134 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
30135 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
30136 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
30137 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
30138 {"arm1020t", FPU_ARCH_VFP_V1},
30139 {"arm1020e", FPU_ARCH_VFP_V2},
d5e0ba9c 30140 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
c19d1205
ZW
30141 {"arm1136jf-s", FPU_ARCH_VFP_V2},
30142 {"maverick", FPU_ARCH_MAVERICK},
d5e0ba9c 30143 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
d3375ddd 30144 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 30145 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
30146 {"vfpv4", FPU_ARCH_VFP_V4},
30147 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 30148 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
a715796b
TG
30149 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
30150 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
62f3b8c8 30151 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
30152 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
30153 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
30154 {"crypto-neon-fp-armv8",
30155 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
d6b4b13e 30156 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
081e4c7d
MW
30157 {"crypto-neon-fp-armv8.1",
30158 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
e74cfd16
PB
30159 {NULL, ARM_ARCH_NONE}
30160};
30161
30162struct arm_option_value_table
30163{
e0471c16 30164 const char *name;
e74cfd16 30165 long value;
c19d1205 30166};
7ed4c4c5 30167
e74cfd16 30168static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
30169{
30170 {"hard", ARM_FLOAT_ABI_HARD},
30171 {"softfp", ARM_FLOAT_ABI_SOFTFP},
30172 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 30173 {NULL, 0}
c19d1205 30174};
7ed4c4c5 30175
c19d1205 30176#ifdef OBJ_ELF
3a4a14e9 30177/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 30178static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
30179{
30180 {"gnu", EF_ARM_EABI_UNKNOWN},
30181 {"4", EF_ARM_EABI_VER4},
3a4a14e9 30182 {"5", EF_ARM_EABI_VER5},
e74cfd16 30183 {NULL, 0}
c19d1205
ZW
30184};
30185#endif
7ed4c4c5 30186
c19d1205
ZW
30187struct arm_long_option_table
30188{
0198d5e6 30189 const char * option; /* Substring to match. */
e0471c16 30190 const char * help; /* Help information. */
17b9d67d 30191 int (* func) (const char * subopt); /* Function to decode sub-option. */
e0471c16 30192 const char * deprecated; /* If non-null, print this message. */
c19d1205 30193};
7ed4c4c5 30194
c921be7d 30195static bfd_boolean
c168ce07 30196arm_parse_extension (const char *str, const arm_feature_set *opt_set,
34ef62f4
AV
30197 arm_feature_set *ext_set,
30198 const struct arm_ext_table *ext_table)
7ed4c4c5 30199{
69133863 30200 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
30201 extensions being added before being removed. We achieve this by having
30202 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 30203 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 30204 or removing it (0) and only allowing it to change in the order
69133863
MGD
30205 -1 -> 1 -> 0. */
30206 const struct arm_option_extension_value_table * opt = NULL;
d942732e 30207 const arm_feature_set arm_any = ARM_ANY;
69133863
MGD
30208 int adding_value = -1;
30209
c19d1205 30210 while (str != NULL && *str != 0)
7ed4c4c5 30211 {
82b8a785 30212 const char *ext;
f3bad469 30213 size_t len;
7ed4c4c5 30214
c19d1205
ZW
30215 if (*str != '+')
30216 {
30217 as_bad (_("invalid architectural extension"));
c921be7d 30218 return FALSE;
c19d1205 30219 }
7ed4c4c5 30220
c19d1205
ZW
30221 str++;
30222 ext = strchr (str, '+');
7ed4c4c5 30223
c19d1205 30224 if (ext != NULL)
f3bad469 30225 len = ext - str;
c19d1205 30226 else
f3bad469 30227 len = strlen (str);
7ed4c4c5 30228
f3bad469 30229 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
30230 {
30231 if (adding_value != 0)
30232 {
30233 adding_value = 0;
30234 opt = arm_extensions;
30235 }
30236
f3bad469 30237 len -= 2;
69133863
MGD
30238 str += 2;
30239 }
f3bad469 30240 else if (len > 0)
69133863
MGD
30241 {
30242 if (adding_value == -1)
30243 {
30244 adding_value = 1;
30245 opt = arm_extensions;
30246 }
30247 else if (adding_value != 1)
30248 {
30249 as_bad (_("must specify extensions to add before specifying "
30250 "those to remove"));
30251 return FALSE;
30252 }
30253 }
30254
f3bad469 30255 if (len == 0)
c19d1205
ZW
30256 {
30257 as_bad (_("missing architectural extension"));
c921be7d 30258 return FALSE;
c19d1205 30259 }
7ed4c4c5 30260
69133863
MGD
30261 gas_assert (adding_value != -1);
30262 gas_assert (opt != NULL);
30263
34ef62f4
AV
30264 if (ext_table != NULL)
30265 {
30266 const struct arm_ext_table * ext_opt = ext_table;
30267 bfd_boolean found = FALSE;
30268 for (; ext_opt->name != NULL; ext_opt++)
30269 if (ext_opt->name_len == len
30270 && strncmp (ext_opt->name, str, len) == 0)
30271 {
30272 if (adding_value)
30273 {
30274 if (ARM_FEATURE_ZERO (ext_opt->merge))
30275 /* TODO: Option not supported. When we remove the
30276 legacy table this case should error out. */
30277 continue;
30278
30279 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
30280 }
30281 else
30282 {
30283 if (ARM_FEATURE_ZERO (ext_opt->clear))
30284 /* TODO: Option not supported. When we remove the
30285 legacy table this case should error out. */
30286 continue;
30287 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
30288 }
30289 found = TRUE;
30290 break;
30291 }
30292 if (found)
30293 {
30294 str = ext;
30295 continue;
30296 }
30297 }
30298
69133863
MGD
30299 /* Scan over the options table trying to find an exact match. */
30300 for (; opt->name != NULL; opt++)
f3bad469 30301 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30302 {
d942732e
TP
30303 int i, nb_allowed_archs =
30304 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
69133863 30305 /* Check we can apply the extension to this architecture. */
d942732e
TP
30306 for (i = 0; i < nb_allowed_archs; i++)
30307 {
30308 /* Empty entry. */
30309 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
30310 continue;
c168ce07 30311 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
d942732e
TP
30312 break;
30313 }
30314 if (i == nb_allowed_archs)
69133863
MGD
30315 {
30316 as_bad (_("extension does not apply to the base architecture"));
30317 return FALSE;
30318 }
30319
30320 /* Add or remove the extension. */
30321 if (adding_value)
4d354d8b 30322 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
69133863 30323 else
4d354d8b 30324 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
69133863 30325
3d030cdb
TP
30326 /* Allowing Thumb division instructions for ARMv7 in autodetection
30327 rely on this break so that duplicate extensions (extensions
30328 with the same name as a previous extension in the list) are not
30329 considered for command-line parsing. */
c19d1205
ZW
30330 break;
30331 }
7ed4c4c5 30332
c19d1205
ZW
30333 if (opt->name == NULL)
30334 {
69133863
MGD
30335 /* Did we fail to find an extension because it wasn't specified in
30336 alphabetical order, or because it does not exist? */
30337
30338 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 30339 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
30340 break;
30341
30342 if (opt->name == NULL)
30343 as_bad (_("unknown architectural extension `%s'"), str);
30344 else
30345 as_bad (_("architectural extensions must be specified in "
30346 "alphabetical order"));
30347
c921be7d 30348 return FALSE;
c19d1205 30349 }
69133863
MGD
30350 else
30351 {
30352 /* We should skip the extension we've just matched the next time
30353 round. */
30354 opt++;
30355 }
7ed4c4c5 30356
c19d1205
ZW
30357 str = ext;
30358 };
7ed4c4c5 30359
c921be7d 30360 return TRUE;
c19d1205 30361}
7ed4c4c5 30362
c921be7d 30363static bfd_boolean
17b9d67d 30364arm_parse_cpu (const char *str)
7ed4c4c5 30365{
f3bad469 30366 const struct arm_cpu_option_table *opt;
82b8a785 30367 const char *ext = strchr (str, '+');
f3bad469 30368 size_t len;
7ed4c4c5 30369
c19d1205 30370 if (ext != NULL)
f3bad469 30371 len = ext - str;
7ed4c4c5 30372 else
f3bad469 30373 len = strlen (str);
7ed4c4c5 30374
f3bad469 30375 if (len == 0)
7ed4c4c5 30376 {
c19d1205 30377 as_bad (_("missing cpu name `%s'"), str);
c921be7d 30378 return FALSE;
7ed4c4c5
NC
30379 }
30380
c19d1205 30381 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 30382 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30383 {
c168ce07 30384 mcpu_cpu_opt = &opt->value;
4d354d8b
TP
30385 if (mcpu_ext_opt == NULL)
30386 mcpu_ext_opt = XNEW (arm_feature_set);
30387 *mcpu_ext_opt = opt->ext;
e74cfd16 30388 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 30389 if (opt->canonical_name)
ef8e6722
JW
30390 {
30391 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
30392 strcpy (selected_cpu_name, opt->canonical_name);
30393 }
ee065d83
PB
30394 else
30395 {
f3bad469 30396 size_t i;
c921be7d 30397
ef8e6722
JW
30398 if (len >= sizeof selected_cpu_name)
30399 len = (sizeof selected_cpu_name) - 1;
30400
f3bad469 30401 for (i = 0; i < len; i++)
ee065d83
PB
30402 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30403 selected_cpu_name[i] = 0;
30404 }
7ed4c4c5 30405
c19d1205 30406 if (ext != NULL)
34ef62f4 30407 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
7ed4c4c5 30408
c921be7d 30409 return TRUE;
c19d1205 30410 }
7ed4c4c5 30411
c19d1205 30412 as_bad (_("unknown cpu `%s'"), str);
c921be7d 30413 return FALSE;
7ed4c4c5
NC
30414}
30415
c921be7d 30416static bfd_boolean
17b9d67d 30417arm_parse_arch (const char *str)
7ed4c4c5 30418{
e74cfd16 30419 const struct arm_arch_option_table *opt;
82b8a785 30420 const char *ext = strchr (str, '+');
f3bad469 30421 size_t len;
7ed4c4c5 30422
c19d1205 30423 if (ext != NULL)
f3bad469 30424 len = ext - str;
7ed4c4c5 30425 else
f3bad469 30426 len = strlen (str);
7ed4c4c5 30427
f3bad469 30428 if (len == 0)
7ed4c4c5 30429 {
c19d1205 30430 as_bad (_("missing architecture name `%s'"), str);
c921be7d 30431 return FALSE;
7ed4c4c5
NC
30432 }
30433
c19d1205 30434 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 30435 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30436 {
e74cfd16 30437 march_cpu_opt = &opt->value;
4d354d8b
TP
30438 if (march_ext_opt == NULL)
30439 march_ext_opt = XNEW (arm_feature_set);
30440 *march_ext_opt = arm_arch_none;
e74cfd16 30441 march_fpu_opt = &opt->default_fpu;
5f4273c7 30442 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 30443
c19d1205 30444 if (ext != NULL)
34ef62f4
AV
30445 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
30446 opt->ext_table);
7ed4c4c5 30447
c921be7d 30448 return TRUE;
c19d1205
ZW
30449 }
30450
30451 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 30452 return FALSE;
7ed4c4c5 30453}
eb043451 30454
c921be7d 30455static bfd_boolean
17b9d67d 30456arm_parse_fpu (const char * str)
c19d1205 30457{
69133863 30458 const struct arm_option_fpu_value_table * opt;
b99bd4ef 30459
c19d1205
ZW
30460 for (opt = arm_fpus; opt->name != NULL; opt++)
30461 if (streq (opt->name, str))
30462 {
e74cfd16 30463 mfpu_opt = &opt->value;
c921be7d 30464 return TRUE;
c19d1205 30465 }
b99bd4ef 30466
c19d1205 30467 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 30468 return FALSE;
c19d1205
ZW
30469}
30470
c921be7d 30471static bfd_boolean
17b9d67d 30472arm_parse_float_abi (const char * str)
b99bd4ef 30473{
e74cfd16 30474 const struct arm_option_value_table * opt;
b99bd4ef 30475
c19d1205
ZW
30476 for (opt = arm_float_abis; opt->name != NULL; opt++)
30477 if (streq (opt->name, str))
30478 {
30479 mfloat_abi_opt = opt->value;
c921be7d 30480 return TRUE;
c19d1205 30481 }
cc8a6dd0 30482
c19d1205 30483 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 30484 return FALSE;
c19d1205 30485}
b99bd4ef 30486
c19d1205 30487#ifdef OBJ_ELF
c921be7d 30488static bfd_boolean
17b9d67d 30489arm_parse_eabi (const char * str)
c19d1205 30490{
e74cfd16 30491 const struct arm_option_value_table *opt;
cc8a6dd0 30492
c19d1205
ZW
30493 for (opt = arm_eabis; opt->name != NULL; opt++)
30494 if (streq (opt->name, str))
30495 {
30496 meabi_flags = opt->value;
c921be7d 30497 return TRUE;
c19d1205
ZW
30498 }
30499 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 30500 return FALSE;
c19d1205
ZW
30501}
30502#endif
cc8a6dd0 30503
c921be7d 30504static bfd_boolean
17b9d67d 30505arm_parse_it_mode (const char * str)
e07e6e58 30506{
c921be7d 30507 bfd_boolean ret = TRUE;
e07e6e58
NC
30508
30509 if (streq ("arm", str))
30510 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
30511 else if (streq ("thumb", str))
30512 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
30513 else if (streq ("always", str))
30514 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
30515 else if (streq ("never", str))
30516 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
30517 else
30518 {
30519 as_bad (_("unknown implicit IT mode `%s', should be "\
477330fc 30520 "arm, thumb, always, or never."), str);
c921be7d 30521 ret = FALSE;
e07e6e58
NC
30522 }
30523
30524 return ret;
30525}
30526
2e6976a8 30527static bfd_boolean
17b9d67d 30528arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
2e6976a8
DG
30529{
30530 codecomposer_syntax = TRUE;
30531 arm_comment_chars[0] = ';';
30532 arm_line_separator_chars[0] = 0;
30533 return TRUE;
30534}
30535
c19d1205
ZW
30536struct arm_long_option_table arm_long_opts[] =
30537{
30538 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
30539 arm_parse_cpu, NULL},
30540 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
30541 arm_parse_arch, NULL},
30542 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
30543 arm_parse_fpu, NULL},
30544 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
30545 arm_parse_float_abi, NULL},
30546#ifdef OBJ_ELF
7fac0536 30547 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
30548 arm_parse_eabi, NULL},
30549#endif
e07e6e58
NC
30550 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
30551 arm_parse_it_mode, NULL},
2e6976a8
DG
30552 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
30553 arm_ccs_mode, NULL},
c19d1205
ZW
30554 {NULL, NULL, 0, NULL}
30555};
cc8a6dd0 30556
c19d1205 30557int
17b9d67d 30558md_parse_option (int c, const char * arg)
c19d1205
ZW
30559{
30560 struct arm_option_table *opt;
e74cfd16 30561 const struct arm_legacy_option_table *fopt;
c19d1205 30562 struct arm_long_option_table *lopt;
b99bd4ef 30563
c19d1205 30564 switch (c)
b99bd4ef 30565 {
c19d1205
ZW
30566#ifdef OPTION_EB
30567 case OPTION_EB:
30568 target_big_endian = 1;
30569 break;
30570#endif
cc8a6dd0 30571
c19d1205
ZW
30572#ifdef OPTION_EL
30573 case OPTION_EL:
30574 target_big_endian = 0;
30575 break;
30576#endif
b99bd4ef 30577
845b51d6
PB
30578 case OPTION_FIX_V4BX:
30579 fix_v4bx = TRUE;
30580 break;
30581
18a20338
CL
30582#ifdef OBJ_ELF
30583 case OPTION_FDPIC:
30584 arm_fdpic = TRUE;
30585 break;
30586#endif /* OBJ_ELF */
30587
c19d1205
ZW
30588 case 'a':
30589 /* Listing option. Just ignore these, we don't support additional
30590 ones. */
30591 return 0;
b99bd4ef 30592
c19d1205
ZW
30593 default:
30594 for (opt = arm_opts; opt->option != NULL; opt++)
30595 {
30596 if (c == opt->option[0]
30597 && ((arg == NULL && opt->option[1] == 0)
30598 || streq (arg, opt->option + 1)))
30599 {
c19d1205 30600 /* If the option is deprecated, tell the user. */
278df34e 30601 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
30602 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30603 arg ? arg : "", _(opt->deprecated));
b99bd4ef 30604
c19d1205
ZW
30605 if (opt->var != NULL)
30606 *opt->var = opt->value;
cc8a6dd0 30607
c19d1205
ZW
30608 return 1;
30609 }
30610 }
b99bd4ef 30611
e74cfd16
PB
30612 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
30613 {
30614 if (c == fopt->option[0]
30615 && ((arg == NULL && fopt->option[1] == 0)
30616 || streq (arg, fopt->option + 1)))
30617 {
e74cfd16 30618 /* If the option is deprecated, tell the user. */
278df34e 30619 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
30620 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30621 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
30622
30623 if (fopt->var != NULL)
30624 *fopt->var = &fopt->value;
30625
30626 return 1;
30627 }
30628 }
30629
c19d1205
ZW
30630 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30631 {
30632 /* These options are expected to have an argument. */
30633 if (c == lopt->option[0]
30634 && arg != NULL
30635 && strncmp (arg, lopt->option + 1,
30636 strlen (lopt->option + 1)) == 0)
30637 {
c19d1205 30638 /* If the option is deprecated, tell the user. */
278df34e 30639 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
30640 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
30641 _(lopt->deprecated));
b99bd4ef 30642
c19d1205
ZW
30643 /* Call the sup-option parser. */
30644 return lopt->func (arg + strlen (lopt->option) - 1);
30645 }
30646 }
a737bd4d 30647
c19d1205
ZW
30648 return 0;
30649 }
a394c00f 30650
c19d1205
ZW
30651 return 1;
30652}
a394c00f 30653
c19d1205
ZW
30654void
30655md_show_usage (FILE * fp)
a394c00f 30656{
c19d1205
ZW
30657 struct arm_option_table *opt;
30658 struct arm_long_option_table *lopt;
a394c00f 30659
c19d1205 30660 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 30661
c19d1205
ZW
30662 for (opt = arm_opts; opt->option != NULL; opt++)
30663 if (opt->help != NULL)
30664 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 30665
c19d1205
ZW
30666 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30667 if (lopt->help != NULL)
30668 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 30669
c19d1205
ZW
30670#ifdef OPTION_EB
30671 fprintf (fp, _("\
30672 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
30673#endif
30674
c19d1205
ZW
30675#ifdef OPTION_EL
30676 fprintf (fp, _("\
30677 -EL assemble code for a little-endian cpu\n"));
a737bd4d 30678#endif
845b51d6
PB
30679
30680 fprintf (fp, _("\
30681 --fix-v4bx Allow BX in ARMv4 code\n"));
18a20338
CL
30682
30683#ifdef OBJ_ELF
30684 fprintf (fp, _("\
30685 --fdpic generate an FDPIC object file\n"));
30686#endif /* OBJ_ELF */
c19d1205 30687}
ee065d83 30688
ee065d83 30689#ifdef OBJ_ELF
0198d5e6 30690
62b3e311
PB
30691typedef struct
30692{
30693 int val;
30694 arm_feature_set flags;
30695} cpu_arch_ver_table;
30696
2c6b98ea
TP
30697/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
30698 chronologically for architectures, with an exception for ARMv6-M and
30699 ARMv6S-M due to legacy reasons. No new architecture should have a
30700 special case. This allows for build attribute selection results to be
30701 stable when new architectures are added. */
62b3e311
PB
30702static const cpu_arch_ver_table cpu_arch_ver[] =
30703{
031254f2
AV
30704 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
30705 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
30706 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
30707 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
30708 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
30709 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
30710 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
30711 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
30712 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
30713 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
30714 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
30715 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
30716 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
30717 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
30718 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
30719 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
30720 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
30721 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
30722 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
30723 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
30724 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
30725 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
30726 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
30727 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
2c6b98ea
TP
30728
30729 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
30730 always selected build attributes to match those of ARMv6-M
30731 (resp. ARMv6S-M). However, due to these architectures being a strict
30732 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
30733 would be selected when fully respecting chronology of architectures.
30734 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
30735 move them before ARMv7 architectures. */
031254f2
AV
30736 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
30737 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
30738
30739 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
30740 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
30741 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
30742 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
30743 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
30744 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
30745 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
30746 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
30747 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
30748 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
30749 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
30750 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
30751 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
30752 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
30753 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
30754 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
30755 {-1, ARM_ARCH_NONE}
62b3e311
PB
30756};
30757
ee3c0378 30758/* Set an attribute if it has not already been set by the user. */
0198d5e6 30759
ee3c0378
AS
30760static void
30761aeabi_set_attribute_int (int tag, int value)
30762{
30763 if (tag < 1
30764 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30765 || !attributes_set_explicitly[tag])
30766 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
30767}
30768
30769static void
30770aeabi_set_attribute_string (int tag, const char *value)
30771{
30772 if (tag < 1
30773 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30774 || !attributes_set_explicitly[tag])
30775 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
30776}
30777
2c6b98ea
TP
30778/* Return whether features in the *NEEDED feature set are available via
30779 extensions for the architecture whose feature set is *ARCH_FSET. */
0198d5e6 30780
2c6b98ea
TP
30781static bfd_boolean
30782have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
30783 const arm_feature_set *needed)
30784{
30785 int i, nb_allowed_archs;
30786 arm_feature_set ext_fset;
30787 const struct arm_option_extension_value_table *opt;
30788
30789 ext_fset = arm_arch_none;
30790 for (opt = arm_extensions; opt->name != NULL; opt++)
30791 {
30792 /* Extension does not provide any feature we need. */
30793 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
30794 continue;
30795
30796 nb_allowed_archs =
30797 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30798 for (i = 0; i < nb_allowed_archs; i++)
30799 {
30800 /* Empty entry. */
30801 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
30802 break;
30803
30804 /* Extension is available, add it. */
30805 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
30806 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
30807 }
30808 }
30809
30810 /* Can we enable all features in *needed? */
30811 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
30812}
30813
30814/* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
30815 a given architecture feature set *ARCH_EXT_FSET including extension feature
30816 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
30817 - if true, check for an exact match of the architecture modulo extensions;
30818 - otherwise, select build attribute value of the first superset
30819 architecture released so that results remains stable when new architectures
30820 are added.
30821 For -march/-mcpu=all the build attribute value of the most featureful
30822 architecture is returned. Tag_CPU_arch_profile result is returned in
30823 PROFILE. */
0198d5e6 30824
2c6b98ea
TP
30825static int
30826get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
30827 const arm_feature_set *ext_fset,
30828 char *profile, int exact_match)
30829{
30830 arm_feature_set arch_fset;
30831 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
30832
30833 /* Select most featureful architecture with all its extensions if building
30834 for -march=all as the feature sets used to set build attributes. */
30835 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
30836 {
30837 /* Force revisiting of decision for each new architecture. */
031254f2 30838 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
2c6b98ea
TP
30839 *profile = 'A';
30840 return TAG_CPU_ARCH_V8;
30841 }
30842
30843 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
30844
30845 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
30846 {
30847 arm_feature_set known_arch_fset;
30848
30849 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
30850 if (exact_match)
30851 {
30852 /* Base architecture match user-specified architecture and
30853 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
30854 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
30855 {
30856 p_ver_ret = p_ver;
30857 goto found;
30858 }
30859 /* Base architecture match user-specified architecture only
30860 (eg. ARMv6-M in the same case as above). Record it in case we
30861 find a match with above condition. */
30862 else if (p_ver_ret == NULL
30863 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
30864 p_ver_ret = p_ver;
30865 }
30866 else
30867 {
30868
30869 /* Architecture has all features wanted. */
30870 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
30871 {
30872 arm_feature_set added_fset;
30873
30874 /* Compute features added by this architecture over the one
30875 recorded in p_ver_ret. */
30876 if (p_ver_ret != NULL)
30877 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
30878 p_ver_ret->flags);
30879 /* First architecture that match incl. with extensions, or the
30880 only difference in features over the recorded match is
30881 features that were optional and are now mandatory. */
30882 if (p_ver_ret == NULL
30883 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
30884 {
30885 p_ver_ret = p_ver;
30886 goto found;
30887 }
30888 }
30889 else if (p_ver_ret == NULL)
30890 {
30891 arm_feature_set needed_ext_fset;
30892
30893 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
30894
30895 /* Architecture has all features needed when using some
30896 extensions. Record it and continue searching in case there
30897 exist an architecture providing all needed features without
30898 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
30899 OS extension). */
30900 if (have_ext_for_needed_feat_p (&known_arch_fset,
30901 &needed_ext_fset))
30902 p_ver_ret = p_ver;
30903 }
30904 }
30905 }
30906
30907 if (p_ver_ret == NULL)
30908 return -1;
30909
30910found:
30911 /* Tag_CPU_arch_profile. */
30912 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
30913 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
30914 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
30915 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
30916 *profile = 'A';
30917 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
30918 *profile = 'R';
30919 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
30920 *profile = 'M';
30921 else
30922 *profile = '\0';
30923 return p_ver_ret->val;
30924}
30925
ee065d83 30926/* Set the public EABI object attributes. */
0198d5e6 30927
c168ce07 30928static void
ee065d83
PB
30929aeabi_set_public_attributes (void)
30930{
b90d5ba0 30931 char profile = '\0';
2c6b98ea 30932 int arch = -1;
90ec0d68 30933 int virt_sec = 0;
bca38921 30934 int fp16_optional = 0;
2c6b98ea
TP
30935 int skip_exact_match = 0;
30936 arm_feature_set flags, flags_arch, flags_ext;
ee065d83 30937
54bab281
TP
30938 /* Autodetection mode, choose the architecture based the instructions
30939 actually used. */
30940 if (no_cpu_selected ())
30941 {
30942 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
ddd7f988 30943
54bab281
TP
30944 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
30945 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
ddd7f988 30946
54bab281
TP
30947 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
30948 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
ddd7f988 30949
54bab281 30950 /* Code run during relaxation relies on selected_cpu being set. */
4d354d8b
TP
30951 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
30952 flags_ext = arm_arch_none;
30953 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
30954 selected_ext = flags_ext;
54bab281
TP
30955 selected_cpu = flags;
30956 }
30957 /* Otherwise, choose the architecture based on the capabilities of the
30958 requested cpu. */
30959 else
4d354d8b
TP
30960 {
30961 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
30962 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
30963 flags_ext = selected_ext;
30964 flags = selected_cpu;
30965 }
30966 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
7f78eb34 30967
ddd7f988 30968 /* Allow the user to override the reported architecture. */
4d354d8b 30969 if (!ARM_FEATURE_ZERO (selected_object_arch))
7a1d4c38 30970 {
4d354d8b 30971 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
2c6b98ea 30972 flags_ext = arm_arch_none;
7a1d4c38 30973 }
2c6b98ea 30974 else
4d354d8b 30975 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
2c6b98ea
TP
30976
30977 /* When this function is run again after relaxation has happened there is no
30978 way to determine whether an architecture or CPU was specified by the user:
30979 - selected_cpu is set above for relaxation to work;
30980 - march_cpu_opt is not set if only -mcpu or .cpu is used;
30981 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
30982 Therefore, if not in -march=all case we first try an exact match and fall
30983 back to autodetection. */
30984 if (!skip_exact_match)
30985 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
30986 if (arch == -1)
30987 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
30988 if (arch == -1)
30989 as_bad (_("no architecture contains all the instructions used\n"));
9e3c6df6 30990
ee065d83
PB
30991 /* Tag_CPU_name. */
30992 if (selected_cpu_name[0])
30993 {
91d6fa6a 30994 char *q;
ee065d83 30995
91d6fa6a
NC
30996 q = selected_cpu_name;
30997 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
30998 {
30999 int i;
5f4273c7 31000
91d6fa6a
NC
31001 q += 4;
31002 for (i = 0; q[i]; i++)
31003 q[i] = TOUPPER (q[i]);
ee065d83 31004 }
91d6fa6a 31005 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 31006 }
62f3b8c8 31007
ee065d83 31008 /* Tag_CPU_arch. */
ee3c0378 31009 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 31010
62b3e311 31011 /* Tag_CPU_arch_profile. */
69239280
MGD
31012 if (profile != '\0')
31013 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 31014
15afaa63 31015 /* Tag_DSP_extension. */
4d354d8b 31016 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
6c290d53 31017 aeabi_set_attribute_int (Tag_DSP_extension, 1);
15afaa63 31018
2c6b98ea 31019 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
ee065d83 31020 /* Tag_ARM_ISA_use. */
ee3c0378 31021 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
2c6b98ea 31022 || ARM_FEATURE_ZERO (flags_arch))
ee3c0378 31023 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 31024
ee065d83 31025 /* Tag_THUMB_ISA_use. */
ee3c0378 31026 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
2c6b98ea 31027 || ARM_FEATURE_ZERO (flags_arch))
4ed7ed8d
TP
31028 {
31029 int thumb_isa_use;
31030
31031 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
16a1fa25 31032 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
4ed7ed8d
TP
31033 thumb_isa_use = 3;
31034 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
31035 thumb_isa_use = 2;
31036 else
31037 thumb_isa_use = 1;
31038 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
31039 }
62f3b8c8 31040
ee065d83 31041 /* Tag_VFP_arch. */
a715796b
TG
31042 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
31043 aeabi_set_attribute_int (Tag_VFP_arch,
31044 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31045 ? 7 : 8);
bca38921 31046 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
31047 aeabi_set_attribute_int (Tag_VFP_arch,
31048 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31049 ? 5 : 6);
31050 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
31051 {
31052 fp16_optional = 1;
31053 aeabi_set_attribute_int (Tag_VFP_arch, 3);
31054 }
ada65aa3 31055 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
31056 {
31057 aeabi_set_attribute_int (Tag_VFP_arch, 4);
31058 fp16_optional = 1;
31059 }
ee3c0378
AS
31060 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
31061 aeabi_set_attribute_int (Tag_VFP_arch, 2);
31062 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
477330fc 31063 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
ee3c0378 31064 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 31065
4547cb56
NC
31066 /* Tag_ABI_HardFP_use. */
31067 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
31068 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
31069 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
31070
ee065d83 31071 /* Tag_WMMX_arch. */
ee3c0378
AS
31072 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
31073 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
31074 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
31075 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 31076
ee3c0378 31077 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
9411fd44
MW
31078 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
31079 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
31080 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
bca38921
MGD
31081 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
31082 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
31083 {
31084 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
31085 {
31086 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
31087 }
31088 else
31089 {
31090 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
31091 fp16_optional = 1;
31092 }
31093 }
fa94de6b 31094
a7ad558c
AV
31095 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
31096 aeabi_set_attribute_int (Tag_MVE_arch, 2);
31097 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
31098 aeabi_set_attribute_int (Tag_MVE_arch, 1);
31099
ee3c0378 31100 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 31101 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 31102 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 31103
69239280
MGD
31104 /* Tag_DIV_use.
31105
31106 We set Tag_DIV_use to two when integer divide instructions have been used
31107 in ARM state, or when Thumb integer divide instructions have been used,
31108 but we have no architecture profile set, nor have we any ARM instructions.
31109
4ed7ed8d
TP
31110 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
31111 by the base architecture.
bca38921 31112
69239280 31113 For new architectures we will have to check these tests. */
031254f2 31114 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4ed7ed8d
TP
31115 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31116 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
bca38921
MGD
31117 aeabi_set_attribute_int (Tag_DIV_use, 0);
31118 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
31119 || (profile == '\0'
31120 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
31121 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 31122 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
31123
31124 /* Tag_MP_extension_use. */
31125 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
31126 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
31127
31128 /* Tag Virtualization_use. */
31129 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
31130 virt_sec |= 1;
31131 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
31132 virt_sec |= 2;
31133 if (virt_sec != 0)
31134 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
31135}
31136
c168ce07
TP
31137/* Post relaxation hook. Recompute ARM attributes now that relaxation is
31138 finished and free extension feature bits which will not be used anymore. */
0198d5e6 31139
c168ce07
TP
31140void
31141arm_md_post_relax (void)
31142{
31143 aeabi_set_public_attributes ();
4d354d8b
TP
31144 XDELETE (mcpu_ext_opt);
31145 mcpu_ext_opt = NULL;
31146 XDELETE (march_ext_opt);
31147 march_ext_opt = NULL;
c168ce07
TP
31148}
31149
104d59d1 31150/* Add the default contents for the .ARM.attributes section. */
0198d5e6 31151
ee065d83
PB
31152void
31153arm_md_end (void)
31154{
ee065d83
PB
31155 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
31156 return;
31157
31158 aeabi_set_public_attributes ();
ee065d83 31159}
8463be01 31160#endif /* OBJ_ELF */
ee065d83 31161
ee065d83
PB
31162/* Parse a .cpu directive. */
31163
31164static void
31165s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
31166{
e74cfd16 31167 const struct arm_cpu_option_table *opt;
ee065d83
PB
31168 char *name;
31169 char saved_char;
31170
31171 name = input_line_pointer;
5f4273c7 31172 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31173 input_line_pointer++;
31174 saved_char = *input_line_pointer;
31175 *input_line_pointer = 0;
31176
31177 /* Skip the first "all" entry. */
31178 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
31179 if (streq (opt->name, name))
31180 {
4d354d8b
TP
31181 selected_arch = opt->value;
31182 selected_ext = opt->ext;
31183 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
ee065d83 31184 if (opt->canonical_name)
5f4273c7 31185 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
31186 else
31187 {
31188 int i;
31189 for (i = 0; opt->name[i]; i++)
31190 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 31191
ee065d83
PB
31192 selected_cpu_name[i] = 0;
31193 }
4d354d8b
TP
31194 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31195
ee065d83
PB
31196 *input_line_pointer = saved_char;
31197 demand_empty_rest_of_line ();
31198 return;
31199 }
31200 as_bad (_("unknown cpu `%s'"), name);
31201 *input_line_pointer = saved_char;
31202 ignore_rest_of_line ();
31203}
31204
ee065d83
PB
31205/* Parse a .arch directive. */
31206
31207static void
31208s_arm_arch (int ignored ATTRIBUTE_UNUSED)
31209{
e74cfd16 31210 const struct arm_arch_option_table *opt;
ee065d83
PB
31211 char saved_char;
31212 char *name;
31213
31214 name = input_line_pointer;
5f4273c7 31215 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31216 input_line_pointer++;
31217 saved_char = *input_line_pointer;
31218 *input_line_pointer = 0;
31219
31220 /* Skip the first "all" entry. */
31221 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31222 if (streq (opt->name, name))
31223 {
4d354d8b
TP
31224 selected_arch = opt->value;
31225 selected_ext = arm_arch_none;
31226 selected_cpu = selected_arch;
5f4273c7 31227 strcpy (selected_cpu_name, opt->name);
4d354d8b 31228 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
31229 *input_line_pointer = saved_char;
31230 demand_empty_rest_of_line ();
31231 return;
31232 }
31233
31234 as_bad (_("unknown architecture `%s'\n"), name);
31235 *input_line_pointer = saved_char;
31236 ignore_rest_of_line ();
31237}
31238
7a1d4c38
PB
31239/* Parse a .object_arch directive. */
31240
31241static void
31242s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
31243{
31244 const struct arm_arch_option_table *opt;
31245 char saved_char;
31246 char *name;
31247
31248 name = input_line_pointer;
5f4273c7 31249 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
31250 input_line_pointer++;
31251 saved_char = *input_line_pointer;
31252 *input_line_pointer = 0;
31253
31254 /* Skip the first "all" entry. */
31255 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31256 if (streq (opt->name, name))
31257 {
4d354d8b 31258 selected_object_arch = opt->value;
7a1d4c38
PB
31259 *input_line_pointer = saved_char;
31260 demand_empty_rest_of_line ();
31261 return;
31262 }
31263
31264 as_bad (_("unknown architecture `%s'\n"), name);
31265 *input_line_pointer = saved_char;
31266 ignore_rest_of_line ();
31267}
31268
69133863
MGD
31269/* Parse a .arch_extension directive. */
31270
31271static void
31272s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
31273{
31274 const struct arm_option_extension_value_table *opt;
31275 char saved_char;
31276 char *name;
31277 int adding_value = 1;
31278
31279 name = input_line_pointer;
31280 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31281 input_line_pointer++;
31282 saved_char = *input_line_pointer;
31283 *input_line_pointer = 0;
31284
31285 if (strlen (name) >= 2
31286 && strncmp (name, "no", 2) == 0)
31287 {
31288 adding_value = 0;
31289 name += 2;
31290 }
31291
31292 for (opt = arm_extensions; opt->name != NULL; opt++)
31293 if (streq (opt->name, name))
31294 {
d942732e
TP
31295 int i, nb_allowed_archs =
31296 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
31297 for (i = 0; i < nb_allowed_archs; i++)
31298 {
31299 /* Empty entry. */
4d354d8b 31300 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
d942732e 31301 continue;
4d354d8b 31302 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
d942732e
TP
31303 break;
31304 }
31305
31306 if (i == nb_allowed_archs)
69133863
MGD
31307 {
31308 as_bad (_("architectural extension `%s' is not allowed for the "
31309 "current base architecture"), name);
31310 break;
31311 }
31312
31313 if (adding_value)
4d354d8b 31314 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
5a70a223 31315 opt->merge_value);
69133863 31316 else
4d354d8b 31317 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
69133863 31318
4d354d8b
TP
31319 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31320 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
69133863
MGD
31321 *input_line_pointer = saved_char;
31322 demand_empty_rest_of_line ();
3d030cdb
TP
31323 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
31324 on this return so that duplicate extensions (extensions with the
31325 same name as a previous extension in the list) are not considered
31326 for command-line parsing. */
69133863
MGD
31327 return;
31328 }
31329
31330 if (opt->name == NULL)
e673710a 31331 as_bad (_("unknown architecture extension `%s'\n"), name);
69133863
MGD
31332
31333 *input_line_pointer = saved_char;
31334 ignore_rest_of_line ();
31335}
31336
ee065d83
PB
31337/* Parse a .fpu directive. */
31338
31339static void
31340s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
31341{
69133863 31342 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
31343 char saved_char;
31344 char *name;
31345
31346 name = input_line_pointer;
5f4273c7 31347 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31348 input_line_pointer++;
31349 saved_char = *input_line_pointer;
31350 *input_line_pointer = 0;
5f4273c7 31351
ee065d83
PB
31352 for (opt = arm_fpus; opt->name != NULL; opt++)
31353 if (streq (opt->name, name))
31354 {
4d354d8b
TP
31355 selected_fpu = opt->value;
31356#ifndef CPU_DEFAULT
31357 if (no_cpu_selected ())
31358 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
31359 else
31360#endif
31361 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
31362 *input_line_pointer = saved_char;
31363 demand_empty_rest_of_line ();
31364 return;
31365 }
31366
31367 as_bad (_("unknown floating point format `%s'\n"), name);
31368 *input_line_pointer = saved_char;
31369 ignore_rest_of_line ();
31370}
ee065d83 31371
794ba86a 31372/* Copy symbol information. */
f31fef98 31373
794ba86a
DJ
31374void
31375arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
31376{
31377 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
31378}
e04befd0 31379
f31fef98 31380#ifdef OBJ_ELF
e04befd0
AS
31381/* Given a symbolic attribute NAME, return the proper integer value.
31382 Returns -1 if the attribute is not known. */
f31fef98 31383
e04befd0
AS
31384int
31385arm_convert_symbolic_attribute (const char *name)
31386{
f31fef98
NC
31387 static const struct
31388 {
31389 const char * name;
31390 const int tag;
31391 }
31392 attribute_table[] =
31393 {
31394 /* When you modify this table you should
31395 also modify the list in doc/c-arm.texi. */
e04befd0 31396#define T(tag) {#tag, tag}
f31fef98
NC
31397 T (Tag_CPU_raw_name),
31398 T (Tag_CPU_name),
31399 T (Tag_CPU_arch),
31400 T (Tag_CPU_arch_profile),
31401 T (Tag_ARM_ISA_use),
31402 T (Tag_THUMB_ISA_use),
75375b3e 31403 T (Tag_FP_arch),
f31fef98
NC
31404 T (Tag_VFP_arch),
31405 T (Tag_WMMX_arch),
31406 T (Tag_Advanced_SIMD_arch),
31407 T (Tag_PCS_config),
31408 T (Tag_ABI_PCS_R9_use),
31409 T (Tag_ABI_PCS_RW_data),
31410 T (Tag_ABI_PCS_RO_data),
31411 T (Tag_ABI_PCS_GOT_use),
31412 T (Tag_ABI_PCS_wchar_t),
31413 T (Tag_ABI_FP_rounding),
31414 T (Tag_ABI_FP_denormal),
31415 T (Tag_ABI_FP_exceptions),
31416 T (Tag_ABI_FP_user_exceptions),
31417 T (Tag_ABI_FP_number_model),
75375b3e 31418 T (Tag_ABI_align_needed),
f31fef98 31419 T (Tag_ABI_align8_needed),
75375b3e 31420 T (Tag_ABI_align_preserved),
f31fef98
NC
31421 T (Tag_ABI_align8_preserved),
31422 T (Tag_ABI_enum_size),
31423 T (Tag_ABI_HardFP_use),
31424 T (Tag_ABI_VFP_args),
31425 T (Tag_ABI_WMMX_args),
31426 T (Tag_ABI_optimization_goals),
31427 T (Tag_ABI_FP_optimization_goals),
31428 T (Tag_compatibility),
31429 T (Tag_CPU_unaligned_access),
75375b3e 31430 T (Tag_FP_HP_extension),
f31fef98
NC
31431 T (Tag_VFP_HP_extension),
31432 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
31433 T (Tag_MPextension_use),
31434 T (Tag_DIV_use),
f31fef98
NC
31435 T (Tag_nodefaults),
31436 T (Tag_also_compatible_with),
31437 T (Tag_conformance),
31438 T (Tag_T2EE_use),
31439 T (Tag_Virtualization_use),
15afaa63 31440 T (Tag_DSP_extension),
a7ad558c 31441 T (Tag_MVE_arch),
cd21e546 31442 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 31443#undef T
f31fef98 31444 };
e04befd0
AS
31445 unsigned int i;
31446
31447 if (name == NULL)
31448 return -1;
31449
f31fef98 31450 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 31451 if (streq (name, attribute_table[i].name))
e04befd0
AS
31452 return attribute_table[i].tag;
31453
31454 return -1;
31455}
267bf995 31456
93ef582d
NC
31457/* Apply sym value for relocations only in the case that they are for
31458 local symbols in the same segment as the fixup and you have the
31459 respective architectural feature for blx and simple switches. */
0198d5e6 31460
267bf995 31461int
93ef582d 31462arm_apply_sym_value (struct fix * fixP, segT this_seg)
267bf995
RR
31463{
31464 if (fixP->fx_addsy
31465 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
93ef582d
NC
31466 /* PR 17444: If the local symbol is in a different section then a reloc
31467 will always be generated for it, so applying the symbol value now
31468 will result in a double offset being stored in the relocation. */
31469 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
34e77a92 31470 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
31471 {
31472 switch (fixP->fx_r_type)
31473 {
31474 case BFD_RELOC_ARM_PCREL_BLX:
31475 case BFD_RELOC_THUMB_PCREL_BRANCH23:
31476 if (ARM_IS_FUNC (fixP->fx_addsy))
31477 return 1;
31478 break;
31479
31480 case BFD_RELOC_ARM_PCREL_CALL:
31481 case BFD_RELOC_THUMB_PCREL_BLX:
31482 if (THUMB_IS_FUNC (fixP->fx_addsy))
93ef582d 31483 return 1;
267bf995
RR
31484 break;
31485
31486 default:
31487 break;
31488 }
31489
31490 }
31491 return 0;
31492}
f31fef98 31493#endif /* OBJ_ELF */