]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
[PATCH 32/57][Arm][GAS] Add support for MVE instructions: vrintn, vrintx, vrinta...
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
82704155 2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
b99bd4ef
NC
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
ec2655a6 13 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
b99bd4ef 25
42a68e18 26#include "as.h"
5287ad62 27#include <limits.h>
037e8744 28#include <stdarg.h>
c19d1205 29#define NO_RELOC 0
3882b010 30#include "safe-ctype.h"
b99bd4ef
NC
31#include "subsegs.h"
32#include "obstack.h"
3da1d841 33#include "libiberty.h"
f263249b
RE
34#include "opcode/arm.h"
35
b99bd4ef
NC
36#ifdef OBJ_ELF
37#include "elf/arm.h"
a394c00f 38#include "dw2gencfi.h"
b99bd4ef
NC
39#endif
40
f0927246
NC
41#include "dwarf2dbg.h"
42
7ed4c4c5
NC
43#ifdef OBJ_ELF
44/* Must be at least the size of the largest unwind opcode (currently two). */
45#define ARM_OPCODE_CHUNK_SIZE 8
46
47/* This structure holds the unwinding state. */
48
49static struct
50{
c19d1205
ZW
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
7ed4c4c5 55 /* The segment containing the function. */
c19d1205
ZW
56 segT saved_seg;
57 subsegT saved_subseg;
7ed4c4c5
NC
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
c19d1205
ZW
60 int opcode_count;
61 int opcode_alloc;
7ed4c4c5 62 /* The number of bytes pushed to the stack. */
c19d1205 63 offsetT frame_size;
7ed4c4c5
NC
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
c19d1205 67 offsetT pending_offset;
7ed4c4c5 68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
7ed4c4c5 72 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 73 unsigned fp_used:1;
7ed4c4c5 74 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 75 unsigned sp_restored:1;
7ed4c4c5
NC
76} unwind;
77
18a20338
CL
78/* Whether --fdpic was given. */
79static int arm_fdpic;
80
8b1ad454
NC
81#endif /* OBJ_ELF */
82
4962c51a
MS
83/* Results from operand parsing worker functions. */
84
85typedef enum
86{
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90} parse_operand_result;
91
33a392fb
PB
92enum arm_float_abi
93{
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97};
98
c19d1205 99/* Types of processor to assemble for. */
b99bd4ef 100#ifndef CPU_DEFAULT
8a59fff3 101/* The code that was here used to select a default CPU depending on compiler
fa94de6b 102 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
b99bd4ef
NC
107#endif
108
109#ifndef FPU_DEFAULT
c820d418
MM
110# ifdef TE_LINUX
111# define FPU_DEFAULT FPU_ARCH_FPA
112# elif defined (TE_NetBSD)
113# ifdef OBJ_ELF
114# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115# else
116 /* Legacy a.out format. */
117# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118# endif
4e7fd91e
PB
119# elif defined (TE_VXWORKS)
120# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
121# else
122 /* For backwards compatibility, default to FPA. */
123# define FPU_DEFAULT FPU_ARCH_FPA
124# endif
125#endif /* ifndef FPU_DEFAULT */
b99bd4ef 126
c19d1205 127#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 128
4d354d8b
TP
129/* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
e74cfd16 132static arm_feature_set cpu_variant;
4d354d8b
TP
133/* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
e74cfd16
PB
135static arm_feature_set arm_arch_used;
136static arm_feature_set thumb_arch_used;
b99bd4ef 137
b99bd4ef 138/* Flags stored in private area of BFD structure. */
c19d1205
ZW
139static int uses_apcs_26 = FALSE;
140static int atpcs = FALSE;
b34976b6
AM
141static int support_interwork = FALSE;
142static int uses_apcs_float = FALSE;
c19d1205 143static int pic_code = FALSE;
845b51d6 144static int fix_v4bx = FALSE;
278df34e
NS
145/* Warn on using deprecated features. */
146static int warn_on_deprecated = TRUE;
147
2e6976a8
DG
148/* Understand CodeComposer Studio assembly syntax. */
149bfd_boolean codecomposer_syntax = FALSE;
03b1477f
RE
150
151/* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
4d354d8b
TP
154
155/* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157static const arm_feature_set *legacy_cpu = NULL;
158static const arm_feature_set *legacy_fpu = NULL;
159
160/* CPU, extension and FPU feature bits selected by -mcpu. */
161static const arm_feature_set *mcpu_cpu_opt = NULL;
162static arm_feature_set *mcpu_ext_opt = NULL;
163static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165/* CPU, extension and FPU feature bits selected by -march. */
166static const arm_feature_set *march_cpu_opt = NULL;
167static arm_feature_set *march_ext_opt = NULL;
168static const arm_feature_set *march_fpu_opt = NULL;
169
170/* Feature bits selected by -mfpu. */
171static const arm_feature_set *mfpu_opt = NULL;
e74cfd16
PB
172
173/* Constants for known architecture features. */
174static const arm_feature_set fpu_default = FPU_DEFAULT;
f85d59c3 175static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
e74cfd16 176static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
f85d59c3
KT
177static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
e74cfd16
PB
179static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
69c9e028 181#ifdef OBJ_ELF
e74cfd16 182static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
69c9e028 183#endif
e74cfd16
PB
184static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186#ifdef CPU_DEFAULT
187static const arm_feature_set cpu_default = CPU_DEFAULT;
188#endif
189
823d2571 190static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
4070243b 191static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
823d2571
TG
192static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
e74cfd16 198static const arm_feature_set arm_ext_v4t_5 =
823d2571
TG
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
55e8aae7
SP
207/* Only for compatability of hint instructions. */
208static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
823d2571
TG
210static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
69c9e028 222#ifdef OBJ_ELF
e7d39ed3 223static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
69c9e028 224#endif
823d2571 225static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
7e806470 226static const arm_feature_set arm_ext_m =
173205ca 227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
16a1fa25 228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
823d2571
TG
229static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
ddfded2f 234static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
4ed7ed8d 235static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
16a1fa25
TP
236static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
e12437dc
AV
238static const arm_feature_set arm_ext_v8_1m_main =
239ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
16a1fa25
TP
240/* Instructions in ARMv8-M only found in M profile architectures. */
241static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
ff8646ee
TP
243static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
4ed7ed8d
TP
245/* Instructions shared between ARMv8-A and ARMv8-M. */
246static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
69c9e028 248#ifdef OBJ_ELF
15afaa63
TP
249/* DSP instructions Tag_DSP_extension refers to. */
250static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
69c9e028 252#endif
4d1464f2
MW
253static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
b8ec4e87
JW
255/* FP16 instructions. */
256static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
01f48020
TC
258static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
dec41383
JW
260static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
49e8a725
SN
262static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
7fadb25d
SD
264static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
dad0c3bf
SD
266static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
e74cfd16
PB
268
269static const arm_feature_set arm_arch_any = ARM_ANY;
49fa50ef 270#ifdef OBJ_ELF
2c6b98ea 271static const arm_feature_set fpu_any = FPU_ANY;
49fa50ef 272#endif
f85d59c3 273static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
e74cfd16
PB
274static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
2d447fca 277static const arm_feature_set arm_cext_iwmmxt2 =
823d2571 278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
e74cfd16 279static const arm_feature_set arm_cext_iwmmxt =
823d2571 280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
e74cfd16 281static const arm_feature_set arm_cext_xscale =
823d2571 282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
e74cfd16 283static const arm_feature_set arm_cext_maverick =
823d2571
TG
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
e74cfd16 289static const arm_feature_set fpu_vfp_ext_v1xd =
823d2571
TG
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
b1cc4aeb 299static const arm_feature_set fpu_vfp_ext_d32 =
823d2571
TG
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
5287ad62 303static const arm_feature_set fpu_vfp_v3_or_neon_ext =
823d2571 304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
a7ad558c
AV
305static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
69c9e028 309#ifdef OBJ_ELF
823d2571
TG
310static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
69c9e028 314#endif
823d2571
TG
315static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
bca38921 317static const arm_feature_set fpu_vfp_ext_armv8 =
823d2571 318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
a715796b 319static const arm_feature_set fpu_vfp_ext_armv8xd =
823d2571 320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
bca38921 321static const arm_feature_set fpu_neon_ext_armv8 =
823d2571 322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
bca38921 323static const arm_feature_set fpu_crypto_ext_armv8 =
823d2571 324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
dd5181d5 325static const arm_feature_set crc_ext_armv8 =
823d2571 326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
d6b4b13e 327static const arm_feature_set fpu_neon_ext_v8_1 =
643afb90 328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
c604a79a
JW
329static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
e74cfd16 331
33a392fb 332static int mfloat_abi_opt = -1;
4d354d8b
TP
333/* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335static arm_feature_set selected_arch = ARM_ARCH_NONE;
336/* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338static arm_feature_set selected_ext = ARM_ARCH_NONE;
339/* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
e74cfd16 342static arm_feature_set selected_cpu = ARM_ARCH_NONE;
4d354d8b
TP
343/* FPU feature bits selected by the last -mfpu or .fpu directive. */
344static arm_feature_set selected_fpu = FPU_NONE;
345/* Feature bits selected by the last .object_arch directive. */
346static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
ee065d83 347/* Must be long enough to hold any of the names in arm_cpus. */
ef8e6722 348static char selected_cpu_name[20];
8d67f500 349
aacf0b33
KT
350extern FLONUM_TYPE generic_floating_point_number;
351
8d67f500
NC
352/* Return if no cpu was selected on command-line. */
353static bfd_boolean
354no_cpu_selected (void)
355{
823d2571 356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
8d67f500
NC
357}
358
7cc69913 359#ifdef OBJ_ELF
deeaaff8
DJ
360# ifdef EABI_DEFAULT
361static int meabi_flags = EABI_DEFAULT;
362# else
d507cf36 363static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 364# endif
e1da3f5b 365
ee3c0378
AS
366static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
e1da3f5b 368bfd_boolean
5f4273c7 369arm_is_eabi (void)
e1da3f5b
PB
370{
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372}
7cc69913 373#endif
b99bd4ef 374
b99bd4ef 375#ifdef OBJ_ELF
c19d1205 376/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
377symbolS * GOT_symbol;
378#endif
379
b99bd4ef
NC
380/* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384static int thumb_mode = 0;
8dc2430f
NC
385/* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388#define MODE_RECORDED (1 << 4)
b99bd4ef 389
e07e6e58
NC
390/* Specifies the intrinsic IT insn behavior mode. */
391enum implicit_it_mode
392{
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397};
398static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
c19d1205
ZW
400/* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423static bfd_boolean unified_syntax = FALSE;
b99bd4ef 424
bacebabc
RM
425/* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
477330fc
RM
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429const char arm_symbol_chars[] = "#[]{}";
bacebabc 430
5287ad62
JB
431enum neon_el_type
432{
dcbf9037 433 NT_invtype,
5287ad62
JB
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
dcbf9037 439 NT_unsigned
5287ad62
JB
440};
441
442struct neon_type_el
443{
444 enum neon_el_type type;
445 unsigned size;
446};
447
448#define NEON_MAX_TYPE_ELS 4
449
450struct neon_type
451{
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454};
455
5ee91343 456enum pred_instruction_type
e07e6e58 457{
5ee91343
AV
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
e07e6e58
NC
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
477330fc 463 if inside, should be the last one. */
e07e6e58 464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
477330fc 465 i.e. BKPT and NOP. */
5ee91343
AV
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
35c228db 468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
5ee91343 469 a predication code. */
35c228db 470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
e07e6e58
NC
471};
472
ad6cec43
MGD
473/* The maximum number of operands we need. */
474#define ARM_IT_MAX_OPERANDS 6
e2b0ab59 475#define ARM_IT_MAX_RELOCS 3
ad6cec43 476
b99bd4ef
NC
477struct arm_it
478{
c19d1205 479 const char * error;
b99bd4ef 480 unsigned long instruction;
c19d1205
ZW
481 int size;
482 int size_req;
483 int cond;
037e8744
JB
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
5287ad62 488 struct neon_type vectype;
88714cb8
DG
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
0110f2b8
PB
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
b99bd4ef
NC
495 struct
496 {
497 bfd_reloc_code_real_type type;
c19d1205
ZW
498 expressionS exp;
499 int pc_rel;
e2b0ab59 500 } relocs[ARM_IT_MAX_RELOCS];
b99bd4ef 501
5ee91343 502 enum pred_instruction_type pred_insn_type;
e07e6e58 503
c19d1205
ZW
504 struct
505 {
506 unsigned reg;
ca3f61f7 507 signed int imm;
dcbf9037 508 struct neon_type_el vectype;
ca3f61f7
NC
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
f5f10c66
AV
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
57785aa2
AV
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
5287ad62 517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5ee91343 523 unsigned isquad : 1; /* Operand is SIMD quad register. */
037e8744 524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
1b883319 525 unsigned iszr : 1; /* Operand is ZR register. */
ca3f61f7
NC
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 533 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
534};
535
c19d1205 536static struct arm_it inst;
b99bd4ef
NC
537
538#define NUM_FLOAT_VALS 8
539
05d2d07e 540const char * fp_const[] =
b99bd4ef
NC
541{
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543};
544
b99bd4ef
NC
545LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547#define FAIL (-1)
548#define SUCCESS (0)
549
550#define SUFF_S 1
551#define SUFF_D 2
552#define SUFF_E 3
553#define SUFF_P 4
554
c19d1205
ZW
555#define CP_T_X 0x00008000
556#define CP_T_Y 0x00400000
b99bd4ef 557
c19d1205
ZW
558#define CONDS_BIT 0x00100000
559#define LOAD_BIT 0x00100000
b99bd4ef
NC
560
561#define DOUBLE_LOAD_FLAG 0x00000001
562
563struct asm_cond
564{
d3ce72d0 565 const char * template_name;
c921be7d 566 unsigned long value;
b99bd4ef
NC
567};
568
c19d1205 569#define COND_ALWAYS 0xE
b99bd4ef 570
b99bd4ef
NC
571struct asm_psr
572{
d3ce72d0 573 const char * template_name;
c921be7d 574 unsigned long field;
b99bd4ef
NC
575};
576
62b3e311
PB
577struct asm_barrier_opt
578{
e797f7e0
MGD
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
62b3e311
PB
582};
583
2d2255b5 584/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
585#define SPSR_BIT (1 << 22)
586
c19d1205
ZW
587/* The individual PSR flag bits. */
588#define PSR_c (1 << 16)
589#define PSR_x (1 << 17)
590#define PSR_s (1 << 18)
591#define PSR_f (1 << 19)
b99bd4ef 592
c19d1205 593struct reloc_entry
bfae80f2 594{
0198d5e6 595 const char * name;
c921be7d 596 bfd_reloc_code_real_type reloc;
bfae80f2
RE
597};
598
5287ad62 599enum vfp_reg_pos
bfae80f2 600{
5287ad62
JB
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
603};
604
605enum vfp_ldstm_type
606{
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608};
609
dcbf9037
JB
610/* Bits for DEFINED field in neon_typed_alias. */
611#define NTA_HASTYPE 1
612#define NTA_HASINDEX 2
613
614struct neon_typed_alias
615{
c921be7d
NC
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
dcbf9037
JB
619};
620
c19d1205 621/* ARM register categories. This includes coprocessor numbers and various
5aa75429
TP
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
c19d1205 624enum arm_reg_type
bfae80f2 625{
c19d1205
ZW
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
5287ad62 632 REG_TYPE_NQ,
037e8744 633 REG_TYPE_VFSD,
5287ad62 634 REG_TYPE_NDQ,
dec41383 635 REG_TYPE_NSD,
037e8744 636 REG_TYPE_NSDQ,
c19d1205
ZW
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
5ee91343 643 REG_TYPE_MQ,
c19d1205
ZW
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
5ee91343 649 REG_TYPE_RNB,
1b883319 650 REG_TYPE_ZR
bfae80f2
RE
651};
652
dcbf9037
JB
653/* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
657struct reg_entry
658{
c921be7d 659 const char * name;
90ec0d68 660 unsigned int number;
c921be7d
NC
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
6c43fab6
RE
664};
665
c19d1205 666/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 667const char * const reg_expected_msgs[] =
c19d1205 668{
5aa75429
TP
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
5ee91343 692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
5aa75429 693 [REG_TYPE_RNB] = N_("")
6c43fab6
RE
694};
695
c19d1205 696/* Some well known registers that we refer to directly elsewhere. */
bd340a04 697#define REG_R12 12
c19d1205
ZW
698#define REG_SP 13
699#define REG_LR 14
700#define REG_PC 15
404ff6b5 701
b99bd4ef
NC
702/* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
c19d1205 704#define INSN_SIZE 4
b99bd4ef
NC
705
706struct asm_opcode
707{
708 /* Basic string to match. */
d3ce72d0 709 const char * template_name;
c19d1205
ZW
710
711 /* Parameters to instruction. */
5be8be5d 712 unsigned int operands[8];
c19d1205
ZW
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
b99bd4ef
NC
716
717 /* Basic instruction code. */
a302e574 718 unsigned int avalue;
b99bd4ef 719
c19d1205
ZW
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
b99bd4ef 722
90e4755a 723 /* Which architecture variant provides this instruction. */
c921be7d
NC
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
c19d1205
ZW
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
b99bd4ef 729
c19d1205
ZW
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
5ee91343
AV
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
b99bd4ef
NC
735};
736
a737bd4d
NC
737/* Defines for various bits that we will want to toggle. */
738#define INST_IMMEDIATE 0x02000000
739#define OFFSET_REG 0x02000000
c19d1205 740#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
741#define SHIFT_BY_REG 0x00000010
742#define PRE_INDEX 0x01000000
743#define INDEX_UP 0x00800000
744#define WRITE_BACK 0x00200000
745#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 746#define CPSI_MMOD 0x00020000
90e4755a 747
a737bd4d
NC
748#define LITERAL_MASK 0xf000f000
749#define OPCODE_MASK 0xfe1fffff
750#define V4_STR_BIT 0x00000020
8335d6aa 751#define VLDR_VMOV_SAME 0x0040f000
90e4755a 752
efd81785
PB
753#define T2_SUBS_PC_LR 0xf3de8f00
754
a737bd4d 755#define DATA_OP_SHIFT 21
bada4342 756#define SBIT_SHIFT 20
90e4755a 757
ef8d22e6
PB
758#define T2_OPCODE_MASK 0xfe1fffff
759#define T2_DATA_OP_SHIFT 21
bada4342 760#define T2_SBIT_SHIFT 20
ef8d22e6 761
6530b175
NC
762#define A_COND_MASK 0xf0000000
763#define A_PUSH_POP_OP_MASK 0x0fff0000
764
765/* Opcodes for pushing/poping registers to/from the stack. */
766#define A1_OPCODE_PUSH 0x092d0000
767#define A2_OPCODE_PUSH 0x052d0004
768#define A2_OPCODE_POP 0x049d0004
769
a737bd4d
NC
770/* Codes to distinguish the arithmetic instructions. */
771#define OPCODE_AND 0
772#define OPCODE_EOR 1
773#define OPCODE_SUB 2
774#define OPCODE_RSB 3
775#define OPCODE_ADD 4
776#define OPCODE_ADC 5
777#define OPCODE_SBC 6
778#define OPCODE_RSC 7
779#define OPCODE_TST 8
780#define OPCODE_TEQ 9
781#define OPCODE_CMP 10
782#define OPCODE_CMN 11
783#define OPCODE_ORR 12
784#define OPCODE_MOV 13
785#define OPCODE_BIC 14
786#define OPCODE_MVN 15
90e4755a 787
ef8d22e6
PB
788#define T2_OPCODE_AND 0
789#define T2_OPCODE_BIC 1
790#define T2_OPCODE_ORR 2
791#define T2_OPCODE_ORN 3
792#define T2_OPCODE_EOR 4
793#define T2_OPCODE_ADD 8
794#define T2_OPCODE_ADC 10
795#define T2_OPCODE_SBC 11
796#define T2_OPCODE_SUB 13
797#define T2_OPCODE_RSB 14
798
a737bd4d
NC
799#define T_OPCODE_MUL 0x4340
800#define T_OPCODE_TST 0x4200
801#define T_OPCODE_CMN 0x42c0
802#define T_OPCODE_NEG 0x4240
803#define T_OPCODE_MVN 0x43c0
90e4755a 804
a737bd4d
NC
805#define T_OPCODE_ADD_R3 0x1800
806#define T_OPCODE_SUB_R3 0x1a00
807#define T_OPCODE_ADD_HI 0x4400
808#define T_OPCODE_ADD_ST 0xb000
809#define T_OPCODE_SUB_ST 0xb080
810#define T_OPCODE_ADD_SP 0xa800
811#define T_OPCODE_ADD_PC 0xa000
812#define T_OPCODE_ADD_I8 0x3000
813#define T_OPCODE_SUB_I8 0x3800
814#define T_OPCODE_ADD_I3 0x1c00
815#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 816
a737bd4d
NC
817#define T_OPCODE_ASR_R 0x4100
818#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
819#define T_OPCODE_LSR_R 0x40c0
820#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
821#define T_OPCODE_ASR_I 0x1000
822#define T_OPCODE_LSL_I 0x0000
823#define T_OPCODE_LSR_I 0x0800
b99bd4ef 824
a737bd4d
NC
825#define T_OPCODE_MOV_I8 0x2000
826#define T_OPCODE_CMP_I8 0x2800
827#define T_OPCODE_CMP_LR 0x4280
828#define T_OPCODE_MOV_HR 0x4600
829#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 830
a737bd4d
NC
831#define T_OPCODE_LDR_PC 0x4800
832#define T_OPCODE_LDR_SP 0x9800
833#define T_OPCODE_STR_SP 0x9000
834#define T_OPCODE_LDR_IW 0x6800
835#define T_OPCODE_STR_IW 0x6000
836#define T_OPCODE_LDR_IH 0x8800
837#define T_OPCODE_STR_IH 0x8000
838#define T_OPCODE_LDR_IB 0x7800
839#define T_OPCODE_STR_IB 0x7000
840#define T_OPCODE_LDR_RW 0x5800
841#define T_OPCODE_STR_RW 0x5000
842#define T_OPCODE_LDR_RH 0x5a00
843#define T_OPCODE_STR_RH 0x5200
844#define T_OPCODE_LDR_RB 0x5c00
845#define T_OPCODE_STR_RB 0x5400
c9b604bd 846
a737bd4d
NC
847#define T_OPCODE_PUSH 0xb400
848#define T_OPCODE_POP 0xbc00
b99bd4ef 849
2fc8bdac 850#define T_OPCODE_BRANCH 0xe000
b99bd4ef 851
a737bd4d 852#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 853#define THUMB_PP_PC_LR 0x0100
c19d1205 854#define THUMB_LOAD_BIT 0x0800
53365c0d 855#define THUMB2_LOAD_BIT 0x00100000
c19d1205 856
5ee91343 857#define BAD_SYNTAX _("syntax error")
c19d1205 858#define BAD_ARGS _("bad arguments to instruction")
fdfde340 859#define BAD_SP _("r13 not allowed here")
c19d1205 860#define BAD_PC _("r15 not allowed here")
a302e574
AV
861#define BAD_ODD _("Odd register not allowed here")
862#define BAD_EVEN _("Even register not allowed here")
c19d1205
ZW
863#define BAD_COND _("instruction cannot be conditional")
864#define BAD_OVERLAP _("registers may not be the same")
865#define BAD_HIREG _("lo register required")
866#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
35c228db 867#define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
dfa9f0d5 868#define BAD_BRANCH _("branch must be last instruction in IT block")
e12437dc 869#define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
dfa9f0d5 870#define BAD_NOT_IT _("instruction not allowed in IT block")
5ee91343 871#define BAD_NOT_VPT _("instruction missing MVE vector predication code")
037e8744 872#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58 873#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
5ee91343
AV
874#define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
e07e6e58 876#define BAD_IT_COND _("incorrect condition in IT block")
5ee91343 877#define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
e07e6e58 878#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 879#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
880#define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882#define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
9db2f6b4
RL
884#define BAD_RANGE _("branch out of range")
885#define BAD_FP16 _("selected processor does not support fp16 instruction")
dd5181d5 886#define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
a9f02af8 887#define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
5ee91343
AV
888#define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890#define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892#define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894#define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
a302e574 896#define BAD_SIMD_TYPE _("bad type in SIMD instruction")
886e1c73
AV
897#define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900#define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
35c228db 902#define BAD_EL_TYPE _("bad element type for instruction")
1b883319 903#define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
c19d1205 904
c921be7d
NC
905static struct hash_control * arm_ops_hsh;
906static struct hash_control * arm_cond_hsh;
5ee91343 907static struct hash_control * arm_vcond_hsh;
c921be7d
NC
908static struct hash_control * arm_shift_hsh;
909static struct hash_control * arm_psr_hsh;
910static struct hash_control * arm_v7m_psr_hsh;
911static struct hash_control * arm_reg_hsh;
912static struct hash_control * arm_reloc_hsh;
913static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 914
b99bd4ef
NC
915/* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
5f4273c7 922 <insn> */
b99bd4ef
NC
923
924symbolS * last_label_seen;
b34976b6 925static int label_is_thumb_function_name = FALSE;
e07e6e58 926
3d0c9500
NC
927/* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
a737bd4d 929
c19d1205 930#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 931typedef struct literal_pool
b99bd4ef 932{
c921be7d
NC
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
a8040cf2
NC
939#ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941#endif
c921be7d 942 struct literal_pool * next;
8335d6aa 943 unsigned int alignment;
3d0c9500 944} literal_pool;
b99bd4ef 945
3d0c9500
NC
946/* Pointer to a linked list of literal pools. */
947literal_pool * list_of_pools = NULL;
e27ec89e 948
2e6976a8
DG
949typedef enum asmfunc_states
950{
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954} asmfunc_states;
955
956static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
e07e6e58 958#ifdef OBJ_ELF
5ee91343 959# define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
e07e6e58 960#else
5ee91343 961static struct current_pred now_pred;
e07e6e58
NC
962#endif
963
964static inline int
5ee91343 965now_pred_compatible (int cond)
e07e6e58 966{
5ee91343 967 return (cond & ~1) == (now_pred.cc & ~1);
e07e6e58
NC
968}
969
970static inline int
971conditional_insn (void)
972{
973 return inst.cond != COND_ALWAYS;
974}
975
5ee91343 976static int in_pred_block (void);
e07e6e58 977
5ee91343 978static int handle_pred_state (void);
e07e6e58
NC
979
980static void force_automatic_it_block_close (void);
981
c921be7d
NC
982static void it_fsm_post_encode (void);
983
5ee91343 984#define set_pred_insn_type(type) \
e07e6e58
NC
985 do \
986 { \
5ee91343
AV
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
477330fc 989 return; \
e07e6e58
NC
990 } \
991 while (0)
992
5ee91343 993#define set_pred_insn_type_nonvoid(type, failret) \
c921be7d
NC
994 do \
995 { \
5ee91343
AV
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
477330fc 998 return failret; \
c921be7d
NC
999 } \
1000 while(0)
1001
5ee91343 1002#define set_pred_insn_type_last() \
e07e6e58
NC
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
5ee91343 1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
e07e6e58 1007 else \
5ee91343 1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
e07e6e58
NC
1009 } \
1010 while (0)
1011
c19d1205 1012/* Pure syntax. */
b99bd4ef 1013
c19d1205
ZW
1014/* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
2e6976a8 1016char arm_comment_chars[] = "@";
3d0c9500 1017
c19d1205
ZW
1018/* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021/* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024/* Also note that comments like this one will always work. */
1025const char line_comment_chars[] = "#";
3d0c9500 1026
2e6976a8 1027char arm_line_separator_chars[] = ";";
b99bd4ef 1028
c19d1205
ZW
1029/* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031const char EXP_CHARS[] = "eE";
3d0c9500 1032
c19d1205
ZW
1033/* Chars that mean this number is a floating point constant. */
1034/* As in 0f12.456 */
1035/* or 0d1.2345e12 */
b99bd4ef 1036
c19d1205 1037const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 1038
c19d1205
ZW
1039/* Prefix characters that indicate the start of an immediate
1040 value. */
1041#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 1042
c19d1205
ZW
1043/* Separator character handling. */
1044
1045#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047static inline int
1048skip_past_char (char ** str, char c)
1049{
8ab8155f
NC
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
427d0db6 1052
c19d1205
ZW
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
3d0c9500 1057 }
c19d1205
ZW
1058 else
1059 return FAIL;
1060}
c921be7d 1061
c19d1205 1062#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 1063
c19d1205
ZW
1064/* Arithmetic expressions (possibly involving symbols). */
1065
1066/* Return TRUE if anything in the expression is a bignum. */
1067
0198d5e6 1068static bfd_boolean
c19d1205
ZW
1069walk_no_bignums (symbolS * sp)
1070{
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
0198d5e6 1072 return TRUE;
c19d1205
ZW
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 1075 {
c19d1205
ZW
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
1079 }
1080
0198d5e6 1081 return FALSE;
3d0c9500
NC
1082}
1083
0198d5e6 1084static bfd_boolean in_my_get_expression = FALSE;
c19d1205
ZW
1085
1086/* Third argument to my_get_expression. */
1087#define GE_NO_PREFIX 0
1088#define GE_IMM_PREFIX 1
1089#define GE_OPT_PREFIX 2
5287ad62
JB
1090/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092#define GE_OPT_PREFIX_BIG 3
a737bd4d 1093
b99bd4ef 1094static int
c19d1205 1095my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 1096{
c19d1205 1097 char * save_in;
b99bd4ef 1098
c19d1205
ZW
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
5287ad62 1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
477330fc 1102 : GE_OPT_PREFIX;
b99bd4ef 1103
c19d1205 1104 switch (prefix_mode)
b99bd4ef 1105 {
c19d1205
ZW
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
5287ad62 1116 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
0198d5e6
TC
1120 default:
1121 abort ();
c19d1205 1122 }
b99bd4ef 1123
c19d1205 1124 memset (ep, 0, sizeof (expressionS));
b99bd4ef 1125
c19d1205
ZW
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
0198d5e6 1128 in_my_get_expression = TRUE;
2ac93be7 1129 expression (ep);
0198d5e6 1130 in_my_get_expression = FALSE;
c19d1205 1131
f86adc07 1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 1133 {
f86adc07 1134 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
f86adc07
NS
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
1140 return 1;
1141 }
b99bd4ef 1142
c19d1205
ZW
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
5287ad62
JB
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
477330fc 1148 || (ep->X_add_symbol
5287ad62 1149 && (walk_no_bignums (ep->X_add_symbol)
477330fc 1150 || (ep->X_op_symbol
5287ad62 1151 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
b99bd4ef 1158
c19d1205
ZW
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
0198d5e6 1161 return SUCCESS;
b99bd4ef
NC
1162}
1163
c19d1205
ZW
1164/* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
b99bd4ef 1168
c19d1205
ZW
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1175
c19d1205 1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1177
6d4af3c2 1178const char *
c19d1205
ZW
1179md_atof (int type, char * litP, int * sizeP)
1180{
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
b99bd4ef 1185
c19d1205
ZW
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
b99bd4ef 1194
c19d1205
ZW
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
b99bd4ef 1201
c19d1205
ZW
1202 case 'x':
1203 case 'X':
499ac353 1204 prec = 5;
c19d1205 1205 break;
b99bd4ef 1206
c19d1205
ZW
1207 case 'p':
1208 case 'P':
499ac353 1209 prec = 5;
c19d1205 1210 break;
a737bd4d 1211
c19d1205
ZW
1212 default:
1213 *sizeP = 0;
499ac353 1214 return _("Unrecognized or unsupported floating point constant");
c19d1205 1215 }
b99bd4ef 1216
c19d1205
ZW
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
499ac353 1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1221
c19d1205
ZW
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
499ac353
NC
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1228 }
1229 }
1230 else
1231 {
e74cfd16 1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1233 for (i = prec - 1; i >= 0; i--)
1234 {
499ac353
NC
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
499ac353
NC
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1248 }
1249 }
b99bd4ef 1250
499ac353 1251 return NULL;
c19d1205 1252}
b99bd4ef 1253
c19d1205
ZW
1254/* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
0198d5e6 1256
c19d1205 1257void
91d6fa6a 1258md_operand (expressionS * exp)
c19d1205
ZW
1259{
1260 if (in_my_get_expression)
91d6fa6a 1261 exp->X_op = O_illegal;
b99bd4ef
NC
1262}
1263
c19d1205 1264/* Immediate values. */
b99bd4ef 1265
0198d5e6 1266#ifdef OBJ_ELF
c19d1205
ZW
1267/* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
0198d5e6 1270
c19d1205
ZW
1271static int
1272immediate_for_directive (int *val)
b99bd4ef 1273{
c19d1205
ZW
1274 expressionS exp;
1275 exp.X_op = O_illegal;
b99bd4ef 1276
c19d1205
ZW
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
b99bd4ef 1282
c19d1205
ZW
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
b99bd4ef 1291}
c19d1205 1292#endif
b99bd4ef 1293
c19d1205 1294/* Register parsing. */
b99bd4ef 1295
c19d1205
ZW
1296/* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301static struct reg_entry *
1302arm_reg_parse_multi (char **ccp)
b99bd4ef 1303{
c19d1205
ZW
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
b99bd4ef 1307
477330fc
RM
1308 skip_whitespace (start);
1309
c19d1205
ZW
1310#ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
01cfc07f 1312 return NULL;
c19d1205
ZW
1313 start++;
1314#endif
1315#ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318#endif
b99bd4ef 1319
c19d1205
ZW
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
b99bd4ef 1323
c19d1205
ZW
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
b99bd4ef
NC
1335}
1336
1337static int
dcbf9037 1338arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
477330fc 1339 enum arm_reg_type type)
b99bd4ef 1340{
c19d1205
ZW
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
79134647 1349 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1350 return reg->number;
1351 break;
69b97547 1352
c19d1205
ZW
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1a0670f3 1360 /* Fall through. */
6057a28f 1361
c19d1205
ZW
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
79134647 1365 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1366 return reg->number;
6057a28f 1367 break;
c19d1205 1368
6057a28f 1369 default:
c19d1205 1370 break;
6057a28f
NC
1371 }
1372
dcbf9037
JB
1373 return FAIL;
1374}
1375
1376/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379static int
1380arm_reg_parse (char **ccp, enum arm_reg_type type)
1381{
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
c19d1205
ZW
1396 *ccp = start;
1397 return FAIL;
1398}
69b97547 1399
dcbf9037
JB
1400/* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414static int
1415parse_neon_type (struct neon_type *type, char **str)
1416{
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
477330fc
RM
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
dcbf9037
JB
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
477330fc
RM
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
dcbf9037
JB
1467 return FAIL;
1468 }
1469 }
1470
037e8744 1471 done:
dcbf9037 1472 if (type)
477330fc
RM
1473 {
1474 type->el[type->elems].type = thistype;
dcbf9037
JB
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487}
1488
1489/* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494static void
1495first_error (const char *err)
1496{
1497 if (!inst.error)
1498 inst.error = err;
1499}
1500
1501/* Parse a single type, e.g. ".s32", leading period included. */
1502static int
1503parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504{
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
477330fc
RM
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
dcbf9037 1520 else
477330fc
RM
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
dcbf9037
JB
1525 }
1526 else
1527 return FAIL;
5f4273c7 1528
dcbf9037 1529 *ccp = str;
5f4273c7 1530
dcbf9037
JB
1531 return SUCCESS;
1532}
1533
1534/* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537#define NEON_ALL_LANES 15
1538#define NEON_INTERLEAVE_LANES 14
1539
5ee91343
AV
1540/* Record a use of the given feature. */
1541static void
1542record_feature_use (const arm_feature_set *feature)
1543{
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548}
1549
1550/* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552static bfd_boolean
1553mark_feature_used (const arm_feature_set *feature)
1554{
886e1c73
AV
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
5ee91343
AV
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573}
1574
dcbf9037
JB
1575/* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580static int
1581parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
477330fc
RM
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
dcbf9037
JB
1584{
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
477330fc 1601 *ccp = str;
dcbf9037 1602 if (typeinfo)
477330fc 1603 *typeinfo = atype;
dcbf9037
JB
1604 return altreg;
1605 }
1606
037e8744
JB
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
477330fc 1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
037e8744 1612 || (type == REG_TYPE_NSDQ
477330fc
RM
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
dec41383
JW
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
f512f76f
NC
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1619 type = (enum arm_reg_type) reg->type;
dcbf9037 1620
5ee91343
AV
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
dcbf9037
JB
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
5f4273c7 1646
dcbf9037
JB
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
477330fc
RM
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
dcbf9037
JB
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
5f4273c7 1657
dcbf9037
JB
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
dec41383
JW
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
57785aa2
AV
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
477330fc 1665 {
57785aa2
AV
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
477330fc
RM
1670 return FAIL;
1671 }
5f4273c7 1672
dcbf9037 1673 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
dcbf9037
JB
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
477330fc 1682 atype.index = NEON_ALL_LANES;
dcbf9037 1683 else
477330fc
RM
1684 {
1685 expressionS exp;
dcbf9037 1686
477330fc 1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
dcbf9037 1688
477330fc
RM
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
dcbf9037 1694
477330fc
RM
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
dcbf9037 1697
477330fc
RM
1698 atype.index = exp.X_add_number;
1699 }
dcbf9037 1700 }
5f4273c7 1701
dcbf9037
JB
1702 if (typeinfo)
1703 *typeinfo = atype;
5f4273c7 1704
dcbf9037
JB
1705 if (rtype)
1706 *rtype = type;
5f4273c7 1707
dcbf9037 1708 *ccp = str;
5f4273c7 1709
dcbf9037
JB
1710 return reg->number;
1711}
1712
efd6b359 1713/* Like arm_reg_parse, but also allow the following extra features:
dcbf9037
JB
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1718 This function will fault on encountering a scalar. */
dcbf9037
JB
1719
1720static int
1721arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
477330fc 1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
dcbf9037
JB
1723{
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
0855e32b
NS
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
dcbf9037
JB
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748}
1749
1750#define NEON_SCALAR_REG(X) ((X) >> 4)
1751#define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
5287ad62
JB
1753/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757static int
57785aa2
AV
1758parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
5287ad62 1760{
dcbf9037 1761 int reg;
5287ad62 1762 char *str = *ccp;
dcbf9037 1763 struct neon_typed_alias atype;
57785aa2 1764 unsigned reg_size;
5f4273c7 1765
dec41383 1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
5f4273c7 1767
57785aa2
AV
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
dcbf9037 1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1785 return FAIL;
5f4273c7 1786
57785aa2 1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
5287ad62 1788 {
dcbf9037 1789 first_error (_("scalar must have an index"));
5287ad62
JB
1790 return FAIL;
1791 }
57785aa2 1792 else if (atype.index >= reg_size / elsize)
5287ad62 1793 {
dcbf9037 1794 first_error (_("scalar index out of range"));
5287ad62
JB
1795 return FAIL;
1796 }
5f4273c7 1797
dcbf9037
JB
1798 if (type)
1799 *type = atype.eltype;
5f4273c7 1800
5287ad62 1801 *ccp = str;
5f4273c7 1802
dcbf9037 1803 return reg * 16 + atype.index;
5287ad62
JB
1804}
1805
4b5a202f
AV
1806/* Types of registers in a list. */
1807
1808enum reg_list_els
1809{
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
efd6b359 1813 REGLIST_VFP_S_VPR,
4b5a202f 1814 REGLIST_VFP_D,
efd6b359 1815 REGLIST_VFP_D_VPR,
4b5a202f
AV
1816 REGLIST_NEON_D
1817};
1818
c19d1205 1819/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1820
c19d1205 1821static long
4b5a202f 1822parse_reg_list (char ** strp, enum reg_list_els etype)
c19d1205 1823{
4b5a202f
AV
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
a737bd4d 1829
c19d1205
ZW
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
6057a28f 1832 {
477330fc
RM
1833 skip_whitespace (str);
1834
c19d1205 1835 another_range = 0;
a737bd4d 1836
c19d1205
ZW
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
a737bd4d 1841
c19d1205
ZW
1842 str++;
1843 do
1844 {
1845 int reg;
4b5a202f
AV
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
6057a28f 1848
4b5a202f
AV
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
c19d1205 1851 {
4b5a202f
AV
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
c19d1205 1875 }
a737bd4d 1876
c19d1205
ZW
1877 if (in_range)
1878 {
1879 int i;
a737bd4d 1880
c19d1205
ZW
1881 if (reg <= cur_reg)
1882 {
dcbf9037 1883 first_error (_("bad range in register list"));
c19d1205
ZW
1884 return FAIL;
1885 }
40a18ebd 1886
c19d1205
ZW
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
a737bd4d 1898
c19d1205
ZW
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1904
c19d1205
ZW
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
a737bd4d 1911
d996d970 1912 if (skip_past_char (&str, '}') == FAIL)
c19d1205 1913 {
dcbf9037 1914 first_error (_("missing `}'"));
c19d1205
ZW
1915 return FAIL;
1916 }
1917 }
4b5a202f 1918 else if (etype == REGLIST_RN)
c19d1205 1919 {
91d6fa6a 1920 expressionS exp;
40a18ebd 1921
91d6fa6a 1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1923 return FAIL;
40a18ebd 1924
91d6fa6a 1925 if (exp.X_op == O_constant)
c19d1205 1926 {
91d6fa6a
NC
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
a737bd4d 1933
91d6fa6a 1934 if ((range & exp.X_add_number) != 0)
c19d1205 1935 {
91d6fa6a 1936 int regno = range & exp.X_add_number;
a737bd4d 1937
c19d1205
ZW
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
a737bd4d 1944
91d6fa6a 1945 range |= exp.X_add_number;
c19d1205
ZW
1946 }
1947 else
1948 {
e2b0ab59 1949 if (inst.relocs[0].type != 0)
c19d1205
ZW
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
a737bd4d 1954
e2b0ab59
AV
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
c19d1205
ZW
1958 }
1959 }
a737bd4d 1960
c19d1205
ZW
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
a737bd4d 1966 }
c19d1205 1967 while (another_range);
a737bd4d 1968
c19d1205
ZW
1969 *strp = str;
1970 return range;
a737bd4d
NC
1971}
1972
c19d1205
ZW
1973/* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
477330fc
RM
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
dcbf9037
JB
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
6057a28f 1987
c19d1205 1988static int
efd6b359
AV
1989parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
6057a28f 1991{
037e8744 1992 char *str = *ccp;
c19d1205
ZW
1993 int base_reg;
1994 int new_base;
21d799b5 1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1996 int max_regs = 0;
c19d1205
ZW
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
a737bd4d 2000 int i;
efd6b359
AV
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
6057a28f 2004
477330fc 2005 if (skip_past_char (&str, '{') == FAIL)
5287ad62
JB
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
6057a28f 2010
5287ad62 2011 switch (etype)
c19d1205 2012 {
5287ad62 2013 case REGLIST_VFP_S:
efd6b359 2014 case REGLIST_VFP_S_VPR:
c19d1205
ZW
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
5287ad62 2017 break;
5f4273c7 2018
5287ad62 2019 case REGLIST_VFP_D:
efd6b359 2020 case REGLIST_VFP_D_VPR:
5287ad62 2021 regtype = REG_TYPE_VFD;
b7fc2769 2022 break;
5f4273c7 2023
b7fc2769
JB
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
4b5a202f
AV
2027
2028 default:
2029 gas_assert (0);
b7fc2769
JB
2030 }
2031
efd6b359 2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
b7fc2769 2033 {
b1cc4aeb
PB
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
5287ad62 2045 else
477330fc 2046 max_regs = 16;
c19d1205 2047 }
6057a28f 2048
c19d1205 2049 base_reg = max_regs;
efd6b359 2050 *partial_match = FALSE;
a737bd4d 2051
c19d1205
ZW
2052 do
2053 {
5287ad62 2054 int setmask = 1, addregs = 1;
efd6b359
AV
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
dcbf9037 2057
037e8744 2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 2059
efd6b359
AV
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
a737bd4d 2089 {
dcbf9037 2090 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
2091 return FAIL;
2092 }
5f4273c7 2093
efd6b359
AV
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
b7fc2769 2098 if (new_base >= max_regs)
477330fc
RM
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
5f4273c7 2103
5287ad62
JB
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
477330fc
RM
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
5287ad62 2110
c19d1205
ZW
2111 if (new_base < base_reg)
2112 base_reg = new_base;
a737bd4d 2113
5287ad62 2114 if (mask & (setmask << new_base))
c19d1205 2115 {
dcbf9037 2116 first_error (_("invalid register list"));
c19d1205 2117 return FAIL;
a737bd4d 2118 }
a737bd4d 2119
efd6b359 2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
c19d1205
ZW
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
0bbf2aa4 2125
5287ad62
JB
2126 mask |= setmask << new_base;
2127 count += addregs;
0bbf2aa4 2128
037e8744 2129 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
2130 {
2131 int high_range;
0bbf2aa4 2132
037e8744 2133 str++;
0bbf2aa4 2134
037e8744 2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
477330fc 2136 == FAIL)
c19d1205
ZW
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
0bbf2aa4 2141
477330fc
RM
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
b7fc2769 2147
477330fc
RM
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
5287ad62 2150
c19d1205
ZW
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
0bbf2aa4 2156
5287ad62 2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 2158 {
5287ad62 2159 if (mask & (setmask << new_base))
0bbf2aa4 2160 {
c19d1205
ZW
2161 inst.error = _("invalid register list");
2162 return FAIL;
0bbf2aa4 2163 }
c19d1205 2164
5287ad62
JB
2165 mask |= setmask << new_base;
2166 count += addregs;
0bbf2aa4 2167 }
0bbf2aa4 2168 }
0bbf2aa4 2169 }
037e8744 2170 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 2171
037e8744 2172 str++;
0bbf2aa4 2173
c19d1205 2174 /* Sanity check -- should have raised a parse error above. */
efd6b359 2175 if ((!vpr_seen && count == 0) || count > max_regs)
c19d1205
ZW
2176 abort ();
2177
2178 *pbase = base_reg;
2179
efd6b359
AV
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
c19d1205
ZW
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
037e8744
JB
2197 *ccp = str;
2198
c19d1205 2199 return count;
b99bd4ef
NC
2200}
2201
dcbf9037
JB
2202/* True if two alias types are the same. */
2203
c921be7d 2204static bfd_boolean
dcbf9037
JB
2205neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206{
2207 if (!a && !b)
c921be7d 2208 return TRUE;
5f4273c7 2209
dcbf9037 2210 if (!a || !b)
c921be7d 2211 return FALSE;
dcbf9037
JB
2212
2213 if (a->defined != b->defined)
c921be7d 2214 return FALSE;
5f4273c7 2215
dcbf9037
JB
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
477330fc 2218 || a->eltype.size != b->eltype.size))
c921be7d 2219 return FALSE;
dcbf9037
JB
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
c921be7d 2223 return FALSE;
5f4273c7 2224
c921be7d 2225 return TRUE;
dcbf9037
JB
2226}
2227
5287ad62
JB
2228/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
dcbf9037 2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 2235
5287ad62 2236#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 2237#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
2238#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240static int
dcbf9037 2241parse_neon_el_struct_list (char **str, unsigned *pbase,
35c228db 2242 int mve,
477330fc 2243 struct neon_type_el *eltype)
5287ad62
JB
2244{
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
35c228db
AV
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
20203fb9 2254 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 2255 struct neon_typed_alias firsttype;
f85d59c3
KT
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
5f4273c7 2260
5287ad62
JB
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
5f4273c7 2263
5287ad62
JB
2264 do
2265 {
dcbf9037 2266 struct neon_typed_alias atype;
35c228db
AV
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
dcbf9037
JB
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
5287ad62 2271 if (getreg == FAIL)
477330fc
RM
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
5f4273c7 2276
5287ad62 2277 if (base_reg == -1)
477330fc
RM
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
5287ad62 2286 else if (reg_incr == -1)
477330fc
RM
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
5287ad62 2295 else if (getreg != base_reg + reg_incr * count)
477330fc
RM
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
dcbf9037 2300
c921be7d 2301 if (! neon_alias_types_same (&atype, &firsttype))
477330fc
RM
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
5f4273c7 2306
5287ad62 2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
477330fc 2308 modes. */
5287ad62 2309 if (ptr[0] == '-')
477330fc
RM
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
5f4273c7 2342
5287ad62
JB
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
477330fc
RM
2345 {
2346 count += 2;
2347 continue;
2348 }
5f4273c7 2349
dcbf9037 2350 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
5287ad62 2360 else if (lane == -1)
477330fc 2361 lane = NEON_INTERLEAVE_LANES;
5287ad62 2362 else if (lane != NEON_INTERLEAVE_LANES)
477330fc
RM
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
5287ad62
JB
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2370
5287ad62
JB
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2374
5287ad62 2375 /* Sanity check. */
35c228db 2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
5287ad62
JB
2377 || (count > 1 && reg_incr == -1))
2378 {
dcbf9037 2379 first_error (_("error parsing element/structure list"));
5287ad62
JB
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
dcbf9037 2385 first_error (_("expected }"));
5287ad62
JB
2386 return FAIL;
2387 }
5f4273c7 2388
5287ad62
JB
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
dcbf9037
JB
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
5287ad62
JB
2395 *pbase = base_reg;
2396 *str = ptr;
5f4273c7 2397
5287ad62
JB
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399}
2400
c19d1205
ZW
2401/* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2406
c19d1205
ZW
2407static int
2408parse_reloc (char **str)
b99bd4ef 2409{
c19d1205
ZW
2410 struct reloc_entry *r;
2411 char *p, *q;
b99bd4ef 2412
c19d1205
ZW
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
b99bd4ef 2415
c19d1205
ZW
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
21d799b5
NC
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
b99bd4ef
NC
2430}
2431
c19d1205
ZW
2432/* Directives: register aliases. */
2433
dcbf9037 2434static struct reg_entry *
90ec0d68 2435insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2436{
d3ce72d0 2437 struct reg_entry *new_reg;
c19d1205 2438 const char *name;
b99bd4ef 2439
d3ce72d0 2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2441 {
d3ce72d0 2442 if (new_reg->builtin)
c19d1205 2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2444
c19d1205
ZW
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
d3ce72d0 2447 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2449
d929913e 2450 return NULL;
c19d1205 2451 }
b99bd4ef 2452
c19d1205 2453 name = xstrdup (str);
325801bd 2454 new_reg = XNEW (struct reg_entry);
b99bd4ef 2455
d3ce72d0
NC
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
b99bd4ef 2461
d3ce72d0 2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2463 abort ();
5f4273c7 2464
d3ce72d0 2465 return new_reg;
dcbf9037
JB
2466}
2467
2468static void
2469insert_neon_reg_alias (char *str, int number, int type,
477330fc 2470 struct neon_typed_alias *atype)
dcbf9037
JB
2471{
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2473
dcbf9037
JB
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
5f4273c7 2479
dcbf9037
JB
2480 if (atype)
2481 {
325801bd 2482 reg->neon = XNEW (struct neon_typed_alias);
dcbf9037
JB
2483 *reg->neon = *atype;
2484 }
c19d1205 2485}
b99bd4ef 2486
c19d1205 2487/* Look for the .req directive. This is of the form:
b99bd4ef 2488
c19d1205 2489 new_register_name .req existing_register_name
b99bd4ef 2490
c19d1205 2491 If we find one, or if it looks sufficiently like one that we want to
d929913e 2492 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2493
d929913e 2494static bfd_boolean
c19d1205
ZW
2495create_register_alias (char * newname, char *p)
2496{
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
b99bd4ef 2500
c19d1205
ZW
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2505 return FALSE;
b99bd4ef 2506
c19d1205
ZW
2507 oldname += 6;
2508 if (*oldname == '\0')
d929913e 2509 return FALSE;
b99bd4ef 2510
21d799b5 2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2512 if (!old)
b99bd4ef 2513 {
c19d1205 2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2515 return TRUE;
b99bd4ef
NC
2516 }
2517
c19d1205
ZW
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521#ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523#else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526#endif
b99bd4ef 2527
29a2809e 2528 nbuf = xmemdup0 (newname, nlen);
b99bd4ef 2529
c19d1205
ZW
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
d929913e
NC
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
c19d1205 2537
d929913e
NC
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2547 the artificial FOO alias because it has already been created by the
d929913e
NC
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
d929913e 2554 }
c19d1205 2555
d929913e
NC
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
c19d1205 2558
d929913e
NC
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
c19d1205 2562
e1fa0163 2563 free (nbuf);
d929913e 2564 return TRUE;
b99bd4ef
NC
2565}
2566
dcbf9037
JB
2567/* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
5f4273c7 2575 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2576
c921be7d 2577static bfd_boolean
dcbf9037
JB
2578create_neon_reg_alias (char *newname, char *p)
2579{
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
12d6b0b7 2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2586 int namelen;
5f4273c7 2587
dcbf9037
JB
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
5f4273c7 2592
dcbf9037 2593 nameend = p;
5f4273c7 2594
dcbf9037
JB
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
c921be7d 2600 return FALSE;
5f4273c7 2601
dcbf9037 2602 p += 5;
5f4273c7 2603
dcbf9037 2604 if (*p == '\0')
c921be7d 2605 return FALSE;
5f4273c7 2606
dcbf9037
JB
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
c921be7d 2612 return FALSE;
dcbf9037
JB
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
477330fc
RM
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
dcbf9037
JB
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
477330fc 2627 : exp.X_add_number;
dcbf9037
JB
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
477330fc
RM
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
5f4273c7 2642
dcbf9037
JB
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
477330fc
RM
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
dcbf9037
JB
2649 typeinfo.eltype = ntype.el[0];
2650 }
5f4273c7 2651
dcbf9037
JB
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
5f4273c7 2656
dcbf9037 2657 if (typeinfo.defined & NTA_HASINDEX)
477330fc
RM
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
5f4273c7 2662
dcbf9037 2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2664
dcbf9037 2665 if (exp.X_op != O_constant)
477330fc
RM
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
5f4273c7 2670
dcbf9037
JB
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
5f4273c7 2673
dcbf9037 2674 if (skip_past_char (&p, ']') == FAIL)
477330fc
RM
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
dcbf9037
JB
2679 }
2680
15735687
NS
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684#ifdef TC_CASE_SENSITIVE
dcbf9037 2685 namelen = nameend - newname;
15735687
NS
2686#else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689#endif
2690
29a2809e 2691 namebuf = xmemdup0 (newname, namelen);
5f4273c7 2692
dcbf9037 2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2694 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2695
dcbf9037
JB
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
5f4273c7 2699
dcbf9037
JB
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2702 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2703
dcbf9037
JB
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
5f4273c7 2707
dcbf9037
JB
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2710 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2711
e1fa0163 2712 free (namebuf);
c921be7d 2713 return TRUE;
dcbf9037
JB
2714}
2715
c19d1205
ZW
2716/* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
c921be7d 2718
b99bd4ef 2719static void
c19d1205 2720s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2721{
c19d1205
ZW
2722 as_bad (_("invalid syntax for .req directive"));
2723}
b99bd4ef 2724
dcbf9037
JB
2725static void
2726s_dn (int a ATTRIBUTE_UNUSED)
2727{
2728 as_bad (_("invalid syntax for .dn directive"));
2729}
2730
2731static void
2732s_qn (int a ATTRIBUTE_UNUSED)
2733{
2734 as_bad (_("invalid syntax for .qn directive"));
2735}
2736
c19d1205
ZW
2737/* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
b99bd4ef 2739
c19d1205
ZW
2740 my_alias .req r11
2741 .unreq my_alias */
b99bd4ef
NC
2742
2743static void
c19d1205 2744s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2745{
c19d1205
ZW
2746 char * name;
2747 char saved_char;
b99bd4ef 2748
c19d1205
ZW
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
21d799b5 2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
477330fc 2764 name);
c19d1205
ZW
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
a1727c1a 2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2770 name);
2771 else
2772 {
d929913e
NC
2773 char * p;
2774 char * nbuf;
2775
db0bc284 2776 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2777 free ((char *) reg->name);
477330fc
RM
2778 if (reg->neon)
2779 free (reg->neon);
c19d1205 2780 free (reg);
d929913e
NC
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
5f4273c7 2785
d929913e
NC
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
21d799b5 2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2790 if (reg)
2791 {
db0bc284 2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
21d799b5 2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2802 if (reg)
2803 {
db0bc284 2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
c19d1205
ZW
2812 }
2813 }
b99bd4ef 2814
c19d1205 2815 *input_line_pointer = saved_char;
b99bd4ef
NC
2816 demand_empty_rest_of_line ();
2817}
2818
c19d1205
ZW
2819/* Directives: Instruction set selection. */
2820
2821#ifdef OBJ_ELF
2822/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
cd000bff
DJ
2827/* Create a new mapping symbol for the transition to STATE. */
2828
2829static void
2830make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2831{
a737bd4d 2832 symbolS * symbolP;
c19d1205
ZW
2833 const char * symname;
2834 int type;
b99bd4ef 2835
c19d1205 2836 switch (state)
b99bd4ef 2837 {
c19d1205
ZW
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
c19d1205
ZW
2850 default:
2851 abort ();
2852 }
2853
cd000bff 2854 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
cd000bff
DJ
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2de7820f
JZ
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2885 if (value == 0)
2886 {
2de7820f
JZ
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
cd000bff
DJ
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
cd000bff
DJ
2900 frag->tc_frag_data.last_map = symbolP;
2901}
2902
2903/* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907static void
2908insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910{
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2924 }
cd000bff
DJ
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928}
2929
2930static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932/* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
4e9aaefb 2935#define TRANSITION(from, to) (mapstate == (from) && state == (to))
cd000bff
DJ
2936void
2937mapping_state (enum mstate state)
2938{
940b5ce0
DJ
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
cd000bff
DJ
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
49c62a33
NC
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
33eaf5de 2956 PC- relative forms. However, these cases will involve implicit
49c62a33
NC
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
4e9aaefb 2963 /* This case will be evaluated later. */
cd000bff 2964 return;
cd000bff
DJ
2965
2966 mapping_state_2 (state, 0);
cd000bff
DJ
2967}
2968
2969/* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972static void
2973mapping_state_2 (enum mstate state, int max_chars)
2974{
940b5ce0
DJ
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
cd000bff
DJ
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
4e9aaefb
SA
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
cd000bff
DJ
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205 2997}
4e9aaefb 2998#undef TRANSITION
c19d1205 2999#else
d3106081
NS
3000#define mapping_state(x) ((void)0)
3001#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
3002#endif
3003
3004/* Find the real, Thumb encoded start of a Thumb function. */
3005
4343666d 3006#ifdef OBJ_COFF
c19d1205
ZW
3007static symbolS *
3008find_real_start (symbolS * symbolP)
3009{
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015#define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
37f6032b
ZW
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
3026 return symbolP;
3027
e1fa0163 3028 real_start = concat (STUB_NAME, name, NULL);
c19d1205 3029 new_target = symbol_find (real_start);
e1fa0163 3030 free (real_start);
c19d1205
ZW
3031
3032 if (new_target == NULL)
3033 {
bd3ba5d1 3034 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
3035 new_target = symbolP;
3036 }
3037
c19d1205
ZW
3038 return new_target;
3039}
4343666d 3040#endif
c19d1205
ZW
3041
3042static void
3043opcode_select (int width)
3044{
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
e74cfd16 3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
c19d1205
ZW
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
e74cfd16 3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
c19d1205
ZW
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078}
3079
3080static void
3081s_arm (int ignore ATTRIBUTE_UNUSED)
3082{
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085}
3086
3087static void
3088s_thumb (int ignore ATTRIBUTE_UNUSED)
3089{
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092}
3093
3094static void
3095s_code (int unused ATTRIBUTE_UNUSED)
3096{
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110}
3111
3112static void
3113s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114{
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127}
3128
3129static void
3130s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131{
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137}
3138
3139/* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142static void
3143s_thumb_set (int equiv)
3144{
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
d02603dc 3156 delim = get_symbol_name (& name);
c19d1205 3157 end_name = input_line_pointer;
d02603dc 3158 (void) restore_line_pointer (delim);
c19d1205
ZW
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181#ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
c19d1205 3184 for this symbol. */
b99bd4ef
NC
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
21d799b5 3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197#endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200#ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203#endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
c19d1205 3219 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223#if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225#endif
3226}
3227
c19d1205 3228/* Directives: Mode selection. */
b99bd4ef 3229
c19d1205
ZW
3230/* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 3233static void
c19d1205 3234s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 3235{
c19d1205
ZW
3236 char *name, delim;
3237
d02603dc 3238 delim = get_symbol_name (& name);
c19d1205
ZW
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
d02603dc 3249 (void) restore_line_pointer (delim);
b99bd4ef
NC
3250 demand_empty_rest_of_line ();
3251}
3252
c19d1205
ZW
3253/* Directives: sectioning and alignment. */
3254
c19d1205
ZW
3255static void
3256s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 3257{
c19d1205
ZW
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
cd000bff
DJ
3262
3263#ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265#endif
c19d1205 3266}
b99bd4ef 3267
c19d1205
ZW
3268static void
3269s_even (int ignore ATTRIBUTE_UNUSED)
3270{
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
b99bd4ef 3274
c19d1205 3275 record_alignment (now_seg, 1);
b99bd4ef 3276
c19d1205 3277 demand_empty_rest_of_line ();
b99bd4ef
NC
3278}
3279
2e6976a8
DG
3280/* Directives: CodeComposer Studio. */
3281
3282/* .ref (for CodeComposer Studio syntax only). */
3283static void
3284s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285{
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290}
3291
3292/* If name is not NULL, then it is used for marking the beginning of a
2b0f3761 3293 function, whereas if it is NULL then it means the function end. */
2e6976a8
DG
3294static void
3295asmfunc_debug (const char * name)
3296{
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316}
3317
3318static void
3319s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320{
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341}
3342
3343static void
3344s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345{
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367}
3368
3369static void
3370s_ccs_def (int name)
3371{
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376}
3377
c19d1205 3378/* Directives: Literal pools. */
a737bd4d 3379
c19d1205
ZW
3380static literal_pool *
3381find_literal_pool (void)
a737bd4d 3382{
c19d1205 3383 literal_pool * pool;
a737bd4d 3384
c19d1205 3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3386 {
c19d1205
ZW
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
a737bd4d
NC
3390 }
3391
c19d1205 3392 return pool;
a737bd4d
NC
3393}
3394
c19d1205
ZW
3395static literal_pool *
3396find_or_make_literal_pool (void)
a737bd4d 3397{
c19d1205
ZW
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
a737bd4d 3401
c19d1205 3402 pool = find_literal_pool ();
a737bd4d 3403
c19d1205 3404 if (pool == NULL)
a737bd4d 3405 {
c19d1205 3406 /* Create a new pool. */
325801bd 3407 pool = XNEW (literal_pool);
c19d1205
ZW
3408 if (! pool)
3409 return NULL;
a737bd4d 3410
c19d1205
ZW
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
8335d6aa 3416 pool->alignment = 2;
c19d1205
ZW
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
a737bd4d 3420 }
a737bd4d 3421
c19d1205
ZW
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
a737bd4d 3424 {
c19d1205
ZW
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
a737bd4d
NC
3428 }
3429
c19d1205
ZW
3430 /* Done. */
3431 return pool;
a737bd4d
NC
3432}
3433
c19d1205 3434/* Add the literal in the global 'inst'
5f4273c7 3435 structure to the relevant literal pool. */
b99bd4ef
NC
3436
3437static int
8335d6aa 3438add_to_lit_pool (unsigned int nbytes)
b99bd4ef 3439{
8335d6aa
JW
3440#define PADDING_SLOT 0x1
3441#define LIT_ENTRY_SIZE_MASK 0xFF
c19d1205 3442 literal_pool * pool;
8335d6aa
JW
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
e56c722b 3445 unsigned imm1 = 0;
8335d6aa
JW
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
e2b0ab59 3452 : inst.relocs[0].exp.X_unsigned ? 0
2569ceb0 3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
8335d6aa
JW
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
b99bd4ef 3460
c19d1205
ZW
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3465 {
8335d6aa
JW
3466 if (nbytes == 4)
3467 {
e2b0ab59
AV
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
8335d6aa 3470 && (pool->literals[entry].X_add_number
e2b0ab59 3471 == inst.relocs[0].exp.X_add_number)
8335d6aa
JW
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
e2b0ab59 3474 == inst.relocs[0].exp.X_unsigned))
8335d6aa
JW
3475 break;
3476
e2b0ab59
AV
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
8335d6aa 3479 && (pool->literals[entry].X_add_number
e2b0ab59 3480 == inst.relocs[0].exp.X_add_number)
8335d6aa 3481 && (pool->literals[entry].X_add_symbol
e2b0ab59 3482 == inst.relocs[0].exp.X_add_symbol)
8335d6aa 3483 && (pool->literals[entry].X_op_symbol
e2b0ab59 3484 == inst.relocs[0].exp.X_op_symbol)
8335d6aa
JW
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
19f2f6a9 3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
8335d6aa 3493 && (pool->literals[entry].X_unsigned
e2b0ab59 3494 == inst.relocs[0].exp.X_unsigned)
8335d6aa 3495 && (pool->literals[entry + 1].X_op == O_constant)
19f2f6a9 3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
8335d6aa 3497 && (pool->literals[entry + 1].X_unsigned
e2b0ab59 3498 == inst.relocs[0].exp.X_unsigned))
c19d1205
ZW
3499 break;
3500
8335d6aa
JW
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
c19d1205 3503 break;
8335d6aa
JW
3504
3505 pool_size += 4;
b99bd4ef
NC
3506 }
3507
c19d1205
ZW
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
8335d6aa
JW
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
e2b0ab59
AV
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
8335d6aa
JW
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
e2b0ab59 3544 pool->literals[entry] = inst.relocs[0].exp;
a6684f0d 3545 pool->literals[entry].X_op = O_constant;
8335d6aa
JW
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
e2b0ab59 3557 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
e2b0ab59 3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa 3561 pool->literals[entry++].X_md = 4;
e2b0ab59 3562 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
e2b0ab59 3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa
JW
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
e2b0ab59 3572 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3573 pool->literals[entry].X_md = 4;
3574 }
3575
a8040cf2
NC
3576#ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583#endif
c19d1205
ZW
3584 pool->next_free_entry += 1;
3585 }
8335d6aa
JW
3586 else if (padding_slot_p)
3587 {
e2b0ab59 3588 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3589 pool->literals[entry].X_md = nbytes;
3590 }
b99bd4ef 3591
e2b0ab59
AV
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
b99bd4ef 3595
c19d1205 3596 return SUCCESS;
b99bd4ef
NC
3597}
3598
2e6976a8 3599bfd_boolean
2e57ce7b 3600tc_start_label_without_colon (void)
2e6976a8
DG
3601{
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
2e57ce7b 3606 const char *label = input_line_pointer;
2e6976a8
DG
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623}
3624
c19d1205 3625/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 3626 a later date assign it a value. That's what these functions do. */
e16bb312 3627
c19d1205
ZW
3628static void
3629symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634{
e57e6ddc 3635 size_t name_length;
c19d1205 3636 char * preserved_copy_of_name;
e16bb312 3637
c19d1205
ZW
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
21d799b5 3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3641
c19d1205
ZW
3642#ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645#endif
b99bd4ef 3646
c19d1205 3647 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3648
c19d1205
ZW
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
b99bd4ef 3652
c19d1205 3653 symbol_set_frag (symbolP, frag);
b99bd4ef 3654
c19d1205
ZW
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
b99bd4ef 3658
c19d1205
ZW
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
b99bd4ef 3662
c19d1205 3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3664
c19d1205 3665 obj_symbol_new_hook (symbolP);
b99bd4ef 3666
c19d1205
ZW
3667#ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669#endif
3670
3671#ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673#endif /* DEBUG_SYMS */
b99bd4ef
NC
3674}
3675
c19d1205
ZW
3676static void
3677s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3678{
c19d1205
ZW
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
b99bd4ef 3682
c19d1205
ZW
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
b99bd4ef 3688
c19d1205
ZW
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
8335d6aa 3692 frag_align (pool->alignment, 0, 0);
b99bd4ef 3693
c19d1205 3694 record_alignment (now_seg, 2);
b99bd4ef 3695
aaca88ef 3696#ifdef OBJ_ELF
47fc6e36
WN
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
aaca88ef 3699#endif
c19d1205 3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3701
c19d1205
ZW
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
b99bd4ef 3705
c19d1205 3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3707
c19d1205
ZW
3708#if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710#endif
6c43fab6 3711
c19d1205 3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3713 {
3714#ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717#endif
3718 /* First output the expression in the instruction to the pool. */
8335d6aa
JW
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
a8040cf2 3721 }
b99bd4ef 3722
c19d1205
ZW
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
b99bd4ef
NC
3726}
3727
c19d1205
ZW
3728#ifdef OBJ_ELF
3729/* Forward declarations for functions below, in the MD interface
3730 section. */
3731static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732static valueT create_unwind_entry (int);
3733static void start_unwind_section (const segT, int);
3734static void add_unwind_opcode (valueT, int);
3735static void flush_pending_unwind (void);
b99bd4ef 3736
c19d1205 3737/* Directives: Data. */
b99bd4ef 3738
c19d1205
ZW
3739static void
3740s_arm_elf_cons (int nbytes)
3741{
3742 expressionS exp;
b99bd4ef 3743
c19d1205
ZW
3744#ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746#endif
b99bd4ef 3747
c19d1205 3748 if (is_it_end_of_statement ())
b99bd4ef 3749 {
c19d1205
ZW
3750 demand_empty_rest_of_line ();
3751 return;
b99bd4ef
NC
3752 }
3753
c19d1205
ZW
3754#ifdef md_cons_align
3755 md_cons_align (nbytes);
3756#endif
b99bd4ef 3757
c19d1205
ZW
3758 mapping_state (MAP_DATA);
3759 do
b99bd4ef 3760 {
c19d1205
ZW
3761 int reloc;
3762 char *base = input_line_pointer;
b99bd4ef 3763
c19d1205 3764 expression (& exp);
b99bd4ef 3765
c19d1205
ZW
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
21d799b5 3782 reloc_howto_type *howto = (reloc_howto_type *)
477330fc
RM
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
c19d1205 3785 int size = bfd_get_reloc_size (howto);
b99bd4ef 3786
2fc8bdac
ZW
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
c19d1205 3794 if (size > nbytes)
992a06ee
AM
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
c19d1205
ZW
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
325801bd 3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
e1fa0163 3808
c19d1205
ZW
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
4b1a927e
AM
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
c19d1205 3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
e1fa0163 3822 free (save_buf);
c19d1205
ZW
3823 }
3824 }
3825 }
b99bd4ef 3826 }
c19d1205 3827 while (*input_line_pointer++ == ',');
b99bd4ef 3828
c19d1205
ZW
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
b99bd4ef
NC
3832}
3833
c921be7d
NC
3834/* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837static void
3838emit_thumb32_expr (expressionS * exp)
3839{
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846}
3847
3848/* Guess the instruction size based on the opcode. */
3849
3850static int
3851thumb_insn_size (int opcode)
3852{
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859}
3860
3861static bfd_boolean
3862emit_insn (expressionS *exp, int nbytes)
3863{
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
5ee91343
AV
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
c921be7d 3885 else
5ee91343 3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
c921be7d
NC
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904}
3905
3906/* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909static void
3910s_arm_elf_inst (int nbytes)
3911{
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954}
b99bd4ef 3955
c19d1205 3956/* Parse a .rel31 directive. */
b99bd4ef 3957
c19d1205
ZW
3958static void
3959s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960{
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
b99bd4ef 3964
c19d1205
ZW
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
b99bd4ef 3970
c19d1205
ZW
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
b99bd4ef 3975
c19d1205
ZW
3976#ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978#endif
b99bd4ef 3979
c19d1205
ZW
3980#ifdef md_cons_align
3981 md_cons_align (4);
3982#endif
b99bd4ef 3983
c19d1205 3984 mapping_state (MAP_DATA);
b99bd4ef 3985
c19d1205 3986 expression (&exp);
b99bd4ef 3987
c19d1205
ZW
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
b99bd4ef 3992
c19d1205 3993 demand_empty_rest_of_line ();
b99bd4ef
NC
3994}
3995
c19d1205 3996/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3997
c19d1205 3998/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3999
c19d1205
ZW
4000static void
4001s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002{
4003 demand_empty_rest_of_line ();
921e5f0a
PB
4004 if (unwind.proc_start)
4005 {
c921be7d 4006 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
4007 return;
4008 }
4009
c19d1205
ZW
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
b99bd4ef 4012
c19d1205
ZW
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
fdfde340 4020 unwind.fp_reg = REG_SP;
c19d1205
ZW
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023}
b99bd4ef 4024
b99bd4ef 4025
c19d1205
ZW
4026/* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
b99bd4ef 4028
c19d1205
ZW
4029static void
4030s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031{
4032 demand_empty_rest_of_line ();
921e5f0a 4033 if (!unwind.proc_start)
c921be7d 4034 as_bad (MISSING_FNSTART);
921e5f0a 4035
c19d1205 4036 if (unwind.table_entry)
6decc662 4037 as_bad (_("duplicate .handlerdata directive"));
f02232aa 4038
c19d1205
ZW
4039 create_unwind_entry (1);
4040}
a737bd4d 4041
c19d1205 4042/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 4043
c19d1205
ZW
4044static void
4045s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046{
4047 long where;
4048 char *ptr;
4049 valueT val;
940b5ce0 4050 unsigned int marked_pr_dependency;
f02232aa 4051
c19d1205 4052 demand_empty_rest_of_line ();
f02232aa 4053
921e5f0a
PB
4054 if (!unwind.proc_start)
4055 {
c921be7d 4056 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
4057 return;
4058 }
4059
c19d1205
ZW
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
f02232aa 4065
c19d1205
ZW
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
b99bd4ef 4070
c19d1205 4071 ptr = frag_more (8);
5011093d 4072 memset (ptr, 0, 8);
c19d1205 4073 where = frag_now_fix () - 8;
f02232aa 4074
c19d1205
ZW
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
f02232aa 4078
c19d1205
ZW
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
940b5ce0
DJ
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
5f4273c7
NC
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
c19d1205
ZW
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 4095 |= 1 << unwind.personality_index;
c19d1205 4096 }
f02232aa 4097
c19d1205
ZW
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
f02232aa 4105
c19d1205
ZW
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
4108
4109 unwind.proc_start = NULL;
c19d1205 4110}
f02232aa 4111
f02232aa 4112
c19d1205 4113/* Parse an unwind_cantunwind directive. */
b99bd4ef 4114
c19d1205
ZW
4115static void
4116s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117{
4118 demand_empty_rest_of_line ();
921e5f0a 4119 if (!unwind.proc_start)
c921be7d 4120 as_bad (MISSING_FNSTART);
921e5f0a 4121
c19d1205
ZW
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 4124
c19d1205
ZW
4125 unwind.personality_index = -2;
4126}
b99bd4ef 4127
b99bd4ef 4128
c19d1205 4129/* Parse a personalityindex directive. */
b99bd4ef 4130
c19d1205
ZW
4131static void
4132s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133{
4134 expressionS exp;
b99bd4ef 4135
921e5f0a 4136 if (!unwind.proc_start)
c921be7d 4137 as_bad (MISSING_FNSTART);
921e5f0a 4138
c19d1205
ZW
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 4141
c19d1205 4142 expression (&exp);
b99bd4ef 4143
c19d1205
ZW
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 4146 {
c19d1205
ZW
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
b99bd4ef
NC
4150 }
4151
c19d1205 4152 unwind.personality_index = exp.X_add_number;
b99bd4ef 4153
c19d1205
ZW
4154 demand_empty_rest_of_line ();
4155}
e16bb312 4156
e16bb312 4157
c19d1205 4158/* Parse a personality directive. */
e16bb312 4159
c19d1205
ZW
4160static void
4161s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162{
4163 char *name, *p, c;
a737bd4d 4164
921e5f0a 4165 if (!unwind.proc_start)
c921be7d 4166 as_bad (MISSING_FNSTART);
921e5f0a 4167
c19d1205
ZW
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
a737bd4d 4170
d02603dc 4171 c = get_symbol_name (& name);
c19d1205 4172 p = input_line_pointer;
d02603dc
NC
4173 if (c == '"')
4174 ++ input_line_pointer;
c19d1205
ZW
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178}
e16bb312 4179
e16bb312 4180
c19d1205 4181/* Parse a directive saving core registers. */
e16bb312 4182
c19d1205
ZW
4183static void
4184s_arm_unwind_save_core (void)
e16bb312 4185{
c19d1205
ZW
4186 valueT op;
4187 long range;
4188 int n;
e16bb312 4189
4b5a202f 4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
c19d1205 4191 if (range == FAIL)
e16bb312 4192 {
c19d1205
ZW
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
e16bb312 4197
c19d1205 4198 demand_empty_rest_of_line ();
e16bb312 4199
c19d1205
ZW
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
e16bb312 4211
01ae4198
DJ
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
c19d1205 4214 {
01ae4198
DJ
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
0dd132b6 4230 else
01ae4198
DJ
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
c19d1205 4240 }
0dd132b6 4241
c19d1205
ZW
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
0dd132b6
NC
4247 }
4248
c19d1205
ZW
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
0dd132b6
NC
4255}
4256
c19d1205
ZW
4257
4258/* Parse a directive saving FPA registers. */
b99bd4ef
NC
4259
4260static void
c19d1205 4261s_arm_unwind_save_fpa (int reg)
b99bd4ef 4262{
c19d1205
ZW
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
b99bd4ef 4266
c19d1205
ZW
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
b99bd4ef 4272
c19d1205 4273 if (exp.X_op != O_constant)
b99bd4ef 4274 {
c19d1205
ZW
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
b99bd4ef
NC
4277 return;
4278 }
4279
c19d1205
ZW
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
b99bd4ef 4283 {
c19d1205
ZW
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
b99bd4ef
NC
4286 return;
4287 }
4288
c19d1205 4289 demand_empty_rest_of_line ();
b99bd4ef 4290
c19d1205
ZW
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
b99bd4ef
NC
4297 else
4298 {
c19d1205
ZW
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
b99bd4ef 4302 }
c19d1205 4303 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
4304}
4305
c19d1205 4306
fa073d69
MS
4307/* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309static void
4310s_arm_unwind_save_vfp_armv6 (void)
4311{
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
efd6b359 4317 bfd_boolean partial_match;
fa073d69 4318
efd6b359
AV
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
fa073d69
MS
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356}
4357
4358
4359/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
4360
4361static void
c19d1205 4362s_arm_unwind_save_vfp (void)
b99bd4ef 4363{
c19d1205 4364 int count;
ca3f61f7 4365 unsigned int reg;
c19d1205 4366 valueT op;
efd6b359 4367 bfd_boolean partial_match;
b99bd4ef 4368
efd6b359
AV
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
c19d1205 4371 if (count == FAIL)
b99bd4ef 4372 {
c19d1205
ZW
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
b99bd4ef
NC
4375 return;
4376 }
4377
c19d1205 4378 demand_empty_rest_of_line ();
b99bd4ef 4379
c19d1205 4380 if (reg == 8)
b99bd4ef 4381 {
c19d1205
ZW
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
b99bd4ef 4385 }
c19d1205 4386 else
b99bd4ef 4387 {
c19d1205
ZW
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
b99bd4ef 4391 }
c19d1205
ZW
4392 unwind.frame_size += count * 8 + 4;
4393}
b99bd4ef 4394
b99bd4ef 4395
c19d1205
ZW
4396/* Parse a directive saving iWMMXt data registers. */
4397
4398static void
4399s_arm_unwind_save_mmxwr (void)
4400{
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
b99bd4ef 4406
c19d1205
ZW
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
b99bd4ef 4409
c19d1205 4410 do
b99bd4ef 4411 {
dcbf9037 4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 4413
c19d1205 4414 if (reg == FAIL)
b99bd4ef 4415 {
9b7132d3 4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 4417 goto error;
b99bd4ef
NC
4418 }
4419
c19d1205
ZW
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
b99bd4ef 4423
c19d1205
ZW
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
dcbf9037 4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
4428 if (hi_reg == FAIL)
4429 {
9b7132d3 4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4443
d996d970 4444 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4445
c19d1205 4446 demand_empty_rest_of_line ();
b99bd4ef 4447
708587a4 4448 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4449 the list. */
4450 flush_pending_unwind ();
b99bd4ef 4451
c19d1205 4452 for (i = 0; i < 16; i++)
b99bd4ef 4453 {
c19d1205
ZW
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
b99bd4ef
NC
4456 }
4457
c19d1205
ZW
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
b99bd4ef 4462 {
c19d1205
ZW
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
b99bd4ef 4481
c19d1205
ZW
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
87a1fd79 4484 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
b99bd4ef
NC
4493 }
4494
c19d1205
ZW
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
b99bd4ef 4499 {
c19d1205
ZW
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 4505 preceding block. */
c19d1205
ZW
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
b99bd4ef
NC
4523 }
4524
c19d1205
ZW
4525 return;
4526error:
4527 ignore_rest_of_line ();
b99bd4ef
NC
4528}
4529
4530static void
c19d1205 4531s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4532{
c19d1205
ZW
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
b99bd4ef 4537
c19d1205
ZW
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
b99bd4ef 4540
477330fc
RM
4541 skip_whitespace (input_line_pointer);
4542
c19d1205 4543 do
b99bd4ef 4544 {
dcbf9037 4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4546
c19d1205
ZW
4547 if (reg == FAIL)
4548 {
9b7132d3 4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4550 goto error;
4551 }
b99bd4ef 4552
c19d1205
ZW
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
b99bd4ef 4557
c19d1205
ZW
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
dcbf9037 4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4562 if (hi_reg == FAIL)
4563 {
9b7132d3 4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
b99bd4ef 4575 }
c19d1205 4576 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4577
d996d970 4578 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4579
c19d1205
ZW
4580 demand_empty_rest_of_line ();
4581
708587a4 4582 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4583 the list. */
4584 flush_pending_unwind ();
b99bd4ef 4585
c19d1205 4586 for (reg = 0; reg < 16; reg++)
b99bd4ef 4587 {
c19d1205
ZW
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
b99bd4ef 4590 }
c19d1205
ZW
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594error:
4595 ignore_rest_of_line ();
b99bd4ef
NC
4596}
4597
c19d1205 4598
fa073d69
MS
4599/* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4601
b99bd4ef 4602static void
fa073d69 4603s_arm_unwind_save (int arch_v6)
b99bd4ef 4604{
c19d1205
ZW
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
b99bd4ef 4608
921e5f0a 4609 if (!unwind.proc_start)
c921be7d 4610 as_bad (MISSING_FNSTART);
921e5f0a 4611
c19d1205
ZW
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
b99bd4ef 4614
c19d1205 4615 if (*peek == '{')
b99bd4ef 4616 {
c19d1205
ZW
4617 had_brace = TRUE;
4618 peek++;
b99bd4ef
NC
4619 }
4620
c19d1205 4621 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4622
c19d1205 4623 if (!reg)
b99bd4ef 4624 {
c19d1205
ZW
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
b99bd4ef
NC
4627 return;
4628 }
4629
c19d1205 4630 switch (reg->type)
b99bd4ef 4631 {
c19d1205
ZW
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
93ac2687 4639 input_line_pointer = peek;
c19d1205 4640 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4641 return;
c19d1205 4642
1f5afe1c
NC
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
fa073d69
MS
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
477330fc 4649 s_arm_unwind_save_vfp_armv6 ();
fa073d69 4650 else
477330fc 4651 s_arm_unwind_save_vfp ();
fa073d69 4652 return;
1f5afe1c
NC
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
c19d1205
ZW
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
b99bd4ef 4665 }
c19d1205 4666}
b99bd4ef 4667
b99bd4ef 4668
c19d1205
ZW
4669/* Parse an unwind_movsp directive. */
4670
4671static void
4672s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673{
4674 int reg;
4675 valueT op;
4fa3602b 4676 int offset;
c19d1205 4677
921e5f0a 4678 if (!unwind.proc_start)
c921be7d 4679 as_bad (MISSING_FNSTART);
921e5f0a 4680
dcbf9037 4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4682 if (reg == FAIL)
b99bd4ef 4683 {
9b7132d3 4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4685 ignore_rest_of_line ();
b99bd4ef
NC
4686 return;
4687 }
4fa3602b
PB
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
c19d1205 4698 demand_empty_rest_of_line ();
b99bd4ef 4699
c19d1205 4700 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4701 {
c19d1205 4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4703 return;
4704 }
4705
c19d1205
ZW
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4708
c19d1205
ZW
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4fa3602b 4715 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4716 unwind.sp_restored = 1;
b05fe5cf
ZW
4717}
4718
c19d1205
ZW
4719/* Parse an unwind_pad directive. */
4720
b05fe5cf 4721static void
c19d1205 4722s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4723{
c19d1205 4724 int offset;
b05fe5cf 4725
921e5f0a 4726 if (!unwind.proc_start)
c921be7d 4727 as_bad (MISSING_FNSTART);
921e5f0a 4728
c19d1205
ZW
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
b99bd4ef 4731
c19d1205
ZW
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
b99bd4ef 4738
c19d1205
ZW
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744}
4745
4746/* Parse an unwind_setfp directive. */
4747
4748static void
4749s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4750{
c19d1205
ZW
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
921e5f0a 4755 if (!unwind.proc_start)
c921be7d 4756 as_bad (MISSING_FNSTART);
921e5f0a 4757
dcbf9037 4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
dcbf9037 4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4763
c19d1205
ZW
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
b99bd4ef 4770
c19d1205
ZW
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
a737bd4d 4779
c19d1205 4780 demand_empty_rest_of_line ();
a737bd4d 4781
fdfde340 4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4783 {
c19d1205
ZW
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
a737bd4d
NC
4787 }
4788
c19d1205
ZW
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
fdfde340 4792 if (sp_reg == REG_SP)
c19d1205
ZW
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
a737bd4d
NC
4796}
4797
c19d1205
ZW
4798/* Parse an unwind_raw directive. */
4799
4800static void
4801s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4802{
c19d1205 4803 expressionS exp;
708587a4 4804 /* This is an arbitrary limit. */
c19d1205
ZW
4805 unsigned char op[16];
4806 int count;
a737bd4d 4807
921e5f0a 4808 if (!unwind.proc_start)
c921be7d 4809 as_bad (MISSING_FNSTART);
921e5f0a 4810
c19d1205
ZW
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4814 {
c19d1205
ZW
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
a737bd4d 4820
c19d1205
ZW
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
a737bd4d 4827
c19d1205 4828 count = 0;
a737bd4d 4829
c19d1205
ZW
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
a737bd4d 4837 }
c19d1205 4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4839 {
c19d1205
ZW
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
a737bd4d 4843 }
c19d1205 4844 op[count++] = exp.X_add_number;
a737bd4d 4845
c19d1205
ZW
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
a737bd4d 4849
c19d1205
ZW
4850 expression (&exp);
4851 }
b99bd4ef 4852
c19d1205
ZW
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
b99bd4ef 4856
c19d1205 4857 demand_empty_rest_of_line ();
b99bd4ef 4858}
ee065d83
PB
4859
4860
4861/* Parse a .eabi_attribute directive. */
4862
4863static void
4864s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865{
0420f52b 4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
ee3c0378 4867
3076e594 4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
ee3c0378 4869 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4870}
4871
0855e32b
NS
4872/* Emit a tls fix for the symbol. */
4873
4874static void
4875s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876{
4877 char *p;
4878 expressionS exp;
4879#ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881#endif
4882
4883#ifdef md_cons_align
4884 md_cons_align (4);
4885#endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894}
cdf9ccec 4895#endif /* OBJ_ELF */
0855e32b 4896
ee065d83 4897static void s_arm_arch (int);
7a1d4c38 4898static void s_arm_object_arch (int);
ee065d83
PB
4899static void s_arm_cpu (int);
4900static void s_arm_fpu (int);
69133863 4901static void s_arm_arch_extension (int);
b99bd4ef 4902
f0927246
NC
4903#ifdef TE_PE
4904
4905static void
5f4273c7 4906pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4907{
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922}
4923#endif /* TE_PE */
4924
c19d1205
ZW
4925/* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
b99bd4ef 4930
c19d1205 4931const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4932{
c19d1205
ZW
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
dcbf9037
JB
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
c19d1205
ZW
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
db2ed2e0 4940 { "align", s_align_ptwo, 2 },
c19d1205
ZW
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
8463be01
PB
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
7a1d4c38 4953 { "object_arch", s_arm_object_arch, 0 },
8463be01 4954 { "fpu", s_arm_fpu, 0 },
69133863 4955 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4956#ifdef OBJ_ELF
c921be7d
NC
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
fa073d69 4970 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4977#else
4978 { "word", cons, 4},
f0927246
NC
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
68d20676 4985 { "file", dwarf2_directive_file, 0 },
f0927246
NC
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4988#endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
f0927246
NC
4992#ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994#endif
2e6976a8
DG
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
c19d1205
ZW
5002 { 0, 0, 0 }
5003};
5004\f
5005/* Parser functions used exclusively in instruction operands. */
b99bd4ef 5006
c19d1205
ZW
5007/* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
b99bd4ef 5012
c19d1205
ZW
5013static int
5014parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016{
5017 expressionS exp;
0198d5e6 5018
c19d1205
ZW
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
b99bd4ef 5021 {
c19d1205
ZW
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
b99bd4ef 5025
c19d1205
ZW
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
b99bd4ef 5031
c19d1205
ZW
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034}
b99bd4ef 5035
5287ad62 5036/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040static int
8335d6aa
JW
5041parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5287ad62
JB
5043{
5044 expressionS exp;
8335d6aa 5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5287ad62
JB
5046 char *ptr = *str;
5047
8335d6aa 5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5287ad62 5049
8335d6aa 5050 if (exp_p->X_op == O_constant)
036dc3f7 5051 {
8335d6aa 5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
036dc3f7
PB
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
8335d6aa 5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7 5057 {
8335d6aa
JW
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
036dc3f7
PB
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
8335d6aa
JW
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5287ad62
JB
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 5068
5287ad62 5069 /* Bignums have their least significant bits in
477330fc
RM
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 5072 gas_assert (parts != 0);
95b75c01
NC
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
8335d6aa 5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
95b75c01
NC
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
8335d6aa 5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
95b75c01
NC
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5287ad62
JB
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5099 inst.operands[i].regisimm = 1;
5100 }
8335d6aa 5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5287ad62 5102 return FAIL;
5f4273c7 5103
5287ad62
JB
5104 *str = ptr;
5105
5106 return SUCCESS;
5107}
5108
c19d1205
ZW
5109/* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
b99bd4ef 5111
c19d1205
ZW
5112static int
5113parse_fpa_immediate (char ** str)
5114{
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
b99bd4ef 5120
c19d1205
ZW
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
b99bd4ef 5123
c19d1205
ZW
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 5127 {
c19d1205 5128 char *start = *str;
b99bd4ef 5129
c19d1205
ZW
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
b99bd4ef 5136
c19d1205
ZW
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
b99bd4ef 5141
c19d1205 5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 5143
c19d1205
ZW
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 5151 {
c19d1205
ZW
5152 if (words[j] != fp_values[i][j])
5153 break;
b99bd4ef
NC
5154 }
5155
c19d1205 5156 if (j == MAX_LITTLENUMS)
b99bd4ef 5157 {
c19d1205
ZW
5158 *str = save_in;
5159 return i + 8;
b99bd4ef
NC
5160 }
5161 }
5162 }
b99bd4ef 5163
c19d1205
ZW
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
ba592044
AM
5174#define X_PRECISION 5
5175#define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
c19d1205
ZW
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
b99bd4ef 5185
c19d1205
ZW
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
b99bd4ef
NC
5194 }
5195
c19d1205
ZW
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
b99bd4ef
NC
5200}
5201
136da414
JB
5202/* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205static int
5206is_quarter_float (unsigned imm)
5207{
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210}
5211
aacf0b33
KT
5212
5213/* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216static bfd_boolean
5217parse_ifimm_zero (char **in)
5218{
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
3c6452ae
TP
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
0900a05b
JW
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
aacf0b33
KT
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249}
5250
136da414
JB
5251/* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
136da414
JB
5256
5257static unsigned
5258parse_qfloat_immediate (char **ccp, int *immed)
5259{
5260 char *str = *ccp;
c96612cc 5261 char *fpnum;
136da414 5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 5263 int found_fpchar = 0;
5f4273c7 5264
136da414 5265 skip_past_char (&str, '#');
5f4273c7 5266
c96612cc
JB
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
477330fc
RM
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
c96612cc
JB
5285
5286 if (!found_fpchar)
477330fc 5287 return FAIL;
c96612cc 5288 }
5f4273c7 5289
136da414
JB
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5f4273c7 5294
136da414
JB
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
477330fc
RM
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5f4273c7 5301
c96612cc 5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
477330fc 5303 *immed = fpword;
136da414 5304 else
477330fc 5305 return FAIL;
136da414
JB
5306
5307 *ccp = str;
5f4273c7 5308
136da414
JB
5309 return SUCCESS;
5310 }
5f4273c7 5311
136da414
JB
5312 return FAIL;
5313}
5314
c19d1205
ZW
5315/* Shift operands. */
5316enum shift_kind
b99bd4ef 5317{
f5f10c66 5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
c19d1205 5319};
b99bd4ef 5320
c19d1205
ZW
5321struct asm_shift_name
5322{
5323 const char *name;
5324 enum shift_kind kind;
5325};
b99bd4ef 5326
c19d1205
ZW
5327/* Third argument to parse_shift. */
5328enum parse_shift_mode
5329{
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
f5f10c66 5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
c19d1205 5336};
b99bd4ef 5337
c19d1205
ZW
5338/* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
b99bd4ef 5340
c19d1205
ZW
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
b99bd4ef 5344
c19d1205
ZW
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 5347
c19d1205
ZW
5348static int
5349parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 5350{
c19d1205
ZW
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
b99bd4ef 5356
c19d1205
ZW
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
b99bd4ef 5359
c19d1205 5360 if (p == *str)
b99bd4ef 5361 {
c19d1205
ZW
5362 inst.error = _("shift expression expected");
5363 return FAIL;
b99bd4ef
NC
5364 }
5365
21d799b5 5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
477330fc 5367 p - *str);
c19d1205
ZW
5368
5369 if (shift_name == NULL)
b99bd4ef 5370 {
c19d1205
ZW
5371 inst.error = _("shift expression expected");
5372 return FAIL;
b99bd4ef
NC
5373 }
5374
c19d1205 5375 shift = shift_name->kind;
b99bd4ef 5376
c19d1205
ZW
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
f5f10c66
AV
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
b99bd4ef 5387
c19d1205
ZW
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
b99bd4ef 5395
c19d1205
ZW
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
b99bd4ef 5403
c19d1205
ZW
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
f5f10c66
AV
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
b99bd4ef 5418
c19d1205
ZW
5419 default: abort ();
5420 }
b99bd4ef 5421
c19d1205
ZW
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
b99bd4ef 5426
c19d1205 5427 if (mode == NO_SHIFT_RESTRICT
dcbf9037 5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
e2b0ab59 5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
c19d1205
ZW
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
b99bd4ef
NC
5440}
5441
c19d1205 5442/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 5443
c19d1205
ZW
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
b99bd4ef 5448
c19d1205
ZW
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 5451 is deferred to md_apply_fix. */
b99bd4ef 5452
c19d1205
ZW
5453static int
5454parse_shifter_operand (char **str, int i)
5455{
5456 int value;
91d6fa6a 5457 expressionS exp;
b99bd4ef 5458
dcbf9037 5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
b99bd4ef 5463
c19d1205 5464 /* parse_shift will override this if appropriate */
e2b0ab59
AV
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
b99bd4ef 5467
c19d1205
ZW
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
b99bd4ef 5470
c19d1205
ZW
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
5473 }
5474
e2b0ab59 5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
c19d1205 5476 return FAIL;
b99bd4ef 5477
c19d1205 5478 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 5479 {
c19d1205 5480 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 5482 return FAIL;
b99bd4ef 5483
e2b0ab59 5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
c19d1205
ZW
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
b99bd4ef 5489
91d6fa6a 5490 value = exp.X_add_number;
c19d1205
ZW
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
e2b0ab59
AV
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
c19d1205
ZW
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
09d92015 5502
a415b1cd 5503 /* Encode as specified. */
e2b0ab59 5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
a415b1cd 5505 return SUCCESS;
09d92015
MM
5506 }
5507
e2b0ab59
AV
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
c19d1205 5510 return SUCCESS;
09d92015
MM
5511}
5512
4962c51a
MS
5513/* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520struct group_reloc_table_entry
5521{
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527};
5528
5529typedef enum
5530{
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
35c228db
AV
5535 GROUP_LDC,
5536 GROUP_MVE
4962c51a
MS
5537} group_reloc_type;
5538
5539static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
72d98d16
MG
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
4962c51a
MS
5613
5614/* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621static int
5622find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623{
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5f4273c7
NC
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
477330fc
RM
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
4962c51a
MS
5636 }
5637
5638 return FAIL;
5639}
5640
5641/* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655static parse_operand_result
5656parse_shifter_operand_group_reloc (char **str, int i)
5657{
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
477330fc 5668 (*str) += 2;
4962c51a 5669 else
477330fc 5670 (*str)++;
4962c51a
MS
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
477330fc
RM
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
4962c51a
MS
5678
5679 /* We now have the group relocation table entry corresponding to
477330fc 5680 the name in the assembler source. Next, we parse the expression. */
e2b0ab59 5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
477330fc 5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4962c51a
MS
5683
5684 /* Record the relocation type (always the ALU variant here). */
e2b0ab59
AV
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
4962c51a
MS
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
477330fc 5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4962c51a
MS
5693
5694 /* Never reached. */
5695}
5696
8e560766
MGD
5697/* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5699
8e560766
MGD
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701static parse_operand_result
5702parse_neon_alignment (char **str, int i)
5703{
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722}
5723
c19d1205 5724/* Parse all forms of an ARM address expression. Information is written
e2b0ab59 5725 to inst.operands[i] and/or inst.relocs[0].
09d92015 5726
c19d1205 5727 Preindexed addressing (.preind=1):
09d92015 5728
e2b0ab59 5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5732 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5733
c19d1205 5734 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5735
c19d1205 5736 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5737
e2b0ab59 5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5741 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5742
c19d1205 5743 Unindexed addressing (.preind=0, .postind=0):
09d92015 5744
c19d1205 5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5746
c19d1205 5747 Other:
09d92015 5748
c19d1205 5749 [Rn]{!} shorthand for [Rn,#0]{!}
e2b0ab59
AV
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
09d92015 5752
c19d1205 5753 It is the caller's responsibility to check for addressing modes not
e2b0ab59 5754 supported by the instruction, and to set inst.relocs[0].type. */
c19d1205 5755
4962c51a
MS
5756static parse_operand_result
5757parse_address_main (char **str, int i, int group_relocations,
477330fc 5758 group_reloc_type group_type)
09d92015 5759{
c19d1205
ZW
5760 char *p = *str;
5761 int reg;
09d92015 5762
c19d1205 5763 if (skip_past_char (&p, '[') == FAIL)
09d92015 5764 {
c19d1205
ZW
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
974da60d 5767 /* Bare address - translate to PC-relative offset. */
e2b0ab59 5768 inst.relocs[0].pc_rel = 1;
c19d1205
ZW
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
09d92015 5772
e2b0ab59 5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
8335d6aa
JW
5774 return PARSE_OPERAND_FAIL;
5775 }
e2b0ab59 5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
8335d6aa 5777 /*allow_symbol_p=*/TRUE))
4962c51a 5778 return PARSE_OPERAND_FAIL;
09d92015 5779
c19d1205 5780 *str = p;
4962c51a 5781 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5782 }
5783
8ab8155f
NC
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
f5f10c66
AV
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5802 {
35c228db
AV
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5807 return PARSE_OPERAND_FAIL;
09d92015 5808 }
c19d1205
ZW
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
09d92015 5811
c19d1205 5812 if (skip_past_comma (&p) == SUCCESS)
09d92015 5813 {
c19d1205 5814 inst.operands[i].preind = 1;
09d92015 5815
c19d1205
ZW
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
f5f10c66
AV
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5839 {
c19d1205
ZW
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5845 return PARSE_OPERAND_FAIL;
c19d1205 5846 }
5287ad62 5847 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5853
8e560766
MGD
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
c19d1205
ZW
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
4962c51a 5864
5f4273c7
NC
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5867 {
5868 struct group_reloc_table_entry *entry;
5869
477330fc
RM
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
4962c51a
MS
5875
5876 /* Try to parse a group relocation. Anything else is an
477330fc 5877 error. */
4962c51a
MS
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
477330fc 5886 expression. */
e2b0ab59 5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
4962c51a
MS
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
477330fc
RM
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
e2b0ab59
AV
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
477330fc 5896 break;
4962c51a 5897
477330fc 5898 case GROUP_LDRS:
e2b0ab59
AV
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
477330fc 5901 break;
4962c51a 5902
477330fc 5903 case GROUP_LDC:
e2b0ab59
AV
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
477330fc 5906 break;
4962c51a 5907
477330fc
RM
5908 default:
5909 gas_assert (0);
5910 }
4962c51a 5911
e2b0ab59 5912 if (inst.relocs[0].type == 0)
4962c51a
MS
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
477330fc
RM
5917 }
5918 else
26d97720
NS
5919 {
5920 char *q = p;
0198d5e6 5921
e2b0ab59 5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
26d97720
NS
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
09d92015
MM
5938 }
5939 }
8e560766
MGD
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5945
8e560766
MGD
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
09d92015 5949
c19d1205 5950 if (skip_past_char (&p, ']') == FAIL)
09d92015 5951 {
c19d1205 5952 inst.error = _("']' expected");
4962c51a 5953 return PARSE_OPERAND_FAIL;
09d92015
MM
5954 }
5955
c19d1205
ZW
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
09d92015 5958
c19d1205 5959 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5960 {
c19d1205
ZW
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5965 0, 255, TRUE) == FAIL)
4962c51a 5966 return PARSE_OPERAND_FAIL;
09d92015 5967
c19d1205
ZW
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5971 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
4962c51a 5976 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5977 }
5978 *str = p;
4962c51a 5979 return PARSE_OPERAND_SUCCESS;
09d92015 5980 }
c19d1205
ZW
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
09d92015 5985
c19d1205
ZW
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5989 return PARSE_OPERAND_FAIL;
c19d1205 5990 }
09d92015 5991
c19d1205
ZW
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5994
f5f10c66
AV
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 6004 {
477330fc
RM
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
c19d1205 6011 inst.operands[i].immisreg = 1;
a737bd4d 6012
c19d1205
ZW
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 6015 return PARSE_OPERAND_FAIL;
c19d1205
ZW
6016 }
6017 else
6018 {
26d97720 6019 char *q = p;
0198d5e6 6020
c19d1205
ZW
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
e2b0ab59 6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
4962c51a 6027 return PARSE_OPERAND_FAIL;
26d97720 6028 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
c19d1205
ZW
6041 }
6042 }
a737bd4d
NC
6043 }
6044
c19d1205
ZW
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
e2b0ab59
AV
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
c19d1205
ZW
6052 }
6053 *str = p;
4962c51a
MS
6054 return PARSE_OPERAND_SUCCESS;
6055}
6056
6057static int
6058parse_address (char **str, int i)
6059{
21d799b5 6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
477330fc 6061 ? SUCCESS : FAIL;
4962c51a
MS
6062}
6063
6064static parse_operand_result
6065parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066{
6067 return parse_address_main (str, i, 1, type);
a737bd4d
NC
6068}
6069
b6895b4f
PB
6070/* Parse an operand for a MOVW or MOVT instruction. */
6071static int
6072parse_half (char **str)
6073{
6074 char * p;
5f4273c7 6075
b6895b4f
PB
6076 p = *str;
6077 skip_past_char (&p, '#');
5f4273c7 6078 if (strncasecmp (p, ":lower16:", 9) == 0)
e2b0ab59 6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
b6895b4f 6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
e2b0ab59 6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
b6895b4f 6082
e2b0ab59 6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
b6895b4f
PB
6084 {
6085 p += 9;
5f4273c7 6086 skip_whitespace (p);
b6895b4f
PB
6087 }
6088
e2b0ab59 6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
b6895b4f
PB
6090 return FAIL;
6091
e2b0ab59 6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 6093 {
e2b0ab59 6094 if (inst.relocs[0].exp.X_op != O_constant)
b6895b4f
PB
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
e2b0ab59
AV
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
b6895b4f
PB
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108}
6109
c19d1205 6110/* Miscellaneous. */
a737bd4d 6111
c19d1205
ZW
6112/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114static int
d2cd1205 6115parse_psr (char **str, bfd_boolean lhs)
09d92015 6116{
c19d1205
ZW
6117 char *p;
6118 unsigned long psr_field;
62b3e311
PB
6119 const struct asm_psr *psr;
6120 char *start;
d2cd1205 6121 bfd_boolean is_apsr = FALSE;
ac7f631b 6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 6123
a4482bb6
NC
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
823d2571 6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
a4482bb6
NC
6128 m_profile = FALSE;
6129
c19d1205
ZW
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
62b3e311 6133 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
fa94de6b 6137
d2cd1205
JB
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
62b3e311
PB
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
d2cd1205
JB
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
21d799b5 6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
477330fc 6168 p - start);
d2cd1205 6169
62b3e311
PB
6170 if (!psr)
6171 return FAIL;
09d92015 6172
d2cd1205
JB
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
62b3e311 6182 *str = p;
d2cd1205
JB
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
62b3e311 6188 }
d2cd1205
JB
6189 else
6190 goto unsupported_psr;
09d92015 6191
62b3e311 6192 p += 4;
d2cd1205 6193check_suffix:
c19d1205
ZW
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
c19d1205
ZW
6197 p++;
6198 start = p;
a737bd4d 6199
c19d1205
ZW
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
a737bd4d 6203
d2cd1205
JB
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
fa94de6b 6210
d2cd1205
JB
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
477330fc 6214 {
d2cd1205
JB
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
fa94de6b 6230
d2cd1205
JB
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
fa94de6b 6234
d2cd1205
JB
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
fa94de6b 6238
d2cd1205
JB
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
fa94de6b 6244
d2cd1205
JB
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
fa94de6b 6247
d2cd1205
JB
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
477330fc 6251 {
d2cd1205
JB
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
fa94de6b 6259
d2cd1205
JB
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
477330fc 6269 {
d2cd1205 6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
477330fc 6271 p - start);
d2cd1205 6272 if (!psr)
477330fc 6273 goto error;
a737bd4d 6274
d2cd1205
JB
6275 psr_field |= psr->field;
6276 }
a737bd4d 6277 }
c19d1205 6278 else
a737bd4d 6279 {
c19d1205
ZW
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
d2cd1205 6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
477330fc 6284 is deprecated, but allow it anyway. */
d2cd1205
JB
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
a737bd4d 6295 }
c19d1205
ZW
6296 *str = p;
6297 return psr_field;
a737bd4d 6298
d2cd1205
JB
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
c19d1205
ZW
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
a737bd4d
NC
6307}
6308
32c36c3c
AV
6309static int
6310parse_sys_vldr_vstr (char **str)
6311{
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340}
6341
c19d1205
ZW
6342/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 6344
c19d1205
ZW
6345static int
6346parse_cps_flags (char **str)
a737bd4d 6347{
c19d1205
ZW
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
a737bd4d 6351
c19d1205
ZW
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
a737bd4d 6357
c19d1205
ZW
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 6361
c19d1205
ZW
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
a737bd4d 6366
c19d1205
ZW
6367 done:
6368 if (saw_a_flag == 0)
a737bd4d 6369 {
c19d1205
ZW
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
a737bd4d 6372 }
a737bd4d 6373
c19d1205
ZW
6374 *str = s - 1;
6375 return val;
a737bd4d
NC
6376}
6377
c19d1205
ZW
6378/* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
6380
6381static int
c19d1205 6382parse_endian_specifier (char **str)
a737bd4d 6383{
c19d1205
ZW
6384 int little_endian;
6385 char *s = *str;
a737bd4d 6386
c19d1205
ZW
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
a737bd4d 6392 {
c19d1205 6393 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6394 return FAIL;
6395 }
6396
c19d1205 6397 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 6398 {
c19d1205 6399 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6400 return FAIL;
6401 }
6402
c19d1205
ZW
6403 *str = s + 2;
6404 return little_endian;
6405}
a737bd4d 6406
c19d1205
ZW
6407/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411static int
6412parse_ror (char **str)
6413{
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
a737bd4d 6420 {
c19d1205 6421 inst.error = _("missing rotation field after comma");
a737bd4d
NC
6422 return FAIL;
6423 }
c19d1205
ZW
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
a737bd4d 6429 {
c19d1205
ZW
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
6437 return FAIL;
6438 }
c19d1205 6439}
a737bd4d 6440
c19d1205
ZW
6441/* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443static int
6444parse_cond (char **str)
6445{
c462b453 6446 char *q;
c19d1205 6447 const struct asm_cond *c;
c462b453
PB
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
a737bd4d 6452
c462b453
PB
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
e07e6e58 6457 cond[n] = TOLOWER (*q);
c462b453
PB
6458 q++;
6459 n++;
6460 }
a737bd4d 6461
21d799b5 6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 6463 if (!c)
a737bd4d 6464 {
c19d1205 6465 inst.error = _("condition required");
a737bd4d
NC
6466 return FAIL;
6467 }
6468
c19d1205
ZW
6469 *str = q;
6470 return c->value;
6471}
6472
62b3e311
PB
6473/* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475static int
6476parse_barrier (char **str)
6477{
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
21d799b5 6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
477330fc 6486 q - p);
62b3e311
PB
6487 if (!o)
6488 return FAIL;
6489
e797f7e0
MGD
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
62b3e311
PB
6493 *str = q;
6494 return o->value;
6495}
6496
92e90b6e
PB
6497/* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499static int
6500parse_tb (char **str)
6501{
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
92e90b6e 6510
dcbf9037 6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
5f4273c7 6523
dcbf9037 6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
e2b0ab59 6535 if (inst.relocs[0].exp.X_add_number != 1)
92e90b6e
PB
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550}
6551
5287ad62
JB
6552/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
037e8744
JB
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
5287ad62
JB
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559static int
6560parse_neon_mov (char **str, int *which_operand)
6561{
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
dcbf9037 6565 struct neon_type_el optype;
5f4273c7 6566
57785aa2
AV
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
5287ad62
JB
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
dcbf9037 6626 inst.operands[i].vectype = optype;
5287ad62
JB
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
477330fc 6630 goto wanted_comma;
5f4273c7 6631
dcbf9037 6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
477330fc 6633 goto wanted_arm;
5f4273c7 6634
5287ad62
JB
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
57785aa2
AV
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
5287ad62
JB
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
477330fc 6646 goto wanted_comma;
5f4273c7 6647
5287ad62
JB
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
dcbf9037 6653 inst.operands[i].vectype = optype;
5287ad62
JB
6654 inst.operands[i++].present = 1;
6655
dcbf9037 6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
037e8744 6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
477330fc
RM
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
4641781c 6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
477330fc
RM
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
8335d6aa
JW
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
477330fc
RM
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
5287ad62 6731 else
477330fc
RM
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
5287ad62 6736 }
dcbf9037 6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 6738 {
57785aa2 6739 /* Cases 6, 7, 16, 18. */
5287ad62
JB
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
5f4273c7 6743
5287ad62 6744 if (skip_past_comma (&ptr) == FAIL)
477330fc 6745 goto wanted_comma;
5f4273c7 6746
57785aa2
AV
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
477330fc
RM
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
dcbf9037 6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc 6764 {
477330fc
RM
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
57785aa2 6773 != FAIL)
477330fc 6774 {
57785aa2 6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
477330fc 6776
477330fc
RM
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
57785aa2 6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
477330fc
RM
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
57785aa2
AV
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
477330fc
RM
6837 }
6838 }
037e8744 6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
477330fc
RM
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
5287ad62
JB
6850 }
6851 else
6852 {
dcbf9037 6853 first_error (_("parse error"));
5287ad62
JB
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
5f4273c7 6862 wanted_comma:
dcbf9037 6863 first_error (_("expected comma"));
5287ad62 6864 return FAIL;
5f4273c7
NC
6865
6866 wanted_arm:
dcbf9037 6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6868 return FAIL;
5287ad62
JB
6869}
6870
5be8be5d
DG
6871/* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
c19d1205
ZW
6876/* Matcher codes for parse_operands. */
6877enum operand_parse_code
6878{
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6886 optional trailing ! */
c19d1205
ZW
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
5287ad62
JB
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
5ee91343
AV
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
5287ad62 6897 OP_RNQ, /* Neon quad precision register */
5ee91343 6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
037e8744 6899 OP_RVSD, /* VFP single or double precision register */
1b883319 6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
dd9634d9 6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
dec41383 6902 OP_RNSD, /* Neon single or double precision register */
5287ad62 6903 OP_RNDQ, /* Neon double or quad precision register */
5ee91343 6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
7df54120 6905 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
037e8744 6906 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6907 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6908 OP_RVC, /* VFP control register */
6909 OP_RMF, /* Maverick F register */
6910 OP_RMD, /* Maverick D register */
6911 OP_RMFX, /* Maverick FX register */
6912 OP_RMDX, /* Maverick DX register */
6913 OP_RMAX, /* Maverick AX register */
6914 OP_RMDS, /* Maverick DSPSC register */
6915 OP_RIWR, /* iWMMXt wR register */
6916 OP_RIWC, /* iWMMXt wC register */
6917 OP_RIWG, /* iWMMXt wCG register */
6918 OP_RXA, /* XScale accumulator register */
6919
5ee91343
AV
6920 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6921 */
6922 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6923 GPR (no SP/SP) */
a302e574 6924 OP_RMQ, /* MVE vector register. */
1b883319 6925 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
35d1cfc2 6926 OP_RMQRR, /* MVE vector or ARM register. */
a302e574 6927
60f993ce
AV
6928 /* New operands for Armv8.1-M Mainline. */
6929 OP_LR, /* ARM LR register */
a302e574
AV
6930 OP_RRe, /* ARM register, only even numbered. */
6931 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
60f993ce
AV
6932 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6933
c19d1205 6934 OP_REGLST, /* ARM register list */
4b5a202f 6935 OP_CLRMLST, /* CLRM register list */
c19d1205
ZW
6936 OP_VRSLST, /* VFP single-precision register list */
6937 OP_VRDLST, /* VFP double-precision register list */
037e8744 6938 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6939 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6940 OP_NSTRLST, /* Neon element/structure list */
efd6b359 6941 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
35c228db
AV
6942 OP_MSTRLST2, /* MVE vector list with two elements. */
6943 OP_MSTRLST4, /* MVE vector list with four elements. */
5287ad62 6944
5287ad62 6945 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6946 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
aacf0b33 6947 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
1b883319
AV
6948 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6949 zero. */
5287ad62 6950 OP_RR_RNSC, /* ARM reg or Neon scalar. */
dec41383 6951 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
037e8744 6952 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
886e1c73
AV
6953 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6954 */
a8465a06
AV
6955 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
6956 scalar, or ARM register. */
5287ad62 6957 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
42b16635
AV
6958 OP_RNDQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, or ARM register. */
6959 OP_RNDQMQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
6960 register. */
5d281bf0 6961 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
5287ad62
JB
6962 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6963 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6964 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
f601a00c
AV
6965 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6966 OP_RNDQMQ_Ibig,
5287ad62 6967 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6968 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
32c36c3c 6969 OP_VLDR, /* VLDR operand. */
5287ad62
JB
6970
6971 OP_I0, /* immediate zero */
c19d1205
ZW
6972 OP_I7, /* immediate value 0 .. 7 */
6973 OP_I15, /* 0 .. 15 */
6974 OP_I16, /* 1 .. 16 */
5287ad62 6975 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6976 OP_I31, /* 0 .. 31 */
6977 OP_I31w, /* 0 .. 31, optional trailing ! */
6978 OP_I32, /* 1 .. 32 */
5287ad62
JB
6979 OP_I32z, /* 0 .. 32 */
6980 OP_I63, /* 0 .. 63 */
c19d1205 6981 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6982 OP_I64, /* 1 .. 64 */
6983 OP_I64z, /* 0 .. 64 */
c19d1205 6984 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6985
6986 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6987 OP_I7b, /* 0 .. 7 */
6988 OP_I15b, /* 0 .. 15 */
6989 OP_I31b, /* 0 .. 31 */
6990
6991 OP_SH, /* shifter operand */
4962c51a 6992 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6993 OP_ADDR, /* Memory address expression (any mode) */
35c228db 6994 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
4962c51a
MS
6995 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6996 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6997 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6998 OP_EXP, /* arbitrary expression */
6999 OP_EXPi, /* same, with optional immediate prefix */
7000 OP_EXPr, /* same, with optional relocation suffix */
e2b0ab59 7001 OP_EXPs, /* same, with optional non-first operand relocation suffix */
b6895b4f 7002 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c28eeff2
SN
7003 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7004 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
c19d1205
ZW
7005
7006 OP_CPSF, /* CPS flags */
7007 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
7008 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7009 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 7010 OP_COND, /* conditional code */
92e90b6e 7011 OP_TB, /* Table branch. */
c19d1205 7012
037e8744
JB
7013 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7014
c19d1205 7015 OP_RRnpc_I0, /* ARM register or literal 0 */
33eaf5de 7016 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
c19d1205
ZW
7017 OP_RR_EXi, /* ARM register or expression with imm prefix */
7018 OP_RF_IF, /* FPA register or immediate */
7019 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 7020 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
7021
7022 /* Optional operands. */
7023 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7024 OP_oI31b, /* 0 .. 31 */
5287ad62 7025 OP_oI32b, /* 1 .. 32 */
5f1af56b 7026 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
7027 OP_oIffffb, /* 0 .. 65535 */
7028 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7029
7030 OP_oRR, /* ARM register */
60f993ce 7031 OP_oLR, /* ARM LR register */
c19d1205 7032 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 7033 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 7034 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
7035 OP_oRND, /* Optional Neon double precision register */
7036 OP_oRNQ, /* Optional Neon quad precision register */
5ee91343 7037 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
5287ad62 7038 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 7039 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5ee91343
AV
7040 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7041 register. */
c19d1205
ZW
7042 OP_oSHll, /* LSL immediate */
7043 OP_oSHar, /* ASR immediate */
7044 OP_oSHllar, /* LSL or ASR immediate */
7045 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 7046 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 7047
1b883319
AV
7048 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7049
5be8be5d
DG
7050 /* Some pre-defined mixed (ARM/THUMB) operands. */
7051 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7052 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7053 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7054
c19d1205
ZW
7055 OP_FIRST_OPTIONAL = OP_oI7b
7056};
a737bd4d 7057
c19d1205
ZW
7058/* Generic instruction operand parser. This does no encoding and no
7059 semantic validation; it merely squirrels values away in the inst
7060 structure. Returns SUCCESS or FAIL depending on whether the
7061 specified grammar matched. */
7062static int
5be8be5d 7063parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 7064{
5be8be5d 7065 unsigned const int *upat = pattern;
c19d1205
ZW
7066 char *backtrack_pos = 0;
7067 const char *backtrack_error = 0;
99aad254 7068 int i, val = 0, backtrack_index = 0;
5287ad62 7069 enum arm_reg_type rtype;
4962c51a 7070 parse_operand_result result;
5be8be5d 7071 unsigned int op_parse_code;
efd6b359 7072 bfd_boolean partial_match;
c19d1205 7073
e07e6e58
NC
7074#define po_char_or_fail(chr) \
7075 do \
7076 { \
7077 if (skip_past_char (&str, chr) == FAIL) \
477330fc 7078 goto bad_args; \
e07e6e58
NC
7079 } \
7080 while (0)
c19d1205 7081
e07e6e58
NC
7082#define po_reg_or_fail(regtype) \
7083 do \
dcbf9037 7084 { \
e07e6e58 7085 val = arm_typed_reg_parse (& str, regtype, & rtype, \
477330fc 7086 & inst.operands[i].vectype); \
e07e6e58 7087 if (val == FAIL) \
477330fc
RM
7088 { \
7089 first_error (_(reg_expected_msgs[regtype])); \
7090 goto failure; \
7091 } \
e07e6e58
NC
7092 inst.operands[i].reg = val; \
7093 inst.operands[i].isreg = 1; \
7094 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7095 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7096 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc
RM
7097 || rtype == REG_TYPE_VFD \
7098 || rtype == REG_TYPE_NQ); \
1b883319 7099 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
dcbf9037 7100 } \
e07e6e58
NC
7101 while (0)
7102
7103#define po_reg_or_goto(regtype, label) \
7104 do \
7105 { \
7106 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7107 & inst.operands[i].vectype); \
7108 if (val == FAIL) \
7109 goto label; \
dcbf9037 7110 \
e07e6e58
NC
7111 inst.operands[i].reg = val; \
7112 inst.operands[i].isreg = 1; \
7113 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7114 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7115 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc 7116 || rtype == REG_TYPE_VFD \
e07e6e58 7117 || rtype == REG_TYPE_NQ); \
1b883319 7118 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
e07e6e58
NC
7119 } \
7120 while (0)
7121
7122#define po_imm_or_fail(min, max, popt) \
7123 do \
7124 { \
7125 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7126 goto failure; \
7127 inst.operands[i].imm = val; \
7128 } \
7129 while (0)
7130
57785aa2 7131#define po_scalar_or_goto(elsz, label, reg_type) \
e07e6e58
NC
7132 do \
7133 { \
57785aa2
AV
7134 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7135 reg_type); \
e07e6e58
NC
7136 if (val == FAIL) \
7137 goto label; \
7138 inst.operands[i].reg = val; \
7139 inst.operands[i].isscalar = 1; \
7140 } \
7141 while (0)
7142
7143#define po_misc_or_fail(expr) \
7144 do \
7145 { \
7146 if (expr) \
7147 goto failure; \
7148 } \
7149 while (0)
7150
7151#define po_misc_or_fail_no_backtrack(expr) \
7152 do \
7153 { \
7154 result = expr; \
7155 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7156 backtrack_pos = 0; \
7157 if (result != PARSE_OPERAND_SUCCESS) \
7158 goto failure; \
7159 } \
7160 while (0)
4962c51a 7161
52e7f43d
RE
7162#define po_barrier_or_imm(str) \
7163 do \
7164 { \
7165 val = parse_barrier (&str); \
ccb84d65
JB
7166 if (val == FAIL && ! ISALPHA (*str)) \
7167 goto immediate; \
7168 if (val == FAIL \
7169 /* ISB can only take SY as an option. */ \
7170 || ((inst.instruction & 0xf0) == 0x60 \
7171 && val != 0xf)) \
52e7f43d 7172 { \
ccb84d65
JB
7173 inst.error = _("invalid barrier type"); \
7174 backtrack_pos = 0; \
7175 goto failure; \
52e7f43d
RE
7176 } \
7177 } \
7178 while (0)
7179
c19d1205
ZW
7180 skip_whitespace (str);
7181
7182 for (i = 0; upat[i] != OP_stop; i++)
7183 {
5be8be5d
DG
7184 op_parse_code = upat[i];
7185 if (op_parse_code >= 1<<16)
7186 op_parse_code = thumb ? (op_parse_code >> 16)
7187 : (op_parse_code & ((1<<16)-1));
7188
7189 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
7190 {
7191 /* Remember where we are in case we need to backtrack. */
c19d1205
ZW
7192 backtrack_pos = str;
7193 backtrack_error = inst.error;
7194 backtrack_index = i;
7195 }
7196
b6702015 7197 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
7198 po_char_or_fail (',');
7199
5be8be5d 7200 switch (op_parse_code)
c19d1205
ZW
7201 {
7202 /* Registers */
7203 case OP_oRRnpc:
5be8be5d 7204 case OP_oRRnpcsp:
c19d1205 7205 case OP_RRnpc:
5be8be5d 7206 case OP_RRnpcsp:
c19d1205 7207 case OP_oRR:
a302e574
AV
7208 case OP_RRe:
7209 case OP_RRo:
60f993ce
AV
7210 case OP_LR:
7211 case OP_oLR:
c19d1205
ZW
7212 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7213 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7214 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7215 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7216 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7217 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
477330fc 7218 case OP_oRND:
5ee91343
AV
7219 case OP_RNDMQR:
7220 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7221 break;
7222 try_rndmq:
7223 case OP_RNDMQ:
7224 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7225 break;
7226 try_rnd:
5287ad62 7227 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
7228 case OP_RVC:
7229 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7230 break;
7231 /* Also accept generic coprocessor regs for unknown registers. */
7232 coproc_reg:
7233 po_reg_or_fail (REG_TYPE_CN);
7234 break;
c19d1205
ZW
7235 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7236 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7237 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7238 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7239 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7240 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7241 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7242 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7243 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7244 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
477330fc 7245 case OP_oRNQ:
5ee91343
AV
7246 case OP_RNQMQ:
7247 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7248 break;
7249 try_nq:
5287ad62 7250 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
dec41383 7251 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7df54120
AV
7252 case OP_RNDQMQR:
7253 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7254 break;
7255 try_rndqmq:
5ee91343
AV
7256 case OP_oRNDQMQ:
7257 case OP_RNDQMQ:
7258 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7259 break;
7260 try_rndq:
477330fc 7261 case OP_oRNDQ:
5287ad62 7262 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
dd9634d9
AV
7263 case OP_RVSDMQ:
7264 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7265 break;
7266 try_rvsd:
477330fc 7267 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
1b883319
AV
7268 case OP_RVSD_COND:
7269 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7270 break;
477330fc
RM
7271 case OP_oRNSDQ:
7272 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5ee91343
AV
7273 case OP_RNSDQMQR:
7274 po_reg_or_goto (REG_TYPE_RN, try_mq);
7275 break;
7276 try_mq:
7277 case OP_oRNSDQMQ:
7278 case OP_RNSDQMQ:
7279 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7280 break;
7281 try_nsdq2:
7282 po_reg_or_fail (REG_TYPE_NSDQ);
7283 inst.error = 0;
7284 break;
35d1cfc2
AV
7285 case OP_RMQRR:
7286 po_reg_or_goto (REG_TYPE_RN, try_rmq);
7287 break;
7288 try_rmq:
a302e574
AV
7289 case OP_RMQ:
7290 po_reg_or_fail (REG_TYPE_MQ);
7291 break;
477330fc
RM
7292 /* Neon scalar. Using an element size of 8 means that some invalid
7293 scalars are accepted here, so deal with those in later code. */
57785aa2 7294 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
477330fc
RM
7295
7296 case OP_RNDQ_I0:
7297 {
7298 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7299 break;
7300 try_imm0:
7301 po_imm_or_fail (0, 0, TRUE);
7302 }
7303 break;
7304
7305 case OP_RVSD_I0:
7306 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7307 break;
7308
1b883319
AV
7309 case OP_RSVDMQ_FI0:
7310 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7311 break;
7312 try_rsvd_fi0:
aacf0b33
KT
7313 case OP_RSVD_FI0:
7314 {
7315 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7316 break;
7317 try_ifimm0:
7318 if (parse_ifimm_zero (&str))
7319 inst.operands[i].imm = 0;
7320 else
7321 {
7322 inst.error
7323 = _("only floating point zero is allowed as immediate value");
7324 goto failure;
7325 }
7326 }
7327 break;
7328
477330fc
RM
7329 case OP_RR_RNSC:
7330 {
57785aa2 7331 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
477330fc
RM
7332 break;
7333 try_rr:
7334 po_reg_or_fail (REG_TYPE_RN);
7335 }
7336 break;
7337
a8465a06
AV
7338 case OP_RNSDQ_RNSC_MQ_RR:
7339 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7340 break;
7341 try_rnsdq_rnsc_mq:
886e1c73
AV
7342 case OP_RNSDQ_RNSC_MQ:
7343 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7344 break;
7345 try_rnsdq_rnsc:
477330fc
RM
7346 case OP_RNSDQ_RNSC:
7347 {
57785aa2
AV
7348 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7349 inst.error = 0;
477330fc
RM
7350 break;
7351 try_nsdq:
7352 po_reg_or_fail (REG_TYPE_NSDQ);
57785aa2 7353 inst.error = 0;
477330fc
RM
7354 }
7355 break;
7356
dec41383
JW
7357 case OP_RNSD_RNSC:
7358 {
57785aa2 7359 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
dec41383
JW
7360 break;
7361 try_s_scalar:
57785aa2 7362 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
dec41383
JW
7363 break;
7364 try_nsd:
7365 po_reg_or_fail (REG_TYPE_NSD);
7366 }
7367 break;
7368
42b16635
AV
7369 case OP_RNDQMQ_RNSC_RR:
7370 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc_rr);
7371 break;
7372 try_rndq_rnsc_rr:
7373 case OP_RNDQ_RNSC_RR:
7374 po_reg_or_goto (REG_TYPE_RN, try_rndq_rnsc);
7375 break;
5d281bf0
AV
7376 case OP_RNDQMQ_RNSC:
7377 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7378 break;
7379 try_rndq_rnsc:
477330fc
RM
7380 case OP_RNDQ_RNSC:
7381 {
57785aa2 7382 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
477330fc
RM
7383 break;
7384 try_ndq:
7385 po_reg_or_fail (REG_TYPE_NDQ);
7386 }
7387 break;
7388
7389 case OP_RND_RNSC:
7390 {
57785aa2 7391 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
477330fc
RM
7392 break;
7393 try_vfd:
7394 po_reg_or_fail (REG_TYPE_VFD);
7395 }
7396 break;
7397
7398 case OP_VMOV:
7399 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7400 not careful then bad things might happen. */
7401 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7402 break;
7403
f601a00c
AV
7404 case OP_RNDQMQ_Ibig:
7405 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7406 break;
7407 try_rndq_ibig:
477330fc
RM
7408 case OP_RNDQ_Ibig:
7409 {
7410 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7411 break;
7412 try_immbig:
7413 /* There's a possibility of getting a 64-bit immediate here, so
7414 we need special handling. */
8335d6aa
JW
7415 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7416 == FAIL)
477330fc
RM
7417 {
7418 inst.error = _("immediate value is out of range");
7419 goto failure;
7420 }
7421 }
7422 break;
7423
7424 case OP_RNDQ_I63b:
7425 {
7426 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7427 break;
7428 try_shimm:
7429 po_imm_or_fail (0, 63, TRUE);
7430 }
7431 break;
c19d1205
ZW
7432
7433 case OP_RRnpcb:
7434 po_char_or_fail ('[');
7435 po_reg_or_fail (REG_TYPE_RN);
7436 po_char_or_fail (']');
7437 break;
a737bd4d 7438
55881a11 7439 case OP_RRnpctw:
c19d1205 7440 case OP_RRw:
b6702015 7441 case OP_oRRw:
c19d1205
ZW
7442 po_reg_or_fail (REG_TYPE_RN);
7443 if (skip_past_char (&str, '!') == SUCCESS)
7444 inst.operands[i].writeback = 1;
7445 break;
7446
7447 /* Immediates */
7448 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7449 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7450 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
477330fc 7451 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
7452 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7453 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
477330fc 7454 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 7455 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
477330fc
RM
7456 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7457 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7458 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 7459 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
7460
7461 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7462 case OP_oI7b:
7463 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7464 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7465 case OP_oI31b:
7466 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
477330fc
RM
7467 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7468 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
7469 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7470
7471 /* Immediate variants */
7472 case OP_oI255c:
7473 po_char_or_fail ('{');
7474 po_imm_or_fail (0, 255, TRUE);
7475 po_char_or_fail ('}');
7476 break;
7477
7478 case OP_I31w:
7479 /* The expression parser chokes on a trailing !, so we have
7480 to find it first and zap it. */
7481 {
7482 char *s = str;
7483 while (*s && *s != ',')
7484 s++;
7485 if (s[-1] == '!')
7486 {
7487 s[-1] = '\0';
7488 inst.operands[i].writeback = 1;
7489 }
7490 po_imm_or_fail (0, 31, TRUE);
7491 if (str == s - 1)
7492 str = s;
7493 }
7494 break;
7495
7496 /* Expressions */
7497 case OP_EXPi: EXPi:
e2b0ab59 7498 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7499 GE_OPT_PREFIX));
7500 break;
7501
7502 case OP_EXP:
e2b0ab59 7503 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7504 GE_NO_PREFIX));
7505 break;
7506
7507 case OP_EXPr: EXPr:
e2b0ab59 7508 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205 7509 GE_NO_PREFIX));
e2b0ab59 7510 if (inst.relocs[0].exp.X_op == O_symbol)
a737bd4d 7511 {
c19d1205
ZW
7512 val = parse_reloc (&str);
7513 if (val == -1)
7514 {
7515 inst.error = _("unrecognized relocation suffix");
7516 goto failure;
7517 }
7518 else if (val != BFD_RELOC_UNUSED)
7519 {
7520 inst.operands[i].imm = val;
7521 inst.operands[i].hasreloc = 1;
7522 }
a737bd4d 7523 }
c19d1205 7524 break;
a737bd4d 7525
e2b0ab59
AV
7526 case OP_EXPs:
7527 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7528 GE_NO_PREFIX));
7529 if (inst.relocs[i].exp.X_op == O_symbol)
7530 {
7531 inst.operands[i].hasreloc = 1;
7532 }
7533 else if (inst.relocs[i].exp.X_op == O_constant)
7534 {
7535 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7536 inst.operands[i].hasreloc = 0;
7537 }
7538 break;
7539
b6895b4f
PB
7540 /* Operand for MOVW or MOVT. */
7541 case OP_HALF:
7542 po_misc_or_fail (parse_half (&str));
7543 break;
7544
e07e6e58 7545 /* Register or expression. */
c19d1205
ZW
7546 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7547 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 7548
e07e6e58 7549 /* Register or immediate. */
c19d1205
ZW
7550 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7551 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 7552
c19d1205
ZW
7553 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7554 IF:
7555 if (!is_immediate_prefix (*str))
7556 goto bad_args;
7557 str++;
7558 val = parse_fpa_immediate (&str);
7559 if (val == FAIL)
7560 goto failure;
7561 /* FPA immediates are encoded as registers 8-15.
7562 parse_fpa_immediate has already applied the offset. */
7563 inst.operands[i].reg = val;
7564 inst.operands[i].isreg = 1;
7565 break;
09d92015 7566
2d447fca
JM
7567 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7568 I32z: po_imm_or_fail (0, 32, FALSE); break;
7569
e07e6e58 7570 /* Two kinds of register. */
c19d1205
ZW
7571 case OP_RIWR_RIWC:
7572 {
7573 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
7574 if (!rege
7575 || (rege->type != REG_TYPE_MMXWR
7576 && rege->type != REG_TYPE_MMXWC
7577 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
7578 {
7579 inst.error = _("iWMMXt data or control register expected");
7580 goto failure;
7581 }
7582 inst.operands[i].reg = rege->number;
7583 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7584 }
7585 break;
09d92015 7586
41adaa5c
JM
7587 case OP_RIWC_RIWG:
7588 {
7589 struct reg_entry *rege = arm_reg_parse_multi (&str);
7590 if (!rege
7591 || (rege->type != REG_TYPE_MMXWC
7592 && rege->type != REG_TYPE_MMXWCG))
7593 {
7594 inst.error = _("iWMMXt control register expected");
7595 goto failure;
7596 }
7597 inst.operands[i].reg = rege->number;
7598 inst.operands[i].isreg = 1;
7599 }
7600 break;
7601
c19d1205
ZW
7602 /* Misc */
7603 case OP_CPSF: val = parse_cps_flags (&str); break;
7604 case OP_ENDI: val = parse_endian_specifier (&str); break;
7605 case OP_oROR: val = parse_ror (&str); break;
1b883319 7606 try_cond:
c19d1205 7607 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
7608 case OP_oBARRIER_I15:
7609 po_barrier_or_imm (str); break;
7610 immediate:
7611 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
477330fc 7612 goto failure;
52e7f43d 7613 break;
c19d1205 7614
fa94de6b 7615 case OP_wPSR:
d2cd1205 7616 case OP_rPSR:
90ec0d68
MGD
7617 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7618 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7619 {
7620 inst.error = _("Banked registers are not available with this "
7621 "architecture.");
7622 goto failure;
7623 }
7624 break;
d2cd1205
JB
7625 try_psr:
7626 val = parse_psr (&str, op_parse_code == OP_wPSR);
7627 break;
037e8744 7628
32c36c3c
AV
7629 case OP_VLDR:
7630 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7631 break;
7632 try_sysreg:
7633 val = parse_sys_vldr_vstr (&str);
7634 break;
7635
477330fc
RM
7636 case OP_APSR_RR:
7637 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7638 break;
7639 try_apsr:
7640 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7641 instruction). */
7642 if (strncasecmp (str, "APSR_", 5) == 0)
7643 {
7644 unsigned found = 0;
7645 str += 5;
7646 while (found < 15)
7647 switch (*str++)
7648 {
7649 case 'c': found = (found & 1) ? 16 : found | 1; break;
7650 case 'n': found = (found & 2) ? 16 : found | 2; break;
7651 case 'z': found = (found & 4) ? 16 : found | 4; break;
7652 case 'v': found = (found & 8) ? 16 : found | 8; break;
7653 default: found = 16;
7654 }
7655 if (found != 15)
7656 goto failure;
7657 inst.operands[i].isvec = 1;
f7c21dc7
NC
7658 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7659 inst.operands[i].reg = REG_PC;
477330fc
RM
7660 }
7661 else
7662 goto failure;
7663 break;
037e8744 7664
92e90b6e
PB
7665 case OP_TB:
7666 po_misc_or_fail (parse_tb (&str));
7667 break;
7668
e07e6e58 7669 /* Register lists. */
c19d1205 7670 case OP_REGLST:
4b5a202f 7671 val = parse_reg_list (&str, REGLIST_RN);
c19d1205
ZW
7672 if (*str == '^')
7673 {
5e0d7f77 7674 inst.operands[i].writeback = 1;
c19d1205
ZW
7675 str++;
7676 }
7677 break;
09d92015 7678
4b5a202f
AV
7679 case OP_CLRMLST:
7680 val = parse_reg_list (&str, REGLIST_CLRM);
7681 break;
7682
c19d1205 7683 case OP_VRSLST:
efd6b359
AV
7684 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7685 &partial_match);
c19d1205 7686 break;
09d92015 7687
c19d1205 7688 case OP_VRDLST:
efd6b359
AV
7689 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7690 &partial_match);
c19d1205 7691 break;
a737bd4d 7692
477330fc
RM
7693 case OP_VRSDLST:
7694 /* Allow Q registers too. */
7695 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7696 REGLIST_NEON_D, &partial_match);
477330fc
RM
7697 if (val == FAIL)
7698 {
7699 inst.error = NULL;
7700 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359
AV
7701 REGLIST_VFP_S, &partial_match);
7702 inst.operands[i].issingle = 1;
7703 }
7704 break;
7705
7706 case OP_VRSDVLST:
7707 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7708 REGLIST_VFP_D_VPR, &partial_match);
7709 if (val == FAIL && !partial_match)
7710 {
7711 inst.error = NULL;
7712 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7713 REGLIST_VFP_S_VPR, &partial_match);
477330fc
RM
7714 inst.operands[i].issingle = 1;
7715 }
7716 break;
7717
7718 case OP_NRDLST:
7719 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7720 REGLIST_NEON_D, &partial_match);
477330fc 7721 break;
5287ad62 7722
35c228db
AV
7723 case OP_MSTRLST4:
7724 case OP_MSTRLST2:
7725 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7726 1, &inst.operands[i].vectype);
7727 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7728 goto failure;
7729 break;
5287ad62 7730 case OP_NSTRLST:
477330fc 7731 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
35c228db 7732 0, &inst.operands[i].vectype);
477330fc 7733 break;
5287ad62 7734
c19d1205 7735 /* Addressing modes */
35c228db
AV
7736 case OP_ADDRMVE:
7737 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7738 break;
7739
c19d1205
ZW
7740 case OP_ADDR:
7741 po_misc_or_fail (parse_address (&str, i));
7742 break;
09d92015 7743
4962c51a
MS
7744 case OP_ADDRGLDR:
7745 po_misc_or_fail_no_backtrack (
477330fc 7746 parse_address_group_reloc (&str, i, GROUP_LDR));
4962c51a
MS
7747 break;
7748
7749 case OP_ADDRGLDRS:
7750 po_misc_or_fail_no_backtrack (
477330fc 7751 parse_address_group_reloc (&str, i, GROUP_LDRS));
4962c51a
MS
7752 break;
7753
7754 case OP_ADDRGLDC:
7755 po_misc_or_fail_no_backtrack (
477330fc 7756 parse_address_group_reloc (&str, i, GROUP_LDC));
4962c51a
MS
7757 break;
7758
c19d1205
ZW
7759 case OP_SH:
7760 po_misc_or_fail (parse_shifter_operand (&str, i));
7761 break;
09d92015 7762
4962c51a
MS
7763 case OP_SHG:
7764 po_misc_or_fail_no_backtrack (
477330fc 7765 parse_shifter_operand_group_reloc (&str, i));
4962c51a
MS
7766 break;
7767
c19d1205
ZW
7768 case OP_oSHll:
7769 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7770 break;
09d92015 7771
c19d1205
ZW
7772 case OP_oSHar:
7773 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7774 break;
09d92015 7775
c19d1205
ZW
7776 case OP_oSHllar:
7777 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7778 break;
09d92015 7779
1b883319
AV
7780 case OP_RMQRZ:
7781 case OP_oRMQRZ:
7782 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7783 break;
7784 try_rr_zr:
7785 po_reg_or_goto (REG_TYPE_RN, ZR);
7786 break;
7787 ZR:
7788 po_reg_or_fail (REG_TYPE_ZR);
7789 break;
7790
c19d1205 7791 default:
5be8be5d 7792 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 7793 }
09d92015 7794
c19d1205
ZW
7795 /* Various value-based sanity checks and shared operations. We
7796 do not signal immediate failures for the register constraints;
7797 this allows a syntax error to take precedence. */
5be8be5d 7798 switch (op_parse_code)
c19d1205
ZW
7799 {
7800 case OP_oRRnpc:
7801 case OP_RRnpc:
7802 case OP_RRnpcb:
7803 case OP_RRw:
b6702015 7804 case OP_oRRw:
c19d1205
ZW
7805 case OP_RRnpc_I0:
7806 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7807 inst.error = BAD_PC;
7808 break;
09d92015 7809
5be8be5d
DG
7810 case OP_oRRnpcsp:
7811 case OP_RRnpcsp:
7812 if (inst.operands[i].isreg)
7813 {
7814 if (inst.operands[i].reg == REG_PC)
7815 inst.error = BAD_PC;
5c8ed6a4
JW
7816 else if (inst.operands[i].reg == REG_SP
7817 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7818 relaxed since ARMv8-A. */
7819 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7820 {
7821 gas_assert (thumb);
7822 inst.error = BAD_SP;
7823 }
5be8be5d
DG
7824 }
7825 break;
7826
55881a11 7827 case OP_RRnpctw:
fa94de6b
RM
7828 if (inst.operands[i].isreg
7829 && inst.operands[i].reg == REG_PC
55881a11
MGD
7830 && (inst.operands[i].writeback || thumb))
7831 inst.error = BAD_PC;
7832 break;
7833
1b883319 7834 case OP_RVSD_COND:
32c36c3c
AV
7835 case OP_VLDR:
7836 if (inst.operands[i].isreg)
7837 break;
7838 /* fall through. */
1b883319 7839
c19d1205
ZW
7840 case OP_CPSF:
7841 case OP_ENDI:
7842 case OP_oROR:
d2cd1205
JB
7843 case OP_wPSR:
7844 case OP_rPSR:
c19d1205 7845 case OP_COND:
52e7f43d 7846 case OP_oBARRIER_I15:
c19d1205 7847 case OP_REGLST:
4b5a202f 7848 case OP_CLRMLST:
c19d1205
ZW
7849 case OP_VRSLST:
7850 case OP_VRDLST:
477330fc 7851 case OP_VRSDLST:
efd6b359 7852 case OP_VRSDVLST:
477330fc
RM
7853 case OP_NRDLST:
7854 case OP_NSTRLST:
35c228db
AV
7855 case OP_MSTRLST2:
7856 case OP_MSTRLST4:
c19d1205
ZW
7857 if (val == FAIL)
7858 goto failure;
7859 inst.operands[i].imm = val;
7860 break;
a737bd4d 7861
60f993ce
AV
7862 case OP_LR:
7863 case OP_oLR:
7864 if (inst.operands[i].reg != REG_LR)
7865 inst.error = _("operand must be LR register");
7866 break;
7867
1b883319
AV
7868 case OP_RMQRZ:
7869 case OP_oRMQRZ:
7870 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7871 inst.error = BAD_PC;
7872 break;
7873
a302e574
AV
7874 case OP_RRe:
7875 if (inst.operands[i].isreg
7876 && (inst.operands[i].reg & 0x00000001) != 0)
7877 inst.error = BAD_ODD;
7878 break;
7879
7880 case OP_RRo:
7881 if (inst.operands[i].isreg)
7882 {
7883 if ((inst.operands[i].reg & 0x00000001) != 1)
7884 inst.error = BAD_EVEN;
7885 else if (inst.operands[i].reg == REG_SP)
7886 as_tsktsk (MVE_BAD_SP);
7887 else if (inst.operands[i].reg == REG_PC)
7888 inst.error = BAD_PC;
7889 }
7890 break;
7891
c19d1205
ZW
7892 default:
7893 break;
7894 }
09d92015 7895
c19d1205
ZW
7896 /* If we get here, this operand was successfully parsed. */
7897 inst.operands[i].present = 1;
7898 continue;
09d92015 7899
c19d1205 7900 bad_args:
09d92015 7901 inst.error = BAD_ARGS;
c19d1205
ZW
7902
7903 failure:
7904 if (!backtrack_pos)
d252fdde
PB
7905 {
7906 /* The parse routine should already have set inst.error, but set a
5f4273c7 7907 default here just in case. */
d252fdde 7908 if (!inst.error)
5ee91343 7909 inst.error = BAD_SYNTAX;
d252fdde
PB
7910 return FAIL;
7911 }
c19d1205
ZW
7912
7913 /* Do not backtrack over a trailing optional argument that
7914 absorbed some text. We will only fail again, with the
7915 'garbage following instruction' error message, which is
7916 probably less helpful than the current one. */
7917 if (backtrack_index == i && backtrack_pos != str
7918 && upat[i+1] == OP_stop)
d252fdde
PB
7919 {
7920 if (!inst.error)
5ee91343 7921 inst.error = BAD_SYNTAX;
d252fdde
PB
7922 return FAIL;
7923 }
c19d1205
ZW
7924
7925 /* Try again, skipping the optional argument at backtrack_pos. */
7926 str = backtrack_pos;
7927 inst.error = backtrack_error;
7928 inst.operands[backtrack_index].present = 0;
7929 i = backtrack_index;
7930 backtrack_pos = 0;
09d92015 7931 }
09d92015 7932
c19d1205
ZW
7933 /* Check that we have parsed all the arguments. */
7934 if (*str != '\0' && !inst.error)
7935 inst.error = _("garbage following instruction");
09d92015 7936
c19d1205 7937 return inst.error ? FAIL : SUCCESS;
09d92015
MM
7938}
7939
c19d1205
ZW
7940#undef po_char_or_fail
7941#undef po_reg_or_fail
7942#undef po_reg_or_goto
7943#undef po_imm_or_fail
5287ad62 7944#undef po_scalar_or_fail
52e7f43d 7945#undef po_barrier_or_imm
e07e6e58 7946
c19d1205 7947/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
7948#define constraint(expr, err) \
7949 do \
c19d1205 7950 { \
e07e6e58
NC
7951 if (expr) \
7952 { \
7953 inst.error = err; \
7954 return; \
7955 } \
c19d1205 7956 } \
e07e6e58 7957 while (0)
c19d1205 7958
fdfde340
JM
7959/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7960 instructions are unpredictable if these registers are used. This
5c8ed6a4
JW
7961 is the BadReg predicate in ARM's Thumb-2 documentation.
7962
7963 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7964 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7965#define reject_bad_reg(reg) \
7966 do \
7967 if (reg == REG_PC) \
7968 { \
7969 inst.error = BAD_PC; \
7970 return; \
7971 } \
7972 else if (reg == REG_SP \
7973 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7974 { \
7975 inst.error = BAD_SP; \
7976 return; \
7977 } \
fdfde340
JM
7978 while (0)
7979
94206790
MM
7980/* If REG is R13 (the stack pointer), warn that its use is
7981 deprecated. */
7982#define warn_deprecated_sp(reg) \
7983 do \
7984 if (warn_on_deprecated && reg == REG_SP) \
5c3696f8 7985 as_tsktsk (_("use of r13 is deprecated")); \
94206790
MM
7986 while (0)
7987
c19d1205
ZW
7988/* Functions for operand encoding. ARM, then Thumb. */
7989
d840c081 7990#define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
c19d1205 7991
9db2f6b4
RL
7992/* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7993
7994 The only binary encoding difference is the Coprocessor number. Coprocessor
7995 9 is used for half-precision calculations or conversions. The format of the
2b0f3761 7996 instruction is the same as the equivalent Coprocessor 10 instruction that
9db2f6b4
RL
7997 exists for Single-Precision operation. */
7998
7999static void
8000do_scalar_fp16_v82_encode (void)
8001{
5ee91343 8002 if (inst.cond < COND_ALWAYS)
9db2f6b4
RL
8003 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
8004 " the behaviour is UNPREDICTABLE"));
8005 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
8006 _(BAD_FP16));
8007
8008 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
8009 mark_feature_used (&arm_ext_fp16);
8010}
8011
c19d1205
ZW
8012/* If VAL can be encoded in the immediate field of an ARM instruction,
8013 return the encoded form. Otherwise, return FAIL. */
8014
8015static unsigned int
8016encode_arm_immediate (unsigned int val)
09d92015 8017{
c19d1205
ZW
8018 unsigned int a, i;
8019
4f1d6205
L
8020 if (val <= 0xff)
8021 return val;
8022
8023 for (i = 2; i < 32; i += 2)
c19d1205
ZW
8024 if ((a = rotate_left (val, i)) <= 0xff)
8025 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8026
8027 return FAIL;
09d92015
MM
8028}
8029
c19d1205
ZW
8030/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8031 return the encoded form. Otherwise, return FAIL. */
8032static unsigned int
8033encode_thumb32_immediate (unsigned int val)
09d92015 8034{
c19d1205 8035 unsigned int a, i;
09d92015 8036
9c3c69f2 8037 if (val <= 0xff)
c19d1205 8038 return val;
a737bd4d 8039
9c3c69f2 8040 for (i = 1; i <= 24; i++)
09d92015 8041 {
9c3c69f2
PB
8042 a = val >> i;
8043 if ((val & ~(0xff << i)) == 0)
8044 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 8045 }
a737bd4d 8046
c19d1205
ZW
8047 a = val & 0xff;
8048 if (val == ((a << 16) | a))
8049 return 0x100 | a;
8050 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8051 return 0x300 | a;
09d92015 8052
c19d1205
ZW
8053 a = val & 0xff00;
8054 if (val == ((a << 16) | a))
8055 return 0x200 | (a >> 8);
a737bd4d 8056
c19d1205 8057 return FAIL;
09d92015 8058}
5287ad62 8059/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
8060
8061static void
5287ad62
JB
8062encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8063{
8064 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8065 && reg > 15)
8066 {
b1cc4aeb 8067 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
8068 {
8069 if (thumb_mode)
8070 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8071 fpu_vfp_ext_d32);
8072 else
8073 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8074 fpu_vfp_ext_d32);
8075 }
5287ad62 8076 else
477330fc
RM
8077 {
8078 first_error (_("D register out of range for selected VFP version"));
8079 return;
8080 }
5287ad62
JB
8081 }
8082
c19d1205 8083 switch (pos)
09d92015 8084 {
c19d1205
ZW
8085 case VFP_REG_Sd:
8086 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8087 break;
8088
8089 case VFP_REG_Sn:
8090 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8091 break;
8092
8093 case VFP_REG_Sm:
8094 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8095 break;
8096
5287ad62
JB
8097 case VFP_REG_Dd:
8098 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8099 break;
5f4273c7 8100
5287ad62
JB
8101 case VFP_REG_Dn:
8102 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8103 break;
5f4273c7 8104
5287ad62
JB
8105 case VFP_REG_Dm:
8106 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8107 break;
8108
c19d1205
ZW
8109 default:
8110 abort ();
09d92015 8111 }
09d92015
MM
8112}
8113
c19d1205 8114/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 8115 if any, is handled by md_apply_fix. */
09d92015 8116static void
c19d1205 8117encode_arm_shift (int i)
09d92015 8118{
008a97ef
RL
8119 /* register-shifted register. */
8120 if (inst.operands[i].immisreg)
8121 {
bf355b69
MR
8122 int op_index;
8123 for (op_index = 0; op_index <= i; ++op_index)
008a97ef 8124 {
5689c942
RL
8125 /* Check the operand only when it's presented. In pre-UAL syntax,
8126 if the destination register is the same as the first operand, two
8127 register form of the instruction can be used. */
bf355b69
MR
8128 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8129 && inst.operands[op_index].reg == REG_PC)
008a97ef
RL
8130 as_warn (UNPRED_REG ("r15"));
8131 }
8132
8133 if (inst.operands[i].imm == REG_PC)
8134 as_warn (UNPRED_REG ("r15"));
8135 }
8136
c19d1205
ZW
8137 if (inst.operands[i].shift_kind == SHIFT_RRX)
8138 inst.instruction |= SHIFT_ROR << 5;
8139 else
09d92015 8140 {
c19d1205
ZW
8141 inst.instruction |= inst.operands[i].shift_kind << 5;
8142 if (inst.operands[i].immisreg)
8143 {
8144 inst.instruction |= SHIFT_BY_REG;
8145 inst.instruction |= inst.operands[i].imm << 8;
8146 }
8147 else
e2b0ab59 8148 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 8149 }
c19d1205 8150}
09d92015 8151
c19d1205
ZW
8152static void
8153encode_arm_shifter_operand (int i)
8154{
8155 if (inst.operands[i].isreg)
09d92015 8156 {
c19d1205
ZW
8157 inst.instruction |= inst.operands[i].reg;
8158 encode_arm_shift (i);
09d92015 8159 }
c19d1205 8160 else
a415b1cd
JB
8161 {
8162 inst.instruction |= INST_IMMEDIATE;
e2b0ab59 8163 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
a415b1cd
JB
8164 inst.instruction |= inst.operands[i].imm;
8165 }
09d92015
MM
8166}
8167
c19d1205 8168/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 8169static void
c19d1205 8170encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 8171{
2b2f5df9
NC
8172 /* PR 14260:
8173 Generate an error if the operand is not a register. */
8174 constraint (!inst.operands[i].isreg,
8175 _("Instruction does not support =N addresses"));
8176
c19d1205 8177 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 8178
c19d1205 8179 if (inst.operands[i].preind)
09d92015 8180 {
c19d1205
ZW
8181 if (is_t)
8182 {
8183 inst.error = _("instruction does not accept preindexed addressing");
8184 return;
8185 }
8186 inst.instruction |= PRE_INDEX;
8187 if (inst.operands[i].writeback)
8188 inst.instruction |= WRITE_BACK;
09d92015 8189
c19d1205
ZW
8190 }
8191 else if (inst.operands[i].postind)
8192 {
9c2799c2 8193 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
8194 if (is_t)
8195 inst.instruction |= WRITE_BACK;
8196 }
8197 else /* unindexed - only for coprocessor */
09d92015 8198 {
c19d1205 8199 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
8200 return;
8201 }
8202
c19d1205
ZW
8203 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8204 && (((inst.instruction & 0x000f0000) >> 16)
8205 == ((inst.instruction & 0x0000f000) >> 12)))
8206 as_warn ((inst.instruction & LOAD_BIT)
8207 ? _("destination register same as write-back base")
8208 : _("source register same as write-back base"));
09d92015
MM
8209}
8210
c19d1205
ZW
8211/* inst.operands[i] was set up by parse_address. Encode it into an
8212 ARM-format mode 2 load or store instruction. If is_t is true,
8213 reject forms that cannot be used with a T instruction (i.e. not
8214 post-indexed). */
a737bd4d 8215static void
c19d1205 8216encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 8217{
5be8be5d
DG
8218 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8219
c19d1205 8220 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8221
c19d1205 8222 if (inst.operands[i].immisreg)
09d92015 8223 {
5be8be5d
DG
8224 constraint ((inst.operands[i].imm == REG_PC
8225 || (is_pc && inst.operands[i].writeback)),
8226 BAD_PC_ADDRESSING);
c19d1205
ZW
8227 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8228 inst.instruction |= inst.operands[i].imm;
8229 if (!inst.operands[i].negative)
8230 inst.instruction |= INDEX_UP;
8231 if (inst.operands[i].shifted)
8232 {
8233 if (inst.operands[i].shift_kind == SHIFT_RRX)
8234 inst.instruction |= SHIFT_ROR << 5;
8235 else
8236 {
8237 inst.instruction |= inst.operands[i].shift_kind << 5;
e2b0ab59 8238 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
c19d1205
ZW
8239 }
8240 }
09d92015 8241 }
e2b0ab59 8242 else /* immediate offset in inst.relocs[0] */
09d92015 8243 {
e2b0ab59 8244 if (is_pc && !inst.relocs[0].pc_rel)
5be8be5d
DG
8245 {
8246 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
8247
8248 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8249 cannot use PC in addressing.
8250 PC cannot be used in writeback addressing, either. */
8251 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 8252 BAD_PC_ADDRESSING);
23a10334 8253
dc5ec521 8254 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
8255 if (warn_on_deprecated
8256 && !is_load
8257 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
5c3696f8 8258 as_tsktsk (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
8259 }
8260
e2b0ab59 8261 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8262 {
8263 /* Prefer + for zero encoded value. */
8264 if (!inst.operands[i].negative)
8265 inst.instruction |= INDEX_UP;
e2b0ab59 8266 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
26d97720 8267 }
09d92015 8268 }
09d92015
MM
8269}
8270
c19d1205
ZW
8271/* inst.operands[i] was set up by parse_address. Encode it into an
8272 ARM-format mode 3 load or store instruction. Reject forms that
8273 cannot be used with such instructions. If is_t is true, reject
8274 forms that cannot be used with a T instruction (i.e. not
8275 post-indexed). */
8276static void
8277encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 8278{
c19d1205 8279 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 8280 {
c19d1205
ZW
8281 inst.error = _("instruction does not accept scaled register index");
8282 return;
09d92015 8283 }
a737bd4d 8284
c19d1205 8285 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8286
c19d1205
ZW
8287 if (inst.operands[i].immisreg)
8288 {
5be8be5d 8289 constraint ((inst.operands[i].imm == REG_PC
eb9f3f00 8290 || (is_t && inst.operands[i].reg == REG_PC)),
5be8be5d 8291 BAD_PC_ADDRESSING);
eb9f3f00
JB
8292 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8293 BAD_PC_WRITEBACK);
c19d1205
ZW
8294 inst.instruction |= inst.operands[i].imm;
8295 if (!inst.operands[i].negative)
8296 inst.instruction |= INDEX_UP;
8297 }
e2b0ab59 8298 else /* immediate offset in inst.relocs[0] */
c19d1205 8299 {
e2b0ab59 8300 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
5be8be5d
DG
8301 && inst.operands[i].writeback),
8302 BAD_PC_WRITEBACK);
c19d1205 8303 inst.instruction |= HWOFFSET_IMM;
e2b0ab59 8304 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8305 {
8306 /* Prefer + for zero encoded value. */
8307 if (!inst.operands[i].negative)
8308 inst.instruction |= INDEX_UP;
8309
e2b0ab59 8310 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
26d97720 8311 }
c19d1205 8312 }
a737bd4d
NC
8313}
8314
8335d6aa
JW
8315/* Write immediate bits [7:0] to the following locations:
8316
8317 |28/24|23 19|18 16|15 4|3 0|
8318 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8319
8320 This function is used by VMOV/VMVN/VORR/VBIC. */
8321
8322static void
8323neon_write_immbits (unsigned immbits)
8324{
8325 inst.instruction |= immbits & 0xf;
8326 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8327 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8328}
8329
8330/* Invert low-order SIZE bits of XHI:XLO. */
8331
8332static void
8333neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8334{
8335 unsigned immlo = xlo ? *xlo : 0;
8336 unsigned immhi = xhi ? *xhi : 0;
8337
8338 switch (size)
8339 {
8340 case 8:
8341 immlo = (~immlo) & 0xff;
8342 break;
8343
8344 case 16:
8345 immlo = (~immlo) & 0xffff;
8346 break;
8347
8348 case 64:
8349 immhi = (~immhi) & 0xffffffff;
8350 /* fall through. */
8351
8352 case 32:
8353 immlo = (~immlo) & 0xffffffff;
8354 break;
8355
8356 default:
8357 abort ();
8358 }
8359
8360 if (xlo)
8361 *xlo = immlo;
8362
8363 if (xhi)
8364 *xhi = immhi;
8365}
8366
8367/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8368 A, B, C, D. */
09d92015 8369
c19d1205 8370static int
8335d6aa 8371neon_bits_same_in_bytes (unsigned imm)
09d92015 8372{
8335d6aa
JW
8373 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8374 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8375 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8376 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8377}
a737bd4d 8378
8335d6aa 8379/* For immediate of above form, return 0bABCD. */
09d92015 8380
8335d6aa
JW
8381static unsigned
8382neon_squash_bits (unsigned imm)
8383{
8384 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8385 | ((imm & 0x01000000) >> 21);
8386}
8387
8388/* Compress quarter-float representation to 0b...000 abcdefgh. */
8389
8390static unsigned
8391neon_qfloat_bits (unsigned imm)
8392{
8393 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8394}
8395
8396/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8397 the instruction. *OP is passed as the initial value of the op field, and
8398 may be set to a different value depending on the constant (i.e.
8399 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8400 MVN). If the immediate looks like a repeated pattern then also
8401 try smaller element sizes. */
8402
8403static int
8404neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8405 unsigned *immbits, int *op, int size,
8406 enum neon_el_type type)
8407{
8408 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8409 float. */
8410 if (type == NT_float && !float_p)
8411 return FAIL;
8412
8413 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
09d92015 8414 {
8335d6aa
JW
8415 if (size != 32 || *op == 1)
8416 return FAIL;
8417 *immbits = neon_qfloat_bits (immlo);
8418 return 0xf;
8419 }
8420
8421 if (size == 64)
8422 {
8423 if (neon_bits_same_in_bytes (immhi)
8424 && neon_bits_same_in_bytes (immlo))
c19d1205 8425 {
8335d6aa
JW
8426 if (*op == 1)
8427 return FAIL;
8428 *immbits = (neon_squash_bits (immhi) << 4)
8429 | neon_squash_bits (immlo);
8430 *op = 1;
8431 return 0xe;
c19d1205 8432 }
a737bd4d 8433
8335d6aa
JW
8434 if (immhi != immlo)
8435 return FAIL;
8436 }
a737bd4d 8437
8335d6aa 8438 if (size >= 32)
09d92015 8439 {
8335d6aa 8440 if (immlo == (immlo & 0x000000ff))
c19d1205 8441 {
8335d6aa
JW
8442 *immbits = immlo;
8443 return 0x0;
c19d1205 8444 }
8335d6aa 8445 else if (immlo == (immlo & 0x0000ff00))
c19d1205 8446 {
8335d6aa
JW
8447 *immbits = immlo >> 8;
8448 return 0x2;
c19d1205 8449 }
8335d6aa
JW
8450 else if (immlo == (immlo & 0x00ff0000))
8451 {
8452 *immbits = immlo >> 16;
8453 return 0x4;
8454 }
8455 else if (immlo == (immlo & 0xff000000))
8456 {
8457 *immbits = immlo >> 24;
8458 return 0x6;
8459 }
8460 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8461 {
8462 *immbits = (immlo >> 8) & 0xff;
8463 return 0xc;
8464 }
8465 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8466 {
8467 *immbits = (immlo >> 16) & 0xff;
8468 return 0xd;
8469 }
8470
8471 if ((immlo & 0xffff) != (immlo >> 16))
8472 return FAIL;
8473 immlo &= 0xffff;
09d92015 8474 }
a737bd4d 8475
8335d6aa 8476 if (size >= 16)
4962c51a 8477 {
8335d6aa
JW
8478 if (immlo == (immlo & 0x000000ff))
8479 {
8480 *immbits = immlo;
8481 return 0x8;
8482 }
8483 else if (immlo == (immlo & 0x0000ff00))
8484 {
8485 *immbits = immlo >> 8;
8486 return 0xa;
8487 }
8488
8489 if ((immlo & 0xff) != (immlo >> 8))
8490 return FAIL;
8491 immlo &= 0xff;
4962c51a
MS
8492 }
8493
8335d6aa
JW
8494 if (immlo == (immlo & 0x000000ff))
8495 {
8496 /* Don't allow MVN with 8-bit immediate. */
8497 if (*op == 1)
8498 return FAIL;
8499 *immbits = immlo;
8500 return 0xe;
8501 }
26d97720 8502
8335d6aa 8503 return FAIL;
c19d1205 8504}
a737bd4d 8505
5fc177c8 8506#if defined BFD_HOST_64_BIT
ba592044
AM
8507/* Returns TRUE if double precision value V may be cast
8508 to single precision without loss of accuracy. */
8509
8510static bfd_boolean
5fc177c8 8511is_double_a_single (bfd_int64_t v)
ba592044 8512{
5fc177c8 8513 int exp = (int)((v >> 52) & 0x7FF);
8fe3f3d6 8514 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8515
8516 return (exp == 0 || exp == 0x7FF
8517 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8518 && (mantissa & 0x1FFFFFFFl) == 0;
8519}
8520
3739860c 8521/* Returns a double precision value casted to single precision
ba592044
AM
8522 (ignoring the least significant bits in exponent and mantissa). */
8523
8524static int
5fc177c8 8525double_to_single (bfd_int64_t v)
ba592044
AM
8526{
8527 int sign = (int) ((v >> 63) & 1l);
5fc177c8 8528 int exp = (int) ((v >> 52) & 0x7FF);
8fe3f3d6 8529 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8530
8531 if (exp == 0x7FF)
8532 exp = 0xFF;
8533 else
8534 {
8535 exp = exp - 1023 + 127;
8536 if (exp >= 0xFF)
8537 {
8538 /* Infinity. */
8539 exp = 0x7F;
8540 mantissa = 0;
8541 }
8542 else if (exp < 0)
8543 {
8544 /* No denormalized numbers. */
8545 exp = 0;
8546 mantissa = 0;
8547 }
8548 }
8549 mantissa >>= 29;
8550 return (sign << 31) | (exp << 23) | mantissa;
8551}
5fc177c8 8552#endif /* BFD_HOST_64_BIT */
ba592044 8553
8335d6aa
JW
8554enum lit_type
8555{
8556 CONST_THUMB,
8557 CONST_ARM,
8558 CONST_VEC
8559};
8560
ba592044
AM
8561static void do_vfp_nsyn_opcode (const char *);
8562
e2b0ab59 8563/* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
c19d1205
ZW
8564 Determine whether it can be performed with a move instruction; if
8565 it can, convert inst.instruction to that move instruction and
c921be7d
NC
8566 return TRUE; if it can't, convert inst.instruction to a literal-pool
8567 load and return FALSE. If this is not a valid thing to do in the
8568 current context, set inst.error and return TRUE.
a737bd4d 8569
c19d1205
ZW
8570 inst.operands[i] describes the destination register. */
8571
c921be7d 8572static bfd_boolean
8335d6aa 8573move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
c19d1205 8574{
53365c0d 8575 unsigned long tbit;
8335d6aa
JW
8576 bfd_boolean thumb_p = (t == CONST_THUMB);
8577 bfd_boolean arm_p = (t == CONST_ARM);
53365c0d
PB
8578
8579 if (thumb_p)
8580 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8581 else
8582 tbit = LOAD_BIT;
8583
8584 if ((inst.instruction & tbit) == 0)
09d92015 8585 {
c19d1205 8586 inst.error = _("invalid pseudo operation");
c921be7d 8587 return TRUE;
09d92015 8588 }
ba592044 8589
e2b0ab59
AV
8590 if (inst.relocs[0].exp.X_op != O_constant
8591 && inst.relocs[0].exp.X_op != O_symbol
8592 && inst.relocs[0].exp.X_op != O_big)
09d92015
MM
8593 {
8594 inst.error = _("constant expression expected");
c921be7d 8595 return TRUE;
09d92015 8596 }
ba592044 8597
e2b0ab59
AV
8598 if (inst.relocs[0].exp.X_op == O_constant
8599 || inst.relocs[0].exp.X_op == O_big)
8335d6aa 8600 {
5fc177c8
NC
8601#if defined BFD_HOST_64_BIT
8602 bfd_int64_t v;
8603#else
ba592044 8604 offsetT v;
5fc177c8 8605#endif
e2b0ab59 8606 if (inst.relocs[0].exp.X_op == O_big)
8335d6aa 8607 {
ba592044
AM
8608 LITTLENUM_TYPE w[X_PRECISION];
8609 LITTLENUM_TYPE * l;
8610
e2b0ab59 8611 if (inst.relocs[0].exp.X_add_number == -1)
8335d6aa 8612 {
ba592044
AM
8613 gen_to_words (w, X_PRECISION, E_PRECISION);
8614 l = w;
8615 /* FIXME: Should we check words w[2..5] ? */
8335d6aa 8616 }
ba592044
AM
8617 else
8618 l = generic_bignum;
3739860c 8619
5fc177c8
NC
8620#if defined BFD_HOST_64_BIT
8621 v =
8622 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8623 << LITTLENUM_NUMBER_OF_BITS)
8624 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8625 << LITTLENUM_NUMBER_OF_BITS)
8626 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8627 << LITTLENUM_NUMBER_OF_BITS)
8628 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8629#else
ba592044
AM
8630 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8631 | (l[0] & LITTLENUM_MASK);
5fc177c8 8632#endif
8335d6aa 8633 }
ba592044 8634 else
e2b0ab59 8635 v = inst.relocs[0].exp.X_add_number;
ba592044
AM
8636
8637 if (!inst.operands[i].issingle)
8335d6aa 8638 {
12569877 8639 if (thumb_p)
8335d6aa 8640 {
53445554
TP
8641 /* LDR should not use lead in a flag-setting instruction being
8642 chosen so we do not check whether movs can be used. */
12569877 8643
53445554 8644 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
ff8646ee 8645 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
53445554
TP
8646 && inst.operands[i].reg != 13
8647 && inst.operands[i].reg != 15)
12569877 8648 {
fc289b0a
TP
8649 /* Check if on thumb2 it can be done with a mov.w, mvn or
8650 movw instruction. */
12569877
AM
8651 unsigned int newimm;
8652 bfd_boolean isNegated;
8653
8654 newimm = encode_thumb32_immediate (v);
8655 if (newimm != (unsigned int) FAIL)
8656 isNegated = FALSE;
8657 else
8658 {
582cfe03 8659 newimm = encode_thumb32_immediate (~v);
12569877
AM
8660 if (newimm != (unsigned int) FAIL)
8661 isNegated = TRUE;
8662 }
8663
fc289b0a
TP
8664 /* The number can be loaded with a mov.w or mvn
8665 instruction. */
ff8646ee
TP
8666 if (newimm != (unsigned int) FAIL
8667 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
12569877 8668 {
fc289b0a 8669 inst.instruction = (0xf04f0000 /* MOV.W. */
582cfe03 8670 | (inst.operands[i].reg << 8));
fc289b0a 8671 /* Change to MOVN. */
582cfe03 8672 inst.instruction |= (isNegated ? 0x200000 : 0);
12569877
AM
8673 inst.instruction |= (newimm & 0x800) << 15;
8674 inst.instruction |= (newimm & 0x700) << 4;
8675 inst.instruction |= (newimm & 0x0ff);
8676 return TRUE;
8677 }
fc289b0a 8678 /* The number can be loaded with a movw instruction. */
ff8646ee
TP
8679 else if ((v & ~0xFFFF) == 0
8680 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
3739860c 8681 {
582cfe03 8682 int imm = v & 0xFFFF;
12569877 8683
582cfe03 8684 inst.instruction = 0xf2400000; /* MOVW. */
12569877
AM
8685 inst.instruction |= (inst.operands[i].reg << 8);
8686 inst.instruction |= (imm & 0xf000) << 4;
8687 inst.instruction |= (imm & 0x0800) << 15;
8688 inst.instruction |= (imm & 0x0700) << 4;
8689 inst.instruction |= (imm & 0x00ff);
8690 return TRUE;
8691 }
8692 }
8335d6aa 8693 }
12569877 8694 else if (arm_p)
ba592044
AM
8695 {
8696 int value = encode_arm_immediate (v);
12569877 8697
ba592044
AM
8698 if (value != FAIL)
8699 {
8700 /* This can be done with a mov instruction. */
8701 inst.instruction &= LITERAL_MASK;
8702 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8703 inst.instruction |= value & 0xfff;
8704 return TRUE;
8705 }
8335d6aa 8706
ba592044
AM
8707 value = encode_arm_immediate (~ v);
8708 if (value != FAIL)
8709 {
8710 /* This can be done with a mvn instruction. */
8711 inst.instruction &= LITERAL_MASK;
8712 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8713 inst.instruction |= value & 0xfff;
8714 return TRUE;
8715 }
8716 }
934c2632 8717 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8335d6aa 8718 {
ba592044
AM
8719 int op = 0;
8720 unsigned immbits = 0;
8721 unsigned immlo = inst.operands[1].imm;
8722 unsigned immhi = inst.operands[1].regisimm
8723 ? inst.operands[1].reg
e2b0ab59 8724 : inst.relocs[0].exp.X_unsigned
ba592044
AM
8725 ? 0
8726 : ((bfd_int64_t)((int) immlo)) >> 32;
8727 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8728 &op, 64, NT_invtype);
8729
8730 if (cmode == FAIL)
8731 {
8732 neon_invert_size (&immlo, &immhi, 64);
8733 op = !op;
8734 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8735 &op, 64, NT_invtype);
8736 }
8737
8738 if (cmode != FAIL)
8739 {
8740 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8741 | (1 << 23)
8742 | (cmode << 8)
8743 | (op << 5)
8744 | (1 << 4);
8745
8746 /* Fill other bits in vmov encoding for both thumb and arm. */
8747 if (thumb_mode)
eff0bc54 8748 inst.instruction |= (0x7U << 29) | (0xF << 24);
ba592044 8749 else
eff0bc54 8750 inst.instruction |= (0xFU << 28) | (0x1 << 25);
ba592044
AM
8751 neon_write_immbits (immbits);
8752 return TRUE;
8753 }
8335d6aa
JW
8754 }
8755 }
8335d6aa 8756
ba592044
AM
8757 if (t == CONST_VEC)
8758 {
8759 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8760 if (inst.operands[i].issingle
8761 && is_quarter_float (inst.operands[1].imm)
8762 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8335d6aa 8763 {
ba592044
AM
8764 inst.operands[1].imm =
8765 neon_qfloat_bits (v);
8766 do_vfp_nsyn_opcode ("fconsts");
8767 return TRUE;
8335d6aa 8768 }
5fc177c8
NC
8769
8770 /* If our host does not support a 64-bit type then we cannot perform
8771 the following optimization. This mean that there will be a
8772 discrepancy between the output produced by an assembler built for
8773 a 32-bit-only host and the output produced from a 64-bit host, but
8774 this cannot be helped. */
8775#if defined BFD_HOST_64_BIT
ba592044
AM
8776 else if (!inst.operands[1].issingle
8777 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8335d6aa 8778 {
ba592044
AM
8779 if (is_double_a_single (v)
8780 && is_quarter_float (double_to_single (v)))
8781 {
8782 inst.operands[1].imm =
8783 neon_qfloat_bits (double_to_single (v));
8784 do_vfp_nsyn_opcode ("fconstd");
8785 return TRUE;
8786 }
8335d6aa 8787 }
5fc177c8 8788#endif
8335d6aa
JW
8789 }
8790 }
8791
8792 if (add_to_lit_pool ((!inst.operands[i].isvec
8793 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8794 return TRUE;
8795
8796 inst.operands[1].reg = REG_PC;
8797 inst.operands[1].isreg = 1;
8798 inst.operands[1].preind = 1;
e2b0ab59
AV
8799 inst.relocs[0].pc_rel = 1;
8800 inst.relocs[0].type = (thumb_p
8335d6aa
JW
8801 ? BFD_RELOC_ARM_THUMB_OFFSET
8802 : (mode_3
8803 ? BFD_RELOC_ARM_HWLITERAL
8804 : BFD_RELOC_ARM_LITERAL));
8805 return FALSE;
8806}
8807
8808/* inst.operands[i] was set up by parse_address. Encode it into an
8809 ARM-format instruction. Reject all forms which cannot be encoded
8810 into a coprocessor load/store instruction. If wb_ok is false,
8811 reject use of writeback; if unind_ok is false, reject use of
8812 unindexed addressing. If reloc_override is not 0, use it instead
8813 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8814 (in which case it is preserved). */
8815
8816static int
8817encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8818{
8819 if (!inst.operands[i].isreg)
8820 {
99b2a2dd
NC
8821 /* PR 18256 */
8822 if (! inst.operands[0].isvec)
8823 {
8824 inst.error = _("invalid co-processor operand");
8825 return FAIL;
8826 }
8335d6aa
JW
8827 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8828 return SUCCESS;
8829 }
8830
8831 inst.instruction |= inst.operands[i].reg << 16;
8832
8833 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8834
8835 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8836 {
8837 gas_assert (!inst.operands[i].writeback);
8838 if (!unind_ok)
8839 {
8840 inst.error = _("instruction does not support unindexed addressing");
8841 return FAIL;
8842 }
8843 inst.instruction |= inst.operands[i].imm;
8844 inst.instruction |= INDEX_UP;
8845 return SUCCESS;
8846 }
8847
8848 if (inst.operands[i].preind)
8849 inst.instruction |= PRE_INDEX;
8850
8851 if (inst.operands[i].writeback)
09d92015 8852 {
8335d6aa 8853 if (inst.operands[i].reg == REG_PC)
c19d1205 8854 {
8335d6aa
JW
8855 inst.error = _("pc may not be used with write-back");
8856 return FAIL;
c19d1205 8857 }
8335d6aa 8858 if (!wb_ok)
c19d1205 8859 {
8335d6aa
JW
8860 inst.error = _("instruction does not support writeback");
8861 return FAIL;
c19d1205 8862 }
8335d6aa 8863 inst.instruction |= WRITE_BACK;
09d92015
MM
8864 }
8865
8335d6aa 8866 if (reloc_override)
e2b0ab59
AV
8867 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8868 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8869 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8870 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
c19d1205 8871 {
8335d6aa 8872 if (thumb_mode)
e2b0ab59 8873 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8335d6aa 8874 else
e2b0ab59 8875 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
c19d1205 8876 }
8335d6aa
JW
8877
8878 /* Prefer + for zero encoded value. */
8879 if (!inst.operands[i].negative)
8880 inst.instruction |= INDEX_UP;
8881
8882 return SUCCESS;
09d92015
MM
8883}
8884
5f4273c7 8885/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
8886 First some generics; their names are taken from the conventional
8887 bit positions for register arguments in ARM format instructions. */
09d92015 8888
a737bd4d 8889static void
c19d1205 8890do_noargs (void)
09d92015 8891{
c19d1205 8892}
a737bd4d 8893
c19d1205
ZW
8894static void
8895do_rd (void)
8896{
8897 inst.instruction |= inst.operands[0].reg << 12;
8898}
a737bd4d 8899
16a1fa25
TP
8900static void
8901do_rn (void)
8902{
8903 inst.instruction |= inst.operands[0].reg << 16;
8904}
8905
c19d1205
ZW
8906static void
8907do_rd_rm (void)
8908{
8909 inst.instruction |= inst.operands[0].reg << 12;
8910 inst.instruction |= inst.operands[1].reg;
8911}
09d92015 8912
9eb6c0f1
MGD
8913static void
8914do_rm_rn (void)
8915{
8916 inst.instruction |= inst.operands[0].reg;
8917 inst.instruction |= inst.operands[1].reg << 16;
8918}
8919
c19d1205
ZW
8920static void
8921do_rd_rn (void)
8922{
8923 inst.instruction |= inst.operands[0].reg << 12;
8924 inst.instruction |= inst.operands[1].reg << 16;
8925}
a737bd4d 8926
c19d1205
ZW
8927static void
8928do_rn_rd (void)
8929{
8930 inst.instruction |= inst.operands[0].reg << 16;
8931 inst.instruction |= inst.operands[1].reg << 12;
8932}
09d92015 8933
4ed7ed8d
TP
8934static void
8935do_tt (void)
8936{
8937 inst.instruction |= inst.operands[0].reg << 8;
8938 inst.instruction |= inst.operands[1].reg << 16;
8939}
8940
59d09be6
MGD
8941static bfd_boolean
8942check_obsolete (const arm_feature_set *feature, const char *msg)
8943{
8944 if (ARM_CPU_IS_ANY (cpu_variant))
8945 {
5c3696f8 8946 as_tsktsk ("%s", msg);
59d09be6
MGD
8947 return TRUE;
8948 }
8949 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8950 {
8951 as_bad ("%s", msg);
8952 return TRUE;
8953 }
8954
8955 return FALSE;
8956}
8957
c19d1205
ZW
8958static void
8959do_rd_rm_rn (void)
8960{
9a64e435 8961 unsigned Rn = inst.operands[2].reg;
708587a4 8962 /* Enforce restrictions on SWP instruction. */
9a64e435 8963 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
8964 {
8965 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8966 _("Rn must not overlap other operands"));
8967
59d09be6
MGD
8968 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8969 */
8970 if (!check_obsolete (&arm_ext_v8,
8971 _("swp{b} use is obsoleted for ARMv8 and later"))
8972 && warn_on_deprecated
8973 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
5c3696f8 8974 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 8975 }
59d09be6 8976
c19d1205
ZW
8977 inst.instruction |= inst.operands[0].reg << 12;
8978 inst.instruction |= inst.operands[1].reg;
9a64e435 8979 inst.instruction |= Rn << 16;
c19d1205 8980}
09d92015 8981
c19d1205
ZW
8982static void
8983do_rd_rn_rm (void)
8984{
8985 inst.instruction |= inst.operands[0].reg << 12;
8986 inst.instruction |= inst.operands[1].reg << 16;
8987 inst.instruction |= inst.operands[2].reg;
8988}
a737bd4d 8989
c19d1205
ZW
8990static void
8991do_rm_rd_rn (void)
8992{
5be8be5d 8993 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
e2b0ab59
AV
8994 constraint (((inst.relocs[0].exp.X_op != O_constant
8995 && inst.relocs[0].exp.X_op != O_illegal)
8996 || inst.relocs[0].exp.X_add_number != 0),
5be8be5d 8997 BAD_ADDR_MODE);
c19d1205
ZW
8998 inst.instruction |= inst.operands[0].reg;
8999 inst.instruction |= inst.operands[1].reg << 12;
9000 inst.instruction |= inst.operands[2].reg << 16;
9001}
09d92015 9002
c19d1205
ZW
9003static void
9004do_imm0 (void)
9005{
9006 inst.instruction |= inst.operands[0].imm;
9007}
09d92015 9008
c19d1205
ZW
9009static void
9010do_rd_cpaddr (void)
9011{
9012 inst.instruction |= inst.operands[0].reg << 12;
9013 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 9014}
a737bd4d 9015
c19d1205
ZW
9016/* ARM instructions, in alphabetical order by function name (except
9017 that wrapper functions appear immediately after the function they
9018 wrap). */
09d92015 9019
c19d1205
ZW
9020/* This is a pseudo-op of the form "adr rd, label" to be converted
9021 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
9022
9023static void
c19d1205 9024do_adr (void)
09d92015 9025{
c19d1205 9026 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9027
c19d1205
ZW
9028 /* Frag hacking will turn this into a sub instruction if the offset turns
9029 out to be negative. */
e2b0ab59
AV
9030 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9031 inst.relocs[0].pc_rel = 1;
9032 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9033
fc6141f0 9034 if (support_interwork
e2b0ab59
AV
9035 && inst.relocs[0].exp.X_op == O_symbol
9036 && inst.relocs[0].exp.X_add_symbol != NULL
9037 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9038 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9039 inst.relocs[0].exp.X_add_number |= 1;
c19d1205 9040}
b99bd4ef 9041
c19d1205
ZW
9042/* This is a pseudo-op of the form "adrl rd, label" to be converted
9043 into a relative address of the form:
9044 add rd, pc, #low(label-.-8)"
9045 add rd, rd, #high(label-.-8)" */
b99bd4ef 9046
c19d1205
ZW
9047static void
9048do_adrl (void)
9049{
9050 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9051
c19d1205
ZW
9052 /* Frag hacking will turn this into a sub instruction if the offset turns
9053 out to be negative. */
e2b0ab59
AV
9054 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9055 inst.relocs[0].pc_rel = 1;
c19d1205 9056 inst.size = INSN_SIZE * 2;
e2b0ab59 9057 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9058
fc6141f0 9059 if (support_interwork
e2b0ab59
AV
9060 && inst.relocs[0].exp.X_op == O_symbol
9061 && inst.relocs[0].exp.X_add_symbol != NULL
9062 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9063 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9064 inst.relocs[0].exp.X_add_number |= 1;
b99bd4ef
NC
9065}
9066
b99bd4ef 9067static void
c19d1205 9068do_arit (void)
b99bd4ef 9069{
e2b0ab59
AV
9070 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9071 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9072 THUMB1_RELOC_ONLY);
c19d1205
ZW
9073 if (!inst.operands[1].present)
9074 inst.operands[1].reg = inst.operands[0].reg;
9075 inst.instruction |= inst.operands[0].reg << 12;
9076 inst.instruction |= inst.operands[1].reg << 16;
9077 encode_arm_shifter_operand (2);
9078}
b99bd4ef 9079
62b3e311
PB
9080static void
9081do_barrier (void)
9082{
9083 if (inst.operands[0].present)
ccb84d65 9084 inst.instruction |= inst.operands[0].imm;
62b3e311
PB
9085 else
9086 inst.instruction |= 0xf;
9087}
9088
c19d1205
ZW
9089static void
9090do_bfc (void)
9091{
9092 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9093 constraint (msb > 32, _("bit-field extends past end of register"));
9094 /* The instruction encoding stores the LSB and MSB,
9095 not the LSB and width. */
9096 inst.instruction |= inst.operands[0].reg << 12;
9097 inst.instruction |= inst.operands[1].imm << 7;
9098 inst.instruction |= (msb - 1) << 16;
9099}
b99bd4ef 9100
c19d1205
ZW
9101static void
9102do_bfi (void)
9103{
9104 unsigned int msb;
b99bd4ef 9105
c19d1205
ZW
9106 /* #0 in second position is alternative syntax for bfc, which is
9107 the same instruction but with REG_PC in the Rm field. */
9108 if (!inst.operands[1].isreg)
9109 inst.operands[1].reg = REG_PC;
b99bd4ef 9110
c19d1205
ZW
9111 msb = inst.operands[2].imm + inst.operands[3].imm;
9112 constraint (msb > 32, _("bit-field extends past end of register"));
9113 /* The instruction encoding stores the LSB and MSB,
9114 not the LSB and width. */
9115 inst.instruction |= inst.operands[0].reg << 12;
9116 inst.instruction |= inst.operands[1].reg;
9117 inst.instruction |= inst.operands[2].imm << 7;
9118 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
9119}
9120
b99bd4ef 9121static void
c19d1205 9122do_bfx (void)
b99bd4ef 9123{
c19d1205
ZW
9124 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9125 _("bit-field extends past end of register"));
9126 inst.instruction |= inst.operands[0].reg << 12;
9127 inst.instruction |= inst.operands[1].reg;
9128 inst.instruction |= inst.operands[2].imm << 7;
9129 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9130}
09d92015 9131
c19d1205
ZW
9132/* ARM V5 breakpoint instruction (argument parse)
9133 BKPT <16 bit unsigned immediate>
9134 Instruction is not conditional.
9135 The bit pattern given in insns[] has the COND_ALWAYS condition,
9136 and it is an error if the caller tried to override that. */
b99bd4ef 9137
c19d1205
ZW
9138static void
9139do_bkpt (void)
9140{
9141 /* Top 12 of 16 bits to bits 19:8. */
9142 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 9143
c19d1205
ZW
9144 /* Bottom 4 of 16 bits to bits 3:0. */
9145 inst.instruction |= inst.operands[0].imm & 0xf;
9146}
09d92015 9147
c19d1205
ZW
9148static void
9149encode_branch (int default_reloc)
9150{
9151 if (inst.operands[0].hasreloc)
9152 {
0855e32b
NS
9153 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9154 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9155 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
e2b0ab59 9156 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
0855e32b
NS
9157 ? BFD_RELOC_ARM_PLT32
9158 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 9159 }
b99bd4ef 9160 else
e2b0ab59
AV
9161 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9162 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
9163}
9164
b99bd4ef 9165static void
c19d1205 9166do_branch (void)
b99bd4ef 9167{
39b41c9c
PB
9168#ifdef OBJ_ELF
9169 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9170 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9171 else
9172#endif
9173 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9174}
9175
9176static void
9177do_bl (void)
9178{
9179#ifdef OBJ_ELF
9180 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9181 {
9182 if (inst.cond == COND_ALWAYS)
9183 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9184 else
9185 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9186 }
9187 else
9188#endif
9189 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 9190}
b99bd4ef 9191
c19d1205
ZW
9192/* ARM V5 branch-link-exchange instruction (argument parse)
9193 BLX <target_addr> ie BLX(1)
9194 BLX{<condition>} <Rm> ie BLX(2)
9195 Unfortunately, there are two different opcodes for this mnemonic.
9196 So, the insns[].value is not used, and the code here zaps values
9197 into inst.instruction.
9198 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 9199
c19d1205
ZW
9200static void
9201do_blx (void)
9202{
9203 if (inst.operands[0].isreg)
b99bd4ef 9204 {
c19d1205
ZW
9205 /* Arg is a register; the opcode provided by insns[] is correct.
9206 It is not illegal to do "blx pc", just useless. */
9207 if (inst.operands[0].reg == REG_PC)
9208 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 9209
c19d1205
ZW
9210 inst.instruction |= inst.operands[0].reg;
9211 }
9212 else
b99bd4ef 9213 {
c19d1205 9214 /* Arg is an address; this instruction cannot be executed
267bf995
RR
9215 conditionally, and the opcode must be adjusted.
9216 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9217 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 9218 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 9219 inst.instruction = 0xfa000000;
267bf995 9220 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 9221 }
c19d1205
ZW
9222}
9223
9224static void
9225do_bx (void)
9226{
845b51d6
PB
9227 bfd_boolean want_reloc;
9228
c19d1205
ZW
9229 if (inst.operands[0].reg == REG_PC)
9230 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 9231
c19d1205 9232 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
9233 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9234 it is for ARMv4t or earlier. */
9235 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
4d354d8b
TP
9236 if (!ARM_FEATURE_ZERO (selected_object_arch)
9237 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
845b51d6
PB
9238 want_reloc = TRUE;
9239
5ad34203 9240#ifdef OBJ_ELF
845b51d6 9241 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 9242#endif
584206db 9243 want_reloc = FALSE;
845b51d6
PB
9244
9245 if (want_reloc)
e2b0ab59 9246 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
09d92015
MM
9247}
9248
c19d1205
ZW
9249
9250/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
9251
9252static void
c19d1205 9253do_bxj (void)
a737bd4d 9254{
c19d1205
ZW
9255 if (inst.operands[0].reg == REG_PC)
9256 as_tsktsk (_("use of r15 in bxj is not really useful"));
9257
9258 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
9259}
9260
c19d1205
ZW
9261/* Co-processor data operation:
9262 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9263 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9264static void
9265do_cdp (void)
9266{
9267 inst.instruction |= inst.operands[0].reg << 8;
9268 inst.instruction |= inst.operands[1].imm << 20;
9269 inst.instruction |= inst.operands[2].reg << 12;
9270 inst.instruction |= inst.operands[3].reg << 16;
9271 inst.instruction |= inst.operands[4].reg;
9272 inst.instruction |= inst.operands[5].imm << 5;
9273}
a737bd4d
NC
9274
9275static void
c19d1205 9276do_cmp (void)
a737bd4d 9277{
c19d1205
ZW
9278 inst.instruction |= inst.operands[0].reg << 16;
9279 encode_arm_shifter_operand (1);
a737bd4d
NC
9280}
9281
c19d1205
ZW
9282/* Transfer between coprocessor and ARM registers.
9283 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9284 MRC2
9285 MCR{cond}
9286 MCR2
9287
9288 No special properties. */
09d92015 9289
dcbd0d71
MGD
9290struct deprecated_coproc_regs_s
9291{
9292 unsigned cp;
9293 int opc1;
9294 unsigned crn;
9295 unsigned crm;
9296 int opc2;
9297 arm_feature_set deprecated;
9298 arm_feature_set obsoleted;
9299 const char *dep_msg;
9300 const char *obs_msg;
9301};
9302
9303#define DEPR_ACCESS_V8 \
9304 N_("This coprocessor register access is deprecated in ARMv8")
9305
9306/* Table of all deprecated coprocessor registers. */
9307static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9308{
9309 {15, 0, 7, 10, 5, /* CP15DMB. */
823d2571 9310 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9311 DEPR_ACCESS_V8, NULL},
9312 {15, 0, 7, 10, 4, /* CP15DSB. */
823d2571 9313 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9314 DEPR_ACCESS_V8, NULL},
9315 {15, 0, 7, 5, 4, /* CP15ISB. */
823d2571 9316 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9317 DEPR_ACCESS_V8, NULL},
9318 {14, 6, 1, 0, 0, /* TEEHBR. */
823d2571 9319 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9320 DEPR_ACCESS_V8, NULL},
9321 {14, 6, 0, 0, 0, /* TEECR. */
823d2571 9322 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9323 DEPR_ACCESS_V8, NULL},
9324};
9325
9326#undef DEPR_ACCESS_V8
9327
9328static const size_t deprecated_coproc_reg_count =
9329 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9330
09d92015 9331static void
c19d1205 9332do_co_reg (void)
09d92015 9333{
fdfde340 9334 unsigned Rd;
dcbd0d71 9335 size_t i;
fdfde340
JM
9336
9337 Rd = inst.operands[2].reg;
9338 if (thumb_mode)
9339 {
9340 if (inst.instruction == 0xee000010
9341 || inst.instruction == 0xfe000010)
9342 /* MCR, MCR2 */
9343 reject_bad_reg (Rd);
5c8ed6a4 9344 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
fdfde340
JM
9345 /* MRC, MRC2 */
9346 constraint (Rd == REG_SP, BAD_SP);
9347 }
9348 else
9349 {
9350 /* MCR */
9351 if (inst.instruction == 0xe000010)
9352 constraint (Rd == REG_PC, BAD_PC);
9353 }
9354
dcbd0d71
MGD
9355 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9356 {
9357 const struct deprecated_coproc_regs_s *r =
9358 deprecated_coproc_regs + i;
9359
9360 if (inst.operands[0].reg == r->cp
9361 && inst.operands[1].imm == r->opc1
9362 && inst.operands[3].reg == r->crn
9363 && inst.operands[4].reg == r->crm
9364 && inst.operands[5].imm == r->opc2)
9365 {
b10bf8c5 9366 if (! ARM_CPU_IS_ANY (cpu_variant)
477330fc 9367 && warn_on_deprecated
dcbd0d71 9368 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
5c3696f8 9369 as_tsktsk ("%s", r->dep_msg);
dcbd0d71
MGD
9370 }
9371 }
fdfde340 9372
c19d1205
ZW
9373 inst.instruction |= inst.operands[0].reg << 8;
9374 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 9375 inst.instruction |= Rd << 12;
c19d1205
ZW
9376 inst.instruction |= inst.operands[3].reg << 16;
9377 inst.instruction |= inst.operands[4].reg;
9378 inst.instruction |= inst.operands[5].imm << 5;
9379}
09d92015 9380
c19d1205
ZW
9381/* Transfer between coprocessor register and pair of ARM registers.
9382 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9383 MCRR2
9384 MRRC{cond}
9385 MRRC2
b99bd4ef 9386
c19d1205 9387 Two XScale instructions are special cases of these:
09d92015 9388
c19d1205
ZW
9389 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9390 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 9391
5f4273c7 9392 Result unpredictable if Rd or Rn is R15. */
a737bd4d 9393
c19d1205
ZW
9394static void
9395do_co_reg2c (void)
9396{
fdfde340
JM
9397 unsigned Rd, Rn;
9398
9399 Rd = inst.operands[2].reg;
9400 Rn = inst.operands[3].reg;
9401
9402 if (thumb_mode)
9403 {
9404 reject_bad_reg (Rd);
9405 reject_bad_reg (Rn);
9406 }
9407 else
9408 {
9409 constraint (Rd == REG_PC, BAD_PC);
9410 constraint (Rn == REG_PC, BAD_PC);
9411 }
9412
873f10f0
TC
9413 /* Only check the MRRC{2} variants. */
9414 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9415 {
9416 /* If Rd == Rn, error that the operation is
9417 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9418 constraint (Rd == Rn, BAD_OVERLAP);
9419 }
9420
c19d1205
ZW
9421 inst.instruction |= inst.operands[0].reg << 8;
9422 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
9423 inst.instruction |= Rd << 12;
9424 inst.instruction |= Rn << 16;
c19d1205 9425 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
9426}
9427
c19d1205
ZW
9428static void
9429do_cpsi (void)
9430{
9431 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
9432 if (inst.operands[1].present)
9433 {
9434 inst.instruction |= CPSI_MMOD;
9435 inst.instruction |= inst.operands[1].imm;
9436 }
c19d1205 9437}
b99bd4ef 9438
62b3e311
PB
9439static void
9440do_dbg (void)
9441{
9442 inst.instruction |= inst.operands[0].imm;
9443}
9444
eea54501
MGD
9445static void
9446do_div (void)
9447{
9448 unsigned Rd, Rn, Rm;
9449
9450 Rd = inst.operands[0].reg;
9451 Rn = (inst.operands[1].present
9452 ? inst.operands[1].reg : Rd);
9453 Rm = inst.operands[2].reg;
9454
9455 constraint ((Rd == REG_PC), BAD_PC);
9456 constraint ((Rn == REG_PC), BAD_PC);
9457 constraint ((Rm == REG_PC), BAD_PC);
9458
9459 inst.instruction |= Rd << 16;
9460 inst.instruction |= Rn << 0;
9461 inst.instruction |= Rm << 8;
9462}
9463
b99bd4ef 9464static void
c19d1205 9465do_it (void)
b99bd4ef 9466{
c19d1205 9467 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
9468 process it to do the validation as if in
9469 thumb mode, just in case the code gets
9470 assembled for thumb using the unified syntax. */
9471
c19d1205 9472 inst.size = 0;
e07e6e58
NC
9473 if (unified_syntax)
9474 {
5ee91343
AV
9475 set_pred_insn_type (IT_INSN);
9476 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9477 now_pred.cc = inst.operands[0].imm;
e07e6e58 9478 }
09d92015 9479}
b99bd4ef 9480
6530b175
NC
9481/* If there is only one register in the register list,
9482 then return its register number. Otherwise return -1. */
9483static int
9484only_one_reg_in_list (int range)
9485{
9486 int i = ffs (range) - 1;
9487 return (i > 15 || range != (1 << i)) ? -1 : i;
9488}
9489
09d92015 9490static void
6530b175 9491encode_ldmstm(int from_push_pop_mnem)
ea6ef066 9492{
c19d1205
ZW
9493 int base_reg = inst.operands[0].reg;
9494 int range = inst.operands[1].imm;
6530b175 9495 int one_reg;
ea6ef066 9496
c19d1205
ZW
9497 inst.instruction |= base_reg << 16;
9498 inst.instruction |= range;
ea6ef066 9499
c19d1205
ZW
9500 if (inst.operands[1].writeback)
9501 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 9502
c19d1205 9503 if (inst.operands[0].writeback)
ea6ef066 9504 {
c19d1205
ZW
9505 inst.instruction |= WRITE_BACK;
9506 /* Check for unpredictable uses of writeback. */
9507 if (inst.instruction & LOAD_BIT)
09d92015 9508 {
c19d1205
ZW
9509 /* Not allowed in LDM type 2. */
9510 if ((inst.instruction & LDM_TYPE_2_OR_3)
9511 && ((range & (1 << REG_PC)) == 0))
9512 as_warn (_("writeback of base register is UNPREDICTABLE"));
9513 /* Only allowed if base reg not in list for other types. */
9514 else if (range & (1 << base_reg))
9515 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9516 }
9517 else /* STM. */
9518 {
9519 /* Not allowed for type 2. */
9520 if (inst.instruction & LDM_TYPE_2_OR_3)
9521 as_warn (_("writeback of base register is UNPREDICTABLE"));
9522 /* Only allowed if base reg not in list, or first in list. */
9523 else if ((range & (1 << base_reg))
9524 && (range & ((1 << base_reg) - 1)))
9525 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 9526 }
ea6ef066 9527 }
6530b175
NC
9528
9529 /* If PUSH/POP has only one register, then use the A2 encoding. */
9530 one_reg = only_one_reg_in_list (range);
9531 if (from_push_pop_mnem && one_reg >= 0)
9532 {
9533 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9534
4f588891
NC
9535 if (is_push && one_reg == 13 /* SP */)
9536 /* PR 22483: The A2 encoding cannot be used when
9537 pushing the stack pointer as this is UNPREDICTABLE. */
9538 return;
9539
6530b175
NC
9540 inst.instruction &= A_COND_MASK;
9541 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9542 inst.instruction |= one_reg << 12;
9543 }
9544}
9545
9546static void
9547do_ldmstm (void)
9548{
9549 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
9550}
9551
c19d1205
ZW
9552/* ARMv5TE load-consecutive (argument parse)
9553 Mode is like LDRH.
9554
9555 LDRccD R, mode
9556 STRccD R, mode. */
9557
a737bd4d 9558static void
c19d1205 9559do_ldrd (void)
a737bd4d 9560{
c19d1205 9561 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 9562 _("first transfer register must be even"));
c19d1205
ZW
9563 constraint (inst.operands[1].present
9564 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 9565 _("can only transfer two consecutive registers"));
c19d1205
ZW
9566 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9567 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 9568
c19d1205
ZW
9569 if (!inst.operands[1].present)
9570 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 9571
c56791bb
RE
9572 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9573 register and the first register written; we have to diagnose
9574 overlap between the base and the second register written here. */
ea6ef066 9575
c56791bb
RE
9576 if (inst.operands[2].reg == inst.operands[1].reg
9577 && (inst.operands[2].writeback || inst.operands[2].postind))
9578 as_warn (_("base register written back, and overlaps "
9579 "second transfer register"));
b05fe5cf 9580
c56791bb
RE
9581 if (!(inst.instruction & V4_STR_BIT))
9582 {
c19d1205 9583 /* For an index-register load, the index register must not overlap the
c56791bb
RE
9584 destination (even if not write-back). */
9585 if (inst.operands[2].immisreg
9586 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9587 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9588 as_warn (_("index register overlaps transfer register"));
b05fe5cf 9589 }
c19d1205
ZW
9590 inst.instruction |= inst.operands[0].reg << 12;
9591 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
9592}
9593
9594static void
c19d1205 9595do_ldrex (void)
b05fe5cf 9596{
c19d1205
ZW
9597 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9598 || inst.operands[1].postind || inst.operands[1].writeback
9599 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
9600 || inst.operands[1].negative
9601 /* This can arise if the programmer has written
9602 strex rN, rM, foo
9603 or if they have mistakenly used a register name as the last
9604 operand, eg:
9605 strex rN, rM, rX
9606 It is very difficult to distinguish between these two cases
9607 because "rX" might actually be a label. ie the register
9608 name has been occluded by a symbol of the same name. So we
9609 just generate a general 'bad addressing mode' type error
9610 message and leave it up to the programmer to discover the
9611 true cause and fix their mistake. */
9612 || (inst.operands[1].reg == REG_PC),
9613 BAD_ADDR_MODE);
b05fe5cf 9614
e2b0ab59
AV
9615 constraint (inst.relocs[0].exp.X_op != O_constant
9616 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9617 _("offset must be zero in ARM encoding"));
b05fe5cf 9618
5be8be5d
DG
9619 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9620
c19d1205
ZW
9621 inst.instruction |= inst.operands[0].reg << 12;
9622 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 9623 inst.relocs[0].type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
9624}
9625
9626static void
c19d1205 9627do_ldrexd (void)
b05fe5cf 9628{
c19d1205
ZW
9629 constraint (inst.operands[0].reg % 2 != 0,
9630 _("even register required"));
9631 constraint (inst.operands[1].present
9632 && inst.operands[1].reg != inst.operands[0].reg + 1,
9633 _("can only load two consecutive registers"));
9634 /* If op 1 were present and equal to PC, this function wouldn't
9635 have been called in the first place. */
9636 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 9637
c19d1205
ZW
9638 inst.instruction |= inst.operands[0].reg << 12;
9639 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
9640}
9641
1be5fd2e
NC
9642/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9643 which is not a multiple of four is UNPREDICTABLE. */
9644static void
9645check_ldr_r15_aligned (void)
9646{
9647 constraint (!(inst.operands[1].immisreg)
9648 && (inst.operands[0].reg == REG_PC
9649 && inst.operands[1].reg == REG_PC
e2b0ab59 9650 && (inst.relocs[0].exp.X_add_number & 0x3)),
de194d85 9651 _("ldr to register 15 must be 4-byte aligned"));
1be5fd2e
NC
9652}
9653
b05fe5cf 9654static void
c19d1205 9655do_ldst (void)
b05fe5cf 9656{
c19d1205
ZW
9657 inst.instruction |= inst.operands[0].reg << 12;
9658 if (!inst.operands[1].isreg)
8335d6aa 9659 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
b05fe5cf 9660 return;
c19d1205 9661 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 9662 check_ldr_r15_aligned ();
b05fe5cf
ZW
9663}
9664
9665static void
c19d1205 9666do_ldstt (void)
b05fe5cf 9667{
c19d1205
ZW
9668 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9669 reject [Rn,...]. */
9670 if (inst.operands[1].preind)
b05fe5cf 9671 {
e2b0ab59
AV
9672 constraint (inst.relocs[0].exp.X_op != O_constant
9673 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9674 _("this instruction requires a post-indexed address"));
b05fe5cf 9675
c19d1205
ZW
9676 inst.operands[1].preind = 0;
9677 inst.operands[1].postind = 1;
9678 inst.operands[1].writeback = 1;
b05fe5cf 9679 }
c19d1205
ZW
9680 inst.instruction |= inst.operands[0].reg << 12;
9681 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9682}
b05fe5cf 9683
c19d1205 9684/* Halfword and signed-byte load/store operations. */
b05fe5cf 9685
c19d1205
ZW
9686static void
9687do_ldstv4 (void)
9688{
ff4a8d2b 9689 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
9690 inst.instruction |= inst.operands[0].reg << 12;
9691 if (!inst.operands[1].isreg)
8335d6aa 9692 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
b05fe5cf 9693 return;
c19d1205 9694 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
9695}
9696
9697static void
c19d1205 9698do_ldsttv4 (void)
b05fe5cf 9699{
c19d1205
ZW
9700 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9701 reject [Rn,...]. */
9702 if (inst.operands[1].preind)
b05fe5cf 9703 {
e2b0ab59
AV
9704 constraint (inst.relocs[0].exp.X_op != O_constant
9705 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9706 _("this instruction requires a post-indexed address"));
b05fe5cf 9707
c19d1205
ZW
9708 inst.operands[1].preind = 0;
9709 inst.operands[1].postind = 1;
9710 inst.operands[1].writeback = 1;
b05fe5cf 9711 }
c19d1205
ZW
9712 inst.instruction |= inst.operands[0].reg << 12;
9713 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9714}
b05fe5cf 9715
c19d1205
ZW
9716/* Co-processor register load/store.
9717 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9718static void
9719do_lstc (void)
9720{
9721 inst.instruction |= inst.operands[0].reg << 8;
9722 inst.instruction |= inst.operands[1].reg << 12;
9723 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
9724}
9725
b05fe5cf 9726static void
c19d1205 9727do_mlas (void)
b05fe5cf 9728{
8fb9d7b9 9729 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 9730 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 9731 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 9732 && !(inst.instruction & 0x00400000))
8fb9d7b9 9733 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 9734
c19d1205
ZW
9735 inst.instruction |= inst.operands[0].reg << 16;
9736 inst.instruction |= inst.operands[1].reg;
9737 inst.instruction |= inst.operands[2].reg << 8;
9738 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 9739}
b05fe5cf 9740
c19d1205
ZW
9741static void
9742do_mov (void)
9743{
e2b0ab59
AV
9744 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9745 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9746 THUMB1_RELOC_ONLY);
c19d1205
ZW
9747 inst.instruction |= inst.operands[0].reg << 12;
9748 encode_arm_shifter_operand (1);
9749}
b05fe5cf 9750
c19d1205
ZW
9751/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9752static void
9753do_mov16 (void)
9754{
b6895b4f
PB
9755 bfd_vma imm;
9756 bfd_boolean top;
9757
9758 top = (inst.instruction & 0x00400000) != 0;
e2b0ab59 9759 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
33eaf5de 9760 _(":lower16: not allowed in this instruction"));
e2b0ab59 9761 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
33eaf5de 9762 _(":upper16: not allowed in this instruction"));
c19d1205 9763 inst.instruction |= inst.operands[0].reg << 12;
e2b0ab59 9764 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 9765 {
e2b0ab59 9766 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
9767 /* The value is in two pieces: 0:11, 16:19. */
9768 inst.instruction |= (imm & 0x00000fff);
9769 inst.instruction |= (imm & 0x0000f000) << 4;
9770 }
b05fe5cf 9771}
b99bd4ef 9772
037e8744
JB
9773static int
9774do_vfp_nsyn_mrs (void)
9775{
9776 if (inst.operands[0].isvec)
9777 {
9778 if (inst.operands[1].reg != 1)
477330fc 9779 first_error (_("operand 1 must be FPSCR"));
037e8744
JB
9780 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9781 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9782 do_vfp_nsyn_opcode ("fmstat");
9783 }
9784 else if (inst.operands[1].isvec)
9785 do_vfp_nsyn_opcode ("fmrx");
9786 else
9787 return FAIL;
5f4273c7 9788
037e8744
JB
9789 return SUCCESS;
9790}
9791
9792static int
9793do_vfp_nsyn_msr (void)
9794{
9795 if (inst.operands[0].isvec)
9796 do_vfp_nsyn_opcode ("fmxr");
9797 else
9798 return FAIL;
9799
9800 return SUCCESS;
9801}
9802
f7c21dc7
NC
9803static void
9804do_vmrs (void)
9805{
9806 unsigned Rt = inst.operands[0].reg;
fa94de6b 9807
16d02dc9 9808 if (thumb_mode && Rt == REG_SP)
f7c21dc7
NC
9809 {
9810 inst.error = BAD_SP;
9811 return;
9812 }
9813
40c7d507
RR
9814 /* MVFR2 is only valid at ARMv8-A. */
9815 if (inst.operands[1].reg == 5)
9816 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9817 _(BAD_FPU));
9818
f7c21dc7 9819 /* APSR_ sets isvec. All other refs to PC are illegal. */
16d02dc9 9820 if (!inst.operands[0].isvec && Rt == REG_PC)
f7c21dc7
NC
9821 {
9822 inst.error = BAD_PC;
9823 return;
9824 }
9825
16d02dc9
JB
9826 /* If we get through parsing the register name, we just insert the number
9827 generated into the instruction without further validation. */
9828 inst.instruction |= (inst.operands[1].reg << 16);
f7c21dc7
NC
9829 inst.instruction |= (Rt << 12);
9830}
9831
9832static void
9833do_vmsr (void)
9834{
9835 unsigned Rt = inst.operands[1].reg;
fa94de6b 9836
f7c21dc7
NC
9837 if (thumb_mode)
9838 reject_bad_reg (Rt);
9839 else if (Rt == REG_PC)
9840 {
9841 inst.error = BAD_PC;
9842 return;
9843 }
9844
40c7d507
RR
9845 /* MVFR2 is only valid for ARMv8-A. */
9846 if (inst.operands[0].reg == 5)
9847 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9848 _(BAD_FPU));
9849
16d02dc9
JB
9850 /* If we get through parsing the register name, we just insert the number
9851 generated into the instruction without further validation. */
9852 inst.instruction |= (inst.operands[0].reg << 16);
f7c21dc7
NC
9853 inst.instruction |= (Rt << 12);
9854}
9855
b99bd4ef 9856static void
c19d1205 9857do_mrs (void)
b99bd4ef 9858{
90ec0d68
MGD
9859 unsigned br;
9860
037e8744
JB
9861 if (do_vfp_nsyn_mrs () == SUCCESS)
9862 return;
9863
ff4a8d2b 9864 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 9865 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
9866
9867 if (inst.operands[1].isreg)
9868 {
9869 br = inst.operands[1].reg;
806ab1c0 9870 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
90ec0d68
MGD
9871 as_bad (_("bad register for mrs"));
9872 }
9873 else
9874 {
9875 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9876 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9877 != (PSR_c|PSR_f),
d2cd1205 9878 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
9879 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9880 }
9881
9882 inst.instruction |= br;
c19d1205 9883}
b99bd4ef 9884
c19d1205
ZW
9885/* Two possible forms:
9886 "{C|S}PSR_<field>, Rm",
9887 "{C|S}PSR_f, #expression". */
b99bd4ef 9888
c19d1205
ZW
9889static void
9890do_msr (void)
9891{
037e8744
JB
9892 if (do_vfp_nsyn_msr () == SUCCESS)
9893 return;
9894
c19d1205
ZW
9895 inst.instruction |= inst.operands[0].imm;
9896 if (inst.operands[1].isreg)
9897 inst.instruction |= inst.operands[1].reg;
9898 else
b99bd4ef 9899 {
c19d1205 9900 inst.instruction |= INST_IMMEDIATE;
e2b0ab59
AV
9901 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9902 inst.relocs[0].pc_rel = 0;
b99bd4ef 9903 }
b99bd4ef
NC
9904}
9905
c19d1205
ZW
9906static void
9907do_mul (void)
a737bd4d 9908{
ff4a8d2b
NC
9909 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9910
c19d1205
ZW
9911 if (!inst.operands[2].present)
9912 inst.operands[2].reg = inst.operands[0].reg;
9913 inst.instruction |= inst.operands[0].reg << 16;
9914 inst.instruction |= inst.operands[1].reg;
9915 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 9916
8fb9d7b9
MS
9917 if (inst.operands[0].reg == inst.operands[1].reg
9918 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9919 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
9920}
9921
c19d1205
ZW
9922/* Long Multiply Parser
9923 UMULL RdLo, RdHi, Rm, Rs
9924 SMULL RdLo, RdHi, Rm, Rs
9925 UMLAL RdLo, RdHi, Rm, Rs
9926 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
9927
9928static void
c19d1205 9929do_mull (void)
b99bd4ef 9930{
c19d1205
ZW
9931 inst.instruction |= inst.operands[0].reg << 12;
9932 inst.instruction |= inst.operands[1].reg << 16;
9933 inst.instruction |= inst.operands[2].reg;
9934 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 9935
682b27ad
PB
9936 /* rdhi and rdlo must be different. */
9937 if (inst.operands[0].reg == inst.operands[1].reg)
9938 as_tsktsk (_("rdhi and rdlo must be different"));
9939
9940 /* rdhi, rdlo and rm must all be different before armv6. */
9941 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 9942 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 9943 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
9944 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9945}
b99bd4ef 9946
c19d1205
ZW
9947static void
9948do_nop (void)
9949{
e7495e45
NS
9950 if (inst.operands[0].present
9951 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
9952 {
9953 /* Architectural NOP hints are CPSR sets with no bits selected. */
9954 inst.instruction &= 0xf0000000;
e7495e45
NS
9955 inst.instruction |= 0x0320f000;
9956 if (inst.operands[0].present)
9957 inst.instruction |= inst.operands[0].imm;
c19d1205 9958 }
b99bd4ef
NC
9959}
9960
c19d1205
ZW
9961/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9962 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9963 Condition defaults to COND_ALWAYS.
9964 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
9965
9966static void
c19d1205 9967do_pkhbt (void)
b99bd4ef 9968{
c19d1205
ZW
9969 inst.instruction |= inst.operands[0].reg << 12;
9970 inst.instruction |= inst.operands[1].reg << 16;
9971 inst.instruction |= inst.operands[2].reg;
9972 if (inst.operands[3].present)
9973 encode_arm_shift (3);
9974}
b99bd4ef 9975
c19d1205 9976/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 9977
c19d1205
ZW
9978static void
9979do_pkhtb (void)
9980{
9981 if (!inst.operands[3].present)
b99bd4ef 9982 {
c19d1205
ZW
9983 /* If the shift specifier is omitted, turn the instruction
9984 into pkhbt rd, rm, rn. */
9985 inst.instruction &= 0xfff00010;
9986 inst.instruction |= inst.operands[0].reg << 12;
9987 inst.instruction |= inst.operands[1].reg;
9988 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9989 }
9990 else
9991 {
c19d1205
ZW
9992 inst.instruction |= inst.operands[0].reg << 12;
9993 inst.instruction |= inst.operands[1].reg << 16;
9994 inst.instruction |= inst.operands[2].reg;
9995 encode_arm_shift (3);
b99bd4ef
NC
9996 }
9997}
9998
c19d1205 9999/* ARMv5TE: Preload-Cache
60e5ef9f 10000 MP Extensions: Preload for write
c19d1205 10001
60e5ef9f 10002 PLD(W) <addr_mode>
c19d1205
ZW
10003
10004 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
10005
10006static void
c19d1205 10007do_pld (void)
b99bd4ef 10008{
c19d1205
ZW
10009 constraint (!inst.operands[0].isreg,
10010 _("'[' expected after PLD mnemonic"));
10011 constraint (inst.operands[0].postind,
10012 _("post-indexed expression used in preload instruction"));
10013 constraint (inst.operands[0].writeback,
10014 _("writeback used in preload instruction"));
10015 constraint (!inst.operands[0].preind,
10016 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
10017 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10018}
b99bd4ef 10019
62b3e311
PB
10020/* ARMv7: PLI <addr_mode> */
10021static void
10022do_pli (void)
10023{
10024 constraint (!inst.operands[0].isreg,
10025 _("'[' expected after PLI mnemonic"));
10026 constraint (inst.operands[0].postind,
10027 _("post-indexed expression used in preload instruction"));
10028 constraint (inst.operands[0].writeback,
10029 _("writeback used in preload instruction"));
10030 constraint (!inst.operands[0].preind,
10031 _("unindexed addressing used in preload instruction"));
10032 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10033 inst.instruction &= ~PRE_INDEX;
10034}
10035
c19d1205
ZW
10036static void
10037do_push_pop (void)
10038{
5e0d7f77
MP
10039 constraint (inst.operands[0].writeback,
10040 _("push/pop do not support {reglist}^"));
c19d1205
ZW
10041 inst.operands[1] = inst.operands[0];
10042 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10043 inst.operands[0].isreg = 1;
10044 inst.operands[0].writeback = 1;
10045 inst.operands[0].reg = REG_SP;
6530b175 10046 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 10047}
b99bd4ef 10048
c19d1205
ZW
10049/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10050 word at the specified address and the following word
10051 respectively.
10052 Unconditionally executed.
10053 Error if Rn is R15. */
b99bd4ef 10054
c19d1205
ZW
10055static void
10056do_rfe (void)
10057{
10058 inst.instruction |= inst.operands[0].reg << 16;
10059 if (inst.operands[0].writeback)
10060 inst.instruction |= WRITE_BACK;
10061}
b99bd4ef 10062
c19d1205 10063/* ARM V6 ssat (argument parse). */
b99bd4ef 10064
c19d1205
ZW
10065static void
10066do_ssat (void)
10067{
10068 inst.instruction |= inst.operands[0].reg << 12;
10069 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10070 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10071
c19d1205
ZW
10072 if (inst.operands[3].present)
10073 encode_arm_shift (3);
b99bd4ef
NC
10074}
10075
c19d1205 10076/* ARM V6 usat (argument parse). */
b99bd4ef
NC
10077
10078static void
c19d1205 10079do_usat (void)
b99bd4ef 10080{
c19d1205
ZW
10081 inst.instruction |= inst.operands[0].reg << 12;
10082 inst.instruction |= inst.operands[1].imm << 16;
10083 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10084
c19d1205
ZW
10085 if (inst.operands[3].present)
10086 encode_arm_shift (3);
b99bd4ef
NC
10087}
10088
c19d1205 10089/* ARM V6 ssat16 (argument parse). */
09d92015
MM
10090
10091static void
c19d1205 10092do_ssat16 (void)
09d92015 10093{
c19d1205
ZW
10094 inst.instruction |= inst.operands[0].reg << 12;
10095 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10096 inst.instruction |= inst.operands[2].reg;
09d92015
MM
10097}
10098
c19d1205
ZW
10099static void
10100do_usat16 (void)
a737bd4d 10101{
c19d1205
ZW
10102 inst.instruction |= inst.operands[0].reg << 12;
10103 inst.instruction |= inst.operands[1].imm << 16;
10104 inst.instruction |= inst.operands[2].reg;
10105}
a737bd4d 10106
c19d1205
ZW
10107/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10108 preserving the other bits.
a737bd4d 10109
c19d1205
ZW
10110 setend <endian_specifier>, where <endian_specifier> is either
10111 BE or LE. */
a737bd4d 10112
c19d1205
ZW
10113static void
10114do_setend (void)
10115{
12e37cbc
MGD
10116 if (warn_on_deprecated
10117 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 10118 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 10119
c19d1205
ZW
10120 if (inst.operands[0].imm)
10121 inst.instruction |= 0x200;
a737bd4d
NC
10122}
10123
10124static void
c19d1205 10125do_shift (void)
a737bd4d 10126{
c19d1205
ZW
10127 unsigned int Rm = (inst.operands[1].present
10128 ? inst.operands[1].reg
10129 : inst.operands[0].reg);
a737bd4d 10130
c19d1205
ZW
10131 inst.instruction |= inst.operands[0].reg << 12;
10132 inst.instruction |= Rm;
10133 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 10134 {
c19d1205
ZW
10135 inst.instruction |= inst.operands[2].reg << 8;
10136 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
10137 /* PR 12854: Error on extraneous shifts. */
10138 constraint (inst.operands[2].shifted,
10139 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
10140 }
10141 else
e2b0ab59 10142 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
10143}
10144
09d92015 10145static void
3eb17e6b 10146do_smc (void)
09d92015 10147{
e2b0ab59
AV
10148 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10149 inst.relocs[0].pc_rel = 0;
09d92015
MM
10150}
10151
90ec0d68
MGD
10152static void
10153do_hvc (void)
10154{
e2b0ab59
AV
10155 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10156 inst.relocs[0].pc_rel = 0;
90ec0d68
MGD
10157}
10158
09d92015 10159static void
c19d1205 10160do_swi (void)
09d92015 10161{
e2b0ab59
AV
10162 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10163 inst.relocs[0].pc_rel = 0;
09d92015
MM
10164}
10165
ddfded2f
MW
10166static void
10167do_setpan (void)
10168{
10169 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10170 _("selected processor does not support SETPAN instruction"));
10171
10172 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10173}
10174
10175static void
10176do_t_setpan (void)
10177{
10178 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10179 _("selected processor does not support SETPAN instruction"));
10180
10181 inst.instruction |= (inst.operands[0].imm << 3);
10182}
10183
c19d1205
ZW
10184/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10185 SMLAxy{cond} Rd,Rm,Rs,Rn
10186 SMLAWy{cond} Rd,Rm,Rs,Rn
10187 Error if any register is R15. */
e16bb312 10188
c19d1205
ZW
10189static void
10190do_smla (void)
e16bb312 10191{
c19d1205
ZW
10192 inst.instruction |= inst.operands[0].reg << 16;
10193 inst.instruction |= inst.operands[1].reg;
10194 inst.instruction |= inst.operands[2].reg << 8;
10195 inst.instruction |= inst.operands[3].reg << 12;
10196}
a737bd4d 10197
c19d1205
ZW
10198/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10199 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10200 Error if any register is R15.
10201 Warning if Rdlo == Rdhi. */
a737bd4d 10202
c19d1205
ZW
10203static void
10204do_smlal (void)
10205{
10206 inst.instruction |= inst.operands[0].reg << 12;
10207 inst.instruction |= inst.operands[1].reg << 16;
10208 inst.instruction |= inst.operands[2].reg;
10209 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 10210
c19d1205
ZW
10211 if (inst.operands[0].reg == inst.operands[1].reg)
10212 as_tsktsk (_("rdhi and rdlo must be different"));
10213}
a737bd4d 10214
c19d1205
ZW
10215/* ARM V5E (El Segundo) signed-multiply (argument parse)
10216 SMULxy{cond} Rd,Rm,Rs
10217 Error if any register is R15. */
a737bd4d 10218
c19d1205
ZW
10219static void
10220do_smul (void)
10221{
10222 inst.instruction |= inst.operands[0].reg << 16;
10223 inst.instruction |= inst.operands[1].reg;
10224 inst.instruction |= inst.operands[2].reg << 8;
10225}
a737bd4d 10226
b6702015
PB
10227/* ARM V6 srs (argument parse). The variable fields in the encoding are
10228 the same for both ARM and Thumb-2. */
a737bd4d 10229
c19d1205
ZW
10230static void
10231do_srs (void)
10232{
b6702015
PB
10233 int reg;
10234
10235 if (inst.operands[0].present)
10236 {
10237 reg = inst.operands[0].reg;
fdfde340 10238 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
10239 }
10240 else
fdfde340 10241 reg = REG_SP;
b6702015
PB
10242
10243 inst.instruction |= reg << 16;
10244 inst.instruction |= inst.operands[1].imm;
10245 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
10246 inst.instruction |= WRITE_BACK;
10247}
a737bd4d 10248
c19d1205 10249/* ARM V6 strex (argument parse). */
a737bd4d 10250
c19d1205
ZW
10251static void
10252do_strex (void)
10253{
10254 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10255 || inst.operands[2].postind || inst.operands[2].writeback
10256 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
10257 || inst.operands[2].negative
10258 /* See comment in do_ldrex(). */
10259 || (inst.operands[2].reg == REG_PC),
10260 BAD_ADDR_MODE);
a737bd4d 10261
c19d1205
ZW
10262 constraint (inst.operands[0].reg == inst.operands[1].reg
10263 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 10264
e2b0ab59
AV
10265 constraint (inst.relocs[0].exp.X_op != O_constant
10266 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10267 _("offset must be zero in ARM encoding"));
a737bd4d 10268
c19d1205
ZW
10269 inst.instruction |= inst.operands[0].reg << 12;
10270 inst.instruction |= inst.operands[1].reg;
10271 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 10272 inst.relocs[0].type = BFD_RELOC_UNUSED;
e16bb312
NC
10273}
10274
877807f8
NC
10275static void
10276do_t_strexbh (void)
10277{
10278 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10279 || inst.operands[2].postind || inst.operands[2].writeback
10280 || inst.operands[2].immisreg || inst.operands[2].shifted
10281 || inst.operands[2].negative,
10282 BAD_ADDR_MODE);
10283
10284 constraint (inst.operands[0].reg == inst.operands[1].reg
10285 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10286
10287 do_rm_rd_rn ();
10288}
10289
e16bb312 10290static void
c19d1205 10291do_strexd (void)
e16bb312 10292{
c19d1205
ZW
10293 constraint (inst.operands[1].reg % 2 != 0,
10294 _("even register required"));
10295 constraint (inst.operands[2].present
10296 && inst.operands[2].reg != inst.operands[1].reg + 1,
10297 _("can only store two consecutive registers"));
10298 /* If op 2 were present and equal to PC, this function wouldn't
10299 have been called in the first place. */
10300 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 10301
c19d1205
ZW
10302 constraint (inst.operands[0].reg == inst.operands[1].reg
10303 || inst.operands[0].reg == inst.operands[1].reg + 1
10304 || inst.operands[0].reg == inst.operands[3].reg,
10305 BAD_OVERLAP);
e16bb312 10306
c19d1205
ZW
10307 inst.instruction |= inst.operands[0].reg << 12;
10308 inst.instruction |= inst.operands[1].reg;
10309 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
10310}
10311
9eb6c0f1
MGD
10312/* ARM V8 STRL. */
10313static void
4b8c8c02 10314do_stlex (void)
9eb6c0f1
MGD
10315{
10316 constraint (inst.operands[0].reg == inst.operands[1].reg
10317 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10318
10319 do_rd_rm_rn ();
10320}
10321
10322static void
4b8c8c02 10323do_t_stlex (void)
9eb6c0f1
MGD
10324{
10325 constraint (inst.operands[0].reg == inst.operands[1].reg
10326 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10327
10328 do_rm_rd_rn ();
10329}
10330
c19d1205
ZW
10331/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10332 extends it to 32-bits, and adds the result to a value in another
10333 register. You can specify a rotation by 0, 8, 16, or 24 bits
10334 before extracting the 16-bit value.
10335 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10336 Condition defaults to COND_ALWAYS.
10337 Error if any register uses R15. */
10338
e16bb312 10339static void
c19d1205 10340do_sxtah (void)
e16bb312 10341{
c19d1205
ZW
10342 inst.instruction |= inst.operands[0].reg << 12;
10343 inst.instruction |= inst.operands[1].reg << 16;
10344 inst.instruction |= inst.operands[2].reg;
10345 inst.instruction |= inst.operands[3].imm << 10;
10346}
e16bb312 10347
c19d1205 10348/* ARM V6 SXTH.
e16bb312 10349
c19d1205
ZW
10350 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10351 Condition defaults to COND_ALWAYS.
10352 Error if any register uses R15. */
e16bb312
NC
10353
10354static void
c19d1205 10355do_sxth (void)
e16bb312 10356{
c19d1205
ZW
10357 inst.instruction |= inst.operands[0].reg << 12;
10358 inst.instruction |= inst.operands[1].reg;
10359 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 10360}
c19d1205
ZW
10361\f
10362/* VFP instructions. In a logical order: SP variant first, monad
10363 before dyad, arithmetic then move then load/store. */
e16bb312
NC
10364
10365static void
c19d1205 10366do_vfp_sp_monadic (void)
e16bb312 10367{
57785aa2
AV
10368 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10369 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10370 _(BAD_FPU));
10371
5287ad62
JB
10372 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10373 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10374}
10375
10376static void
c19d1205 10377do_vfp_sp_dyadic (void)
e16bb312 10378{
5287ad62
JB
10379 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10380 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10381 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10382}
10383
10384static void
c19d1205 10385do_vfp_sp_compare_z (void)
e16bb312 10386{
5287ad62 10387 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
10388}
10389
10390static void
c19d1205 10391do_vfp_dp_sp_cvt (void)
e16bb312 10392{
5287ad62
JB
10393 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10394 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10395}
10396
10397static void
c19d1205 10398do_vfp_sp_dp_cvt (void)
e16bb312 10399{
5287ad62
JB
10400 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10401 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
10402}
10403
10404static void
c19d1205 10405do_vfp_reg_from_sp (void)
e16bb312 10406{
57785aa2
AV
10407 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10408 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10409 _(BAD_FPU));
10410
c19d1205 10411 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 10412 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
10413}
10414
10415static void
c19d1205 10416do_vfp_reg2_from_sp2 (void)
e16bb312 10417{
c19d1205
ZW
10418 constraint (inst.operands[2].imm != 2,
10419 _("only two consecutive VFP SP registers allowed here"));
10420 inst.instruction |= inst.operands[0].reg << 12;
10421 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 10422 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10423}
10424
10425static void
c19d1205 10426do_vfp_sp_from_reg (void)
e16bb312 10427{
57785aa2
AV
10428 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10429 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10430 _(BAD_FPU));
10431
5287ad62 10432 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 10433 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
10434}
10435
10436static void
c19d1205 10437do_vfp_sp2_from_reg2 (void)
e16bb312 10438{
c19d1205
ZW
10439 constraint (inst.operands[0].imm != 2,
10440 _("only two consecutive VFP SP registers allowed here"));
5287ad62 10441 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
10442 inst.instruction |= inst.operands[1].reg << 12;
10443 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
10444}
10445
10446static void
c19d1205 10447do_vfp_sp_ldst (void)
e16bb312 10448{
5287ad62 10449 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 10450 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10451}
10452
10453static void
c19d1205 10454do_vfp_dp_ldst (void)
e16bb312 10455{
5287ad62 10456 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 10457 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10458}
10459
c19d1205 10460
e16bb312 10461static void
c19d1205 10462vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10463{
c19d1205
ZW
10464 if (inst.operands[0].writeback)
10465 inst.instruction |= WRITE_BACK;
10466 else
10467 constraint (ldstm_type != VFP_LDSTMIA,
10468 _("this addressing mode requires base-register writeback"));
10469 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10470 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 10471 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
10472}
10473
10474static void
c19d1205 10475vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10476{
c19d1205 10477 int count;
e16bb312 10478
c19d1205
ZW
10479 if (inst.operands[0].writeback)
10480 inst.instruction |= WRITE_BACK;
10481 else
10482 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10483 _("this addressing mode requires base-register writeback"));
e16bb312 10484
c19d1205 10485 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10486 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 10487
c19d1205
ZW
10488 count = inst.operands[1].imm << 1;
10489 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10490 count += 1;
e16bb312 10491
c19d1205 10492 inst.instruction |= count;
e16bb312
NC
10493}
10494
10495static void
c19d1205 10496do_vfp_sp_ldstmia (void)
e16bb312 10497{
c19d1205 10498 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10499}
10500
10501static void
c19d1205 10502do_vfp_sp_ldstmdb (void)
e16bb312 10503{
c19d1205 10504 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10505}
10506
10507static void
c19d1205 10508do_vfp_dp_ldstmia (void)
e16bb312 10509{
c19d1205 10510 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10511}
10512
10513static void
c19d1205 10514do_vfp_dp_ldstmdb (void)
e16bb312 10515{
c19d1205 10516 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10517}
10518
10519static void
c19d1205 10520do_vfp_xp_ldstmia (void)
e16bb312 10521{
c19d1205
ZW
10522 vfp_dp_ldstm (VFP_LDSTMIAX);
10523}
e16bb312 10524
c19d1205
ZW
10525static void
10526do_vfp_xp_ldstmdb (void)
10527{
10528 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 10529}
5287ad62
JB
10530
10531static void
10532do_vfp_dp_rd_rm (void)
10533{
57785aa2
AV
10534 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10535 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10536 _(BAD_FPU));
10537
5287ad62
JB
10538 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10539 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10540}
10541
10542static void
10543do_vfp_dp_rn_rd (void)
10544{
10545 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10546 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10547}
10548
10549static void
10550do_vfp_dp_rd_rn (void)
10551{
10552 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10553 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10554}
10555
10556static void
10557do_vfp_dp_rd_rn_rm (void)
10558{
57785aa2
AV
10559 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10560 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10561 _(BAD_FPU));
10562
5287ad62
JB
10563 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10564 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10565 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10566}
10567
10568static void
10569do_vfp_dp_rd (void)
10570{
10571 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10572}
10573
10574static void
10575do_vfp_dp_rm_rd_rn (void)
10576{
57785aa2
AV
10577 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10578 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10579 _(BAD_FPU));
10580
5287ad62
JB
10581 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10582 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10583 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10584}
10585
10586/* VFPv3 instructions. */
10587static void
10588do_vfp_sp_const (void)
10589{
10590 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
10591 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10592 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10593}
10594
10595static void
10596do_vfp_dp_const (void)
10597{
10598 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
10599 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10600 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10601}
10602
10603static void
10604vfp_conv (int srcsize)
10605{
5f1af56b
MGD
10606 int immbits = srcsize - inst.operands[1].imm;
10607
fa94de6b
RM
10608 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10609 {
5f1af56b 10610 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
477330fc 10611 i.e. immbits must be in range 0 - 16. */
5f1af56b
MGD
10612 inst.error = _("immediate value out of range, expected range [0, 16]");
10613 return;
10614 }
fa94de6b 10615 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
10616 {
10617 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
477330fc 10618 i.e. immbits must be in range 0 - 31. */
5f1af56b
MGD
10619 inst.error = _("immediate value out of range, expected range [1, 32]");
10620 return;
10621 }
10622
5287ad62
JB
10623 inst.instruction |= (immbits & 1) << 5;
10624 inst.instruction |= (immbits >> 1);
10625}
10626
10627static void
10628do_vfp_sp_conv_16 (void)
10629{
10630 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10631 vfp_conv (16);
10632}
10633
10634static void
10635do_vfp_dp_conv_16 (void)
10636{
10637 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10638 vfp_conv (16);
10639}
10640
10641static void
10642do_vfp_sp_conv_32 (void)
10643{
10644 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10645 vfp_conv (32);
10646}
10647
10648static void
10649do_vfp_dp_conv_32 (void)
10650{
10651 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10652 vfp_conv (32);
10653}
c19d1205
ZW
10654\f
10655/* FPA instructions. Also in a logical order. */
e16bb312 10656
c19d1205
ZW
10657static void
10658do_fpa_cmp (void)
10659{
10660 inst.instruction |= inst.operands[0].reg << 16;
10661 inst.instruction |= inst.operands[1].reg;
10662}
b99bd4ef
NC
10663
10664static void
c19d1205 10665do_fpa_ldmstm (void)
b99bd4ef 10666{
c19d1205
ZW
10667 inst.instruction |= inst.operands[0].reg << 12;
10668 switch (inst.operands[1].imm)
10669 {
10670 case 1: inst.instruction |= CP_T_X; break;
10671 case 2: inst.instruction |= CP_T_Y; break;
10672 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10673 case 4: break;
10674 default: abort ();
10675 }
b99bd4ef 10676
c19d1205
ZW
10677 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10678 {
10679 /* The instruction specified "ea" or "fd", so we can only accept
10680 [Rn]{!}. The instruction does not really support stacking or
10681 unstacking, so we have to emulate these by setting appropriate
10682 bits and offsets. */
e2b0ab59
AV
10683 constraint (inst.relocs[0].exp.X_op != O_constant
10684 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10685 _("this instruction does not support indexing"));
b99bd4ef 10686
c19d1205 10687 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
e2b0ab59 10688 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 10689
c19d1205 10690 if (!(inst.instruction & INDEX_UP))
e2b0ab59 10691 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
b99bd4ef 10692
c19d1205
ZW
10693 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10694 {
10695 inst.operands[2].preind = 0;
10696 inst.operands[2].postind = 1;
10697 }
10698 }
b99bd4ef 10699
c19d1205 10700 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 10701}
c19d1205
ZW
10702\f
10703/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 10704
c19d1205
ZW
10705static void
10706do_iwmmxt_tandorc (void)
10707{
10708 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10709}
b99bd4ef 10710
c19d1205
ZW
10711static void
10712do_iwmmxt_textrc (void)
10713{
10714 inst.instruction |= inst.operands[0].reg << 12;
10715 inst.instruction |= inst.operands[1].imm;
10716}
b99bd4ef
NC
10717
10718static void
c19d1205 10719do_iwmmxt_textrm (void)
b99bd4ef 10720{
c19d1205
ZW
10721 inst.instruction |= inst.operands[0].reg << 12;
10722 inst.instruction |= inst.operands[1].reg << 16;
10723 inst.instruction |= inst.operands[2].imm;
10724}
b99bd4ef 10725
c19d1205
ZW
10726static void
10727do_iwmmxt_tinsr (void)
10728{
10729 inst.instruction |= inst.operands[0].reg << 16;
10730 inst.instruction |= inst.operands[1].reg << 12;
10731 inst.instruction |= inst.operands[2].imm;
10732}
b99bd4ef 10733
c19d1205
ZW
10734static void
10735do_iwmmxt_tmia (void)
10736{
10737 inst.instruction |= inst.operands[0].reg << 5;
10738 inst.instruction |= inst.operands[1].reg;
10739 inst.instruction |= inst.operands[2].reg << 12;
10740}
b99bd4ef 10741
c19d1205
ZW
10742static void
10743do_iwmmxt_waligni (void)
10744{
10745 inst.instruction |= inst.operands[0].reg << 12;
10746 inst.instruction |= inst.operands[1].reg << 16;
10747 inst.instruction |= inst.operands[2].reg;
10748 inst.instruction |= inst.operands[3].imm << 20;
10749}
b99bd4ef 10750
2d447fca
JM
10751static void
10752do_iwmmxt_wmerge (void)
10753{
10754 inst.instruction |= inst.operands[0].reg << 12;
10755 inst.instruction |= inst.operands[1].reg << 16;
10756 inst.instruction |= inst.operands[2].reg;
10757 inst.instruction |= inst.operands[3].imm << 21;
10758}
10759
c19d1205
ZW
10760static void
10761do_iwmmxt_wmov (void)
10762{
10763 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10764 inst.instruction |= inst.operands[0].reg << 12;
10765 inst.instruction |= inst.operands[1].reg << 16;
10766 inst.instruction |= inst.operands[1].reg;
10767}
b99bd4ef 10768
c19d1205
ZW
10769static void
10770do_iwmmxt_wldstbh (void)
10771{
8f06b2d8 10772 int reloc;
c19d1205 10773 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
10774 if (thumb_mode)
10775 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10776 else
10777 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10778 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
10779}
10780
c19d1205
ZW
10781static void
10782do_iwmmxt_wldstw (void)
10783{
10784 /* RIWR_RIWC clears .isreg for a control register. */
10785 if (!inst.operands[0].isreg)
10786 {
10787 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10788 inst.instruction |= 0xf0000000;
10789 }
b99bd4ef 10790
c19d1205
ZW
10791 inst.instruction |= inst.operands[0].reg << 12;
10792 encode_arm_cp_address (1, TRUE, TRUE, 0);
10793}
b99bd4ef
NC
10794
10795static void
c19d1205 10796do_iwmmxt_wldstd (void)
b99bd4ef 10797{
c19d1205 10798 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
10799 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10800 && inst.operands[1].immisreg)
10801 {
10802 inst.instruction &= ~0x1a000ff;
eff0bc54 10803 inst.instruction |= (0xfU << 28);
2d447fca
JM
10804 if (inst.operands[1].preind)
10805 inst.instruction |= PRE_INDEX;
10806 if (!inst.operands[1].negative)
10807 inst.instruction |= INDEX_UP;
10808 if (inst.operands[1].writeback)
10809 inst.instruction |= WRITE_BACK;
10810 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 10811 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
2d447fca
JM
10812 inst.instruction |= inst.operands[1].imm;
10813 }
10814 else
10815 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 10816}
b99bd4ef 10817
c19d1205
ZW
10818static void
10819do_iwmmxt_wshufh (void)
10820{
10821 inst.instruction |= inst.operands[0].reg << 12;
10822 inst.instruction |= inst.operands[1].reg << 16;
10823 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10824 inst.instruction |= (inst.operands[2].imm & 0x0f);
10825}
b99bd4ef 10826
c19d1205
ZW
10827static void
10828do_iwmmxt_wzero (void)
10829{
10830 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10831 inst.instruction |= inst.operands[0].reg;
10832 inst.instruction |= inst.operands[0].reg << 12;
10833 inst.instruction |= inst.operands[0].reg << 16;
10834}
2d447fca
JM
10835
10836static void
10837do_iwmmxt_wrwrwr_or_imm5 (void)
10838{
10839 if (inst.operands[2].isreg)
10840 do_rd_rn_rm ();
10841 else {
10842 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10843 _("immediate operand requires iWMMXt2"));
10844 do_rd_rn ();
10845 if (inst.operands[2].imm == 0)
10846 {
10847 switch ((inst.instruction >> 20) & 0xf)
10848 {
10849 case 4:
10850 case 5:
10851 case 6:
5f4273c7 10852 case 7:
2d447fca
JM
10853 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10854 inst.operands[2].imm = 16;
10855 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10856 break;
10857 case 8:
10858 case 9:
10859 case 10:
10860 case 11:
10861 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10862 inst.operands[2].imm = 32;
10863 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10864 break;
10865 case 12:
10866 case 13:
10867 case 14:
10868 case 15:
10869 {
10870 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10871 unsigned long wrn;
10872 wrn = (inst.instruction >> 16) & 0xf;
10873 inst.instruction &= 0xff0fff0f;
10874 inst.instruction |= wrn;
10875 /* Bail out here; the instruction is now assembled. */
10876 return;
10877 }
10878 }
10879 }
10880 /* Map 32 -> 0, etc. */
10881 inst.operands[2].imm &= 0x1f;
eff0bc54 10882 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
2d447fca
JM
10883 }
10884}
c19d1205
ZW
10885\f
10886/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10887 operations first, then control, shift, and load/store. */
b99bd4ef 10888
c19d1205 10889/* Insns like "foo X,Y,Z". */
b99bd4ef 10890
c19d1205
ZW
10891static void
10892do_mav_triple (void)
10893{
10894 inst.instruction |= inst.operands[0].reg << 16;
10895 inst.instruction |= inst.operands[1].reg;
10896 inst.instruction |= inst.operands[2].reg << 12;
10897}
b99bd4ef 10898
c19d1205
ZW
10899/* Insns like "foo W,X,Y,Z".
10900 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 10901
c19d1205
ZW
10902static void
10903do_mav_quad (void)
10904{
10905 inst.instruction |= inst.operands[0].reg << 5;
10906 inst.instruction |= inst.operands[1].reg << 12;
10907 inst.instruction |= inst.operands[2].reg << 16;
10908 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
10909}
10910
c19d1205
ZW
10911/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10912static void
10913do_mav_dspsc (void)
a737bd4d 10914{
c19d1205
ZW
10915 inst.instruction |= inst.operands[1].reg << 12;
10916}
a737bd4d 10917
c19d1205
ZW
10918/* Maverick shift immediate instructions.
10919 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10920 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 10921
c19d1205
ZW
10922static void
10923do_mav_shift (void)
10924{
10925 int imm = inst.operands[2].imm;
a737bd4d 10926
c19d1205
ZW
10927 inst.instruction |= inst.operands[0].reg << 12;
10928 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 10929
c19d1205
ZW
10930 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10931 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10932 Bit 4 should be 0. */
10933 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 10934
c19d1205
ZW
10935 inst.instruction |= imm;
10936}
10937\f
10938/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 10939
c19d1205
ZW
10940/* Xscale multiply-accumulate (argument parse)
10941 MIAcc acc0,Rm,Rs
10942 MIAPHcc acc0,Rm,Rs
10943 MIAxycc acc0,Rm,Rs. */
a737bd4d 10944
c19d1205
ZW
10945static void
10946do_xsc_mia (void)
10947{
10948 inst.instruction |= inst.operands[1].reg;
10949 inst.instruction |= inst.operands[2].reg << 12;
10950}
a737bd4d 10951
c19d1205 10952/* Xscale move-accumulator-register (argument parse)
a737bd4d 10953
c19d1205 10954 MARcc acc0,RdLo,RdHi. */
b99bd4ef 10955
c19d1205
ZW
10956static void
10957do_xsc_mar (void)
10958{
10959 inst.instruction |= inst.operands[1].reg << 12;
10960 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10961}
10962
c19d1205 10963/* Xscale move-register-accumulator (argument parse)
b99bd4ef 10964
c19d1205 10965 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
10966
10967static void
c19d1205 10968do_xsc_mra (void)
b99bd4ef 10969{
c19d1205
ZW
10970 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10971 inst.instruction |= inst.operands[0].reg << 12;
10972 inst.instruction |= inst.operands[1].reg << 16;
10973}
10974\f
10975/* Encoding functions relevant only to Thumb. */
b99bd4ef 10976
c19d1205
ZW
10977/* inst.operands[i] is a shifted-register operand; encode
10978 it into inst.instruction in the format used by Thumb32. */
10979
10980static void
10981encode_thumb32_shifted_operand (int i)
10982{
e2b0ab59 10983 unsigned int value = inst.relocs[0].exp.X_add_number;
c19d1205 10984 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 10985
9c3c69f2
PB
10986 constraint (inst.operands[i].immisreg,
10987 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
10988 inst.instruction |= inst.operands[i].reg;
10989 if (shift == SHIFT_RRX)
10990 inst.instruction |= SHIFT_ROR << 4;
10991 else
b99bd4ef 10992 {
e2b0ab59 10993 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
10994 _("expression too complex"));
10995
10996 constraint (value > 32
10997 || (value == 32 && (shift == SHIFT_LSL
10998 || shift == SHIFT_ROR)),
10999 _("shift expression is too large"));
11000
11001 if (value == 0)
11002 shift = SHIFT_LSL;
11003 else if (value == 32)
11004 value = 0;
11005
11006 inst.instruction |= shift << 4;
11007 inst.instruction |= (value & 0x1c) << 10;
11008 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 11009 }
c19d1205 11010}
b99bd4ef 11011
b99bd4ef 11012
c19d1205
ZW
11013/* inst.operands[i] was set up by parse_address. Encode it into a
11014 Thumb32 format load or store instruction. Reject forms that cannot
11015 be used with such instructions. If is_t is true, reject forms that
11016 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
11017 that cannot be used with a D instruction. If it is a store insn,
11018 reject PC in Rn. */
b99bd4ef 11019
c19d1205
ZW
11020static void
11021encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11022{
5be8be5d 11023 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
11024
11025 constraint (!inst.operands[i].isreg,
53365c0d 11026 _("Instruction does not support =N addresses"));
b99bd4ef 11027
c19d1205
ZW
11028 inst.instruction |= inst.operands[i].reg << 16;
11029 if (inst.operands[i].immisreg)
b99bd4ef 11030 {
5be8be5d 11031 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
11032 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11033 constraint (inst.operands[i].negative,
11034 _("Thumb does not support negative register indexing"));
11035 constraint (inst.operands[i].postind,
11036 _("Thumb does not support register post-indexing"));
11037 constraint (inst.operands[i].writeback,
11038 _("Thumb does not support register indexing with writeback"));
11039 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11040 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 11041
f40d1643 11042 inst.instruction |= inst.operands[i].imm;
c19d1205 11043 if (inst.operands[i].shifted)
b99bd4ef 11044 {
e2b0ab59 11045 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 11046 _("expression too complex"));
e2b0ab59
AV
11047 constraint (inst.relocs[0].exp.X_add_number < 0
11048 || inst.relocs[0].exp.X_add_number > 3,
c19d1205 11049 _("shift out of range"));
e2b0ab59 11050 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
c19d1205 11051 }
e2b0ab59 11052 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
11053 }
11054 else if (inst.operands[i].preind)
11055 {
5be8be5d 11056 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 11057 constraint (is_t && inst.operands[i].writeback,
c19d1205 11058 _("cannot use writeback with this instruction"));
4755303e
WN
11059 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11060 BAD_PC_ADDRESSING);
c19d1205
ZW
11061
11062 if (is_d)
11063 {
11064 inst.instruction |= 0x01000000;
11065 if (inst.operands[i].writeback)
11066 inst.instruction |= 0x00200000;
b99bd4ef 11067 }
c19d1205 11068 else
b99bd4ef 11069 {
c19d1205
ZW
11070 inst.instruction |= 0x00000c00;
11071 if (inst.operands[i].writeback)
11072 inst.instruction |= 0x00000100;
b99bd4ef 11073 }
e2b0ab59 11074 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 11075 }
c19d1205 11076 else if (inst.operands[i].postind)
b99bd4ef 11077 {
9c2799c2 11078 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
11079 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11080 constraint (is_t, _("cannot use post-indexing with this instruction"));
11081
11082 if (is_d)
11083 inst.instruction |= 0x00200000;
11084 else
11085 inst.instruction |= 0x00000900;
e2b0ab59 11086 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
c19d1205
ZW
11087 }
11088 else /* unindexed - only for coprocessor */
11089 inst.error = _("instruction does not accept unindexed addressing");
11090}
11091
11092/* Table of Thumb instructions which exist in both 16- and 32-bit
11093 encodings (the latter only in post-V6T2 cores). The index is the
11094 value used in the insns table below. When there is more than one
11095 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
11096 holds variant (1).
11097 Also contains several pseudo-instructions used during relaxation. */
c19d1205 11098#define T16_32_TAB \
21d799b5
NC
11099 X(_adc, 4140, eb400000), \
11100 X(_adcs, 4140, eb500000), \
11101 X(_add, 1c00, eb000000), \
11102 X(_adds, 1c00, eb100000), \
11103 X(_addi, 0000, f1000000), \
11104 X(_addis, 0000, f1100000), \
11105 X(_add_pc,000f, f20f0000), \
11106 X(_add_sp,000d, f10d0000), \
11107 X(_adr, 000f, f20f0000), \
11108 X(_and, 4000, ea000000), \
11109 X(_ands, 4000, ea100000), \
11110 X(_asr, 1000, fa40f000), \
11111 X(_asrs, 1000, fa50f000), \
11112 X(_b, e000, f000b000), \
11113 X(_bcond, d000, f0008000), \
4389b29a 11114 X(_bf, 0000, f040e001), \
f6b2b12d 11115 X(_bfcsel,0000, f000e001), \
f1c7f421 11116 X(_bfx, 0000, f060e001), \
65d1bc05 11117 X(_bfl, 0000, f000c001), \
f1c7f421 11118 X(_bflx, 0000, f070e001), \
21d799b5
NC
11119 X(_bic, 4380, ea200000), \
11120 X(_bics, 4380, ea300000), \
11121 X(_cmn, 42c0, eb100f00), \
11122 X(_cmp, 2800, ebb00f00), \
11123 X(_cpsie, b660, f3af8400), \
11124 X(_cpsid, b670, f3af8600), \
11125 X(_cpy, 4600, ea4f0000), \
11126 X(_dec_sp,80dd, f1ad0d00), \
60f993ce 11127 X(_dls, 0000, f040e001), \
21d799b5
NC
11128 X(_eor, 4040, ea800000), \
11129 X(_eors, 4040, ea900000), \
11130 X(_inc_sp,00dd, f10d0d00), \
11131 X(_ldmia, c800, e8900000), \
11132 X(_ldr, 6800, f8500000), \
11133 X(_ldrb, 7800, f8100000), \
11134 X(_ldrh, 8800, f8300000), \
11135 X(_ldrsb, 5600, f9100000), \
11136 X(_ldrsh, 5e00, f9300000), \
11137 X(_ldr_pc,4800, f85f0000), \
11138 X(_ldr_pc2,4800, f85f0000), \
11139 X(_ldr_sp,9800, f85d0000), \
60f993ce 11140 X(_le, 0000, f00fc001), \
21d799b5
NC
11141 X(_lsl, 0000, fa00f000), \
11142 X(_lsls, 0000, fa10f000), \
11143 X(_lsr, 0800, fa20f000), \
11144 X(_lsrs, 0800, fa30f000), \
11145 X(_mov, 2000, ea4f0000), \
11146 X(_movs, 2000, ea5f0000), \
11147 X(_mul, 4340, fb00f000), \
11148 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11149 X(_mvn, 43c0, ea6f0000), \
11150 X(_mvns, 43c0, ea7f0000), \
11151 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11152 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11153 X(_orr, 4300, ea400000), \
11154 X(_orrs, 4300, ea500000), \
11155 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11156 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11157 X(_rev, ba00, fa90f080), \
11158 X(_rev16, ba40, fa90f090), \
11159 X(_revsh, bac0, fa90f0b0), \
11160 X(_ror, 41c0, fa60f000), \
11161 X(_rors, 41c0, fa70f000), \
11162 X(_sbc, 4180, eb600000), \
11163 X(_sbcs, 4180, eb700000), \
11164 X(_stmia, c000, e8800000), \
11165 X(_str, 6000, f8400000), \
11166 X(_strb, 7000, f8000000), \
11167 X(_strh, 8000, f8200000), \
11168 X(_str_sp,9000, f84d0000), \
11169 X(_sub, 1e00, eba00000), \
11170 X(_subs, 1e00, ebb00000), \
11171 X(_subi, 8000, f1a00000), \
11172 X(_subis, 8000, f1b00000), \
11173 X(_sxtb, b240, fa4ff080), \
11174 X(_sxth, b200, fa0ff080), \
11175 X(_tst, 4200, ea100f00), \
11176 X(_uxtb, b2c0, fa5ff080), \
11177 X(_uxth, b280, fa1ff080), \
11178 X(_nop, bf00, f3af8000), \
11179 X(_yield, bf10, f3af8001), \
11180 X(_wfe, bf20, f3af8002), \
11181 X(_wfi, bf30, f3af8003), \
60f993ce 11182 X(_wls, 0000, f040c001), \
53c4b28b 11183 X(_sev, bf40, f3af8004), \
74db7efb
NC
11184 X(_sevl, bf50, f3af8005), \
11185 X(_udf, de00, f7f0a000)
c19d1205
ZW
11186
11187/* To catch errors in encoding functions, the codes are all offset by
11188 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11189 as 16-bit instructions. */
21d799b5 11190#define X(a,b,c) T_MNEM##a
c19d1205
ZW
11191enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11192#undef X
11193
11194#define X(a,b,c) 0x##b
11195static const unsigned short thumb_op16[] = { T16_32_TAB };
11196#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11197#undef X
11198
11199#define X(a,b,c) 0x##c
11200static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
11201#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11202#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
11203#undef X
11204#undef T16_32_TAB
11205
11206/* Thumb instruction encoders, in alphabetical order. */
11207
92e90b6e 11208/* ADDW or SUBW. */
c921be7d 11209
92e90b6e
PB
11210static void
11211do_t_add_sub_w (void)
11212{
11213 int Rd, Rn;
11214
11215 Rd = inst.operands[0].reg;
11216 Rn = inst.operands[1].reg;
11217
539d4391
NC
11218 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11219 is the SP-{plus,minus}-immediate form of the instruction. */
11220 if (Rn == REG_SP)
11221 constraint (Rd == REG_PC, BAD_PC);
11222 else
11223 reject_bad_reg (Rd);
fdfde340 11224
92e90b6e 11225 inst.instruction |= (Rn << 16) | (Rd << 8);
e2b0ab59 11226 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
92e90b6e
PB
11227}
11228
c19d1205 11229/* Parse an add or subtract instruction. We get here with inst.instruction
33eaf5de 11230 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
c19d1205
ZW
11231
11232static void
11233do_t_add_sub (void)
11234{
11235 int Rd, Rs, Rn;
11236
11237 Rd = inst.operands[0].reg;
11238 Rs = (inst.operands[1].present
11239 ? inst.operands[1].reg /* Rd, Rs, foo */
11240 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11241
e07e6e58 11242 if (Rd == REG_PC)
5ee91343 11243 set_pred_insn_type_last ();
e07e6e58 11244
c19d1205
ZW
11245 if (unified_syntax)
11246 {
0110f2b8
PB
11247 bfd_boolean flags;
11248 bfd_boolean narrow;
11249 int opcode;
11250
11251 flags = (inst.instruction == T_MNEM_adds
11252 || inst.instruction == T_MNEM_subs);
11253 if (flags)
5ee91343 11254 narrow = !in_pred_block ();
0110f2b8 11255 else
5ee91343 11256 narrow = in_pred_block ();
c19d1205 11257 if (!inst.operands[2].isreg)
b99bd4ef 11258 {
16805f35
PB
11259 int add;
11260
5c8ed6a4
JW
11261 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11262 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340 11263
16805f35
PB
11264 add = (inst.instruction == T_MNEM_add
11265 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
11266 opcode = 0;
11267 if (inst.size_req != 4)
11268 {
0110f2b8 11269 /* Attempt to use a narrow opcode, with relaxation if
477330fc 11270 appropriate. */
0110f2b8
PB
11271 if (Rd == REG_SP && Rs == REG_SP && !flags)
11272 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11273 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11274 opcode = T_MNEM_add_sp;
11275 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11276 opcode = T_MNEM_add_pc;
11277 else if (Rd <= 7 && Rs <= 7 && narrow)
11278 {
11279 if (flags)
11280 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11281 else
11282 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11283 }
11284 if (opcode)
11285 {
11286 inst.instruction = THUMB_OP16(opcode);
11287 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59
AV
11288 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11289 || (inst.relocs[0].type
11290 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
a9f02af8
MG
11291 {
11292 if (inst.size_req == 2)
e2b0ab59 11293 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
a9f02af8
MG
11294 else
11295 inst.relax = opcode;
11296 }
0110f2b8
PB
11297 }
11298 else
11299 constraint (inst.size_req == 2, BAD_HIREG);
11300 }
11301 if (inst.size_req == 4
11302 || (inst.size_req != 2 && !opcode))
11303 {
e2b0ab59
AV
11304 constraint ((inst.relocs[0].type
11305 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11306 && (inst.relocs[0].type
11307 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8 11308 THUMB1_RELOC_ONLY);
efd81785
PB
11309 if (Rd == REG_PC)
11310 {
fdfde340 11311 constraint (add, BAD_PC);
efd81785
PB
11312 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11313 _("only SUBS PC, LR, #const allowed"));
e2b0ab59 11314 constraint (inst.relocs[0].exp.X_op != O_constant,
efd81785 11315 _("expression too complex"));
e2b0ab59
AV
11316 constraint (inst.relocs[0].exp.X_add_number < 0
11317 || inst.relocs[0].exp.X_add_number > 0xff,
efd81785
PB
11318 _("immediate value out of range"));
11319 inst.instruction = T2_SUBS_PC_LR
e2b0ab59
AV
11320 | inst.relocs[0].exp.X_add_number;
11321 inst.relocs[0].type = BFD_RELOC_UNUSED;
efd81785
PB
11322 return;
11323 }
11324 else if (Rs == REG_PC)
16805f35
PB
11325 {
11326 /* Always use addw/subw. */
11327 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
e2b0ab59 11328 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
16805f35
PB
11329 }
11330 else
11331 {
11332 inst.instruction = THUMB_OP32 (inst.instruction);
11333 inst.instruction = (inst.instruction & 0xe1ffffff)
11334 | 0x10000000;
11335 if (flags)
e2b0ab59 11336 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
16805f35 11337 else
e2b0ab59 11338 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
16805f35 11339 }
dc4503c6
PB
11340 inst.instruction |= Rd << 8;
11341 inst.instruction |= Rs << 16;
0110f2b8 11342 }
b99bd4ef 11343 }
c19d1205
ZW
11344 else
11345 {
e2b0ab59 11346 unsigned int value = inst.relocs[0].exp.X_add_number;
5f4cb198
NC
11347 unsigned int shift = inst.operands[2].shift_kind;
11348
c19d1205
ZW
11349 Rn = inst.operands[2].reg;
11350 /* See if we can do this with a 16-bit instruction. */
11351 if (!inst.operands[2].shifted && inst.size_req != 4)
11352 {
e27ec89e
PB
11353 if (Rd > 7 || Rs > 7 || Rn > 7)
11354 narrow = FALSE;
11355
11356 if (narrow)
c19d1205 11357 {
e27ec89e
PB
11358 inst.instruction = ((inst.instruction == T_MNEM_adds
11359 || inst.instruction == T_MNEM_add)
c19d1205
ZW
11360 ? T_OPCODE_ADD_R3
11361 : T_OPCODE_SUB_R3);
11362 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11363 return;
11364 }
b99bd4ef 11365
7e806470 11366 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 11367 {
7e806470
PB
11368 /* Thumb-1 cores (except v6-M) require at least one high
11369 register in a narrow non flag setting add. */
11370 if (Rd > 7 || Rn > 7
11371 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11372 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 11373 {
7e806470
PB
11374 if (Rd == Rn)
11375 {
11376 Rn = Rs;
11377 Rs = Rd;
11378 }
c19d1205
ZW
11379 inst.instruction = T_OPCODE_ADD_HI;
11380 inst.instruction |= (Rd & 8) << 4;
11381 inst.instruction |= (Rd & 7);
11382 inst.instruction |= Rn << 3;
11383 return;
11384 }
c19d1205
ZW
11385 }
11386 }
c921be7d 11387
fdfde340 11388 constraint (Rd == REG_PC, BAD_PC);
5c8ed6a4
JW
11389 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11390 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340
JM
11391 constraint (Rs == REG_PC, BAD_PC);
11392 reject_bad_reg (Rn);
11393
c19d1205
ZW
11394 /* If we get here, it can't be done in 16 bits. */
11395 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11396 _("shift must be constant"));
11397 inst.instruction = THUMB_OP32 (inst.instruction);
11398 inst.instruction |= Rd << 8;
11399 inst.instruction |= Rs << 16;
5f4cb198
NC
11400 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11401 _("shift value over 3 not allowed in thumb mode"));
11402 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11403 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
11404 encode_thumb32_shifted_operand (2);
11405 }
11406 }
11407 else
11408 {
11409 constraint (inst.instruction == T_MNEM_adds
11410 || inst.instruction == T_MNEM_subs,
11411 BAD_THUMB32);
b99bd4ef 11412
c19d1205 11413 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 11414 {
c19d1205
ZW
11415 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11416 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11417 BAD_HIREG);
11418
11419 inst.instruction = (inst.instruction == T_MNEM_add
11420 ? 0x0000 : 0x8000);
11421 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59 11422 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
11423 return;
11424 }
11425
c19d1205
ZW
11426 Rn = inst.operands[2].reg;
11427 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 11428
c19d1205
ZW
11429 /* We now have Rd, Rs, and Rn set to registers. */
11430 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 11431 {
c19d1205
ZW
11432 /* Can't do this for SUB. */
11433 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11434 inst.instruction = T_OPCODE_ADD_HI;
11435 inst.instruction |= (Rd & 8) << 4;
11436 inst.instruction |= (Rd & 7);
11437 if (Rs == Rd)
11438 inst.instruction |= Rn << 3;
11439 else if (Rn == Rd)
11440 inst.instruction |= Rs << 3;
11441 else
11442 constraint (1, _("dest must overlap one source register"));
11443 }
11444 else
11445 {
11446 inst.instruction = (inst.instruction == T_MNEM_add
11447 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11448 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 11449 }
b99bd4ef 11450 }
b99bd4ef
NC
11451}
11452
c19d1205
ZW
11453static void
11454do_t_adr (void)
11455{
fdfde340
JM
11456 unsigned Rd;
11457
11458 Rd = inst.operands[0].reg;
11459 reject_bad_reg (Rd);
11460
11461 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
11462 {
11463 /* Defer to section relaxation. */
11464 inst.relax = inst.instruction;
11465 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11466 inst.instruction |= Rd << 4;
0110f2b8
PB
11467 }
11468 else if (unified_syntax && inst.size_req != 2)
e9f89963 11469 {
0110f2b8 11470 /* Generate a 32-bit opcode. */
e9f89963 11471 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11472 inst.instruction |= Rd << 8;
e2b0ab59
AV
11473 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11474 inst.relocs[0].pc_rel = 1;
e9f89963
PB
11475 }
11476 else
11477 {
0110f2b8 11478 /* Generate a 16-bit opcode. */
e9f89963 11479 inst.instruction = THUMB_OP16 (inst.instruction);
e2b0ab59
AV
11480 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11481 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11482 inst.relocs[0].pc_rel = 1;
fdfde340 11483 inst.instruction |= Rd << 4;
e9f89963 11484 }
52a86f84 11485
e2b0ab59
AV
11486 if (inst.relocs[0].exp.X_op == O_symbol
11487 && inst.relocs[0].exp.X_add_symbol != NULL
11488 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11489 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11490 inst.relocs[0].exp.X_add_number += 1;
c19d1205 11491}
b99bd4ef 11492
c19d1205
ZW
11493/* Arithmetic instructions for which there is just one 16-bit
11494 instruction encoding, and it allows only two low registers.
11495 For maximal compatibility with ARM syntax, we allow three register
11496 operands even when Thumb-32 instructions are not available, as long
11497 as the first two are identical. For instance, both "sbc r0,r1" and
11498 "sbc r0,r0,r1" are allowed. */
b99bd4ef 11499static void
c19d1205 11500do_t_arit3 (void)
b99bd4ef 11501{
c19d1205 11502 int Rd, Rs, Rn;
b99bd4ef 11503
c19d1205
ZW
11504 Rd = inst.operands[0].reg;
11505 Rs = (inst.operands[1].present
11506 ? inst.operands[1].reg /* Rd, Rs, foo */
11507 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11508 Rn = inst.operands[2].reg;
b99bd4ef 11509
fdfde340
JM
11510 reject_bad_reg (Rd);
11511 reject_bad_reg (Rs);
11512 if (inst.operands[2].isreg)
11513 reject_bad_reg (Rn);
11514
c19d1205 11515 if (unified_syntax)
b99bd4ef 11516 {
c19d1205
ZW
11517 if (!inst.operands[2].isreg)
11518 {
11519 /* For an immediate, we always generate a 32-bit opcode;
11520 section relaxation will shrink it later if possible. */
11521 inst.instruction = THUMB_OP32 (inst.instruction);
11522 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11523 inst.instruction |= Rd << 8;
11524 inst.instruction |= Rs << 16;
e2b0ab59 11525 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
c19d1205
ZW
11526 }
11527 else
11528 {
e27ec89e
PB
11529 bfd_boolean narrow;
11530
c19d1205 11531 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11532 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11533 narrow = !in_pred_block ();
e27ec89e 11534 else
5ee91343 11535 narrow = in_pred_block ();
e27ec89e
PB
11536
11537 if (Rd > 7 || Rn > 7 || Rs > 7)
11538 narrow = FALSE;
11539 if (inst.operands[2].shifted)
11540 narrow = FALSE;
11541 if (inst.size_req == 4)
11542 narrow = FALSE;
11543
11544 if (narrow
c19d1205
ZW
11545 && Rd == Rs)
11546 {
11547 inst.instruction = THUMB_OP16 (inst.instruction);
11548 inst.instruction |= Rd;
11549 inst.instruction |= Rn << 3;
11550 return;
11551 }
b99bd4ef 11552
c19d1205
ZW
11553 /* If we get here, it can't be done in 16 bits. */
11554 constraint (inst.operands[2].shifted
11555 && inst.operands[2].immisreg,
11556 _("shift must be constant"));
11557 inst.instruction = THUMB_OP32 (inst.instruction);
11558 inst.instruction |= Rd << 8;
11559 inst.instruction |= Rs << 16;
11560 encode_thumb32_shifted_operand (2);
11561 }
a737bd4d 11562 }
c19d1205 11563 else
b99bd4ef 11564 {
c19d1205
ZW
11565 /* On its face this is a lie - the instruction does set the
11566 flags. However, the only supported mnemonic in this mode
11567 says it doesn't. */
11568 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11569
c19d1205
ZW
11570 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11571 _("unshifted register required"));
11572 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11573 constraint (Rd != Rs,
11574 _("dest and source1 must be the same register"));
a737bd4d 11575
c19d1205
ZW
11576 inst.instruction = THUMB_OP16 (inst.instruction);
11577 inst.instruction |= Rd;
11578 inst.instruction |= Rn << 3;
b99bd4ef 11579 }
a737bd4d 11580}
b99bd4ef 11581
c19d1205
ZW
11582/* Similarly, but for instructions where the arithmetic operation is
11583 commutative, so we can allow either of them to be different from
11584 the destination operand in a 16-bit instruction. For instance, all
11585 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11586 accepted. */
11587static void
11588do_t_arit3c (void)
a737bd4d 11589{
c19d1205 11590 int Rd, Rs, Rn;
b99bd4ef 11591
c19d1205
ZW
11592 Rd = inst.operands[0].reg;
11593 Rs = (inst.operands[1].present
11594 ? inst.operands[1].reg /* Rd, Rs, foo */
11595 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11596 Rn = inst.operands[2].reg;
c921be7d 11597
fdfde340
JM
11598 reject_bad_reg (Rd);
11599 reject_bad_reg (Rs);
11600 if (inst.operands[2].isreg)
11601 reject_bad_reg (Rn);
a737bd4d 11602
c19d1205 11603 if (unified_syntax)
a737bd4d 11604 {
c19d1205 11605 if (!inst.operands[2].isreg)
b99bd4ef 11606 {
c19d1205
ZW
11607 /* For an immediate, we always generate a 32-bit opcode;
11608 section relaxation will shrink it later if possible. */
11609 inst.instruction = THUMB_OP32 (inst.instruction);
11610 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11611 inst.instruction |= Rd << 8;
11612 inst.instruction |= Rs << 16;
e2b0ab59 11613 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11614 }
c19d1205 11615 else
a737bd4d 11616 {
e27ec89e
PB
11617 bfd_boolean narrow;
11618
c19d1205 11619 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11620 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11621 narrow = !in_pred_block ();
e27ec89e 11622 else
5ee91343 11623 narrow = in_pred_block ();
e27ec89e
PB
11624
11625 if (Rd > 7 || Rn > 7 || Rs > 7)
11626 narrow = FALSE;
11627 if (inst.operands[2].shifted)
11628 narrow = FALSE;
11629 if (inst.size_req == 4)
11630 narrow = FALSE;
11631
11632 if (narrow)
a737bd4d 11633 {
c19d1205 11634 if (Rd == Rs)
a737bd4d 11635 {
c19d1205
ZW
11636 inst.instruction = THUMB_OP16 (inst.instruction);
11637 inst.instruction |= Rd;
11638 inst.instruction |= Rn << 3;
11639 return;
a737bd4d 11640 }
c19d1205 11641 if (Rd == Rn)
a737bd4d 11642 {
c19d1205
ZW
11643 inst.instruction = THUMB_OP16 (inst.instruction);
11644 inst.instruction |= Rd;
11645 inst.instruction |= Rs << 3;
11646 return;
a737bd4d
NC
11647 }
11648 }
c19d1205
ZW
11649
11650 /* If we get here, it can't be done in 16 bits. */
11651 constraint (inst.operands[2].shifted
11652 && inst.operands[2].immisreg,
11653 _("shift must be constant"));
11654 inst.instruction = THUMB_OP32 (inst.instruction);
11655 inst.instruction |= Rd << 8;
11656 inst.instruction |= Rs << 16;
11657 encode_thumb32_shifted_operand (2);
a737bd4d 11658 }
b99bd4ef 11659 }
c19d1205
ZW
11660 else
11661 {
11662 /* On its face this is a lie - the instruction does set the
11663 flags. However, the only supported mnemonic in this mode
11664 says it doesn't. */
11665 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11666
c19d1205
ZW
11667 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11668 _("unshifted register required"));
11669 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11670
11671 inst.instruction = THUMB_OP16 (inst.instruction);
11672 inst.instruction |= Rd;
11673
11674 if (Rd == Rs)
11675 inst.instruction |= Rn << 3;
11676 else if (Rd == Rn)
11677 inst.instruction |= Rs << 3;
11678 else
11679 constraint (1, _("dest must overlap one source register"));
11680 }
a737bd4d
NC
11681}
11682
c19d1205
ZW
11683static void
11684do_t_bfc (void)
a737bd4d 11685{
fdfde340 11686 unsigned Rd;
c19d1205
ZW
11687 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11688 constraint (msb > 32, _("bit-field extends past end of register"));
11689 /* The instruction encoding stores the LSB and MSB,
11690 not the LSB and width. */
fdfde340
JM
11691 Rd = inst.operands[0].reg;
11692 reject_bad_reg (Rd);
11693 inst.instruction |= Rd << 8;
c19d1205
ZW
11694 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11695 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11696 inst.instruction |= msb - 1;
b99bd4ef
NC
11697}
11698
c19d1205
ZW
11699static void
11700do_t_bfi (void)
b99bd4ef 11701{
fdfde340 11702 int Rd, Rn;
c19d1205 11703 unsigned int msb;
b99bd4ef 11704
fdfde340
JM
11705 Rd = inst.operands[0].reg;
11706 reject_bad_reg (Rd);
11707
c19d1205
ZW
11708 /* #0 in second position is alternative syntax for bfc, which is
11709 the same instruction but with REG_PC in the Rm field. */
11710 if (!inst.operands[1].isreg)
fdfde340
JM
11711 Rn = REG_PC;
11712 else
11713 {
11714 Rn = inst.operands[1].reg;
11715 reject_bad_reg (Rn);
11716 }
b99bd4ef 11717
c19d1205
ZW
11718 msb = inst.operands[2].imm + inst.operands[3].imm;
11719 constraint (msb > 32, _("bit-field extends past end of register"));
11720 /* The instruction encoding stores the LSB and MSB,
11721 not the LSB and width. */
fdfde340
JM
11722 inst.instruction |= Rd << 8;
11723 inst.instruction |= Rn << 16;
c19d1205
ZW
11724 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11725 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11726 inst.instruction |= msb - 1;
b99bd4ef
NC
11727}
11728
c19d1205
ZW
11729static void
11730do_t_bfx (void)
b99bd4ef 11731{
fdfde340
JM
11732 unsigned Rd, Rn;
11733
11734 Rd = inst.operands[0].reg;
11735 Rn = inst.operands[1].reg;
11736
11737 reject_bad_reg (Rd);
11738 reject_bad_reg (Rn);
11739
c19d1205
ZW
11740 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11741 _("bit-field extends past end of register"));
fdfde340
JM
11742 inst.instruction |= Rd << 8;
11743 inst.instruction |= Rn << 16;
c19d1205
ZW
11744 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11745 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11746 inst.instruction |= inst.operands[3].imm - 1;
11747}
b99bd4ef 11748
c19d1205
ZW
11749/* ARM V5 Thumb BLX (argument parse)
11750 BLX <target_addr> which is BLX(1)
11751 BLX <Rm> which is BLX(2)
11752 Unfortunately, there are two different opcodes for this mnemonic.
11753 So, the insns[].value is not used, and the code here zaps values
11754 into inst.instruction.
b99bd4ef 11755
c19d1205
ZW
11756 ??? How to take advantage of the additional two bits of displacement
11757 available in Thumb32 mode? Need new relocation? */
b99bd4ef 11758
c19d1205
ZW
11759static void
11760do_t_blx (void)
11761{
5ee91343 11762 set_pred_insn_type_last ();
e07e6e58 11763
c19d1205 11764 if (inst.operands[0].isreg)
fdfde340
JM
11765 {
11766 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11767 /* We have a register, so this is BLX(2). */
11768 inst.instruction |= inst.operands[0].reg << 3;
11769 }
b99bd4ef
NC
11770 else
11771 {
c19d1205 11772 /* No register. This must be BLX(1). */
2fc8bdac 11773 inst.instruction = 0xf000e800;
0855e32b 11774 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
11775 }
11776}
11777
c19d1205
ZW
11778static void
11779do_t_branch (void)
b99bd4ef 11780{
0110f2b8 11781 int opcode;
dfa9f0d5 11782 int cond;
2fe88214 11783 bfd_reloc_code_real_type reloc;
dfa9f0d5 11784
e07e6e58 11785 cond = inst.cond;
5ee91343 11786 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
e07e6e58 11787
5ee91343 11788 if (in_pred_block ())
dfa9f0d5
PB
11789 {
11790 /* Conditional branches inside IT blocks are encoded as unconditional
477330fc 11791 branches. */
dfa9f0d5 11792 cond = COND_ALWAYS;
dfa9f0d5
PB
11793 }
11794 else
11795 cond = inst.cond;
11796
11797 if (cond != COND_ALWAYS)
0110f2b8
PB
11798 opcode = T_MNEM_bcond;
11799 else
11800 opcode = inst.instruction;
11801
12d6b0b7
RS
11802 if (unified_syntax
11803 && (inst.size_req == 4
10960bfb
PB
11804 || (inst.size_req != 2
11805 && (inst.operands[0].hasreloc
e2b0ab59 11806 || inst.relocs[0].exp.X_op == O_constant))))
c19d1205 11807 {
0110f2b8 11808 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 11809 if (cond == COND_ALWAYS)
9ae92b05 11810 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
11811 else
11812 {
ff8646ee
TP
11813 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11814 _("selected architecture does not support "
11815 "wide conditional branch instruction"));
11816
9c2799c2 11817 gas_assert (cond != 0xF);
dfa9f0d5 11818 inst.instruction |= cond << 22;
9ae92b05 11819 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
11820 }
11821 }
b99bd4ef
NC
11822 else
11823 {
0110f2b8 11824 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 11825 if (cond == COND_ALWAYS)
9ae92b05 11826 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 11827 else
b99bd4ef 11828 {
dfa9f0d5 11829 inst.instruction |= cond << 8;
9ae92b05 11830 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 11831 }
0110f2b8
PB
11832 /* Allow section relaxation. */
11833 if (unified_syntax && inst.size_req != 2)
11834 inst.relax = opcode;
b99bd4ef 11835 }
e2b0ab59
AV
11836 inst.relocs[0].type = reloc;
11837 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
11838}
11839
8884b720 11840/* Actually do the work for Thumb state bkpt and hlt. The only difference
bacebabc 11841 between the two is the maximum immediate allowed - which is passed in
8884b720 11842 RANGE. */
b99bd4ef 11843static void
8884b720 11844do_t_bkpt_hlt1 (int range)
b99bd4ef 11845{
dfa9f0d5
PB
11846 constraint (inst.cond != COND_ALWAYS,
11847 _("instruction is always unconditional"));
c19d1205 11848 if (inst.operands[0].present)
b99bd4ef 11849 {
8884b720 11850 constraint (inst.operands[0].imm > range,
c19d1205
ZW
11851 _("immediate value out of range"));
11852 inst.instruction |= inst.operands[0].imm;
b99bd4ef 11853 }
8884b720 11854
5ee91343 11855 set_pred_insn_type (NEUTRAL_IT_INSN);
8884b720
MGD
11856}
11857
11858static void
11859do_t_hlt (void)
11860{
11861 do_t_bkpt_hlt1 (63);
11862}
11863
11864static void
11865do_t_bkpt (void)
11866{
11867 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
11868}
11869
11870static void
c19d1205 11871do_t_branch23 (void)
b99bd4ef 11872{
5ee91343 11873 set_pred_insn_type_last ();
0855e32b 11874 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 11875
0855e32b
NS
11876 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11877 this file. We used to simply ignore the PLT reloc type here --
11878 the branch encoding is now needed to deal with TLSCALL relocs.
11879 So if we see a PLT reloc now, put it back to how it used to be to
11880 keep the preexisting behaviour. */
e2b0ab59
AV
11881 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11882 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 11883
4343666d 11884#if defined(OBJ_COFF)
c19d1205
ZW
11885 /* If the destination of the branch is a defined symbol which does not have
11886 the THUMB_FUNC attribute, then we must be calling a function which has
11887 the (interfacearm) attribute. We look for the Thumb entry point to that
11888 function and change the branch to refer to that function instead. */
e2b0ab59
AV
11889 if ( inst.relocs[0].exp.X_op == O_symbol
11890 && inst.relocs[0].exp.X_add_symbol != NULL
11891 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11892 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11893 inst.relocs[0].exp.X_add_symbol
11894 = find_real_start (inst.relocs[0].exp.X_add_symbol);
4343666d 11895#endif
90e4755a
RE
11896}
11897
11898static void
c19d1205 11899do_t_bx (void)
90e4755a 11900{
5ee91343 11901 set_pred_insn_type_last ();
c19d1205
ZW
11902 inst.instruction |= inst.operands[0].reg << 3;
11903 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11904 should cause the alignment to be checked once it is known. This is
11905 because BX PC only works if the instruction is word aligned. */
11906}
90e4755a 11907
c19d1205
ZW
11908static void
11909do_t_bxj (void)
11910{
fdfde340 11911 int Rm;
90e4755a 11912
5ee91343 11913 set_pred_insn_type_last ();
fdfde340
JM
11914 Rm = inst.operands[0].reg;
11915 reject_bad_reg (Rm);
11916 inst.instruction |= Rm << 16;
90e4755a
RE
11917}
11918
11919static void
c19d1205 11920do_t_clz (void)
90e4755a 11921{
fdfde340
JM
11922 unsigned Rd;
11923 unsigned Rm;
11924
11925 Rd = inst.operands[0].reg;
11926 Rm = inst.operands[1].reg;
11927
11928 reject_bad_reg (Rd);
11929 reject_bad_reg (Rm);
11930
11931 inst.instruction |= Rd << 8;
11932 inst.instruction |= Rm << 16;
11933 inst.instruction |= Rm;
c19d1205 11934}
90e4755a 11935
91d8b670
JG
11936static void
11937do_t_csdb (void)
11938{
5ee91343 11939 set_pred_insn_type (OUTSIDE_PRED_INSN);
91d8b670
JG
11940}
11941
dfa9f0d5
PB
11942static void
11943do_t_cps (void)
11944{
5ee91343 11945 set_pred_insn_type (OUTSIDE_PRED_INSN);
dfa9f0d5
PB
11946 inst.instruction |= inst.operands[0].imm;
11947}
11948
c19d1205
ZW
11949static void
11950do_t_cpsi (void)
11951{
5ee91343 11952 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205 11953 if (unified_syntax
62b3e311
PB
11954 && (inst.operands[1].present || inst.size_req == 4)
11955 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 11956 {
c19d1205
ZW
11957 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11958 inst.instruction = 0xf3af8000;
11959 inst.instruction |= imod << 9;
11960 inst.instruction |= inst.operands[0].imm << 5;
11961 if (inst.operands[1].present)
11962 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 11963 }
c19d1205 11964 else
90e4755a 11965 {
62b3e311
PB
11966 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11967 && (inst.operands[0].imm & 4),
11968 _("selected processor does not support 'A' form "
11969 "of this instruction"));
11970 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
11971 _("Thumb does not support the 2-argument "
11972 "form of this instruction"));
11973 inst.instruction |= inst.operands[0].imm;
90e4755a 11974 }
90e4755a
RE
11975}
11976
c19d1205
ZW
11977/* THUMB CPY instruction (argument parse). */
11978
90e4755a 11979static void
c19d1205 11980do_t_cpy (void)
90e4755a 11981{
c19d1205 11982 if (inst.size_req == 4)
90e4755a 11983 {
c19d1205
ZW
11984 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11985 inst.instruction |= inst.operands[0].reg << 8;
11986 inst.instruction |= inst.operands[1].reg;
90e4755a 11987 }
c19d1205 11988 else
90e4755a 11989 {
c19d1205
ZW
11990 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11991 inst.instruction |= (inst.operands[0].reg & 0x7);
11992 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 11993 }
90e4755a
RE
11994}
11995
90e4755a 11996static void
25fe350b 11997do_t_cbz (void)
90e4755a 11998{
5ee91343 11999 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
12000 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12001 inst.instruction |= inst.operands[0].reg;
e2b0ab59
AV
12002 inst.relocs[0].pc_rel = 1;
12003 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
c19d1205 12004}
90e4755a 12005
62b3e311
PB
12006static void
12007do_t_dbg (void)
12008{
12009 inst.instruction |= inst.operands[0].imm;
12010}
12011
12012static void
12013do_t_div (void)
12014{
fdfde340
JM
12015 unsigned Rd, Rn, Rm;
12016
12017 Rd = inst.operands[0].reg;
12018 Rn = (inst.operands[1].present
12019 ? inst.operands[1].reg : Rd);
12020 Rm = inst.operands[2].reg;
12021
12022 reject_bad_reg (Rd);
12023 reject_bad_reg (Rn);
12024 reject_bad_reg (Rm);
12025
12026 inst.instruction |= Rd << 8;
12027 inst.instruction |= Rn << 16;
12028 inst.instruction |= Rm;
62b3e311
PB
12029}
12030
c19d1205
ZW
12031static void
12032do_t_hint (void)
12033{
12034 if (unified_syntax && inst.size_req == 4)
12035 inst.instruction = THUMB_OP32 (inst.instruction);
12036 else
12037 inst.instruction = THUMB_OP16 (inst.instruction);
12038}
90e4755a 12039
c19d1205
ZW
12040static void
12041do_t_it (void)
12042{
12043 unsigned int cond = inst.operands[0].imm;
e27ec89e 12044
5ee91343
AV
12045 set_pred_insn_type (IT_INSN);
12046 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12047 now_pred.cc = cond;
12048 now_pred.warn_deprecated = FALSE;
12049 now_pred.type = SCALAR_PRED;
e27ec89e
PB
12050
12051 /* If the condition is a negative condition, invert the mask. */
c19d1205 12052 if ((cond & 0x1) == 0x0)
90e4755a 12053 {
c19d1205 12054 unsigned int mask = inst.instruction & 0x000f;
90e4755a 12055
c19d1205 12056 if ((mask & 0x7) == 0)
5a01bb1d
MGD
12057 {
12058 /* No conversion needed. */
5ee91343 12059 now_pred.block_length = 1;
5a01bb1d 12060 }
c19d1205 12061 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
12062 {
12063 mask ^= 0x8;
5ee91343 12064 now_pred.block_length = 2;
5a01bb1d 12065 }
e27ec89e 12066 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
12067 {
12068 mask ^= 0xC;
5ee91343 12069 now_pred.block_length = 3;
5a01bb1d 12070 }
c19d1205 12071 else
5a01bb1d
MGD
12072 {
12073 mask ^= 0xE;
5ee91343 12074 now_pred.block_length = 4;
5a01bb1d 12075 }
90e4755a 12076
e27ec89e
PB
12077 inst.instruction &= 0xfff0;
12078 inst.instruction |= mask;
c19d1205 12079 }
90e4755a 12080
c19d1205
ZW
12081 inst.instruction |= cond << 4;
12082}
90e4755a 12083
3c707909
PB
12084/* Helper function used for both push/pop and ldm/stm. */
12085static void
4b5a202f
AV
12086encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12087 bfd_boolean writeback)
3c707909 12088{
4b5a202f 12089 bfd_boolean load, store;
3c707909 12090
4b5a202f
AV
12091 gas_assert (base != -1 || !do_io);
12092 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12093 store = do_io && !load;
3c707909
PB
12094
12095 if (mask & (1 << 13))
12096 inst.error = _("SP not allowed in register list");
1e5b0379 12097
4b5a202f 12098 if (do_io && (mask & (1 << base)) != 0
1e5b0379
NC
12099 && writeback)
12100 inst.error = _("having the base register in the register list when "
12101 "using write back is UNPREDICTABLE");
12102
3c707909
PB
12103 if (load)
12104 {
e07e6e58 12105 if (mask & (1 << 15))
477330fc
RM
12106 {
12107 if (mask & (1 << 14))
12108 inst.error = _("LR and PC should not both be in register list");
12109 else
5ee91343 12110 set_pred_insn_type_last ();
477330fc 12111 }
3c707909 12112 }
4b5a202f 12113 else if (store)
3c707909
PB
12114 {
12115 if (mask & (1 << 15))
12116 inst.error = _("PC not allowed in register list");
3c707909
PB
12117 }
12118
4b5a202f 12119 if (do_io && ((mask & (mask - 1)) == 0))
3c707909
PB
12120 {
12121 /* Single register transfers implemented as str/ldr. */
12122 if (writeback)
12123 {
12124 if (inst.instruction & (1 << 23))
12125 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12126 else
12127 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12128 }
12129 else
12130 {
12131 if (inst.instruction & (1 << 23))
12132 inst.instruction = 0x00800000; /* ia -> [base] */
12133 else
12134 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12135 }
12136
12137 inst.instruction |= 0xf8400000;
12138 if (load)
12139 inst.instruction |= 0x00100000;
12140
5f4273c7 12141 mask = ffs (mask) - 1;
3c707909
PB
12142 mask <<= 12;
12143 }
12144 else if (writeback)
12145 inst.instruction |= WRITE_BACK;
12146
12147 inst.instruction |= mask;
4b5a202f
AV
12148 if (do_io)
12149 inst.instruction |= base << 16;
3c707909
PB
12150}
12151
c19d1205
ZW
12152static void
12153do_t_ldmstm (void)
12154{
12155 /* This really doesn't seem worth it. */
e2b0ab59 12156 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205
ZW
12157 _("expression too complex"));
12158 constraint (inst.operands[1].writeback,
12159 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 12160
c19d1205
ZW
12161 if (unified_syntax)
12162 {
3c707909
PB
12163 bfd_boolean narrow;
12164 unsigned mask;
12165
12166 narrow = FALSE;
c19d1205
ZW
12167 /* See if we can use a 16-bit instruction. */
12168 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12169 && inst.size_req != 4
3c707909 12170 && !(inst.operands[1].imm & ~0xff))
90e4755a 12171 {
3c707909 12172 mask = 1 << inst.operands[0].reg;
90e4755a 12173
eab4f823 12174 if (inst.operands[0].reg <= 7)
90e4755a 12175 {
3c707909 12176 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
12177 ? inst.operands[0].writeback
12178 : (inst.operands[0].writeback
12179 == !(inst.operands[1].imm & mask)))
477330fc 12180 {
eab4f823
MGD
12181 if (inst.instruction == T_MNEM_stmia
12182 && (inst.operands[1].imm & mask)
12183 && (inst.operands[1].imm & (mask - 1)))
12184 as_warn (_("value stored for r%d is UNKNOWN"),
12185 inst.operands[0].reg);
3c707909 12186
eab4f823
MGD
12187 inst.instruction = THUMB_OP16 (inst.instruction);
12188 inst.instruction |= inst.operands[0].reg << 8;
12189 inst.instruction |= inst.operands[1].imm;
12190 narrow = TRUE;
12191 }
12192 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12193 {
12194 /* This means 1 register in reg list one of 3 situations:
12195 1. Instruction is stmia, but without writeback.
12196 2. lmdia without writeback, but with Rn not in
477330fc 12197 reglist.
eab4f823
MGD
12198 3. ldmia with writeback, but with Rn in reglist.
12199 Case 3 is UNPREDICTABLE behaviour, so we handle
12200 case 1 and 2 which can be converted into a 16-bit
12201 str or ldr. The SP cases are handled below. */
12202 unsigned long opcode;
12203 /* First, record an error for Case 3. */
12204 if (inst.operands[1].imm & mask
12205 && inst.operands[0].writeback)
fa94de6b 12206 inst.error =
eab4f823
MGD
12207 _("having the base register in the register list when "
12208 "using write back is UNPREDICTABLE");
fa94de6b
RM
12209
12210 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
12211 : T_MNEM_ldr);
12212 inst.instruction = THUMB_OP16 (opcode);
12213 inst.instruction |= inst.operands[0].reg << 3;
12214 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12215 narrow = TRUE;
12216 }
90e4755a 12217 }
eab4f823 12218 else if (inst.operands[0] .reg == REG_SP)
90e4755a 12219 {
eab4f823
MGD
12220 if (inst.operands[0].writeback)
12221 {
fa94de6b 12222 inst.instruction =
eab4f823 12223 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12224 ? T_MNEM_push : T_MNEM_pop);
eab4f823 12225 inst.instruction |= inst.operands[1].imm;
477330fc 12226 narrow = TRUE;
eab4f823
MGD
12227 }
12228 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12229 {
fa94de6b 12230 inst.instruction =
eab4f823 12231 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12232 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
eab4f823 12233 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
477330fc 12234 narrow = TRUE;
eab4f823 12235 }
90e4755a 12236 }
3c707909
PB
12237 }
12238
12239 if (!narrow)
12240 {
c19d1205
ZW
12241 if (inst.instruction < 0xffff)
12242 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 12243
4b5a202f
AV
12244 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12245 inst.operands[1].imm,
12246 inst.operands[0].writeback);
90e4755a
RE
12247 }
12248 }
c19d1205 12249 else
90e4755a 12250 {
c19d1205
ZW
12251 constraint (inst.operands[0].reg > 7
12252 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
12253 constraint (inst.instruction != T_MNEM_ldmia
12254 && inst.instruction != T_MNEM_stmia,
12255 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 12256 if (inst.instruction == T_MNEM_stmia)
f03698e6 12257 {
c19d1205
ZW
12258 if (!inst.operands[0].writeback)
12259 as_warn (_("this instruction will write back the base register"));
12260 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12261 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 12262 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 12263 inst.operands[0].reg);
f03698e6 12264 }
c19d1205 12265 else
90e4755a 12266 {
c19d1205
ZW
12267 if (!inst.operands[0].writeback
12268 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12269 as_warn (_("this instruction will write back the base register"));
12270 else if (inst.operands[0].writeback
12271 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12272 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
12273 }
12274
c19d1205
ZW
12275 inst.instruction = THUMB_OP16 (inst.instruction);
12276 inst.instruction |= inst.operands[0].reg << 8;
12277 inst.instruction |= inst.operands[1].imm;
12278 }
12279}
e28cd48c 12280
c19d1205
ZW
12281static void
12282do_t_ldrex (void)
12283{
12284 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12285 || inst.operands[1].postind || inst.operands[1].writeback
12286 || inst.operands[1].immisreg || inst.operands[1].shifted
12287 || inst.operands[1].negative,
01cfc07f 12288 BAD_ADDR_MODE);
e28cd48c 12289
5be8be5d
DG
12290 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12291
c19d1205
ZW
12292 inst.instruction |= inst.operands[0].reg << 12;
12293 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 12294 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
c19d1205 12295}
e28cd48c 12296
c19d1205
ZW
12297static void
12298do_t_ldrexd (void)
12299{
12300 if (!inst.operands[1].present)
1cac9012 12301 {
c19d1205
ZW
12302 constraint (inst.operands[0].reg == REG_LR,
12303 _("r14 not allowed as first register "
12304 "when second register is omitted"));
12305 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 12306 }
c19d1205
ZW
12307 constraint (inst.operands[0].reg == inst.operands[1].reg,
12308 BAD_OVERLAP);
b99bd4ef 12309
c19d1205
ZW
12310 inst.instruction |= inst.operands[0].reg << 12;
12311 inst.instruction |= inst.operands[1].reg << 8;
12312 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
12313}
12314
12315static void
c19d1205 12316do_t_ldst (void)
b99bd4ef 12317{
0110f2b8
PB
12318 unsigned long opcode;
12319 int Rn;
12320
e07e6e58
NC
12321 if (inst.operands[0].isreg
12322 && !inst.operands[0].preind
12323 && inst.operands[0].reg == REG_PC)
5ee91343 12324 set_pred_insn_type_last ();
e07e6e58 12325
0110f2b8 12326 opcode = inst.instruction;
c19d1205 12327 if (unified_syntax)
b99bd4ef 12328 {
53365c0d
PB
12329 if (!inst.operands[1].isreg)
12330 {
12331 if (opcode <= 0xffff)
12332 inst.instruction = THUMB_OP32 (opcode);
8335d6aa 12333 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
53365c0d
PB
12334 return;
12335 }
0110f2b8
PB
12336 if (inst.operands[1].isreg
12337 && !inst.operands[1].writeback
c19d1205
ZW
12338 && !inst.operands[1].shifted && !inst.operands[1].postind
12339 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
12340 && opcode <= 0xffff
12341 && inst.size_req != 4)
c19d1205 12342 {
0110f2b8
PB
12343 /* Insn may have a 16-bit form. */
12344 Rn = inst.operands[1].reg;
12345 if (inst.operands[1].immisreg)
12346 {
12347 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 12348 /* [Rn, Rik] */
0110f2b8
PB
12349 if (Rn <= 7 && inst.operands[1].imm <= 7)
12350 goto op16;
5be8be5d
DG
12351 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12352 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
12353 }
12354 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12355 && opcode != T_MNEM_ldrsb)
12356 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12357 || (Rn == REG_SP && opcode == T_MNEM_str))
12358 {
12359 /* [Rn, #const] */
12360 if (Rn > 7)
12361 {
12362 if (Rn == REG_PC)
12363 {
e2b0ab59 12364 if (inst.relocs[0].pc_rel)
0110f2b8
PB
12365 opcode = T_MNEM_ldr_pc2;
12366 else
12367 opcode = T_MNEM_ldr_pc;
12368 }
12369 else
12370 {
12371 if (opcode == T_MNEM_ldr)
12372 opcode = T_MNEM_ldr_sp;
12373 else
12374 opcode = T_MNEM_str_sp;
12375 }
12376 inst.instruction = inst.operands[0].reg << 8;
12377 }
12378 else
12379 {
12380 inst.instruction = inst.operands[0].reg;
12381 inst.instruction |= inst.operands[1].reg << 3;
12382 }
12383 inst.instruction |= THUMB_OP16 (opcode);
12384 if (inst.size_req == 2)
e2b0ab59 12385 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
0110f2b8
PB
12386 else
12387 inst.relax = opcode;
12388 return;
12389 }
c19d1205 12390 }
0110f2b8 12391 /* Definitely a 32-bit variant. */
5be8be5d 12392
8d67f500
NC
12393 /* Warning for Erratum 752419. */
12394 if (opcode == T_MNEM_ldr
12395 && inst.operands[0].reg == REG_SP
12396 && inst.operands[1].writeback == 1
12397 && !inst.operands[1].immisreg)
12398 {
12399 if (no_cpu_selected ()
12400 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
477330fc
RM
12401 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12402 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
8d67f500
NC
12403 as_warn (_("This instruction may be unpredictable "
12404 "if executed on M-profile cores "
12405 "with interrupts enabled."));
12406 }
12407
5be8be5d 12408 /* Do some validations regarding addressing modes. */
1be5fd2e 12409 if (inst.operands[1].immisreg)
5be8be5d
DG
12410 reject_bad_reg (inst.operands[1].imm);
12411
1be5fd2e
NC
12412 constraint (inst.operands[1].writeback == 1
12413 && inst.operands[0].reg == inst.operands[1].reg,
12414 BAD_OVERLAP);
12415
0110f2b8 12416 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
12417 inst.instruction |= inst.operands[0].reg << 12;
12418 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 12419 check_ldr_r15_aligned ();
b99bd4ef
NC
12420 return;
12421 }
12422
c19d1205
ZW
12423 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12424
12425 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 12426 {
c19d1205
ZW
12427 /* Only [Rn,Rm] is acceptable. */
12428 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12429 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12430 || inst.operands[1].postind || inst.operands[1].shifted
12431 || inst.operands[1].negative,
12432 _("Thumb does not support this addressing mode"));
12433 inst.instruction = THUMB_OP16 (inst.instruction);
12434 goto op16;
b99bd4ef 12435 }
5f4273c7 12436
c19d1205
ZW
12437 inst.instruction = THUMB_OP16 (inst.instruction);
12438 if (!inst.operands[1].isreg)
8335d6aa 12439 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
c19d1205 12440 return;
b99bd4ef 12441
c19d1205
ZW
12442 constraint (!inst.operands[1].preind
12443 || inst.operands[1].shifted
12444 || inst.operands[1].writeback,
12445 _("Thumb does not support this addressing mode"));
12446 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 12447 {
c19d1205
ZW
12448 constraint (inst.instruction & 0x0600,
12449 _("byte or halfword not valid for base register"));
12450 constraint (inst.operands[1].reg == REG_PC
12451 && !(inst.instruction & THUMB_LOAD_BIT),
12452 _("r15 based store not allowed"));
12453 constraint (inst.operands[1].immisreg,
12454 _("invalid base register for register offset"));
b99bd4ef 12455
c19d1205
ZW
12456 if (inst.operands[1].reg == REG_PC)
12457 inst.instruction = T_OPCODE_LDR_PC;
12458 else if (inst.instruction & THUMB_LOAD_BIT)
12459 inst.instruction = T_OPCODE_LDR_SP;
12460 else
12461 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 12462
c19d1205 12463 inst.instruction |= inst.operands[0].reg << 8;
e2b0ab59 12464 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12465 return;
12466 }
90e4755a 12467
c19d1205
ZW
12468 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12469 if (!inst.operands[1].immisreg)
12470 {
12471 /* Immediate offset. */
12472 inst.instruction |= inst.operands[0].reg;
12473 inst.instruction |= inst.operands[1].reg << 3;
e2b0ab59 12474 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12475 return;
12476 }
90e4755a 12477
c19d1205
ZW
12478 /* Register offset. */
12479 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12480 constraint (inst.operands[1].negative,
12481 _("Thumb does not support this addressing mode"));
90e4755a 12482
c19d1205
ZW
12483 op16:
12484 switch (inst.instruction)
12485 {
12486 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12487 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12488 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12489 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12490 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12491 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12492 case 0x5600 /* ldrsb */:
12493 case 0x5e00 /* ldrsh */: break;
12494 default: abort ();
12495 }
90e4755a 12496
c19d1205
ZW
12497 inst.instruction |= inst.operands[0].reg;
12498 inst.instruction |= inst.operands[1].reg << 3;
12499 inst.instruction |= inst.operands[1].imm << 6;
12500}
90e4755a 12501
c19d1205
ZW
12502static void
12503do_t_ldstd (void)
12504{
12505 if (!inst.operands[1].present)
b99bd4ef 12506 {
c19d1205
ZW
12507 inst.operands[1].reg = inst.operands[0].reg + 1;
12508 constraint (inst.operands[0].reg == REG_LR,
12509 _("r14 not allowed here"));
bd340a04 12510 constraint (inst.operands[0].reg == REG_R12,
477330fc 12511 _("r12 not allowed here"));
b99bd4ef 12512 }
bd340a04
MGD
12513
12514 if (inst.operands[2].writeback
12515 && (inst.operands[0].reg == inst.operands[2].reg
12516 || inst.operands[1].reg == inst.operands[2].reg))
12517 as_warn (_("base register written back, and overlaps "
477330fc 12518 "one of transfer registers"));
bd340a04 12519
c19d1205
ZW
12520 inst.instruction |= inst.operands[0].reg << 12;
12521 inst.instruction |= inst.operands[1].reg << 8;
12522 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
12523}
12524
c19d1205
ZW
12525static void
12526do_t_ldstt (void)
12527{
12528 inst.instruction |= inst.operands[0].reg << 12;
12529 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12530}
a737bd4d 12531
b99bd4ef 12532static void
c19d1205 12533do_t_mla (void)
b99bd4ef 12534{
fdfde340 12535 unsigned Rd, Rn, Rm, Ra;
c921be7d 12536
fdfde340
JM
12537 Rd = inst.operands[0].reg;
12538 Rn = inst.operands[1].reg;
12539 Rm = inst.operands[2].reg;
12540 Ra = inst.operands[3].reg;
12541
12542 reject_bad_reg (Rd);
12543 reject_bad_reg (Rn);
12544 reject_bad_reg (Rm);
12545 reject_bad_reg (Ra);
12546
12547 inst.instruction |= Rd << 8;
12548 inst.instruction |= Rn << 16;
12549 inst.instruction |= Rm;
12550 inst.instruction |= Ra << 12;
c19d1205 12551}
b99bd4ef 12552
c19d1205
ZW
12553static void
12554do_t_mlal (void)
12555{
fdfde340
JM
12556 unsigned RdLo, RdHi, Rn, Rm;
12557
12558 RdLo = inst.operands[0].reg;
12559 RdHi = inst.operands[1].reg;
12560 Rn = inst.operands[2].reg;
12561 Rm = inst.operands[3].reg;
12562
12563 reject_bad_reg (RdLo);
12564 reject_bad_reg (RdHi);
12565 reject_bad_reg (Rn);
12566 reject_bad_reg (Rm);
12567
12568 inst.instruction |= RdLo << 12;
12569 inst.instruction |= RdHi << 8;
12570 inst.instruction |= Rn << 16;
12571 inst.instruction |= Rm;
c19d1205 12572}
b99bd4ef 12573
c19d1205
ZW
12574static void
12575do_t_mov_cmp (void)
12576{
fdfde340
JM
12577 unsigned Rn, Rm;
12578
12579 Rn = inst.operands[0].reg;
12580 Rm = inst.operands[1].reg;
12581
e07e6e58 12582 if (Rn == REG_PC)
5ee91343 12583 set_pred_insn_type_last ();
e07e6e58 12584
c19d1205 12585 if (unified_syntax)
b99bd4ef 12586 {
c19d1205
ZW
12587 int r0off = (inst.instruction == T_MNEM_mov
12588 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 12589 unsigned long opcode;
3d388997
PB
12590 bfd_boolean narrow;
12591 bfd_boolean low_regs;
12592
fdfde340 12593 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 12594 opcode = inst.instruction;
5ee91343 12595 if (in_pred_block ())
0110f2b8 12596 narrow = opcode != T_MNEM_movs;
3d388997 12597 else
0110f2b8 12598 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
12599 if (inst.size_req == 4
12600 || inst.operands[1].shifted)
12601 narrow = FALSE;
12602
efd81785
PB
12603 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12604 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12605 && !inst.operands[1].shifted
fdfde340
JM
12606 && Rn == REG_PC
12607 && Rm == REG_LR)
efd81785
PB
12608 {
12609 inst.instruction = T2_SUBS_PC_LR;
12610 return;
12611 }
12612
fdfde340
JM
12613 if (opcode == T_MNEM_cmp)
12614 {
12615 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
12616 if (narrow)
12617 {
12618 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12619 but valid. */
12620 warn_deprecated_sp (Rm);
12621 /* R15 was documented as a valid choice for Rm in ARMv6,
12622 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12623 tools reject R15, so we do too. */
12624 constraint (Rm == REG_PC, BAD_PC);
12625 }
12626 else
12627 reject_bad_reg (Rm);
fdfde340
JM
12628 }
12629 else if (opcode == T_MNEM_mov
12630 || opcode == T_MNEM_movs)
12631 {
12632 if (inst.operands[1].isreg)
12633 {
12634 if (opcode == T_MNEM_movs)
12635 {
12636 reject_bad_reg (Rn);
12637 reject_bad_reg (Rm);
12638 }
76fa04a4
MGD
12639 else if (narrow)
12640 {
12641 /* This is mov.n. */
12642 if ((Rn == REG_SP || Rn == REG_PC)
12643 && (Rm == REG_SP || Rm == REG_PC))
12644 {
5c3696f8 12645 as_tsktsk (_("Use of r%u as a source register is "
76fa04a4
MGD
12646 "deprecated when r%u is the destination "
12647 "register."), Rm, Rn);
12648 }
12649 }
12650 else
12651 {
12652 /* This is mov.w. */
12653 constraint (Rn == REG_PC, BAD_PC);
12654 constraint (Rm == REG_PC, BAD_PC);
5c8ed6a4
JW
12655 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12656 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
76fa04a4 12657 }
fdfde340
JM
12658 }
12659 else
12660 reject_bad_reg (Rn);
12661 }
12662
c19d1205
ZW
12663 if (!inst.operands[1].isreg)
12664 {
0110f2b8 12665 /* Immediate operand. */
5ee91343 12666 if (!in_pred_block () && opcode == T_MNEM_mov)
0110f2b8
PB
12667 narrow = 0;
12668 if (low_regs && narrow)
12669 {
12670 inst.instruction = THUMB_OP16 (opcode);
fdfde340 12671 inst.instruction |= Rn << 8;
e2b0ab59
AV
12672 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12673 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
72d98d16 12674 {
a9f02af8 12675 if (inst.size_req == 2)
e2b0ab59 12676 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
a9f02af8
MG
12677 else
12678 inst.relax = opcode;
72d98d16 12679 }
0110f2b8
PB
12680 }
12681 else
12682 {
e2b0ab59
AV
12683 constraint ((inst.relocs[0].type
12684 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12685 && (inst.relocs[0].type
12686 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8
MG
12687 THUMB1_RELOC_ONLY);
12688
0110f2b8
PB
12689 inst.instruction = THUMB_OP32 (inst.instruction);
12690 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12691 inst.instruction |= Rn << r0off;
e2b0ab59 12692 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8 12693 }
c19d1205 12694 }
728ca7c9
PB
12695 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12696 && (inst.instruction == T_MNEM_mov
12697 || inst.instruction == T_MNEM_movs))
12698 {
12699 /* Register shifts are encoded as separate shift instructions. */
12700 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12701
5ee91343 12702 if (in_pred_block ())
728ca7c9
PB
12703 narrow = !flags;
12704 else
12705 narrow = flags;
12706
12707 if (inst.size_req == 4)
12708 narrow = FALSE;
12709
12710 if (!low_regs || inst.operands[1].imm > 7)
12711 narrow = FALSE;
12712
fdfde340 12713 if (Rn != Rm)
728ca7c9
PB
12714 narrow = FALSE;
12715
12716 switch (inst.operands[1].shift_kind)
12717 {
12718 case SHIFT_LSL:
12719 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12720 break;
12721 case SHIFT_ASR:
12722 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12723 break;
12724 case SHIFT_LSR:
12725 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12726 break;
12727 case SHIFT_ROR:
12728 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12729 break;
12730 default:
5f4273c7 12731 abort ();
728ca7c9
PB
12732 }
12733
12734 inst.instruction = opcode;
12735 if (narrow)
12736 {
fdfde340 12737 inst.instruction |= Rn;
728ca7c9
PB
12738 inst.instruction |= inst.operands[1].imm << 3;
12739 }
12740 else
12741 {
12742 if (flags)
12743 inst.instruction |= CONDS_BIT;
12744
fdfde340
JM
12745 inst.instruction |= Rn << 8;
12746 inst.instruction |= Rm << 16;
728ca7c9
PB
12747 inst.instruction |= inst.operands[1].imm;
12748 }
12749 }
3d388997 12750 else if (!narrow)
c19d1205 12751 {
728ca7c9
PB
12752 /* Some mov with immediate shift have narrow variants.
12753 Register shifts are handled above. */
12754 if (low_regs && inst.operands[1].shifted
12755 && (inst.instruction == T_MNEM_mov
12756 || inst.instruction == T_MNEM_movs))
12757 {
5ee91343 12758 if (in_pred_block ())
728ca7c9
PB
12759 narrow = (inst.instruction == T_MNEM_mov);
12760 else
12761 narrow = (inst.instruction == T_MNEM_movs);
12762 }
12763
12764 if (narrow)
12765 {
12766 switch (inst.operands[1].shift_kind)
12767 {
12768 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12769 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12770 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12771 default: narrow = FALSE; break;
12772 }
12773 }
12774
12775 if (narrow)
12776 {
fdfde340
JM
12777 inst.instruction |= Rn;
12778 inst.instruction |= Rm << 3;
e2b0ab59 12779 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
728ca7c9
PB
12780 }
12781 else
12782 {
12783 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12784 inst.instruction |= Rn << r0off;
728ca7c9
PB
12785 encode_thumb32_shifted_operand (1);
12786 }
c19d1205
ZW
12787 }
12788 else
12789 switch (inst.instruction)
12790 {
12791 case T_MNEM_mov:
837b3435 12792 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
12793 results. Don't allow this. */
12794 if (low_regs)
12795 {
12796 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12797 "MOV Rd, Rs with two low registers is not "
12798 "permitted on this architecture");
fa94de6b 12799 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
12800 arm_ext_v6);
12801 }
12802
c19d1205 12803 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
12804 inst.instruction |= (Rn & 0x8) << 4;
12805 inst.instruction |= (Rn & 0x7);
12806 inst.instruction |= Rm << 3;
c19d1205 12807 break;
b99bd4ef 12808
c19d1205
ZW
12809 case T_MNEM_movs:
12810 /* We know we have low registers at this point.
941a8a52
MGD
12811 Generate LSLS Rd, Rs, #0. */
12812 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
12813 inst.instruction |= Rn;
12814 inst.instruction |= Rm << 3;
c19d1205
ZW
12815 break;
12816
12817 case T_MNEM_cmp:
3d388997 12818 if (low_regs)
c19d1205
ZW
12819 {
12820 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
12821 inst.instruction |= Rn;
12822 inst.instruction |= Rm << 3;
c19d1205
ZW
12823 }
12824 else
12825 {
12826 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
12827 inst.instruction |= (Rn & 0x8) << 4;
12828 inst.instruction |= (Rn & 0x7);
12829 inst.instruction |= Rm << 3;
c19d1205
ZW
12830 }
12831 break;
12832 }
b99bd4ef
NC
12833 return;
12834 }
12835
c19d1205 12836 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
12837
12838 /* PR 10443: Do not silently ignore shifted operands. */
12839 constraint (inst.operands[1].shifted,
12840 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12841
c19d1205 12842 if (inst.operands[1].isreg)
b99bd4ef 12843 {
fdfde340 12844 if (Rn < 8 && Rm < 8)
b99bd4ef 12845 {
c19d1205
ZW
12846 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12847 since a MOV instruction produces unpredictable results. */
12848 if (inst.instruction == T_OPCODE_MOV_I8)
12849 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 12850 else
c19d1205 12851 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 12852
fdfde340
JM
12853 inst.instruction |= Rn;
12854 inst.instruction |= Rm << 3;
b99bd4ef
NC
12855 }
12856 else
12857 {
c19d1205
ZW
12858 if (inst.instruction == T_OPCODE_MOV_I8)
12859 inst.instruction = T_OPCODE_MOV_HR;
12860 else
12861 inst.instruction = T_OPCODE_CMP_HR;
12862 do_t_cpy ();
b99bd4ef
NC
12863 }
12864 }
c19d1205 12865 else
b99bd4ef 12866 {
fdfde340 12867 constraint (Rn > 7,
c19d1205 12868 _("only lo regs allowed with immediate"));
fdfde340 12869 inst.instruction |= Rn << 8;
e2b0ab59 12870 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
c19d1205
ZW
12871 }
12872}
b99bd4ef 12873
c19d1205
ZW
12874static void
12875do_t_mov16 (void)
12876{
fdfde340 12877 unsigned Rd;
b6895b4f
PB
12878 bfd_vma imm;
12879 bfd_boolean top;
12880
12881 top = (inst.instruction & 0x00800000) != 0;
e2b0ab59 12882 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
b6895b4f 12883 {
33eaf5de 12884 constraint (top, _(":lower16: not allowed in this instruction"));
e2b0ab59 12885 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
b6895b4f 12886 }
e2b0ab59 12887 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
b6895b4f 12888 {
33eaf5de 12889 constraint (!top, _(":upper16: not allowed in this instruction"));
e2b0ab59 12890 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
b6895b4f
PB
12891 }
12892
fdfde340
JM
12893 Rd = inst.operands[0].reg;
12894 reject_bad_reg (Rd);
12895
12896 inst.instruction |= Rd << 8;
e2b0ab59 12897 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 12898 {
e2b0ab59 12899 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
12900 inst.instruction |= (imm & 0xf000) << 4;
12901 inst.instruction |= (imm & 0x0800) << 15;
12902 inst.instruction |= (imm & 0x0700) << 4;
12903 inst.instruction |= (imm & 0x00ff);
12904 }
c19d1205 12905}
b99bd4ef 12906
c19d1205
ZW
12907static void
12908do_t_mvn_tst (void)
12909{
fdfde340 12910 unsigned Rn, Rm;
c921be7d 12911
fdfde340
JM
12912 Rn = inst.operands[0].reg;
12913 Rm = inst.operands[1].reg;
12914
12915 if (inst.instruction == T_MNEM_cmp
12916 || inst.instruction == T_MNEM_cmn)
12917 constraint (Rn == REG_PC, BAD_PC);
12918 else
12919 reject_bad_reg (Rn);
12920 reject_bad_reg (Rm);
12921
c19d1205
ZW
12922 if (unified_syntax)
12923 {
12924 int r0off = (inst.instruction == T_MNEM_mvn
12925 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
12926 bfd_boolean narrow;
12927
12928 if (inst.size_req == 4
12929 || inst.instruction > 0xffff
12930 || inst.operands[1].shifted
fdfde340 12931 || Rn > 7 || Rm > 7)
3d388997 12932 narrow = FALSE;
fe8b4cc3
KT
12933 else if (inst.instruction == T_MNEM_cmn
12934 || inst.instruction == T_MNEM_tst)
3d388997
PB
12935 narrow = TRUE;
12936 else if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 12937 narrow = !in_pred_block ();
3d388997 12938 else
5ee91343 12939 narrow = in_pred_block ();
3d388997 12940
c19d1205 12941 if (!inst.operands[1].isreg)
b99bd4ef 12942 {
c19d1205
ZW
12943 /* For an immediate, we always generate a 32-bit opcode;
12944 section relaxation will shrink it later if possible. */
12945 if (inst.instruction < 0xffff)
12946 inst.instruction = THUMB_OP32 (inst.instruction);
12947 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12948 inst.instruction |= Rn << r0off;
e2b0ab59 12949 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 12950 }
c19d1205 12951 else
b99bd4ef 12952 {
c19d1205 12953 /* See if we can do this with a 16-bit instruction. */
3d388997 12954 if (narrow)
b99bd4ef 12955 {
c19d1205 12956 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12957 inst.instruction |= Rn;
12958 inst.instruction |= Rm << 3;
b99bd4ef 12959 }
c19d1205 12960 else
b99bd4ef 12961 {
c19d1205
ZW
12962 constraint (inst.operands[1].shifted
12963 && inst.operands[1].immisreg,
12964 _("shift must be constant"));
12965 if (inst.instruction < 0xffff)
12966 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12967 inst.instruction |= Rn << r0off;
c19d1205 12968 encode_thumb32_shifted_operand (1);
b99bd4ef 12969 }
b99bd4ef
NC
12970 }
12971 }
12972 else
12973 {
c19d1205
ZW
12974 constraint (inst.instruction > 0xffff
12975 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12976 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12977 _("unshifted register required"));
fdfde340 12978 constraint (Rn > 7 || Rm > 7,
c19d1205 12979 BAD_HIREG);
b99bd4ef 12980
c19d1205 12981 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12982 inst.instruction |= Rn;
12983 inst.instruction |= Rm << 3;
b99bd4ef 12984 }
b99bd4ef
NC
12985}
12986
b05fe5cf 12987static void
c19d1205 12988do_t_mrs (void)
b05fe5cf 12989{
fdfde340 12990 unsigned Rd;
037e8744
JB
12991
12992 if (do_vfp_nsyn_mrs () == SUCCESS)
12993 return;
12994
90ec0d68
MGD
12995 Rd = inst.operands[0].reg;
12996 reject_bad_reg (Rd);
12997 inst.instruction |= Rd << 8;
12998
12999 if (inst.operands[1].isreg)
62b3e311 13000 {
90ec0d68
MGD
13001 unsigned br = inst.operands[1].reg;
13002 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
13003 as_bad (_("bad register for mrs"));
13004
13005 inst.instruction |= br & (0xf << 16);
13006 inst.instruction |= (br & 0x300) >> 4;
13007 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
13008 }
13009 else
13010 {
90ec0d68 13011 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 13012
d2cd1205 13013 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
13014 {
13015 /* PR gas/12698: The constraint is only applied for m_profile.
13016 If the user has specified -march=all, we want to ignore it as
13017 we are building for any CPU type, including non-m variants. */
823d2571
TG
13018 bfd_boolean m_profile =
13019 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf
NC
13020 constraint ((flags != 0) && m_profile, _("selected processor does "
13021 "not support requested special purpose register"));
13022 }
90ec0d68 13023 else
d2cd1205
JB
13024 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13025 devices). */
13026 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13027 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 13028
90ec0d68
MGD
13029 inst.instruction |= (flags & SPSR_BIT) >> 2;
13030 inst.instruction |= inst.operands[1].imm & 0xff;
13031 inst.instruction |= 0xf0000;
13032 }
c19d1205 13033}
b05fe5cf 13034
c19d1205
ZW
13035static void
13036do_t_msr (void)
13037{
62b3e311 13038 int flags;
fdfde340 13039 unsigned Rn;
62b3e311 13040
037e8744
JB
13041 if (do_vfp_nsyn_msr () == SUCCESS)
13042 return;
13043
c19d1205
ZW
13044 constraint (!inst.operands[1].isreg,
13045 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
13046
13047 if (inst.operands[0].isreg)
13048 flags = (int)(inst.operands[0].reg);
13049 else
13050 flags = inst.operands[0].imm;
13051
d2cd1205 13052 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 13053 {
d2cd1205
JB
13054 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13055
1a43faaf 13056 /* PR gas/12698: The constraint is only applied for m_profile.
477330fc
RM
13057 If the user has specified -march=all, we want to ignore it as
13058 we are building for any CPU type, including non-m variants. */
823d2571
TG
13059 bfd_boolean m_profile =
13060 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf 13061 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
477330fc
RM
13062 && (bits & ~(PSR_s | PSR_f)) != 0)
13063 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13064 && bits != PSR_f)) && m_profile,
13065 _("selected processor does not support requested special "
13066 "purpose register"));
62b3e311
PB
13067 }
13068 else
d2cd1205
JB
13069 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13070 "requested special purpose register"));
c921be7d 13071
fdfde340
JM
13072 Rn = inst.operands[1].reg;
13073 reject_bad_reg (Rn);
13074
62b3e311 13075 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
13076 inst.instruction |= (flags & 0xf0000) >> 8;
13077 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 13078 inst.instruction |= (flags & 0xff);
fdfde340 13079 inst.instruction |= Rn << 16;
c19d1205 13080}
b05fe5cf 13081
c19d1205
ZW
13082static void
13083do_t_mul (void)
13084{
17828f45 13085 bfd_boolean narrow;
fdfde340 13086 unsigned Rd, Rn, Rm;
17828f45 13087
c19d1205
ZW
13088 if (!inst.operands[2].present)
13089 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 13090
fdfde340
JM
13091 Rd = inst.operands[0].reg;
13092 Rn = inst.operands[1].reg;
13093 Rm = inst.operands[2].reg;
13094
17828f45 13095 if (unified_syntax)
b05fe5cf 13096 {
17828f45 13097 if (inst.size_req == 4
fdfde340
JM
13098 || (Rd != Rn
13099 && Rd != Rm)
13100 || Rn > 7
13101 || Rm > 7)
17828f45
JM
13102 narrow = FALSE;
13103 else if (inst.instruction == T_MNEM_muls)
5ee91343 13104 narrow = !in_pred_block ();
17828f45 13105 else
5ee91343 13106 narrow = in_pred_block ();
b05fe5cf 13107 }
c19d1205 13108 else
b05fe5cf 13109 {
17828f45 13110 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 13111 constraint (Rn > 7 || Rm > 7,
c19d1205 13112 BAD_HIREG);
17828f45
JM
13113 narrow = TRUE;
13114 }
b05fe5cf 13115
17828f45
JM
13116 if (narrow)
13117 {
13118 /* 16-bit MULS/Conditional MUL. */
c19d1205 13119 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 13120 inst.instruction |= Rd;
b05fe5cf 13121
fdfde340
JM
13122 if (Rd == Rn)
13123 inst.instruction |= Rm << 3;
13124 else if (Rd == Rm)
13125 inst.instruction |= Rn << 3;
c19d1205
ZW
13126 else
13127 constraint (1, _("dest must overlap one source register"));
13128 }
17828f45
JM
13129 else
13130 {
e07e6e58
NC
13131 constraint (inst.instruction != T_MNEM_mul,
13132 _("Thumb-2 MUL must not set flags"));
17828f45
JM
13133 /* 32-bit MUL. */
13134 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13135 inst.instruction |= Rd << 8;
13136 inst.instruction |= Rn << 16;
13137 inst.instruction |= Rm << 0;
13138
13139 reject_bad_reg (Rd);
13140 reject_bad_reg (Rn);
13141 reject_bad_reg (Rm);
17828f45 13142 }
c19d1205 13143}
b05fe5cf 13144
c19d1205
ZW
13145static void
13146do_t_mull (void)
13147{
fdfde340 13148 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 13149
fdfde340
JM
13150 RdLo = inst.operands[0].reg;
13151 RdHi = inst.operands[1].reg;
13152 Rn = inst.operands[2].reg;
13153 Rm = inst.operands[3].reg;
13154
13155 reject_bad_reg (RdLo);
13156 reject_bad_reg (RdHi);
13157 reject_bad_reg (Rn);
13158 reject_bad_reg (Rm);
13159
13160 inst.instruction |= RdLo << 12;
13161 inst.instruction |= RdHi << 8;
13162 inst.instruction |= Rn << 16;
13163 inst.instruction |= Rm;
13164
13165 if (RdLo == RdHi)
c19d1205
ZW
13166 as_tsktsk (_("rdhi and rdlo must be different"));
13167}
b05fe5cf 13168
c19d1205
ZW
13169static void
13170do_t_nop (void)
13171{
5ee91343 13172 set_pred_insn_type (NEUTRAL_IT_INSN);
e07e6e58 13173
c19d1205
ZW
13174 if (unified_syntax)
13175 {
13176 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 13177 {
c19d1205
ZW
13178 inst.instruction = THUMB_OP32 (inst.instruction);
13179 inst.instruction |= inst.operands[0].imm;
13180 }
13181 else
13182 {
bc2d1808
NC
13183 /* PR9722: Check for Thumb2 availability before
13184 generating a thumb2 nop instruction. */
afa62d5e 13185 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
13186 {
13187 inst.instruction = THUMB_OP16 (inst.instruction);
13188 inst.instruction |= inst.operands[0].imm << 4;
13189 }
13190 else
13191 inst.instruction = 0x46c0;
c19d1205
ZW
13192 }
13193 }
13194 else
13195 {
13196 constraint (inst.operands[0].present,
13197 _("Thumb does not support NOP with hints"));
13198 inst.instruction = 0x46c0;
13199 }
13200}
b05fe5cf 13201
c19d1205
ZW
13202static void
13203do_t_neg (void)
13204{
13205 if (unified_syntax)
13206 {
3d388997
PB
13207 bfd_boolean narrow;
13208
13209 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13210 narrow = !in_pred_block ();
3d388997 13211 else
5ee91343 13212 narrow = in_pred_block ();
3d388997
PB
13213 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13214 narrow = FALSE;
13215 if (inst.size_req == 4)
13216 narrow = FALSE;
13217
13218 if (!narrow)
c19d1205
ZW
13219 {
13220 inst.instruction = THUMB_OP32 (inst.instruction);
13221 inst.instruction |= inst.operands[0].reg << 8;
13222 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
13223 }
13224 else
13225 {
c19d1205
ZW
13226 inst.instruction = THUMB_OP16 (inst.instruction);
13227 inst.instruction |= inst.operands[0].reg;
13228 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
13229 }
13230 }
13231 else
13232 {
c19d1205
ZW
13233 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13234 BAD_HIREG);
13235 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13236
13237 inst.instruction = THUMB_OP16 (inst.instruction);
13238 inst.instruction |= inst.operands[0].reg;
13239 inst.instruction |= inst.operands[1].reg << 3;
13240 }
13241}
13242
1c444d06
JM
13243static void
13244do_t_orn (void)
13245{
13246 unsigned Rd, Rn;
13247
13248 Rd = inst.operands[0].reg;
13249 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13250
fdfde340
JM
13251 reject_bad_reg (Rd);
13252 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13253 reject_bad_reg (Rn);
13254
1c444d06
JM
13255 inst.instruction |= Rd << 8;
13256 inst.instruction |= Rn << 16;
13257
13258 if (!inst.operands[2].isreg)
13259 {
13260 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13261 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
1c444d06
JM
13262 }
13263 else
13264 {
13265 unsigned Rm;
13266
13267 Rm = inst.operands[2].reg;
fdfde340 13268 reject_bad_reg (Rm);
1c444d06
JM
13269
13270 constraint (inst.operands[2].shifted
13271 && inst.operands[2].immisreg,
13272 _("shift must be constant"));
13273 encode_thumb32_shifted_operand (2);
13274 }
13275}
13276
c19d1205
ZW
13277static void
13278do_t_pkhbt (void)
13279{
fdfde340
JM
13280 unsigned Rd, Rn, Rm;
13281
13282 Rd = inst.operands[0].reg;
13283 Rn = inst.operands[1].reg;
13284 Rm = inst.operands[2].reg;
13285
13286 reject_bad_reg (Rd);
13287 reject_bad_reg (Rn);
13288 reject_bad_reg (Rm);
13289
13290 inst.instruction |= Rd << 8;
13291 inst.instruction |= Rn << 16;
13292 inst.instruction |= Rm;
c19d1205
ZW
13293 if (inst.operands[3].present)
13294 {
e2b0ab59
AV
13295 unsigned int val = inst.relocs[0].exp.X_add_number;
13296 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
13297 _("expression too complex"));
13298 inst.instruction |= (val & 0x1c) << 10;
13299 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 13300 }
c19d1205 13301}
b05fe5cf 13302
c19d1205
ZW
13303static void
13304do_t_pkhtb (void)
13305{
13306 if (!inst.operands[3].present)
1ef52f49
NC
13307 {
13308 unsigned Rtmp;
13309
13310 inst.instruction &= ~0x00000020;
13311
13312 /* PR 10168. Swap the Rm and Rn registers. */
13313 Rtmp = inst.operands[1].reg;
13314 inst.operands[1].reg = inst.operands[2].reg;
13315 inst.operands[2].reg = Rtmp;
13316 }
c19d1205 13317 do_t_pkhbt ();
b05fe5cf
ZW
13318}
13319
c19d1205
ZW
13320static void
13321do_t_pld (void)
13322{
fdfde340
JM
13323 if (inst.operands[0].immisreg)
13324 reject_bad_reg (inst.operands[0].imm);
13325
c19d1205
ZW
13326 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13327}
b05fe5cf 13328
c19d1205
ZW
13329static void
13330do_t_push_pop (void)
b99bd4ef 13331{
e9f89963 13332 unsigned mask;
5f4273c7 13333
c19d1205
ZW
13334 constraint (inst.operands[0].writeback,
13335 _("push/pop do not support {reglist}^"));
e2b0ab59 13336 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205 13337 _("expression too complex"));
b99bd4ef 13338
e9f89963 13339 mask = inst.operands[0].imm;
d3bfe16e 13340 if (inst.size_req != 4 && (mask & ~0xff) == 0)
3c707909 13341 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
d3bfe16e 13342 else if (inst.size_req != 4
c6025a80 13343 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
d3bfe16e 13344 ? REG_LR : REG_PC)))
b99bd4ef 13345 {
c19d1205
ZW
13346 inst.instruction = THUMB_OP16 (inst.instruction);
13347 inst.instruction |= THUMB_PP_PC_LR;
3c707909 13348 inst.instruction |= mask & 0xff;
c19d1205
ZW
13349 }
13350 else if (unified_syntax)
13351 {
3c707909 13352 inst.instruction = THUMB_OP32 (inst.instruction);
4b5a202f
AV
13353 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13354 }
13355 else
13356 {
13357 inst.error = _("invalid register list to push/pop instruction");
13358 return;
c19d1205 13359 }
4b5a202f
AV
13360}
13361
13362static void
13363do_t_clrm (void)
13364{
13365 if (unified_syntax)
13366 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
c19d1205
ZW
13367 else
13368 {
13369 inst.error = _("invalid register list to push/pop instruction");
13370 return;
13371 }
c19d1205 13372}
b99bd4ef 13373
efd6b359
AV
13374static void
13375do_t_vscclrm (void)
13376{
13377 if (inst.operands[0].issingle)
13378 {
13379 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13380 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13381 inst.instruction |= inst.operands[0].imm;
13382 }
13383 else
13384 {
13385 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13386 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13387 inst.instruction |= 1 << 8;
13388 inst.instruction |= inst.operands[0].imm << 1;
13389 }
13390}
13391
c19d1205
ZW
13392static void
13393do_t_rbit (void)
13394{
fdfde340
JM
13395 unsigned Rd, Rm;
13396
13397 Rd = inst.operands[0].reg;
13398 Rm = inst.operands[1].reg;
13399
13400 reject_bad_reg (Rd);
13401 reject_bad_reg (Rm);
13402
13403 inst.instruction |= Rd << 8;
13404 inst.instruction |= Rm << 16;
13405 inst.instruction |= Rm;
c19d1205 13406}
b99bd4ef 13407
c19d1205
ZW
13408static void
13409do_t_rev (void)
13410{
fdfde340
JM
13411 unsigned Rd, Rm;
13412
13413 Rd = inst.operands[0].reg;
13414 Rm = inst.operands[1].reg;
13415
13416 reject_bad_reg (Rd);
13417 reject_bad_reg (Rm);
13418
13419 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
13420 && inst.size_req != 4)
13421 {
13422 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13423 inst.instruction |= Rd;
13424 inst.instruction |= Rm << 3;
c19d1205
ZW
13425 }
13426 else if (unified_syntax)
13427 {
13428 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13429 inst.instruction |= Rd << 8;
13430 inst.instruction |= Rm << 16;
13431 inst.instruction |= Rm;
c19d1205
ZW
13432 }
13433 else
13434 inst.error = BAD_HIREG;
13435}
b99bd4ef 13436
1c444d06
JM
13437static void
13438do_t_rrx (void)
13439{
13440 unsigned Rd, Rm;
13441
13442 Rd = inst.operands[0].reg;
13443 Rm = inst.operands[1].reg;
13444
fdfde340
JM
13445 reject_bad_reg (Rd);
13446 reject_bad_reg (Rm);
c921be7d 13447
1c444d06
JM
13448 inst.instruction |= Rd << 8;
13449 inst.instruction |= Rm;
13450}
13451
c19d1205
ZW
13452static void
13453do_t_rsb (void)
13454{
fdfde340 13455 unsigned Rd, Rs;
b99bd4ef 13456
c19d1205
ZW
13457 Rd = inst.operands[0].reg;
13458 Rs = (inst.operands[1].present
13459 ? inst.operands[1].reg /* Rd, Rs, foo */
13460 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 13461
fdfde340
JM
13462 reject_bad_reg (Rd);
13463 reject_bad_reg (Rs);
13464 if (inst.operands[2].isreg)
13465 reject_bad_reg (inst.operands[2].reg);
13466
c19d1205
ZW
13467 inst.instruction |= Rd << 8;
13468 inst.instruction |= Rs << 16;
13469 if (!inst.operands[2].isreg)
13470 {
026d3abb
PB
13471 bfd_boolean narrow;
13472
13473 if ((inst.instruction & 0x00100000) != 0)
5ee91343 13474 narrow = !in_pred_block ();
026d3abb 13475 else
5ee91343 13476 narrow = in_pred_block ();
026d3abb
PB
13477
13478 if (Rd > 7 || Rs > 7)
13479 narrow = FALSE;
13480
13481 if (inst.size_req == 4 || !unified_syntax)
13482 narrow = FALSE;
13483
e2b0ab59
AV
13484 if (inst.relocs[0].exp.X_op != O_constant
13485 || inst.relocs[0].exp.X_add_number != 0)
026d3abb
PB
13486 narrow = FALSE;
13487
13488 /* Turn rsb #0 into 16-bit neg. We should probably do this via
477330fc 13489 relaxation, but it doesn't seem worth the hassle. */
026d3abb
PB
13490 if (narrow)
13491 {
e2b0ab59 13492 inst.relocs[0].type = BFD_RELOC_UNUSED;
026d3abb
PB
13493 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13494 inst.instruction |= Rs << 3;
13495 inst.instruction |= Rd;
13496 }
13497 else
13498 {
13499 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13500 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
026d3abb 13501 }
c19d1205
ZW
13502 }
13503 else
13504 encode_thumb32_shifted_operand (2);
13505}
b99bd4ef 13506
c19d1205
ZW
13507static void
13508do_t_setend (void)
13509{
12e37cbc
MGD
13510 if (warn_on_deprecated
13511 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 13512 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 13513
5ee91343 13514 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
13515 if (inst.operands[0].imm)
13516 inst.instruction |= 0x8;
13517}
b99bd4ef 13518
c19d1205
ZW
13519static void
13520do_t_shift (void)
13521{
13522 if (!inst.operands[1].present)
13523 inst.operands[1].reg = inst.operands[0].reg;
13524
13525 if (unified_syntax)
13526 {
3d388997
PB
13527 bfd_boolean narrow;
13528 int shift_kind;
13529
13530 switch (inst.instruction)
13531 {
13532 case T_MNEM_asr:
13533 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13534 case T_MNEM_lsl:
13535 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13536 case T_MNEM_lsr:
13537 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13538 case T_MNEM_ror:
13539 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13540 default: abort ();
13541 }
13542
13543 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13544 narrow = !in_pred_block ();
3d388997 13545 else
5ee91343 13546 narrow = in_pred_block ();
3d388997
PB
13547 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13548 narrow = FALSE;
13549 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13550 narrow = FALSE;
13551 if (inst.operands[2].isreg
13552 && (inst.operands[1].reg != inst.operands[0].reg
13553 || inst.operands[2].reg > 7))
13554 narrow = FALSE;
13555 if (inst.size_req == 4)
13556 narrow = FALSE;
13557
fdfde340
JM
13558 reject_bad_reg (inst.operands[0].reg);
13559 reject_bad_reg (inst.operands[1].reg);
c921be7d 13560
3d388997 13561 if (!narrow)
c19d1205
ZW
13562 {
13563 if (inst.operands[2].isreg)
b99bd4ef 13564 {
fdfde340 13565 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
13566 inst.instruction = THUMB_OP32 (inst.instruction);
13567 inst.instruction |= inst.operands[0].reg << 8;
13568 inst.instruction |= inst.operands[1].reg << 16;
13569 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
13570
13571 /* PR 12854: Error on extraneous shifts. */
13572 constraint (inst.operands[2].shifted,
13573 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13574 }
13575 else
13576 {
13577 inst.operands[1].shifted = 1;
3d388997 13578 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
13579 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13580 ? T_MNEM_movs : T_MNEM_mov);
13581 inst.instruction |= inst.operands[0].reg << 8;
13582 encode_thumb32_shifted_operand (1);
13583 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
e2b0ab59 13584 inst.relocs[0].type = BFD_RELOC_UNUSED;
b99bd4ef
NC
13585 }
13586 }
13587 else
13588 {
c19d1205 13589 if (inst.operands[2].isreg)
b99bd4ef 13590 {
3d388997 13591 switch (shift_kind)
b99bd4ef 13592 {
3d388997
PB
13593 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13594 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13595 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13596 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 13597 default: abort ();
b99bd4ef 13598 }
5f4273c7 13599
c19d1205
ZW
13600 inst.instruction |= inst.operands[0].reg;
13601 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13602
13603 /* PR 12854: Error on extraneous shifts. */
13604 constraint (inst.operands[2].shifted,
13605 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
13606 }
13607 else
13608 {
3d388997 13609 switch (shift_kind)
b99bd4ef 13610 {
3d388997
PB
13611 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13612 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13613 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 13614 default: abort ();
b99bd4ef 13615 }
e2b0ab59 13616 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13617 inst.instruction |= inst.operands[0].reg;
13618 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13619 }
13620 }
c19d1205
ZW
13621 }
13622 else
13623 {
13624 constraint (inst.operands[0].reg > 7
13625 || inst.operands[1].reg > 7, BAD_HIREG);
13626 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 13627
c19d1205
ZW
13628 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13629 {
13630 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13631 constraint (inst.operands[0].reg != inst.operands[1].reg,
13632 _("source1 and dest must be same register"));
b99bd4ef 13633
c19d1205
ZW
13634 switch (inst.instruction)
13635 {
13636 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13637 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13638 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13639 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13640 default: abort ();
13641 }
5f4273c7 13642
c19d1205
ZW
13643 inst.instruction |= inst.operands[0].reg;
13644 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13645
13646 /* PR 12854: Error on extraneous shifts. */
13647 constraint (inst.operands[2].shifted,
13648 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13649 }
13650 else
b99bd4ef 13651 {
c19d1205
ZW
13652 switch (inst.instruction)
13653 {
13654 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13655 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13656 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13657 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13658 default: abort ();
13659 }
e2b0ab59 13660 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13661 inst.instruction |= inst.operands[0].reg;
13662 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13663 }
13664 }
b99bd4ef
NC
13665}
13666
13667static void
c19d1205 13668do_t_simd (void)
b99bd4ef 13669{
fdfde340
JM
13670 unsigned Rd, Rn, Rm;
13671
13672 Rd = inst.operands[0].reg;
13673 Rn = inst.operands[1].reg;
13674 Rm = inst.operands[2].reg;
13675
13676 reject_bad_reg (Rd);
13677 reject_bad_reg (Rn);
13678 reject_bad_reg (Rm);
13679
13680 inst.instruction |= Rd << 8;
13681 inst.instruction |= Rn << 16;
13682 inst.instruction |= Rm;
c19d1205 13683}
b99bd4ef 13684
03ee1b7f
NC
13685static void
13686do_t_simd2 (void)
13687{
13688 unsigned Rd, Rn, Rm;
13689
13690 Rd = inst.operands[0].reg;
13691 Rm = inst.operands[1].reg;
13692 Rn = inst.operands[2].reg;
13693
13694 reject_bad_reg (Rd);
13695 reject_bad_reg (Rn);
13696 reject_bad_reg (Rm);
13697
13698 inst.instruction |= Rd << 8;
13699 inst.instruction |= Rn << 16;
13700 inst.instruction |= Rm;
13701}
13702
c19d1205 13703static void
3eb17e6b 13704do_t_smc (void)
c19d1205 13705{
e2b0ab59 13706 unsigned int value = inst.relocs[0].exp.X_add_number;
f4c65163
MGD
13707 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13708 _("SMC is not permitted on this architecture"));
e2b0ab59 13709 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13710 _("expression too complex"));
e2b0ab59 13711 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
13712 inst.instruction |= (value & 0xf000) >> 12;
13713 inst.instruction |= (value & 0x0ff0);
13714 inst.instruction |= (value & 0x000f) << 16;
24382199 13715 /* PR gas/15623: SMC instructions must be last in an IT block. */
5ee91343 13716 set_pred_insn_type_last ();
c19d1205 13717}
b99bd4ef 13718
90ec0d68
MGD
13719static void
13720do_t_hvc (void)
13721{
e2b0ab59 13722 unsigned int value = inst.relocs[0].exp.X_add_number;
90ec0d68 13723
e2b0ab59 13724 inst.relocs[0].type = BFD_RELOC_UNUSED;
90ec0d68
MGD
13725 inst.instruction |= (value & 0x0fff);
13726 inst.instruction |= (value & 0xf000) << 4;
13727}
13728
c19d1205 13729static void
3a21c15a 13730do_t_ssat_usat (int bias)
c19d1205 13731{
fdfde340
JM
13732 unsigned Rd, Rn;
13733
13734 Rd = inst.operands[0].reg;
13735 Rn = inst.operands[2].reg;
13736
13737 reject_bad_reg (Rd);
13738 reject_bad_reg (Rn);
13739
13740 inst.instruction |= Rd << 8;
3a21c15a 13741 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 13742 inst.instruction |= Rn << 16;
b99bd4ef 13743
c19d1205 13744 if (inst.operands[3].present)
b99bd4ef 13745 {
e2b0ab59 13746 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
3a21c15a 13747
e2b0ab59 13748 inst.relocs[0].type = BFD_RELOC_UNUSED;
3a21c15a 13749
e2b0ab59 13750 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13751 _("expression too complex"));
b99bd4ef 13752
3a21c15a 13753 if (shift_amount != 0)
6189168b 13754 {
3a21c15a
NC
13755 constraint (shift_amount > 31,
13756 _("shift expression is too large"));
13757
c19d1205 13758 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
13759 inst.instruction |= 0x00200000; /* sh bit. */
13760
13761 inst.instruction |= (shift_amount & 0x1c) << 10;
13762 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
13763 }
13764 }
b99bd4ef 13765}
c921be7d 13766
3a21c15a
NC
13767static void
13768do_t_ssat (void)
13769{
13770 do_t_ssat_usat (1);
13771}
b99bd4ef 13772
0dd132b6 13773static void
c19d1205 13774do_t_ssat16 (void)
0dd132b6 13775{
fdfde340
JM
13776 unsigned Rd, Rn;
13777
13778 Rd = inst.operands[0].reg;
13779 Rn = inst.operands[2].reg;
13780
13781 reject_bad_reg (Rd);
13782 reject_bad_reg (Rn);
13783
13784 inst.instruction |= Rd << 8;
c19d1205 13785 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 13786 inst.instruction |= Rn << 16;
c19d1205 13787}
0dd132b6 13788
c19d1205
ZW
13789static void
13790do_t_strex (void)
13791{
13792 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13793 || inst.operands[2].postind || inst.operands[2].writeback
13794 || inst.operands[2].immisreg || inst.operands[2].shifted
13795 || inst.operands[2].negative,
01cfc07f 13796 BAD_ADDR_MODE);
0dd132b6 13797
5be8be5d
DG
13798 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13799
c19d1205
ZW
13800 inst.instruction |= inst.operands[0].reg << 8;
13801 inst.instruction |= inst.operands[1].reg << 12;
13802 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 13803 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
13804}
13805
b99bd4ef 13806static void
c19d1205 13807do_t_strexd (void)
b99bd4ef 13808{
c19d1205
ZW
13809 if (!inst.operands[2].present)
13810 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 13811
c19d1205
ZW
13812 constraint (inst.operands[0].reg == inst.operands[1].reg
13813 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 13814 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 13815 BAD_OVERLAP);
b99bd4ef 13816
c19d1205
ZW
13817 inst.instruction |= inst.operands[0].reg;
13818 inst.instruction |= inst.operands[1].reg << 12;
13819 inst.instruction |= inst.operands[2].reg << 8;
13820 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
13821}
13822
13823static void
c19d1205 13824do_t_sxtah (void)
b99bd4ef 13825{
fdfde340
JM
13826 unsigned Rd, Rn, Rm;
13827
13828 Rd = inst.operands[0].reg;
13829 Rn = inst.operands[1].reg;
13830 Rm = inst.operands[2].reg;
13831
13832 reject_bad_reg (Rd);
13833 reject_bad_reg (Rn);
13834 reject_bad_reg (Rm);
13835
13836 inst.instruction |= Rd << 8;
13837 inst.instruction |= Rn << 16;
13838 inst.instruction |= Rm;
c19d1205
ZW
13839 inst.instruction |= inst.operands[3].imm << 4;
13840}
b99bd4ef 13841
c19d1205
ZW
13842static void
13843do_t_sxth (void)
13844{
fdfde340
JM
13845 unsigned Rd, Rm;
13846
13847 Rd = inst.operands[0].reg;
13848 Rm = inst.operands[1].reg;
13849
13850 reject_bad_reg (Rd);
13851 reject_bad_reg (Rm);
c921be7d
NC
13852
13853 if (inst.instruction <= 0xffff
13854 && inst.size_req != 4
fdfde340 13855 && Rd <= 7 && Rm <= 7
c19d1205 13856 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 13857 {
c19d1205 13858 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13859 inst.instruction |= Rd;
13860 inst.instruction |= Rm << 3;
b99bd4ef 13861 }
c19d1205 13862 else if (unified_syntax)
b99bd4ef 13863 {
c19d1205
ZW
13864 if (inst.instruction <= 0xffff)
13865 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13866 inst.instruction |= Rd << 8;
13867 inst.instruction |= Rm;
c19d1205 13868 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 13869 }
c19d1205 13870 else
b99bd4ef 13871 {
c19d1205
ZW
13872 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13873 _("Thumb encoding does not support rotation"));
13874 constraint (1, BAD_HIREG);
b99bd4ef 13875 }
c19d1205 13876}
b99bd4ef 13877
c19d1205
ZW
13878static void
13879do_t_swi (void)
13880{
e2b0ab59 13881 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
c19d1205 13882}
b99bd4ef 13883
92e90b6e
PB
13884static void
13885do_t_tb (void)
13886{
fdfde340 13887 unsigned Rn, Rm;
92e90b6e
PB
13888 int half;
13889
13890 half = (inst.instruction & 0x10) != 0;
5ee91343 13891 set_pred_insn_type_last ();
dfa9f0d5
PB
13892 constraint (inst.operands[0].immisreg,
13893 _("instruction requires register index"));
fdfde340
JM
13894
13895 Rn = inst.operands[0].reg;
13896 Rm = inst.operands[0].imm;
c921be7d 13897
5c8ed6a4
JW
13898 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13899 constraint (Rn == REG_SP, BAD_SP);
fdfde340
JM
13900 reject_bad_reg (Rm);
13901
92e90b6e
PB
13902 constraint (!half && inst.operands[0].shifted,
13903 _("instruction does not allow shifted index"));
fdfde340 13904 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
13905}
13906
74db7efb
NC
13907static void
13908do_t_udf (void)
13909{
13910 if (!inst.operands[0].present)
13911 inst.operands[0].imm = 0;
13912
13913 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13914 {
13915 constraint (inst.size_req == 2,
13916 _("immediate value out of range"));
13917 inst.instruction = THUMB_OP32 (inst.instruction);
13918 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13919 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13920 }
13921 else
13922 {
13923 inst.instruction = THUMB_OP16 (inst.instruction);
13924 inst.instruction |= inst.operands[0].imm;
13925 }
13926
5ee91343 13927 set_pred_insn_type (NEUTRAL_IT_INSN);
74db7efb
NC
13928}
13929
13930
c19d1205
ZW
13931static void
13932do_t_usat (void)
13933{
3a21c15a 13934 do_t_ssat_usat (0);
b99bd4ef
NC
13935}
13936
13937static void
c19d1205 13938do_t_usat16 (void)
b99bd4ef 13939{
fdfde340
JM
13940 unsigned Rd, Rn;
13941
13942 Rd = inst.operands[0].reg;
13943 Rn = inst.operands[2].reg;
13944
13945 reject_bad_reg (Rd);
13946 reject_bad_reg (Rn);
13947
13948 inst.instruction |= Rd << 8;
c19d1205 13949 inst.instruction |= inst.operands[1].imm;
fdfde340 13950 inst.instruction |= Rn << 16;
b99bd4ef 13951}
c19d1205 13952
e12437dc
AV
13953/* Checking the range of the branch offset (VAL) with NBITS bits
13954 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13955static int
13956v8_1_branch_value_check (int val, int nbits, int is_signed)
13957{
13958 gas_assert (nbits > 0 && nbits <= 32);
13959 if (is_signed)
13960 {
13961 int cmp = (1 << (nbits - 1));
13962 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13963 return FAIL;
13964 }
13965 else
13966 {
13967 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13968 return FAIL;
13969 }
13970 return SUCCESS;
13971}
13972
4389b29a
AV
13973/* For branches in Armv8.1-M Mainline. */
13974static void
13975do_t_branch_future (void)
13976{
13977 unsigned long insn = inst.instruction;
13978
13979 inst.instruction = THUMB_OP32 (inst.instruction);
13980 if (inst.operands[0].hasreloc == 0)
13981 {
13982 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13983 as_bad (BAD_BRANCH_OFF);
13984
13985 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13986 }
13987 else
13988 {
13989 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13990 inst.relocs[0].pc_rel = 1;
13991 }
13992
13993 switch (insn)
13994 {
13995 case T_MNEM_bf:
13996 if (inst.operands[1].hasreloc == 0)
13997 {
13998 int val = inst.operands[1].imm;
13999 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
14000 as_bad (BAD_BRANCH_OFF);
14001
14002 int immA = (val & 0x0001f000) >> 12;
14003 int immB = (val & 0x00000ffc) >> 2;
14004 int immC = (val & 0x00000002) >> 1;
14005 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14006 }
14007 else
14008 {
14009 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
14010 inst.relocs[1].pc_rel = 1;
14011 }
14012 break;
14013
65d1bc05
AV
14014 case T_MNEM_bfl:
14015 if (inst.operands[1].hasreloc == 0)
14016 {
14017 int val = inst.operands[1].imm;
14018 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14019 as_bad (BAD_BRANCH_OFF);
14020
14021 int immA = (val & 0x0007f000) >> 12;
14022 int immB = (val & 0x00000ffc) >> 2;
14023 int immC = (val & 0x00000002) >> 1;
14024 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14025 }
14026 else
14027 {
14028 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14029 inst.relocs[1].pc_rel = 1;
14030 }
14031 break;
14032
f6b2b12d
AV
14033 case T_MNEM_bfcsel:
14034 /* Operand 1. */
14035 if (inst.operands[1].hasreloc == 0)
14036 {
14037 int val = inst.operands[1].imm;
14038 int immA = (val & 0x00001000) >> 12;
14039 int immB = (val & 0x00000ffc) >> 2;
14040 int immC = (val & 0x00000002) >> 1;
14041 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14042 }
14043 else
14044 {
14045 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14046 inst.relocs[1].pc_rel = 1;
14047 }
14048
14049 /* Operand 2. */
14050 if (inst.operands[2].hasreloc == 0)
14051 {
14052 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14053 int val2 = inst.operands[2].imm;
14054 int val0 = inst.operands[0].imm & 0x1f;
14055 int diff = val2 - val0;
14056 if (diff == 4)
14057 inst.instruction |= 1 << 17; /* T bit. */
14058 else if (diff != 2)
14059 as_bad (_("out of range label-relative fixup value"));
14060 }
14061 else
14062 {
14063 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14064 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14065 inst.relocs[2].pc_rel = 1;
14066 }
14067
14068 /* Operand 3. */
14069 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14070 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14071 break;
14072
f1c7f421
AV
14073 case T_MNEM_bfx:
14074 case T_MNEM_bflx:
14075 inst.instruction |= inst.operands[1].reg << 16;
14076 break;
14077
4389b29a
AV
14078 default: abort ();
14079 }
14080}
14081
60f993ce
AV
14082/* Helper function for do_t_loloop to handle relocations. */
14083static void
14084v8_1_loop_reloc (int is_le)
14085{
14086 if (inst.relocs[0].exp.X_op == O_constant)
14087 {
14088 int value = inst.relocs[0].exp.X_add_number;
14089 value = (is_le) ? -value : value;
14090
14091 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14092 as_bad (BAD_BRANCH_OFF);
14093
14094 int imml, immh;
14095
14096 immh = (value & 0x00000ffc) >> 2;
14097 imml = (value & 0x00000002) >> 1;
14098
14099 inst.instruction |= (imml << 11) | (immh << 1);
14100 }
14101 else
14102 {
14103 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14104 inst.relocs[0].pc_rel = 1;
14105 }
14106}
14107
14108/* To handle the Scalar Low Overhead Loop instructions
14109 in Armv8.1-M Mainline. */
14110static void
14111do_t_loloop (void)
14112{
14113 unsigned long insn = inst.instruction;
14114
5ee91343 14115 set_pred_insn_type (OUTSIDE_PRED_INSN);
60f993ce
AV
14116 inst.instruction = THUMB_OP32 (inst.instruction);
14117
14118 switch (insn)
14119 {
14120 case T_MNEM_le:
14121 /* le <label>. */
14122 if (!inst.operands[0].present)
14123 inst.instruction |= 1 << 21;
14124
14125 v8_1_loop_reloc (TRUE);
14126 break;
14127
14128 case T_MNEM_wls:
14129 v8_1_loop_reloc (FALSE);
14130 /* Fall through. */
14131 case T_MNEM_dls:
14132 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14133 inst.instruction |= (inst.operands[1].reg << 16);
14134 break;
14135
14136 default: abort();
14137 }
14138}
14139
a302e574
AV
14140/* MVE instruction encoder helpers. */
14141#define M_MNEM_vabav 0xee800f01
14142#define M_MNEM_vmladav 0xeef00e00
14143#define M_MNEM_vmladava 0xeef00e20
14144#define M_MNEM_vmladavx 0xeef01e00
14145#define M_MNEM_vmladavax 0xeef01e20
14146#define M_MNEM_vmlsdav 0xeef00e01
14147#define M_MNEM_vmlsdava 0xeef00e21
14148#define M_MNEM_vmlsdavx 0xeef01e01
14149#define M_MNEM_vmlsdavax 0xeef01e21
886e1c73
AV
14150#define M_MNEM_vmullt 0xee011e00
14151#define M_MNEM_vmullb 0xee010e00
35c228db
AV
14152#define M_MNEM_vst20 0xfc801e00
14153#define M_MNEM_vst21 0xfc801e20
14154#define M_MNEM_vst40 0xfc801e01
14155#define M_MNEM_vst41 0xfc801e21
14156#define M_MNEM_vst42 0xfc801e41
14157#define M_MNEM_vst43 0xfc801e61
14158#define M_MNEM_vld20 0xfc901e00
14159#define M_MNEM_vld21 0xfc901e20
14160#define M_MNEM_vld40 0xfc901e01
14161#define M_MNEM_vld41 0xfc901e21
14162#define M_MNEM_vld42 0xfc901e41
14163#define M_MNEM_vld43 0xfc901e61
f5f10c66
AV
14164#define M_MNEM_vstrb 0xec000e00
14165#define M_MNEM_vstrh 0xec000e10
14166#define M_MNEM_vstrw 0xec000e40
14167#define M_MNEM_vstrd 0xec000e50
14168#define M_MNEM_vldrb 0xec100e00
14169#define M_MNEM_vldrh 0xec100e10
14170#define M_MNEM_vldrw 0xec100e40
14171#define M_MNEM_vldrd 0xec100e50
57785aa2
AV
14172#define M_MNEM_vmovlt 0xeea01f40
14173#define M_MNEM_vmovlb 0xeea00f40
14174#define M_MNEM_vmovnt 0xfe311e81
14175#define M_MNEM_vmovnb 0xfe310e81
c2dafc2a
AV
14176#define M_MNEM_vadc 0xee300f00
14177#define M_MNEM_vadci 0xee301f00
14178#define M_MNEM_vbrsr 0xfe011e60
26c1e780
AV
14179#define M_MNEM_vaddlv 0xee890f00
14180#define M_MNEM_vaddlva 0xee890f20
14181#define M_MNEM_vaddv 0xeef10f00
14182#define M_MNEM_vaddva 0xeef10f20
b409bdb6
AV
14183#define M_MNEM_vddup 0xee011f6e
14184#define M_MNEM_vdwdup 0xee011f60
14185#define M_MNEM_vidup 0xee010f6e
14186#define M_MNEM_viwdup 0xee010f60
13ccd4c0
AV
14187#define M_MNEM_vmaxv 0xeee20f00
14188#define M_MNEM_vmaxav 0xeee00f00
14189#define M_MNEM_vminv 0xeee20f80
14190#define M_MNEM_vminav 0xeee00f80
93925576
AV
14191#define M_MNEM_vmlaldav 0xee800e00
14192#define M_MNEM_vmlaldava 0xee800e20
14193#define M_MNEM_vmlaldavx 0xee801e00
14194#define M_MNEM_vmlaldavax 0xee801e20
14195#define M_MNEM_vmlsldav 0xee800e01
14196#define M_MNEM_vmlsldava 0xee800e21
14197#define M_MNEM_vmlsldavx 0xee801e01
14198#define M_MNEM_vmlsldavax 0xee801e21
14199#define M_MNEM_vrmlaldavhx 0xee801f00
14200#define M_MNEM_vrmlaldavhax 0xee801f20
14201#define M_MNEM_vrmlsldavh 0xfe800e01
14202#define M_MNEM_vrmlsldavha 0xfe800e21
14203#define M_MNEM_vrmlsldavhx 0xfe801e01
14204#define M_MNEM_vrmlsldavhax 0xfe801e21
1be7aba3
AV
14205#define M_MNEM_vqmovnt 0xee331e01
14206#define M_MNEM_vqmovnb 0xee330e01
14207#define M_MNEM_vqmovunt 0xee311e81
14208#define M_MNEM_vqmovunb 0xee310e81
4aa88b50
AV
14209#define M_MNEM_vshrnt 0xee801fc1
14210#define M_MNEM_vshrnb 0xee800fc1
14211#define M_MNEM_vrshrnt 0xfe801fc1
14212#define M_MNEM_vqshrnt 0xee801f40
14213#define M_MNEM_vqshrnb 0xee800f40
14214#define M_MNEM_vqshrunt 0xee801fc0
14215#define M_MNEM_vqshrunb 0xee800fc0
14216#define M_MNEM_vrshrnb 0xfe800fc1
14217#define M_MNEM_vqrshrnt 0xee801f41
14218#define M_MNEM_vqrshrnb 0xee800f41
14219#define M_MNEM_vqrshrunt 0xfe801fc0
14220#define M_MNEM_vqrshrunb 0xfe800fc0
a302e574 14221
5287ad62 14222/* Neon instruction encoder helpers. */
5f4273c7 14223
5287ad62 14224/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 14225
5287ad62
JB
14226/* An "invalid" code for the following tables. */
14227#define N_INV -1u
14228
14229struct neon_tab_entry
b99bd4ef 14230{
5287ad62
JB
14231 unsigned integer;
14232 unsigned float_or_poly;
14233 unsigned scalar_or_imm;
14234};
5f4273c7 14235
5287ad62
JB
14236/* Map overloaded Neon opcodes to their respective encodings. */
14237#define NEON_ENC_TAB \
14238 X(vabd, 0x0000700, 0x1200d00, N_INV), \
5ee91343 14239 X(vabdl, 0x0800700, N_INV, N_INV), \
5287ad62
JB
14240 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14241 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14242 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14243 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14244 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14245 X(vadd, 0x0000800, 0x0000d00, N_INV), \
5ee91343 14246 X(vaddl, 0x0800000, N_INV, N_INV), \
5287ad62 14247 X(vsub, 0x1000800, 0x0200d00, N_INV), \
5ee91343 14248 X(vsubl, 0x0800200, N_INV, N_INV), \
5287ad62
JB
14249 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14250 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14251 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14252 /* Register variants of the following two instructions are encoded as
e07e6e58 14253 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
14254 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14255 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
14256 X(vfma, N_INV, 0x0000c10, N_INV), \
14257 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
14258 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14259 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14260 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14261 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14262 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14263 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14264 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14265 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14266 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14267 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14268 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
d6b4b13e
MW
14269 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14270 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
5287ad62
JB
14271 X(vshl, 0x0000400, N_INV, 0x0800510), \
14272 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14273 X(vand, 0x0000110, N_INV, 0x0800030), \
14274 X(vbic, 0x0100110, N_INV, 0x0800030), \
14275 X(veor, 0x1000110, N_INV, N_INV), \
14276 X(vorn, 0x0300110, N_INV, 0x0800010), \
14277 X(vorr, 0x0200110, N_INV, 0x0800010), \
14278 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14279 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14280 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14281 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14282 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14283 X(vst1, 0x0000000, 0x0800000, N_INV), \
14284 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14285 X(vst2, 0x0000100, 0x0800100, N_INV), \
14286 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14287 X(vst3, 0x0000200, 0x0800200, N_INV), \
14288 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14289 X(vst4, 0x0000300, 0x0800300, N_INV), \
14290 X(vmovn, 0x1b20200, N_INV, N_INV), \
14291 X(vtrn, 0x1b20080, N_INV, N_INV), \
14292 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
14293 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14294 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
14295 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14296 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
14297 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14298 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
14299 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14300 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14301 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
14302 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14303 X(vseleq, 0xe000a00, N_INV, N_INV), \
14304 X(vselvs, 0xe100a00, N_INV, N_INV), \
14305 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
14306 X(vselgt, 0xe300a00, N_INV, N_INV), \
14307 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
7e8e6784 14308 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
30bdf752
MGD
14309 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14310 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
91ff7894 14311 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
48adcd8e 14312 X(aes, 0x3b00300, N_INV, N_INV), \
3c9017d2
MGD
14313 X(sha3op, 0x2000c00, N_INV, N_INV), \
14314 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14315 X(sha2op, 0x3ba0380, N_INV, N_INV)
5287ad62
JB
14316
14317enum neon_opc
14318{
14319#define X(OPC,I,F,S) N_MNEM_##OPC
14320NEON_ENC_TAB
14321#undef X
14322};
b99bd4ef 14323
5287ad62
JB
14324static const struct neon_tab_entry neon_enc_tab[] =
14325{
14326#define X(OPC,I,F,S) { (I), (F), (S) }
14327NEON_ENC_TAB
14328#undef X
14329};
b99bd4ef 14330
88714cb8
DG
14331/* Do not use these macros; instead, use NEON_ENCODE defined below. */
14332#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14333#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14334#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14335#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14336#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14337#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14338#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14339#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14340#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14341#define NEON_ENC_SINGLE_(X) \
037e8744 14342 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 14343#define NEON_ENC_DOUBLE_(X) \
037e8744 14344 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
14345#define NEON_ENC_FPV8_(X) \
14346 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 14347
88714cb8
DG
14348#define NEON_ENCODE(type, inst) \
14349 do \
14350 { \
14351 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14352 inst.is_neon = 1; \
14353 } \
14354 while (0)
14355
14356#define check_neon_suffixes \
14357 do \
14358 { \
14359 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14360 { \
14361 as_bad (_("invalid neon suffix for non neon instruction")); \
14362 return; \
14363 } \
14364 } \
14365 while (0)
14366
037e8744
JB
14367/* Define shapes for instruction operands. The following mnemonic characters
14368 are used in this table:
5287ad62 14369
037e8744 14370 F - VFP S<n> register
5287ad62
JB
14371 D - Neon D<n> register
14372 Q - Neon Q<n> register
14373 I - Immediate
14374 S - Scalar
14375 R - ARM register
14376 L - D<n> register list
5f4273c7 14377
037e8744
JB
14378 This table is used to generate various data:
14379 - enumerations of the form NS_DDR to be used as arguments to
14380 neon_select_shape.
14381 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 14382 - a table used to drive neon_select_shape. */
b99bd4ef 14383
037e8744 14384#define NEON_SHAPE_DEF \
93925576 14385 X(4, (R, R, Q, Q), QUAD), \
b409bdb6 14386 X(4, (Q, R, R, I), QUAD), \
57785aa2
AV
14387 X(4, (R, R, S, S), QUAD), \
14388 X(4, (S, S, R, R), QUAD), \
b409bdb6 14389 X(3, (Q, R, I), QUAD), \
1b883319
AV
14390 X(3, (I, Q, Q), QUAD), \
14391 X(3, (I, Q, R), QUAD), \
a302e574 14392 X(3, (R, Q, Q), QUAD), \
037e8744
JB
14393 X(3, (D, D, D), DOUBLE), \
14394 X(3, (Q, Q, Q), QUAD), \
14395 X(3, (D, D, I), DOUBLE), \
14396 X(3, (Q, Q, I), QUAD), \
14397 X(3, (D, D, S), DOUBLE), \
14398 X(3, (Q, Q, S), QUAD), \
5ee91343 14399 X(3, (Q, Q, R), QUAD), \
26c1e780
AV
14400 X(3, (R, R, Q), QUAD), \
14401 X(2, (R, Q), QUAD), \
037e8744
JB
14402 X(2, (D, D), DOUBLE), \
14403 X(2, (Q, Q), QUAD), \
14404 X(2, (D, S), DOUBLE), \
14405 X(2, (Q, S), QUAD), \
14406 X(2, (D, R), DOUBLE), \
14407 X(2, (Q, R), QUAD), \
14408 X(2, (D, I), DOUBLE), \
14409 X(2, (Q, I), QUAD), \
14410 X(3, (D, L, D), DOUBLE), \
14411 X(2, (D, Q), MIXED), \
14412 X(2, (Q, D), MIXED), \
14413 X(3, (D, Q, I), MIXED), \
14414 X(3, (Q, D, I), MIXED), \
14415 X(3, (Q, D, D), MIXED), \
14416 X(3, (D, Q, Q), MIXED), \
14417 X(3, (Q, Q, D), MIXED), \
14418 X(3, (Q, D, S), MIXED), \
14419 X(3, (D, Q, S), MIXED), \
14420 X(4, (D, D, D, I), DOUBLE), \
14421 X(4, (Q, Q, Q, I), QUAD), \
c28eeff2
SN
14422 X(4, (D, D, S, I), DOUBLE), \
14423 X(4, (Q, Q, S, I), QUAD), \
037e8744
JB
14424 X(2, (F, F), SINGLE), \
14425 X(3, (F, F, F), SINGLE), \
14426 X(2, (F, I), SINGLE), \
14427 X(2, (F, D), MIXED), \
14428 X(2, (D, F), MIXED), \
14429 X(3, (F, F, I), MIXED), \
14430 X(4, (R, R, F, F), SINGLE), \
14431 X(4, (F, F, R, R), SINGLE), \
14432 X(3, (D, R, R), DOUBLE), \
14433 X(3, (R, R, D), DOUBLE), \
14434 X(2, (S, R), SINGLE), \
14435 X(2, (R, S), SINGLE), \
14436 X(2, (F, R), SINGLE), \
d54af2d0
RL
14437 X(2, (R, F), SINGLE), \
14438/* Half float shape supported so far. */\
14439 X (2, (H, D), MIXED), \
14440 X (2, (D, H), MIXED), \
14441 X (2, (H, F), MIXED), \
14442 X (2, (F, H), MIXED), \
14443 X (2, (H, H), HALF), \
14444 X (2, (H, R), HALF), \
14445 X (2, (R, H), HALF), \
14446 X (2, (H, I), HALF), \
14447 X (3, (H, H, H), HALF), \
14448 X (3, (H, F, I), MIXED), \
dec41383
JW
14449 X (3, (F, H, I), MIXED), \
14450 X (3, (D, H, H), MIXED), \
14451 X (3, (D, H, S), MIXED)
037e8744
JB
14452
14453#define S2(A,B) NS_##A##B
14454#define S3(A,B,C) NS_##A##B##C
14455#define S4(A,B,C,D) NS_##A##B##C##D
14456
14457#define X(N, L, C) S##N L
14458
5287ad62
JB
14459enum neon_shape
14460{
037e8744
JB
14461 NEON_SHAPE_DEF,
14462 NS_NULL
5287ad62 14463};
b99bd4ef 14464
037e8744
JB
14465#undef X
14466#undef S2
14467#undef S3
14468#undef S4
14469
14470enum neon_shape_class
14471{
d54af2d0 14472 SC_HALF,
037e8744
JB
14473 SC_SINGLE,
14474 SC_DOUBLE,
14475 SC_QUAD,
14476 SC_MIXED
14477};
14478
14479#define X(N, L, C) SC_##C
14480
14481static enum neon_shape_class neon_shape_class[] =
14482{
14483 NEON_SHAPE_DEF
14484};
14485
14486#undef X
14487
14488enum neon_shape_el
14489{
d54af2d0 14490 SE_H,
037e8744
JB
14491 SE_F,
14492 SE_D,
14493 SE_Q,
14494 SE_I,
14495 SE_S,
14496 SE_R,
14497 SE_L
14498};
14499
14500/* Register widths of above. */
14501static unsigned neon_shape_el_size[] =
14502{
d54af2d0 14503 16,
037e8744
JB
14504 32,
14505 64,
14506 128,
14507 0,
14508 32,
14509 32,
14510 0
14511};
14512
14513struct neon_shape_info
14514{
14515 unsigned els;
14516 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14517};
14518
14519#define S2(A,B) { SE_##A, SE_##B }
14520#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14521#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14522
14523#define X(N, L, C) { N, S##N L }
14524
14525static struct neon_shape_info neon_shape_tab[] =
14526{
14527 NEON_SHAPE_DEF
14528};
14529
14530#undef X
14531#undef S2
14532#undef S3
14533#undef S4
14534
5287ad62
JB
14535/* Bit masks used in type checking given instructions.
14536 'N_EQK' means the type must be the same as (or based on in some way) the key
14537 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14538 set, various other bits can be set as well in order to modify the meaning of
14539 the type constraint. */
14540
14541enum neon_type_mask
14542{
8e79c3df
CM
14543 N_S8 = 0x0000001,
14544 N_S16 = 0x0000002,
14545 N_S32 = 0x0000004,
14546 N_S64 = 0x0000008,
14547 N_U8 = 0x0000010,
14548 N_U16 = 0x0000020,
14549 N_U32 = 0x0000040,
14550 N_U64 = 0x0000080,
14551 N_I8 = 0x0000100,
14552 N_I16 = 0x0000200,
14553 N_I32 = 0x0000400,
14554 N_I64 = 0x0000800,
14555 N_8 = 0x0001000,
14556 N_16 = 0x0002000,
14557 N_32 = 0x0004000,
14558 N_64 = 0x0008000,
14559 N_P8 = 0x0010000,
14560 N_P16 = 0x0020000,
14561 N_F16 = 0x0040000,
14562 N_F32 = 0x0080000,
14563 N_F64 = 0x0100000,
4f51b4bd 14564 N_P64 = 0x0200000,
c921be7d
NC
14565 N_KEY = 0x1000000, /* Key element (main type specifier). */
14566 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 14567 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
91ff7894 14568 N_UNT = 0x8000000, /* Must be explicitly untyped. */
c921be7d
NC
14569 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14570 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14571 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14572 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14573 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14574 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14575 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 14576 N_UTYP = 0,
4f51b4bd 14577 N_MAX_NONSPECIAL = N_P64
5287ad62
JB
14578};
14579
dcbf9037
JB
14580#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14581
5287ad62
JB
14582#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14583#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14584#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
cc933301
JW
14585#define N_S_32 (N_S8 | N_S16 | N_S32)
14586#define N_F_16_32 (N_F16 | N_F32)
14587#define N_SUF_32 (N_SU_32 | N_F_16_32)
5287ad62 14588#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
cc933301 14589#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
d54af2d0 14590#define N_F_ALL (N_F16 | N_F32 | N_F64)
5ee91343
AV
14591#define N_I_MVE (N_I8 | N_I16 | N_I32)
14592#define N_F_MVE (N_F16 | N_F32)
14593#define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
5287ad62
JB
14594
14595/* Pass this as the first type argument to neon_check_type to ignore types
14596 altogether. */
14597#define N_IGNORE_TYPE (N_KEY | N_EQK)
14598
037e8744
JB
14599/* Select a "shape" for the current instruction (describing register types or
14600 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14601 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14602 function of operand parsing, so this function doesn't need to be called.
14603 Shapes should be listed in order of decreasing length. */
5287ad62
JB
14604
14605static enum neon_shape
037e8744 14606neon_select_shape (enum neon_shape shape, ...)
5287ad62 14607{
037e8744
JB
14608 va_list ap;
14609 enum neon_shape first_shape = shape;
5287ad62
JB
14610
14611 /* Fix missing optional operands. FIXME: we don't know at this point how
14612 many arguments we should have, so this makes the assumption that we have
14613 > 1. This is true of all current Neon opcodes, I think, but may not be
14614 true in the future. */
14615 if (!inst.operands[1].present)
14616 inst.operands[1] = inst.operands[0];
14617
037e8744 14618 va_start (ap, shape);
5f4273c7 14619
21d799b5 14620 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
14621 {
14622 unsigned j;
14623 int matches = 1;
14624
14625 for (j = 0; j < neon_shape_tab[shape].els; j++)
477330fc
RM
14626 {
14627 if (!inst.operands[j].present)
14628 {
14629 matches = 0;
14630 break;
14631 }
14632
14633 switch (neon_shape_tab[shape].el[j])
14634 {
d54af2d0
RL
14635 /* If a .f16, .16, .u16, .s16 type specifier is given over
14636 a VFP single precision register operand, it's essentially
14637 means only half of the register is used.
14638
14639 If the type specifier is given after the mnemonics, the
14640 information is stored in inst.vectype. If the type specifier
14641 is given after register operand, the information is stored
14642 in inst.operands[].vectype.
14643
14644 When there is only one type specifier, and all the register
14645 operands are the same type of hardware register, the type
14646 specifier applies to all register operands.
14647
14648 If no type specifier is given, the shape is inferred from
14649 operand information.
14650
14651 for example:
14652 vadd.f16 s0, s1, s2: NS_HHH
14653 vabs.f16 s0, s1: NS_HH
14654 vmov.f16 s0, r1: NS_HR
14655 vmov.f16 r0, s1: NS_RH
14656 vcvt.f16 r0, s1: NS_RH
14657 vcvt.f16.s32 s2, s2, #29: NS_HFI
14658 vcvt.f16.s32 s2, s2: NS_HF
14659 */
14660 case SE_H:
14661 if (!(inst.operands[j].isreg
14662 && inst.operands[j].isvec
14663 && inst.operands[j].issingle
14664 && !inst.operands[j].isquad
14665 && ((inst.vectype.elems == 1
14666 && inst.vectype.el[0].size == 16)
14667 || (inst.vectype.elems > 1
14668 && inst.vectype.el[j].size == 16)
14669 || (inst.vectype.elems == 0
14670 && inst.operands[j].vectype.type != NT_invtype
14671 && inst.operands[j].vectype.size == 16))))
14672 matches = 0;
14673 break;
14674
477330fc
RM
14675 case SE_F:
14676 if (!(inst.operands[j].isreg
14677 && inst.operands[j].isvec
14678 && inst.operands[j].issingle
d54af2d0
RL
14679 && !inst.operands[j].isquad
14680 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14681 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14682 || (inst.vectype.elems == 0
14683 && (inst.operands[j].vectype.size == 32
14684 || inst.operands[j].vectype.type == NT_invtype)))))
477330fc
RM
14685 matches = 0;
14686 break;
14687
14688 case SE_D:
14689 if (!(inst.operands[j].isreg
14690 && inst.operands[j].isvec
14691 && !inst.operands[j].isquad
14692 && !inst.operands[j].issingle))
14693 matches = 0;
14694 break;
14695
14696 case SE_R:
14697 if (!(inst.operands[j].isreg
14698 && !inst.operands[j].isvec))
14699 matches = 0;
14700 break;
14701
14702 case SE_Q:
14703 if (!(inst.operands[j].isreg
14704 && inst.operands[j].isvec
14705 && inst.operands[j].isquad
14706 && !inst.operands[j].issingle))
14707 matches = 0;
14708 break;
14709
14710 case SE_I:
14711 if (!(!inst.operands[j].isreg
14712 && !inst.operands[j].isscalar))
14713 matches = 0;
14714 break;
14715
14716 case SE_S:
14717 if (!(!inst.operands[j].isreg
14718 && inst.operands[j].isscalar))
14719 matches = 0;
14720 break;
14721
14722 case SE_L:
14723 break;
14724 }
3fde54a2
JZ
14725 if (!matches)
14726 break;
477330fc 14727 }
ad6cec43
MGD
14728 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14729 /* We've matched all the entries in the shape table, and we don't
14730 have any left over operands which have not been matched. */
477330fc 14731 break;
037e8744 14732 }
5f4273c7 14733
037e8744 14734 va_end (ap);
5287ad62 14735
037e8744
JB
14736 if (shape == NS_NULL && first_shape != NS_NULL)
14737 first_error (_("invalid instruction shape"));
5287ad62 14738
037e8744
JB
14739 return shape;
14740}
5287ad62 14741
037e8744
JB
14742/* True if SHAPE is predominantly a quadword operation (most of the time, this
14743 means the Q bit should be set). */
14744
14745static int
14746neon_quad (enum neon_shape shape)
14747{
14748 return neon_shape_class[shape] == SC_QUAD;
5287ad62 14749}
037e8744 14750
5287ad62
JB
14751static void
14752neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
477330fc 14753 unsigned *g_size)
5287ad62
JB
14754{
14755 /* Allow modification to be made to types which are constrained to be
14756 based on the key element, based on bits set alongside N_EQK. */
14757 if ((typebits & N_EQK) != 0)
14758 {
14759 if ((typebits & N_HLF) != 0)
14760 *g_size /= 2;
14761 else if ((typebits & N_DBL) != 0)
14762 *g_size *= 2;
14763 if ((typebits & N_SGN) != 0)
14764 *g_type = NT_signed;
14765 else if ((typebits & N_UNS) != 0)
477330fc 14766 *g_type = NT_unsigned;
5287ad62 14767 else if ((typebits & N_INT) != 0)
477330fc 14768 *g_type = NT_integer;
5287ad62 14769 else if ((typebits & N_FLT) != 0)
477330fc 14770 *g_type = NT_float;
dcbf9037 14771 else if ((typebits & N_SIZ) != 0)
477330fc 14772 *g_type = NT_untyped;
5287ad62
JB
14773 }
14774}
5f4273c7 14775
5287ad62
JB
14776/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14777 operand type, i.e. the single type specified in a Neon instruction when it
14778 is the only one given. */
14779
14780static struct neon_type_el
14781neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14782{
14783 struct neon_type_el dest = *key;
5f4273c7 14784
9c2799c2 14785 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 14786
5287ad62
JB
14787 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14788
14789 return dest;
14790}
14791
14792/* Convert Neon type and size into compact bitmask representation. */
14793
14794static enum neon_type_mask
14795type_chk_of_el_type (enum neon_el_type type, unsigned size)
14796{
14797 switch (type)
14798 {
14799 case NT_untyped:
14800 switch (size)
477330fc
RM
14801 {
14802 case 8: return N_8;
14803 case 16: return N_16;
14804 case 32: return N_32;
14805 case 64: return N_64;
14806 default: ;
14807 }
5287ad62
JB
14808 break;
14809
14810 case NT_integer:
14811 switch (size)
477330fc
RM
14812 {
14813 case 8: return N_I8;
14814 case 16: return N_I16;
14815 case 32: return N_I32;
14816 case 64: return N_I64;
14817 default: ;
14818 }
5287ad62
JB
14819 break;
14820
14821 case NT_float:
037e8744 14822 switch (size)
477330fc 14823 {
8e79c3df 14824 case 16: return N_F16;
477330fc
RM
14825 case 32: return N_F32;
14826 case 64: return N_F64;
14827 default: ;
14828 }
5287ad62
JB
14829 break;
14830
14831 case NT_poly:
14832 switch (size)
477330fc
RM
14833 {
14834 case 8: return N_P8;
14835 case 16: return N_P16;
4f51b4bd 14836 case 64: return N_P64;
477330fc
RM
14837 default: ;
14838 }
5287ad62
JB
14839 break;
14840
14841 case NT_signed:
14842 switch (size)
477330fc
RM
14843 {
14844 case 8: return N_S8;
14845 case 16: return N_S16;
14846 case 32: return N_S32;
14847 case 64: return N_S64;
14848 default: ;
14849 }
5287ad62
JB
14850 break;
14851
14852 case NT_unsigned:
14853 switch (size)
477330fc
RM
14854 {
14855 case 8: return N_U8;
14856 case 16: return N_U16;
14857 case 32: return N_U32;
14858 case 64: return N_U64;
14859 default: ;
14860 }
5287ad62
JB
14861 break;
14862
14863 default: ;
14864 }
5f4273c7 14865
5287ad62
JB
14866 return N_UTYP;
14867}
14868
14869/* Convert compact Neon bitmask type representation to a type and size. Only
14870 handles the case where a single bit is set in the mask. */
14871
dcbf9037 14872static int
5287ad62 14873el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
477330fc 14874 enum neon_type_mask mask)
5287ad62 14875{
dcbf9037
JB
14876 if ((mask & N_EQK) != 0)
14877 return FAIL;
14878
5287ad62
JB
14879 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14880 *size = 8;
c70a8987 14881 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
5287ad62 14882 *size = 16;
dcbf9037 14883 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 14884 *size = 32;
4f51b4bd 14885 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
5287ad62 14886 *size = 64;
dcbf9037
JB
14887 else
14888 return FAIL;
14889
5287ad62
JB
14890 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14891 *type = NT_signed;
dcbf9037 14892 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 14893 *type = NT_unsigned;
dcbf9037 14894 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 14895 *type = NT_integer;
dcbf9037 14896 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 14897 *type = NT_untyped;
4f51b4bd 14898 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
5287ad62 14899 *type = NT_poly;
d54af2d0 14900 else if ((mask & (N_F_ALL)) != 0)
5287ad62 14901 *type = NT_float;
dcbf9037
JB
14902 else
14903 return FAIL;
5f4273c7 14904
dcbf9037 14905 return SUCCESS;
5287ad62
JB
14906}
14907
14908/* Modify a bitmask of allowed types. This is only needed for type
14909 relaxation. */
14910
14911static unsigned
14912modify_types_allowed (unsigned allowed, unsigned mods)
14913{
14914 unsigned size;
14915 enum neon_el_type type;
14916 unsigned destmask;
14917 int i;
5f4273c7 14918
5287ad62 14919 destmask = 0;
5f4273c7 14920
5287ad62
JB
14921 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14922 {
21d799b5 14923 if (el_type_of_type_chk (&type, &size,
477330fc
RM
14924 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14925 {
14926 neon_modify_type_size (mods, &type, &size);
14927 destmask |= type_chk_of_el_type (type, size);
14928 }
5287ad62 14929 }
5f4273c7 14930
5287ad62
JB
14931 return destmask;
14932}
14933
14934/* Check type and return type classification.
14935 The manual states (paraphrase): If one datatype is given, it indicates the
14936 type given in:
14937 - the second operand, if there is one
14938 - the operand, if there is no second operand
14939 - the result, if there are no operands.
14940 This isn't quite good enough though, so we use a concept of a "key" datatype
14941 which is set on a per-instruction basis, which is the one which matters when
14942 only one data type is written.
14943 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 14944 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
14945
14946static struct neon_type_el
14947neon_check_type (unsigned els, enum neon_shape ns, ...)
14948{
14949 va_list ap;
14950 unsigned i, pass, key_el = 0;
14951 unsigned types[NEON_MAX_TYPE_ELS];
14952 enum neon_el_type k_type = NT_invtype;
14953 unsigned k_size = -1u;
14954 struct neon_type_el badtype = {NT_invtype, -1};
14955 unsigned key_allowed = 0;
14956
14957 /* Optional registers in Neon instructions are always (not) in operand 1.
14958 Fill in the missing operand here, if it was omitted. */
14959 if (els > 1 && !inst.operands[1].present)
14960 inst.operands[1] = inst.operands[0];
14961
14962 /* Suck up all the varargs. */
14963 va_start (ap, ns);
14964 for (i = 0; i < els; i++)
14965 {
14966 unsigned thisarg = va_arg (ap, unsigned);
14967 if (thisarg == N_IGNORE_TYPE)
477330fc
RM
14968 {
14969 va_end (ap);
14970 return badtype;
14971 }
5287ad62
JB
14972 types[i] = thisarg;
14973 if ((thisarg & N_KEY) != 0)
477330fc 14974 key_el = i;
5287ad62
JB
14975 }
14976 va_end (ap);
14977
dcbf9037
JB
14978 if (inst.vectype.elems > 0)
14979 for (i = 0; i < els; i++)
14980 if (inst.operands[i].vectype.type != NT_invtype)
477330fc
RM
14981 {
14982 first_error (_("types specified in both the mnemonic and operands"));
14983 return badtype;
14984 }
dcbf9037 14985
5287ad62
JB
14986 /* Duplicate inst.vectype elements here as necessary.
14987 FIXME: No idea if this is exactly the same as the ARM assembler,
14988 particularly when an insn takes one register and one non-register
14989 operand. */
14990 if (inst.vectype.elems == 1 && els > 1)
14991 {
14992 unsigned j;
14993 inst.vectype.elems = els;
14994 inst.vectype.el[key_el] = inst.vectype.el[0];
14995 for (j = 0; j < els; j++)
477330fc
RM
14996 if (j != key_el)
14997 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14998 types[j]);
dcbf9037
JB
14999 }
15000 else if (inst.vectype.elems == 0 && els > 0)
15001 {
15002 unsigned j;
15003 /* No types were given after the mnemonic, so look for types specified
477330fc
RM
15004 after each operand. We allow some flexibility here; as long as the
15005 "key" operand has a type, we can infer the others. */
dcbf9037 15006 for (j = 0; j < els; j++)
477330fc
RM
15007 if (inst.operands[j].vectype.type != NT_invtype)
15008 inst.vectype.el[j] = inst.operands[j].vectype;
dcbf9037
JB
15009
15010 if (inst.operands[key_el].vectype.type != NT_invtype)
477330fc
RM
15011 {
15012 for (j = 0; j < els; j++)
15013 if (inst.operands[j].vectype.type == NT_invtype)
15014 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15015 types[j]);
15016 }
dcbf9037 15017 else
477330fc
RM
15018 {
15019 first_error (_("operand types can't be inferred"));
15020 return badtype;
15021 }
5287ad62
JB
15022 }
15023 else if (inst.vectype.elems != els)
15024 {
dcbf9037 15025 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
15026 return badtype;
15027 }
15028
15029 for (pass = 0; pass < 2; pass++)
15030 {
15031 for (i = 0; i < els; i++)
477330fc
RM
15032 {
15033 unsigned thisarg = types[i];
15034 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15035 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15036 enum neon_el_type g_type = inst.vectype.el[i].type;
15037 unsigned g_size = inst.vectype.el[i].size;
15038
15039 /* Decay more-specific signed & unsigned types to sign-insensitive
5287ad62 15040 integer types if sign-specific variants are unavailable. */
477330fc 15041 if ((g_type == NT_signed || g_type == NT_unsigned)
5287ad62
JB
15042 && (types_allowed & N_SU_ALL) == 0)
15043 g_type = NT_integer;
15044
477330fc 15045 /* If only untyped args are allowed, decay any more specific types to
5287ad62
JB
15046 them. Some instructions only care about signs for some element
15047 sizes, so handle that properly. */
477330fc 15048 if (((types_allowed & N_UNT) == 0)
91ff7894
MGD
15049 && ((g_size == 8 && (types_allowed & N_8) != 0)
15050 || (g_size == 16 && (types_allowed & N_16) != 0)
15051 || (g_size == 32 && (types_allowed & N_32) != 0)
15052 || (g_size == 64 && (types_allowed & N_64) != 0)))
5287ad62
JB
15053 g_type = NT_untyped;
15054
477330fc
RM
15055 if (pass == 0)
15056 {
15057 if ((thisarg & N_KEY) != 0)
15058 {
15059 k_type = g_type;
15060 k_size = g_size;
15061 key_allowed = thisarg & ~N_KEY;
cc933301
JW
15062
15063 /* Check architecture constraint on FP16 extension. */
15064 if (k_size == 16
15065 && k_type == NT_float
15066 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15067 {
15068 inst.error = _(BAD_FP16);
15069 return badtype;
15070 }
477330fc
RM
15071 }
15072 }
15073 else
15074 {
15075 if ((thisarg & N_VFP) != 0)
15076 {
15077 enum neon_shape_el regshape;
15078 unsigned regwidth, match;
99b253c5
NC
15079
15080 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15081 if (ns == NS_NULL)
15082 {
15083 first_error (_("invalid instruction shape"));
15084 return badtype;
15085 }
477330fc
RM
15086 regshape = neon_shape_tab[ns].el[i];
15087 regwidth = neon_shape_el_size[regshape];
15088
15089 /* In VFP mode, operands must match register widths. If we
15090 have a key operand, use its width, else use the width of
15091 the current operand. */
15092 if (k_size != -1u)
15093 match = k_size;
15094 else
15095 match = g_size;
15096
9db2f6b4
RL
15097 /* FP16 will use a single precision register. */
15098 if (regwidth == 32 && match == 16)
15099 {
15100 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15101 match = regwidth;
15102 else
15103 {
15104 inst.error = _(BAD_FP16);
15105 return badtype;
15106 }
15107 }
15108
477330fc
RM
15109 if (regwidth != match)
15110 {
15111 first_error (_("operand size must match register width"));
15112 return badtype;
15113 }
15114 }
15115
15116 if ((thisarg & N_EQK) == 0)
15117 {
15118 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15119
15120 if ((given_type & types_allowed) == 0)
15121 {
a302e574 15122 first_error (BAD_SIMD_TYPE);
477330fc
RM
15123 return badtype;
15124 }
15125 }
15126 else
15127 {
15128 enum neon_el_type mod_k_type = k_type;
15129 unsigned mod_k_size = k_size;
15130 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15131 if (g_type != mod_k_type || g_size != mod_k_size)
15132 {
15133 first_error (_("inconsistent types in Neon instruction"));
15134 return badtype;
15135 }
15136 }
15137 }
15138 }
5287ad62
JB
15139 }
15140
15141 return inst.vectype.el[key_el];
15142}
15143
037e8744 15144/* Neon-style VFP instruction forwarding. */
5287ad62 15145
037e8744
JB
15146/* Thumb VFP instructions have 0xE in the condition field. */
15147
15148static void
15149do_vfp_cond_or_thumb (void)
5287ad62 15150{
88714cb8
DG
15151 inst.is_neon = 1;
15152
5287ad62 15153 if (thumb_mode)
037e8744 15154 inst.instruction |= 0xe0000000;
5287ad62 15155 else
037e8744 15156 inst.instruction |= inst.cond << 28;
5287ad62
JB
15157}
15158
037e8744
JB
15159/* Look up and encode a simple mnemonic, for use as a helper function for the
15160 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15161 etc. It is assumed that operand parsing has already been done, and that the
15162 operands are in the form expected by the given opcode (this isn't necessarily
15163 the same as the form in which they were parsed, hence some massaging must
15164 take place before this function is called).
15165 Checks current arch version against that in the looked-up opcode. */
5287ad62 15166
037e8744
JB
15167static void
15168do_vfp_nsyn_opcode (const char *opname)
5287ad62 15169{
037e8744 15170 const struct asm_opcode *opcode;
5f4273c7 15171
21d799b5 15172 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 15173
037e8744
JB
15174 if (!opcode)
15175 abort ();
5287ad62 15176
037e8744 15177 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
477330fc
RM
15178 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15179 _(BAD_FPU));
5287ad62 15180
88714cb8
DG
15181 inst.is_neon = 1;
15182
037e8744
JB
15183 if (thumb_mode)
15184 {
15185 inst.instruction = opcode->tvalue;
15186 opcode->tencode ();
15187 }
15188 else
15189 {
15190 inst.instruction = (inst.cond << 28) | opcode->avalue;
15191 opcode->aencode ();
15192 }
15193}
5287ad62
JB
15194
15195static void
037e8744 15196do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 15197{
037e8744
JB
15198 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15199
9db2f6b4 15200 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15201 {
15202 if (is_add)
477330fc 15203 do_vfp_nsyn_opcode ("fadds");
037e8744 15204 else
477330fc 15205 do_vfp_nsyn_opcode ("fsubs");
9db2f6b4
RL
15206
15207 /* ARMv8.2 fp16 instruction. */
15208 if (rs == NS_HHH)
15209 do_scalar_fp16_v82_encode ();
037e8744
JB
15210 }
15211 else
15212 {
15213 if (is_add)
477330fc 15214 do_vfp_nsyn_opcode ("faddd");
037e8744 15215 else
477330fc 15216 do_vfp_nsyn_opcode ("fsubd");
037e8744
JB
15217 }
15218}
15219
15220/* Check operand types to see if this is a VFP instruction, and if so call
15221 PFN (). */
15222
15223static int
15224try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15225{
15226 enum neon_shape rs;
15227 struct neon_type_el et;
15228
15229 switch (args)
15230 {
15231 case 2:
9db2f6b4
RL
15232 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15233 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
037e8744 15234 break;
5f4273c7 15235
037e8744 15236 case 3:
9db2f6b4
RL
15237 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15238 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15239 N_F_ALL | N_KEY | N_VFP);
037e8744
JB
15240 break;
15241
15242 default:
15243 abort ();
15244 }
15245
15246 if (et.type != NT_invtype)
15247 {
15248 pfn (rs);
15249 return SUCCESS;
15250 }
037e8744 15251
99b253c5 15252 inst.error = NULL;
037e8744
JB
15253 return FAIL;
15254}
15255
15256static void
15257do_vfp_nsyn_mla_mls (enum neon_shape rs)
15258{
15259 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 15260
9db2f6b4 15261 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15262 {
15263 if (is_mla)
477330fc 15264 do_vfp_nsyn_opcode ("fmacs");
037e8744 15265 else
477330fc 15266 do_vfp_nsyn_opcode ("fnmacs");
9db2f6b4
RL
15267
15268 /* ARMv8.2 fp16 instruction. */
15269 if (rs == NS_HHH)
15270 do_scalar_fp16_v82_encode ();
037e8744
JB
15271 }
15272 else
15273 {
15274 if (is_mla)
477330fc 15275 do_vfp_nsyn_opcode ("fmacd");
037e8744 15276 else
477330fc 15277 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
15278 }
15279}
15280
62f3b8c8
PB
15281static void
15282do_vfp_nsyn_fma_fms (enum neon_shape rs)
15283{
15284 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15285
9db2f6b4 15286 if (rs == NS_FFF || rs == NS_HHH)
62f3b8c8
PB
15287 {
15288 if (is_fma)
477330fc 15289 do_vfp_nsyn_opcode ("ffmas");
62f3b8c8 15290 else
477330fc 15291 do_vfp_nsyn_opcode ("ffnmas");
9db2f6b4
RL
15292
15293 /* ARMv8.2 fp16 instruction. */
15294 if (rs == NS_HHH)
15295 do_scalar_fp16_v82_encode ();
62f3b8c8
PB
15296 }
15297 else
15298 {
15299 if (is_fma)
477330fc 15300 do_vfp_nsyn_opcode ("ffmad");
62f3b8c8 15301 else
477330fc 15302 do_vfp_nsyn_opcode ("ffnmad");
62f3b8c8
PB
15303 }
15304}
15305
037e8744
JB
15306static void
15307do_vfp_nsyn_mul (enum neon_shape rs)
15308{
9db2f6b4
RL
15309 if (rs == NS_FFF || rs == NS_HHH)
15310 {
15311 do_vfp_nsyn_opcode ("fmuls");
15312
15313 /* ARMv8.2 fp16 instruction. */
15314 if (rs == NS_HHH)
15315 do_scalar_fp16_v82_encode ();
15316 }
037e8744
JB
15317 else
15318 do_vfp_nsyn_opcode ("fmuld");
15319}
15320
15321static void
15322do_vfp_nsyn_abs_neg (enum neon_shape rs)
15323{
15324 int is_neg = (inst.instruction & 0x80) != 0;
9db2f6b4 15325 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
037e8744 15326
9db2f6b4 15327 if (rs == NS_FF || rs == NS_HH)
037e8744
JB
15328 {
15329 if (is_neg)
477330fc 15330 do_vfp_nsyn_opcode ("fnegs");
037e8744 15331 else
477330fc 15332 do_vfp_nsyn_opcode ("fabss");
9db2f6b4
RL
15333
15334 /* ARMv8.2 fp16 instruction. */
15335 if (rs == NS_HH)
15336 do_scalar_fp16_v82_encode ();
037e8744
JB
15337 }
15338 else
15339 {
15340 if (is_neg)
477330fc 15341 do_vfp_nsyn_opcode ("fnegd");
037e8744 15342 else
477330fc 15343 do_vfp_nsyn_opcode ("fabsd");
037e8744
JB
15344 }
15345}
15346
15347/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15348 insns belong to Neon, and are handled elsewhere. */
15349
15350static void
15351do_vfp_nsyn_ldm_stm (int is_dbmode)
15352{
15353 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15354 if (is_ldm)
15355 {
15356 if (is_dbmode)
477330fc 15357 do_vfp_nsyn_opcode ("fldmdbs");
037e8744 15358 else
477330fc 15359 do_vfp_nsyn_opcode ("fldmias");
037e8744
JB
15360 }
15361 else
15362 {
15363 if (is_dbmode)
477330fc 15364 do_vfp_nsyn_opcode ("fstmdbs");
037e8744 15365 else
477330fc 15366 do_vfp_nsyn_opcode ("fstmias");
037e8744
JB
15367 }
15368}
15369
037e8744
JB
15370static void
15371do_vfp_nsyn_sqrt (void)
15372{
9db2f6b4
RL
15373 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15374 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15375
9db2f6b4
RL
15376 if (rs == NS_FF || rs == NS_HH)
15377 {
15378 do_vfp_nsyn_opcode ("fsqrts");
15379
15380 /* ARMv8.2 fp16 instruction. */
15381 if (rs == NS_HH)
15382 do_scalar_fp16_v82_encode ();
15383 }
037e8744
JB
15384 else
15385 do_vfp_nsyn_opcode ("fsqrtd");
15386}
15387
15388static void
15389do_vfp_nsyn_div (void)
15390{
9db2f6b4 15391 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15392 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15393 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15394
9db2f6b4
RL
15395 if (rs == NS_FFF || rs == NS_HHH)
15396 {
15397 do_vfp_nsyn_opcode ("fdivs");
15398
15399 /* ARMv8.2 fp16 instruction. */
15400 if (rs == NS_HHH)
15401 do_scalar_fp16_v82_encode ();
15402 }
037e8744
JB
15403 else
15404 do_vfp_nsyn_opcode ("fdivd");
15405}
15406
15407static void
15408do_vfp_nsyn_nmul (void)
15409{
9db2f6b4 15410 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15411 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15412 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15413
9db2f6b4 15414 if (rs == NS_FFF || rs == NS_HHH)
037e8744 15415 {
88714cb8 15416 NEON_ENCODE (SINGLE, inst);
037e8744 15417 do_vfp_sp_dyadic ();
9db2f6b4
RL
15418
15419 /* ARMv8.2 fp16 instruction. */
15420 if (rs == NS_HHH)
15421 do_scalar_fp16_v82_encode ();
037e8744
JB
15422 }
15423 else
15424 {
88714cb8 15425 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
15426 do_vfp_dp_rd_rn_rm ();
15427 }
15428 do_vfp_cond_or_thumb ();
9db2f6b4 15429
037e8744
JB
15430}
15431
1b883319
AV
15432/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15433 (0, 1, 2, 3). */
15434
15435static unsigned
15436neon_logbits (unsigned x)
15437{
15438 return ffs (x) - 4;
15439}
15440
15441#define LOW4(R) ((R) & 0xf)
15442#define HI1(R) (((R) >> 4) & 1)
15443
15444static unsigned
15445mve_get_vcmp_vpt_cond (struct neon_type_el et)
15446{
15447 switch (et.type)
15448 {
15449 default:
15450 first_error (BAD_EL_TYPE);
15451 return 0;
15452 case NT_float:
15453 switch (inst.operands[0].imm)
15454 {
15455 default:
15456 first_error (_("invalid condition"));
15457 return 0;
15458 case 0x0:
15459 /* eq. */
15460 return 0;
15461 case 0x1:
15462 /* ne. */
15463 return 1;
15464 case 0xa:
15465 /* ge/ */
15466 return 4;
15467 case 0xb:
15468 /* lt. */
15469 return 5;
15470 case 0xc:
15471 /* gt. */
15472 return 6;
15473 case 0xd:
15474 /* le. */
15475 return 7;
15476 }
15477 case NT_integer:
15478 /* only accept eq and ne. */
15479 if (inst.operands[0].imm > 1)
15480 {
15481 first_error (_("invalid condition"));
15482 return 0;
15483 }
15484 return inst.operands[0].imm;
15485 case NT_unsigned:
15486 if (inst.operands[0].imm == 0x2)
15487 return 2;
15488 else if (inst.operands[0].imm == 0x8)
15489 return 3;
15490 else
15491 {
15492 first_error (_("invalid condition"));
15493 return 0;
15494 }
15495 case NT_signed:
15496 switch (inst.operands[0].imm)
15497 {
15498 default:
15499 first_error (_("invalid condition"));
15500 return 0;
15501 case 0xa:
15502 /* ge. */
15503 return 4;
15504 case 0xb:
15505 /* lt. */
15506 return 5;
15507 case 0xc:
15508 /* gt. */
15509 return 6;
15510 case 0xd:
15511 /* le. */
15512 return 7;
15513 }
15514 }
15515 /* Should be unreachable. */
15516 abort ();
15517}
15518
15519static void
15520do_mve_vpt (void)
15521{
15522 /* We are dealing with a vector predicated block. */
15523 if (inst.operands[0].present)
15524 {
15525 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15526 struct neon_type_el et
15527 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15528 N_EQK);
15529
15530 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15531
15532 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15533
15534 if (et.type == NT_invtype)
15535 return;
15536
15537 if (et.type == NT_float)
15538 {
15539 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15540 BAD_FPU);
15541 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15542 inst.instruction |= (et.size == 16) << 28;
15543 inst.instruction |= 0x3 << 20;
15544 }
15545 else
15546 {
15547 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15548 BAD_EL_TYPE);
15549 inst.instruction |= 1 << 28;
15550 inst.instruction |= neon_logbits (et.size) << 20;
15551 }
15552
15553 if (inst.operands[2].isquad)
15554 {
15555 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15556 inst.instruction |= LOW4 (inst.operands[2].reg);
15557 inst.instruction |= (fcond & 0x2) >> 1;
15558 }
15559 else
15560 {
15561 if (inst.operands[2].reg == REG_SP)
15562 as_tsktsk (MVE_BAD_SP);
15563 inst.instruction |= 1 << 6;
15564 inst.instruction |= (fcond & 0x2) << 4;
15565 inst.instruction |= inst.operands[2].reg;
15566 }
15567 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15568 inst.instruction |= (fcond & 0x4) << 10;
15569 inst.instruction |= (fcond & 0x1) << 7;
15570
15571 }
15572 set_pred_insn_type (VPT_INSN);
15573 now_pred.cc = 0;
15574 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15575 | ((inst.instruction & 0xe000) >> 13);
15576 now_pred.warn_deprecated = FALSE;
15577 now_pred.type = VECTOR_PRED;
15578 inst.is_neon = 1;
15579}
15580
15581static void
15582do_mve_vcmp (void)
15583{
15584 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15585 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15586 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15587 if (!inst.operands[2].present)
15588 first_error (_("MVE vector or ARM register expected"));
15589 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15590
15591 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15592 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15593 && inst.operands[1].isquad)
15594 {
15595 inst.instruction = N_MNEM_vcmp;
15596 inst.cond = 0x10;
15597 }
15598
15599 if (inst.cond > COND_ALWAYS)
15600 inst.pred_insn_type = INSIDE_VPT_INSN;
15601 else
15602 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15603
15604 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15605 struct neon_type_el et
15606 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15607 N_EQK);
15608
15609 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15610 && !inst.operands[2].iszr, BAD_PC);
15611
15612 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15613
15614 inst.instruction = 0xee010f00;
15615 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15616 inst.instruction |= (fcond & 0x4) << 10;
15617 inst.instruction |= (fcond & 0x1) << 7;
15618 if (et.type == NT_float)
15619 {
15620 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15621 BAD_FPU);
15622 inst.instruction |= (et.size == 16) << 28;
15623 inst.instruction |= 0x3 << 20;
15624 }
15625 else
15626 {
15627 inst.instruction |= 1 << 28;
15628 inst.instruction |= neon_logbits (et.size) << 20;
15629 }
15630 if (inst.operands[2].isquad)
15631 {
15632 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15633 inst.instruction |= (fcond & 0x2) >> 1;
15634 inst.instruction |= LOW4 (inst.operands[2].reg);
15635 }
15636 else
15637 {
15638 if (inst.operands[2].reg == REG_SP)
15639 as_tsktsk (MVE_BAD_SP);
15640 inst.instruction |= 1 << 6;
15641 inst.instruction |= (fcond & 0x2) << 4;
15642 inst.instruction |= inst.operands[2].reg;
15643 }
15644
15645 inst.is_neon = 1;
15646 return;
15647}
15648
935295b5
AV
15649static void
15650do_mve_vmaxa_vmina (void)
15651{
15652 if (inst.cond > COND_ALWAYS)
15653 inst.pred_insn_type = INSIDE_VPT_INSN;
15654 else
15655 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15656
15657 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15658 struct neon_type_el et
15659 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
15660
15661 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15662 inst.instruction |= neon_logbits (et.size) << 18;
15663 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15664 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15665 inst.instruction |= LOW4 (inst.operands[1].reg);
15666 inst.is_neon = 1;
15667}
15668
f30ee27c
AV
15669static void
15670do_mve_vfmas (void)
15671{
15672 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15673 struct neon_type_el et
15674 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15675
15676 if (inst.cond > COND_ALWAYS)
15677 inst.pred_insn_type = INSIDE_VPT_INSN;
15678 else
15679 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15680
15681 if (inst.operands[2].reg == REG_SP)
15682 as_tsktsk (MVE_BAD_SP);
15683 else if (inst.operands[2].reg == REG_PC)
15684 as_tsktsk (MVE_BAD_PC);
15685
15686 inst.instruction |= (et.size == 16) << 28;
15687 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15688 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15689 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15690 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15691 inst.instruction |= inst.operands[2].reg;
15692 inst.is_neon = 1;
15693}
15694
b409bdb6
AV
15695static void
15696do_mve_viddup (void)
15697{
15698 if (inst.cond > COND_ALWAYS)
15699 inst.pred_insn_type = INSIDE_VPT_INSN;
15700 else
15701 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15702
15703 unsigned imm = inst.relocs[0].exp.X_add_number;
15704 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15705 _("immediate must be either 1, 2, 4 or 8"));
15706
15707 enum neon_shape rs;
15708 struct neon_type_el et;
15709 unsigned Rm;
15710 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15711 {
15712 rs = neon_select_shape (NS_QRI, NS_NULL);
15713 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15714 Rm = 7;
15715 }
15716 else
15717 {
15718 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15719 if (inst.operands[2].reg == REG_SP)
15720 as_tsktsk (MVE_BAD_SP);
15721 else if (inst.operands[2].reg == REG_PC)
15722 first_error (BAD_PC);
15723
15724 rs = neon_select_shape (NS_QRRI, NS_NULL);
15725 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
15726 Rm = inst.operands[2].reg >> 1;
15727 }
15728 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15729 inst.instruction |= neon_logbits (et.size) << 20;
15730 inst.instruction |= inst.operands[1].reg << 16;
15731 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15732 inst.instruction |= (imm > 2) << 7;
15733 inst.instruction |= Rm << 1;
15734 inst.instruction |= (imm == 2 || imm == 8);
15735 inst.is_neon = 1;
15736}
15737
2d78f95b
AV
15738static void
15739do_mve_vmlas (void)
15740{
15741 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15742 struct neon_type_el et
15743 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
15744
15745 if (inst.operands[2].reg == REG_PC)
15746 as_tsktsk (MVE_BAD_PC);
15747 else if (inst.operands[2].reg == REG_SP)
15748 as_tsktsk (MVE_BAD_SP);
15749
15750 if (inst.cond > COND_ALWAYS)
15751 inst.pred_insn_type = INSIDE_VPT_INSN;
15752 else
15753 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15754
15755 inst.instruction |= (et.type == NT_unsigned) << 28;
15756 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15757 inst.instruction |= neon_logbits (et.size) << 20;
15758 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15759 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15760 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15761 inst.instruction |= inst.operands[2].reg;
15762 inst.is_neon = 1;
15763}
15764
4aa88b50
AV
15765static void
15766do_mve_vshrn (void)
15767{
15768 unsigned types;
15769 switch (inst.instruction)
15770 {
15771 case M_MNEM_vshrnt:
15772 case M_MNEM_vshrnb:
15773 case M_MNEM_vrshrnt:
15774 case M_MNEM_vrshrnb:
15775 types = N_I16 | N_I32;
15776 break;
15777 case M_MNEM_vqshrnt:
15778 case M_MNEM_vqshrnb:
15779 case M_MNEM_vqrshrnt:
15780 case M_MNEM_vqrshrnb:
15781 types = N_U16 | N_U32 | N_S16 | N_S32;
15782 break;
15783 case M_MNEM_vqshrunt:
15784 case M_MNEM_vqshrunb:
15785 case M_MNEM_vqrshrunt:
15786 case M_MNEM_vqrshrunb:
15787 types = N_S16 | N_S32;
15788 break;
15789 default:
15790 abort ();
15791 }
15792
15793 struct neon_type_el et = neon_check_type (2, NS_QQI, N_EQK, types | N_KEY);
15794
15795 if (inst.cond > COND_ALWAYS)
15796 inst.pred_insn_type = INSIDE_VPT_INSN;
15797 else
15798 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15799
15800 unsigned Qd = inst.operands[0].reg;
15801 unsigned Qm = inst.operands[1].reg;
15802 unsigned imm = inst.operands[2].imm;
15803 constraint (imm < 1 || ((unsigned) imm) > (et.size / 2),
15804 et.size == 16
15805 ? _("immediate operand expected in the range [1,8]")
15806 : _("immediate operand expected in the range [1,16]"));
15807
15808 inst.instruction |= (et.type == NT_unsigned) << 28;
15809 inst.instruction |= HI1 (Qd) << 22;
15810 inst.instruction |= (et.size - imm) << 16;
15811 inst.instruction |= LOW4 (Qd) << 12;
15812 inst.instruction |= HI1 (Qm) << 5;
15813 inst.instruction |= LOW4 (Qm);
15814 inst.is_neon = 1;
15815}
15816
1be7aba3
AV
15817static void
15818do_mve_vqmovn (void)
15819{
15820 struct neon_type_el et;
15821 if (inst.instruction == M_MNEM_vqmovnt
15822 || inst.instruction == M_MNEM_vqmovnb)
15823 et = neon_check_type (2, NS_QQ, N_EQK,
15824 N_U16 | N_U32 | N_S16 | N_S32 | N_KEY);
15825 else
15826 et = neon_check_type (2, NS_QQ, N_EQK, N_S16 | N_S32 | N_KEY);
15827
15828 if (inst.cond > COND_ALWAYS)
15829 inst.pred_insn_type = INSIDE_VPT_INSN;
15830 else
15831 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15832
15833 inst.instruction |= (et.type == NT_unsigned) << 28;
15834 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15835 inst.instruction |= (et.size == 32) << 18;
15836 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15837 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15838 inst.instruction |= LOW4 (inst.operands[1].reg);
15839 inst.is_neon = 1;
15840}
15841
3063888e
AV
15842static void
15843do_mve_vpsel (void)
15844{
15845 neon_select_shape (NS_QQQ, NS_NULL);
15846
15847 if (inst.cond > COND_ALWAYS)
15848 inst.pred_insn_type = INSIDE_VPT_INSN;
15849 else
15850 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15851
15852 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15853 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15854 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15855 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15856 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15857 inst.instruction |= LOW4 (inst.operands[2].reg);
15858 inst.is_neon = 1;
15859}
15860
15861static void
15862do_mve_vpnot (void)
15863{
15864 if (inst.cond > COND_ALWAYS)
15865 inst.pred_insn_type = INSIDE_VPT_INSN;
15866 else
15867 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15868}
15869
935295b5
AV
15870static void
15871do_mve_vmaxnma_vminnma (void)
15872{
15873 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15874 struct neon_type_el et
15875 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
15876
15877 if (inst.cond > COND_ALWAYS)
15878 inst.pred_insn_type = INSIDE_VPT_INSN;
15879 else
15880 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15881
15882 inst.instruction |= (et.size == 16) << 28;
15883 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15884 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15885 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15886 inst.instruction |= LOW4 (inst.operands[1].reg);
15887 inst.is_neon = 1;
15888}
15889
5d281bf0
AV
15890static void
15891do_mve_vcmul (void)
15892{
15893 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15894 struct neon_type_el et
15895 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15896
15897 if (inst.cond > COND_ALWAYS)
15898 inst.pred_insn_type = INSIDE_VPT_INSN;
15899 else
15900 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15901
15902 unsigned rot = inst.relocs[0].exp.X_add_number;
15903 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15904 _("immediate out of range"));
15905
15906 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15907 || inst.operands[0].reg == inst.operands[2].reg))
15908 as_tsktsk (BAD_MVE_SRCDEST);
15909
15910 inst.instruction |= (et.size == 32) << 28;
15911 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15912 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15913 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15914 inst.instruction |= (rot > 90) << 12;
15915 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15916 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15917 inst.instruction |= LOW4 (inst.operands[2].reg);
15918 inst.instruction |= (rot == 90 || rot == 270);
15919 inst.is_neon = 1;
15920}
15921
037e8744
JB
15922static void
15923do_vfp_nsyn_cmp (void)
15924{
9db2f6b4 15925 enum neon_shape rs;
1b883319
AV
15926 if (!inst.operands[0].isreg)
15927 {
15928 do_mve_vcmp ();
15929 return;
15930 }
15931 else
15932 {
15933 constraint (inst.operands[2].present, BAD_SYNTAX);
15934 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15935 BAD_FPU);
15936 }
15937
037e8744
JB
15938 if (inst.operands[1].isreg)
15939 {
9db2f6b4
RL
15940 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15941 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15942
9db2f6b4 15943 if (rs == NS_FF || rs == NS_HH)
477330fc
RM
15944 {
15945 NEON_ENCODE (SINGLE, inst);
15946 do_vfp_sp_monadic ();
15947 }
037e8744 15948 else
477330fc
RM
15949 {
15950 NEON_ENCODE (DOUBLE, inst);
15951 do_vfp_dp_rd_rm ();
15952 }
037e8744
JB
15953 }
15954 else
15955 {
9db2f6b4
RL
15956 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15957 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
037e8744
JB
15958
15959 switch (inst.instruction & 0x0fffffff)
477330fc
RM
15960 {
15961 case N_MNEM_vcmp:
15962 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15963 break;
15964 case N_MNEM_vcmpe:
15965 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15966 break;
15967 default:
15968 abort ();
15969 }
5f4273c7 15970
9db2f6b4 15971 if (rs == NS_FI || rs == NS_HI)
477330fc
RM
15972 {
15973 NEON_ENCODE (SINGLE, inst);
15974 do_vfp_sp_compare_z ();
15975 }
037e8744 15976 else
477330fc
RM
15977 {
15978 NEON_ENCODE (DOUBLE, inst);
15979 do_vfp_dp_rd ();
15980 }
037e8744
JB
15981 }
15982 do_vfp_cond_or_thumb ();
9db2f6b4
RL
15983
15984 /* ARMv8.2 fp16 instruction. */
15985 if (rs == NS_HI || rs == NS_HH)
15986 do_scalar_fp16_v82_encode ();
037e8744
JB
15987}
15988
15989static void
15990nsyn_insert_sp (void)
15991{
15992 inst.operands[1] = inst.operands[0];
15993 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 15994 inst.operands[0].reg = REG_SP;
037e8744
JB
15995 inst.operands[0].isreg = 1;
15996 inst.operands[0].writeback = 1;
15997 inst.operands[0].present = 1;
15998}
15999
16000static void
16001do_vfp_nsyn_push (void)
16002{
16003 nsyn_insert_sp ();
b126985e
NC
16004
16005 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16006 _("register list must contain at least 1 and at most 16 "
16007 "registers"));
16008
037e8744
JB
16009 if (inst.operands[1].issingle)
16010 do_vfp_nsyn_opcode ("fstmdbs");
16011 else
16012 do_vfp_nsyn_opcode ("fstmdbd");
16013}
16014
16015static void
16016do_vfp_nsyn_pop (void)
16017{
16018 nsyn_insert_sp ();
b126985e
NC
16019
16020 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16021 _("register list must contain at least 1 and at most 16 "
16022 "registers"));
16023
037e8744 16024 if (inst.operands[1].issingle)
22b5b651 16025 do_vfp_nsyn_opcode ("fldmias");
037e8744 16026 else
22b5b651 16027 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
16028}
16029
16030/* Fix up Neon data-processing instructions, ORing in the correct bits for
16031 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
16032
88714cb8
DG
16033static void
16034neon_dp_fixup (struct arm_it* insn)
037e8744 16035{
88714cb8
DG
16036 unsigned int i = insn->instruction;
16037 insn->is_neon = 1;
16038
037e8744
JB
16039 if (thumb_mode)
16040 {
16041 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
16042 if (i & (1 << 24))
477330fc 16043 i |= 1 << 28;
5f4273c7 16044
037e8744 16045 i &= ~(1 << 24);
5f4273c7 16046
037e8744
JB
16047 i |= 0xef000000;
16048 }
16049 else
16050 i |= 0xf2000000;
5f4273c7 16051
88714cb8 16052 insn->instruction = i;
037e8744
JB
16053}
16054
5ee91343 16055static void
7df54120 16056mve_encode_qqr (int size, int U, int fp)
5ee91343
AV
16057{
16058 if (inst.operands[2].reg == REG_SP)
16059 as_tsktsk (MVE_BAD_SP);
16060 else if (inst.operands[2].reg == REG_PC)
16061 as_tsktsk (MVE_BAD_PC);
16062
16063 if (fp)
16064 {
16065 /* vadd. */
16066 if (((unsigned)inst.instruction) == 0xd00)
16067 inst.instruction = 0xee300f40;
16068 /* vsub. */
16069 else if (((unsigned)inst.instruction) == 0x200d00)
16070 inst.instruction = 0xee301f40;
a8465a06
AV
16071 /* vmul. */
16072 else if (((unsigned)inst.instruction) == 0x1000d10)
16073 inst.instruction = 0xee310e60;
5ee91343
AV
16074
16075 /* Setting size which is 1 for F16 and 0 for F32. */
16076 inst.instruction |= (size == 16) << 28;
16077 }
16078 else
16079 {
16080 /* vadd. */
16081 if (((unsigned)inst.instruction) == 0x800)
16082 inst.instruction = 0xee010f40;
16083 /* vsub. */
16084 else if (((unsigned)inst.instruction) == 0x1000800)
16085 inst.instruction = 0xee011f40;
7df54120
AV
16086 /* vhadd. */
16087 else if (((unsigned)inst.instruction) == 0)
16088 inst.instruction = 0xee000f40;
16089 /* vhsub. */
16090 else if (((unsigned)inst.instruction) == 0x200)
16091 inst.instruction = 0xee001f40;
a8465a06
AV
16092 /* vmla. */
16093 else if (((unsigned)inst.instruction) == 0x900)
16094 inst.instruction = 0xee010e40;
16095 /* vmul. */
16096 else if (((unsigned)inst.instruction) == 0x910)
16097 inst.instruction = 0xee011e60;
16098 /* vqadd. */
16099 else if (((unsigned)inst.instruction) == 0x10)
16100 inst.instruction = 0xee000f60;
16101 /* vqsub. */
16102 else if (((unsigned)inst.instruction) == 0x210)
16103 inst.instruction = 0xee001f60;
42b16635
AV
16104 /* vqrdmlah. */
16105 else if (((unsigned)inst.instruction) == 0x3000b10)
16106 inst.instruction = 0xee000e40;
16107 /* vqdmulh. */
16108 else if (((unsigned)inst.instruction) == 0x0000b00)
16109 inst.instruction = 0xee010e60;
16110 /* vqrdmulh. */
16111 else if (((unsigned)inst.instruction) == 0x1000b00)
16112 inst.instruction = 0xfe010e60;
7df54120
AV
16113
16114 /* Set U-bit. */
16115 inst.instruction |= U << 28;
16116
5ee91343
AV
16117 /* Setting bits for size. */
16118 inst.instruction |= neon_logbits (size) << 20;
16119 }
16120 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16121 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16122 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16123 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16124 inst.instruction |= inst.operands[2].reg;
16125 inst.is_neon = 1;
16126}
16127
a302e574
AV
16128static void
16129mve_encode_rqq (unsigned bit28, unsigned size)
16130{
16131 inst.instruction |= bit28 << 28;
16132 inst.instruction |= neon_logbits (size) << 20;
16133 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16134 inst.instruction |= inst.operands[0].reg << 12;
16135 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16136 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16137 inst.instruction |= LOW4 (inst.operands[2].reg);
16138 inst.is_neon = 1;
16139}
16140
886e1c73
AV
16141static void
16142mve_encode_qqq (int ubit, int size)
16143{
16144
16145 inst.instruction |= (ubit != 0) << 28;
16146 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16147 inst.instruction |= neon_logbits (size) << 20;
16148 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16149 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16150 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16151 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16152 inst.instruction |= LOW4 (inst.operands[2].reg);
16153
16154 inst.is_neon = 1;
16155}
16156
26c1e780
AV
16157static void
16158mve_encode_rq (unsigned bit28, unsigned size)
16159{
16160 inst.instruction |= bit28 << 28;
16161 inst.instruction |= neon_logbits (size) << 18;
16162 inst.instruction |= inst.operands[0].reg << 12;
16163 inst.instruction |= LOW4 (inst.operands[1].reg);
16164 inst.is_neon = 1;
16165}
886e1c73 16166
93925576
AV
16167static void
16168mve_encode_rrqq (unsigned U, unsigned size)
16169{
16170 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
16171
16172 inst.instruction |= U << 28;
16173 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16174 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16175 inst.instruction |= (size == 32) << 16;
16176 inst.instruction |= inst.operands[0].reg << 12;
16177 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16178 inst.instruction |= inst.operands[3].reg;
16179 inst.is_neon = 1;
16180}
16181
037e8744
JB
16182/* Encode insns with bit pattern:
16183
16184 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16185 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 16186
037e8744
JB
16187 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16188 different meaning for some instruction. */
16189
16190static void
16191neon_three_same (int isquad, int ubit, int size)
16192{
16193 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16194 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16195 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16196 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16197 inst.instruction |= LOW4 (inst.operands[2].reg);
16198 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16199 inst.instruction |= (isquad != 0) << 6;
16200 inst.instruction |= (ubit != 0) << 24;
16201 if (size != -1)
16202 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 16203
88714cb8 16204 neon_dp_fixup (&inst);
037e8744
JB
16205}
16206
16207/* Encode instructions of the form:
16208
16209 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16210 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
16211
16212 Don't write size if SIZE == -1. */
16213
16214static void
16215neon_two_same (int qbit, int ubit, int size)
16216{
16217 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16218 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16219 inst.instruction |= LOW4 (inst.operands[1].reg);
16220 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16221 inst.instruction |= (qbit != 0) << 6;
16222 inst.instruction |= (ubit != 0) << 24;
16223
16224 if (size != -1)
16225 inst.instruction |= neon_logbits (size) << 18;
16226
88714cb8 16227 neon_dp_fixup (&inst);
5287ad62
JB
16228}
16229
7df54120
AV
16230enum vfp_or_neon_is_neon_bits
16231{
16232NEON_CHECK_CC = 1,
16233NEON_CHECK_ARCH = 2,
16234NEON_CHECK_ARCH8 = 4
16235};
16236
16237/* Call this function if an instruction which may have belonged to the VFP or
16238 Neon instruction sets, but turned out to be a Neon instruction (due to the
16239 operand types involved, etc.). We have to check and/or fix-up a couple of
16240 things:
16241
16242 - Make sure the user hasn't attempted to make a Neon instruction
16243 conditional.
16244 - Alter the value in the condition code field if necessary.
16245 - Make sure that the arch supports Neon instructions.
16246
16247 Which of these operations take place depends on bits from enum
16248 vfp_or_neon_is_neon_bits.
16249
16250 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16251 current instruction's condition is COND_ALWAYS, the condition field is
16252 changed to inst.uncond_value. This is necessary because instructions shared
16253 between VFP and Neon may be conditional for the VFP variants only, and the
16254 unconditional Neon version must have, e.g., 0xF in the condition field. */
16255
16256static int
16257vfp_or_neon_is_neon (unsigned check)
16258{
16259/* Conditions are always legal in Thumb mode (IT blocks). */
16260if (!thumb_mode && (check & NEON_CHECK_CC))
16261 {
16262 if (inst.cond != COND_ALWAYS)
16263 {
16264 first_error (_(BAD_COND));
16265 return FAIL;
16266 }
16267 if (inst.uncond_value != -1)
16268 inst.instruction |= inst.uncond_value << 28;
16269 }
16270
16271
16272 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16273 || ((check & NEON_CHECK_ARCH8)
16274 && !mark_feature_used (&fpu_neon_ext_armv8)))
16275 {
16276 first_error (_(BAD_FPU));
16277 return FAIL;
16278 }
16279
16280return SUCCESS;
16281}
16282
16283static int
16284check_simd_pred_availability (int fp, unsigned check)
16285{
16286if (inst.cond > COND_ALWAYS)
16287 {
16288 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16289 {
16290 inst.error = BAD_FPU;
16291 return 1;
16292 }
16293 inst.pred_insn_type = INSIDE_VPT_INSN;
16294 }
16295else if (inst.cond < COND_ALWAYS)
16296 {
16297 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16298 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16299 else if (vfp_or_neon_is_neon (check) == FAIL)
16300 return 2;
16301 }
16302else
16303 {
16304 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16305 && vfp_or_neon_is_neon (check) == FAIL)
16306 return 3;
16307
16308 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16309 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16310 }
16311return 0;
16312}
16313
5287ad62
JB
16314/* Neon instruction encoders, in approximate order of appearance. */
16315
16316static void
16317do_neon_dyadic_i_su (void)
16318{
7df54120
AV
16319 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16320 return;
16321
16322 enum neon_shape rs;
16323 struct neon_type_el et;
16324 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16325 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16326 else
16327 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16328
16329 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16330
16331
16332 if (rs != NS_QQR)
16333 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16334 else
16335 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
5287ad62
JB
16336}
16337
16338static void
16339do_neon_dyadic_i64_su (void)
16340{
a8465a06
AV
16341 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
16342 return;
16343 enum neon_shape rs;
16344 struct neon_type_el et;
16345 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16346 {
16347 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16348 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16349 }
16350 else
16351 {
16352 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16353 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16354 }
16355 if (rs == NS_QQR)
16356 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16357 else
16358 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16359}
16360
16361static void
16362neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
477330fc 16363 unsigned immbits)
5287ad62
JB
16364{
16365 unsigned size = et.size >> 3;
16366 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16367 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16368 inst.instruction |= LOW4 (inst.operands[1].reg);
16369 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16370 inst.instruction |= (isquad != 0) << 6;
16371 inst.instruction |= immbits << 16;
16372 inst.instruction |= (size >> 3) << 7;
16373 inst.instruction |= (size & 0x7) << 19;
16374 if (write_ubit)
16375 inst.instruction |= (uval != 0) << 24;
16376
88714cb8 16377 neon_dp_fixup (&inst);
5287ad62
JB
16378}
16379
16380static void
16381do_neon_shl_imm (void)
16382{
16383 if (!inst.operands[2].isreg)
16384 {
037e8744 16385 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 16386 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
cb3b1e65
JB
16387 int imm = inst.operands[2].imm;
16388
16389 constraint (imm < 0 || (unsigned)imm >= et.size,
16390 _("immediate out of range for shift"));
88714cb8 16391 NEON_ENCODE (IMMED, inst);
cb3b1e65 16392 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
16393 }
16394 else
16395 {
037e8744 16396 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 16397 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16398 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
16399 unsigned int tmp;
16400
16401 /* VSHL/VQSHL 3-register variants have syntax such as:
477330fc
RM
16402 vshl.xx Dd, Dm, Dn
16403 whereas other 3-register operations encoded by neon_three_same have
16404 syntax like:
16405 vadd.xx Dd, Dn, Dm
16406 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
16407 here. */
627907b7
JB
16408 tmp = inst.operands[2].reg;
16409 inst.operands[2].reg = inst.operands[1].reg;
16410 inst.operands[1].reg = tmp;
88714cb8 16411 NEON_ENCODE (INTEGER, inst);
037e8744 16412 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16413 }
16414}
16415
16416static void
16417do_neon_qshl_imm (void)
16418{
16419 if (!inst.operands[2].isreg)
16420 {
037e8744 16421 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 16422 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
cb3b1e65 16423 int imm = inst.operands[2].imm;
627907b7 16424
cb3b1e65
JB
16425 constraint (imm < 0 || (unsigned)imm >= et.size,
16426 _("immediate out of range for shift"));
88714cb8 16427 NEON_ENCODE (IMMED, inst);
cb3b1e65 16428 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
5287ad62
JB
16429 }
16430 else
16431 {
037e8744 16432 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 16433 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16434 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
16435 unsigned int tmp;
16436
16437 /* See note in do_neon_shl_imm. */
16438 tmp = inst.operands[2].reg;
16439 inst.operands[2].reg = inst.operands[1].reg;
16440 inst.operands[1].reg = tmp;
88714cb8 16441 NEON_ENCODE (INTEGER, inst);
037e8744 16442 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16443 }
16444}
16445
627907b7
JB
16446static void
16447do_neon_rshl (void)
16448{
1be7aba3
AV
16449 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16450 return;
16451
16452 enum neon_shape rs;
16453 struct neon_type_el et;
16454 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16455 {
16456 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16457 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16458 }
16459 else
16460 {
16461 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16462 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16463 }
16464
627907b7
JB
16465 unsigned int tmp;
16466
1be7aba3
AV
16467 if (rs == NS_QQR)
16468 {
16469 if (inst.operands[2].reg == REG_PC)
16470 as_tsktsk (MVE_BAD_PC);
16471 else if (inst.operands[2].reg == REG_SP)
16472 as_tsktsk (MVE_BAD_SP);
16473
16474 constraint (inst.operands[0].reg != inst.operands[1].reg,
16475 _("invalid instruction shape"));
16476
16477 if (inst.instruction == 0x0000510)
16478 /* We are dealing with vqrshl. */
16479 inst.instruction = 0xee331ee0;
16480 else
16481 /* We are dealing with vrshl. */
16482 inst.instruction = 0xee331e60;
16483
16484 inst.instruction |= (et.type == NT_unsigned) << 28;
16485 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16486 inst.instruction |= neon_logbits (et.size) << 18;
16487 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16488 inst.instruction |= inst.operands[2].reg;
16489 inst.is_neon = 1;
16490 }
16491 else
16492 {
16493 tmp = inst.operands[2].reg;
16494 inst.operands[2].reg = inst.operands[1].reg;
16495 inst.operands[1].reg = tmp;
16496 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16497 }
627907b7
JB
16498}
16499
5287ad62
JB
16500static int
16501neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16502{
036dc3f7
PB
16503 /* Handle .I8 pseudo-instructions. */
16504 if (size == 8)
5287ad62 16505 {
5287ad62 16506 /* Unfortunately, this will make everything apart from zero out-of-range.
477330fc
RM
16507 FIXME is this the intended semantics? There doesn't seem much point in
16508 accepting .I8 if so. */
5287ad62
JB
16509 immediate |= immediate << 8;
16510 size = 16;
036dc3f7
PB
16511 }
16512
16513 if (size >= 32)
16514 {
16515 if (immediate == (immediate & 0x000000ff))
16516 {
16517 *immbits = immediate;
16518 return 0x1;
16519 }
16520 else if (immediate == (immediate & 0x0000ff00))
16521 {
16522 *immbits = immediate >> 8;
16523 return 0x3;
16524 }
16525 else if (immediate == (immediate & 0x00ff0000))
16526 {
16527 *immbits = immediate >> 16;
16528 return 0x5;
16529 }
16530 else if (immediate == (immediate & 0xff000000))
16531 {
16532 *immbits = immediate >> 24;
16533 return 0x7;
16534 }
16535 if ((immediate & 0xffff) != (immediate >> 16))
16536 goto bad_immediate;
16537 immediate &= 0xffff;
5287ad62
JB
16538 }
16539
16540 if (immediate == (immediate & 0x000000ff))
16541 {
16542 *immbits = immediate;
036dc3f7 16543 return 0x9;
5287ad62
JB
16544 }
16545 else if (immediate == (immediate & 0x0000ff00))
16546 {
16547 *immbits = immediate >> 8;
036dc3f7 16548 return 0xb;
5287ad62
JB
16549 }
16550
16551 bad_immediate:
dcbf9037 16552 first_error (_("immediate value out of range"));
5287ad62
JB
16553 return FAIL;
16554}
16555
5287ad62
JB
16556static void
16557do_neon_logic (void)
16558{
16559 if (inst.operands[2].present && inst.operands[2].isreg)
16560 {
037e8744 16561 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
f601a00c
AV
16562 if (rs == NS_QQQ
16563 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16564 == FAIL)
16565 return;
16566 else if (rs != NS_QQQ
16567 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16568 first_error (BAD_FPU);
16569
5287ad62
JB
16570 neon_check_type (3, rs, N_IGNORE_TYPE);
16571 /* U bit and size field were set as part of the bitmask. */
88714cb8 16572 NEON_ENCODE (INTEGER, inst);
037e8744 16573 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16574 }
16575 else
16576 {
4316f0d2
DG
16577 const int three_ops_form = (inst.operands[2].present
16578 && !inst.operands[2].isreg);
16579 const int immoperand = (three_ops_form ? 2 : 1);
16580 enum neon_shape rs = (three_ops_form
16581 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16582 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
f601a00c
AV
16583 /* Because neon_select_shape makes the second operand a copy of the first
16584 if the second operand is not present. */
16585 if (rs == NS_QQI
16586 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16587 == FAIL)
16588 return;
16589 else if (rs != NS_QQI
16590 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16591 first_error (BAD_FPU);
16592
16593 struct neon_type_el et;
16594 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16595 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16596 else
16597 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16598 | N_KEY, N_EQK);
16599
16600 if (et.type == NT_invtype)
16601 return;
21d799b5 16602 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
16603 unsigned immbits;
16604 int cmode;
5f4273c7 16605
5f4273c7 16606
4316f0d2
DG
16607 if (three_ops_form)
16608 constraint (inst.operands[0].reg != inst.operands[1].reg,
16609 _("first and second operands shall be the same register"));
16610
88714cb8 16611 NEON_ENCODE (IMMED, inst);
5287ad62 16612
4316f0d2 16613 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
16614 if (et.size == 64)
16615 {
16616 /* .i64 is a pseudo-op, so the immediate must be a repeating
16617 pattern. */
4316f0d2
DG
16618 if (immbits != (inst.operands[immoperand].regisimm ?
16619 inst.operands[immoperand].reg : 0))
036dc3f7
PB
16620 {
16621 /* Set immbits to an invalid constant. */
16622 immbits = 0xdeadbeef;
16623 }
16624 }
16625
5287ad62 16626 switch (opcode)
477330fc
RM
16627 {
16628 case N_MNEM_vbic:
16629 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16630 break;
16631
16632 case N_MNEM_vorr:
16633 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16634 break;
16635
16636 case N_MNEM_vand:
16637 /* Pseudo-instruction for VBIC. */
16638 neon_invert_size (&immbits, 0, et.size);
16639 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16640 break;
16641
16642 case N_MNEM_vorn:
16643 /* Pseudo-instruction for VORR. */
16644 neon_invert_size (&immbits, 0, et.size);
16645 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16646 break;
16647
16648 default:
16649 abort ();
16650 }
5287ad62
JB
16651
16652 if (cmode == FAIL)
477330fc 16653 return;
5287ad62 16654
037e8744 16655 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16656 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16657 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16658 inst.instruction |= cmode << 8;
16659 neon_write_immbits (immbits);
5f4273c7 16660
88714cb8 16661 neon_dp_fixup (&inst);
5287ad62
JB
16662 }
16663}
16664
16665static void
16666do_neon_bitfield (void)
16667{
037e8744 16668 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 16669 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 16670 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16671}
16672
16673static void
dcbf9037 16674neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
477330fc 16675 unsigned destbits)
5287ad62 16676{
5ee91343 16677 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
dcbf9037 16678 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
477330fc 16679 types | N_KEY);
5287ad62
JB
16680 if (et.type == NT_float)
16681 {
88714cb8 16682 NEON_ENCODE (FLOAT, inst);
5ee91343 16683 if (rs == NS_QQR)
7df54120 16684 mve_encode_qqr (et.size, 0, 1);
5ee91343
AV
16685 else
16686 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
16687 }
16688 else
16689 {
88714cb8 16690 NEON_ENCODE (INTEGER, inst);
5ee91343 16691 if (rs == NS_QQR)
a8465a06 16692 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
5ee91343
AV
16693 else
16694 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
16695 }
16696}
16697
5287ad62
JB
16698
16699static void
16700do_neon_dyadic_if_su_d (void)
16701{
16702 /* This version only allow D registers, but that constraint is enforced during
16703 operand parsing so we don't need to do anything extra here. */
dcbf9037 16704 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
16705}
16706
5287ad62
JB
16707static void
16708do_neon_dyadic_if_i_d (void)
16709{
428e3f1f
PB
16710 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16711 affected if we specify unsigned args. */
16712 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
16713}
16714
f5f10c66
AV
16715static void
16716do_mve_vstr_vldr_QI (int size, int elsize, int load)
16717{
16718 constraint (size < 32, BAD_ADDR_MODE);
16719 constraint (size != elsize, BAD_EL_TYPE);
16720 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16721 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16722 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16723 _("destination register and offset register may not be the"
16724 " same"));
16725
16726 int imm = inst.relocs[0].exp.X_add_number;
16727 int add = 1;
16728 if (imm < 0)
16729 {
16730 add = 0;
16731 imm = -imm;
16732 }
16733 constraint ((imm % (size / 8) != 0)
16734 || imm > (0x7f << neon_logbits (size)),
16735 (size == 32) ? _("immediate must be a multiple of 4 in the"
16736 " range of +/-[0,508]")
16737 : _("immediate must be a multiple of 8 in the"
16738 " range of +/-[0,1016]"));
16739 inst.instruction |= 0x11 << 24;
16740 inst.instruction |= add << 23;
16741 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16742 inst.instruction |= inst.operands[1].writeback << 21;
16743 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16744 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16745 inst.instruction |= 1 << 12;
16746 inst.instruction |= (size == 64) << 8;
16747 inst.instruction &= 0xffffff00;
16748 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16749 inst.instruction |= imm >> neon_logbits (size);
16750}
16751
16752static void
16753do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16754{
16755 unsigned os = inst.operands[1].imm >> 5;
16756 constraint (os != 0 && size == 8,
16757 _("can not shift offsets when accessing less than half-word"));
16758 constraint (os && os != neon_logbits (size),
16759 _("shift immediate must be 1, 2 or 3 for half-word, word"
16760 " or double-word accesses respectively"));
16761 if (inst.operands[1].reg == REG_PC)
16762 as_tsktsk (MVE_BAD_PC);
16763
16764 switch (size)
16765 {
16766 case 8:
16767 constraint (elsize >= 64, BAD_EL_TYPE);
16768 break;
16769 case 16:
16770 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16771 break;
16772 case 32:
16773 case 64:
16774 constraint (elsize != size, BAD_EL_TYPE);
16775 break;
16776 default:
16777 break;
16778 }
16779 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16780 BAD_ADDR_MODE);
16781 if (load)
16782 {
16783 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16784 _("destination register and offset register may not be"
16785 " the same"));
16786 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16787 BAD_EL_TYPE);
16788 constraint (inst.vectype.el[0].type != NT_unsigned
16789 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16790 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16791 }
16792 else
16793 {
16794 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16795 }
16796
16797 inst.instruction |= 1 << 23;
16798 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16799 inst.instruction |= inst.operands[1].reg << 16;
16800 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16801 inst.instruction |= neon_logbits (elsize) << 7;
16802 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16803 inst.instruction |= LOW4 (inst.operands[1].imm);
16804 inst.instruction |= !!os;
16805}
16806
16807static void
16808do_mve_vstr_vldr_RI (int size, int elsize, int load)
16809{
16810 enum neon_el_type type = inst.vectype.el[0].type;
16811
16812 constraint (size >= 64, BAD_ADDR_MODE);
16813 switch (size)
16814 {
16815 case 16:
16816 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16817 break;
16818 case 32:
16819 constraint (elsize != size, BAD_EL_TYPE);
16820 break;
16821 default:
16822 break;
16823 }
16824 if (load)
16825 {
16826 constraint (elsize != size && type != NT_unsigned
16827 && type != NT_signed, BAD_EL_TYPE);
16828 }
16829 else
16830 {
16831 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16832 }
16833
16834 int imm = inst.relocs[0].exp.X_add_number;
16835 int add = 1;
16836 if (imm < 0)
16837 {
16838 add = 0;
16839 imm = -imm;
16840 }
16841
16842 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16843 {
16844 switch (size)
16845 {
16846 case 8:
16847 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16848 break;
16849 case 16:
16850 constraint (1, _("immediate must be a multiple of 2 in the"
16851 " range of +/-[0,254]"));
16852 break;
16853 case 32:
16854 constraint (1, _("immediate must be a multiple of 4 in the"
16855 " range of +/-[0,508]"));
16856 break;
16857 }
16858 }
16859
16860 if (size != elsize)
16861 {
16862 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16863 constraint (inst.operands[0].reg > 14,
16864 _("MVE vector register in the range [Q0..Q7] expected"));
16865 inst.instruction |= (load && type == NT_unsigned) << 28;
16866 inst.instruction |= (size == 16) << 19;
16867 inst.instruction |= neon_logbits (elsize) << 7;
16868 }
16869 else
16870 {
16871 if (inst.operands[1].reg == REG_PC)
16872 as_tsktsk (MVE_BAD_PC);
16873 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16874 as_tsktsk (MVE_BAD_SP);
16875 inst.instruction |= 1 << 12;
16876 inst.instruction |= neon_logbits (size) << 7;
16877 }
16878 inst.instruction |= inst.operands[1].preind << 24;
16879 inst.instruction |= add << 23;
16880 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16881 inst.instruction |= inst.operands[1].writeback << 21;
16882 inst.instruction |= inst.operands[1].reg << 16;
16883 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16884 inst.instruction &= 0xffffff80;
16885 inst.instruction |= imm >> neon_logbits (size);
16886
16887}
16888
16889static void
16890do_mve_vstr_vldr (void)
16891{
16892 unsigned size;
16893 int load = 0;
16894
16895 if (inst.cond > COND_ALWAYS)
16896 inst.pred_insn_type = INSIDE_VPT_INSN;
16897 else
16898 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16899
16900 switch (inst.instruction)
16901 {
16902 default:
16903 gas_assert (0);
16904 break;
16905 case M_MNEM_vldrb:
16906 load = 1;
16907 /* fall through. */
16908 case M_MNEM_vstrb:
16909 size = 8;
16910 break;
16911 case M_MNEM_vldrh:
16912 load = 1;
16913 /* fall through. */
16914 case M_MNEM_vstrh:
16915 size = 16;
16916 break;
16917 case M_MNEM_vldrw:
16918 load = 1;
16919 /* fall through. */
16920 case M_MNEM_vstrw:
16921 size = 32;
16922 break;
16923 case M_MNEM_vldrd:
16924 load = 1;
16925 /* fall through. */
16926 case M_MNEM_vstrd:
16927 size = 64;
16928 break;
16929 }
16930 unsigned elsize = inst.vectype.el[0].size;
16931
16932 if (inst.operands[1].isquad)
16933 {
16934 /* We are dealing with [Q, imm]{!} cases. */
16935 do_mve_vstr_vldr_QI (size, elsize, load);
16936 }
16937 else
16938 {
16939 if (inst.operands[1].immisreg == 2)
16940 {
16941 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16942 do_mve_vstr_vldr_RQ (size, elsize, load);
16943 }
16944 else if (!inst.operands[1].immisreg)
16945 {
16946 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16947 do_mve_vstr_vldr_RI (size, elsize, load);
16948 }
16949 else
16950 constraint (1, BAD_ADDR_MODE);
16951 }
16952
16953 inst.is_neon = 1;
16954}
16955
35c228db
AV
16956static void
16957do_mve_vst_vld (void)
16958{
16959 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16960 return;
16961
16962 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16963 || inst.relocs[0].exp.X_add_number != 0
16964 || inst.operands[1].immisreg != 0,
16965 BAD_ADDR_MODE);
16966 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16967 if (inst.operands[1].reg == REG_PC)
16968 as_tsktsk (MVE_BAD_PC);
16969 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16970 as_tsktsk (MVE_BAD_SP);
16971
16972
16973 /* These instructions are one of the "exceptions" mentioned in
16974 handle_pred_state. They are MVE instructions that are not VPT compatible
16975 and do not accept a VPT code, thus appending such a code is a syntax
16976 error. */
16977 if (inst.cond > COND_ALWAYS)
16978 first_error (BAD_SYNTAX);
16979 /* If we append a scalar condition code we can set this to
16980 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16981 else if (inst.cond < COND_ALWAYS)
16982 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16983 else
16984 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16985
16986 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16987 inst.instruction |= inst.operands[1].writeback << 21;
16988 inst.instruction |= inst.operands[1].reg << 16;
16989 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16990 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16991 inst.is_neon = 1;
16992}
16993
26c1e780
AV
16994static void
16995do_mve_vaddlv (void)
16996{
16997 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
16998 struct neon_type_el et
16999 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
17000
17001 if (et.type == NT_invtype)
17002 first_error (BAD_EL_TYPE);
17003
17004 if (inst.cond > COND_ALWAYS)
17005 inst.pred_insn_type = INSIDE_VPT_INSN;
17006 else
17007 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17008
17009 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17010
17011 inst.instruction |= (et.type == NT_unsigned) << 28;
17012 inst.instruction |= inst.operands[1].reg << 19;
17013 inst.instruction |= inst.operands[0].reg << 12;
17014 inst.instruction |= inst.operands[2].reg;
17015 inst.is_neon = 1;
17016}
17017
5287ad62 17018static void
5ee91343 17019do_neon_dyadic_if_su (void)
5287ad62 17020{
5ee91343
AV
17021 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17022 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17023 N_SUF_32 | N_KEY);
17024
935295b5
AV
17025 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
17026 || inst.instruction == ((unsigned) N_MNEM_vmin))
17027 && et.type == NT_float
17028 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
17029
5ee91343
AV
17030 if (check_simd_pred_availability (et.type == NT_float,
17031 NEON_CHECK_ARCH | NEON_CHECK_CC))
037e8744
JB
17032 return;
17033
5ee91343
AV
17034 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
17035}
17036
17037static void
17038do_neon_addsub_if_i (void)
17039{
17040 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
17041 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
037e8744
JB
17042 return;
17043
5ee91343
AV
17044 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17045 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
17046 N_EQK, N_IF_32 | N_I64 | N_KEY);
17047
17048 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
17049 /* If we are parsing Q registers and the element types match MVE, which NEON
17050 also supports, then we must check whether this is an instruction that can
17051 be used by both MVE/NEON. This distinction can be made based on whether
17052 they are predicated or not. */
17053 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
17054 {
17055 if (check_simd_pred_availability (et.type == NT_float,
17056 NEON_CHECK_ARCH | NEON_CHECK_CC))
17057 return;
17058 }
17059 else
17060 {
17061 /* If they are either in a D register or are using an unsupported. */
17062 if (rs != NS_QQR
17063 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17064 return;
17065 }
17066
5287ad62
JB
17067 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17068 affected if we specify unsigned args. */
dcbf9037 17069 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
17070}
17071
17072/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
17073 result to be:
17074 V<op> A,B (A is operand 0, B is operand 2)
17075 to mean:
17076 V<op> A,B,A
17077 not:
17078 V<op> A,B,B
17079 so handle that case specially. */
17080
17081static void
17082neon_exchange_operands (void)
17083{
5287ad62
JB
17084 if (inst.operands[1].present)
17085 {
e1fa0163
NC
17086 void *scratch = xmalloc (sizeof (inst.operands[0]));
17087
5287ad62
JB
17088 /* Swap operands[1] and operands[2]. */
17089 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
17090 inst.operands[1] = inst.operands[2];
17091 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
e1fa0163 17092 free (scratch);
5287ad62
JB
17093 }
17094 else
17095 {
17096 inst.operands[1] = inst.operands[2];
17097 inst.operands[2] = inst.operands[0];
17098 }
17099}
17100
17101static void
17102neon_compare (unsigned regtypes, unsigned immtypes, int invert)
17103{
17104 if (inst.operands[2].isreg)
17105 {
17106 if (invert)
477330fc 17107 neon_exchange_operands ();
dcbf9037 17108 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
17109 }
17110 else
17111 {
037e8744 17112 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037 17113 struct neon_type_el et = neon_check_type (2, rs,
477330fc 17114 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 17115
88714cb8 17116 NEON_ENCODE (IMMED, inst);
5287ad62
JB
17117 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17118 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17119 inst.instruction |= LOW4 (inst.operands[1].reg);
17120 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 17121 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
17122 inst.instruction |= (et.type == NT_float) << 10;
17123 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17124
88714cb8 17125 neon_dp_fixup (&inst);
5287ad62
JB
17126 }
17127}
17128
17129static void
17130do_neon_cmp (void)
17131{
cc933301 17132 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
5287ad62
JB
17133}
17134
17135static void
17136do_neon_cmp_inv (void)
17137{
cc933301 17138 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
5287ad62
JB
17139}
17140
17141static void
17142do_neon_ceq (void)
17143{
17144 neon_compare (N_IF_32, N_IF_32, FALSE);
17145}
17146
17147/* For multiply instructions, we have the possibility of 16-bit or 32-bit
17148 scalars, which are encoded in 5 bits, M : Rm.
17149 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17150 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
c604a79a
JW
17151 index in M.
17152
17153 Dot Product instructions are similar to multiply instructions except elsize
17154 should always be 32.
17155
17156 This function translates SCALAR, which is GAS's internal encoding of indexed
17157 scalar register, to raw encoding. There is also register and index range
17158 check based on ELSIZE. */
5287ad62
JB
17159
17160static unsigned
17161neon_scalar_for_mul (unsigned scalar, unsigned elsize)
17162{
dcbf9037
JB
17163 unsigned regno = NEON_SCALAR_REG (scalar);
17164 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
17165
17166 switch (elsize)
17167 {
17168 case 16:
17169 if (regno > 7 || elno > 3)
477330fc 17170 goto bad_scalar;
5287ad62 17171 return regno | (elno << 3);
5f4273c7 17172
5287ad62
JB
17173 case 32:
17174 if (regno > 15 || elno > 1)
477330fc 17175 goto bad_scalar;
5287ad62
JB
17176 return regno | (elno << 4);
17177
17178 default:
17179 bad_scalar:
dcbf9037 17180 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
17181 }
17182
17183 return 0;
17184}
17185
17186/* Encode multiply / multiply-accumulate scalar instructions. */
17187
17188static void
17189neon_mul_mac (struct neon_type_el et, int ubit)
17190{
dcbf9037
JB
17191 unsigned scalar;
17192
17193 /* Give a more helpful error message if we have an invalid type. */
17194 if (et.type == NT_invtype)
17195 return;
5f4273c7 17196
dcbf9037 17197 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
17198 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17199 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17200 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17201 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17202 inst.instruction |= LOW4 (scalar);
17203 inst.instruction |= HI1 (scalar) << 5;
17204 inst.instruction |= (et.type == NT_float) << 8;
17205 inst.instruction |= neon_logbits (et.size) << 20;
17206 inst.instruction |= (ubit != 0) << 24;
17207
88714cb8 17208 neon_dp_fixup (&inst);
5287ad62
JB
17209}
17210
17211static void
17212do_neon_mac_maybe_scalar (void)
17213{
037e8744
JB
17214 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17215 return;
17216
a8465a06 17217 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
037e8744
JB
17218 return;
17219
5287ad62
JB
17220 if (inst.operands[2].isscalar)
17221 {
a8465a06 17222 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
037e8744 17223 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 17224 struct neon_type_el et = neon_check_type (3, rs,
589a7d88 17225 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
88714cb8 17226 NEON_ENCODE (SCALAR, inst);
037e8744 17227 neon_mul_mac (et, neon_quad (rs));
5287ad62 17228 }
a8465a06
AV
17229 else if (!inst.operands[2].isvec)
17230 {
17231 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17232
17233 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17234 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17235
17236 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17237 }
5287ad62 17238 else
428e3f1f 17239 {
a8465a06 17240 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
428e3f1f
PB
17241 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17242 affected if we specify unsigned args. */
17243 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17244 }
5287ad62
JB
17245}
17246
62f3b8c8
PB
17247static void
17248do_neon_fmac (void)
17249{
d58196e0
AV
17250 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17251 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
62f3b8c8
PB
17252 return;
17253
d58196e0 17254 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
62f3b8c8
PB
17255 return;
17256
d58196e0
AV
17257 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17258 {
17259 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17260 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17261 N_EQK);
17262
17263 if (rs == NS_QQR)
17264 {
17265 if (inst.operands[2].reg == REG_SP)
17266 as_tsktsk (MVE_BAD_SP);
17267 else if (inst.operands[2].reg == REG_PC)
17268 as_tsktsk (MVE_BAD_PC);
17269
17270 inst.instruction = 0xee310e40;
17271 inst.instruction |= (et.size == 16) << 28;
17272 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17273 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17274 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17275 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17276 inst.instruction |= inst.operands[2].reg;
17277 inst.is_neon = 1;
17278 return;
17279 }
17280 }
17281 else
17282 {
17283 constraint (!inst.operands[2].isvec, BAD_FPU);
17284 }
17285
62f3b8c8
PB
17286 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17287}
17288
5287ad62
JB
17289static void
17290do_neon_tst (void)
17291{
037e8744 17292 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
17293 struct neon_type_el et = neon_check_type (3, rs,
17294 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 17295 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
17296}
17297
17298/* VMUL with 3 registers allows the P8 type. The scalar version supports the
17299 same types as the MAC equivalents. The polynomial type for this instruction
17300 is encoded the same as the integer type. */
17301
17302static void
17303do_neon_mul (void)
17304{
037e8744
JB
17305 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17306 return;
17307
a8465a06 17308 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
037e8744
JB
17309 return;
17310
5287ad62 17311 if (inst.operands[2].isscalar)
a8465a06
AV
17312 {
17313 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17314 do_neon_mac_maybe_scalar ();
17315 }
5287ad62 17316 else
a8465a06
AV
17317 {
17318 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17319 {
17320 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17321 struct neon_type_el et
17322 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
17323 if (et.type == NT_float)
17324 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
17325 BAD_FPU);
17326
17327 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
17328 }
17329 else
17330 {
17331 constraint (!inst.operands[2].isvec, BAD_FPU);
17332 neon_dyadic_misc (NT_poly,
17333 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
17334 }
17335 }
5287ad62
JB
17336}
17337
17338static void
17339do_neon_qdmulh (void)
17340{
42b16635
AV
17341 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
17342 return;
17343
5287ad62
JB
17344 if (inst.operands[2].isscalar)
17345 {
42b16635 17346 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
037e8744 17347 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 17348 struct neon_type_el et = neon_check_type (3, rs,
477330fc 17349 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 17350 NEON_ENCODE (SCALAR, inst);
037e8744 17351 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
17352 }
17353 else
17354 {
42b16635
AV
17355 enum neon_shape rs;
17356 struct neon_type_el et;
17357 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17358 {
17359 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17360 et = neon_check_type (3, rs,
17361 N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17362 }
17363 else
17364 {
17365 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17366 et = neon_check_type (3, rs,
17367 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17368 }
17369
88714cb8 17370 NEON_ENCODE (INTEGER, inst);
42b16635
AV
17371 if (rs == NS_QQR)
17372 mve_encode_qqr (et.size, 0, 0);
17373 else
17374 /* The U bit (rounding) comes from bit mask. */
17375 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
17376 }
17377}
17378
26c1e780
AV
17379static void
17380do_mve_vaddv (void)
17381{
17382 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17383 struct neon_type_el et
17384 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17385
17386 if (et.type == NT_invtype)
17387 first_error (BAD_EL_TYPE);
17388
17389 if (inst.cond > COND_ALWAYS)
17390 inst.pred_insn_type = INSIDE_VPT_INSN;
17391 else
17392 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17393
17394 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17395
17396 mve_encode_rq (et.type == NT_unsigned, et.size);
17397}
17398
7df54120
AV
17399static void
17400do_mve_vhcadd (void)
17401{
17402 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
17403 struct neon_type_el et
17404 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17405
17406 if (inst.cond > COND_ALWAYS)
17407 inst.pred_insn_type = INSIDE_VPT_INSN;
17408 else
17409 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17410
17411 unsigned rot = inst.relocs[0].exp.X_add_number;
17412 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17413
17414 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
17415 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17416 "operand makes instruction UNPREDICTABLE"));
17417
17418 mve_encode_qqq (0, et.size);
17419 inst.instruction |= (rot == 270) << 12;
17420 inst.is_neon = 1;
17421}
17422
35d1cfc2
AV
17423static void
17424do_mve_vqdmull (void)
17425{
17426 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17427 struct neon_type_el et
17428 = neon_check_type (3, rs, N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17429
17430 if (et.size == 32
17431 && (inst.operands[0].reg == inst.operands[1].reg
17432 || (rs == NS_QQQ && inst.operands[0].reg == inst.operands[2].reg)))
17433 as_tsktsk (BAD_MVE_SRCDEST);
17434
17435 if (inst.cond > COND_ALWAYS)
17436 inst.pred_insn_type = INSIDE_VPT_INSN;
17437 else
17438 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17439
17440 if (rs == NS_QQQ)
17441 {
17442 mve_encode_qqq (et.size == 32, 64);
17443 inst.instruction |= 1;
17444 }
17445 else
17446 {
17447 mve_encode_qqr (64, et.size == 32, 0);
17448 inst.instruction |= 0x3 << 5;
17449 }
17450}
17451
c2dafc2a
AV
17452static void
17453do_mve_vadc (void)
17454{
17455 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17456 struct neon_type_el et
17457 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17458
17459 if (et.type == NT_invtype)
17460 first_error (BAD_EL_TYPE);
17461
17462 if (inst.cond > COND_ALWAYS)
17463 inst.pred_insn_type = INSIDE_VPT_INSN;
17464 else
17465 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17466
17467 mve_encode_qqq (0, 64);
17468}
17469
17470static void
17471do_mve_vbrsr (void)
17472{
17473 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17474 struct neon_type_el et
17475 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17476
17477 if (inst.cond > COND_ALWAYS)
17478 inst.pred_insn_type = INSIDE_VPT_INSN;
17479 else
17480 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17481
7df54120 17482 mve_encode_qqr (et.size, 0, 0);
c2dafc2a
AV
17483}
17484
17485static void
17486do_mve_vsbc (void)
17487{
17488 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17489
17490 if (inst.cond > COND_ALWAYS)
17491 inst.pred_insn_type = INSIDE_VPT_INSN;
17492 else
17493 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17494
17495 mve_encode_qqq (1, 64);
17496}
17497
2d78f95b
AV
17498static void
17499do_mve_vmulh (void)
17500{
17501 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17502 struct neon_type_el et
17503 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17504
17505 if (inst.cond > COND_ALWAYS)
17506 inst.pred_insn_type = INSIDE_VPT_INSN;
17507 else
17508 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17509
17510 mve_encode_qqq (et.type == NT_unsigned, et.size);
17511}
17512
42b16635
AV
17513static void
17514do_mve_vqdmlah (void)
17515{
17516 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17517 struct neon_type_el et
17518 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17519
17520 if (inst.cond > COND_ALWAYS)
17521 inst.pred_insn_type = INSIDE_VPT_INSN;
17522 else
17523 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17524
17525 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
17526}
8b8b22a4
AV
17527
17528static void
17529do_mve_vqdmladh (void)
17530{
17531 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17532 struct neon_type_el et
17533 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17534
17535 if (inst.cond > COND_ALWAYS)
17536 inst.pred_insn_type = INSIDE_VPT_INSN;
17537 else
17538 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17539
17540 if (et.size == 32
17541 && (inst.operands[0].reg == inst.operands[1].reg
17542 || inst.operands[0].reg == inst.operands[2].reg))
17543 as_tsktsk (BAD_MVE_SRCDEST);
17544
17545 mve_encode_qqq (0, et.size);
17546}
17547
17548
886e1c73
AV
17549static void
17550do_mve_vmull (void)
17551{
17552
17553 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
17554 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
17555 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17556 && inst.cond == COND_ALWAYS
17557 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
17558 {
17559 if (rs == NS_QQQ)
17560 {
17561
17562 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17563 N_SUF_32 | N_F64 | N_P8
17564 | N_P16 | N_I_MVE | N_KEY);
17565 if (((et.type == NT_poly) && et.size == 8
17566 && ARM_CPU_IS_ANY (cpu_variant))
17567 || (et.type == NT_integer) || (et.type == NT_float))
17568 goto neon_vmul;
17569 }
17570 else
17571 goto neon_vmul;
17572 }
17573
17574 constraint (rs != NS_QQQ, BAD_FPU);
17575 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17576 N_SU_32 | N_P8 | N_P16 | N_KEY);
17577
17578 /* We are dealing with MVE's vmullt. */
17579 if (et.size == 32
17580 && (inst.operands[0].reg == inst.operands[1].reg
17581 || inst.operands[0].reg == inst.operands[2].reg))
17582 as_tsktsk (BAD_MVE_SRCDEST);
17583
17584 if (inst.cond > COND_ALWAYS)
17585 inst.pred_insn_type = INSIDE_VPT_INSN;
17586 else
17587 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17588
17589 if (et.type == NT_poly)
17590 mve_encode_qqq (neon_logbits (et.size), 64);
17591 else
17592 mve_encode_qqq (et.type == NT_unsigned, et.size);
17593
17594 return;
17595
17596neon_vmul:
17597 inst.instruction = N_MNEM_vmul;
17598 inst.cond = 0xb;
17599 if (thumb_mode)
17600 inst.pred_insn_type = INSIDE_IT_INSN;
17601 do_neon_mul ();
17602}
17603
a302e574
AV
17604static void
17605do_mve_vabav (void)
17606{
17607 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17608
17609 if (rs == NS_NULL)
17610 return;
17611
17612 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17613 return;
17614
17615 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17616 | N_S16 | N_S32 | N_U8 | N_U16
17617 | N_U32);
17618
17619 if (inst.cond > COND_ALWAYS)
17620 inst.pred_insn_type = INSIDE_VPT_INSN;
17621 else
17622 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17623
17624 mve_encode_rqq (et.type == NT_unsigned, et.size);
17625}
17626
17627static void
17628do_mve_vmladav (void)
17629{
17630 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17631 struct neon_type_el et = neon_check_type (3, rs,
17632 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17633
17634 if (et.type == NT_unsigned
17635 && (inst.instruction == M_MNEM_vmladavx
17636 || inst.instruction == M_MNEM_vmladavax
17637 || inst.instruction == M_MNEM_vmlsdav
17638 || inst.instruction == M_MNEM_vmlsdava
17639 || inst.instruction == M_MNEM_vmlsdavx
17640 || inst.instruction == M_MNEM_vmlsdavax))
17641 first_error (BAD_SIMD_TYPE);
17642
17643 constraint (inst.operands[2].reg > 14,
17644 _("MVE vector register in the range [Q0..Q7] expected"));
17645
17646 if (inst.cond > COND_ALWAYS)
17647 inst.pred_insn_type = INSIDE_VPT_INSN;
17648 else
17649 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17650
17651 if (inst.instruction == M_MNEM_vmlsdav
17652 || inst.instruction == M_MNEM_vmlsdava
17653 || inst.instruction == M_MNEM_vmlsdavx
17654 || inst.instruction == M_MNEM_vmlsdavax)
17655 inst.instruction |= (et.size == 8) << 28;
17656 else
17657 inst.instruction |= (et.size == 8) << 8;
17658
17659 mve_encode_rqq (et.type == NT_unsigned, 64);
17660 inst.instruction |= (et.size == 32) << 16;
17661}
17662
93925576
AV
17663static void
17664do_mve_vmlaldav (void)
17665{
17666 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
17667 struct neon_type_el et
17668 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
17669 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
17670
17671 if (et.type == NT_unsigned
17672 && (inst.instruction == M_MNEM_vmlsldav
17673 || inst.instruction == M_MNEM_vmlsldava
17674 || inst.instruction == M_MNEM_vmlsldavx
17675 || inst.instruction == M_MNEM_vmlsldavax))
17676 first_error (BAD_SIMD_TYPE);
17677
17678 if (inst.cond > COND_ALWAYS)
17679 inst.pred_insn_type = INSIDE_VPT_INSN;
17680 else
17681 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17682
17683 mve_encode_rrqq (et.type == NT_unsigned, et.size);
17684}
17685
17686static void
17687do_mve_vrmlaldavh (void)
17688{
17689 struct neon_type_el et;
17690 if (inst.instruction == M_MNEM_vrmlsldavh
17691 || inst.instruction == M_MNEM_vrmlsldavha
17692 || inst.instruction == M_MNEM_vrmlsldavhx
17693 || inst.instruction == M_MNEM_vrmlsldavhax)
17694 {
17695 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17696 if (inst.operands[1].reg == REG_SP)
17697 as_tsktsk (MVE_BAD_SP);
17698 }
17699 else
17700 {
17701 if (inst.instruction == M_MNEM_vrmlaldavhx
17702 || inst.instruction == M_MNEM_vrmlaldavhax)
17703 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17704 else
17705 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
17706 N_U32 | N_S32 | N_KEY);
17707 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
17708 with vmax/min instructions, making the use of SP in assembly really
17709 nonsensical, so instead of issuing a warning like we do for other uses
17710 of SP for the odd register operand we error out. */
17711 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
17712 }
17713
17714 /* Make sure we still check the second operand is an odd one and that PC is
17715 disallowed. This because we are parsing for any GPR operand, to be able
17716 to distinguish between giving a warning or an error for SP as described
17717 above. */
17718 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
17719 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17720
17721 if (inst.cond > COND_ALWAYS)
17722 inst.pred_insn_type = INSIDE_VPT_INSN;
17723 else
17724 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17725
17726 mve_encode_rrqq (et.type == NT_unsigned, 0);
17727}
17728
17729
8cd78170
AV
17730static void
17731do_mve_vmaxnmv (void)
17732{
17733 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17734 struct neon_type_el et
17735 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
17736
17737 if (inst.cond > COND_ALWAYS)
17738 inst.pred_insn_type = INSIDE_VPT_INSN;
17739 else
17740 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17741
17742 if (inst.operands[0].reg == REG_SP)
17743 as_tsktsk (MVE_BAD_SP);
17744 else if (inst.operands[0].reg == REG_PC)
17745 as_tsktsk (MVE_BAD_PC);
17746
17747 mve_encode_rq (et.size == 16, 64);
17748}
17749
13ccd4c0
AV
17750static void
17751do_mve_vmaxv (void)
17752{
17753 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17754 struct neon_type_el et;
17755
17756 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
17757 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
17758 else
17759 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17760
17761 if (inst.cond > COND_ALWAYS)
17762 inst.pred_insn_type = INSIDE_VPT_INSN;
17763 else
17764 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17765
17766 if (inst.operands[0].reg == REG_SP)
17767 as_tsktsk (MVE_BAD_SP);
17768 else if (inst.operands[0].reg == REG_PC)
17769 as_tsktsk (MVE_BAD_PC);
17770
17771 mve_encode_rq (et.type == NT_unsigned, et.size);
17772}
17773
17774
643afb90
MW
17775static void
17776do_neon_qrdmlah (void)
17777{
42b16635
AV
17778 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
17779 return;
17780 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
643afb90 17781 {
42b16635
AV
17782 /* Check we're on the correct architecture. */
17783 if (!mark_feature_used (&fpu_neon_ext_armv8))
17784 inst.error
17785 = _("instruction form not available on this architecture.");
17786 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17787 {
17788 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17789 record_feature_use (&fpu_neon_ext_v8_1);
17790 }
17791 if (inst.operands[2].isscalar)
17792 {
17793 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17794 struct neon_type_el et = neon_check_type (3, rs,
17795 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17796 NEON_ENCODE (SCALAR, inst);
17797 neon_mul_mac (et, neon_quad (rs));
17798 }
17799 else
17800 {
17801 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17802 struct neon_type_el et = neon_check_type (3, rs,
17803 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17804 NEON_ENCODE (INTEGER, inst);
17805 /* The U bit (rounding) comes from bit mask. */
17806 neon_three_same (neon_quad (rs), 0, et.size);
17807 }
643afb90
MW
17808 }
17809 else
17810 {
42b16635
AV
17811 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17812 struct neon_type_el et
17813 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17814
643afb90 17815 NEON_ENCODE (INTEGER, inst);
42b16635 17816 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
643afb90
MW
17817 }
17818}
17819
5287ad62
JB
17820static void
17821do_neon_fcmp_absolute (void)
17822{
037e8744 17823 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
17824 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17825 N_F_16_32 | N_KEY);
5287ad62 17826 /* Size field comes from bit mask. */
cc933301 17827 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
17828}
17829
17830static void
17831do_neon_fcmp_absolute_inv (void)
17832{
17833 neon_exchange_operands ();
17834 do_neon_fcmp_absolute ();
17835}
17836
17837static void
17838do_neon_step (void)
17839{
037e8744 17840 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
17841 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17842 N_F_16_32 | N_KEY);
17843 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
17844}
17845
17846static void
17847do_neon_abs_neg (void)
17848{
037e8744
JB
17849 enum neon_shape rs;
17850 struct neon_type_el et;
5f4273c7 17851
037e8744
JB
17852 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
17853 return;
17854
037e8744 17855 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
cc933301 17856 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
5f4273c7 17857
485dee97
AV
17858 if (check_simd_pred_availability (et.type == NT_float,
17859 NEON_CHECK_ARCH | NEON_CHECK_CC))
17860 return;
17861
5287ad62
JB
17862 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17863 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17864 inst.instruction |= LOW4 (inst.operands[1].reg);
17865 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 17866 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
17867 inst.instruction |= (et.type == NT_float) << 10;
17868 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17869
88714cb8 17870 neon_dp_fixup (&inst);
5287ad62
JB
17871}
17872
17873static void
17874do_neon_sli (void)
17875{
037e8744 17876 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17877 struct neon_type_el et = neon_check_type (2, rs,
17878 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17879 int imm = inst.operands[2].imm;
17880 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 17881 _("immediate out of range for insert"));
037e8744 17882 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
17883}
17884
17885static void
17886do_neon_sri (void)
17887{
037e8744 17888 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17889 struct neon_type_el et = neon_check_type (2, rs,
17890 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17891 int imm = inst.operands[2].imm;
17892 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17893 _("immediate out of range for insert"));
037e8744 17894 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
17895}
17896
17897static void
17898do_neon_qshlu_imm (void)
17899{
037e8744 17900 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17901 struct neon_type_el et = neon_check_type (2, rs,
17902 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
17903 int imm = inst.operands[2].imm;
17904 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 17905 _("immediate out of range for shift"));
5287ad62
JB
17906 /* Only encodes the 'U present' variant of the instruction.
17907 In this case, signed types have OP (bit 8) set to 0.
17908 Unsigned types have OP set to 1. */
17909 inst.instruction |= (et.type == NT_unsigned) << 8;
17910 /* The rest of the bits are the same as other immediate shifts. */
037e8744 17911 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
17912}
17913
17914static void
17915do_neon_qmovn (void)
17916{
17917 struct neon_type_el et = neon_check_type (2, NS_DQ,
17918 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17919 /* Saturating move where operands can be signed or unsigned, and the
17920 destination has the same signedness. */
88714cb8 17921 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17922 if (et.type == NT_unsigned)
17923 inst.instruction |= 0xc0;
17924 else
17925 inst.instruction |= 0x80;
17926 neon_two_same (0, 1, et.size / 2);
17927}
17928
17929static void
17930do_neon_qmovun (void)
17931{
17932 struct neon_type_el et = neon_check_type (2, NS_DQ,
17933 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17934 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 17935 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17936 neon_two_same (0, 1, et.size / 2);
17937}
17938
17939static void
17940do_neon_rshift_sat_narrow (void)
17941{
17942 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17943 or unsigned. If operands are unsigned, results must also be unsigned. */
17944 struct neon_type_el et = neon_check_type (2, NS_DQI,
17945 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17946 int imm = inst.operands[2].imm;
17947 /* This gets the bounds check, size encoding and immediate bits calculation
17948 right. */
17949 et.size /= 2;
5f4273c7 17950
5287ad62
JB
17951 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17952 VQMOVN.I<size> <Dd>, <Qm>. */
17953 if (imm == 0)
17954 {
17955 inst.operands[2].present = 0;
17956 inst.instruction = N_MNEM_vqmovn;
17957 do_neon_qmovn ();
17958 return;
17959 }
5f4273c7 17960
5287ad62 17961 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17962 _("immediate out of range"));
5287ad62
JB
17963 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17964}
17965
17966static void
17967do_neon_rshift_sat_narrow_u (void)
17968{
17969 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17970 or unsigned. If operands are unsigned, results must also be unsigned. */
17971 struct neon_type_el et = neon_check_type (2, NS_DQI,
17972 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17973 int imm = inst.operands[2].imm;
17974 /* This gets the bounds check, size encoding and immediate bits calculation
17975 right. */
17976 et.size /= 2;
17977
17978 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17979 VQMOVUN.I<size> <Dd>, <Qm>. */
17980 if (imm == 0)
17981 {
17982 inst.operands[2].present = 0;
17983 inst.instruction = N_MNEM_vqmovun;
17984 do_neon_qmovun ();
17985 return;
17986 }
17987
17988 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17989 _("immediate out of range"));
5287ad62
JB
17990 /* FIXME: The manual is kind of unclear about what value U should have in
17991 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17992 must be 1. */
17993 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
17994}
17995
17996static void
17997do_neon_movn (void)
17998{
17999 struct neon_type_el et = neon_check_type (2, NS_DQ,
18000 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 18001 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18002 neon_two_same (0, 1, et.size / 2);
18003}
18004
18005static void
18006do_neon_rshift_narrow (void)
18007{
18008 struct neon_type_el et = neon_check_type (2, NS_DQI,
18009 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18010 int imm = inst.operands[2].imm;
18011 /* This gets the bounds check, size encoding and immediate bits calculation
18012 right. */
18013 et.size /= 2;
5f4273c7 18014
5287ad62
JB
18015 /* If immediate is zero then we are a pseudo-instruction for
18016 VMOVN.I<size> <Dd>, <Qm> */
18017 if (imm == 0)
18018 {
18019 inst.operands[2].present = 0;
18020 inst.instruction = N_MNEM_vmovn;
18021 do_neon_movn ();
18022 return;
18023 }
5f4273c7 18024
5287ad62 18025 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 18026 _("immediate out of range for narrowing operation"));
5287ad62
JB
18027 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
18028}
18029
18030static void
18031do_neon_shll (void)
18032{
18033 /* FIXME: Type checking when lengthening. */
18034 struct neon_type_el et = neon_check_type (2, NS_QDI,
18035 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
18036 unsigned imm = inst.operands[2].imm;
18037
18038 if (imm == et.size)
18039 {
18040 /* Maximum shift variant. */
88714cb8 18041 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18042 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18043 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18044 inst.instruction |= LOW4 (inst.operands[1].reg);
18045 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18046 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 18047
88714cb8 18048 neon_dp_fixup (&inst);
5287ad62
JB
18049 }
18050 else
18051 {
18052 /* A more-specific type check for non-max versions. */
18053 et = neon_check_type (2, NS_QDI,
477330fc 18054 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 18055 NEON_ENCODE (IMMED, inst);
5287ad62
JB
18056 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
18057 }
18058}
18059
037e8744 18060/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
18061 the current instruction is. */
18062
6b9a8b67
MGD
18063#define CVT_FLAVOUR_VAR \
18064 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
18065 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
18066 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
18067 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
18068 /* Half-precision conversions. */ \
cc933301
JW
18069 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18070 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18071 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
18072 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
6b9a8b67
MGD
18073 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
18074 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
9db2f6b4
RL
18075 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
18076 Compared with single/double precision variants, only the co-processor \
18077 field is different, so the encoding flow is reused here. */ \
18078 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
18079 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
18080 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
18081 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
6b9a8b67
MGD
18082 /* VFP instructions. */ \
18083 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
18084 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
18085 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
18086 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
18087 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
18088 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
18089 /* VFP instructions with bitshift. */ \
18090 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
18091 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
18092 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
18093 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
18094 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
18095 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
18096 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
18097 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
18098
18099#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
18100 neon_cvt_flavour_##C,
18101
18102/* The different types of conversions we can do. */
18103enum neon_cvt_flavour
18104{
18105 CVT_FLAVOUR_VAR
18106 neon_cvt_flavour_invalid,
18107 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
18108};
18109
18110#undef CVT_VAR
18111
18112static enum neon_cvt_flavour
18113get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 18114{
6b9a8b67
MGD
18115#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
18116 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
18117 if (et.type != NT_invtype) \
18118 { \
18119 inst.error = NULL; \
18120 return (neon_cvt_flavour_##C); \
5287ad62 18121 }
6b9a8b67 18122
5287ad62 18123 struct neon_type_el et;
037e8744 18124 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
477330fc 18125 || rs == NS_FF) ? N_VFP : 0;
037e8744
JB
18126 /* The instruction versions which take an immediate take one register
18127 argument, which is extended to the width of the full register. Thus the
18128 "source" and "destination" registers must have the same width. Hack that
18129 here by making the size equal to the key (wider, in this case) operand. */
18130 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 18131
6b9a8b67
MGD
18132 CVT_FLAVOUR_VAR;
18133
18134 return neon_cvt_flavour_invalid;
5287ad62
JB
18135#undef CVT_VAR
18136}
18137
7e8e6784
MGD
18138enum neon_cvt_mode
18139{
18140 neon_cvt_mode_a,
18141 neon_cvt_mode_n,
18142 neon_cvt_mode_p,
18143 neon_cvt_mode_m,
18144 neon_cvt_mode_z,
30bdf752
MGD
18145 neon_cvt_mode_x,
18146 neon_cvt_mode_r
7e8e6784
MGD
18147};
18148
037e8744
JB
18149/* Neon-syntax VFP conversions. */
18150
5287ad62 18151static void
6b9a8b67 18152do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 18153{
037e8744 18154 const char *opname = 0;
5f4273c7 18155
d54af2d0
RL
18156 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
18157 || rs == NS_FHI || rs == NS_HFI)
5287ad62 18158 {
037e8744
JB
18159 /* Conversions with immediate bitshift. */
18160 const char *enc[] =
477330fc 18161 {
6b9a8b67
MGD
18162#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
18163 CVT_FLAVOUR_VAR
18164 NULL
18165#undef CVT_VAR
477330fc 18166 };
037e8744 18167
6b9a8b67 18168 if (flavour < (int) ARRAY_SIZE (enc))
477330fc
RM
18169 {
18170 opname = enc[flavour];
18171 constraint (inst.operands[0].reg != inst.operands[1].reg,
18172 _("operands 0 and 1 must be the same register"));
18173 inst.operands[1] = inst.operands[2];
18174 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
18175 }
5287ad62
JB
18176 }
18177 else
18178 {
037e8744
JB
18179 /* Conversions without bitshift. */
18180 const char *enc[] =
477330fc 18181 {
6b9a8b67
MGD
18182#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18183 CVT_FLAVOUR_VAR
18184 NULL
18185#undef CVT_VAR
477330fc 18186 };
037e8744 18187
6b9a8b67 18188 if (flavour < (int) ARRAY_SIZE (enc))
477330fc 18189 opname = enc[flavour];
037e8744
JB
18190 }
18191
18192 if (opname)
18193 do_vfp_nsyn_opcode (opname);
9db2f6b4
RL
18194
18195 /* ARMv8.2 fp16 VCVT instruction. */
18196 if (flavour == neon_cvt_flavour_s32_f16
18197 || flavour == neon_cvt_flavour_u32_f16
18198 || flavour == neon_cvt_flavour_f16_u32
18199 || flavour == neon_cvt_flavour_f16_s32)
18200 do_scalar_fp16_v82_encode ();
037e8744
JB
18201}
18202
18203static void
18204do_vfp_nsyn_cvtz (void)
18205{
d54af2d0 18206 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
6b9a8b67 18207 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
18208 const char *enc[] =
18209 {
6b9a8b67
MGD
18210#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18211 CVT_FLAVOUR_VAR
18212 NULL
18213#undef CVT_VAR
037e8744
JB
18214 };
18215
6b9a8b67 18216 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
18217 do_vfp_nsyn_opcode (enc[flavour]);
18218}
f31fef98 18219
037e8744 18220static void
bacebabc 18221do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
7e8e6784
MGD
18222 enum neon_cvt_mode mode)
18223{
18224 int sz, op;
18225 int rm;
18226
a715796b
TG
18227 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18228 D register operands. */
18229 if (flavour == neon_cvt_flavour_s32_f64
18230 || flavour == neon_cvt_flavour_u32_f64)
18231 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18232 _(BAD_FPU));
18233
9db2f6b4
RL
18234 if (flavour == neon_cvt_flavour_s32_f16
18235 || flavour == neon_cvt_flavour_u32_f16)
18236 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
18237 _(BAD_FP16));
18238
5ee91343 18239 set_pred_insn_type (OUTSIDE_PRED_INSN);
7e8e6784
MGD
18240
18241 switch (flavour)
18242 {
18243 case neon_cvt_flavour_s32_f64:
18244 sz = 1;
827f64ff 18245 op = 1;
7e8e6784
MGD
18246 break;
18247 case neon_cvt_flavour_s32_f32:
18248 sz = 0;
18249 op = 1;
18250 break;
9db2f6b4
RL
18251 case neon_cvt_flavour_s32_f16:
18252 sz = 0;
18253 op = 1;
18254 break;
7e8e6784
MGD
18255 case neon_cvt_flavour_u32_f64:
18256 sz = 1;
18257 op = 0;
18258 break;
18259 case neon_cvt_flavour_u32_f32:
18260 sz = 0;
18261 op = 0;
18262 break;
9db2f6b4
RL
18263 case neon_cvt_flavour_u32_f16:
18264 sz = 0;
18265 op = 0;
18266 break;
7e8e6784
MGD
18267 default:
18268 first_error (_("invalid instruction shape"));
18269 return;
18270 }
18271
18272 switch (mode)
18273 {
18274 case neon_cvt_mode_a: rm = 0; break;
18275 case neon_cvt_mode_n: rm = 1; break;
18276 case neon_cvt_mode_p: rm = 2; break;
18277 case neon_cvt_mode_m: rm = 3; break;
18278 default: first_error (_("invalid rounding mode")); return;
18279 }
18280
18281 NEON_ENCODE (FPV8, inst);
18282 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
18283 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
18284 inst.instruction |= sz << 8;
9db2f6b4
RL
18285
18286 /* ARMv8.2 fp16 VCVT instruction. */
18287 if (flavour == neon_cvt_flavour_s32_f16
18288 ||flavour == neon_cvt_flavour_u32_f16)
18289 do_scalar_fp16_v82_encode ();
7e8e6784
MGD
18290 inst.instruction |= op << 7;
18291 inst.instruction |= rm << 16;
18292 inst.instruction |= 0xf0000000;
18293 inst.is_neon = TRUE;
18294}
18295
18296static void
18297do_neon_cvt_1 (enum neon_cvt_mode mode)
037e8744
JB
18298{
18299 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
d54af2d0
RL
18300 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
18301 NS_FH, NS_HF, NS_FHI, NS_HFI,
18302 NS_NULL);
6b9a8b67 18303 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 18304
cc933301
JW
18305 if (flavour == neon_cvt_flavour_invalid)
18306 return;
18307
e3e535bc 18308 /* PR11109: Handle round-to-zero for VCVT conversions. */
7e8e6784 18309 if (mode == neon_cvt_mode_z
e3e535bc 18310 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
cc933301
JW
18311 && (flavour == neon_cvt_flavour_s16_f16
18312 || flavour == neon_cvt_flavour_u16_f16
18313 || flavour == neon_cvt_flavour_s32_f32
bacebabc
RM
18314 || flavour == neon_cvt_flavour_u32_f32
18315 || flavour == neon_cvt_flavour_s32_f64
6b9a8b67 18316 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
18317 && (rs == NS_FD || rs == NS_FF))
18318 {
18319 do_vfp_nsyn_cvtz ();
18320 return;
18321 }
18322
9db2f6b4
RL
18323 /* ARMv8.2 fp16 VCVT conversions. */
18324 if (mode == neon_cvt_mode_z
18325 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
18326 && (flavour == neon_cvt_flavour_s32_f16
18327 || flavour == neon_cvt_flavour_u32_f16)
18328 && (rs == NS_FH))
18329 {
18330 do_vfp_nsyn_cvtz ();
18331 do_scalar_fp16_v82_encode ();
18332 return;
18333 }
18334
037e8744 18335 /* VFP rather than Neon conversions. */
6b9a8b67 18336 if (flavour >= neon_cvt_flavour_first_fp)
037e8744 18337 {
7e8e6784
MGD
18338 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18339 do_vfp_nsyn_cvt (rs, flavour);
18340 else
18341 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18342
037e8744
JB
18343 return;
18344 }
18345
18346 switch (rs)
18347 {
037e8744 18348 case NS_QQI:
dd9634d9
AV
18349 if (mode == neon_cvt_mode_z
18350 && (flavour == neon_cvt_flavour_f16_s16
18351 || flavour == neon_cvt_flavour_f16_u16
18352 || flavour == neon_cvt_flavour_s16_f16
18353 || flavour == neon_cvt_flavour_u16_f16
18354 || flavour == neon_cvt_flavour_f32_u32
18355 || flavour == neon_cvt_flavour_f32_s32
18356 || flavour == neon_cvt_flavour_s32_f32
18357 || flavour == neon_cvt_flavour_u32_f32))
18358 {
18359 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
18360 return;
18361 }
18362 else if (mode == neon_cvt_mode_n)
18363 {
18364 /* We are dealing with vcvt with the 'ne' condition. */
18365 inst.cond = 0x1;
18366 inst.instruction = N_MNEM_vcvt;
18367 do_neon_cvt_1 (neon_cvt_mode_z);
18368 return;
18369 }
18370 /* fall through. */
18371 case NS_DDI:
037e8744 18372 {
477330fc 18373 unsigned immbits;
cc933301
JW
18374 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
18375 0x0000100, 0x1000100, 0x0, 0x1000000};
35997600 18376
dd9634d9
AV
18377 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18378 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18379 return;
18380
18381 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18382 {
18383 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
18384 _("immediate value out of range"));
18385 switch (flavour)
18386 {
18387 case neon_cvt_flavour_f16_s16:
18388 case neon_cvt_flavour_f16_u16:
18389 case neon_cvt_flavour_s16_f16:
18390 case neon_cvt_flavour_u16_f16:
18391 constraint (inst.operands[2].imm > 16,
18392 _("immediate value out of range"));
18393 break;
18394 case neon_cvt_flavour_f32_u32:
18395 case neon_cvt_flavour_f32_s32:
18396 case neon_cvt_flavour_s32_f32:
18397 case neon_cvt_flavour_u32_f32:
18398 constraint (inst.operands[2].imm > 32,
18399 _("immediate value out of range"));
18400 break;
18401 default:
18402 inst.error = BAD_FPU;
18403 return;
18404 }
18405 }
037e8744 18406
477330fc
RM
18407 /* Fixed-point conversion with #0 immediate is encoded as an
18408 integer conversion. */
18409 if (inst.operands[2].present && inst.operands[2].imm == 0)
18410 goto int_encode;
477330fc
RM
18411 NEON_ENCODE (IMMED, inst);
18412 if (flavour != neon_cvt_flavour_invalid)
18413 inst.instruction |= enctab[flavour];
18414 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18415 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18416 inst.instruction |= LOW4 (inst.operands[1].reg);
18417 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18418 inst.instruction |= neon_quad (rs) << 6;
18419 inst.instruction |= 1 << 21;
cc933301
JW
18420 if (flavour < neon_cvt_flavour_s16_f16)
18421 {
18422 inst.instruction |= 1 << 21;
18423 immbits = 32 - inst.operands[2].imm;
18424 inst.instruction |= immbits << 16;
18425 }
18426 else
18427 {
18428 inst.instruction |= 3 << 20;
18429 immbits = 16 - inst.operands[2].imm;
18430 inst.instruction |= immbits << 16;
18431 inst.instruction &= ~(1 << 9);
18432 }
477330fc
RM
18433
18434 neon_dp_fixup (&inst);
037e8744
JB
18435 }
18436 break;
18437
037e8744 18438 case NS_QQ:
dd9634d9
AV
18439 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
18440 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
18441 && (flavour == neon_cvt_flavour_s16_f16
18442 || flavour == neon_cvt_flavour_u16_f16
18443 || flavour == neon_cvt_flavour_s32_f32
18444 || flavour == neon_cvt_flavour_u32_f32))
18445 {
18446 if (check_simd_pred_availability (1,
18447 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18448 return;
18449 }
18450 else if (mode == neon_cvt_mode_z
18451 && (flavour == neon_cvt_flavour_f16_s16
18452 || flavour == neon_cvt_flavour_f16_u16
18453 || flavour == neon_cvt_flavour_s16_f16
18454 || flavour == neon_cvt_flavour_u16_f16
18455 || flavour == neon_cvt_flavour_f32_u32
18456 || flavour == neon_cvt_flavour_f32_s32
18457 || flavour == neon_cvt_flavour_s32_f32
18458 || flavour == neon_cvt_flavour_u32_f32))
18459 {
18460 if (check_simd_pred_availability (1,
18461 NEON_CHECK_CC | NEON_CHECK_ARCH))
18462 return;
18463 }
18464 /* fall through. */
18465 case NS_DD:
7e8e6784
MGD
18466 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
18467 {
7e8e6784 18468
dd9634d9
AV
18469 NEON_ENCODE (FLOAT, inst);
18470 if (check_simd_pred_availability (1,
18471 NEON_CHECK_CC | NEON_CHECK_ARCH8))
7e8e6784
MGD
18472 return;
18473
18474 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18475 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18476 inst.instruction |= LOW4 (inst.operands[1].reg);
18477 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18478 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
18479 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
18480 || flavour == neon_cvt_flavour_u32_f32) << 7;
7e8e6784 18481 inst.instruction |= mode << 8;
cc933301
JW
18482 if (flavour == neon_cvt_flavour_u16_f16
18483 || flavour == neon_cvt_flavour_s16_f16)
18484 /* Mask off the original size bits and reencode them. */
18485 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
18486
7e8e6784
MGD
18487 if (thumb_mode)
18488 inst.instruction |= 0xfc000000;
18489 else
18490 inst.instruction |= 0xf0000000;
18491 }
18492 else
18493 {
037e8744 18494 int_encode:
7e8e6784 18495 {
cc933301
JW
18496 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
18497 0x100, 0x180, 0x0, 0x080};
037e8744 18498
7e8e6784 18499 NEON_ENCODE (INTEGER, inst);
037e8744 18500
dd9634d9
AV
18501 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18502 {
18503 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18504 return;
18505 }
037e8744 18506
7e8e6784
MGD
18507 if (flavour != neon_cvt_flavour_invalid)
18508 inst.instruction |= enctab[flavour];
037e8744 18509
7e8e6784
MGD
18510 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18511 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18512 inst.instruction |= LOW4 (inst.operands[1].reg);
18513 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18514 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
18515 if (flavour >= neon_cvt_flavour_s16_f16
18516 && flavour <= neon_cvt_flavour_f16_u16)
18517 /* Half precision. */
18518 inst.instruction |= 1 << 18;
18519 else
18520 inst.instruction |= 2 << 18;
037e8744 18521
7e8e6784
MGD
18522 neon_dp_fixup (&inst);
18523 }
18524 }
18525 break;
037e8744 18526
8e79c3df
CM
18527 /* Half-precision conversions for Advanced SIMD -- neon. */
18528 case NS_QD:
18529 case NS_DQ:
bc52d49c
MM
18530 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18531 return;
8e79c3df
CM
18532
18533 if ((rs == NS_DQ)
18534 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
18535 {
18536 as_bad (_("operand size must match register width"));
18537 break;
18538 }
18539
18540 if ((rs == NS_QD)
18541 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
18542 {
18543 as_bad (_("operand size must match register width"));
18544 break;
18545 }
18546
18547 if (rs == NS_DQ)
477330fc 18548 inst.instruction = 0x3b60600;
8e79c3df
CM
18549 else
18550 inst.instruction = 0x3b60700;
18551
18552 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18553 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18554 inst.instruction |= LOW4 (inst.operands[1].reg);
18555 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 18556 neon_dp_fixup (&inst);
8e79c3df
CM
18557 break;
18558
037e8744
JB
18559 default:
18560 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
7e8e6784
MGD
18561 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18562 do_vfp_nsyn_cvt (rs, flavour);
18563 else
18564 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
5287ad62 18565 }
5287ad62
JB
18566}
18567
e3e535bc
NC
18568static void
18569do_neon_cvtr (void)
18570{
7e8e6784 18571 do_neon_cvt_1 (neon_cvt_mode_x);
e3e535bc
NC
18572}
18573
18574static void
18575do_neon_cvt (void)
18576{
7e8e6784
MGD
18577 do_neon_cvt_1 (neon_cvt_mode_z);
18578}
18579
18580static void
18581do_neon_cvta (void)
18582{
18583 do_neon_cvt_1 (neon_cvt_mode_a);
18584}
18585
18586static void
18587do_neon_cvtn (void)
18588{
18589 do_neon_cvt_1 (neon_cvt_mode_n);
18590}
18591
18592static void
18593do_neon_cvtp (void)
18594{
18595 do_neon_cvt_1 (neon_cvt_mode_p);
18596}
18597
18598static void
18599do_neon_cvtm (void)
18600{
18601 do_neon_cvt_1 (neon_cvt_mode_m);
e3e535bc
NC
18602}
18603
8e79c3df 18604static void
c70a8987 18605do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
8e79c3df 18606{
c70a8987
MGD
18607 if (is_double)
18608 mark_feature_used (&fpu_vfp_ext_armv8);
8e79c3df 18609
c70a8987
MGD
18610 encode_arm_vfp_reg (inst.operands[0].reg,
18611 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
18612 encode_arm_vfp_reg (inst.operands[1].reg,
18613 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
18614 inst.instruction |= to ? 0x10000 : 0;
18615 inst.instruction |= t ? 0x80 : 0;
18616 inst.instruction |= is_double ? 0x100 : 0;
18617 do_vfp_cond_or_thumb ();
18618}
8e79c3df 18619
c70a8987
MGD
18620static void
18621do_neon_cvttb_1 (bfd_boolean t)
18622{
d54af2d0 18623 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
dd9634d9 18624 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
8e79c3df 18625
c70a8987
MGD
18626 if (rs == NS_NULL)
18627 return;
dd9634d9
AV
18628 else if (rs == NS_QQ || rs == NS_QQI)
18629 {
18630 int single_to_half = 0;
18631 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
18632 return;
18633
18634 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18635
18636 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18637 && (flavour == neon_cvt_flavour_u16_f16
18638 || flavour == neon_cvt_flavour_s16_f16
18639 || flavour == neon_cvt_flavour_f16_s16
18640 || flavour == neon_cvt_flavour_f16_u16
18641 || flavour == neon_cvt_flavour_u32_f32
18642 || flavour == neon_cvt_flavour_s32_f32
18643 || flavour == neon_cvt_flavour_f32_s32
18644 || flavour == neon_cvt_flavour_f32_u32))
18645 {
18646 inst.cond = 0xf;
18647 inst.instruction = N_MNEM_vcvt;
18648 set_pred_insn_type (INSIDE_VPT_INSN);
18649 do_neon_cvt_1 (neon_cvt_mode_z);
18650 return;
18651 }
18652 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
18653 single_to_half = 1;
18654 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
18655 {
18656 first_error (BAD_FPU);
18657 return;
18658 }
18659
18660 inst.instruction = 0xee3f0e01;
18661 inst.instruction |= single_to_half << 28;
18662 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18663 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
18664 inst.instruction |= t << 12;
18665 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18666 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
18667 inst.is_neon = 1;
18668 }
c70a8987
MGD
18669 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
18670 {
18671 inst.error = NULL;
18672 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
18673 }
18674 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
18675 {
18676 inst.error = NULL;
18677 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
18678 }
18679 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
18680 {
a715796b
TG
18681 /* The VCVTB and VCVTT instructions with D-register operands
18682 don't work for SP only targets. */
18683 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18684 _(BAD_FPU));
18685
c70a8987
MGD
18686 inst.error = NULL;
18687 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
18688 }
18689 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
18690 {
a715796b
TG
18691 /* The VCVTB and VCVTT instructions with D-register operands
18692 don't work for SP only targets. */
18693 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18694 _(BAD_FPU));
18695
c70a8987
MGD
18696 inst.error = NULL;
18697 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
18698 }
18699 else
18700 return;
18701}
18702
18703static void
18704do_neon_cvtb (void)
18705{
18706 do_neon_cvttb_1 (FALSE);
8e79c3df
CM
18707}
18708
18709
18710static void
18711do_neon_cvtt (void)
18712{
c70a8987 18713 do_neon_cvttb_1 (TRUE);
8e79c3df
CM
18714}
18715
5287ad62
JB
18716static void
18717neon_move_immediate (void)
18718{
037e8744
JB
18719 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
18720 struct neon_type_el et = neon_check_type (2, rs,
18721 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 18722 unsigned immlo, immhi = 0, immbits;
c96612cc 18723 int op, cmode, float_p;
5287ad62 18724
037e8744 18725 constraint (et.type == NT_invtype,
477330fc 18726 _("operand size must be specified for immediate VMOV"));
037e8744 18727
5287ad62
JB
18728 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
18729 op = (inst.instruction & (1 << 5)) != 0;
18730
18731 immlo = inst.operands[1].imm;
18732 if (inst.operands[1].regisimm)
18733 immhi = inst.operands[1].reg;
18734
18735 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
477330fc 18736 _("immediate has bits set outside the operand size"));
5287ad62 18737
c96612cc
JB
18738 float_p = inst.operands[1].immisfloat;
18739
18740 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
477330fc 18741 et.size, et.type)) == FAIL)
5287ad62
JB
18742 {
18743 /* Invert relevant bits only. */
18744 neon_invert_size (&immlo, &immhi, et.size);
18745 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
477330fc
RM
18746 with one or the other; those cases are caught by
18747 neon_cmode_for_move_imm. */
5287ad62 18748 op = !op;
c96612cc
JB
18749 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
18750 &op, et.size, et.type)) == FAIL)
477330fc
RM
18751 {
18752 first_error (_("immediate out of range"));
18753 return;
18754 }
5287ad62
JB
18755 }
18756
18757 inst.instruction &= ~(1 << 5);
18758 inst.instruction |= op << 5;
18759
18760 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18761 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 18762 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18763 inst.instruction |= cmode << 8;
18764
18765 neon_write_immbits (immbits);
18766}
18767
18768static void
18769do_neon_mvn (void)
18770{
1a186d29
AV
18771 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18772 return;
18773
5287ad62
JB
18774 if (inst.operands[1].isreg)
18775 {
1a186d29
AV
18776 enum neon_shape rs;
18777 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18778 rs = neon_select_shape (NS_QQ, NS_NULL);
18779 else
18780 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 18781
88714cb8 18782 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18783 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18784 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18785 inst.instruction |= LOW4 (inst.operands[1].reg);
18786 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 18787 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18788 }
18789 else
18790 {
88714cb8 18791 NEON_ENCODE (IMMED, inst);
5287ad62
JB
18792 neon_move_immediate ();
18793 }
18794
88714cb8 18795 neon_dp_fixup (&inst);
1a186d29
AV
18796
18797 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18798 {
18799 constraint (!inst.operands[1].isreg && !inst.operands[0].isquad, BAD_FPU);
18800 constraint ((inst.instruction & 0xd00) == 0xd00,
18801 _("immediate value out of range"));
18802 }
5287ad62
JB
18803}
18804
18805/* Encode instructions of form:
18806
18807 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 18808 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
18809
18810static void
18811neon_mixed_length (struct neon_type_el et, unsigned size)
18812{
18813 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18814 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18815 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18816 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18817 inst.instruction |= LOW4 (inst.operands[2].reg);
18818 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18819 inst.instruction |= (et.type == NT_unsigned) << 24;
18820 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 18821
88714cb8 18822 neon_dp_fixup (&inst);
5287ad62
JB
18823}
18824
18825static void
18826do_neon_dyadic_long (void)
18827{
5ee91343
AV
18828 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
18829 if (rs == NS_QDD)
18830 {
18831 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
18832 return;
18833
18834 NEON_ENCODE (INTEGER, inst);
18835 /* FIXME: Type checking for lengthening op. */
18836 struct neon_type_el et = neon_check_type (3, NS_QDD,
18837 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
18838 neon_mixed_length (et, et.size);
18839 }
18840 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18841 && (inst.cond == 0xf || inst.cond == 0x10))
18842 {
18843 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18844 in an IT block with le/lt conditions. */
18845
18846 if (inst.cond == 0xf)
18847 inst.cond = 0xb;
18848 else if (inst.cond == 0x10)
18849 inst.cond = 0xd;
18850
18851 inst.pred_insn_type = INSIDE_IT_INSN;
18852
18853 if (inst.instruction == N_MNEM_vaddl)
18854 {
18855 inst.instruction = N_MNEM_vadd;
18856 do_neon_addsub_if_i ();
18857 }
18858 else if (inst.instruction == N_MNEM_vsubl)
18859 {
18860 inst.instruction = N_MNEM_vsub;
18861 do_neon_addsub_if_i ();
18862 }
18863 else if (inst.instruction == N_MNEM_vabdl)
18864 {
18865 inst.instruction = N_MNEM_vabd;
18866 do_neon_dyadic_if_su ();
18867 }
18868 }
18869 else
18870 first_error (BAD_FPU);
5287ad62
JB
18871}
18872
18873static void
18874do_neon_abal (void)
18875{
18876 struct neon_type_el et = neon_check_type (3, NS_QDD,
18877 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
18878 neon_mixed_length (et, et.size);
18879}
18880
18881static void
18882neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
18883{
18884 if (inst.operands[2].isscalar)
18885 {
dcbf9037 18886 struct neon_type_el et = neon_check_type (3, NS_QDS,
477330fc 18887 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 18888 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
18889 neon_mul_mac (et, et.type == NT_unsigned);
18890 }
18891 else
18892 {
18893 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 18894 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 18895 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18896 neon_mixed_length (et, et.size);
18897 }
18898}
18899
18900static void
18901do_neon_mac_maybe_scalar_long (void)
18902{
18903 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
18904}
18905
dec41383
JW
18906/* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18907 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18908
18909static unsigned
18910neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
18911{
18912 unsigned regno = NEON_SCALAR_REG (scalar);
18913 unsigned elno = NEON_SCALAR_INDEX (scalar);
18914
18915 if (quad_p)
18916 {
18917 if (regno > 7 || elno > 3)
18918 goto bad_scalar;
18919
18920 return ((regno & 0x7)
18921 | ((elno & 0x1) << 3)
18922 | (((elno >> 1) & 0x1) << 5));
18923 }
18924 else
18925 {
18926 if (regno > 15 || elno > 1)
18927 goto bad_scalar;
18928
18929 return (((regno & 0x1) << 5)
18930 | ((regno >> 1) & 0x7)
18931 | ((elno & 0x1) << 3));
18932 }
18933
18934bad_scalar:
18935 first_error (_("scalar out of range for multiply instruction"));
18936 return 0;
18937}
18938
18939static void
18940do_neon_fmac_maybe_scalar_long (int subtype)
18941{
18942 enum neon_shape rs;
18943 int high8;
18944 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18945 field (bits[21:20]) has different meaning. For scalar index variant, it's
18946 used to differentiate add and subtract, otherwise it's with fixed value
18947 0x2. */
18948 int size = -1;
18949
18950 if (inst.cond != COND_ALWAYS)
18951 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18952 "behaviour is UNPREDICTABLE"));
18953
01f48020 18954 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
dec41383
JW
18955 _(BAD_FP16));
18956
18957 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18958 _(BAD_FPU));
18959
18960 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18961 be a scalar index register. */
18962 if (inst.operands[2].isscalar)
18963 {
18964 high8 = 0xfe000000;
18965 if (subtype)
18966 size = 16;
18967 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18968 }
18969 else
18970 {
18971 high8 = 0xfc000000;
18972 size = 32;
18973 if (subtype)
18974 inst.instruction |= (0x1 << 23);
18975 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
18976 }
18977
18978 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
18979
18980 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18981 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18982 so we simply pass -1 as size. */
18983 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
18984 neon_three_same (quad_p, 0, size);
18985
18986 /* Undo neon_dp_fixup. Redo the high eight bits. */
18987 inst.instruction &= 0x00ffffff;
18988 inst.instruction |= high8;
18989
18990#define LOW1(R) ((R) & 0x1)
18991#define HI4(R) (((R) >> 1) & 0xf)
18992 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18993 whether the instruction is in Q form and whether Vm is a scalar indexed
18994 operand. */
18995 if (inst.operands[2].isscalar)
18996 {
18997 unsigned rm
18998 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
18999 inst.instruction &= 0xffffffd0;
19000 inst.instruction |= rm;
19001
19002 if (!quad_p)
19003 {
19004 /* Redo Rn as well. */
19005 inst.instruction &= 0xfff0ff7f;
19006 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19007 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19008 }
19009 }
19010 else if (!quad_p)
19011 {
19012 /* Redo Rn and Rm. */
19013 inst.instruction &= 0xfff0ff50;
19014 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19015 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19016 inst.instruction |= HI4 (inst.operands[2].reg);
19017 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
19018 }
19019}
19020
19021static void
19022do_neon_vfmal (void)
19023{
19024 return do_neon_fmac_maybe_scalar_long (0);
19025}
19026
19027static void
19028do_neon_vfmsl (void)
19029{
19030 return do_neon_fmac_maybe_scalar_long (1);
19031}
19032
5287ad62
JB
19033static void
19034do_neon_dyadic_wide (void)
19035{
19036 struct neon_type_el et = neon_check_type (3, NS_QQD,
19037 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
19038 neon_mixed_length (et, et.size);
19039}
19040
19041static void
19042do_neon_dyadic_narrow (void)
19043{
19044 struct neon_type_el et = neon_check_type (3, NS_QDD,
19045 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
19046 /* Operand sign is unimportant, and the U bit is part of the opcode,
19047 so force the operand type to integer. */
19048 et.type = NT_integer;
5287ad62
JB
19049 neon_mixed_length (et, et.size / 2);
19050}
19051
19052static void
19053do_neon_mul_sat_scalar_long (void)
19054{
19055 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
19056}
19057
19058static void
19059do_neon_vmull (void)
19060{
19061 if (inst.operands[2].isscalar)
19062 do_neon_mac_maybe_scalar_long ();
19063 else
19064 {
19065 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 19066 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
4f51b4bd 19067
5287ad62 19068 if (et.type == NT_poly)
477330fc 19069 NEON_ENCODE (POLY, inst);
5287ad62 19070 else
477330fc 19071 NEON_ENCODE (INTEGER, inst);
4f51b4bd
MGD
19072
19073 /* For polynomial encoding the U bit must be zero, and the size must
19074 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
19075 obviously, as 0b10). */
19076 if (et.size == 64)
19077 {
19078 /* Check we're on the correct architecture. */
19079 if (!mark_feature_used (&fpu_crypto_ext_armv8))
19080 inst.error =
19081 _("Instruction form not available on this architecture.");
19082
19083 et.size = 32;
19084 }
19085
5287ad62
JB
19086 neon_mixed_length (et, et.size);
19087 }
19088}
19089
19090static void
19091do_neon_ext (void)
19092{
037e8744 19093 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
19094 struct neon_type_el et = neon_check_type (3, rs,
19095 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
19096 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
19097
19098 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
19099 _("shift out of range"));
5287ad62
JB
19100 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19101 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19102 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19103 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19104 inst.instruction |= LOW4 (inst.operands[2].reg);
19105 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 19106 inst.instruction |= neon_quad (rs) << 6;
5287ad62 19107 inst.instruction |= imm << 8;
5f4273c7 19108
88714cb8 19109 neon_dp_fixup (&inst);
5287ad62
JB
19110}
19111
19112static void
19113do_neon_rev (void)
19114{
037e8744 19115 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19116 struct neon_type_el et = neon_check_type (2, rs,
19117 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19118 unsigned op = (inst.instruction >> 7) & 3;
19119 /* N (width of reversed regions) is encoded as part of the bitmask. We
19120 extract it here to check the elements to be reversed are smaller.
19121 Otherwise we'd get a reserved instruction. */
19122 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 19123 gas_assert (elsize != 0);
5287ad62 19124 constraint (et.size >= elsize,
477330fc 19125 _("elements must be smaller than reversal region"));
037e8744 19126 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19127}
19128
19129static void
19130do_neon_dup (void)
19131{
19132 if (inst.operands[1].isscalar)
19133 {
b409bdb6
AV
19134 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19135 BAD_FPU);
037e8744 19136 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037 19137 struct neon_type_el et = neon_check_type (2, rs,
477330fc 19138 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 19139 unsigned sizebits = et.size >> 3;
dcbf9037 19140 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 19141 int logsize = neon_logbits (et.size);
dcbf9037 19142 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
19143
19144 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
477330fc 19145 return;
037e8744 19146
88714cb8 19147 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
19148 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19149 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19150 inst.instruction |= LOW4 (dm);
19151 inst.instruction |= HI1 (dm) << 5;
037e8744 19152 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
19153 inst.instruction |= x << 17;
19154 inst.instruction |= sizebits << 16;
5f4273c7 19155
88714cb8 19156 neon_dp_fixup (&inst);
5287ad62
JB
19157 }
19158 else
19159 {
037e8744
JB
19160 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
19161 struct neon_type_el et = neon_check_type (2, rs,
477330fc 19162 N_8 | N_16 | N_32 | N_KEY, N_EQK);
b409bdb6
AV
19163 if (rs == NS_QR)
19164 {
19165 if (check_simd_pred_availability (0, NEON_CHECK_ARCH))
19166 return;
19167 }
19168 else
19169 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19170 BAD_FPU);
19171
19172 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19173 {
19174 if (inst.operands[1].reg == REG_SP)
19175 as_tsktsk (MVE_BAD_SP);
19176 else if (inst.operands[1].reg == REG_PC)
19177 as_tsktsk (MVE_BAD_PC);
19178 }
19179
5287ad62 19180 /* Duplicate ARM register to lanes of vector. */
88714cb8 19181 NEON_ENCODE (ARMREG, inst);
5287ad62 19182 switch (et.size)
477330fc
RM
19183 {
19184 case 8: inst.instruction |= 0x400000; break;
19185 case 16: inst.instruction |= 0x000020; break;
19186 case 32: inst.instruction |= 0x000000; break;
19187 default: break;
19188 }
5287ad62
JB
19189 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19190 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
19191 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 19192 inst.instruction |= neon_quad (rs) << 21;
5287ad62 19193 /* The encoding for this instruction is identical for the ARM and Thumb
477330fc 19194 variants, except for the condition field. */
037e8744 19195 do_vfp_cond_or_thumb ();
5287ad62
JB
19196 }
19197}
19198
57785aa2
AV
19199static void
19200do_mve_mov (int toQ)
19201{
19202 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19203 return;
19204 if (inst.cond > COND_ALWAYS)
19205 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
19206
19207 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
19208 if (toQ)
19209 {
19210 Q0 = 0;
19211 Q1 = 1;
19212 Rt = 2;
19213 Rt2 = 3;
19214 }
19215
19216 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
19217 _("Index one must be [2,3] and index two must be two less than"
19218 " index one."));
19219 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
19220 _("General purpose registers may not be the same"));
19221 constraint (inst.operands[Rt].reg == REG_SP
19222 || inst.operands[Rt2].reg == REG_SP,
19223 BAD_SP);
19224 constraint (inst.operands[Rt].reg == REG_PC
19225 || inst.operands[Rt2].reg == REG_PC,
19226 BAD_PC);
19227
19228 inst.instruction = 0xec000f00;
19229 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
19230 inst.instruction |= !!toQ << 20;
19231 inst.instruction |= inst.operands[Rt2].reg << 16;
19232 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
19233 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
19234 inst.instruction |= inst.operands[Rt].reg;
19235}
19236
19237static void
19238do_mve_movn (void)
19239{
19240 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19241 return;
19242
19243 if (inst.cond > COND_ALWAYS)
19244 inst.pred_insn_type = INSIDE_VPT_INSN;
19245 else
19246 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
19247
19248 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
19249 | N_KEY);
19250
19251 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19252 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
19253 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19254 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19255 inst.instruction |= LOW4 (inst.operands[1].reg);
19256 inst.is_neon = 1;
19257
19258}
19259
5287ad62
JB
19260/* VMOV has particularly many variations. It can be one of:
19261 0. VMOV<c><q> <Qd>, <Qm>
19262 1. VMOV<c><q> <Dd>, <Dm>
19263 (Register operations, which are VORR with Rm = Rn.)
19264 2. VMOV<c><q>.<dt> <Qd>, #<imm>
19265 3. VMOV<c><q>.<dt> <Dd>, #<imm>
19266 (Immediate loads.)
19267 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
19268 (ARM register to scalar.)
19269 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
19270 (Two ARM registers to vector.)
19271 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
19272 (Scalar to ARM register.)
19273 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
19274 (Vector to two ARM registers.)
037e8744
JB
19275 8. VMOV.F32 <Sd>, <Sm>
19276 9. VMOV.F64 <Dd>, <Dm>
19277 (VFP register moves.)
19278 10. VMOV.F32 <Sd>, #imm
19279 11. VMOV.F64 <Dd>, #imm
19280 (VFP float immediate load.)
19281 12. VMOV <Rd>, <Sm>
19282 (VFP single to ARM reg.)
19283 13. VMOV <Sd>, <Rm>
19284 (ARM reg to VFP single.)
19285 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
19286 (Two ARM regs to two VFP singles.)
19287 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
19288 (Two VFP singles to two ARM regs.)
57785aa2
AV
19289 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
19290 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
19291 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
19292 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
5f4273c7 19293
037e8744
JB
19294 These cases can be disambiguated using neon_select_shape, except cases 1/9
19295 and 3/11 which depend on the operand type too.
5f4273c7 19296
5287ad62 19297 All the encoded bits are hardcoded by this function.
5f4273c7 19298
b7fc2769
JB
19299 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
19300 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 19301
5287ad62 19302 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 19303 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
19304
19305static void
19306do_neon_mov (void)
19307{
57785aa2
AV
19308 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
19309 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
19310 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
19311 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
19312 NS_NULL);
037e8744
JB
19313 struct neon_type_el et;
19314 const char *ldconst = 0;
5287ad62 19315
037e8744 19316 switch (rs)
5287ad62 19317 {
037e8744
JB
19318 case NS_DD: /* case 1/9. */
19319 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19320 /* It is not an error here if no type is given. */
19321 inst.error = NULL;
19322 if (et.type == NT_float && et.size == 64)
477330fc
RM
19323 {
19324 do_vfp_nsyn_opcode ("fcpyd");
19325 break;
19326 }
037e8744 19327 /* fall through. */
5287ad62 19328
037e8744
JB
19329 case NS_QQ: /* case 0/1. */
19330 {
57785aa2 19331 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc
RM
19332 return;
19333 /* The architecture manual I have doesn't explicitly state which
19334 value the U bit should have for register->register moves, but
19335 the equivalent VORR instruction has U = 0, so do that. */
19336 inst.instruction = 0x0200110;
19337 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19338 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19339 inst.instruction |= LOW4 (inst.operands[1].reg);
19340 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19341 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19342 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19343 inst.instruction |= neon_quad (rs) << 6;
19344
19345 neon_dp_fixup (&inst);
037e8744
JB
19346 }
19347 break;
5f4273c7 19348
037e8744
JB
19349 case NS_DI: /* case 3/11. */
19350 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19351 inst.error = NULL;
19352 if (et.type == NT_float && et.size == 64)
477330fc
RM
19353 {
19354 /* case 11 (fconstd). */
19355 ldconst = "fconstd";
19356 goto encode_fconstd;
19357 }
037e8744
JB
19358 /* fall through. */
19359
19360 case NS_QI: /* case 2/3. */
57785aa2 19361 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc 19362 return;
037e8744
JB
19363 inst.instruction = 0x0800010;
19364 neon_move_immediate ();
88714cb8 19365 neon_dp_fixup (&inst);
5287ad62 19366 break;
5f4273c7 19367
037e8744
JB
19368 case NS_SR: /* case 4. */
19369 {
477330fc
RM
19370 unsigned bcdebits = 0;
19371 int logsize;
19372 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
19373 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
037e8744 19374
05ac0ffb
JB
19375 /* .<size> is optional here, defaulting to .32. */
19376 if (inst.vectype.elems == 0
19377 && inst.operands[0].vectype.type == NT_invtype
19378 && inst.operands[1].vectype.type == NT_invtype)
19379 {
19380 inst.vectype.el[0].type = NT_untyped;
19381 inst.vectype.el[0].size = 32;
19382 inst.vectype.elems = 1;
19383 }
19384
477330fc
RM
19385 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
19386 logsize = neon_logbits (et.size);
19387
57785aa2
AV
19388 if (et.size != 32)
19389 {
19390 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19391 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
19392 return;
19393 }
19394 else
19395 {
19396 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19397 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19398 _(BAD_FPU));
19399 }
19400
19401 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19402 {
19403 if (inst.operands[1].reg == REG_SP)
19404 as_tsktsk (MVE_BAD_SP);
19405 else if (inst.operands[1].reg == REG_PC)
19406 as_tsktsk (MVE_BAD_PC);
19407 }
19408 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
19409
477330fc 19410 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2
AV
19411 constraint (x >= size / et.size, _("scalar index out of range"));
19412
477330fc
RM
19413
19414 switch (et.size)
19415 {
19416 case 8: bcdebits = 0x8; break;
19417 case 16: bcdebits = 0x1; break;
19418 case 32: bcdebits = 0x0; break;
19419 default: ;
19420 }
19421
57785aa2 19422 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
19423
19424 inst.instruction = 0xe000b10;
19425 do_vfp_cond_or_thumb ();
19426 inst.instruction |= LOW4 (dn) << 16;
19427 inst.instruction |= HI1 (dn) << 7;
19428 inst.instruction |= inst.operands[1].reg << 12;
19429 inst.instruction |= (bcdebits & 3) << 5;
57785aa2
AV
19430 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
19431 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
19432 }
19433 break;
5f4273c7 19434
037e8744 19435 case NS_DRR: /* case 5 (fmdrr). */
57785aa2
AV
19436 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19437 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 19438 _(BAD_FPU));
b7fc2769 19439
037e8744
JB
19440 inst.instruction = 0xc400b10;
19441 do_vfp_cond_or_thumb ();
19442 inst.instruction |= LOW4 (inst.operands[0].reg);
19443 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
19444 inst.instruction |= inst.operands[1].reg << 12;
19445 inst.instruction |= inst.operands[2].reg << 16;
19446 break;
5f4273c7 19447
037e8744
JB
19448 case NS_RS: /* case 6. */
19449 {
477330fc
RM
19450 unsigned logsize;
19451 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
19452 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
19453 unsigned abcdebits = 0;
037e8744 19454
05ac0ffb
JB
19455 /* .<dt> is optional here, defaulting to .32. */
19456 if (inst.vectype.elems == 0
19457 && inst.operands[0].vectype.type == NT_invtype
19458 && inst.operands[1].vectype.type == NT_invtype)
19459 {
19460 inst.vectype.el[0].type = NT_untyped;
19461 inst.vectype.el[0].size = 32;
19462 inst.vectype.elems = 1;
19463 }
19464
91d6fa6a
NC
19465 et = neon_check_type (2, NS_NULL,
19466 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
477330fc
RM
19467 logsize = neon_logbits (et.size);
19468
57785aa2
AV
19469 if (et.size != 32)
19470 {
19471 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19472 && vfp_or_neon_is_neon (NEON_CHECK_CC
19473 | NEON_CHECK_ARCH) == FAIL)
19474 return;
19475 }
19476 else
19477 {
19478 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19479 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19480 _(BAD_FPU));
19481 }
19482
19483 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19484 {
19485 if (inst.operands[0].reg == REG_SP)
19486 as_tsktsk (MVE_BAD_SP);
19487 else if (inst.operands[0].reg == REG_PC)
19488 as_tsktsk (MVE_BAD_PC);
19489 }
19490
19491 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
19492
477330fc 19493 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2 19494 constraint (x >= size / et.size, _("scalar index out of range"));
477330fc
RM
19495
19496 switch (et.size)
19497 {
19498 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
19499 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
19500 case 32: abcdebits = 0x00; break;
19501 default: ;
19502 }
19503
57785aa2 19504 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
19505 inst.instruction = 0xe100b10;
19506 do_vfp_cond_or_thumb ();
19507 inst.instruction |= LOW4 (dn) << 16;
19508 inst.instruction |= HI1 (dn) << 7;
19509 inst.instruction |= inst.operands[0].reg << 12;
19510 inst.instruction |= (abcdebits & 3) << 5;
19511 inst.instruction |= (abcdebits >> 2) << 21;
57785aa2 19512 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
19513 }
19514 break;
5f4273c7 19515
037e8744 19516 case NS_RRD: /* case 7 (fmrrd). */
57785aa2
AV
19517 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19518 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 19519 _(BAD_FPU));
037e8744
JB
19520
19521 inst.instruction = 0xc500b10;
19522 do_vfp_cond_or_thumb ();
19523 inst.instruction |= inst.operands[0].reg << 12;
19524 inst.instruction |= inst.operands[1].reg << 16;
19525 inst.instruction |= LOW4 (inst.operands[2].reg);
19526 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19527 break;
5f4273c7 19528
037e8744
JB
19529 case NS_FF: /* case 8 (fcpys). */
19530 do_vfp_nsyn_opcode ("fcpys");
19531 break;
5f4273c7 19532
9db2f6b4 19533 case NS_HI:
037e8744
JB
19534 case NS_FI: /* case 10 (fconsts). */
19535 ldconst = "fconsts";
4ef4710f 19536 encode_fconstd:
58ed5c38
TC
19537 if (!inst.operands[1].immisfloat)
19538 {
4ef4710f 19539 unsigned new_imm;
58ed5c38 19540 /* Immediate has to fit in 8 bits so float is enough. */
4ef4710f
NC
19541 float imm = (float) inst.operands[1].imm;
19542 memcpy (&new_imm, &imm, sizeof (float));
19543 /* But the assembly may have been written to provide an integer
19544 bit pattern that equates to a float, so check that the
19545 conversion has worked. */
19546 if (is_quarter_float (new_imm))
19547 {
19548 if (is_quarter_float (inst.operands[1].imm))
19549 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
19550
19551 inst.operands[1].imm = new_imm;
19552 inst.operands[1].immisfloat = 1;
19553 }
58ed5c38
TC
19554 }
19555
037e8744 19556 if (is_quarter_float (inst.operands[1].imm))
477330fc
RM
19557 {
19558 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
19559 do_vfp_nsyn_opcode (ldconst);
9db2f6b4
RL
19560
19561 /* ARMv8.2 fp16 vmov.f16 instruction. */
19562 if (rs == NS_HI)
19563 do_scalar_fp16_v82_encode ();
477330fc 19564 }
5287ad62 19565 else
477330fc 19566 first_error (_("immediate out of range"));
037e8744 19567 break;
5f4273c7 19568
9db2f6b4 19569 case NS_RH:
037e8744
JB
19570 case NS_RF: /* case 12 (fmrs). */
19571 do_vfp_nsyn_opcode ("fmrs");
9db2f6b4
RL
19572 /* ARMv8.2 fp16 vmov.f16 instruction. */
19573 if (rs == NS_RH)
19574 do_scalar_fp16_v82_encode ();
037e8744 19575 break;
5f4273c7 19576
9db2f6b4 19577 case NS_HR:
037e8744
JB
19578 case NS_FR: /* case 13 (fmsr). */
19579 do_vfp_nsyn_opcode ("fmsr");
9db2f6b4
RL
19580 /* ARMv8.2 fp16 vmov.f16 instruction. */
19581 if (rs == NS_HR)
19582 do_scalar_fp16_v82_encode ();
037e8744 19583 break;
5f4273c7 19584
57785aa2
AV
19585 case NS_RRSS:
19586 do_mve_mov (0);
19587 break;
19588 case NS_SSRR:
19589 do_mve_mov (1);
19590 break;
19591
037e8744
JB
19592 /* The encoders for the fmrrs and fmsrr instructions expect three operands
19593 (one of which is a list), but we have parsed four. Do some fiddling to
19594 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
19595 expect. */
19596 case NS_RRFF: /* case 14 (fmrrs). */
57785aa2
AV
19597 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19598 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19599 _(BAD_FPU));
037e8744 19600 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
477330fc 19601 _("VFP registers must be adjacent"));
037e8744
JB
19602 inst.operands[2].imm = 2;
19603 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19604 do_vfp_nsyn_opcode ("fmrrs");
19605 break;
5f4273c7 19606
037e8744 19607 case NS_FFRR: /* case 15 (fmsrr). */
57785aa2
AV
19608 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19609 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19610 _(BAD_FPU));
037e8744 19611 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
477330fc 19612 _("VFP registers must be adjacent"));
037e8744
JB
19613 inst.operands[1] = inst.operands[2];
19614 inst.operands[2] = inst.operands[3];
19615 inst.operands[0].imm = 2;
19616 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19617 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 19618 break;
5f4273c7 19619
4c261dff
NC
19620 case NS_NULL:
19621 /* neon_select_shape has determined that the instruction
19622 shape is wrong and has already set the error message. */
19623 break;
19624
5287ad62
JB
19625 default:
19626 abort ();
19627 }
19628}
19629
57785aa2
AV
19630static void
19631do_mve_movl (void)
19632{
19633 if (!(inst.operands[0].present && inst.operands[0].isquad
19634 && inst.operands[1].present && inst.operands[1].isquad
19635 && !inst.operands[2].present))
19636 {
19637 inst.instruction = 0;
19638 inst.cond = 0xb;
19639 if (thumb_mode)
19640 set_pred_insn_type (INSIDE_IT_INSN);
19641 do_neon_mov ();
19642 return;
19643 }
19644
19645 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19646 return;
19647
19648 if (inst.cond != COND_ALWAYS)
19649 inst.pred_insn_type = INSIDE_VPT_INSN;
19650
19651 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
19652 | N_S16 | N_U16 | N_KEY);
19653
19654 inst.instruction |= (et.type == NT_unsigned) << 28;
19655 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19656 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
19657 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19658 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19659 inst.instruction |= LOW4 (inst.operands[1].reg);
19660 inst.is_neon = 1;
19661}
19662
5287ad62
JB
19663static void
19664do_neon_rshift_round_imm (void)
19665{
037e8744 19666 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
19667 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
19668 int imm = inst.operands[2].imm;
19669
19670 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
19671 if (imm == 0)
19672 {
19673 inst.operands[2].present = 0;
19674 do_neon_mov ();
19675 return;
19676 }
19677
19678 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 19679 _("immediate out of range for shift"));
037e8744 19680 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
477330fc 19681 et.size - imm);
5287ad62
JB
19682}
19683
9db2f6b4
RL
19684static void
19685do_neon_movhf (void)
19686{
19687 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
19688 constraint (rs != NS_HH, _("invalid suffix"));
19689
7bdf778b
ASDV
19690 if (inst.cond != COND_ALWAYS)
19691 {
19692 if (thumb_mode)
19693 {
19694 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
19695 " the behaviour is UNPREDICTABLE"));
19696 }
19697 else
19698 {
19699 inst.error = BAD_COND;
19700 return;
19701 }
19702 }
19703
9db2f6b4
RL
19704 do_vfp_sp_monadic ();
19705
19706 inst.is_neon = 1;
19707 inst.instruction |= 0xf0000000;
19708}
19709
5287ad62
JB
19710static void
19711do_neon_movl (void)
19712{
19713 struct neon_type_el et = neon_check_type (2, NS_QD,
19714 N_EQK | N_DBL, N_SU_32 | N_KEY);
19715 unsigned sizebits = et.size >> 3;
19716 inst.instruction |= sizebits << 19;
19717 neon_two_same (0, et.type == NT_unsigned, -1);
19718}
19719
19720static void
19721do_neon_trn (void)
19722{
037e8744 19723 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19724 struct neon_type_el et = neon_check_type (2, rs,
19725 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 19726 NEON_ENCODE (INTEGER, inst);
037e8744 19727 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19728}
19729
19730static void
19731do_neon_zip_uzp (void)
19732{
037e8744 19733 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19734 struct neon_type_el et = neon_check_type (2, rs,
19735 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19736 if (rs == NS_DD && et.size == 32)
19737 {
19738 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
19739 inst.instruction = N_MNEM_vtrn;
19740 do_neon_trn ();
19741 return;
19742 }
037e8744 19743 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19744}
19745
19746static void
19747do_neon_sat_abs_neg (void)
19748{
1a186d29
AV
19749 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19750 return;
19751
19752 enum neon_shape rs;
19753 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19754 rs = neon_select_shape (NS_QQ, NS_NULL);
19755 else
19756 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19757 struct neon_type_el et = neon_check_type (2, rs,
19758 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 19759 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19760}
19761
19762static void
19763do_neon_pair_long (void)
19764{
037e8744 19765 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19766 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
19767 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
19768 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 19769 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19770}
19771
19772static void
19773do_neon_recip_est (void)
19774{
037e8744 19775 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62 19776 struct neon_type_el et = neon_check_type (2, rs,
cc933301 19777 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
5287ad62 19778 inst.instruction |= (et.type == NT_float) << 8;
037e8744 19779 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19780}
19781
19782static void
19783do_neon_cls (void)
19784{
f30ee27c
AV
19785 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19786 return;
19787
19788 enum neon_shape rs;
19789 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19790 rs = neon_select_shape (NS_QQ, NS_NULL);
19791 else
19792 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19793
5287ad62
JB
19794 struct neon_type_el et = neon_check_type (2, rs,
19795 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 19796 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19797}
19798
19799static void
19800do_neon_clz (void)
19801{
f30ee27c
AV
19802 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19803 return;
19804
19805 enum neon_shape rs;
19806 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19807 rs = neon_select_shape (NS_QQ, NS_NULL);
19808 else
19809 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19810
5287ad62
JB
19811 struct neon_type_el et = neon_check_type (2, rs,
19812 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 19813 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19814}
19815
19816static void
19817do_neon_cnt (void)
19818{
037e8744 19819 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19820 struct neon_type_el et = neon_check_type (2, rs,
19821 N_EQK | N_INT, N_8 | N_KEY);
037e8744 19822 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19823}
19824
19825static void
19826do_neon_swp (void)
19827{
037e8744
JB
19828 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19829 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
19830}
19831
19832static void
19833do_neon_tbl_tbx (void)
19834{
19835 unsigned listlenbits;
dcbf9037 19836 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 19837
5287ad62
JB
19838 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
19839 {
dcbf9037 19840 first_error (_("bad list length for table lookup"));
5287ad62
JB
19841 return;
19842 }
5f4273c7 19843
5287ad62
JB
19844 listlenbits = inst.operands[1].imm - 1;
19845 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19846 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19847 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19848 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19849 inst.instruction |= LOW4 (inst.operands[2].reg);
19850 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19851 inst.instruction |= listlenbits << 8;
5f4273c7 19852
88714cb8 19853 neon_dp_fixup (&inst);
5287ad62
JB
19854}
19855
19856static void
19857do_neon_ldm_stm (void)
19858{
19859 /* P, U and L bits are part of bitmask. */
19860 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
19861 unsigned offsetbits = inst.operands[1].imm * 2;
19862
037e8744
JB
19863 if (inst.operands[1].issingle)
19864 {
19865 do_vfp_nsyn_ldm_stm (is_dbmode);
19866 return;
19867 }
19868
5287ad62 19869 constraint (is_dbmode && !inst.operands[0].writeback,
477330fc 19870 _("writeback (!) must be used for VLDMDB and VSTMDB"));
5287ad62
JB
19871
19872 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
477330fc
RM
19873 _("register list must contain at least 1 and at most 16 "
19874 "registers"));
5287ad62
JB
19875
19876 inst.instruction |= inst.operands[0].reg << 16;
19877 inst.instruction |= inst.operands[0].writeback << 21;
19878 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19879 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
19880
19881 inst.instruction |= offsetbits;
5f4273c7 19882
037e8744 19883 do_vfp_cond_or_thumb ();
5287ad62
JB
19884}
19885
19886static void
19887do_neon_ldr_str (void)
19888{
5287ad62 19889 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 19890
6844b2c2
MGD
19891 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19892 And is UNPREDICTABLE in thumb mode. */
fa94de6b 19893 if (!is_ldr
6844b2c2 19894 && inst.operands[1].reg == REG_PC
ba86b375 19895 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
6844b2c2 19896 {
94dcf8bf 19897 if (thumb_mode)
6844b2c2 19898 inst.error = _("Use of PC here is UNPREDICTABLE");
94dcf8bf 19899 else if (warn_on_deprecated)
5c3696f8 19900 as_tsktsk (_("Use of PC here is deprecated"));
6844b2c2
MGD
19901 }
19902
037e8744
JB
19903 if (inst.operands[0].issingle)
19904 {
cd2f129f 19905 if (is_ldr)
477330fc 19906 do_vfp_nsyn_opcode ("flds");
cd2f129f 19907 else
477330fc 19908 do_vfp_nsyn_opcode ("fsts");
9db2f6b4
RL
19909
19910 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19911 if (inst.vectype.el[0].size == 16)
19912 do_scalar_fp16_v82_encode ();
5287ad62
JB
19913 }
19914 else
5287ad62 19915 {
cd2f129f 19916 if (is_ldr)
477330fc 19917 do_vfp_nsyn_opcode ("fldd");
5287ad62 19918 else
477330fc 19919 do_vfp_nsyn_opcode ("fstd");
5287ad62 19920 }
5287ad62
JB
19921}
19922
32c36c3c
AV
19923static void
19924do_t_vldr_vstr_sysreg (void)
19925{
19926 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
19927 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
19928
19929 /* Use of PC is UNPREDICTABLE. */
19930 if (inst.operands[1].reg == REG_PC)
19931 inst.error = _("Use of PC here is UNPREDICTABLE");
19932
19933 if (inst.operands[1].immisreg)
19934 inst.error = _("instruction does not accept register index");
19935
19936 if (!inst.operands[1].isreg)
19937 inst.error = _("instruction does not accept PC-relative addressing");
19938
19939 if (abs (inst.operands[1].imm) >= (1 << 7))
19940 inst.error = _("immediate value out of range");
19941
19942 inst.instruction = 0xec000f80;
19943 if (is_vldr)
19944 inst.instruction |= 1 << sysreg_vldr_bitno;
19945 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
19946 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
19947 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
19948}
19949
19950static void
19951do_vldr_vstr (void)
19952{
19953 bfd_boolean sysreg_op = !inst.operands[0].isreg;
19954
19955 /* VLDR/VSTR (System Register). */
19956 if (sysreg_op)
19957 {
19958 if (!mark_feature_used (&arm_ext_v8_1m_main))
19959 as_bad (_("Instruction not permitted on this architecture"));
19960
19961 do_t_vldr_vstr_sysreg ();
19962 }
19963 /* VLDR/VSTR. */
19964 else
19965 {
19966 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
19967 as_bad (_("Instruction not permitted on this architecture"));
19968 do_neon_ldr_str ();
19969 }
19970}
19971
5287ad62
JB
19972/* "interleave" version also handles non-interleaving register VLD1/VST1
19973 instructions. */
19974
19975static void
19976do_neon_ld_st_interleave (void)
19977{
037e8744 19978 struct neon_type_el et = neon_check_type (1, NS_NULL,
477330fc 19979 N_8 | N_16 | N_32 | N_64);
5287ad62
JB
19980 unsigned alignbits = 0;
19981 unsigned idx;
19982 /* The bits in this table go:
19983 0: register stride of one (0) or two (1)
19984 1,2: register list length, minus one (1, 2, 3, 4).
19985 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19986 We use -1 for invalid entries. */
19987 const int typetable[] =
19988 {
19989 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19990 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19991 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19992 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19993 };
19994 int typebits;
19995
dcbf9037
JB
19996 if (et.type == NT_invtype)
19997 return;
19998
5287ad62
JB
19999 if (inst.operands[1].immisalign)
20000 switch (inst.operands[1].imm >> 8)
20001 {
20002 case 64: alignbits = 1; break;
20003 case 128:
477330fc 20004 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
e23c0ad8 20005 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
477330fc
RM
20006 goto bad_alignment;
20007 alignbits = 2;
20008 break;
5287ad62 20009 case 256:
477330fc
RM
20010 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20011 goto bad_alignment;
20012 alignbits = 3;
20013 break;
5287ad62
JB
20014 default:
20015 bad_alignment:
477330fc
RM
20016 first_error (_("bad alignment"));
20017 return;
5287ad62
JB
20018 }
20019
20020 inst.instruction |= alignbits << 4;
20021 inst.instruction |= neon_logbits (et.size) << 6;
20022
20023 /* Bits [4:6] of the immediate in a list specifier encode register stride
20024 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
20025 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
20026 up the right value for "type" in a table based on this value and the given
20027 list style, then stick it back. */
20028 idx = ((inst.operands[0].imm >> 4) & 7)
477330fc 20029 | (((inst.instruction >> 8) & 3) << 3);
5287ad62
JB
20030
20031 typebits = typetable[idx];
5f4273c7 20032
5287ad62 20033 constraint (typebits == -1, _("bad list type for instruction"));
1d50d57c 20034 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
35c228db 20035 BAD_EL_TYPE);
5287ad62
JB
20036
20037 inst.instruction &= ~0xf00;
20038 inst.instruction |= typebits << 8;
20039}
20040
20041/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
20042 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
20043 otherwise. The variable arguments are a list of pairs of legal (size, align)
20044 values, terminated with -1. */
20045
20046static int
aa8a0863 20047neon_alignment_bit (int size, int align, int *do_alignment, ...)
5287ad62
JB
20048{
20049 va_list ap;
20050 int result = FAIL, thissize, thisalign;
5f4273c7 20051
5287ad62
JB
20052 if (!inst.operands[1].immisalign)
20053 {
aa8a0863 20054 *do_alignment = 0;
5287ad62
JB
20055 return SUCCESS;
20056 }
5f4273c7 20057
aa8a0863 20058 va_start (ap, do_alignment);
5287ad62
JB
20059
20060 do
20061 {
20062 thissize = va_arg (ap, int);
20063 if (thissize == -1)
477330fc 20064 break;
5287ad62
JB
20065 thisalign = va_arg (ap, int);
20066
20067 if (size == thissize && align == thisalign)
477330fc 20068 result = SUCCESS;
5287ad62
JB
20069 }
20070 while (result != SUCCESS);
20071
20072 va_end (ap);
20073
20074 if (result == SUCCESS)
aa8a0863 20075 *do_alignment = 1;
5287ad62 20076 else
dcbf9037 20077 first_error (_("unsupported alignment for instruction"));
5f4273c7 20078
5287ad62
JB
20079 return result;
20080}
20081
20082static void
20083do_neon_ld_st_lane (void)
20084{
037e8744 20085 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 20086 int align_good, do_alignment = 0;
5287ad62
JB
20087 int logsize = neon_logbits (et.size);
20088 int align = inst.operands[1].imm >> 8;
20089 int n = (inst.instruction >> 8) & 3;
20090 int max_el = 64 / et.size;
5f4273c7 20091
dcbf9037
JB
20092 if (et.type == NT_invtype)
20093 return;
5f4273c7 20094
5287ad62 20095 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
477330fc 20096 _("bad list length"));
5287ad62 20097 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
477330fc 20098 _("scalar index out of range"));
5287ad62 20099 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
477330fc
RM
20100 && et.size == 8,
20101 _("stride of 2 unavailable when element size is 8"));
5f4273c7 20102
5287ad62
JB
20103 switch (n)
20104 {
20105 case 0: /* VLD1 / VST1. */
aa8a0863 20106 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
477330fc 20107 32, 32, -1);
5287ad62 20108 if (align_good == FAIL)
477330fc 20109 return;
aa8a0863 20110 if (do_alignment)
477330fc
RM
20111 {
20112 unsigned alignbits = 0;
20113 switch (et.size)
20114 {
20115 case 16: alignbits = 0x1; break;
20116 case 32: alignbits = 0x3; break;
20117 default: ;
20118 }
20119 inst.instruction |= alignbits << 4;
20120 }
5287ad62
JB
20121 break;
20122
20123 case 1: /* VLD2 / VST2. */
aa8a0863
TS
20124 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
20125 16, 32, 32, 64, -1);
5287ad62 20126 if (align_good == FAIL)
477330fc 20127 return;
aa8a0863 20128 if (do_alignment)
477330fc 20129 inst.instruction |= 1 << 4;
5287ad62
JB
20130 break;
20131
20132 case 2: /* VLD3 / VST3. */
20133 constraint (inst.operands[1].immisalign,
477330fc 20134 _("can't use alignment with this instruction"));
5287ad62
JB
20135 break;
20136
20137 case 3: /* VLD4 / VST4. */
aa8a0863 20138 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc 20139 16, 64, 32, 64, 32, 128, -1);
5287ad62 20140 if (align_good == FAIL)
477330fc 20141 return;
aa8a0863 20142 if (do_alignment)
477330fc
RM
20143 {
20144 unsigned alignbits = 0;
20145 switch (et.size)
20146 {
20147 case 8: alignbits = 0x1; break;
20148 case 16: alignbits = 0x1; break;
20149 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
20150 default: ;
20151 }
20152 inst.instruction |= alignbits << 4;
20153 }
5287ad62
JB
20154 break;
20155
20156 default: ;
20157 }
20158
20159 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
20160 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20161 inst.instruction |= 1 << (4 + logsize);
5f4273c7 20162
5287ad62
JB
20163 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
20164 inst.instruction |= logsize << 10;
20165}
20166
20167/* Encode single n-element structure to all lanes VLD<n> instructions. */
20168
20169static void
20170do_neon_ld_dup (void)
20171{
037e8744 20172 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 20173 int align_good, do_alignment = 0;
5287ad62 20174
dcbf9037
JB
20175 if (et.type == NT_invtype)
20176 return;
20177
5287ad62
JB
20178 switch ((inst.instruction >> 8) & 3)
20179 {
20180 case 0: /* VLD1. */
9c2799c2 20181 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62 20182 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863 20183 &do_alignment, 16, 16, 32, 32, -1);
5287ad62 20184 if (align_good == FAIL)
477330fc 20185 return;
5287ad62 20186 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
477330fc
RM
20187 {
20188 case 1: break;
20189 case 2: inst.instruction |= 1 << 5; break;
20190 default: first_error (_("bad list length")); return;
20191 }
5287ad62
JB
20192 inst.instruction |= neon_logbits (et.size) << 6;
20193 break;
20194
20195 case 1: /* VLD2. */
20196 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863
TS
20197 &do_alignment, 8, 16, 16, 32, 32, 64,
20198 -1);
5287ad62 20199 if (align_good == FAIL)
477330fc 20200 return;
5287ad62 20201 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
477330fc 20202 _("bad list length"));
5287ad62 20203 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 20204 inst.instruction |= 1 << 5;
5287ad62
JB
20205 inst.instruction |= neon_logbits (et.size) << 6;
20206 break;
20207
20208 case 2: /* VLD3. */
20209 constraint (inst.operands[1].immisalign,
477330fc 20210 _("can't use alignment with this instruction"));
5287ad62 20211 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
477330fc 20212 _("bad list length"));
5287ad62 20213 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 20214 inst.instruction |= 1 << 5;
5287ad62
JB
20215 inst.instruction |= neon_logbits (et.size) << 6;
20216 break;
20217
20218 case 3: /* VLD4. */
20219 {
477330fc 20220 int align = inst.operands[1].imm >> 8;
aa8a0863 20221 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc
RM
20222 16, 64, 32, 64, 32, 128, -1);
20223 if (align_good == FAIL)
20224 return;
20225 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
20226 _("bad list length"));
20227 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20228 inst.instruction |= 1 << 5;
20229 if (et.size == 32 && align == 128)
20230 inst.instruction |= 0x3 << 6;
20231 else
20232 inst.instruction |= neon_logbits (et.size) << 6;
5287ad62
JB
20233 }
20234 break;
20235
20236 default: ;
20237 }
20238
aa8a0863 20239 inst.instruction |= do_alignment << 4;
5287ad62
JB
20240}
20241
20242/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
20243 apart from bits [11:4]. */
20244
20245static void
20246do_neon_ldx_stx (void)
20247{
b1a769ed
DG
20248 if (inst.operands[1].isreg)
20249 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
20250
5287ad62
JB
20251 switch (NEON_LANE (inst.operands[0].imm))
20252 {
20253 case NEON_INTERLEAVE_LANES:
88714cb8 20254 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
20255 do_neon_ld_st_interleave ();
20256 break;
5f4273c7 20257
5287ad62 20258 case NEON_ALL_LANES:
88714cb8 20259 NEON_ENCODE (DUP, inst);
2d51fb74
JB
20260 if (inst.instruction == N_INV)
20261 {
20262 first_error ("only loads support such operands");
20263 break;
20264 }
5287ad62
JB
20265 do_neon_ld_dup ();
20266 break;
5f4273c7 20267
5287ad62 20268 default:
88714cb8 20269 NEON_ENCODE (LANE, inst);
5287ad62
JB
20270 do_neon_ld_st_lane ();
20271 }
20272
20273 /* L bit comes from bit mask. */
20274 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20275 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20276 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 20277
5287ad62
JB
20278 if (inst.operands[1].postind)
20279 {
20280 int postreg = inst.operands[1].imm & 0xf;
20281 constraint (!inst.operands[1].immisreg,
477330fc 20282 _("post-index must be a register"));
5287ad62 20283 constraint (postreg == 0xd || postreg == 0xf,
477330fc 20284 _("bad register for post-index"));
5287ad62
JB
20285 inst.instruction |= postreg;
20286 }
4f2374c7 20287 else
5287ad62 20288 {
4f2374c7 20289 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
e2b0ab59
AV
20290 constraint (inst.relocs[0].exp.X_op != O_constant
20291 || inst.relocs[0].exp.X_add_number != 0,
4f2374c7
WN
20292 BAD_ADDR_MODE);
20293
20294 if (inst.operands[1].writeback)
20295 {
20296 inst.instruction |= 0xd;
20297 }
20298 else
20299 inst.instruction |= 0xf;
5287ad62 20300 }
5f4273c7 20301
5287ad62
JB
20302 if (thumb_mode)
20303 inst.instruction |= 0xf9000000;
20304 else
20305 inst.instruction |= 0xf4000000;
20306}
33399f07
MGD
20307
20308/* FP v8. */
20309static void
20310do_vfp_nsyn_fpv8 (enum neon_shape rs)
20311{
a715796b
TG
20312 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20313 D register operands. */
20314 if (neon_shape_class[rs] == SC_DOUBLE)
20315 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20316 _(BAD_FPU));
20317
33399f07
MGD
20318 NEON_ENCODE (FPV8, inst);
20319
9db2f6b4
RL
20320 if (rs == NS_FFF || rs == NS_HHH)
20321 {
20322 do_vfp_sp_dyadic ();
20323
20324 /* ARMv8.2 fp16 instruction. */
20325 if (rs == NS_HHH)
20326 do_scalar_fp16_v82_encode ();
20327 }
33399f07
MGD
20328 else
20329 do_vfp_dp_rd_rn_rm ();
20330
20331 if (rs == NS_DDD)
20332 inst.instruction |= 0x100;
20333
20334 inst.instruction |= 0xf0000000;
20335}
20336
20337static void
20338do_vsel (void)
20339{
5ee91343 20340 set_pred_insn_type (OUTSIDE_PRED_INSN);
33399f07
MGD
20341
20342 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
20343 first_error (_("invalid instruction shape"));
20344}
20345
73924fbc
MGD
20346static void
20347do_vmaxnm (void)
20348{
935295b5
AV
20349 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20350 set_pred_insn_type (OUTSIDE_PRED_INSN);
73924fbc
MGD
20351
20352 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
20353 return;
20354
935295b5 20355 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH8))
73924fbc
MGD
20356 return;
20357
cc933301 20358 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
73924fbc
MGD
20359}
20360
30bdf752
MGD
20361static void
20362do_vrint_1 (enum neon_cvt_mode mode)
20363{
9db2f6b4 20364 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
30bdf752
MGD
20365 struct neon_type_el et;
20366
20367 if (rs == NS_NULL)
20368 return;
20369
a715796b
TG
20370 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20371 D register operands. */
20372 if (neon_shape_class[rs] == SC_DOUBLE)
20373 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20374 _(BAD_FPU));
20375
9db2f6b4
RL
20376 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
20377 | N_VFP);
30bdf752
MGD
20378 if (et.type != NT_invtype)
20379 {
20380 /* VFP encodings. */
20381 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
20382 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
5ee91343 20383 set_pred_insn_type (OUTSIDE_PRED_INSN);
30bdf752
MGD
20384
20385 NEON_ENCODE (FPV8, inst);
9db2f6b4 20386 if (rs == NS_FF || rs == NS_HH)
30bdf752
MGD
20387 do_vfp_sp_monadic ();
20388 else
20389 do_vfp_dp_rd_rm ();
20390
20391 switch (mode)
20392 {
20393 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
20394 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
20395 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
20396 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
20397 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
20398 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
20399 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
20400 default: abort ();
20401 }
20402
20403 inst.instruction |= (rs == NS_DD) << 8;
20404 do_vfp_cond_or_thumb ();
9db2f6b4
RL
20405
20406 /* ARMv8.2 fp16 vrint instruction. */
20407 if (rs == NS_HH)
20408 do_scalar_fp16_v82_encode ();
30bdf752
MGD
20409 }
20410 else
20411 {
20412 /* Neon encodings (or something broken...). */
20413 inst.error = NULL;
cc933301 20414 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
30bdf752
MGD
20415
20416 if (et.type == NT_invtype)
20417 return;
20418
a710b305 20419 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH8))
30bdf752
MGD
20420 return;
20421
a710b305
AV
20422 NEON_ENCODE (FLOAT, inst);
20423
30bdf752
MGD
20424 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20425 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20426 inst.instruction |= LOW4 (inst.operands[1].reg);
20427 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20428 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
20429 /* Mask off the original size bits and reencode them. */
20430 inst.instruction = ((inst.instruction & 0xfff3ffff)
20431 | neon_logbits (et.size) << 18);
20432
30bdf752
MGD
20433 switch (mode)
20434 {
20435 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
20436 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
20437 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
20438 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
20439 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
20440 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
20441 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
20442 default: abort ();
20443 }
20444
20445 if (thumb_mode)
20446 inst.instruction |= 0xfc000000;
20447 else
20448 inst.instruction |= 0xf0000000;
20449 }
20450}
20451
20452static void
20453do_vrintx (void)
20454{
20455 do_vrint_1 (neon_cvt_mode_x);
20456}
20457
20458static void
20459do_vrintz (void)
20460{
20461 do_vrint_1 (neon_cvt_mode_z);
20462}
20463
20464static void
20465do_vrintr (void)
20466{
20467 do_vrint_1 (neon_cvt_mode_r);
20468}
20469
20470static void
20471do_vrinta (void)
20472{
20473 do_vrint_1 (neon_cvt_mode_a);
20474}
20475
20476static void
20477do_vrintn (void)
20478{
20479 do_vrint_1 (neon_cvt_mode_n);
20480}
20481
20482static void
20483do_vrintp (void)
20484{
20485 do_vrint_1 (neon_cvt_mode_p);
20486}
20487
20488static void
20489do_vrintm (void)
20490{
20491 do_vrint_1 (neon_cvt_mode_m);
20492}
20493
c28eeff2
SN
20494static unsigned
20495neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
20496{
20497 unsigned regno = NEON_SCALAR_REG (opnd);
20498 unsigned elno = NEON_SCALAR_INDEX (opnd);
20499
20500 if (elsize == 16 && elno < 2 && regno < 16)
20501 return regno | (elno << 4);
20502 else if (elsize == 32 && elno == 0)
20503 return regno;
20504
20505 first_error (_("scalar out of range"));
20506 return 0;
20507}
20508
20509static void
20510do_vcmla (void)
20511{
5d281bf0
AV
20512 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
20513 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20514 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
20515 constraint (inst.relocs[0].exp.X_op != O_constant,
20516 _("expression too complex"));
20517 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2
SN
20518 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
20519 _("immediate out of range"));
20520 rot /= 90;
5d281bf0
AV
20521
20522 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8 | NEON_CHECK_CC))
20523 return;
20524
c28eeff2
SN
20525 if (inst.operands[2].isscalar)
20526 {
5d281bf0
AV
20527 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20528 first_error (_("invalid instruction shape"));
c28eeff2
SN
20529 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
20530 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20531 N_KEY | N_F16 | N_F32).size;
20532 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
20533 inst.is_neon = 1;
20534 inst.instruction = 0xfe000800;
20535 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20536 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20537 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20538 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20539 inst.instruction |= LOW4 (m);
20540 inst.instruction |= HI1 (m) << 5;
20541 inst.instruction |= neon_quad (rs) << 6;
20542 inst.instruction |= rot << 20;
20543 inst.instruction |= (size == 32) << 23;
20544 }
20545 else
20546 {
5d281bf0
AV
20547 enum neon_shape rs;
20548 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20549 rs = neon_select_shape (NS_QQQI, NS_NULL);
20550 else
20551 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20552
c28eeff2
SN
20553 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20554 N_KEY | N_F16 | N_F32).size;
5d281bf0
AV
20555 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
20556 && (inst.operands[0].reg == inst.operands[1].reg
20557 || inst.operands[0].reg == inst.operands[2].reg))
20558 as_tsktsk (BAD_MVE_SRCDEST);
20559
c28eeff2
SN
20560 neon_three_same (neon_quad (rs), 0, -1);
20561 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20562 inst.instruction |= 0xfc200800;
20563 inst.instruction |= rot << 23;
20564 inst.instruction |= (size == 32) << 20;
20565 }
20566}
20567
20568static void
20569do_vcadd (void)
20570{
5d281bf0
AV
20571 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20572 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20573 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
20574 constraint (inst.relocs[0].exp.X_op != O_constant,
20575 _("expression too complex"));
5d281bf0 20576
e2b0ab59 20577 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2 20578 constraint (rot != 90 && rot != 270, _("immediate out of range"));
5d281bf0
AV
20579 enum neon_shape rs;
20580 struct neon_type_el et;
20581 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20582 {
20583 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20584 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
20585 }
20586 else
20587 {
20588 rs = neon_select_shape (NS_QQQI, NS_NULL);
20589 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
20590 | N_I16 | N_I32);
20591 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
20592 as_tsktsk (_("Warning: 32-bit element size and same first and third "
20593 "operand makes instruction UNPREDICTABLE"));
20594 }
20595
20596 if (et.type == NT_invtype)
20597 return;
20598
20599 if (check_simd_pred_availability (et.type == NT_float, NEON_CHECK_ARCH8
20600 | NEON_CHECK_CC))
20601 return;
20602
20603 if (et.type == NT_float)
20604 {
20605 neon_three_same (neon_quad (rs), 0, -1);
20606 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20607 inst.instruction |= 0xfc800800;
20608 inst.instruction |= (rot == 270) << 24;
20609 inst.instruction |= (et.size == 32) << 20;
20610 }
20611 else
20612 {
20613 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
20614 inst.instruction = 0xfe000f00;
20615 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20616 inst.instruction |= neon_logbits (et.size) << 20;
20617 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20618 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20619 inst.instruction |= (rot == 270) << 12;
20620 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20621 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20622 inst.instruction |= LOW4 (inst.operands[2].reg);
20623 inst.is_neon = 1;
20624 }
c28eeff2
SN
20625}
20626
c604a79a
JW
20627/* Dot Product instructions encoding support. */
20628
20629static void
20630do_neon_dotproduct (int unsigned_p)
20631{
20632 enum neon_shape rs;
20633 unsigned scalar_oprd2 = 0;
20634 int high8;
20635
20636 if (inst.cond != COND_ALWAYS)
20637 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
20638 "is UNPREDICTABLE"));
20639
20640 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
20641 _(BAD_FPU));
20642
20643 /* Dot Product instructions are in three-same D/Q register format or the third
20644 operand can be a scalar index register. */
20645 if (inst.operands[2].isscalar)
20646 {
20647 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
20648 high8 = 0xfe000000;
20649 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
20650 }
20651 else
20652 {
20653 high8 = 0xfc000000;
20654 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
20655 }
20656
20657 if (unsigned_p)
20658 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
20659 else
20660 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
20661
20662 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
20663 Product instruction, so we pass 0 as the "ubit" parameter. And the
20664 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
20665 neon_three_same (neon_quad (rs), 0, 32);
20666
20667 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
20668 different NEON three-same encoding. */
20669 inst.instruction &= 0x00ffffff;
20670 inst.instruction |= high8;
20671 /* Encode 'U' bit which indicates signedness. */
20672 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
20673 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
20674 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
20675 the instruction encoding. */
20676 if (inst.operands[2].isscalar)
20677 {
20678 inst.instruction &= 0xffffffd0;
20679 inst.instruction |= LOW4 (scalar_oprd2);
20680 inst.instruction |= HI1 (scalar_oprd2) << 5;
20681 }
20682}
20683
20684/* Dot Product instructions for signed integer. */
20685
20686static void
20687do_neon_dotproduct_s (void)
20688{
20689 return do_neon_dotproduct (0);
20690}
20691
20692/* Dot Product instructions for unsigned integer. */
20693
20694static void
20695do_neon_dotproduct_u (void)
20696{
20697 return do_neon_dotproduct (1);
20698}
20699
91ff7894
MGD
20700/* Crypto v1 instructions. */
20701static void
20702do_crypto_2op_1 (unsigned elttype, int op)
20703{
5ee91343 20704 set_pred_insn_type (OUTSIDE_PRED_INSN);
91ff7894
MGD
20705
20706 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
20707 == NT_invtype)
20708 return;
20709
20710 inst.error = NULL;
20711
20712 NEON_ENCODE (INTEGER, inst);
20713 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20714 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20715 inst.instruction |= LOW4 (inst.operands[1].reg);
20716 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20717 if (op != -1)
20718 inst.instruction |= op << 6;
20719
20720 if (thumb_mode)
20721 inst.instruction |= 0xfc000000;
20722 else
20723 inst.instruction |= 0xf0000000;
20724}
20725
48adcd8e
MGD
20726static void
20727do_crypto_3op_1 (int u, int op)
20728{
5ee91343 20729 set_pred_insn_type (OUTSIDE_PRED_INSN);
48adcd8e
MGD
20730
20731 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
20732 N_32 | N_UNT | N_KEY).type == NT_invtype)
20733 return;
20734
20735 inst.error = NULL;
20736
20737 NEON_ENCODE (INTEGER, inst);
20738 neon_three_same (1, u, 8 << op);
20739}
20740
91ff7894
MGD
20741static void
20742do_aese (void)
20743{
20744 do_crypto_2op_1 (N_8, 0);
20745}
20746
20747static void
20748do_aesd (void)
20749{
20750 do_crypto_2op_1 (N_8, 1);
20751}
20752
20753static void
20754do_aesmc (void)
20755{
20756 do_crypto_2op_1 (N_8, 2);
20757}
20758
20759static void
20760do_aesimc (void)
20761{
20762 do_crypto_2op_1 (N_8, 3);
20763}
20764
48adcd8e
MGD
20765static void
20766do_sha1c (void)
20767{
20768 do_crypto_3op_1 (0, 0);
20769}
20770
20771static void
20772do_sha1p (void)
20773{
20774 do_crypto_3op_1 (0, 1);
20775}
20776
20777static void
20778do_sha1m (void)
20779{
20780 do_crypto_3op_1 (0, 2);
20781}
20782
20783static void
20784do_sha1su0 (void)
20785{
20786 do_crypto_3op_1 (0, 3);
20787}
91ff7894 20788
48adcd8e
MGD
20789static void
20790do_sha256h (void)
20791{
20792 do_crypto_3op_1 (1, 0);
20793}
20794
20795static void
20796do_sha256h2 (void)
20797{
20798 do_crypto_3op_1 (1, 1);
20799}
20800
20801static void
20802do_sha256su1 (void)
20803{
20804 do_crypto_3op_1 (1, 2);
20805}
3c9017d2
MGD
20806
20807static void
20808do_sha1h (void)
20809{
20810 do_crypto_2op_1 (N_32, -1);
20811}
20812
20813static void
20814do_sha1su1 (void)
20815{
20816 do_crypto_2op_1 (N_32, 0);
20817}
20818
20819static void
20820do_sha256su0 (void)
20821{
20822 do_crypto_2op_1 (N_32, 1);
20823}
dd5181d5
KT
20824
20825static void
20826do_crc32_1 (unsigned int poly, unsigned int sz)
20827{
20828 unsigned int Rd = inst.operands[0].reg;
20829 unsigned int Rn = inst.operands[1].reg;
20830 unsigned int Rm = inst.operands[2].reg;
20831
5ee91343 20832 set_pred_insn_type (OUTSIDE_PRED_INSN);
dd5181d5
KT
20833 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
20834 inst.instruction |= LOW4 (Rn) << 16;
20835 inst.instruction |= LOW4 (Rm);
20836 inst.instruction |= sz << (thumb_mode ? 4 : 21);
20837 inst.instruction |= poly << (thumb_mode ? 20 : 9);
20838
20839 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
20840 as_warn (UNPRED_REG ("r15"));
dd5181d5
KT
20841}
20842
20843static void
20844do_crc32b (void)
20845{
20846 do_crc32_1 (0, 0);
20847}
20848
20849static void
20850do_crc32h (void)
20851{
20852 do_crc32_1 (0, 1);
20853}
20854
20855static void
20856do_crc32w (void)
20857{
20858 do_crc32_1 (0, 2);
20859}
20860
20861static void
20862do_crc32cb (void)
20863{
20864 do_crc32_1 (1, 0);
20865}
20866
20867static void
20868do_crc32ch (void)
20869{
20870 do_crc32_1 (1, 1);
20871}
20872
20873static void
20874do_crc32cw (void)
20875{
20876 do_crc32_1 (1, 2);
20877}
20878
49e8a725
SN
20879static void
20880do_vjcvt (void)
20881{
20882 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20883 _(BAD_FPU));
20884 neon_check_type (2, NS_FD, N_S32, N_F64);
20885 do_vfp_sp_dp_cvt ();
20886 do_vfp_cond_or_thumb ();
20887}
20888
5287ad62
JB
20889\f
20890/* Overall per-instruction processing. */
20891
20892/* We need to be able to fix up arbitrary expressions in some statements.
20893 This is so that we can handle symbols that are an arbitrary distance from
20894 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20895 which returns part of an address in a form which will be valid for
20896 a data instruction. We do this by pushing the expression into a symbol
20897 in the expr_section, and creating a fix for that. */
20898
20899static void
20900fix_new_arm (fragS * frag,
20901 int where,
20902 short int size,
20903 expressionS * exp,
20904 int pc_rel,
20905 int reloc)
20906{
20907 fixS * new_fix;
20908
20909 switch (exp->X_op)
20910 {
20911 case O_constant:
6e7ce2cd
PB
20912 if (pc_rel)
20913 {
20914 /* Create an absolute valued symbol, so we have something to
477330fc
RM
20915 refer to in the object file. Unfortunately for us, gas's
20916 generic expression parsing will already have folded out
20917 any use of .set foo/.type foo %function that may have
20918 been used to set type information of the target location,
20919 that's being specified symbolically. We have to presume
20920 the user knows what they are doing. */
6e7ce2cd
PB
20921 char name[16 + 8];
20922 symbolS *symbol;
20923
20924 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
20925
20926 symbol = symbol_find_or_make (name);
20927 S_SET_SEGMENT (symbol, absolute_section);
20928 symbol_set_frag (symbol, &zero_address_frag);
20929 S_SET_VALUE (symbol, exp->X_add_number);
20930 exp->X_op = O_symbol;
20931 exp->X_add_symbol = symbol;
20932 exp->X_add_number = 0;
20933 }
20934 /* FALLTHROUGH */
5287ad62
JB
20935 case O_symbol:
20936 case O_add:
20937 case O_subtract:
21d799b5 20938 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
477330fc 20939 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
20940 break;
20941
20942 default:
21d799b5 20943 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
477330fc 20944 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
20945 break;
20946 }
20947
20948 /* Mark whether the fix is to a THUMB instruction, or an ARM
20949 instruction. */
20950 new_fix->tc_fix_data = thumb_mode;
20951}
20952
20953/* Create a frg for an instruction requiring relaxation. */
20954static void
20955output_relax_insn (void)
20956{
20957 char * to;
20958 symbolS *sym;
0110f2b8
PB
20959 int offset;
20960
6e1cb1a6
PB
20961 /* The size of the instruction is unknown, so tie the debug info to the
20962 start of the instruction. */
20963 dwarf2_emit_insn (0);
6e1cb1a6 20964
e2b0ab59 20965 switch (inst.relocs[0].exp.X_op)
0110f2b8
PB
20966 {
20967 case O_symbol:
e2b0ab59
AV
20968 sym = inst.relocs[0].exp.X_add_symbol;
20969 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
20970 break;
20971 case O_constant:
20972 sym = NULL;
e2b0ab59 20973 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
20974 break;
20975 default:
e2b0ab59 20976 sym = make_expr_symbol (&inst.relocs[0].exp);
0110f2b8
PB
20977 offset = 0;
20978 break;
20979 }
20980 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
20981 inst.relax, sym, offset, NULL/*offset, opcode*/);
20982 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
20983}
20984
20985/* Write a 32-bit thumb instruction to buf. */
20986static void
20987put_thumb32_insn (char * buf, unsigned long insn)
20988{
20989 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
20990 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
20991}
20992
b99bd4ef 20993static void
c19d1205 20994output_inst (const char * str)
b99bd4ef 20995{
c19d1205 20996 char * to = NULL;
b99bd4ef 20997
c19d1205 20998 if (inst.error)
b99bd4ef 20999 {
c19d1205 21000 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
21001 return;
21002 }
5f4273c7
NC
21003 if (inst.relax)
21004 {
21005 output_relax_insn ();
0110f2b8 21006 return;
5f4273c7 21007 }
c19d1205
ZW
21008 if (inst.size == 0)
21009 return;
b99bd4ef 21010
c19d1205 21011 to = frag_more (inst.size);
8dc2430f
NC
21012 /* PR 9814: Record the thumb mode into the current frag so that we know
21013 what type of NOP padding to use, if necessary. We override any previous
21014 setting so that if the mode has changed then the NOPS that we use will
21015 match the encoding of the last instruction in the frag. */
cd000bff 21016 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
21017
21018 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 21019 {
9c2799c2 21020 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 21021 put_thumb32_insn (to, inst.instruction);
b99bd4ef 21022 }
c19d1205 21023 else if (inst.size > INSN_SIZE)
b99bd4ef 21024 {
9c2799c2 21025 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
21026 md_number_to_chars (to, inst.instruction, INSN_SIZE);
21027 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 21028 }
c19d1205
ZW
21029 else
21030 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 21031
e2b0ab59
AV
21032 int r;
21033 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21034 {
21035 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
21036 fix_new_arm (frag_now, to - frag_now->fr_literal,
21037 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
21038 inst.relocs[r].type);
21039 }
b99bd4ef 21040
c19d1205 21041 dwarf2_emit_insn (inst.size);
c19d1205 21042}
b99bd4ef 21043
e07e6e58
NC
21044static char *
21045output_it_inst (int cond, int mask, char * to)
21046{
21047 unsigned long instruction = 0xbf00;
21048
21049 mask &= 0xf;
21050 instruction |= mask;
21051 instruction |= cond << 4;
21052
21053 if (to == NULL)
21054 {
21055 to = frag_more (2);
21056#ifdef OBJ_ELF
21057 dwarf2_emit_insn (2);
21058#endif
21059 }
21060
21061 md_number_to_chars (to, instruction, 2);
21062
21063 return to;
21064}
21065
c19d1205
ZW
21066/* Tag values used in struct asm_opcode's tag field. */
21067enum opcode_tag
21068{
21069 OT_unconditional, /* Instruction cannot be conditionalized.
21070 The ARM condition field is still 0xE. */
21071 OT_unconditionalF, /* Instruction cannot be conditionalized
21072 and carries 0xF in its ARM condition field. */
21073 OT_csuffix, /* Instruction takes a conditional suffix. */
5ee91343
AV
21074 OT_csuffixF, /* Some forms of the instruction take a scalar
21075 conditional suffix, others place 0xF where the
21076 condition field would be, others take a vector
21077 conditional suffix. */
c19d1205
ZW
21078 OT_cinfix3, /* Instruction takes a conditional infix,
21079 beginning at character index 3. (In
21080 unified mode, it becomes a suffix.) */
088fa78e
KH
21081 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
21082 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
21083 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
21084 character index 3, even in unified mode. Used for
21085 legacy instructions where suffix and infix forms
21086 may be ambiguous. */
c19d1205 21087 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 21088 suffix or an infix at character index 3. */
c19d1205
ZW
21089 OT_odd_infix_unc, /* This is the unconditional variant of an
21090 instruction that takes a conditional infix
21091 at an unusual position. In unified mode,
21092 this variant will accept a suffix. */
21093 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
21094 are the conditional variants of instructions that
21095 take conditional infixes in unusual positions.
21096 The infix appears at character index
21097 (tag - OT_odd_infix_0). These are not accepted
21098 in unified mode. */
21099};
b99bd4ef 21100
c19d1205
ZW
21101/* Subroutine of md_assemble, responsible for looking up the primary
21102 opcode from the mnemonic the user wrote. STR points to the
21103 beginning of the mnemonic.
21104
21105 This is not simply a hash table lookup, because of conditional
21106 variants. Most instructions have conditional variants, which are
21107 expressed with a _conditional affix_ to the mnemonic. If we were
21108 to encode each conditional variant as a literal string in the opcode
21109 table, it would have approximately 20,000 entries.
21110
21111 Most mnemonics take this affix as a suffix, and in unified syntax,
21112 'most' is upgraded to 'all'. However, in the divided syntax, some
21113 instructions take the affix as an infix, notably the s-variants of
21114 the arithmetic instructions. Of those instructions, all but six
21115 have the infix appear after the third character of the mnemonic.
21116
21117 Accordingly, the algorithm for looking up primary opcodes given
21118 an identifier is:
21119
21120 1. Look up the identifier in the opcode table.
21121 If we find a match, go to step U.
21122
21123 2. Look up the last two characters of the identifier in the
21124 conditions table. If we find a match, look up the first N-2
21125 characters of the identifier in the opcode table. If we
21126 find a match, go to step CE.
21127
21128 3. Look up the fourth and fifth characters of the identifier in
21129 the conditions table. If we find a match, extract those
21130 characters from the identifier, and look up the remaining
21131 characters in the opcode table. If we find a match, go
21132 to step CM.
21133
21134 4. Fail.
21135
21136 U. Examine the tag field of the opcode structure, in case this is
21137 one of the six instructions with its conditional infix in an
21138 unusual place. If it is, the tag tells us where to find the
21139 infix; look it up in the conditions table and set inst.cond
21140 accordingly. Otherwise, this is an unconditional instruction.
21141 Again set inst.cond accordingly. Return the opcode structure.
21142
21143 CE. Examine the tag field to make sure this is an instruction that
21144 should receive a conditional suffix. If it is not, fail.
21145 Otherwise, set inst.cond from the suffix we already looked up,
21146 and return the opcode structure.
21147
21148 CM. Examine the tag field to make sure this is an instruction that
21149 should receive a conditional infix after the third character.
21150 If it is not, fail. Otherwise, undo the edits to the current
21151 line of input and proceed as for case CE. */
21152
21153static const struct asm_opcode *
21154opcode_lookup (char **str)
21155{
21156 char *end, *base;
21157 char *affix;
21158 const struct asm_opcode *opcode;
21159 const struct asm_cond *cond;
e3cb604e 21160 char save[2];
c19d1205
ZW
21161
21162 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 21163 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 21164 for (base = end = *str; *end != '\0'; end++)
721a8186 21165 if (*end == ' ' || *end == '.')
c19d1205 21166 break;
b99bd4ef 21167
c19d1205 21168 if (end == base)
c921be7d 21169 return NULL;
b99bd4ef 21170
5287ad62 21171 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 21172 if (end[0] == '.')
b99bd4ef 21173 {
5287ad62 21174 int offset = 2;
5f4273c7 21175
267d2029 21176 /* The .w and .n suffixes are only valid if the unified syntax is in
477330fc 21177 use. */
267d2029 21178 if (unified_syntax && end[1] == 'w')
c19d1205 21179 inst.size_req = 4;
267d2029 21180 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
21181 inst.size_req = 2;
21182 else
477330fc 21183 offset = 0;
5287ad62
JB
21184
21185 inst.vectype.elems = 0;
21186
21187 *str = end + offset;
b99bd4ef 21188
5f4273c7 21189 if (end[offset] == '.')
5287ad62 21190 {
267d2029 21191 /* See if we have a Neon type suffix (possible in either unified or
477330fc
RM
21192 non-unified ARM syntax mode). */
21193 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 21194 return NULL;
477330fc 21195 }
5287ad62 21196 else if (end[offset] != '\0' && end[offset] != ' ')
477330fc 21197 return NULL;
b99bd4ef 21198 }
c19d1205
ZW
21199 else
21200 *str = end;
b99bd4ef 21201
c19d1205 21202 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5 21203 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 21204 end - base);
c19d1205 21205 if (opcode)
b99bd4ef 21206 {
c19d1205
ZW
21207 /* step U */
21208 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 21209 {
c19d1205
ZW
21210 inst.cond = COND_ALWAYS;
21211 return opcode;
b99bd4ef 21212 }
b99bd4ef 21213
278df34e 21214 if (warn_on_deprecated && unified_syntax)
5c3696f8 21215 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205 21216 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 21217 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 21218 gas_assert (cond);
b99bd4ef 21219
c19d1205
ZW
21220 inst.cond = cond->value;
21221 return opcode;
21222 }
5ee91343
AV
21223 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21224 {
21225 /* Cannot have a conditional suffix on a mnemonic of less than a character.
21226 */
21227 if (end - base < 2)
21228 return NULL;
21229 affix = end - 1;
21230 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
21231 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21232 affix - base);
21233 /* If this opcode can not be vector predicated then don't accept it with a
21234 vector predication code. */
21235 if (opcode && !opcode->mayBeVecPred)
21236 opcode = NULL;
21237 }
21238 if (!opcode || !cond)
21239 {
21240 /* Cannot have a conditional suffix on a mnemonic of less than two
21241 characters. */
21242 if (end - base < 3)
21243 return NULL;
b99bd4ef 21244
5ee91343
AV
21245 /* Look for suffixed mnemonic. */
21246 affix = end - 2;
21247 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21248 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21249 affix - base);
21250 }
b99bd4ef 21251
c19d1205
ZW
21252 if (opcode && cond)
21253 {
21254 /* step CE */
21255 switch (opcode->tag)
21256 {
e3cb604e
PB
21257 case OT_cinfix3_legacy:
21258 /* Ignore conditional suffixes matched on infix only mnemonics. */
21259 break;
21260
c19d1205 21261 case OT_cinfix3:
088fa78e 21262 case OT_cinfix3_deprecated:
c19d1205
ZW
21263 case OT_odd_infix_unc:
21264 if (!unified_syntax)
0198d5e6 21265 return NULL;
1a0670f3 21266 /* Fall through. */
c19d1205
ZW
21267
21268 case OT_csuffix:
477330fc 21269 case OT_csuffixF:
c19d1205
ZW
21270 case OT_csuf_or_in3:
21271 inst.cond = cond->value;
21272 return opcode;
21273
21274 case OT_unconditional:
21275 case OT_unconditionalF:
dfa9f0d5 21276 if (thumb_mode)
c921be7d 21277 inst.cond = cond->value;
dfa9f0d5
PB
21278 else
21279 {
c921be7d 21280 /* Delayed diagnostic. */
dfa9f0d5
PB
21281 inst.error = BAD_COND;
21282 inst.cond = COND_ALWAYS;
21283 }
c19d1205 21284 return opcode;
b99bd4ef 21285
c19d1205 21286 default:
c921be7d 21287 return NULL;
c19d1205
ZW
21288 }
21289 }
b99bd4ef 21290
c19d1205
ZW
21291 /* Cannot have a usual-position infix on a mnemonic of less than
21292 six characters (five would be a suffix). */
21293 if (end - base < 6)
c921be7d 21294 return NULL;
b99bd4ef 21295
c19d1205
ZW
21296 /* Look for infixed mnemonic in the usual position. */
21297 affix = base + 3;
21d799b5 21298 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 21299 if (!cond)
c921be7d 21300 return NULL;
e3cb604e
PB
21301
21302 memcpy (save, affix, 2);
21303 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5 21304 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 21305 (end - base) - 2);
e3cb604e
PB
21306 memmove (affix + 2, affix, (end - affix) - 2);
21307 memcpy (affix, save, 2);
21308
088fa78e
KH
21309 if (opcode
21310 && (opcode->tag == OT_cinfix3
21311 || opcode->tag == OT_cinfix3_deprecated
21312 || opcode->tag == OT_csuf_or_in3
21313 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 21314 {
c921be7d 21315 /* Step CM. */
278df34e 21316 if (warn_on_deprecated && unified_syntax
088fa78e
KH
21317 && (opcode->tag == OT_cinfix3
21318 || opcode->tag == OT_cinfix3_deprecated))
5c3696f8 21319 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205
ZW
21320
21321 inst.cond = cond->value;
21322 return opcode;
b99bd4ef
NC
21323 }
21324
c921be7d 21325 return NULL;
b99bd4ef
NC
21326}
21327
e07e6e58
NC
21328/* This function generates an initial IT instruction, leaving its block
21329 virtually open for the new instructions. Eventually,
5ee91343 21330 the mask will be updated by now_pred_add_mask () each time
e07e6e58
NC
21331 a new instruction needs to be included in the IT block.
21332 Finally, the block is closed with close_automatic_it_block ().
21333 The block closure can be requested either from md_assemble (),
21334 a tencode (), or due to a label hook. */
21335
21336static void
21337new_automatic_it_block (int cond)
21338{
5ee91343
AV
21339 now_pred.state = AUTOMATIC_PRED_BLOCK;
21340 now_pred.mask = 0x18;
21341 now_pred.cc = cond;
21342 now_pred.block_length = 1;
cd000bff 21343 mapping_state (MAP_THUMB);
5ee91343
AV
21344 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
21345 now_pred.warn_deprecated = FALSE;
21346 now_pred.insn_cond = TRUE;
e07e6e58
NC
21347}
21348
21349/* Close an automatic IT block.
21350 See comments in new_automatic_it_block (). */
21351
21352static void
21353close_automatic_it_block (void)
21354{
5ee91343
AV
21355 now_pred.mask = 0x10;
21356 now_pred.block_length = 0;
e07e6e58
NC
21357}
21358
21359/* Update the mask of the current automatically-generated IT
21360 instruction. See comments in new_automatic_it_block (). */
21361
21362static void
5ee91343 21363now_pred_add_mask (int cond)
e07e6e58
NC
21364{
21365#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
21366#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
477330fc 21367 | ((bitvalue) << (nbit)))
e07e6e58 21368 const int resulting_bit = (cond & 1);
c921be7d 21369
5ee91343
AV
21370 now_pred.mask &= 0xf;
21371 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 21372 resulting_bit,
5ee91343
AV
21373 (5 - now_pred.block_length));
21374 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 21375 1,
5ee91343
AV
21376 ((5 - now_pred.block_length) - 1));
21377 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
e07e6e58
NC
21378
21379#undef CLEAR_BIT
21380#undef SET_BIT_VALUE
e07e6e58
NC
21381}
21382
21383/* The IT blocks handling machinery is accessed through the these functions:
21384 it_fsm_pre_encode () from md_assemble ()
5ee91343
AV
21385 set_pred_insn_type () optional, from the tencode functions
21386 set_pred_insn_type_last () ditto
21387 in_pred_block () ditto
e07e6e58 21388 it_fsm_post_encode () from md_assemble ()
33eaf5de 21389 force_automatic_it_block_close () from label handling functions
e07e6e58
NC
21390
21391 Rationale:
21392 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
477330fc
RM
21393 initializing the IT insn type with a generic initial value depending
21394 on the inst.condition.
e07e6e58 21395 2) During the tencode function, two things may happen:
477330fc 21396 a) The tencode function overrides the IT insn type by
5ee91343
AV
21397 calling either set_pred_insn_type (type) or
21398 set_pred_insn_type_last ().
477330fc 21399 b) The tencode function queries the IT block state by
5ee91343 21400 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
477330fc 21401
5ee91343
AV
21402 Both set_pred_insn_type and in_pred_block run the internal FSM state
21403 handling function (handle_pred_state), because: a) setting the IT insn
477330fc
RM
21404 type may incur in an invalid state (exiting the function),
21405 and b) querying the state requires the FSM to be updated.
21406 Specifically we want to avoid creating an IT block for conditional
21407 branches, so it_fsm_pre_encode is actually a guess and we can't
21408 determine whether an IT block is required until the tencode () routine
21409 has decided what type of instruction this actually it.
5ee91343
AV
21410 Because of this, if set_pred_insn_type and in_pred_block have to be
21411 used, set_pred_insn_type has to be called first.
477330fc 21412
5ee91343
AV
21413 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
21414 that determines the insn IT type depending on the inst.cond code.
477330fc
RM
21415 When a tencode () routine encodes an instruction that can be
21416 either outside an IT block, or, in the case of being inside, has to be
5ee91343 21417 the last one, set_pred_insn_type_last () will determine the proper
477330fc 21418 IT instruction type based on the inst.cond code. Otherwise,
5ee91343 21419 set_pred_insn_type can be called for overriding that logic or
477330fc
RM
21420 for covering other cases.
21421
5ee91343
AV
21422 Calling handle_pred_state () may not transition the IT block state to
21423 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
477330fc 21424 still queried. Instead, if the FSM determines that the state should
5ee91343 21425 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
477330fc
RM
21426 after the tencode () function: that's what it_fsm_post_encode () does.
21427
5ee91343 21428 Since in_pred_block () calls the state handling function to get an
477330fc
RM
21429 updated state, an error may occur (due to invalid insns combination).
21430 In that case, inst.error is set.
21431 Therefore, inst.error has to be checked after the execution of
21432 the tencode () routine.
e07e6e58
NC
21433
21434 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
477330fc 21435 any pending state change (if any) that didn't take place in
5ee91343 21436 handle_pred_state () as explained above. */
e07e6e58
NC
21437
21438static void
21439it_fsm_pre_encode (void)
21440{
21441 if (inst.cond != COND_ALWAYS)
5ee91343 21442 inst.pred_insn_type = INSIDE_IT_INSN;
e07e6e58 21443 else
5ee91343 21444 inst.pred_insn_type = OUTSIDE_PRED_INSN;
e07e6e58 21445
5ee91343 21446 now_pred.state_handled = 0;
e07e6e58
NC
21447}
21448
21449/* IT state FSM handling function. */
5ee91343
AV
21450/* MVE instructions and non-MVE instructions are handled differently because of
21451 the introduction of VPT blocks.
21452 Specifications say that any non-MVE instruction inside a VPT block is
21453 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
21454 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
35c228db 21455 few exceptions we have MVE_UNPREDICABLE_INSN.
5ee91343
AV
21456 The error messages provided depending on the different combinations possible
21457 are described in the cases below:
21458 For 'most' MVE instructions:
21459 1) In an IT block, with an IT code: syntax error
21460 2) In an IT block, with a VPT code: error: must be in a VPT block
21461 3) In an IT block, with no code: warning: UNPREDICTABLE
21462 4) In a VPT block, with an IT code: syntax error
21463 5) In a VPT block, with a VPT code: OK!
21464 6) In a VPT block, with no code: error: missing code
21465 7) Outside a pred block, with an IT code: error: syntax error
21466 8) Outside a pred block, with a VPT code: error: should be in a VPT block
21467 9) Outside a pred block, with no code: OK!
21468 For non-MVE instructions:
21469 10) In an IT block, with an IT code: OK!
21470 11) In an IT block, with a VPT code: syntax error
21471 12) In an IT block, with no code: error: missing code
21472 13) In a VPT block, with an IT code: error: should be in an IT block
21473 14) In a VPT block, with a VPT code: syntax error
21474 15) In a VPT block, with no code: UNPREDICTABLE
21475 16) Outside a pred block, with an IT code: error: should be in an IT block
21476 17) Outside a pred block, with a VPT code: syntax error
21477 18) Outside a pred block, with no code: OK!
21478 */
21479
e07e6e58
NC
21480
21481static int
5ee91343 21482handle_pred_state (void)
e07e6e58 21483{
5ee91343
AV
21484 now_pred.state_handled = 1;
21485 now_pred.insn_cond = FALSE;
e07e6e58 21486
5ee91343 21487 switch (now_pred.state)
e07e6e58 21488 {
5ee91343
AV
21489 case OUTSIDE_PRED_BLOCK:
21490 switch (inst.pred_insn_type)
e07e6e58 21491 {
35c228db 21492 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
21493 case MVE_OUTSIDE_PRED_INSN:
21494 if (inst.cond < COND_ALWAYS)
21495 {
21496 /* Case 7: Outside a pred block, with an IT code: error: syntax
21497 error. */
21498 inst.error = BAD_SYNTAX;
21499 return FAIL;
21500 }
21501 /* Case 9: Outside a pred block, with no code: OK! */
21502 break;
21503 case OUTSIDE_PRED_INSN:
21504 if (inst.cond > COND_ALWAYS)
21505 {
21506 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21507 */
21508 inst.error = BAD_SYNTAX;
21509 return FAIL;
21510 }
21511 /* Case 18: Outside a pred block, with no code: OK! */
e07e6e58
NC
21512 break;
21513
5ee91343
AV
21514 case INSIDE_VPT_INSN:
21515 /* Case 8: Outside a pred block, with a VPT code: error: should be in
21516 a VPT block. */
21517 inst.error = BAD_OUT_VPT;
21518 return FAIL;
21519
e07e6e58
NC
21520 case INSIDE_IT_INSN:
21521 case INSIDE_IT_LAST_INSN:
5ee91343 21522 if (inst.cond < COND_ALWAYS)
e07e6e58 21523 {
5ee91343
AV
21524 /* Case 16: Outside a pred block, with an IT code: error: should
21525 be in an IT block. */
21526 if (thumb_mode == 0)
e07e6e58 21527 {
5ee91343
AV
21528 if (unified_syntax
21529 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
21530 as_tsktsk (_("Warning: conditional outside an IT block"\
21531 " for Thumb."));
e07e6e58
NC
21532 }
21533 else
21534 {
5ee91343
AV
21535 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
21536 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
21537 {
21538 /* Automatically generate the IT instruction. */
21539 new_automatic_it_block (inst.cond);
21540 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
21541 close_automatic_it_block ();
21542 }
21543 else
21544 {
21545 inst.error = BAD_OUT_IT;
21546 return FAIL;
21547 }
e07e6e58 21548 }
5ee91343 21549 break;
e07e6e58 21550 }
5ee91343
AV
21551 else if (inst.cond > COND_ALWAYS)
21552 {
21553 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21554 */
21555 inst.error = BAD_SYNTAX;
21556 return FAIL;
21557 }
21558 else
21559 gas_assert (0);
e07e6e58
NC
21560 case IF_INSIDE_IT_LAST_INSN:
21561 case NEUTRAL_IT_INSN:
21562 break;
21563
5ee91343
AV
21564 case VPT_INSN:
21565 if (inst.cond != COND_ALWAYS)
21566 first_error (BAD_SYNTAX);
21567 now_pred.state = MANUAL_PRED_BLOCK;
21568 now_pred.block_length = 0;
21569 now_pred.type = VECTOR_PRED;
21570 now_pred.cc = 0;
21571 break;
e07e6e58 21572 case IT_INSN:
5ee91343
AV
21573 now_pred.state = MANUAL_PRED_BLOCK;
21574 now_pred.block_length = 0;
21575 now_pred.type = SCALAR_PRED;
e07e6e58
NC
21576 break;
21577 }
21578 break;
21579
5ee91343 21580 case AUTOMATIC_PRED_BLOCK:
e07e6e58
NC
21581 /* Three things may happen now:
21582 a) We should increment current it block size;
21583 b) We should close current it block (closing insn or 4 insns);
21584 c) We should close current it block and start a new one (due
21585 to incompatible conditions or
21586 4 insns-length block reached). */
21587
5ee91343 21588 switch (inst.pred_insn_type)
e07e6e58 21589 {
5ee91343
AV
21590 case INSIDE_VPT_INSN:
21591 case VPT_INSN:
35c228db 21592 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
21593 case MVE_OUTSIDE_PRED_INSN:
21594 gas_assert (0);
21595 case OUTSIDE_PRED_INSN:
2b0f3761 21596 /* The closure of the block shall happen immediately,
5ee91343 21597 so any in_pred_block () call reports the block as closed. */
e07e6e58
NC
21598 force_automatic_it_block_close ();
21599 break;
21600
21601 case INSIDE_IT_INSN:
21602 case INSIDE_IT_LAST_INSN:
21603 case IF_INSIDE_IT_LAST_INSN:
5ee91343 21604 now_pred.block_length++;
e07e6e58 21605
5ee91343
AV
21606 if (now_pred.block_length > 4
21607 || !now_pred_compatible (inst.cond))
e07e6e58
NC
21608 {
21609 force_automatic_it_block_close ();
5ee91343 21610 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
e07e6e58
NC
21611 new_automatic_it_block (inst.cond);
21612 }
21613 else
21614 {
5ee91343
AV
21615 now_pred.insn_cond = TRUE;
21616 now_pred_add_mask (inst.cond);
e07e6e58
NC
21617 }
21618
5ee91343
AV
21619 if (now_pred.state == AUTOMATIC_PRED_BLOCK
21620 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
21621 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
e07e6e58
NC
21622 close_automatic_it_block ();
21623 break;
21624
21625 case NEUTRAL_IT_INSN:
5ee91343
AV
21626 now_pred.block_length++;
21627 now_pred.insn_cond = TRUE;
e07e6e58 21628
5ee91343 21629 if (now_pred.block_length > 4)
e07e6e58
NC
21630 force_automatic_it_block_close ();
21631 else
5ee91343 21632 now_pred_add_mask (now_pred.cc & 1);
e07e6e58
NC
21633 break;
21634
21635 case IT_INSN:
21636 close_automatic_it_block ();
5ee91343 21637 now_pred.state = MANUAL_PRED_BLOCK;
e07e6e58
NC
21638 break;
21639 }
21640 break;
21641
5ee91343 21642 case MANUAL_PRED_BLOCK:
e07e6e58 21643 {
5ee91343
AV
21644 int cond, is_last;
21645 if (now_pred.type == SCALAR_PRED)
e07e6e58 21646 {
5ee91343
AV
21647 /* Check conditional suffixes. */
21648 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
21649 now_pred.mask <<= 1;
21650 now_pred.mask &= 0x1f;
21651 is_last = (now_pred.mask == 0x10);
21652 }
21653 else
21654 {
21655 now_pred.cc ^= (now_pred.mask >> 4);
21656 cond = now_pred.cc + 0xf;
21657 now_pred.mask <<= 1;
21658 now_pred.mask &= 0x1f;
21659 is_last = now_pred.mask == 0x10;
21660 }
21661 now_pred.insn_cond = TRUE;
e07e6e58 21662
5ee91343
AV
21663 switch (inst.pred_insn_type)
21664 {
21665 case OUTSIDE_PRED_INSN:
21666 if (now_pred.type == SCALAR_PRED)
21667 {
21668 if (inst.cond == COND_ALWAYS)
21669 {
21670 /* Case 12: In an IT block, with no code: error: missing
21671 code. */
21672 inst.error = BAD_NOT_IT;
21673 return FAIL;
21674 }
21675 else if (inst.cond > COND_ALWAYS)
21676 {
21677 /* Case 11: In an IT block, with a VPT code: syntax error.
21678 */
21679 inst.error = BAD_SYNTAX;
21680 return FAIL;
21681 }
21682 else if (thumb_mode)
21683 {
21684 /* This is for some special cases where a non-MVE
21685 instruction is not allowed in an IT block, such as cbz,
21686 but are put into one with a condition code.
21687 You could argue this should be a syntax error, but we
21688 gave the 'not allowed in IT block' diagnostic in the
21689 past so we will keep doing so. */
21690 inst.error = BAD_NOT_IT;
21691 return FAIL;
21692 }
21693 break;
21694 }
21695 else
21696 {
21697 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
21698 as_tsktsk (MVE_NOT_VPT);
21699 return SUCCESS;
21700 }
21701 case MVE_OUTSIDE_PRED_INSN:
21702 if (now_pred.type == SCALAR_PRED)
21703 {
21704 if (inst.cond == COND_ALWAYS)
21705 {
21706 /* Case 3: In an IT block, with no code: warning:
21707 UNPREDICTABLE. */
21708 as_tsktsk (MVE_NOT_IT);
21709 return SUCCESS;
21710 }
21711 else if (inst.cond < COND_ALWAYS)
21712 {
21713 /* Case 1: In an IT block, with an IT code: syntax error.
21714 */
21715 inst.error = BAD_SYNTAX;
21716 return FAIL;
21717 }
21718 else
21719 gas_assert (0);
21720 }
21721 else
21722 {
21723 if (inst.cond < COND_ALWAYS)
21724 {
21725 /* Case 4: In a VPT block, with an IT code: syntax error.
21726 */
21727 inst.error = BAD_SYNTAX;
21728 return FAIL;
21729 }
21730 else if (inst.cond == COND_ALWAYS)
21731 {
21732 /* Case 6: In a VPT block, with no code: error: missing
21733 code. */
21734 inst.error = BAD_NOT_VPT;
21735 return FAIL;
21736 }
21737 else
21738 {
21739 gas_assert (0);
21740 }
21741 }
35c228db
AV
21742 case MVE_UNPREDICABLE_INSN:
21743 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
21744 return SUCCESS;
e07e6e58 21745 case INSIDE_IT_INSN:
5ee91343 21746 if (inst.cond > COND_ALWAYS)
e07e6e58 21747 {
5ee91343
AV
21748 /* Case 11: In an IT block, with a VPT code: syntax error. */
21749 /* Case 14: In a VPT block, with a VPT code: syntax error. */
21750 inst.error = BAD_SYNTAX;
21751 return FAIL;
21752 }
21753 else if (now_pred.type == SCALAR_PRED)
21754 {
21755 /* Case 10: In an IT block, with an IT code: OK! */
21756 if (cond != inst.cond)
21757 {
21758 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
21759 BAD_VPT_COND;
21760 return FAIL;
21761 }
21762 }
21763 else
21764 {
21765 /* Case 13: In a VPT block, with an IT code: error: should be
21766 in an IT block. */
21767 inst.error = BAD_OUT_IT;
e07e6e58
NC
21768 return FAIL;
21769 }
21770 break;
21771
5ee91343
AV
21772 case INSIDE_VPT_INSN:
21773 if (now_pred.type == SCALAR_PRED)
21774 {
21775 /* Case 2: In an IT block, with a VPT code: error: must be in a
21776 VPT block. */
21777 inst.error = BAD_OUT_VPT;
21778 return FAIL;
21779 }
21780 /* Case 5: In a VPT block, with a VPT code: OK! */
21781 else if (cond != inst.cond)
21782 {
21783 inst.error = BAD_VPT_COND;
21784 return FAIL;
21785 }
21786 break;
e07e6e58
NC
21787 case INSIDE_IT_LAST_INSN:
21788 case IF_INSIDE_IT_LAST_INSN:
5ee91343
AV
21789 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
21790 {
21791 /* Case 4: In a VPT block, with an IT code: syntax error. */
21792 /* Case 11: In an IT block, with a VPT code: syntax error. */
21793 inst.error = BAD_SYNTAX;
21794 return FAIL;
21795 }
21796 else if (cond != inst.cond)
e07e6e58
NC
21797 {
21798 inst.error = BAD_IT_COND;
21799 return FAIL;
21800 }
21801 if (!is_last)
21802 {
21803 inst.error = BAD_BRANCH;
21804 return FAIL;
21805 }
21806 break;
21807
21808 case NEUTRAL_IT_INSN:
5ee91343
AV
21809 /* The BKPT instruction is unconditional even in a IT or VPT
21810 block. */
e07e6e58
NC
21811 break;
21812
21813 case IT_INSN:
5ee91343
AV
21814 if (now_pred.type == SCALAR_PRED)
21815 {
21816 inst.error = BAD_IT_IT;
21817 return FAIL;
21818 }
21819 /* fall through. */
21820 case VPT_INSN:
21821 if (inst.cond == COND_ALWAYS)
21822 {
21823 /* Executing a VPT/VPST instruction inside an IT block or a
21824 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21825 */
21826 if (now_pred.type == SCALAR_PRED)
21827 as_tsktsk (MVE_NOT_IT);
21828 else
21829 as_tsktsk (MVE_NOT_VPT);
21830 return SUCCESS;
21831 }
21832 else
21833 {
21834 /* VPT/VPST do not accept condition codes. */
21835 inst.error = BAD_SYNTAX;
21836 return FAIL;
21837 }
e07e6e58 21838 }
5ee91343 21839 }
e07e6e58
NC
21840 break;
21841 }
21842
21843 return SUCCESS;
21844}
21845
5a01bb1d
MGD
21846struct depr_insn_mask
21847{
21848 unsigned long pattern;
21849 unsigned long mask;
21850 const char* description;
21851};
21852
21853/* List of 16-bit instruction patterns deprecated in an IT block in
21854 ARMv8. */
21855static const struct depr_insn_mask depr_it_insns[] = {
21856 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
21857 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
21858 { 0xa000, 0xb800, N_("ADR") },
21859 { 0x4800, 0xf800, N_("Literal loads") },
21860 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
21861 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
c8de034b
JW
21862 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
21863 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
21864 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
5a01bb1d
MGD
21865 { 0, 0, NULL }
21866};
21867
e07e6e58
NC
21868static void
21869it_fsm_post_encode (void)
21870{
21871 int is_last;
21872
5ee91343
AV
21873 if (!now_pred.state_handled)
21874 handle_pred_state ();
e07e6e58 21875
5ee91343
AV
21876 if (now_pred.insn_cond
21877 && !now_pred.warn_deprecated
5a01bb1d 21878 && warn_on_deprecated
df9909b8
TP
21879 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
21880 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
5a01bb1d
MGD
21881 {
21882 if (inst.instruction >= 0x10000)
21883 {
5c3696f8 21884 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
df9909b8 21885 "performance deprecated in ARMv8-A and ARMv8-R"));
5ee91343 21886 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21887 }
21888 else
21889 {
21890 const struct depr_insn_mask *p = depr_it_insns;
21891
21892 while (p->mask != 0)
21893 {
21894 if ((inst.instruction & p->mask) == p->pattern)
21895 {
df9909b8
TP
21896 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21897 "instructions of the following class are "
21898 "performance deprecated in ARMv8-A and "
21899 "ARMv8-R: %s"), p->description);
5ee91343 21900 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21901 break;
21902 }
21903
21904 ++p;
21905 }
21906 }
21907
5ee91343 21908 if (now_pred.block_length > 1)
5a01bb1d 21909 {
5c3696f8 21910 as_tsktsk (_("IT blocks containing more than one conditional "
df9909b8
TP
21911 "instruction are performance deprecated in ARMv8-A and "
21912 "ARMv8-R"));
5ee91343 21913 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21914 }
21915 }
21916
5ee91343
AV
21917 is_last = (now_pred.mask == 0x10);
21918 if (is_last)
21919 {
21920 now_pred.state = OUTSIDE_PRED_BLOCK;
21921 now_pred.mask = 0;
21922 }
e07e6e58
NC
21923}
21924
21925static void
21926force_automatic_it_block_close (void)
21927{
5ee91343 21928 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
e07e6e58
NC
21929 {
21930 close_automatic_it_block ();
5ee91343
AV
21931 now_pred.state = OUTSIDE_PRED_BLOCK;
21932 now_pred.mask = 0;
e07e6e58
NC
21933 }
21934}
21935
21936static int
5ee91343 21937in_pred_block (void)
e07e6e58 21938{
5ee91343
AV
21939 if (!now_pred.state_handled)
21940 handle_pred_state ();
e07e6e58 21941
5ee91343 21942 return now_pred.state != OUTSIDE_PRED_BLOCK;
e07e6e58
NC
21943}
21944
ff8646ee
TP
21945/* Whether OPCODE only has T32 encoding. Since this function is only used by
21946 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21947 here, hence the "known" in the function name. */
fc289b0a
TP
21948
21949static bfd_boolean
ff8646ee 21950known_t32_only_insn (const struct asm_opcode *opcode)
fc289b0a
TP
21951{
21952 /* Original Thumb-1 wide instruction. */
21953 if (opcode->tencode == do_t_blx
21954 || opcode->tencode == do_t_branch23
21955 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
21956 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
21957 return TRUE;
21958
16a1fa25
TP
21959 /* Wide-only instruction added to ARMv8-M Baseline. */
21960 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
ff8646ee
TP
21961 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
21962 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
21963 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
21964 return TRUE;
21965
21966 return FALSE;
21967}
21968
21969/* Whether wide instruction variant can be used if available for a valid OPCODE
21970 in ARCH. */
21971
21972static bfd_boolean
21973t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
21974{
21975 if (known_t32_only_insn (opcode))
21976 return TRUE;
21977
21978 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21979 of variant T3 of B.W is checked in do_t_branch. */
21980 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21981 && opcode->tencode == do_t_branch)
21982 return TRUE;
21983
bada4342
JW
21984 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21985 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21986 && opcode->tencode == do_t_mov_cmp
21987 /* Make sure CMP instruction is not affected. */
21988 && opcode->aencode == do_mov)
21989 return TRUE;
21990
ff8646ee
TP
21991 /* Wide instruction variants of all instructions with narrow *and* wide
21992 variants become available with ARMv6t2. Other opcodes are either
21993 narrow-only or wide-only and are thus available if OPCODE is valid. */
21994 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
21995 return TRUE;
21996
21997 /* OPCODE with narrow only instruction variant or wide variant not
21998 available. */
fc289b0a
TP
21999 return FALSE;
22000}
22001
c19d1205
ZW
22002void
22003md_assemble (char *str)
b99bd4ef 22004{
c19d1205
ZW
22005 char *p = str;
22006 const struct asm_opcode * opcode;
b99bd4ef 22007
c19d1205
ZW
22008 /* Align the previous label if needed. */
22009 if (last_label_seen != NULL)
b99bd4ef 22010 {
c19d1205
ZW
22011 symbol_set_frag (last_label_seen, frag_now);
22012 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
22013 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
22014 }
22015
c19d1205 22016 memset (&inst, '\0', sizeof (inst));
e2b0ab59
AV
22017 int r;
22018 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
22019 inst.relocs[r].type = BFD_RELOC_UNUSED;
b99bd4ef 22020
c19d1205
ZW
22021 opcode = opcode_lookup (&p);
22022 if (!opcode)
b99bd4ef 22023 {
c19d1205 22024 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 22025 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d 22026 if (! create_register_alias (str, p)
477330fc 22027 && ! create_neon_reg_alias (str, p))
c19d1205 22028 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 22029
b99bd4ef
NC
22030 return;
22031 }
22032
278df34e 22033 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
5c3696f8 22034 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
088fa78e 22035
037e8744
JB
22036 /* The value which unconditional instructions should have in place of the
22037 condition field. */
22038 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
22039
c19d1205 22040 if (thumb_mode)
b99bd4ef 22041 {
e74cfd16 22042 arm_feature_set variant;
8f06b2d8
PB
22043
22044 variant = cpu_variant;
22045 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
22046 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
22047 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 22048 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
22049 if (!opcode->tvariant
22050 || (thumb_mode == 1
22051 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 22052 {
173205ca
TP
22053 if (opcode->tencode == do_t_swi)
22054 as_bad (_("SVC is not permitted on this architecture"));
22055 else
22056 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
b99bd4ef
NC
22057 return;
22058 }
c19d1205
ZW
22059 if (inst.cond != COND_ALWAYS && !unified_syntax
22060 && opcode->tencode != do_t_branch)
b99bd4ef 22061 {
c19d1205 22062 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
22063 return;
22064 }
22065
fc289b0a
TP
22066 /* Two things are addressed here:
22067 1) Implicit require narrow instructions on Thumb-1.
22068 This avoids relaxation accidentally introducing Thumb-2
22069 instructions.
22070 2) Reject wide instructions in non Thumb-2 cores.
22071
22072 Only instructions with narrow and wide variants need to be handled
22073 but selecting all non wide-only instructions is easier. */
22074 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
ff8646ee 22075 && !t32_insn_ok (variant, opcode))
076d447c 22076 {
fc289b0a
TP
22077 if (inst.size_req == 0)
22078 inst.size_req = 2;
22079 else if (inst.size_req == 4)
752d5da4 22080 {
ff8646ee
TP
22081 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
22082 as_bad (_("selected processor does not support 32bit wide "
22083 "variant of instruction `%s'"), str);
22084 else
22085 as_bad (_("selected processor does not support `%s' in "
22086 "Thumb-2 mode"), str);
fc289b0a 22087 return;
752d5da4 22088 }
076d447c
PB
22089 }
22090
c19d1205
ZW
22091 inst.instruction = opcode->tvalue;
22092
5be8be5d 22093 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
477330fc 22094 {
5ee91343 22095 /* Prepare the pred_insn_type for those encodings that don't set
477330fc
RM
22096 it. */
22097 it_fsm_pre_encode ();
c19d1205 22098
477330fc 22099 opcode->tencode ();
e07e6e58 22100
477330fc
RM
22101 it_fsm_post_encode ();
22102 }
e27ec89e 22103
0110f2b8 22104 if (!(inst.error || inst.relax))
b99bd4ef 22105 {
9c2799c2 22106 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
22107 inst.size = (inst.instruction > 0xffff ? 4 : 2);
22108 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 22109 {
c19d1205 22110 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
22111 return;
22112 }
22113 }
076d447c
PB
22114
22115 /* Something has gone badly wrong if we try to relax a fixed size
477330fc 22116 instruction. */
9c2799c2 22117 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 22118
e74cfd16
PB
22119 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22120 *opcode->tvariant);
ee065d83 22121 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
fc289b0a
TP
22122 set those bits when Thumb-2 32-bit instructions are seen. The impact
22123 of relaxable instructions will be considered later after we finish all
22124 relaxation. */
ff8646ee
TP
22125 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
22126 variant = arm_arch_none;
22127 else
22128 variant = cpu_variant;
22129 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
e74cfd16
PB
22130 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22131 arm_ext_v6t2);
cd000bff 22132
88714cb8
DG
22133 check_neon_suffixes;
22134
cd000bff 22135 if (!inst.error)
c877a2f2
NC
22136 {
22137 mapping_state (MAP_THUMB);
22138 }
c19d1205 22139 }
3e9e4fcf 22140 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 22141 {
845b51d6
PB
22142 bfd_boolean is_bx;
22143
22144 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
22145 is_bx = (opcode->aencode == do_bx);
22146
c19d1205 22147 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
22148 if (!(is_bx && fix_v4bx)
22149 && !(opcode->avariant &&
22150 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 22151 {
84b52b66 22152 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
c19d1205 22153 return;
b99bd4ef 22154 }
c19d1205 22155 if (inst.size_req)
b99bd4ef 22156 {
c19d1205
ZW
22157 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
22158 return;
b99bd4ef
NC
22159 }
22160
c19d1205
ZW
22161 inst.instruction = opcode->avalue;
22162 if (opcode->tag == OT_unconditionalF)
eff0bc54 22163 inst.instruction |= 0xFU << 28;
c19d1205
ZW
22164 else
22165 inst.instruction |= inst.cond << 28;
22166 inst.size = INSN_SIZE;
5be8be5d 22167 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
477330fc
RM
22168 {
22169 it_fsm_pre_encode ();
22170 opcode->aencode ();
22171 it_fsm_post_encode ();
22172 }
ee065d83 22173 /* Arm mode bx is marked as both v4T and v5 because it's still required
477330fc 22174 on a hypothetical non-thumb v5 core. */
845b51d6 22175 if (is_bx)
e74cfd16 22176 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 22177 else
e74cfd16
PB
22178 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
22179 *opcode->avariant);
88714cb8
DG
22180
22181 check_neon_suffixes;
22182
cd000bff 22183 if (!inst.error)
c877a2f2
NC
22184 {
22185 mapping_state (MAP_ARM);
22186 }
b99bd4ef 22187 }
3e9e4fcf
JB
22188 else
22189 {
22190 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
22191 "-- `%s'"), str);
22192 return;
22193 }
c19d1205
ZW
22194 output_inst (str);
22195}
b99bd4ef 22196
e07e6e58 22197static void
5ee91343 22198check_pred_blocks_finished (void)
e07e6e58
NC
22199{
22200#ifdef OBJ_ELF
22201 asection *sect;
22202
22203 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
5ee91343
AV
22204 if (seg_info (sect)->tc_segment_info_data.current_pred.state
22205 == MANUAL_PRED_BLOCK)
e07e6e58 22206 {
5ee91343
AV
22207 if (now_pred.type == SCALAR_PRED)
22208 as_warn (_("section '%s' finished with an open IT block."),
22209 sect->name);
22210 else
22211 as_warn (_("section '%s' finished with an open VPT/VPST block."),
22212 sect->name);
e07e6e58
NC
22213 }
22214#else
5ee91343
AV
22215 if (now_pred.state == MANUAL_PRED_BLOCK)
22216 {
22217 if (now_pred.type == SCALAR_PRED)
22218 as_warn (_("file finished with an open IT block."));
22219 else
22220 as_warn (_("file finished with an open VPT/VPST block."));
22221 }
e07e6e58
NC
22222#endif
22223}
22224
c19d1205
ZW
22225/* Various frobbings of labels and their addresses. */
22226
22227void
22228arm_start_line_hook (void)
22229{
22230 last_label_seen = NULL;
b99bd4ef
NC
22231}
22232
c19d1205
ZW
22233void
22234arm_frob_label (symbolS * sym)
b99bd4ef 22235{
c19d1205 22236 last_label_seen = sym;
b99bd4ef 22237
c19d1205 22238 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 22239
c19d1205
ZW
22240#if defined OBJ_COFF || defined OBJ_ELF
22241 ARM_SET_INTERWORK (sym, support_interwork);
22242#endif
b99bd4ef 22243
e07e6e58
NC
22244 force_automatic_it_block_close ();
22245
5f4273c7 22246 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
22247 as Thumb functions. This is because these labels, whilst
22248 they exist inside Thumb code, are not the entry points for
22249 possible ARM->Thumb calls. Also, these labels can be used
22250 as part of a computed goto or switch statement. eg gcc
22251 can generate code that looks like this:
b99bd4ef 22252
c19d1205
ZW
22253 ldr r2, [pc, .Laaa]
22254 lsl r3, r3, #2
22255 ldr r2, [r3, r2]
22256 mov pc, r2
b99bd4ef 22257
c19d1205
ZW
22258 .Lbbb: .word .Lxxx
22259 .Lccc: .word .Lyyy
22260 ..etc...
22261 .Laaa: .word Lbbb
b99bd4ef 22262
c19d1205
ZW
22263 The first instruction loads the address of the jump table.
22264 The second instruction converts a table index into a byte offset.
22265 The third instruction gets the jump address out of the table.
22266 The fourth instruction performs the jump.
b99bd4ef 22267
c19d1205
ZW
22268 If the address stored at .Laaa is that of a symbol which has the
22269 Thumb_Func bit set, then the linker will arrange for this address
22270 to have the bottom bit set, which in turn would mean that the
22271 address computation performed by the third instruction would end
22272 up with the bottom bit set. Since the ARM is capable of unaligned
22273 word loads, the instruction would then load the incorrect address
22274 out of the jump table, and chaos would ensue. */
22275 if (label_is_thumb_function_name
22276 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
22277 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 22278 {
c19d1205
ZW
22279 /* When the address of a Thumb function is taken the bottom
22280 bit of that address should be set. This will allow
22281 interworking between Arm and Thumb functions to work
22282 correctly. */
b99bd4ef 22283
c19d1205 22284 THUMB_SET_FUNC (sym, 1);
b99bd4ef 22285
c19d1205 22286 label_is_thumb_function_name = FALSE;
b99bd4ef 22287 }
07a53e5c 22288
07a53e5c 22289 dwarf2_emit_label (sym);
b99bd4ef
NC
22290}
22291
c921be7d 22292bfd_boolean
c19d1205 22293arm_data_in_code (void)
b99bd4ef 22294{
c19d1205 22295 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 22296 {
c19d1205
ZW
22297 *input_line_pointer = '/';
22298 input_line_pointer += 5;
22299 *input_line_pointer = 0;
c921be7d 22300 return TRUE;
b99bd4ef
NC
22301 }
22302
c921be7d 22303 return FALSE;
b99bd4ef
NC
22304}
22305
c19d1205
ZW
22306char *
22307arm_canonicalize_symbol_name (char * name)
b99bd4ef 22308{
c19d1205 22309 int len;
b99bd4ef 22310
c19d1205
ZW
22311 if (thumb_mode && (len = strlen (name)) > 5
22312 && streq (name + len - 5, "/data"))
22313 *(name + len - 5) = 0;
b99bd4ef 22314
c19d1205 22315 return name;
b99bd4ef 22316}
c19d1205
ZW
22317\f
22318/* Table of all register names defined by default. The user can
22319 define additional names with .req. Note that all register names
22320 should appear in both upper and lowercase variants. Some registers
22321 also have mixed-case names. */
b99bd4ef 22322
dcbf9037 22323#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 22324#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 22325#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
22326#define REGSET(p,t) \
22327 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
22328 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
22329 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
22330 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
22331#define REGSETH(p,t) \
22332 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
22333 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
22334 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
22335 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
22336#define REGSET2(p,t) \
22337 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
22338 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
22339 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
22340 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
22341#define SPLRBANK(base,bank,t) \
22342 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
22343 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
22344 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
22345 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
22346 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
22347 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 22348
c19d1205 22349static const struct reg_entry reg_names[] =
7ed4c4c5 22350{
c19d1205
ZW
22351 /* ARM integer registers. */
22352 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 22353
c19d1205
ZW
22354 /* ATPCS synonyms. */
22355 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
22356 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
22357 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 22358
c19d1205
ZW
22359 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
22360 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
22361 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 22362
c19d1205
ZW
22363 /* Well-known aliases. */
22364 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
22365 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
22366
22367 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
22368 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
22369
1b883319
AV
22370 /* Defining the new Zero register from ARMv8.1-M. */
22371 REGDEF(zr,15,ZR),
22372 REGDEF(ZR,15,ZR),
22373
c19d1205
ZW
22374 /* Coprocessor numbers. */
22375 REGSET(p, CP), REGSET(P, CP),
22376
22377 /* Coprocessor register numbers. The "cr" variants are for backward
22378 compatibility. */
22379 REGSET(c, CN), REGSET(C, CN),
22380 REGSET(cr, CN), REGSET(CR, CN),
22381
90ec0d68
MGD
22382 /* ARM banked registers. */
22383 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
22384 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
22385 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
22386 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
22387 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
22388 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
22389 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
22390
22391 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
22392 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
22393 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
22394 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
22395 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
1472d06f 22396 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
90ec0d68
MGD
22397 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
22398 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
22399
22400 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
22401 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
22402 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
22403 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
22404 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
22405 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
22406 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 22407 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
22408 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
22409
c19d1205
ZW
22410 /* FPA registers. */
22411 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
22412 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
22413
22414 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
22415 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
22416
22417 /* VFP SP registers. */
5287ad62
JB
22418 REGSET(s,VFS), REGSET(S,VFS),
22419 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
22420
22421 /* VFP DP Registers. */
5287ad62
JB
22422 REGSET(d,VFD), REGSET(D,VFD),
22423 /* Extra Neon DP registers. */
22424 REGSETH(d,VFD), REGSETH(D,VFD),
22425
22426 /* Neon QP registers. */
22427 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
22428
22429 /* VFP control registers. */
22430 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
22431 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
22432 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
22433 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
22434 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
22435 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
40c7d507 22436 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
c19d1205
ZW
22437
22438 /* Maverick DSP coprocessor registers. */
22439 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
22440 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
22441
22442 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
22443 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
22444 REGDEF(dspsc,0,DSPSC),
22445
22446 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
22447 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
22448 REGDEF(DSPSC,0,DSPSC),
22449
22450 /* iWMMXt data registers - p0, c0-15. */
22451 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
22452
22453 /* iWMMXt control registers - p1, c0-3. */
22454 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
22455 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
22456 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
22457 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
22458
22459 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
22460 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
22461 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
22462 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
22463 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
22464
22465 /* XScale accumulator registers. */
22466 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
22467};
22468#undef REGDEF
22469#undef REGNUM
22470#undef REGSET
7ed4c4c5 22471
c19d1205
ZW
22472/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
22473 within psr_required_here. */
22474static const struct asm_psr psrs[] =
22475{
22476 /* Backward compatibility notation. Note that "all" is no longer
22477 truly all possible PSR bits. */
22478 {"all", PSR_c | PSR_f},
22479 {"flg", PSR_f},
22480 {"ctl", PSR_c},
22481
22482 /* Individual flags. */
22483 {"f", PSR_f},
22484 {"c", PSR_c},
22485 {"x", PSR_x},
22486 {"s", PSR_s},
59b42a0d 22487
c19d1205
ZW
22488 /* Combinations of flags. */
22489 {"fs", PSR_f | PSR_s},
22490 {"fx", PSR_f | PSR_x},
22491 {"fc", PSR_f | PSR_c},
22492 {"sf", PSR_s | PSR_f},
22493 {"sx", PSR_s | PSR_x},
22494 {"sc", PSR_s | PSR_c},
22495 {"xf", PSR_x | PSR_f},
22496 {"xs", PSR_x | PSR_s},
22497 {"xc", PSR_x | PSR_c},
22498 {"cf", PSR_c | PSR_f},
22499 {"cs", PSR_c | PSR_s},
22500 {"cx", PSR_c | PSR_x},
22501 {"fsx", PSR_f | PSR_s | PSR_x},
22502 {"fsc", PSR_f | PSR_s | PSR_c},
22503 {"fxs", PSR_f | PSR_x | PSR_s},
22504 {"fxc", PSR_f | PSR_x | PSR_c},
22505 {"fcs", PSR_f | PSR_c | PSR_s},
22506 {"fcx", PSR_f | PSR_c | PSR_x},
22507 {"sfx", PSR_s | PSR_f | PSR_x},
22508 {"sfc", PSR_s | PSR_f | PSR_c},
22509 {"sxf", PSR_s | PSR_x | PSR_f},
22510 {"sxc", PSR_s | PSR_x | PSR_c},
22511 {"scf", PSR_s | PSR_c | PSR_f},
22512 {"scx", PSR_s | PSR_c | PSR_x},
22513 {"xfs", PSR_x | PSR_f | PSR_s},
22514 {"xfc", PSR_x | PSR_f | PSR_c},
22515 {"xsf", PSR_x | PSR_s | PSR_f},
22516 {"xsc", PSR_x | PSR_s | PSR_c},
22517 {"xcf", PSR_x | PSR_c | PSR_f},
22518 {"xcs", PSR_x | PSR_c | PSR_s},
22519 {"cfs", PSR_c | PSR_f | PSR_s},
22520 {"cfx", PSR_c | PSR_f | PSR_x},
22521 {"csf", PSR_c | PSR_s | PSR_f},
22522 {"csx", PSR_c | PSR_s | PSR_x},
22523 {"cxf", PSR_c | PSR_x | PSR_f},
22524 {"cxs", PSR_c | PSR_x | PSR_s},
22525 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
22526 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
22527 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
22528 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
22529 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
22530 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
22531 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
22532 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
22533 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
22534 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
22535 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
22536 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
22537 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
22538 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
22539 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
22540 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
22541 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
22542 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
22543 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
22544 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
22545 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
22546 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
22547 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
22548 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
22549};
22550
62b3e311
PB
22551/* Table of V7M psr names. */
22552static const struct asm_psr v7m_psrs[] =
22553{
1a336194
TP
22554 {"apsr", 0x0 }, {"APSR", 0x0 },
22555 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
22556 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
22557 {"psr", 0x3 }, {"PSR", 0x3 },
22558 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
22559 {"ipsr", 0x5 }, {"IPSR", 0x5 },
22560 {"epsr", 0x6 }, {"EPSR", 0x6 },
22561 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
22562 {"msp", 0x8 }, {"MSP", 0x8 },
22563 {"psp", 0x9 }, {"PSP", 0x9 },
22564 {"msplim", 0xa }, {"MSPLIM", 0xa },
22565 {"psplim", 0xb }, {"PSPLIM", 0xb },
22566 {"primask", 0x10}, {"PRIMASK", 0x10},
22567 {"basepri", 0x11}, {"BASEPRI", 0x11},
22568 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
1a336194
TP
22569 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
22570 {"control", 0x14}, {"CONTROL", 0x14},
22571 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
22572 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
22573 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
22574 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
22575 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
22576 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
22577 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
22578 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
22579 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
62b3e311
PB
22580};
22581
c19d1205
ZW
22582/* Table of all shift-in-operand names. */
22583static const struct asm_shift_name shift_names [] =
b99bd4ef 22584{
c19d1205
ZW
22585 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
22586 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
22587 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
22588 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
22589 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
f5f10c66
AV
22590 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
22591 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
c19d1205 22592};
b99bd4ef 22593
c19d1205
ZW
22594/* Table of all explicit relocation names. */
22595#ifdef OBJ_ELF
22596static struct reloc_entry reloc_names[] =
22597{
22598 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
22599 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
22600 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
22601 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
22602 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
22603 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
22604 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
22605 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
22606 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
22607 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 22608 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
22609 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
22610 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
477330fc 22611 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
0855e32b 22612 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
477330fc 22613 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
0855e32b 22614 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
188fd7ae
CL
22615 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
22616 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
22617 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
22618 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22619 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22620 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
5c5a4843
CL
22621 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
22622 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
22623 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
22624 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
c19d1205
ZW
22625};
22626#endif
b99bd4ef 22627
5ee91343 22628/* Table of all conditional affixes. */
c19d1205
ZW
22629static const struct asm_cond conds[] =
22630{
22631 {"eq", 0x0},
22632 {"ne", 0x1},
22633 {"cs", 0x2}, {"hs", 0x2},
22634 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
22635 {"mi", 0x4},
22636 {"pl", 0x5},
22637 {"vs", 0x6},
22638 {"vc", 0x7},
22639 {"hi", 0x8},
22640 {"ls", 0x9},
22641 {"ge", 0xa},
22642 {"lt", 0xb},
22643 {"gt", 0xc},
22644 {"le", 0xd},
22645 {"al", 0xe}
22646};
5ee91343
AV
22647static const struct asm_cond vconds[] =
22648{
22649 {"t", 0xf},
22650 {"e", 0x10}
22651};
bfae80f2 22652
e797f7e0 22653#define UL_BARRIER(L,U,CODE,FEAT) \
823d2571
TG
22654 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
22655 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
e797f7e0 22656
62b3e311
PB
22657static struct asm_barrier_opt barrier_opt_names[] =
22658{
e797f7e0
MGD
22659 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
22660 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
22661 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
22662 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
22663 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
22664 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
22665 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
22666 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
22667 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
22668 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
22669 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
22670 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
22671 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
22672 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
22673 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
22674 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
22675};
22676
e797f7e0
MGD
22677#undef UL_BARRIER
22678
c19d1205
ZW
22679/* Table of ARM-format instructions. */
22680
22681/* Macros for gluing together operand strings. N.B. In all cases
22682 other than OPS0, the trailing OP_stop comes from default
22683 zero-initialization of the unspecified elements of the array. */
22684#define OPS0() { OP_stop, }
22685#define OPS1(a) { OP_##a, }
22686#define OPS2(a,b) { OP_##a,OP_##b, }
22687#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
22688#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
22689#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
22690#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
22691
5be8be5d
DG
22692/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
22693 This is useful when mixing operands for ARM and THUMB, i.e. using the
22694 MIX_ARM_THUMB_OPERANDS macro.
22695 In order to use these macros, prefix the number of operands with _
22696 e.g. _3. */
22697#define OPS_1(a) { a, }
22698#define OPS_2(a,b) { a,b, }
22699#define OPS_3(a,b,c) { a,b,c, }
22700#define OPS_4(a,b,c,d) { a,b,c,d, }
22701#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
22702#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
22703
c19d1205
ZW
22704/* These macros abstract out the exact format of the mnemonic table and
22705 save some repeated characters. */
22706
22707/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
22708#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 22709 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
5ee91343 22710 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
22711
22712/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
22713 a T_MNEM_xyz enumerator. */
22714#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22715 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 22716#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22717 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
22718
22719/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
22720 infix after the third character. */
22721#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 22722 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
5ee91343 22723 THUMB_VARIANT, do_##ae, do_##te, 0 }
088fa78e 22724#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 22725 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
5ee91343 22726 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 22727#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22728 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 22729#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22730 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 22731#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22732 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 22733#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22734 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205 22735
c19d1205 22736/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
22737 field is still 0xE. Many of the Thumb variants can be executed
22738 conditionally, so this is checked separately. */
c19d1205 22739#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 22740 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22741 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 22742
dd5181d5
KT
22743/* Same as TUE but the encoding function for ARM and Thumb modes is the same.
22744 Used by mnemonics that have very minimal differences in the encoding for
22745 ARM and Thumb variants and can be handled in a common function. */
22746#define TUEc(mnem, op, top, nops, ops, en) \
22747 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22748 THUMB_VARIANT, do_##en, do_##en, 0 }
dd5181d5 22749
c19d1205
ZW
22750/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
22751 condition code field. */
22752#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 22753 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22754 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
22755
22756/* ARM-only variants of all the above. */
6a86118a 22757#define CE(mnem, op, nops, ops, ae) \
5ee91343 22758 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22759
22760#define C3(mnem, op, nops, ops, ae) \
5ee91343 22761 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 22762
cf3cf39d
TP
22763/* Thumb-only variants of TCE and TUE. */
22764#define ToC(mnem, top, nops, ops, te) \
22765 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
5ee91343 22766 do_##te, 0 }
cf3cf39d
TP
22767
22768#define ToU(mnem, top, nops, ops, te) \
22769 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
5ee91343 22770 NULL, do_##te, 0 }
cf3cf39d 22771
4389b29a
AV
22772/* T_MNEM_xyz enumerator variants of ToC. */
22773#define toC(mnem, top, nops, ops, te) \
22774 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
5ee91343 22775 do_##te, 0 }
4389b29a 22776
f6b2b12d
AV
22777/* T_MNEM_xyz enumerator variants of ToU. */
22778#define toU(mnem, top, nops, ops, te) \
22779 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
5ee91343 22780 NULL, do_##te, 0 }
f6b2b12d 22781
e3cb604e
PB
22782/* Legacy mnemonics that always have conditional infix after the third
22783 character. */
22784#define CL(mnem, op, nops, ops, ae) \
21d799b5 22785 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 22786 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
e3cb604e 22787
8f06b2d8
PB
22788/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
22789#define cCE(mnem, op, nops, ops, ae) \
5ee91343 22790 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 22791
57785aa2
AV
22792/* mov instructions that are shared between coprocessor and MVE. */
22793#define mcCE(mnem, op, nops, ops, ae) \
22794 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22795
e3cb604e
PB
22796/* Legacy coprocessor instructions where conditional infix and conditional
22797 suffix are ambiguous. For consistency this includes all FPA instructions,
22798 not just the potentially ambiguous ones. */
22799#define cCL(mnem, op, nops, ops, ae) \
21d799b5 22800 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 22801 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
e3cb604e
PB
22802
22803/* Coprocessor, takes either a suffix or a position-3 infix
22804 (for an FPA corner case). */
22805#define C3E(mnem, op, nops, ops, ae) \
21d799b5 22806 { mnem, OPS##nops ops, OT_csuf_or_in3, \
5ee91343 22807 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 22808
6a86118a 22809#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
22810 { m1 #m2 m3, OPS##nops ops, \
22811 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
5ee91343 22812 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22813
22814#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
22815 xCM_ (m1, , m2, op, nops, ops, ae), \
22816 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22817 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22818 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22819 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22820 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22821 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22822 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22823 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22824 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22825 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22826 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22827 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22828 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22829 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22830 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22831 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22832 xCM_ (m1, le, m2, op, nops, ops, ae), \
22833 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
22834
22835#define UE(mnem, op, nops, ops, ae) \
5ee91343 22836 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22837
22838#define UF(mnem, op, nops, ops, ae) \
5ee91343 22839 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 22840
5287ad62
JB
22841/* Neon data-processing. ARM versions are unconditional with cond=0xf.
22842 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
22843 use the same encoding function for each. */
22844#define NUF(mnem, op, nops, ops, enc) \
22845 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
5ee91343 22846 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
22847
22848/* Neon data processing, version which indirects through neon_enc_tab for
22849 the various overloaded versions of opcodes. */
22850#define nUF(mnem, op, nops, ops, enc) \
21d799b5 22851 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5ee91343 22852 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
22853
22854/* Neon insn with conditional suffix for the ARM version, non-overloaded
22855 version. */
5ee91343 22856#define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
037e8744 22857 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5ee91343 22858 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 22859
037e8744 22860#define NCE(mnem, op, nops, ops, enc) \
5ee91343 22861 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
22862
22863#define NCEF(mnem, op, nops, ops, enc) \
5ee91343 22864 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
037e8744 22865
5287ad62 22866/* Neon insn with conditional suffix for the ARM version, overloaded types. */
5ee91343 22867#define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
21d799b5 22868 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5ee91343 22869 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 22870
037e8744 22871#define nCE(mnem, op, nops, ops, enc) \
5ee91343 22872 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
22873
22874#define nCEF(mnem, op, nops, ops, enc) \
5ee91343
AV
22875 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22876
22877/* */
22878#define mCEF(mnem, op, nops, ops, enc) \
a302e574 22879 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
5ee91343
AV
22880 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22881
22882
22883/* nCEF but for MVE predicated instructions. */
22884#define mnCEF(mnem, op, nops, ops, enc) \
22885 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22886
22887/* nCE but for MVE predicated instructions. */
22888#define mnCE(mnem, op, nops, ops, enc) \
22889 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
037e8744 22890
5ee91343
AV
22891/* NUF but for potentially MVE predicated instructions. */
22892#define MNUF(mnem, op, nops, ops, enc) \
22893 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22894 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22895
22896/* nUF but for potentially MVE predicated instructions. */
22897#define mnUF(mnem, op, nops, ops, enc) \
22898 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22899 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22900
22901/* ToC but for potentially MVE predicated instructions. */
22902#define mToC(mnem, top, nops, ops, te) \
22903 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22904 do_##te, 1 }
22905
22906/* NCE but for MVE predicated instructions. */
22907#define MNCE(mnem, op, nops, ops, enc) \
22908 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22909
22910/* NCEF but for MVE predicated instructions. */
22911#define MNCEF(mnem, op, nops, ops, enc) \
22912 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
c19d1205
ZW
22913#define do_0 0
22914
c19d1205 22915static const struct asm_opcode insns[] =
bfae80f2 22916{
74db7efb
NC
22917#define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22918#define THUMB_VARIANT & arm_ext_v4t
21d799b5
NC
22919 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
22920 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
22921 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
22922 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
22923 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
22924 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
22925 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
22926 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
22927 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
22928 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
22929 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
22930 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
22931 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
22932 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
22933 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
22934 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
22935
22936 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22937 for setting PSR flag bits. They are obsolete in V6 and do not
22938 have Thumb equivalents. */
21d799b5
NC
22939 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22940 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22941 CL("tstp", 110f000, 2, (RR, SH), cmp),
22942 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22943 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22944 CL("cmpp", 150f000, 2, (RR, SH), cmp),
22945 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22946 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22947 CL("cmnp", 170f000, 2, (RR, SH), cmp),
22948
22949 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
72d98d16 22950 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
21d799b5
NC
22951 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
22952 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
22953
22954 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
22955 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22956 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
22957 OP_RRnpc),
22958 OP_ADDRGLDR),ldst, t_ldst),
22959 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
22960
22961 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22962 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22963 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22964 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22965 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22966 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22967
21d799b5
NC
22968 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
22969 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 22970
c19d1205 22971 /* Pseudo ops. */
21d799b5 22972 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 22973 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 22974 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
74db7efb 22975 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
c19d1205
ZW
22976
22977 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
22978 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
22979 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
22980 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
22981 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
22982 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
22983 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
22984 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
22985 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
22986 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
22987 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
22988 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
22989 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 22990
16a4cf17 22991 /* These may simplify to neg. */
21d799b5
NC
22992 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
22993 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 22994
173205ca
TP
22995#undef THUMB_VARIANT
22996#define THUMB_VARIANT & arm_ext_os
22997
22998 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
22999 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
23000
c921be7d
NC
23001#undef THUMB_VARIANT
23002#define THUMB_VARIANT & arm_ext_v6
23003
21d799b5 23004 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
23005
23006 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
23007#undef THUMB_VARIANT
23008#define THUMB_VARIANT & arm_ext_v6t2
23009
21d799b5
NC
23010 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23011 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23012 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 23013
5be8be5d
DG
23014 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23015 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23016 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
23017 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 23018
21d799b5
NC
23019 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23020 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 23021
21d799b5
NC
23022 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23023 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
23024
23025 /* V1 instructions with no Thumb analogue at all. */
21d799b5 23026 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
23027 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
23028
23029 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
23030 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
23031 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
23032 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
23033 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
23034 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
23035 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
23036 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
23037
c921be7d
NC
23038#undef ARM_VARIANT
23039#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
23040#undef THUMB_VARIANT
23041#define THUMB_VARIANT & arm_ext_v4t
23042
21d799b5
NC
23043 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
23044 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 23045
c921be7d
NC
23046#undef THUMB_VARIANT
23047#define THUMB_VARIANT & arm_ext_v6t2
23048
21d799b5 23049 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
23050 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
23051
23052 /* Generic coprocessor instructions. */
21d799b5
NC
23053 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23054 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23055 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23056 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23057 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23058 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 23059 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 23060
c921be7d
NC
23061#undef ARM_VARIANT
23062#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
23063
21d799b5 23064 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
23065 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23066
c921be7d
NC
23067#undef ARM_VARIANT
23068#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
23069#undef THUMB_VARIANT
23070#define THUMB_VARIANT & arm_ext_msr
23071
d2cd1205
JB
23072 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
23073 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 23074
c921be7d
NC
23075#undef ARM_VARIANT
23076#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
23077#undef THUMB_VARIANT
23078#define THUMB_VARIANT & arm_ext_v6t2
23079
21d799b5
NC
23080 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23081 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23082 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23083 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23084 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23085 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23086 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23087 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 23088
c921be7d
NC
23089#undef ARM_VARIANT
23090#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
23091#undef THUMB_VARIANT
23092#define THUMB_VARIANT & arm_ext_v4t
23093
5be8be5d
DG
23094 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23095 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23096 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23097 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
56c0a61f
RE
23098 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23099 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 23100
c921be7d
NC
23101#undef ARM_VARIANT
23102#define ARM_VARIANT & arm_ext_v4t_5
23103
c19d1205
ZW
23104 /* ARM Architecture 4T. */
23105 /* Note: bx (and blx) are required on V5, even if the processor does
23106 not support Thumb. */
21d799b5 23107 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 23108
c921be7d
NC
23109#undef ARM_VARIANT
23110#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
23111#undef THUMB_VARIANT
23112#define THUMB_VARIANT & arm_ext_v5t
23113
c19d1205
ZW
23114 /* Note: blx has 2 variants; the .value coded here is for
23115 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
23116 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
23117 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 23118
c921be7d
NC
23119#undef THUMB_VARIANT
23120#define THUMB_VARIANT & arm_ext_v6t2
23121
21d799b5
NC
23122 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
23123 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23124 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23125 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23126 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23127 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23128 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23129 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 23130
c921be7d 23131#undef ARM_VARIANT
74db7efb
NC
23132#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
23133#undef THUMB_VARIANT
23134#define THUMB_VARIANT & arm_ext_v5exp
c921be7d 23135
21d799b5
NC
23136 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23137 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23138 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23139 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 23140
21d799b5
NC
23141 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23142 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 23143
21d799b5
NC
23144 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23145 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23146 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23147 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 23148
21d799b5
NC
23149 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23150 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23151 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23152 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 23153
21d799b5
NC
23154 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23155 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 23156
03ee1b7f
NC
23157 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23158 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23159 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23160 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 23161
c921be7d 23162#undef ARM_VARIANT
74db7efb
NC
23163#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
23164#undef THUMB_VARIANT
23165#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 23166
21d799b5 23167 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
23168 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
23169 ldrd, t_ldstd),
23170 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
23171 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 23172
21d799b5
NC
23173 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23174 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 23175
c921be7d
NC
23176#undef ARM_VARIANT
23177#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
23178
21d799b5 23179 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 23180
c921be7d
NC
23181#undef ARM_VARIANT
23182#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
23183#undef THUMB_VARIANT
23184#define THUMB_VARIANT & arm_ext_v6
23185
21d799b5
NC
23186 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
23187 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
23188 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23189 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23190 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23191 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23192 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23193 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23194 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23195 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 23196
c921be7d 23197#undef THUMB_VARIANT
ff8646ee 23198#define THUMB_VARIANT & arm_ext_v6t2_v8m
c921be7d 23199
5be8be5d
DG
23200 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
23201 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23202 strex, t_strex),
ff8646ee
TP
23203#undef THUMB_VARIANT
23204#define THUMB_VARIANT & arm_ext_v6t2
23205
21d799b5
NC
23206 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23207 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 23208
21d799b5
NC
23209 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
23210 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 23211
9e3c6df6 23212/* ARM V6 not included in V7M. */
c921be7d
NC
23213#undef THUMB_VARIANT
23214#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6 23215 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6 23216 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
9e3c6df6
PB
23217 UF(rfeib, 9900a00, 1, (RRw), rfe),
23218 UF(rfeda, 8100a00, 1, (RRw), rfe),
23219 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23220 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6
RE
23221 UF(rfefa, 8100a00, 1, (RRw), rfe),
23222 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23223 UF(rfeed, 9900a00, 1, (RRw), rfe),
9e3c6df6 23224 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
d709e4e6
RE
23225 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23226 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
9e3c6df6 23227 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
d709e4e6 23228 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
9e3c6df6 23229 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
d709e4e6 23230 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
9e3c6df6 23231 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
d709e4e6 23232 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
941c9cad 23233 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c921be7d 23234
9e3c6df6
PB
23235/* ARM V6 not included in V7M (eg. integer SIMD). */
23236#undef THUMB_VARIANT
23237#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
23238 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
23239 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
23240 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23241 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23242 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23243 /* Old name for QASX. */
74db7efb 23244 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 23245 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23246 /* Old name for QSAX. */
74db7efb 23247 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23248 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23249 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23250 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23251 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23252 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23253 /* Old name for SASX. */
74db7efb 23254 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23255 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23256 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23257 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23258 /* Old name for SHASX. */
21d799b5 23259 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23260 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23261 /* Old name for SHSAX. */
21d799b5
NC
23262 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23263 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23264 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23265 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23266 /* Old name for SSAX. */
74db7efb 23267 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23268 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23269 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23270 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23271 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23272 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23273 /* Old name for UASX. */
74db7efb 23274 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23275 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23276 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23277 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23278 /* Old name for UHASX. */
21d799b5
NC
23279 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23280 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23281 /* Old name for UHSAX. */
21d799b5
NC
23282 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23283 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23284 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23285 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23286 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23287 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23288 /* Old name for UQASX. */
21d799b5
NC
23289 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23290 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23291 /* Old name for UQSAX. */
21d799b5
NC
23292 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23293 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23294 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23295 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23296 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23297 /* Old name for USAX. */
74db7efb 23298 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 23299 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23300 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23301 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23302 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23303 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23304 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23305 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23306 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23307 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23308 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23309 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23310 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23311 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23312 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23313 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23314 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23315 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23316 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23317 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23318 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23319 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23320 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23321 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23322 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23323 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23324 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23325 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23326 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
23327 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
23328 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
23329 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23330 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23331 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 23332
c921be7d 23333#undef ARM_VARIANT
55e8aae7 23334#define ARM_VARIANT & arm_ext_v6k_v6t2
c921be7d 23335#undef THUMB_VARIANT
55e8aae7 23336#define THUMB_VARIANT & arm_ext_v6k_v6t2
c921be7d 23337
21d799b5
NC
23338 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
23339 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
23340 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
23341 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 23342
c921be7d
NC
23343#undef THUMB_VARIANT
23344#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
23345 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
23346 ldrexd, t_ldrexd),
23347 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
23348 RRnpcb), strexd, t_strexd),
ebdca51a 23349
c921be7d 23350#undef THUMB_VARIANT
ff8646ee 23351#define THUMB_VARIANT & arm_ext_v6t2_v8m
5be8be5d
DG
23352 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
23353 rd_rn, rd_rn),
23354 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
23355 rd_rn, rd_rn),
23356 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 23357 strex, t_strexbh),
5be8be5d 23358 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 23359 strex, t_strexbh),
21d799b5 23360 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 23361
c921be7d 23362#undef ARM_VARIANT
f4c65163 23363#define ARM_VARIANT & arm_ext_sec
74db7efb 23364#undef THUMB_VARIANT
f4c65163 23365#define THUMB_VARIANT & arm_ext_sec
c921be7d 23366
21d799b5 23367 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 23368
90ec0d68
MGD
23369#undef ARM_VARIANT
23370#define ARM_VARIANT & arm_ext_virt
23371#undef THUMB_VARIANT
23372#define THUMB_VARIANT & arm_ext_virt
23373
23374 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
23375 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
23376
ddfded2f
MW
23377#undef ARM_VARIANT
23378#define ARM_VARIANT & arm_ext_pan
23379#undef THUMB_VARIANT
23380#define THUMB_VARIANT & arm_ext_pan
23381
23382 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
23383
c921be7d 23384#undef ARM_VARIANT
74db7efb 23385#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
23386#undef THUMB_VARIANT
23387#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 23388
21d799b5
NC
23389 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
23390 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
23391 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23392 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 23393
21d799b5 23394 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
21d799b5 23395 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 23396
5be8be5d
DG
23397 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23398 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23399 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23400 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 23401
91d8b670
JG
23402#undef ARM_VARIANT
23403#define ARM_VARIANT & arm_ext_v3
23404#undef THUMB_VARIANT
23405#define THUMB_VARIANT & arm_ext_v6t2
23406
23407 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
c597cc3d
SD
23408 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
23409 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
91d8b670
JG
23410
23411#undef ARM_VARIANT
23412#define ARM_VARIANT & arm_ext_v6t2
ff8646ee
TP
23413#undef THUMB_VARIANT
23414#define THUMB_VARIANT & arm_ext_v6t2_v8m
23415 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
23416 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
23417
bf3eeda7 23418 /* Thumb-only instructions. */
74db7efb 23419#undef ARM_VARIANT
bf3eeda7
NS
23420#define ARM_VARIANT NULL
23421 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
23422 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
23423
23424 /* ARM does not really have an IT instruction, so always allow it.
23425 The opcode is copied from Thumb in order to allow warnings in
23426 -mimplicit-it=[never | arm] modes. */
23427#undef ARM_VARIANT
23428#define ARM_VARIANT & arm_ext_v1
ff8646ee
TP
23429#undef THUMB_VARIANT
23430#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 23431
21d799b5
NC
23432 TUE("it", bf08, bf08, 1, (COND), it, t_it),
23433 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
23434 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
23435 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
23436 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
23437 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
23438 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
23439 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
23440 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
23441 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
23442 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
23443 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
23444 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
23445 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
23446 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 23447 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
23448 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
23449 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 23450
92e90b6e 23451 /* Thumb2 only instructions. */
c921be7d
NC
23452#undef ARM_VARIANT
23453#define ARM_VARIANT NULL
92e90b6e 23454
21d799b5
NC
23455 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23456 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23457 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
23458 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
23459 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
23460 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 23461
eea54501
MGD
23462 /* Hardware division instructions. */
23463#undef ARM_VARIANT
23464#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
23465#undef THUMB_VARIANT
23466#define THUMB_VARIANT & arm_ext_div
23467
eea54501
MGD
23468 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
23469 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 23470
7e806470 23471 /* ARM V6M/V7 instructions. */
c921be7d
NC
23472#undef ARM_VARIANT
23473#define ARM_VARIANT & arm_ext_barrier
23474#undef THUMB_VARIANT
23475#define THUMB_VARIANT & arm_ext_barrier
23476
ccb84d65
JB
23477 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
23478 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
23479 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
7e806470 23480
62b3e311 23481 /* ARM V7 instructions. */
c921be7d
NC
23482#undef ARM_VARIANT
23483#define ARM_VARIANT & arm_ext_v7
23484#undef THUMB_VARIANT
23485#define THUMB_VARIANT & arm_ext_v7
23486
21d799b5
NC
23487 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
23488 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 23489
74db7efb 23490#undef ARM_VARIANT
60e5ef9f 23491#define ARM_VARIANT & arm_ext_mp
74db7efb 23492#undef THUMB_VARIANT
60e5ef9f
MGD
23493#define THUMB_VARIANT & arm_ext_mp
23494
23495 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
23496
53c4b28b
MGD
23497 /* AArchv8 instructions. */
23498#undef ARM_VARIANT
23499#define ARM_VARIANT & arm_ext_v8
4ed7ed8d
TP
23500
23501/* Instructions shared between armv8-a and armv8-m. */
53c4b28b 23502#undef THUMB_VARIANT
4ed7ed8d 23503#define THUMB_VARIANT & arm_ext_atomics
53c4b28b 23504
4ed7ed8d
TP
23505 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23506 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23507 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23508 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23509 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23510 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
4b8c8c02 23511 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
4b8c8c02
RE
23512 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
23513 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23514 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
23515 stlex, t_stlex),
4b8c8c02
RE
23516 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
23517 stlex, t_stlex),
23518 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
23519 stlex, t_stlex),
4ed7ed8d
TP
23520#undef THUMB_VARIANT
23521#define THUMB_VARIANT & arm_ext_v8
53c4b28b 23522
4ed7ed8d 23523 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
4ed7ed8d
TP
23524 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
23525 ldrexd, t_ldrexd),
23526 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
23527 strexd, t_strexd),
f7dd2fb2
TC
23528
23529/* Defined in V8 but is in undefined encoding space for earlier
23530 architectures. However earlier architectures are required to treat
23531 this instuction as a semihosting trap as well. Hence while not explicitly
23532 defined as such, it is in fact correct to define the instruction for all
23533 architectures. */
23534#undef THUMB_VARIANT
23535#define THUMB_VARIANT & arm_ext_v1
23536#undef ARM_VARIANT
23537#define ARM_VARIANT & arm_ext_v1
23538 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
23539
8884b720 23540 /* ARMv8 T32 only. */
74db7efb 23541#undef ARM_VARIANT
b79f7053
MGD
23542#define ARM_VARIANT NULL
23543 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
23544 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
23545 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
23546
33399f07
MGD
23547 /* FP for ARMv8. */
23548#undef ARM_VARIANT
a715796b 23549#define ARM_VARIANT & fpu_vfp_ext_armv8xd
33399f07 23550#undef THUMB_VARIANT
a715796b 23551#define THUMB_VARIANT & fpu_vfp_ext_armv8xd
33399f07
MGD
23552
23553 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
23554 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
23555 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
23556 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
30bdf752 23557 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
a710b305
AV
23558 mnCE(vrintz, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintz),
23559 mnCE(vrintx, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintx),
23560 mnUF(vrinta, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrinta),
23561 mnUF(vrintn, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintn),
23562 mnUF(vrintp, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintp),
23563 mnUF(vrintm, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintm),
33399f07 23564
91ff7894
MGD
23565 /* Crypto v1 extensions. */
23566#undef ARM_VARIANT
23567#define ARM_VARIANT & fpu_crypto_ext_armv8
23568#undef THUMB_VARIANT
23569#define THUMB_VARIANT & fpu_crypto_ext_armv8
23570
23571 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
23572 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
23573 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
23574 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
48adcd8e
MGD
23575 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
23576 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
23577 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
23578 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
23579 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
23580 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
23581 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
3c9017d2
MGD
23582 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
23583 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
23584 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
91ff7894 23585
dd5181d5 23586#undef ARM_VARIANT
74db7efb 23587#define ARM_VARIANT & crc_ext_armv8
dd5181d5
KT
23588#undef THUMB_VARIANT
23589#define THUMB_VARIANT & crc_ext_armv8
23590 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
23591 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
23592 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
23593 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
23594 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
23595 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
23596
105bde57
MW
23597 /* ARMv8.2 RAS extension. */
23598#undef ARM_VARIANT
4d1464f2 23599#define ARM_VARIANT & arm_ext_ras
105bde57 23600#undef THUMB_VARIANT
4d1464f2 23601#define THUMB_VARIANT & arm_ext_ras
105bde57
MW
23602 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
23603
49e8a725
SN
23604#undef ARM_VARIANT
23605#define ARM_VARIANT & arm_ext_v8_3
23606#undef THUMB_VARIANT
23607#define THUMB_VARIANT & arm_ext_v8_3
23608 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
23609
c604a79a
JW
23610#undef ARM_VARIANT
23611#define ARM_VARIANT & fpu_neon_ext_dotprod
23612#undef THUMB_VARIANT
23613#define THUMB_VARIANT & fpu_neon_ext_dotprod
23614 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
23615 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
23616
c921be7d
NC
23617#undef ARM_VARIANT
23618#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
23619#undef THUMB_VARIANT
23620#define THUMB_VARIANT NULL
c921be7d 23621
21d799b5
NC
23622 cCE("wfs", e200110, 1, (RR), rd),
23623 cCE("rfs", e300110, 1, (RR), rd),
23624 cCE("wfc", e400110, 1, (RR), rd),
23625 cCE("rfc", e500110, 1, (RR), rd),
23626
23627 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
23628 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
23629 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
23630 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
23631
23632 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
23633 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
23634 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
23635 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
23636
23637 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
23638 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
23639 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
23640 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
23641 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
23642 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
23643 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
23644 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
23645 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
23646 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
23647 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
23648 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
23649
23650 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
23651 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
23652 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
23653 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
23654 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
23655 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
23656 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
23657 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
23658 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
23659 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
23660 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
23661 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
23662
23663 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
23664 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
23665 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
23666 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
23667 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
23668 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
23669 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
23670 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
23671 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
23672 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
23673 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
23674 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
23675
23676 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
23677 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
23678 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
23679 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
23680 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
23681 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
23682 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
23683 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
23684 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
23685 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
23686 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
23687 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
23688
23689 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
23690 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
23691 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
23692 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
23693 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
23694 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
23695 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
23696 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
23697 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
23698 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
23699 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
23700 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
23701
23702 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
23703 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
23704 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
23705 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
23706 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
23707 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
23708 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
23709 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
23710 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
23711 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
23712 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
23713 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
23714
23715 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
23716 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
23717 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
23718 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
23719 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
23720 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
23721 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
23722 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
23723 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
23724 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
23725 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
23726 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
23727
23728 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
23729 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
23730 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
23731 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
23732 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
23733 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
23734 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
23735 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
23736 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
23737 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
23738 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
23739 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
23740
23741 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
23742 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
23743 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
23744 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
23745 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
23746 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
23747 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
23748 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
23749 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
23750 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
23751 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
23752 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
23753
23754 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
23755 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
23756 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
23757 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
23758 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
23759 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
23760 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
23761 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
23762 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
23763 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
23764 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
23765 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
23766
23767 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
23768 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
23769 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
23770 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
23771 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
23772 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
23773 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
23774 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
23775 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
23776 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
23777 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
23778 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
23779
23780 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
23781 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
23782 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
23783 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
23784 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
23785 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
23786 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
23787 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
23788 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
23789 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
23790 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
23791 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
23792
23793 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
23794 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
23795 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
23796 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
23797 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
23798 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
23799 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
23800 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
23801 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
23802 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
23803 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
23804 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
23805
23806 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
23807 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
23808 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
23809 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
23810 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
23811 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
23812 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
23813 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
23814 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
23815 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
23816 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
23817 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
23818
23819 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
23820 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
23821 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
23822 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
23823 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
23824 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
23825 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
23826 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
23827 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
23828 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
23829 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
23830 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
23831
23832 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
23833 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
23834 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
23835 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
23836 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
23837 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
23838 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
23839 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
23840 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
23841 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
23842 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
23843 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
23844
23845 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
23846 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
23847 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
23848 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
23849 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
23850 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23851 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23852 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23853 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
23854 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
23855 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
23856 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
23857
23858 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
23859 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
23860 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
23861 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
23862 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
23863 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23864 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23865 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23866 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
23867 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
23868 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
23869 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
23870
23871 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
23872 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
23873 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
23874 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
23875 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
23876 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23877 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23878 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23879 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
23880 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
23881 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
23882 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
23883
23884 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
23885 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
23886 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
23887 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
23888 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
23889 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23890 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23891 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23892 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
23893 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
23894 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
23895 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
23896
23897 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
23898 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
23899 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
23900 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
23901 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
23902 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23903 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23904 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23905 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
23906 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
23907 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
23908 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
23909
23910 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
23911 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
23912 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
23913 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
23914 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
23915 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23916 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23917 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23918 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
23919 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
23920 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
23921 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
23922
23923 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
23924 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
23925 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
23926 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
23927 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
23928 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23929 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23930 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23931 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
23932 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
23933 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
23934 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
23935
23936 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
23937 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
23938 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
23939 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
23940 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
23941 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23942 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23943 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23944 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
23945 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
23946 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
23947 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
23948
23949 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
23950 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
23951 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
23952 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
23953 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
23954 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23955 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23956 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23957 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
23958 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
23959 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
23960 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
23961
23962 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
23963 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
23964 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
23965 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
23966 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
23967 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23968 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23969 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23970 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
23971 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
23972 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
23973 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
23974
23975 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23976 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23977 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23978 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23979 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23980 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23981 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23982 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23983 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23984 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23985 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23986 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23987
23988 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23989 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23990 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23991 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23992 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23993 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23994 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23995 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23996 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23997 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23998 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23999 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24000
24001 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24002 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24003 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24004 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24005 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24006 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24007 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24008 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24009 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24010 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24011 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24012 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24013
24014 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
24015 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
24016 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
24017 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
24018
24019 cCL("flts", e000110, 2, (RF, RR), rn_rd),
24020 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
24021 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
24022 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
24023 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
24024 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
24025 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
24026 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
24027 cCL("flte", e080110, 2, (RF, RR), rn_rd),
24028 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
24029 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
24030 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 24031
c19d1205
ZW
24032 /* The implementation of the FIX instruction is broken on some
24033 assemblers, in that it accepts a precision specifier as well as a
24034 rounding specifier, despite the fact that this is meaningless.
24035 To be more compatible, we accept it as well, though of course it
24036 does not set any bits. */
21d799b5
NC
24037 cCE("fix", e100110, 2, (RR, RF), rd_rm),
24038 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
24039 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
24040 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
24041 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
24042 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
24043 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
24044 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
24045 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
24046 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
24047 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
24048 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
24049 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 24050
c19d1205 24051 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
24052#undef ARM_VARIANT
24053#define ARM_VARIANT & fpu_fpa_ext_v2
24054
21d799b5
NC
24055 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24056 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24057 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24058 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24059 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24060 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 24061
c921be7d
NC
24062#undef ARM_VARIANT
24063#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
24064
c19d1205 24065 /* Moves and type conversions. */
21d799b5 24066 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
24067 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
24068 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
24069 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
24070 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
24071 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
24072 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24073 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
24074 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24075 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
24076 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
24077
24078 /* Memory operations. */
21d799b5
NC
24079 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24080 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
24081 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24082 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24083 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24084 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24085 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24086 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24087 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24088 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24089 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24090 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24091 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24092 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24093 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24094 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24095 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24096 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 24097
c19d1205 24098 /* Monadic operations. */
21d799b5
NC
24099 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
24100 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
24101 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
24102
24103 /* Dyadic operations. */
21d799b5
NC
24104 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24105 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24106 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24107 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24108 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24109 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24110 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24111 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24112 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 24113
c19d1205 24114 /* Comparisons. */
21d799b5
NC
24115 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
24116 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
24117 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
24118 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 24119
62f3b8c8
PB
24120 /* Double precision load/store are still present on single precision
24121 implementations. */
24122 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
24123 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
24124 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24125 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24126 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24127 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24128 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24129 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24130 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24131 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 24132
c921be7d
NC
24133#undef ARM_VARIANT
24134#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
24135
c19d1205 24136 /* Moves and type conversions. */
21d799b5
NC
24137 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24138 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24139 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
24140 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
24141 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
24142 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
24143 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24144 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
24145 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24146 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24147 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24148 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 24149
c19d1205 24150 /* Monadic operations. */
21d799b5
NC
24151 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24152 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24153 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
24154
24155 /* Dyadic operations. */
21d799b5
NC
24156 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24157 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24158 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24159 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24160 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24161 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24162 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24163 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24164 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 24165
c19d1205 24166 /* Comparisons. */
21d799b5
NC
24167 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24168 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
24169 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24170 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 24171
037e8744
JB
24172/* Instructions which may belong to either the Neon or VFP instruction sets.
24173 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
24174#undef ARM_VARIANT
24175#define ARM_VARIANT & fpu_vfp_ext_v1xd
24176#undef THUMB_VARIANT
24177#define THUMB_VARIANT & fpu_vfp_ext_v1xd
24178
037e8744
JB
24179 /* These mnemonics are unique to VFP. */
24180 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
24181 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
24182 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24183 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24184 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
037e8744
JB
24185 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
24186 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
24187 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
24188
24189 /* Mnemonics shared by Neon and VFP. */
21d799b5 24190 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 24191
55881a11
MGD
24192 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24193 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24194 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24195 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24196 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24197 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
037e8744 24198
dd9634d9 24199 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
e3e535bc 24200 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
dd9634d9
AV
24201 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
24202 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
f31fef98 24203
037e8744
JB
24204
24205 /* NOTE: All VMOV encoding is special-cased! */
037e8744
JB
24206 NCE(vmovq, 0, 1, (VMOV), neon_mov),
24207
32c36c3c
AV
24208#undef THUMB_VARIANT
24209/* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
24210 by different feature bits. Since we are setting the Thumb guard, we can
24211 require Thumb-1 which makes it a nop guard and set the right feature bit in
24212 do_vldr_vstr (). */
24213#define THUMB_VARIANT & arm_ext_v4t
24214 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24215 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24216
9db2f6b4
RL
24217#undef ARM_VARIANT
24218#define ARM_VARIANT & arm_ext_fp16
24219#undef THUMB_VARIANT
24220#define THUMB_VARIANT & arm_ext_fp16
24221 /* New instructions added from v8.2, allowing the extraction and insertion of
24222 the upper 16 bits of a 32-bit vector register. */
24223 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
24224 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
24225
dec41383
JW
24226 /* New backported fma/fms instructions optional in v8.2. */
24227 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
24228 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
24229
c921be7d
NC
24230#undef THUMB_VARIANT
24231#define THUMB_VARIANT & fpu_neon_ext_v1
24232#undef ARM_VARIANT
24233#define ARM_VARIANT & fpu_neon_ext_v1
24234
5287ad62
JB
24235 /* Data processing with three registers of the same length. */
24236 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
24237 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
24238 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
5287ad62 24239 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
5287ad62 24240 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
5287ad62
JB
24241 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24242 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
5287ad62 24243 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
5287ad62 24244 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7 24245 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
627907b7 24246 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
24247 /* If not immediate, fall back to neon_dyadic_i64_su.
24248 shl_imm should accept I8 I16 I32 I64,
24249 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
24250 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
24251 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
24252 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
24253 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 24254 /* Logic ops, types optional & ignored. */
4316f0d2 24255 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24256 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24257 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24258 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24259 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
24260 /* Bitfield ops, untyped. */
24261 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24262 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24263 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24264 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24265 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24266 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
cc933301 24267 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
21d799b5 24268 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21d799b5 24269 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21d799b5 24270 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
24271 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
24272 back to neon_dyadic_if_su. */
21d799b5
NC
24273 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24274 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24275 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24276 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24277 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24278 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24279 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24280 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 24281 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
24282 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
24283 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 24284 /* As above, D registers only. */
21d799b5
NC
24285 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24286 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 24287 /* Int and float variants, signedness unimportant. */
21d799b5
NC
24288 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24289 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24290 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 24291 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
24292 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24293 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
24294 /* vtst takes sizes 8, 16, 32. */
24295 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
24296 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
24297 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 24298 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 24299 /* VQD{R}MULH takes S16 S32. */
21d799b5 24300 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
21d799b5 24301 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
24302 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24303 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24304 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24305 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
24306 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24307 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24308 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24309 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
24310 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24311 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24312 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24313 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
d6b4b13e 24314 /* ARM v8.1 extension. */
643afb90
MW
24315 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24316 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
24317 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
5287ad62
JB
24318
24319 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 24320 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
24321 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
24322
24323 /* Data processing with two registers and a shift amount. */
24324 /* Right shifts, and variants with rounding.
24325 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
24326 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
24327 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24328 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
24329 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24330 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24331 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24332 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24333 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24334 /* Shift and insert. Sizes accepted 8 16 32 64. */
24335 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
24336 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
24337 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
24338 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
24339 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
24340 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
24341 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
24342 /* Right shift immediate, saturating & narrowing, with rounding variants.
24343 Types accepted S16 S32 S64 U16 U32 U64. */
24344 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24345 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24346 /* As above, unsigned. Types accepted S16 S32 S64. */
24347 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24348 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24349 /* Right shift narrowing. Types accepted I16 I32 I64. */
24350 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24351 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24352 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 24353 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 24354 /* CVT with optional immediate for fixed-point variant. */
21d799b5 24355 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 24356
4316f0d2 24357 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
24358
24359 /* Data processing, three registers of different lengths. */
24360 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
24361 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
5287ad62
JB
24362 /* If not scalar, fall back to neon_dyadic_long.
24363 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
24364 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24365 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
24366 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
24367 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24368 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24369 /* Dyadic, narrowing insns. Types I16 I32 I64. */
24370 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24371 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24372 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24373 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24374 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
24375 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24376 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24377 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
24378 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
24379 S16 S32 U16 U32. */
21d799b5 24380 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
24381
24382 /* Extract. Size 8. */
3b8d421e
PB
24383 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
24384 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
24385
24386 /* Two registers, miscellaneous. */
24387 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
24388 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
24389 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
24390 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
24391 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
24392 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
24393 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
24394 /* Vector replicate. Sizes 8 16 32. */
21d799b5 24395 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
24396 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
24397 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
24398 /* VMOVN. Types I16 I32 I64. */
21d799b5 24399 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 24400 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 24401 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 24402 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 24403 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
24404 /* VZIP / VUZP. Sizes 8 16 32. */
24405 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
24406 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
24407 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
24408 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
24409 /* VQABS / VQNEG. Types S8 S16 S32. */
5287ad62 24410 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
5287ad62
JB
24411 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
24412 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
24413 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
24414 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
24415 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
24416 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
cc933301 24417 /* Reciprocal estimates. Types U32 F16 F32. */
5287ad62
JB
24418 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
24419 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
24420 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
24421 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
24422 /* VCLS. Types S8 S16 S32. */
5287ad62
JB
24423 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
24424 /* VCLZ. Types I8 I16 I32. */
5287ad62
JB
24425 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
24426 /* VCNT. Size 8. */
24427 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
24428 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
24429 /* Two address, untyped. */
24430 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
24431 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
24432 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
24433 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
24434 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
24435
24436 /* Table lookup. Size 8. */
24437 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24438 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24439
c921be7d
NC
24440#undef THUMB_VARIANT
24441#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
24442#undef ARM_VARIANT
24443#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
24444
5287ad62 24445 /* Neon element/structure load/store. */
21d799b5
NC
24446 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24447 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24448 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24449 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24450 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24451 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24452 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24453 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 24454
c921be7d 24455#undef THUMB_VARIANT
74db7efb
NC
24456#define THUMB_VARIANT & fpu_vfp_ext_v3xd
24457#undef ARM_VARIANT
24458#define ARM_VARIANT & fpu_vfp_ext_v3xd
62f3b8c8
PB
24459 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
24460 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24461 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24462 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24463 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24464 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24465 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24466 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24467 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24468
74db7efb 24469#undef THUMB_VARIANT
c921be7d
NC
24470#define THUMB_VARIANT & fpu_vfp_ext_v3
24471#undef ARM_VARIANT
24472#define ARM_VARIANT & fpu_vfp_ext_v3
24473
21d799b5 24474 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 24475 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24476 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 24477 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24478 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 24479 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24480 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 24481 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24482 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 24483
74db7efb
NC
24484#undef ARM_VARIANT
24485#define ARM_VARIANT & fpu_vfp_ext_fma
24486#undef THUMB_VARIANT
24487#define THUMB_VARIANT & fpu_vfp_ext_fma
d58196e0 24488 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
62f3b8c8
PB
24489 VFP FMA variant; NEON and VFP FMA always includes the NEON
24490 FMA instructions. */
d58196e0
AV
24491 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
24492 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
24493
62f3b8c8
PB
24494 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
24495 the v form should always be used. */
24496 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24497 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24498 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24499 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24500 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24501 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24502
5287ad62 24503#undef THUMB_VARIANT
c921be7d
NC
24504#undef ARM_VARIANT
24505#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
24506
21d799b5
NC
24507 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24508 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24509 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24510 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24511 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24512 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24513 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
24514 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 24515
c921be7d
NC
24516#undef ARM_VARIANT
24517#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
24518
21d799b5
NC
24519 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
24520 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
24521 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
24522 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
24523 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
24524 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
24525 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
24526 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
24527 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
74db7efb
NC
24528 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24529 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24530 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24531 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24532 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24533 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21d799b5
NC
24534 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24535 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24536 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24537 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
24538 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
24539 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24540 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24541 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24542 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24543 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24544 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
74db7efb
NC
24545 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
24546 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
24547 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21d799b5
NC
24548 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
24549 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
24550 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
24551 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
24552 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
24553 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
24554 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
24555 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
24556 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24557 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24558 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24559 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24560 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24561 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24562 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24563 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24564 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24565 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
74db7efb
NC
24566 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24567 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24568 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24569 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24570 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24571 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24572 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24573 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24574 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24575 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24576 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24577 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24578 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
24579 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24580 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24581 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24582 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24583 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24584 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24585 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24586 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24587 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24588 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24589 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24590 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24591 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24592 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24593 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24594 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24595 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24596 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24597 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24598 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24599 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24600 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24601 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24602 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24603 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24604 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24605 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24606 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24607 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
24608 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24609 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24610 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24611 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24612 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
24613 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24614 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24615 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24616 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24617 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24618 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24619 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24620 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24621 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24622 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24623 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24624 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24625 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24626 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24627 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24628 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24629 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
24630 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24631 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24632 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24633 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24634 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24635 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24636 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24637 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24638 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24639 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24640 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24641 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24642 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24643 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24644 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24645 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24646 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24647 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24648 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24649 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24650 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24651 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24652 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24653 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24654 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24655 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24656 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24657 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24658 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24659 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24660 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24661 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
24662 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
24663 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
24664 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
24665 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
24666 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
24667 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24668 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24669 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24670 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
24671 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
24672 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
24673 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
24674 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
24675 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
24676 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24677 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24678 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24679 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24680 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 24681
c921be7d
NC
24682#undef ARM_VARIANT
24683#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
24684
21d799b5
NC
24685 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
24686 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
24687 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
24688 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
24689 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
24690 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
24691 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24692 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24693 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24694 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24695 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24696 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24697 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24698 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24699 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24700 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24701 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24702 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24703 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24704 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24705 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
24706 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24707 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24708 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24709 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24710 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24711 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24712 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24713 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24714 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24715 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24716 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24717 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24718 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24719 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24720 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24721 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24722 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24723 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24724 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24725 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24726 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24727 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24728 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24729 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24730 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24731 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24732 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24733 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24734 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24735 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24736 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24737 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24738 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24739 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24740 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24741 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 24742
c921be7d
NC
24743#undef ARM_VARIANT
24744#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
24745
21d799b5
NC
24746 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24747 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24748 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24749 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24750 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24751 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24752 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24753 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24754 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
24755 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
24756 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
24757 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
24758 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
24759 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
74db7efb
NC
24760 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
24761 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
24762 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
24763 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
24764 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
24765 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
24766 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
24767 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
24768 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
24769 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21d799b5
NC
24770 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
24771 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
24772 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
24773 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
74db7efb
NC
24774 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
24775 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21d799b5
NC
24776 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
24777 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
24778 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
24779 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
74db7efb
NC
24780 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
24781 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
24782 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
24783 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
24784 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
24785 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21d799b5
NC
24786 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
24787 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
74db7efb
NC
24788 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
24789 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21d799b5
NC
24790 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
24791 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
24792 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
24793 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
24794 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
24795 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
24796 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
24797 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
24798 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
24799 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
24800 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
24801 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
24802 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
24803 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
24804 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
24805 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
24806 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
24807 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
24808 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
24809 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
24810 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24811 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24812 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24813 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24814 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24815 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24816 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24817 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
74db7efb
NC
24818 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24819 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21d799b5
NC
24820 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24821 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
4ed7ed8d 24822
7fadb25d
SD
24823 /* ARMv8.5-A instructions. */
24824#undef ARM_VARIANT
24825#define ARM_VARIANT & arm_ext_sb
24826#undef THUMB_VARIANT
24827#define THUMB_VARIANT & arm_ext_sb
24828 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
24829
dad0c3bf
SD
24830#undef ARM_VARIANT
24831#define ARM_VARIANT & arm_ext_predres
24832#undef THUMB_VARIANT
24833#define THUMB_VARIANT & arm_ext_predres
24834 CE("cfprctx", e070f93, 1, (RRnpc), rd),
24835 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
24836 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
24837
16a1fa25 24838 /* ARMv8-M instructions. */
4ed7ed8d
TP
24839#undef ARM_VARIANT
24840#define ARM_VARIANT NULL
24841#undef THUMB_VARIANT
24842#define THUMB_VARIANT & arm_ext_v8m
cf3cf39d
TP
24843 ToU("sg", e97fe97f, 0, (), noargs),
24844 ToC("blxns", 4784, 1, (RRnpc), t_blx),
24845 ToC("bxns", 4704, 1, (RRnpc), t_bx),
24846 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
24847 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
24848 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
24849 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
16a1fa25
TP
24850
24851 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
24852 instructions behave as nop if no VFP is present. */
24853#undef THUMB_VARIANT
24854#define THUMB_VARIANT & arm_ext_v8m_main
cf3cf39d
TP
24855 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
24856 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
4389b29a
AV
24857
24858 /* Armv8.1-M Mainline instructions. */
24859#undef THUMB_VARIANT
24860#define THUMB_VARIANT & arm_ext_v8_1m_main
24861 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
f6b2b12d 24862 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
f1c7f421 24863 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
65d1bc05 24864 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
f1c7f421 24865 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
60f993ce
AV
24866
24867 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
24868 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
24869 toU("le", _le, 2, (oLR, EXP), t_loloop),
4b5a202f 24870
efd6b359 24871 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
5ee91343
AV
24872 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
24873
24874#undef THUMB_VARIANT
24875#define THUMB_VARIANT & mve_ext
1b883319
AV
24876
24877 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24878 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24879 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24880 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24881 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24882 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24883 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24884 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24885 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24886 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24887 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24888 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24889 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24890 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24891 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24892
5ee91343
AV
24893 ToC("vpst", fe710f4d, 0, (), mve_vpt),
24894 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
24895 ToC("vpste", fe718f4d, 0, (), mve_vpt),
24896 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
24897 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
24898 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
24899 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
24900 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
24901 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
24902 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
24903 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
24904 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
24905 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
24906 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
24907 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
24908
a302e574 24909 /* MVE and MVE FP only. */
7df54120 24910 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
c2dafc2a
AV
24911 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
24912 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
24913 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24914 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
886e1c73 24915 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
a302e574
AV
24916 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
24917 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24918 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24919 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24920 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24921 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24922 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24923 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24924 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24925 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24926 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24927
35c228db
AV
24928 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24929 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24930 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24931 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24932 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24933 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24934 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24935 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24936 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24937 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24938 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24939 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
f5f10c66
AV
24940 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24941 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24942 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24943 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24944 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24945 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24946 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24947 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
35c228db 24948
57785aa2
AV
24949 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
24950 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
c2dafc2a 24951 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
26c1e780
AV
24952 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
24953 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
24954 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
24955 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
b409bdb6
AV
24956 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
24957 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24958 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
24959 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
935295b5
AV
24960 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
24961 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
13ccd4c0
AV
24962 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
24963 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
24964 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
24965 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
57785aa2 24966
93925576
AV
24967 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24968 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24969 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24970 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24971 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24972 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24973 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24974 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24975 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24976 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24977 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24978 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24979 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24980 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24981 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24982 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24983 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24984 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24985 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24986 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24987
2d78f95b
AV
24988 mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas),
24989 mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
24990 mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
3063888e
AV
24991 mToC("vpnot", fe310f4d, 0, (), mve_vpnot),
24992 mToC("vpsel", fe310f01, 3, (RMQ, RMQ, RMQ), mve_vpsel),
2d78f95b 24993
8b8b22a4
AV
24994 mToC("vqdmladh", ee000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24995 mToC("vqdmladhx", ee001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24996 mToC("vqrdmladh", ee000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24997 mToC("vqrdmladhx",ee001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24998 mToC("vqdmlsdh", fe000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24999 mToC("vqdmlsdhx", fe001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25000 mToC("vqrdmlsdh", fe000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25001 mToC("vqrdmlsdhx",fe001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
42b16635
AV
25002 mToC("vqdmlah", ee000e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25003 mToC("vqdmlash", ee001e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25004 mToC("vqrdmlash", ee001e40, 3, (RMQ, RMQ, RR), mve_vqdmlah),
35d1cfc2
AV
25005 mToC("vqdmullt", ee301f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
25006 mToC("vqdmullb", ee300f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
1be7aba3
AV
25007 mCEF(vqmovnt, _vqmovnt, 2, (RMQ, RMQ), mve_vqmovn),
25008 mCEF(vqmovnb, _vqmovnb, 2, (RMQ, RMQ), mve_vqmovn),
25009 mCEF(vqmovunt, _vqmovunt, 2, (RMQ, RMQ), mve_vqmovn),
25010 mCEF(vqmovunb, _vqmovunb, 2, (RMQ, RMQ), mve_vqmovn),
8b8b22a4 25011
4aa88b50
AV
25012 mCEF(vshrnt, _vshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25013 mCEF(vshrnb, _vshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25014 mCEF(vrshrnt, _vrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25015 mCEF(vrshrnb, _vrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25016 mCEF(vqshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25017 mCEF(vqshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25018 mCEF(vqshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25019 mCEF(vqshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25020 mCEF(vqrshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25021 mCEF(vqrshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25022 mCEF(vqrshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25023 mCEF(vqrshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25024
5d281bf0
AV
25025#undef THUMB_VARIANT
25026#define THUMB_VARIANT & mve_fp_ext
25027 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
f30ee27c 25028 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
935295b5
AV
25029 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
25030 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
8cd78170
AV
25031 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
25032 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
25033 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
25034 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
5d281bf0 25035
5ee91343 25036#undef ARM_VARIANT
57785aa2 25037#define ARM_VARIANT & fpu_vfp_ext_v1
5ee91343
AV
25038#undef THUMB_VARIANT
25039#define THUMB_VARIANT & arm_ext_v6t2
a8465a06
AV
25040 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
25041 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
5ee91343 25042
57785aa2
AV
25043 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25044
25045#undef ARM_VARIANT
25046#define ARM_VARIANT & fpu_vfp_ext_v1xd
25047
25048 MNCE(vmov, 0, 1, (VMOV), neon_mov),
25049 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
25050 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
25051 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
25052
886e1c73
AV
25053 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
25054 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
25055 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
5ee91343 25056
485dee97
AV
25057 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25058 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25059
57785aa2
AV
25060 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
25061 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
25062
1b883319
AV
25063 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25064 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25065
57785aa2
AV
25066#undef ARM_VARIANT
25067#define ARM_VARIANT & fpu_vfp_ext_v2
25068
25069 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
25070 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
25071 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
25072 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
25073
dd9634d9
AV
25074#undef ARM_VARIANT
25075#define ARM_VARIANT & fpu_vfp_ext_armv8xd
25076 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
25077 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
25078 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
25079 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
935295b5
AV
25080 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
25081 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
dd9634d9
AV
25082
25083#undef ARM_VARIANT
5ee91343 25084#define ARM_VARIANT & fpu_neon_ext_v1
f601a00c 25085 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
5ee91343
AV
25086 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
25087 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
25088 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
f601a00c
AV
25089 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25090 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25091 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25092 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25093 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
f30ee27c
AV
25094 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
25095 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
b409bdb6 25096 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
7df54120
AV
25097 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
25098 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
25099 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
935295b5
AV
25100 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25101 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
a8465a06
AV
25102 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
25103 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
1a186d29
AV
25104 mnUF(vmvn, _vmvn, 2, (RNDQMQ, RNDQMQ_Ibig), neon_mvn),
25105 MNUF(vqabs, 1b00700, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
25106 MNUF(vqneg, 1b00780, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
42b16635
AV
25107 mnUF(vqrdmlah, _vqrdmlah,3, (RNDQMQ, oRNDQMQ, RNDQ_RNSC_RR), neon_qrdmlah),
25108 mnUF(vqdmulh, _vqdmulh, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
25109 mnUF(vqrdmulh, _vqrdmulh,3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
1be7aba3
AV
25110 MNUF(vqrshl, 0000510, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
25111 MNUF(vrshl, 0000500, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
5d281bf0
AV
25112
25113#undef ARM_VARIANT
25114#define ARM_VARIANT & arm_ext_v8_3
25115#undef THUMB_VARIANT
25116#define THUMB_VARIANT & arm_ext_v6t2_v8m
25117 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
25118 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
c19d1205
ZW
25119};
25120#undef ARM_VARIANT
25121#undef THUMB_VARIANT
25122#undef TCE
c19d1205
ZW
25123#undef TUE
25124#undef TUF
25125#undef TCC
8f06b2d8 25126#undef cCE
e3cb604e
PB
25127#undef cCL
25128#undef C3E
4389b29a 25129#undef C3
c19d1205
ZW
25130#undef CE
25131#undef CM
4389b29a 25132#undef CL
c19d1205
ZW
25133#undef UE
25134#undef UF
25135#undef UT
5287ad62
JB
25136#undef NUF
25137#undef nUF
25138#undef NCE
25139#undef nCE
c19d1205
ZW
25140#undef OPS0
25141#undef OPS1
25142#undef OPS2
25143#undef OPS3
25144#undef OPS4
25145#undef OPS5
25146#undef OPS6
25147#undef do_0
4389b29a
AV
25148#undef ToC
25149#undef toC
25150#undef ToU
f6b2b12d 25151#undef toU
c19d1205
ZW
25152\f
25153/* MD interface: bits in the object file. */
bfae80f2 25154
c19d1205
ZW
25155/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
25156 for use in the a.out file, and stores them in the array pointed to by buf.
25157 This knows about the endian-ness of the target machine and does
25158 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
25159 2 (short) and 4 (long) Floating numbers are put out as a series of
25160 LITTLENUMS (shorts, here at least). */
b99bd4ef 25161
c19d1205
ZW
25162void
25163md_number_to_chars (char * buf, valueT val, int n)
25164{
25165 if (target_big_endian)
25166 number_to_chars_bigendian (buf, val, n);
25167 else
25168 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
25169}
25170
c19d1205
ZW
25171static valueT
25172md_chars_to_number (char * buf, int n)
bfae80f2 25173{
c19d1205
ZW
25174 valueT result = 0;
25175 unsigned char * where = (unsigned char *) buf;
bfae80f2 25176
c19d1205 25177 if (target_big_endian)
b99bd4ef 25178 {
c19d1205
ZW
25179 while (n--)
25180 {
25181 result <<= 8;
25182 result |= (*where++ & 255);
25183 }
b99bd4ef 25184 }
c19d1205 25185 else
b99bd4ef 25186 {
c19d1205
ZW
25187 while (n--)
25188 {
25189 result <<= 8;
25190 result |= (where[n] & 255);
25191 }
bfae80f2 25192 }
b99bd4ef 25193
c19d1205 25194 return result;
bfae80f2 25195}
b99bd4ef 25196
c19d1205 25197/* MD interface: Sections. */
b99bd4ef 25198
fa94de6b
RM
25199/* Calculate the maximum variable size (i.e., excluding fr_fix)
25200 that an rs_machine_dependent frag may reach. */
25201
25202unsigned int
25203arm_frag_max_var (fragS *fragp)
25204{
25205 /* We only use rs_machine_dependent for variable-size Thumb instructions,
25206 which are either THUMB_SIZE (2) or INSN_SIZE (4).
25207
25208 Note that we generate relaxable instructions even for cases that don't
25209 really need it, like an immediate that's a trivial constant. So we're
25210 overestimating the instruction size for some of those cases. Rather
25211 than putting more intelligence here, it would probably be better to
25212 avoid generating a relaxation frag in the first place when it can be
25213 determined up front that a short instruction will suffice. */
25214
25215 gas_assert (fragp->fr_type == rs_machine_dependent);
25216 return INSN_SIZE;
25217}
25218
0110f2b8
PB
25219/* Estimate the size of a frag before relaxing. Assume everything fits in
25220 2 bytes. */
25221
c19d1205 25222int
0110f2b8 25223md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
25224 segT segtype ATTRIBUTE_UNUSED)
25225{
0110f2b8
PB
25226 fragp->fr_var = 2;
25227 return 2;
25228}
25229
25230/* Convert a machine dependent frag. */
25231
25232void
25233md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
25234{
25235 unsigned long insn;
25236 unsigned long old_op;
25237 char *buf;
25238 expressionS exp;
25239 fixS *fixp;
25240 int reloc_type;
25241 int pc_rel;
25242 int opcode;
25243
25244 buf = fragp->fr_literal + fragp->fr_fix;
25245
25246 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
25247 if (fragp->fr_symbol)
25248 {
0110f2b8
PB
25249 exp.X_op = O_symbol;
25250 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
25251 }
25252 else
25253 {
0110f2b8 25254 exp.X_op = O_constant;
5f4273c7 25255 }
0110f2b8
PB
25256 exp.X_add_number = fragp->fr_offset;
25257 opcode = fragp->fr_subtype;
25258 switch (opcode)
25259 {
25260 case T_MNEM_ldr_pc:
25261 case T_MNEM_ldr_pc2:
25262 case T_MNEM_ldr_sp:
25263 case T_MNEM_str_sp:
25264 case T_MNEM_ldr:
25265 case T_MNEM_ldrb:
25266 case T_MNEM_ldrh:
25267 case T_MNEM_str:
25268 case T_MNEM_strb:
25269 case T_MNEM_strh:
25270 if (fragp->fr_var == 4)
25271 {
5f4273c7 25272 insn = THUMB_OP32 (opcode);
0110f2b8
PB
25273 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
25274 {
25275 insn |= (old_op & 0x700) << 4;
25276 }
25277 else
25278 {
25279 insn |= (old_op & 7) << 12;
25280 insn |= (old_op & 0x38) << 13;
25281 }
25282 insn |= 0x00000c00;
25283 put_thumb32_insn (buf, insn);
25284 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
25285 }
25286 else
25287 {
25288 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
25289 }
25290 pc_rel = (opcode == T_MNEM_ldr_pc2);
25291 break;
25292 case T_MNEM_adr:
25293 if (fragp->fr_var == 4)
25294 {
25295 insn = THUMB_OP32 (opcode);
25296 insn |= (old_op & 0xf0) << 4;
25297 put_thumb32_insn (buf, insn);
25298 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
25299 }
25300 else
25301 {
25302 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25303 exp.X_add_number -= 4;
25304 }
25305 pc_rel = 1;
25306 break;
25307 case T_MNEM_mov:
25308 case T_MNEM_movs:
25309 case T_MNEM_cmp:
25310 case T_MNEM_cmn:
25311 if (fragp->fr_var == 4)
25312 {
25313 int r0off = (opcode == T_MNEM_mov
25314 || opcode == T_MNEM_movs) ? 0 : 8;
25315 insn = THUMB_OP32 (opcode);
25316 insn = (insn & 0xe1ffffff) | 0x10000000;
25317 insn |= (old_op & 0x700) << r0off;
25318 put_thumb32_insn (buf, insn);
25319 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25320 }
25321 else
25322 {
25323 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
25324 }
25325 pc_rel = 0;
25326 break;
25327 case T_MNEM_b:
25328 if (fragp->fr_var == 4)
25329 {
25330 insn = THUMB_OP32(opcode);
25331 put_thumb32_insn (buf, insn);
25332 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
25333 }
25334 else
25335 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
25336 pc_rel = 1;
25337 break;
25338 case T_MNEM_bcond:
25339 if (fragp->fr_var == 4)
25340 {
25341 insn = THUMB_OP32(opcode);
25342 insn |= (old_op & 0xf00) << 14;
25343 put_thumb32_insn (buf, insn);
25344 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
25345 }
25346 else
25347 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
25348 pc_rel = 1;
25349 break;
25350 case T_MNEM_add_sp:
25351 case T_MNEM_add_pc:
25352 case T_MNEM_inc_sp:
25353 case T_MNEM_dec_sp:
25354 if (fragp->fr_var == 4)
25355 {
25356 /* ??? Choose between add and addw. */
25357 insn = THUMB_OP32 (opcode);
25358 insn |= (old_op & 0xf0) << 4;
25359 put_thumb32_insn (buf, insn);
16805f35
PB
25360 if (opcode == T_MNEM_add_pc)
25361 reloc_type = BFD_RELOC_ARM_T32_IMM12;
25362 else
25363 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
25364 }
25365 else
25366 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25367 pc_rel = 0;
25368 break;
25369
25370 case T_MNEM_addi:
25371 case T_MNEM_addis:
25372 case T_MNEM_subi:
25373 case T_MNEM_subis:
25374 if (fragp->fr_var == 4)
25375 {
25376 insn = THUMB_OP32 (opcode);
25377 insn |= (old_op & 0xf0) << 4;
25378 insn |= (old_op & 0xf) << 16;
25379 put_thumb32_insn (buf, insn);
16805f35
PB
25380 if (insn & (1 << 20))
25381 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25382 else
25383 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
25384 }
25385 else
25386 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25387 pc_rel = 0;
25388 break;
25389 default:
5f4273c7 25390 abort ();
0110f2b8
PB
25391 }
25392 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 25393 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
25394 fixp->fx_file = fragp->fr_file;
25395 fixp->fx_line = fragp->fr_line;
25396 fragp->fr_fix += fragp->fr_var;
3cfdb781
TG
25397
25398 /* Set whether we use thumb-2 ISA based on final relaxation results. */
25399 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
25400 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
25401 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
0110f2b8
PB
25402}
25403
25404/* Return the size of a relaxable immediate operand instruction.
25405 SHIFT and SIZE specify the form of the allowable immediate. */
25406static int
25407relax_immediate (fragS *fragp, int size, int shift)
25408{
25409 offsetT offset;
25410 offsetT mask;
25411 offsetT low;
25412
25413 /* ??? Should be able to do better than this. */
25414 if (fragp->fr_symbol)
25415 return 4;
25416
25417 low = (1 << shift) - 1;
25418 mask = (1 << (shift + size)) - (1 << shift);
25419 offset = fragp->fr_offset;
25420 /* Force misaligned offsets to 32-bit variant. */
25421 if (offset & low)
5e77afaa 25422 return 4;
0110f2b8
PB
25423 if (offset & ~mask)
25424 return 4;
25425 return 2;
25426}
25427
5e77afaa
PB
25428/* Get the address of a symbol during relaxation. */
25429static addressT
5f4273c7 25430relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
25431{
25432 fragS *sym_frag;
25433 addressT addr;
25434 symbolS *sym;
25435
25436 sym = fragp->fr_symbol;
25437 sym_frag = symbol_get_frag (sym);
25438 know (S_GET_SEGMENT (sym) != absolute_section
25439 || sym_frag == &zero_address_frag);
25440 addr = S_GET_VALUE (sym) + fragp->fr_offset;
25441
25442 /* If frag has yet to be reached on this pass, assume it will
25443 move by STRETCH just as we did. If this is not so, it will
25444 be because some frag between grows, and that will force
25445 another pass. */
25446
25447 if (stretch != 0
25448 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
25449 {
25450 fragS *f;
25451
25452 /* Adjust stretch for any alignment frag. Note that if have
25453 been expanding the earlier code, the symbol may be
25454 defined in what appears to be an earlier frag. FIXME:
25455 This doesn't handle the fr_subtype field, which specifies
25456 a maximum number of bytes to skip when doing an
25457 alignment. */
25458 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
25459 {
25460 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
25461 {
25462 if (stretch < 0)
25463 stretch = - ((- stretch)
25464 & ~ ((1 << (int) f->fr_offset) - 1));
25465 else
25466 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
25467 if (stretch == 0)
25468 break;
25469 }
25470 }
25471 if (f != NULL)
25472 addr += stretch;
25473 }
5e77afaa
PB
25474
25475 return addr;
25476}
25477
0110f2b8
PB
25478/* Return the size of a relaxable adr pseudo-instruction or PC-relative
25479 load. */
25480static int
5e77afaa 25481relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
25482{
25483 addressT addr;
25484 offsetT val;
25485
25486 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
25487 if (fragp->fr_symbol == NULL
25488 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
25489 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25490 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
25491 return 4;
25492
5f4273c7 25493 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
25494 addr = fragp->fr_address + fragp->fr_fix;
25495 addr = (addr + 4) & ~3;
5e77afaa 25496 /* Force misaligned targets to 32-bit variant. */
0110f2b8 25497 if (val & 3)
5e77afaa 25498 return 4;
0110f2b8
PB
25499 val -= addr;
25500 if (val < 0 || val > 1020)
25501 return 4;
25502 return 2;
25503}
25504
25505/* Return the size of a relaxable add/sub immediate instruction. */
25506static int
25507relax_addsub (fragS *fragp, asection *sec)
25508{
25509 char *buf;
25510 int op;
25511
25512 buf = fragp->fr_literal + fragp->fr_fix;
25513 op = bfd_get_16(sec->owner, buf);
25514 if ((op & 0xf) == ((op >> 4) & 0xf))
25515 return relax_immediate (fragp, 8, 0);
25516 else
25517 return relax_immediate (fragp, 3, 0);
25518}
25519
e83a675f
RE
25520/* Return TRUE iff the definition of symbol S could be pre-empted
25521 (overridden) at link or load time. */
25522static bfd_boolean
25523symbol_preemptible (symbolS *s)
25524{
25525 /* Weak symbols can always be pre-empted. */
25526 if (S_IS_WEAK (s))
25527 return TRUE;
25528
25529 /* Non-global symbols cannot be pre-empted. */
25530 if (! S_IS_EXTERNAL (s))
25531 return FALSE;
25532
25533#ifdef OBJ_ELF
25534 /* In ELF, a global symbol can be marked protected, or private. In that
25535 case it can't be pre-empted (other definitions in the same link unit
25536 would violate the ODR). */
25537 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
25538 return FALSE;
25539#endif
25540
25541 /* Other global symbols might be pre-empted. */
25542 return TRUE;
25543}
0110f2b8
PB
25544
25545/* Return the size of a relaxable branch instruction. BITS is the
25546 size of the offset field in the narrow instruction. */
25547
25548static int
5e77afaa 25549relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
25550{
25551 addressT addr;
25552 offsetT val;
25553 offsetT limit;
25554
25555 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 25556 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
25557 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25558 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
25559 return 4;
25560
267bf995 25561#ifdef OBJ_ELF
e83a675f 25562 /* A branch to a function in ARM state will require interworking. */
267bf995
RR
25563 if (S_IS_DEFINED (fragp->fr_symbol)
25564 && ARM_IS_FUNC (fragp->fr_symbol))
25565 return 4;
e83a675f 25566#endif
0d9b4b55 25567
e83a675f 25568 if (symbol_preemptible (fragp->fr_symbol))
0d9b4b55 25569 return 4;
267bf995 25570
5f4273c7 25571 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
25572 addr = fragp->fr_address + fragp->fr_fix + 4;
25573 val -= addr;
25574
25575 /* Offset is a signed value *2 */
25576 limit = 1 << bits;
25577 if (val >= limit || val < -limit)
25578 return 4;
25579 return 2;
25580}
25581
25582
25583/* Relax a machine dependent frag. This returns the amount by which
25584 the current size of the frag should change. */
25585
25586int
5e77afaa 25587arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
25588{
25589 int oldsize;
25590 int newsize;
25591
25592 oldsize = fragp->fr_var;
25593 switch (fragp->fr_subtype)
25594 {
25595 case T_MNEM_ldr_pc2:
5f4273c7 25596 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
25597 break;
25598 case T_MNEM_ldr_pc:
25599 case T_MNEM_ldr_sp:
25600 case T_MNEM_str_sp:
5f4273c7 25601 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
25602 break;
25603 case T_MNEM_ldr:
25604 case T_MNEM_str:
5f4273c7 25605 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
25606 break;
25607 case T_MNEM_ldrh:
25608 case T_MNEM_strh:
5f4273c7 25609 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
25610 break;
25611 case T_MNEM_ldrb:
25612 case T_MNEM_strb:
5f4273c7 25613 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
25614 break;
25615 case T_MNEM_adr:
5f4273c7 25616 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
25617 break;
25618 case T_MNEM_mov:
25619 case T_MNEM_movs:
25620 case T_MNEM_cmp:
25621 case T_MNEM_cmn:
5f4273c7 25622 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
25623 break;
25624 case T_MNEM_b:
5f4273c7 25625 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
25626 break;
25627 case T_MNEM_bcond:
5f4273c7 25628 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
25629 break;
25630 case T_MNEM_add_sp:
25631 case T_MNEM_add_pc:
25632 newsize = relax_immediate (fragp, 8, 2);
25633 break;
25634 case T_MNEM_inc_sp:
25635 case T_MNEM_dec_sp:
25636 newsize = relax_immediate (fragp, 7, 2);
25637 break;
25638 case T_MNEM_addi:
25639 case T_MNEM_addis:
25640 case T_MNEM_subi:
25641 case T_MNEM_subis:
25642 newsize = relax_addsub (fragp, sec);
25643 break;
25644 default:
5f4273c7 25645 abort ();
0110f2b8 25646 }
5e77afaa
PB
25647
25648 fragp->fr_var = newsize;
25649 /* Freeze wide instructions that are at or before the same location as
25650 in the previous pass. This avoids infinite loops.
5f4273c7
NC
25651 Don't freeze them unconditionally because targets may be artificially
25652 misaligned by the expansion of preceding frags. */
5e77afaa 25653 if (stretch <= 0 && newsize > 2)
0110f2b8 25654 {
0110f2b8 25655 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 25656 frag_wane (fragp);
0110f2b8 25657 }
5e77afaa 25658
0110f2b8 25659 return newsize - oldsize;
c19d1205 25660}
b99bd4ef 25661
c19d1205 25662/* Round up a section size to the appropriate boundary. */
b99bd4ef 25663
c19d1205
ZW
25664valueT
25665md_section_align (segT segment ATTRIBUTE_UNUSED,
25666 valueT size)
25667{
6844c0cc 25668 return size;
bfae80f2 25669}
b99bd4ef 25670
c19d1205
ZW
25671/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
25672 of an rs_align_code fragment. */
25673
25674void
25675arm_handle_align (fragS * fragP)
bfae80f2 25676{
d9235011 25677 static unsigned char const arm_noop[2][2][4] =
e7495e45
NS
25678 {
25679 { /* ARMv1 */
25680 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
25681 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
25682 },
25683 { /* ARMv6k */
25684 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
25685 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
25686 },
25687 };
d9235011 25688 static unsigned char const thumb_noop[2][2][2] =
e7495e45
NS
25689 {
25690 { /* Thumb-1 */
25691 {0xc0, 0x46}, /* LE */
25692 {0x46, 0xc0}, /* BE */
25693 },
25694 { /* Thumb-2 */
25695 {0x00, 0xbf}, /* LE */
25696 {0xbf, 0x00} /* BE */
25697 }
25698 };
d9235011 25699 static unsigned char const wide_thumb_noop[2][4] =
e7495e45
NS
25700 { /* Wide Thumb-2 */
25701 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
25702 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
25703 };
c921be7d 25704
e7495e45 25705 unsigned bytes, fix, noop_size;
c19d1205 25706 char * p;
d9235011
TS
25707 const unsigned char * noop;
25708 const unsigned char *narrow_noop = NULL;
cd000bff
DJ
25709#ifdef OBJ_ELF
25710 enum mstate state;
25711#endif
bfae80f2 25712
c19d1205 25713 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
25714 return;
25715
c19d1205
ZW
25716 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
25717 p = fragP->fr_literal + fragP->fr_fix;
25718 fix = 0;
bfae80f2 25719
c19d1205
ZW
25720 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
25721 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 25722
cd000bff 25723 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 25724
cd000bff 25725 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 25726 {
7f78eb34
JW
25727 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25728 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
e7495e45
NS
25729 {
25730 narrow_noop = thumb_noop[1][target_big_endian];
25731 noop = wide_thumb_noop[target_big_endian];
25732 }
c19d1205 25733 else
e7495e45
NS
25734 noop = thumb_noop[0][target_big_endian];
25735 noop_size = 2;
cd000bff
DJ
25736#ifdef OBJ_ELF
25737 state = MAP_THUMB;
25738#endif
7ed4c4c5
NC
25739 }
25740 else
25741 {
7f78eb34
JW
25742 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25743 ? selected_cpu : arm_arch_none,
25744 arm_ext_v6k) != 0]
e7495e45
NS
25745 [target_big_endian];
25746 noop_size = 4;
cd000bff
DJ
25747#ifdef OBJ_ELF
25748 state = MAP_ARM;
25749#endif
7ed4c4c5 25750 }
c921be7d 25751
e7495e45 25752 fragP->fr_var = noop_size;
c921be7d 25753
c19d1205 25754 if (bytes & (noop_size - 1))
7ed4c4c5 25755 {
c19d1205 25756 fix = bytes & (noop_size - 1);
cd000bff
DJ
25757#ifdef OBJ_ELF
25758 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
25759#endif
c19d1205
ZW
25760 memset (p, 0, fix);
25761 p += fix;
25762 bytes -= fix;
a737bd4d 25763 }
a737bd4d 25764
e7495e45
NS
25765 if (narrow_noop)
25766 {
25767 if (bytes & noop_size)
25768 {
25769 /* Insert a narrow noop. */
25770 memcpy (p, narrow_noop, noop_size);
25771 p += noop_size;
25772 bytes -= noop_size;
25773 fix += noop_size;
25774 }
25775
25776 /* Use wide noops for the remainder */
25777 noop_size = 4;
25778 }
25779
c19d1205 25780 while (bytes >= noop_size)
a737bd4d 25781 {
c19d1205
ZW
25782 memcpy (p, noop, noop_size);
25783 p += noop_size;
25784 bytes -= noop_size;
25785 fix += noop_size;
a737bd4d
NC
25786 }
25787
c19d1205 25788 fragP->fr_fix += fix;
a737bd4d
NC
25789}
25790
c19d1205
ZW
25791/* Called from md_do_align. Used to create an alignment
25792 frag in a code section. */
25793
25794void
25795arm_frag_align_code (int n, int max)
bfae80f2 25796{
c19d1205 25797 char * p;
7ed4c4c5 25798
c19d1205 25799 /* We assume that there will never be a requirement
6ec8e702 25800 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 25801 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
25802 {
25803 char err_msg[128];
25804
fa94de6b 25805 sprintf (err_msg,
477330fc
RM
25806 _("alignments greater than %d bytes not supported in .text sections."),
25807 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 25808 as_fatal ("%s", err_msg);
6ec8e702 25809 }
bfae80f2 25810
c19d1205
ZW
25811 p = frag_var (rs_align_code,
25812 MAX_MEM_FOR_RS_ALIGN_CODE,
25813 1,
25814 (relax_substateT) max,
25815 (symbolS *) NULL,
25816 (offsetT) n,
25817 (char *) NULL);
25818 *p = 0;
25819}
bfae80f2 25820
8dc2430f
NC
25821/* Perform target specific initialisation of a frag.
25822 Note - despite the name this initialisation is not done when the frag
25823 is created, but only when its type is assigned. A frag can be created
25824 and used a long time before its type is set, so beware of assuming that
33eaf5de 25825 this initialisation is performed first. */
bfae80f2 25826
cd000bff
DJ
25827#ifndef OBJ_ELF
25828void
25829arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
25830{
25831 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 25832 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
25833}
25834
25835#else /* OBJ_ELF is defined. */
c19d1205 25836void
cd000bff 25837arm_init_frag (fragS * fragP, int max_chars)
c19d1205 25838{
e8d84ca1 25839 bfd_boolean frag_thumb_mode;
b968d18a 25840
8dc2430f
NC
25841 /* If the current ARM vs THUMB mode has not already
25842 been recorded into this frag then do so now. */
cd000bff 25843 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
b968d18a
JW
25844 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25845
e8d84ca1
NC
25846 /* PR 21809: Do not set a mapping state for debug sections
25847 - it just confuses other tools. */
25848 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
25849 return;
25850
b968d18a 25851 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
cd000bff 25852
f9c1b181
RL
25853 /* Record a mapping symbol for alignment frags. We will delete this
25854 later if the alignment ends up empty. */
25855 switch (fragP->fr_type)
25856 {
25857 case rs_align:
25858 case rs_align_test:
25859 case rs_fill:
25860 mapping_state_2 (MAP_DATA, max_chars);
25861 break;
25862 case rs_align_code:
b968d18a 25863 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
f9c1b181
RL
25864 break;
25865 default:
25866 break;
cd000bff 25867 }
bfae80f2
RE
25868}
25869
c19d1205
ZW
25870/* When we change sections we need to issue a new mapping symbol. */
25871
25872void
25873arm_elf_change_section (void)
bfae80f2 25874{
c19d1205
ZW
25875 /* Link an unlinked unwind index table section to the .text section. */
25876 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
25877 && elf_linked_to_section (now_seg) == NULL)
25878 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
25879}
25880
c19d1205
ZW
25881int
25882arm_elf_section_type (const char * str, size_t len)
e45d0630 25883{
c19d1205
ZW
25884 if (len == 5 && strncmp (str, "exidx", 5) == 0)
25885 return SHT_ARM_EXIDX;
e45d0630 25886
c19d1205
ZW
25887 return -1;
25888}
25889\f
25890/* Code to deal with unwinding tables. */
e45d0630 25891
c19d1205 25892static void add_unwind_adjustsp (offsetT);
e45d0630 25893
5f4273c7 25894/* Generate any deferred unwind frame offset. */
e45d0630 25895
bfae80f2 25896static void
c19d1205 25897flush_pending_unwind (void)
bfae80f2 25898{
c19d1205 25899 offsetT offset;
bfae80f2 25900
c19d1205
ZW
25901 offset = unwind.pending_offset;
25902 unwind.pending_offset = 0;
25903 if (offset != 0)
25904 add_unwind_adjustsp (offset);
bfae80f2
RE
25905}
25906
c19d1205
ZW
25907/* Add an opcode to this list for this function. Two-byte opcodes should
25908 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
25909 order. */
25910
bfae80f2 25911static void
c19d1205 25912add_unwind_opcode (valueT op, int length)
bfae80f2 25913{
c19d1205
ZW
25914 /* Add any deferred stack adjustment. */
25915 if (unwind.pending_offset)
25916 flush_pending_unwind ();
bfae80f2 25917
c19d1205 25918 unwind.sp_restored = 0;
bfae80f2 25919
c19d1205 25920 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 25921 {
c19d1205
ZW
25922 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
25923 if (unwind.opcodes)
325801bd
TS
25924 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
25925 unwind.opcode_alloc);
c19d1205 25926 else
325801bd 25927 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
bfae80f2 25928 }
c19d1205 25929 while (length > 0)
bfae80f2 25930 {
c19d1205
ZW
25931 length--;
25932 unwind.opcodes[unwind.opcode_count] = op & 0xff;
25933 op >>= 8;
25934 unwind.opcode_count++;
bfae80f2 25935 }
bfae80f2
RE
25936}
25937
c19d1205
ZW
25938/* Add unwind opcodes to adjust the stack pointer. */
25939
bfae80f2 25940static void
c19d1205 25941add_unwind_adjustsp (offsetT offset)
bfae80f2 25942{
c19d1205 25943 valueT op;
bfae80f2 25944
c19d1205 25945 if (offset > 0x200)
bfae80f2 25946 {
c19d1205
ZW
25947 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
25948 char bytes[5];
25949 int n;
25950 valueT o;
bfae80f2 25951
c19d1205
ZW
25952 /* Long form: 0xb2, uleb128. */
25953 /* This might not fit in a word so add the individual bytes,
25954 remembering the list is built in reverse order. */
25955 o = (valueT) ((offset - 0x204) >> 2);
25956 if (o == 0)
25957 add_unwind_opcode (0, 1);
bfae80f2 25958
c19d1205
ZW
25959 /* Calculate the uleb128 encoding of the offset. */
25960 n = 0;
25961 while (o)
25962 {
25963 bytes[n] = o & 0x7f;
25964 o >>= 7;
25965 if (o)
25966 bytes[n] |= 0x80;
25967 n++;
25968 }
25969 /* Add the insn. */
25970 for (; n; n--)
25971 add_unwind_opcode (bytes[n - 1], 1);
25972 add_unwind_opcode (0xb2, 1);
25973 }
25974 else if (offset > 0x100)
bfae80f2 25975 {
c19d1205
ZW
25976 /* Two short opcodes. */
25977 add_unwind_opcode (0x3f, 1);
25978 op = (offset - 0x104) >> 2;
25979 add_unwind_opcode (op, 1);
bfae80f2 25980 }
c19d1205
ZW
25981 else if (offset > 0)
25982 {
25983 /* Short opcode. */
25984 op = (offset - 4) >> 2;
25985 add_unwind_opcode (op, 1);
25986 }
25987 else if (offset < 0)
bfae80f2 25988 {
c19d1205
ZW
25989 offset = -offset;
25990 while (offset > 0x100)
bfae80f2 25991 {
c19d1205
ZW
25992 add_unwind_opcode (0x7f, 1);
25993 offset -= 0x100;
bfae80f2 25994 }
c19d1205
ZW
25995 op = ((offset - 4) >> 2) | 0x40;
25996 add_unwind_opcode (op, 1);
bfae80f2 25997 }
bfae80f2
RE
25998}
25999
c19d1205 26000/* Finish the list of unwind opcodes for this function. */
0198d5e6 26001
c19d1205
ZW
26002static void
26003finish_unwind_opcodes (void)
bfae80f2 26004{
c19d1205 26005 valueT op;
bfae80f2 26006
c19d1205 26007 if (unwind.fp_used)
bfae80f2 26008 {
708587a4 26009 /* Adjust sp as necessary. */
c19d1205
ZW
26010 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
26011 flush_pending_unwind ();
bfae80f2 26012
c19d1205
ZW
26013 /* After restoring sp from the frame pointer. */
26014 op = 0x90 | unwind.fp_reg;
26015 add_unwind_opcode (op, 1);
26016 }
26017 else
26018 flush_pending_unwind ();
bfae80f2
RE
26019}
26020
bfae80f2 26021
c19d1205
ZW
26022/* Start an exception table entry. If idx is nonzero this is an index table
26023 entry. */
bfae80f2
RE
26024
26025static void
c19d1205 26026start_unwind_section (const segT text_seg, int idx)
bfae80f2 26027{
c19d1205
ZW
26028 const char * text_name;
26029 const char * prefix;
26030 const char * prefix_once;
26031 const char * group_name;
c19d1205 26032 char * sec_name;
c19d1205
ZW
26033 int type;
26034 int flags;
26035 int linkonce;
bfae80f2 26036
c19d1205 26037 if (idx)
bfae80f2 26038 {
c19d1205
ZW
26039 prefix = ELF_STRING_ARM_unwind;
26040 prefix_once = ELF_STRING_ARM_unwind_once;
26041 type = SHT_ARM_EXIDX;
bfae80f2 26042 }
c19d1205 26043 else
bfae80f2 26044 {
c19d1205
ZW
26045 prefix = ELF_STRING_ARM_unwind_info;
26046 prefix_once = ELF_STRING_ARM_unwind_info_once;
26047 type = SHT_PROGBITS;
bfae80f2
RE
26048 }
26049
c19d1205
ZW
26050 text_name = segment_name (text_seg);
26051 if (streq (text_name, ".text"))
26052 text_name = "";
26053
26054 if (strncmp (text_name, ".gnu.linkonce.t.",
26055 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 26056 {
c19d1205
ZW
26057 prefix = prefix_once;
26058 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
26059 }
26060
29a2809e 26061 sec_name = concat (prefix, text_name, (char *) NULL);
bfae80f2 26062
c19d1205
ZW
26063 flags = SHF_ALLOC;
26064 linkonce = 0;
26065 group_name = 0;
bfae80f2 26066
c19d1205
ZW
26067 /* Handle COMDAT group. */
26068 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 26069 {
c19d1205
ZW
26070 group_name = elf_group_name (text_seg);
26071 if (group_name == NULL)
26072 {
bd3ba5d1 26073 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
26074 segment_name (text_seg));
26075 ignore_rest_of_line ();
26076 return;
26077 }
26078 flags |= SHF_GROUP;
26079 linkonce = 1;
bfae80f2
RE
26080 }
26081
a91e1603
L
26082 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
26083 linkonce, 0);
bfae80f2 26084
5f4273c7 26085 /* Set the section link for index tables. */
c19d1205
ZW
26086 if (idx)
26087 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
26088}
26089
bfae80f2 26090
c19d1205
ZW
26091/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
26092 personality routine data. Returns zero, or the index table value for
cad0da33 26093 an inline entry. */
c19d1205
ZW
26094
26095static valueT
26096create_unwind_entry (int have_data)
bfae80f2 26097{
c19d1205
ZW
26098 int size;
26099 addressT where;
26100 char *ptr;
26101 /* The current word of data. */
26102 valueT data;
26103 /* The number of bytes left in this word. */
26104 int n;
bfae80f2 26105
c19d1205 26106 finish_unwind_opcodes ();
bfae80f2 26107
c19d1205
ZW
26108 /* Remember the current text section. */
26109 unwind.saved_seg = now_seg;
26110 unwind.saved_subseg = now_subseg;
bfae80f2 26111
c19d1205 26112 start_unwind_section (now_seg, 0);
bfae80f2 26113
c19d1205 26114 if (unwind.personality_routine == NULL)
bfae80f2 26115 {
c19d1205
ZW
26116 if (unwind.personality_index == -2)
26117 {
26118 if (have_data)
5f4273c7 26119 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
26120 return 1; /* EXIDX_CANTUNWIND. */
26121 }
bfae80f2 26122
c19d1205
ZW
26123 /* Use a default personality routine if none is specified. */
26124 if (unwind.personality_index == -1)
26125 {
26126 if (unwind.opcode_count > 3)
26127 unwind.personality_index = 1;
26128 else
26129 unwind.personality_index = 0;
26130 }
bfae80f2 26131
c19d1205
ZW
26132 /* Space for the personality routine entry. */
26133 if (unwind.personality_index == 0)
26134 {
26135 if (unwind.opcode_count > 3)
26136 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 26137
c19d1205
ZW
26138 if (!have_data)
26139 {
26140 /* All the data is inline in the index table. */
26141 data = 0x80;
26142 n = 3;
26143 while (unwind.opcode_count > 0)
26144 {
26145 unwind.opcode_count--;
26146 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26147 n--;
26148 }
bfae80f2 26149
c19d1205
ZW
26150 /* Pad with "finish" opcodes. */
26151 while (n--)
26152 data = (data << 8) | 0xb0;
bfae80f2 26153
c19d1205
ZW
26154 return data;
26155 }
26156 size = 0;
26157 }
26158 else
26159 /* We get two opcodes "free" in the first word. */
26160 size = unwind.opcode_count - 2;
26161 }
26162 else
5011093d 26163 {
cad0da33
NC
26164 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
26165 if (unwind.personality_index != -1)
26166 {
26167 as_bad (_("attempt to recreate an unwind entry"));
26168 return 1;
26169 }
5011093d
NC
26170
26171 /* An extra byte is required for the opcode count. */
26172 size = unwind.opcode_count + 1;
26173 }
bfae80f2 26174
c19d1205
ZW
26175 size = (size + 3) >> 2;
26176 if (size > 0xff)
26177 as_bad (_("too many unwind opcodes"));
bfae80f2 26178
c19d1205
ZW
26179 frag_align (2, 0, 0);
26180 record_alignment (now_seg, 2);
26181 unwind.table_entry = expr_build_dot ();
26182
26183 /* Allocate the table entry. */
26184 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
26185 /* PR 13449: Zero the table entries in case some of them are not used. */
26186 memset (ptr, 0, (size << 2) + 4);
c19d1205 26187 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 26188
c19d1205 26189 switch (unwind.personality_index)
bfae80f2 26190 {
c19d1205
ZW
26191 case -1:
26192 /* ??? Should this be a PLT generating relocation? */
26193 /* Custom personality routine. */
26194 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
26195 BFD_RELOC_ARM_PREL31);
bfae80f2 26196
c19d1205
ZW
26197 where += 4;
26198 ptr += 4;
bfae80f2 26199
c19d1205 26200 /* Set the first byte to the number of additional words. */
5011093d 26201 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
26202 n = 3;
26203 break;
bfae80f2 26204
c19d1205
ZW
26205 /* ABI defined personality routines. */
26206 case 0:
26207 /* Three opcodes bytes are packed into the first word. */
26208 data = 0x80;
26209 n = 3;
26210 break;
bfae80f2 26211
c19d1205
ZW
26212 case 1:
26213 case 2:
26214 /* The size and first two opcode bytes go in the first word. */
26215 data = ((0x80 + unwind.personality_index) << 8) | size;
26216 n = 2;
26217 break;
bfae80f2 26218
c19d1205
ZW
26219 default:
26220 /* Should never happen. */
26221 abort ();
26222 }
bfae80f2 26223
c19d1205
ZW
26224 /* Pack the opcodes into words (MSB first), reversing the list at the same
26225 time. */
26226 while (unwind.opcode_count > 0)
26227 {
26228 if (n == 0)
26229 {
26230 md_number_to_chars (ptr, data, 4);
26231 ptr += 4;
26232 n = 4;
26233 data = 0;
26234 }
26235 unwind.opcode_count--;
26236 n--;
26237 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26238 }
26239
26240 /* Finish off the last word. */
26241 if (n < 4)
26242 {
26243 /* Pad with "finish" opcodes. */
26244 while (n--)
26245 data = (data << 8) | 0xb0;
26246
26247 md_number_to_chars (ptr, data, 4);
26248 }
26249
26250 if (!have_data)
26251 {
26252 /* Add an empty descriptor if there is no user-specified data. */
26253 ptr = frag_more (4);
26254 md_number_to_chars (ptr, 0, 4);
26255 }
26256
26257 return 0;
bfae80f2
RE
26258}
26259
f0927246
NC
26260
26261/* Initialize the DWARF-2 unwind information for this procedure. */
26262
26263void
26264tc_arm_frame_initial_instructions (void)
26265{
26266 cfi_add_CFA_def_cfa (REG_SP, 0);
26267}
26268#endif /* OBJ_ELF */
26269
c19d1205
ZW
26270/* Convert REGNAME to a DWARF-2 register number. */
26271
26272int
1df69f4f 26273tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 26274{
1df69f4f 26275 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
1f5afe1c
NC
26276 if (reg != FAIL)
26277 return reg;
c19d1205 26278
1f5afe1c
NC
26279 /* PR 16694: Allow VFP registers as well. */
26280 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
26281 if (reg != FAIL)
26282 return 64 + reg;
c19d1205 26283
1f5afe1c
NC
26284 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
26285 if (reg != FAIL)
26286 return reg + 256;
26287
0198d5e6 26288 return FAIL;
bfae80f2
RE
26289}
26290
f0927246 26291#ifdef TE_PE
c19d1205 26292void
f0927246 26293tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 26294{
91d6fa6a 26295 expressionS exp;
bfae80f2 26296
91d6fa6a
NC
26297 exp.X_op = O_secrel;
26298 exp.X_add_symbol = symbol;
26299 exp.X_add_number = 0;
26300 emit_expr (&exp, size);
f0927246
NC
26301}
26302#endif
bfae80f2 26303
c19d1205 26304/* MD interface: Symbol and relocation handling. */
bfae80f2 26305
2fc8bdac
ZW
26306/* Return the address within the segment that a PC-relative fixup is
26307 relative to. For ARM, PC-relative fixups applied to instructions
26308 are generally relative to the location of the fixup plus 8 bytes.
26309 Thumb branches are offset by 4, and Thumb loads relative to PC
26310 require special handling. */
bfae80f2 26311
c19d1205 26312long
2fc8bdac 26313md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 26314{
2fc8bdac
ZW
26315 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
26316
26317 /* If this is pc-relative and we are going to emit a relocation
26318 then we just want to put out any pipeline compensation that the linker
53baae48
NC
26319 will need. Otherwise we want to use the calculated base.
26320 For WinCE we skip the bias for externals as well, since this
26321 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 26322 if (fixP->fx_pcrel
2fc8bdac 26323 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
26324 || (arm_force_relocation (fixP)
26325#ifdef TE_WINCE
26326 && !S_IS_EXTERNAL (fixP->fx_addsy)
26327#endif
26328 )))
2fc8bdac 26329 base = 0;
bfae80f2 26330
267bf995 26331
c19d1205 26332 switch (fixP->fx_r_type)
bfae80f2 26333 {
2fc8bdac
ZW
26334 /* PC relative addressing on the Thumb is slightly odd as the
26335 bottom two bits of the PC are forced to zero for the
26336 calculation. This happens *after* application of the
26337 pipeline offset. However, Thumb adrl already adjusts for
26338 this, so we need not do it again. */
c19d1205 26339 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 26340 return base & ~3;
c19d1205
ZW
26341
26342 case BFD_RELOC_ARM_THUMB_OFFSET:
26343 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 26344 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 26345 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 26346 return (base + 4) & ~3;
c19d1205 26347
2fc8bdac 26348 /* Thumb branches are simply offset by +4. */
e12437dc 26349 case BFD_RELOC_THUMB_PCREL_BRANCH5:
2fc8bdac
ZW
26350 case BFD_RELOC_THUMB_PCREL_BRANCH7:
26351 case BFD_RELOC_THUMB_PCREL_BRANCH9:
26352 case BFD_RELOC_THUMB_PCREL_BRANCH12:
26353 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 26354 case BFD_RELOC_THUMB_PCREL_BRANCH25:
f6b2b12d 26355 case BFD_RELOC_THUMB_PCREL_BFCSEL:
e5d6e09e 26356 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 26357 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 26358 case BFD_RELOC_ARM_THUMB_BF13:
60f993ce 26359 case BFD_RELOC_ARM_THUMB_LOOP12:
2fc8bdac 26360 return base + 4;
bfae80f2 26361
267bf995 26362 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
26363 if (fixP->fx_addsy
26364 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26365 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995 26366 && ARM_IS_FUNC (fixP->fx_addsy)
477330fc
RM
26367 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26368 base = fixP->fx_where + fixP->fx_frag->fr_address;
267bf995
RR
26369 return base + 4;
26370
00adf2d4
JB
26371 /* BLX is like branches above, but forces the low two bits of PC to
26372 zero. */
486499d0
CL
26373 case BFD_RELOC_THUMB_PCREL_BLX:
26374 if (fixP->fx_addsy
26375 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26376 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
26377 && THUMB_IS_FUNC (fixP->fx_addsy)
26378 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26379 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
26380 return (base + 4) & ~3;
26381
2fc8bdac
ZW
26382 /* ARM mode branches are offset by +8. However, the Windows CE
26383 loader expects the relocation not to take this into account. */
267bf995 26384 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
26385 if (fixP->fx_addsy
26386 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26387 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
26388 && ARM_IS_FUNC (fixP->fx_addsy)
26389 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26390 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 26391 return base + 8;
267bf995 26392
486499d0
CL
26393 case BFD_RELOC_ARM_PCREL_CALL:
26394 if (fixP->fx_addsy
26395 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26396 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
26397 && THUMB_IS_FUNC (fixP->fx_addsy)
26398 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26399 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 26400 return base + 8;
267bf995 26401
2fc8bdac 26402 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 26403 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 26404 case BFD_RELOC_ARM_PLT32:
c19d1205 26405#ifdef TE_WINCE
5f4273c7 26406 /* When handling fixups immediately, because we have already
477330fc 26407 discovered the value of a symbol, or the address of the frag involved
53baae48 26408 we must account for the offset by +8, as the OS loader will never see the reloc.
477330fc
RM
26409 see fixup_segment() in write.c
26410 The S_IS_EXTERNAL test handles the case of global symbols.
26411 Those need the calculated base, not just the pipe compensation the linker will need. */
53baae48
NC
26412 if (fixP->fx_pcrel
26413 && fixP->fx_addsy != NULL
26414 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26415 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
26416 return base + 8;
2fc8bdac 26417 return base;
c19d1205 26418#else
2fc8bdac 26419 return base + 8;
c19d1205 26420#endif
2fc8bdac 26421
267bf995 26422
2fc8bdac
ZW
26423 /* ARM mode loads relative to PC are also offset by +8. Unlike
26424 branches, the Windows CE loader *does* expect the relocation
26425 to take this into account. */
26426 case BFD_RELOC_ARM_OFFSET_IMM:
26427 case BFD_RELOC_ARM_OFFSET_IMM8:
26428 case BFD_RELOC_ARM_HWLITERAL:
26429 case BFD_RELOC_ARM_LITERAL:
26430 case BFD_RELOC_ARM_CP_OFF_IMM:
26431 return base + 8;
26432
26433
26434 /* Other PC-relative relocations are un-offset. */
26435 default:
26436 return base;
26437 }
bfae80f2
RE
26438}
26439
8b2d793c
NC
26440static bfd_boolean flag_warn_syms = TRUE;
26441
ae8714c2
NC
26442bfd_boolean
26443arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
bfae80f2 26444{
8b2d793c
NC
26445 /* PR 18347 - Warn if the user attempts to create a symbol with the same
26446 name as an ARM instruction. Whilst strictly speaking it is allowed, it
26447 does mean that the resulting code might be very confusing to the reader.
26448 Also this warning can be triggered if the user omits an operand before
26449 an immediate address, eg:
26450
26451 LDR =foo
26452
26453 GAS treats this as an assignment of the value of the symbol foo to a
26454 symbol LDR, and so (without this code) it will not issue any kind of
26455 warning or error message.
26456
26457 Note - ARM instructions are case-insensitive but the strings in the hash
26458 table are all stored in lower case, so we must first ensure that name is
ae8714c2
NC
26459 lower case too. */
26460 if (flag_warn_syms && arm_ops_hsh)
8b2d793c
NC
26461 {
26462 char * nbuf = strdup (name);
26463 char * p;
26464
26465 for (p = nbuf; *p; p++)
26466 *p = TOLOWER (*p);
26467 if (hash_find (arm_ops_hsh, nbuf) != NULL)
26468 {
26469 static struct hash_control * already_warned = NULL;
26470
26471 if (already_warned == NULL)
26472 already_warned = hash_new ();
26473 /* Only warn about the symbol once. To keep the code
26474 simple we let hash_insert do the lookup for us. */
3076e594 26475 if (hash_insert (already_warned, nbuf, NULL) == NULL)
ae8714c2 26476 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
8b2d793c
NC
26477 }
26478 else
26479 free (nbuf);
26480 }
3739860c 26481
ae8714c2
NC
26482 return FALSE;
26483}
26484
26485/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
26486 Otherwise we have no need to default values of symbols. */
26487
26488symbolS *
26489md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
26490{
26491#ifdef OBJ_ELF
26492 if (name[0] == '_' && name[1] == 'G'
26493 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
26494 {
26495 if (!GOT_symbol)
26496 {
26497 if (symbol_find (name))
26498 as_bad (_("GOT already in the symbol table"));
26499
26500 GOT_symbol = symbol_new (name, undefined_section,
26501 (valueT) 0, & zero_address_frag);
26502 }
26503
26504 return GOT_symbol;
26505 }
26506#endif
26507
c921be7d 26508 return NULL;
bfae80f2
RE
26509}
26510
55cf6793 26511/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
26512 computed as two separate immediate values, added together. We
26513 already know that this value cannot be computed by just one ARM
26514 instruction. */
26515
26516static unsigned int
26517validate_immediate_twopart (unsigned int val,
26518 unsigned int * highpart)
bfae80f2 26519{
c19d1205
ZW
26520 unsigned int a;
26521 unsigned int i;
bfae80f2 26522
c19d1205
ZW
26523 for (i = 0; i < 32; i += 2)
26524 if (((a = rotate_left (val, i)) & 0xff) != 0)
26525 {
26526 if (a & 0xff00)
26527 {
26528 if (a & ~ 0xffff)
26529 continue;
26530 * highpart = (a >> 8) | ((i + 24) << 7);
26531 }
26532 else if (a & 0xff0000)
26533 {
26534 if (a & 0xff000000)
26535 continue;
26536 * highpart = (a >> 16) | ((i + 16) << 7);
26537 }
26538 else
26539 {
9c2799c2 26540 gas_assert (a & 0xff000000);
c19d1205
ZW
26541 * highpart = (a >> 24) | ((i + 8) << 7);
26542 }
bfae80f2 26543
c19d1205
ZW
26544 return (a & 0xff) | (i << 7);
26545 }
bfae80f2 26546
c19d1205 26547 return FAIL;
bfae80f2
RE
26548}
26549
c19d1205
ZW
26550static int
26551validate_offset_imm (unsigned int val, int hwse)
26552{
26553 if ((hwse && val > 255) || val > 4095)
26554 return FAIL;
26555 return val;
26556}
bfae80f2 26557
55cf6793 26558/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
26559 negative immediate constant by altering the instruction. A bit of
26560 a hack really.
26561 MOV <-> MVN
26562 AND <-> BIC
26563 ADC <-> SBC
26564 by inverting the second operand, and
26565 ADD <-> SUB
26566 CMP <-> CMN
26567 by negating the second operand. */
bfae80f2 26568
c19d1205
ZW
26569static int
26570negate_data_op (unsigned long * instruction,
26571 unsigned long value)
bfae80f2 26572{
c19d1205
ZW
26573 int op, new_inst;
26574 unsigned long negated, inverted;
bfae80f2 26575
c19d1205
ZW
26576 negated = encode_arm_immediate (-value);
26577 inverted = encode_arm_immediate (~value);
bfae80f2 26578
c19d1205
ZW
26579 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
26580 switch (op)
bfae80f2 26581 {
c19d1205
ZW
26582 /* First negates. */
26583 case OPCODE_SUB: /* ADD <-> SUB */
26584 new_inst = OPCODE_ADD;
26585 value = negated;
26586 break;
bfae80f2 26587
c19d1205
ZW
26588 case OPCODE_ADD:
26589 new_inst = OPCODE_SUB;
26590 value = negated;
26591 break;
bfae80f2 26592
c19d1205
ZW
26593 case OPCODE_CMP: /* CMP <-> CMN */
26594 new_inst = OPCODE_CMN;
26595 value = negated;
26596 break;
bfae80f2 26597
c19d1205
ZW
26598 case OPCODE_CMN:
26599 new_inst = OPCODE_CMP;
26600 value = negated;
26601 break;
bfae80f2 26602
c19d1205
ZW
26603 /* Now Inverted ops. */
26604 case OPCODE_MOV: /* MOV <-> MVN */
26605 new_inst = OPCODE_MVN;
26606 value = inverted;
26607 break;
bfae80f2 26608
c19d1205
ZW
26609 case OPCODE_MVN:
26610 new_inst = OPCODE_MOV;
26611 value = inverted;
26612 break;
bfae80f2 26613
c19d1205
ZW
26614 case OPCODE_AND: /* AND <-> BIC */
26615 new_inst = OPCODE_BIC;
26616 value = inverted;
26617 break;
bfae80f2 26618
c19d1205
ZW
26619 case OPCODE_BIC:
26620 new_inst = OPCODE_AND;
26621 value = inverted;
26622 break;
bfae80f2 26623
c19d1205
ZW
26624 case OPCODE_ADC: /* ADC <-> SBC */
26625 new_inst = OPCODE_SBC;
26626 value = inverted;
26627 break;
bfae80f2 26628
c19d1205
ZW
26629 case OPCODE_SBC:
26630 new_inst = OPCODE_ADC;
26631 value = inverted;
26632 break;
bfae80f2 26633
c19d1205
ZW
26634 /* We cannot do anything. */
26635 default:
26636 return FAIL;
b99bd4ef
NC
26637 }
26638
c19d1205
ZW
26639 if (value == (unsigned) FAIL)
26640 return FAIL;
26641
26642 *instruction &= OPCODE_MASK;
26643 *instruction |= new_inst << DATA_OP_SHIFT;
26644 return value;
b99bd4ef
NC
26645}
26646
ef8d22e6
PB
26647/* Like negate_data_op, but for Thumb-2. */
26648
26649static unsigned int
16dd5e42 26650thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
26651{
26652 int op, new_inst;
26653 int rd;
16dd5e42 26654 unsigned int negated, inverted;
ef8d22e6
PB
26655
26656 negated = encode_thumb32_immediate (-value);
26657 inverted = encode_thumb32_immediate (~value);
26658
26659 rd = (*instruction >> 8) & 0xf;
26660 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
26661 switch (op)
26662 {
26663 /* ADD <-> SUB. Includes CMP <-> CMN. */
26664 case T2_OPCODE_SUB:
26665 new_inst = T2_OPCODE_ADD;
26666 value = negated;
26667 break;
26668
26669 case T2_OPCODE_ADD:
26670 new_inst = T2_OPCODE_SUB;
26671 value = negated;
26672 break;
26673
26674 /* ORR <-> ORN. Includes MOV <-> MVN. */
26675 case T2_OPCODE_ORR:
26676 new_inst = T2_OPCODE_ORN;
26677 value = inverted;
26678 break;
26679
26680 case T2_OPCODE_ORN:
26681 new_inst = T2_OPCODE_ORR;
26682 value = inverted;
26683 break;
26684
26685 /* AND <-> BIC. TST has no inverted equivalent. */
26686 case T2_OPCODE_AND:
26687 new_inst = T2_OPCODE_BIC;
26688 if (rd == 15)
26689 value = FAIL;
26690 else
26691 value = inverted;
26692 break;
26693
26694 case T2_OPCODE_BIC:
26695 new_inst = T2_OPCODE_AND;
26696 value = inverted;
26697 break;
26698
26699 /* ADC <-> SBC */
26700 case T2_OPCODE_ADC:
26701 new_inst = T2_OPCODE_SBC;
26702 value = inverted;
26703 break;
26704
26705 case T2_OPCODE_SBC:
26706 new_inst = T2_OPCODE_ADC;
26707 value = inverted;
26708 break;
26709
26710 /* We cannot do anything. */
26711 default:
26712 return FAIL;
26713 }
26714
16dd5e42 26715 if (value == (unsigned int)FAIL)
ef8d22e6
PB
26716 return FAIL;
26717
26718 *instruction &= T2_OPCODE_MASK;
26719 *instruction |= new_inst << T2_DATA_OP_SHIFT;
26720 return value;
26721}
26722
8f06b2d8 26723/* Read a 32-bit thumb instruction from buf. */
0198d5e6 26724
8f06b2d8
PB
26725static unsigned long
26726get_thumb32_insn (char * buf)
26727{
26728 unsigned long insn;
26729 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
26730 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26731
26732 return insn;
26733}
26734
a8bc6c78
PB
26735/* We usually want to set the low bit on the address of thumb function
26736 symbols. In particular .word foo - . should have the low bit set.
26737 Generic code tries to fold the difference of two symbols to
26738 a constant. Prevent this and force a relocation when the first symbols
26739 is a thumb function. */
c921be7d
NC
26740
26741bfd_boolean
a8bc6c78
PB
26742arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
26743{
26744 if (op == O_subtract
26745 && l->X_op == O_symbol
26746 && r->X_op == O_symbol
26747 && THUMB_IS_FUNC (l->X_add_symbol))
26748 {
26749 l->X_op = O_subtract;
26750 l->X_op_symbol = r->X_add_symbol;
26751 l->X_add_number -= r->X_add_number;
c921be7d 26752 return TRUE;
a8bc6c78 26753 }
c921be7d 26754
a8bc6c78 26755 /* Process as normal. */
c921be7d 26756 return FALSE;
a8bc6c78
PB
26757}
26758
4a42ebbc
RR
26759/* Encode Thumb2 unconditional branches and calls. The encoding
26760 for the 2 are identical for the immediate values. */
26761
26762static void
26763encode_thumb2_b_bl_offset (char * buf, offsetT value)
26764{
26765#define T2I1I2MASK ((1 << 13) | (1 << 11))
26766 offsetT newval;
26767 offsetT newval2;
26768 addressT S, I1, I2, lo, hi;
26769
26770 S = (value >> 24) & 0x01;
26771 I1 = (value >> 23) & 0x01;
26772 I2 = (value >> 22) & 0x01;
26773 hi = (value >> 12) & 0x3ff;
fa94de6b 26774 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
26775 newval = md_chars_to_number (buf, THUMB_SIZE);
26776 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26777 newval |= (S << 10) | hi;
26778 newval2 &= ~T2I1I2MASK;
26779 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
26780 md_number_to_chars (buf, newval, THUMB_SIZE);
26781 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26782}
26783
c19d1205 26784void
55cf6793 26785md_apply_fix (fixS * fixP,
c19d1205
ZW
26786 valueT * valP,
26787 segT seg)
26788{
26789 offsetT value = * valP;
26790 offsetT newval;
26791 unsigned int newimm;
26792 unsigned long temp;
26793 int sign;
26794 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 26795
9c2799c2 26796 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 26797
c19d1205 26798 /* Note whether this will delete the relocation. */
4962c51a 26799
c19d1205
ZW
26800 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
26801 fixP->fx_done = 1;
b99bd4ef 26802
adbaf948 26803 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 26804 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
26805 for emit_reloc. */
26806 value &= 0xffffffff;
26807 value ^= 0x80000000;
5f4273c7 26808 value -= 0x80000000;
adbaf948
ZW
26809
26810 *valP = value;
c19d1205 26811 fixP->fx_addnumber = value;
b99bd4ef 26812
adbaf948
ZW
26813 /* Same treatment for fixP->fx_offset. */
26814 fixP->fx_offset &= 0xffffffff;
26815 fixP->fx_offset ^= 0x80000000;
26816 fixP->fx_offset -= 0x80000000;
26817
c19d1205 26818 switch (fixP->fx_r_type)
b99bd4ef 26819 {
c19d1205
ZW
26820 case BFD_RELOC_NONE:
26821 /* This will need to go in the object file. */
26822 fixP->fx_done = 0;
26823 break;
b99bd4ef 26824
c19d1205
ZW
26825 case BFD_RELOC_ARM_IMMEDIATE:
26826 /* We claim that this fixup has been processed here,
26827 even if in fact we generate an error because we do
26828 not have a reloc for it, so tc_gen_reloc will reject it. */
26829 fixP->fx_done = 1;
b99bd4ef 26830
77db8e2e 26831 if (fixP->fx_addsy)
b99bd4ef 26832 {
77db8e2e 26833 const char *msg = 0;
b99bd4ef 26834
77db8e2e
NC
26835 if (! S_IS_DEFINED (fixP->fx_addsy))
26836 msg = _("undefined symbol %s used as an immediate value");
26837 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26838 msg = _("symbol %s is in a different section");
26839 else if (S_IS_WEAK (fixP->fx_addsy))
26840 msg = _("symbol %s is weak and may be overridden later");
26841
26842 if (msg)
26843 {
26844 as_bad_where (fixP->fx_file, fixP->fx_line,
26845 msg, S_GET_NAME (fixP->fx_addsy));
26846 break;
26847 }
42e5fcbf
AS
26848 }
26849
c19d1205
ZW
26850 temp = md_chars_to_number (buf, INSN_SIZE);
26851
5e73442d
SL
26852 /* If the offset is negative, we should use encoding A2 for ADR. */
26853 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
26854 newimm = negate_data_op (&temp, value);
26855 else
26856 {
26857 newimm = encode_arm_immediate (value);
26858
26859 /* If the instruction will fail, see if we can fix things up by
26860 changing the opcode. */
26861 if (newimm == (unsigned int) FAIL)
26862 newimm = negate_data_op (&temp, value);
bada4342
JW
26863 /* MOV accepts both ARM modified immediate (A1 encoding) and
26864 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
26865 When disassembling, MOV is preferred when there is no encoding
26866 overlap. */
26867 if (newimm == (unsigned int) FAIL
26868 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
26869 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
26870 && !((temp >> SBIT_SHIFT) & 0x1)
26871 && value >= 0 && value <= 0xffff)
26872 {
26873 /* Clear bits[23:20] to change encoding from A1 to A2. */
26874 temp &= 0xff0fffff;
26875 /* Encoding high 4bits imm. Code below will encode the remaining
26876 low 12bits. */
26877 temp |= (value & 0x0000f000) << 4;
26878 newimm = value & 0x00000fff;
26879 }
5e73442d
SL
26880 }
26881
26882 if (newimm == (unsigned int) FAIL)
b99bd4ef 26883 {
c19d1205
ZW
26884 as_bad_where (fixP->fx_file, fixP->fx_line,
26885 _("invalid constant (%lx) after fixup"),
26886 (unsigned long) value);
26887 break;
b99bd4ef 26888 }
b99bd4ef 26889
c19d1205
ZW
26890 newimm |= (temp & 0xfffff000);
26891 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26892 break;
b99bd4ef 26893
c19d1205
ZW
26894 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
26895 {
26896 unsigned int highpart = 0;
26897 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 26898
77db8e2e 26899 if (fixP->fx_addsy)
42e5fcbf 26900 {
77db8e2e 26901 const char *msg = 0;
42e5fcbf 26902
77db8e2e
NC
26903 if (! S_IS_DEFINED (fixP->fx_addsy))
26904 msg = _("undefined symbol %s used as an immediate value");
26905 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26906 msg = _("symbol %s is in a different section");
26907 else if (S_IS_WEAK (fixP->fx_addsy))
26908 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 26909
77db8e2e
NC
26910 if (msg)
26911 {
26912 as_bad_where (fixP->fx_file, fixP->fx_line,
26913 msg, S_GET_NAME (fixP->fx_addsy));
26914 break;
26915 }
26916 }
fa94de6b 26917
c19d1205
ZW
26918 newimm = encode_arm_immediate (value);
26919 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 26920
c19d1205
ZW
26921 /* If the instruction will fail, see if we can fix things up by
26922 changing the opcode. */
26923 if (newimm == (unsigned int) FAIL
26924 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
26925 {
26926 /* No ? OK - try using two ADD instructions to generate
26927 the value. */
26928 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 26929
c19d1205
ZW
26930 /* Yes - then make sure that the second instruction is
26931 also an add. */
26932 if (newimm != (unsigned int) FAIL)
26933 newinsn = temp;
26934 /* Still No ? Try using a negated value. */
26935 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
26936 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
26937 /* Otherwise - give up. */
26938 else
26939 {
26940 as_bad_where (fixP->fx_file, fixP->fx_line,
26941 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
26942 (long) value);
26943 break;
26944 }
b99bd4ef 26945
c19d1205
ZW
26946 /* Replace the first operand in the 2nd instruction (which
26947 is the PC) with the destination register. We have
26948 already added in the PC in the first instruction and we
26949 do not want to do it again. */
26950 newinsn &= ~ 0xf0000;
26951 newinsn |= ((newinsn & 0x0f000) << 4);
26952 }
b99bd4ef 26953
c19d1205
ZW
26954 newimm |= (temp & 0xfffff000);
26955 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 26956
c19d1205
ZW
26957 highpart |= (newinsn & 0xfffff000);
26958 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
26959 }
26960 break;
b99bd4ef 26961
c19d1205 26962 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
26963 if (!fixP->fx_done && seg->use_rela_p)
26964 value = 0;
1a0670f3 26965 /* Fall through. */
00a97672 26966
c19d1205 26967 case BFD_RELOC_ARM_LITERAL:
26d97720 26968 sign = value > 0;
b99bd4ef 26969
c19d1205
ZW
26970 if (value < 0)
26971 value = - value;
b99bd4ef 26972
c19d1205 26973 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 26974 {
c19d1205
ZW
26975 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
26976 as_bad_where (fixP->fx_file, fixP->fx_line,
26977 _("invalid literal constant: pool needs to be closer"));
26978 else
26979 as_bad_where (fixP->fx_file, fixP->fx_line,
26980 _("bad immediate value for offset (%ld)"),
26981 (long) value);
26982 break;
f03698e6
RE
26983 }
26984
c19d1205 26985 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
26986 if (value == 0)
26987 newval &= 0xfffff000;
26988 else
26989 {
26990 newval &= 0xff7ff000;
26991 newval |= value | (sign ? INDEX_UP : 0);
26992 }
c19d1205
ZW
26993 md_number_to_chars (buf, newval, INSN_SIZE);
26994 break;
b99bd4ef 26995
c19d1205
ZW
26996 case BFD_RELOC_ARM_OFFSET_IMM8:
26997 case BFD_RELOC_ARM_HWLITERAL:
26d97720 26998 sign = value > 0;
b99bd4ef 26999
c19d1205
ZW
27000 if (value < 0)
27001 value = - value;
b99bd4ef 27002
c19d1205 27003 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 27004 {
c19d1205
ZW
27005 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
27006 as_bad_where (fixP->fx_file, fixP->fx_line,
27007 _("invalid literal constant: pool needs to be closer"));
27008 else
427d0db6
RM
27009 as_bad_where (fixP->fx_file, fixP->fx_line,
27010 _("bad immediate value for 8-bit offset (%ld)"),
27011 (long) value);
c19d1205 27012 break;
b99bd4ef
NC
27013 }
27014
c19d1205 27015 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
27016 if (value == 0)
27017 newval &= 0xfffff0f0;
27018 else
27019 {
27020 newval &= 0xff7ff0f0;
27021 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
27022 }
c19d1205
ZW
27023 md_number_to_chars (buf, newval, INSN_SIZE);
27024 break;
b99bd4ef 27025
c19d1205
ZW
27026 case BFD_RELOC_ARM_T32_OFFSET_U8:
27027 if (value < 0 || value > 1020 || value % 4 != 0)
27028 as_bad_where (fixP->fx_file, fixP->fx_line,
27029 _("bad immediate value for offset (%ld)"), (long) value);
27030 value /= 4;
b99bd4ef 27031
c19d1205 27032 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
27033 newval |= value;
27034 md_number_to_chars (buf+2, newval, THUMB_SIZE);
27035 break;
b99bd4ef 27036
c19d1205
ZW
27037 case BFD_RELOC_ARM_T32_OFFSET_IMM:
27038 /* This is a complicated relocation used for all varieties of Thumb32
27039 load/store instruction with immediate offset:
27040
27041 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
477330fc 27042 *4, optional writeback(W)
c19d1205
ZW
27043 (doubleword load/store)
27044
27045 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
27046 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
27047 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
27048 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
27049 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
27050
27051 Uppercase letters indicate bits that are already encoded at
27052 this point. Lowercase letters are our problem. For the
27053 second block of instructions, the secondary opcode nybble
27054 (bits 8..11) is present, and bit 23 is zero, even if this is
27055 a PC-relative operation. */
27056 newval = md_chars_to_number (buf, THUMB_SIZE);
27057 newval <<= 16;
27058 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 27059
c19d1205 27060 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 27061 {
c19d1205
ZW
27062 /* Doubleword load/store: 8-bit offset, scaled by 4. */
27063 if (value >= 0)
27064 newval |= (1 << 23);
27065 else
27066 value = -value;
27067 if (value % 4 != 0)
27068 {
27069 as_bad_where (fixP->fx_file, fixP->fx_line,
27070 _("offset not a multiple of 4"));
27071 break;
27072 }
27073 value /= 4;
216d22bc 27074 if (value > 0xff)
c19d1205
ZW
27075 {
27076 as_bad_where (fixP->fx_file, fixP->fx_line,
27077 _("offset out of range"));
27078 break;
27079 }
27080 newval &= ~0xff;
b99bd4ef 27081 }
c19d1205 27082 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 27083 {
c19d1205
ZW
27084 /* PC-relative, 12-bit offset. */
27085 if (value >= 0)
27086 newval |= (1 << 23);
27087 else
27088 value = -value;
216d22bc 27089 if (value > 0xfff)
c19d1205
ZW
27090 {
27091 as_bad_where (fixP->fx_file, fixP->fx_line,
27092 _("offset out of range"));
27093 break;
27094 }
27095 newval &= ~0xfff;
b99bd4ef 27096 }
c19d1205 27097 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 27098 {
c19d1205
ZW
27099 /* Writeback: 8-bit, +/- offset. */
27100 if (value >= 0)
27101 newval |= (1 << 9);
27102 else
27103 value = -value;
216d22bc 27104 if (value > 0xff)
c19d1205
ZW
27105 {
27106 as_bad_where (fixP->fx_file, fixP->fx_line,
27107 _("offset out of range"));
27108 break;
27109 }
27110 newval &= ~0xff;
b99bd4ef 27111 }
c19d1205 27112 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 27113 {
c19d1205 27114 /* T-instruction: positive 8-bit offset. */
216d22bc 27115 if (value < 0 || value > 0xff)
b99bd4ef 27116 {
c19d1205
ZW
27117 as_bad_where (fixP->fx_file, fixP->fx_line,
27118 _("offset out of range"));
27119 break;
b99bd4ef 27120 }
c19d1205
ZW
27121 newval &= ~0xff;
27122 newval |= value;
b99bd4ef
NC
27123 }
27124 else
b99bd4ef 27125 {
c19d1205
ZW
27126 /* Positive 12-bit or negative 8-bit offset. */
27127 int limit;
27128 if (value >= 0)
b99bd4ef 27129 {
c19d1205
ZW
27130 newval |= (1 << 23);
27131 limit = 0xfff;
27132 }
27133 else
27134 {
27135 value = -value;
27136 limit = 0xff;
27137 }
27138 if (value > limit)
27139 {
27140 as_bad_where (fixP->fx_file, fixP->fx_line,
27141 _("offset out of range"));
27142 break;
b99bd4ef 27143 }
c19d1205 27144 newval &= ~limit;
b99bd4ef 27145 }
b99bd4ef 27146
c19d1205
ZW
27147 newval |= value;
27148 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
27149 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
27150 break;
404ff6b5 27151
c19d1205
ZW
27152 case BFD_RELOC_ARM_SHIFT_IMM:
27153 newval = md_chars_to_number (buf, INSN_SIZE);
27154 if (((unsigned long) value) > 32
27155 || (value == 32
27156 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
27157 {
27158 as_bad_where (fixP->fx_file, fixP->fx_line,
27159 _("shift expression is too large"));
27160 break;
27161 }
404ff6b5 27162
c19d1205
ZW
27163 if (value == 0)
27164 /* Shifts of zero must be done as lsl. */
27165 newval &= ~0x60;
27166 else if (value == 32)
27167 value = 0;
27168 newval &= 0xfffff07f;
27169 newval |= (value & 0x1f) << 7;
27170 md_number_to_chars (buf, newval, INSN_SIZE);
27171 break;
404ff6b5 27172
c19d1205 27173 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 27174 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 27175 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 27176 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
27177 /* We claim that this fixup has been processed here,
27178 even if in fact we generate an error because we do
27179 not have a reloc for it, so tc_gen_reloc will reject it. */
27180 fixP->fx_done = 1;
404ff6b5 27181
c19d1205
ZW
27182 if (fixP->fx_addsy
27183 && ! S_IS_DEFINED (fixP->fx_addsy))
27184 {
27185 as_bad_where (fixP->fx_file, fixP->fx_line,
27186 _("undefined symbol %s used as an immediate value"),
27187 S_GET_NAME (fixP->fx_addsy));
27188 break;
27189 }
404ff6b5 27190
c19d1205
ZW
27191 newval = md_chars_to_number (buf, THUMB_SIZE);
27192 newval <<= 16;
27193 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 27194
16805f35 27195 newimm = FAIL;
bada4342
JW
27196 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
27197 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
27198 Thumb2 modified immediate encoding (T2). */
27199 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
16805f35 27200 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
27201 {
27202 newimm = encode_thumb32_immediate (value);
27203 if (newimm == (unsigned int) FAIL)
27204 newimm = thumb32_negate_data_op (&newval, value);
27205 }
bada4342 27206 if (newimm == (unsigned int) FAIL)
92e90b6e 27207 {
bada4342 27208 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
e9f89963 27209 {
bada4342
JW
27210 /* Turn add/sum into addw/subw. */
27211 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27212 newval = (newval & 0xfeffffff) | 0x02000000;
27213 /* No flat 12-bit imm encoding for addsw/subsw. */
27214 if ((newval & 0x00100000) == 0)
40f246e3 27215 {
bada4342
JW
27216 /* 12 bit immediate for addw/subw. */
27217 if (value < 0)
27218 {
27219 value = -value;
27220 newval ^= 0x00a00000;
27221 }
27222 if (value > 0xfff)
27223 newimm = (unsigned int) FAIL;
27224 else
27225 newimm = value;
27226 }
27227 }
27228 else
27229 {
27230 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
27231 UINT16 (T3 encoding), MOVW only accepts UINT16. When
27232 disassembling, MOV is preferred when there is no encoding
db7bf105 27233 overlap. */
bada4342 27234 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
db7bf105
NC
27235 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
27236 but with the Rn field [19:16] set to 1111. */
27237 && (((newval >> 16) & 0xf) == 0xf)
bada4342
JW
27238 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
27239 && !((newval >> T2_SBIT_SHIFT) & 0x1)
db7bf105 27240 && value >= 0 && value <= 0xffff)
bada4342
JW
27241 {
27242 /* Toggle bit[25] to change encoding from T2 to T3. */
27243 newval ^= 1 << 25;
27244 /* Clear bits[19:16]. */
27245 newval &= 0xfff0ffff;
27246 /* Encoding high 4bits imm. Code below will encode the
27247 remaining low 12bits. */
27248 newval |= (value & 0x0000f000) << 4;
27249 newimm = value & 0x00000fff;
40f246e3 27250 }
e9f89963 27251 }
92e90b6e 27252 }
cc8a6dd0 27253
c19d1205 27254 if (newimm == (unsigned int)FAIL)
3631a3c8 27255 {
c19d1205
ZW
27256 as_bad_where (fixP->fx_file, fixP->fx_line,
27257 _("invalid constant (%lx) after fixup"),
27258 (unsigned long) value);
27259 break;
3631a3c8
NC
27260 }
27261
c19d1205
ZW
27262 newval |= (newimm & 0x800) << 15;
27263 newval |= (newimm & 0x700) << 4;
27264 newval |= (newimm & 0x0ff);
cc8a6dd0 27265
c19d1205
ZW
27266 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
27267 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
27268 break;
a737bd4d 27269
3eb17e6b 27270 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
27271 if (((unsigned long) value) > 0xffff)
27272 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 27273 _("invalid smc expression"));
2fc8bdac 27274 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
27275 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27276 md_number_to_chars (buf, newval, INSN_SIZE);
27277 break;
a737bd4d 27278
90ec0d68
MGD
27279 case BFD_RELOC_ARM_HVC:
27280 if (((unsigned long) value) > 0xffff)
27281 as_bad_where (fixP->fx_file, fixP->fx_line,
27282 _("invalid hvc expression"));
27283 newval = md_chars_to_number (buf, INSN_SIZE);
27284 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27285 md_number_to_chars (buf, newval, INSN_SIZE);
27286 break;
27287
c19d1205 27288 case BFD_RELOC_ARM_SWI:
adbaf948 27289 if (fixP->tc_fix_data != 0)
c19d1205
ZW
27290 {
27291 if (((unsigned long) value) > 0xff)
27292 as_bad_where (fixP->fx_file, fixP->fx_line,
27293 _("invalid swi expression"));
2fc8bdac 27294 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
27295 newval |= value;
27296 md_number_to_chars (buf, newval, THUMB_SIZE);
27297 }
27298 else
27299 {
27300 if (((unsigned long) value) > 0x00ffffff)
27301 as_bad_where (fixP->fx_file, fixP->fx_line,
27302 _("invalid swi expression"));
2fc8bdac 27303 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
27304 newval |= value;
27305 md_number_to_chars (buf, newval, INSN_SIZE);
27306 }
27307 break;
a737bd4d 27308
c19d1205
ZW
27309 case BFD_RELOC_ARM_MULTI:
27310 if (((unsigned long) value) > 0xffff)
27311 as_bad_where (fixP->fx_file, fixP->fx_line,
27312 _("invalid expression in load/store multiple"));
27313 newval = value | md_chars_to_number (buf, INSN_SIZE);
27314 md_number_to_chars (buf, newval, INSN_SIZE);
27315 break;
a737bd4d 27316
c19d1205 27317#ifdef OBJ_ELF
39b41c9c 27318 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
27319
27320 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27321 && fixP->fx_addsy
34e77a92 27322 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27323 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27324 && THUMB_IS_FUNC (fixP->fx_addsy))
27325 /* Flip the bl to blx. This is a simple flip
27326 bit here because we generate PCREL_CALL for
27327 unconditional bls. */
27328 {
27329 newval = md_chars_to_number (buf, INSN_SIZE);
27330 newval = newval | 0x10000000;
27331 md_number_to_chars (buf, newval, INSN_SIZE);
27332 temp = 1;
27333 fixP->fx_done = 1;
27334 }
39b41c9c
PB
27335 else
27336 temp = 3;
27337 goto arm_branch_common;
27338
27339 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
27340 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27341 && fixP->fx_addsy
34e77a92 27342 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27343 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27344 && THUMB_IS_FUNC (fixP->fx_addsy))
27345 {
27346 /* This would map to a bl<cond>, b<cond>,
27347 b<always> to a Thumb function. We
27348 need to force a relocation for this particular
27349 case. */
27350 newval = md_chars_to_number (buf, INSN_SIZE);
27351 fixP->fx_done = 0;
27352 }
1a0670f3 27353 /* Fall through. */
267bf995 27354
2fc8bdac 27355 case BFD_RELOC_ARM_PLT32:
c19d1205 27356#endif
39b41c9c
PB
27357 case BFD_RELOC_ARM_PCREL_BRANCH:
27358 temp = 3;
27359 goto arm_branch_common;
a737bd4d 27360
39b41c9c 27361 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 27362
39b41c9c 27363 temp = 1;
267bf995
RR
27364 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27365 && fixP->fx_addsy
34e77a92 27366 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27367 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27368 && ARM_IS_FUNC (fixP->fx_addsy))
27369 {
27370 /* Flip the blx to a bl and warn. */
27371 const char *name = S_GET_NAME (fixP->fx_addsy);
27372 newval = 0xeb000000;
27373 as_warn_where (fixP->fx_file, fixP->fx_line,
27374 _("blx to '%s' an ARM ISA state function changed to bl"),
27375 name);
27376 md_number_to_chars (buf, newval, INSN_SIZE);
27377 temp = 3;
27378 fixP->fx_done = 1;
27379 }
27380
27381#ifdef OBJ_ELF
27382 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
477330fc 27383 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
267bf995
RR
27384#endif
27385
39b41c9c 27386 arm_branch_common:
c19d1205 27387 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
27388 instruction, in a 24 bit, signed field. Bits 26 through 32 either
27389 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
de194d85 27390 also be clear. */
39b41c9c 27391 if (value & temp)
c19d1205 27392 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
27393 _("misaligned branch destination"));
27394 if ((value & (offsetT)0xfe000000) != (offsetT)0
27395 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 27396 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 27397
2fc8bdac 27398 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 27399 {
2fc8bdac
ZW
27400 newval = md_chars_to_number (buf, INSN_SIZE);
27401 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
27402 /* Set the H bit on BLX instructions. */
27403 if (temp == 1)
27404 {
27405 if (value & 2)
27406 newval |= 0x01000000;
27407 else
27408 newval &= ~0x01000000;
27409 }
2fc8bdac 27410 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 27411 }
c19d1205 27412 break;
a737bd4d 27413
25fe350b
MS
27414 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
27415 /* CBZ can only branch forward. */
a737bd4d 27416
738755b0 27417 /* Attempts to use CBZ to branch to the next instruction
477330fc
RM
27418 (which, strictly speaking, are prohibited) will be turned into
27419 no-ops.
738755b0
MS
27420
27421 FIXME: It may be better to remove the instruction completely and
27422 perform relaxation. */
27423 if (value == -2)
2fc8bdac
ZW
27424 {
27425 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 27426 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
27427 md_number_to_chars (buf, newval, THUMB_SIZE);
27428 }
738755b0
MS
27429 else
27430 {
27431 if (value & ~0x7e)
08f10d51 27432 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0 27433
477330fc 27434 if (fixP->fx_done || !seg->use_rela_p)
738755b0
MS
27435 {
27436 newval = md_chars_to_number (buf, THUMB_SIZE);
27437 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
27438 md_number_to_chars (buf, newval, THUMB_SIZE);
27439 }
27440 }
c19d1205 27441 break;
a737bd4d 27442
c19d1205 27443 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 27444 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 27445 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 27446
2fc8bdac
ZW
27447 if (fixP->fx_done || !seg->use_rela_p)
27448 {
27449 newval = md_chars_to_number (buf, THUMB_SIZE);
27450 newval |= (value & 0x1ff) >> 1;
27451 md_number_to_chars (buf, newval, THUMB_SIZE);
27452 }
c19d1205 27453 break;
a737bd4d 27454
c19d1205 27455 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 27456 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 27457 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 27458
2fc8bdac
ZW
27459 if (fixP->fx_done || !seg->use_rela_p)
27460 {
27461 newval = md_chars_to_number (buf, THUMB_SIZE);
27462 newval |= (value & 0xfff) >> 1;
27463 md_number_to_chars (buf, newval, THUMB_SIZE);
27464 }
c19d1205 27465 break;
a737bd4d 27466
c19d1205 27467 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
27468 if (fixP->fx_addsy
27469 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 27470 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27471 && ARM_IS_FUNC (fixP->fx_addsy)
27472 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27473 {
27474 /* Force a relocation for a branch 20 bits wide. */
27475 fixP->fx_done = 0;
27476 }
08f10d51 27477 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
27478 as_bad_where (fixP->fx_file, fixP->fx_line,
27479 _("conditional branch out of range"));
404ff6b5 27480
2fc8bdac
ZW
27481 if (fixP->fx_done || !seg->use_rela_p)
27482 {
27483 offsetT newval2;
27484 addressT S, J1, J2, lo, hi;
404ff6b5 27485
2fc8bdac
ZW
27486 S = (value & 0x00100000) >> 20;
27487 J2 = (value & 0x00080000) >> 19;
27488 J1 = (value & 0x00040000) >> 18;
27489 hi = (value & 0x0003f000) >> 12;
27490 lo = (value & 0x00000ffe) >> 1;
6c43fab6 27491
2fc8bdac
ZW
27492 newval = md_chars_to_number (buf, THUMB_SIZE);
27493 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27494 newval |= (S << 10) | hi;
27495 newval2 |= (J1 << 13) | (J2 << 11) | lo;
27496 md_number_to_chars (buf, newval, THUMB_SIZE);
27497 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27498 }
c19d1205 27499 break;
6c43fab6 27500
c19d1205 27501 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
27502 /* If there is a blx from a thumb state function to
27503 another thumb function flip this to a bl and warn
27504 about it. */
27505
27506 if (fixP->fx_addsy
34e77a92 27507 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27508 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27509 && THUMB_IS_FUNC (fixP->fx_addsy))
27510 {
27511 const char *name = S_GET_NAME (fixP->fx_addsy);
27512 as_warn_where (fixP->fx_file, fixP->fx_line,
27513 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
27514 name);
27515 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27516 newval = newval | 0x1000;
27517 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27518 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27519 fixP->fx_done = 1;
27520 }
27521
27522
27523 goto thumb_bl_common;
27524
c19d1205 27525 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
27526 /* A bl from Thumb state ISA to an internal ARM state function
27527 is converted to a blx. */
27528 if (fixP->fx_addsy
27529 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 27530 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27531 && ARM_IS_FUNC (fixP->fx_addsy)
27532 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27533 {
27534 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27535 newval = newval & ~0x1000;
27536 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27537 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
27538 fixP->fx_done = 1;
27539 }
27540
27541 thumb_bl_common:
27542
2fc8bdac
ZW
27543 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27544 /* For a BLX instruction, make sure that the relocation is rounded up
27545 to a word boundary. This follows the semantics of the instruction
27546 which specifies that bit 1 of the target address will come from bit
27547 1 of the base address. */
d406f3e4
JB
27548 value = (value + 3) & ~ 3;
27549
27550#ifdef OBJ_ELF
27551 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
27552 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27553 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27554#endif
404ff6b5 27555
2b2f5df9
NC
27556 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
27557 {
fc289b0a 27558 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
2b2f5df9
NC
27559 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27560 else if ((value & ~0x1ffffff)
27561 && ((value & ~0x1ffffff) != ~0x1ffffff))
27562 as_bad_where (fixP->fx_file, fixP->fx_line,
27563 _("Thumb2 branch out of range"));
27564 }
4a42ebbc
RR
27565
27566 if (fixP->fx_done || !seg->use_rela_p)
27567 encode_thumb2_b_bl_offset (buf, value);
27568
c19d1205 27569 break;
404ff6b5 27570
c19d1205 27571 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
27572 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
27573 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 27574
2fc8bdac 27575 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 27576 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 27577
2fc8bdac 27578 break;
a737bd4d 27579
2fc8bdac
ZW
27580 case BFD_RELOC_8:
27581 if (fixP->fx_done || !seg->use_rela_p)
4b1a927e 27582 *buf = value;
c19d1205 27583 break;
a737bd4d 27584
c19d1205 27585 case BFD_RELOC_16:
2fc8bdac 27586 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 27587 md_number_to_chars (buf, value, 2);
c19d1205 27588 break;
a737bd4d 27589
c19d1205 27590#ifdef OBJ_ELF
0855e32b
NS
27591 case BFD_RELOC_ARM_TLS_CALL:
27592 case BFD_RELOC_ARM_THM_TLS_CALL:
27593 case BFD_RELOC_ARM_TLS_DESCSEQ:
27594 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
0855e32b 27595 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
27596 case BFD_RELOC_ARM_TLS_GD32:
27597 case BFD_RELOC_ARM_TLS_LE32:
27598 case BFD_RELOC_ARM_TLS_IE32:
27599 case BFD_RELOC_ARM_TLS_LDM32:
27600 case BFD_RELOC_ARM_TLS_LDO32:
27601 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4b1a927e 27602 break;
6c43fab6 27603
5c5a4843
CL
27604 /* Same handling as above, but with the arm_fdpic guard. */
27605 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
27606 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
27607 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
27608 if (arm_fdpic)
27609 {
27610 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27611 }
27612 else
27613 {
27614 as_bad_where (fixP->fx_file, fixP->fx_line,
27615 _("Relocation supported only in FDPIC mode"));
27616 }
27617 break;
27618
c19d1205
ZW
27619 case BFD_RELOC_ARM_GOT32:
27620 case BFD_RELOC_ARM_GOTOFF:
c19d1205 27621 break;
b43420e6
NC
27622
27623 case BFD_RELOC_ARM_GOT_PREL:
27624 if (fixP->fx_done || !seg->use_rela_p)
477330fc 27625 md_number_to_chars (buf, value, 4);
b43420e6
NC
27626 break;
27627
9a6f4e97
NS
27628 case BFD_RELOC_ARM_TARGET2:
27629 /* TARGET2 is not partial-inplace, so we need to write the
477330fc
RM
27630 addend here for REL targets, because it won't be written out
27631 during reloc processing later. */
9a6f4e97
NS
27632 if (fixP->fx_done || !seg->use_rela_p)
27633 md_number_to_chars (buf, fixP->fx_offset, 4);
27634 break;
188fd7ae
CL
27635
27636 /* Relocations for FDPIC. */
27637 case BFD_RELOC_ARM_GOTFUNCDESC:
27638 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27639 case BFD_RELOC_ARM_FUNCDESC:
27640 if (arm_fdpic)
27641 {
27642 if (fixP->fx_done || !seg->use_rela_p)
27643 md_number_to_chars (buf, 0, 4);
27644 }
27645 else
27646 {
27647 as_bad_where (fixP->fx_file, fixP->fx_line,
27648 _("Relocation supported only in FDPIC mode"));
27649 }
27650 break;
c19d1205 27651#endif
6c43fab6 27652
c19d1205
ZW
27653 case BFD_RELOC_RVA:
27654 case BFD_RELOC_32:
27655 case BFD_RELOC_ARM_TARGET1:
27656 case BFD_RELOC_ARM_ROSEGREL32:
27657 case BFD_RELOC_ARM_SBREL32:
27658 case BFD_RELOC_32_PCREL:
f0927246
NC
27659#ifdef TE_PE
27660 case BFD_RELOC_32_SECREL:
27661#endif
2fc8bdac 27662 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
27663#ifdef TE_WINCE
27664 /* For WinCE we only do this for pcrel fixups. */
27665 if (fixP->fx_done || fixP->fx_pcrel)
27666#endif
27667 md_number_to_chars (buf, value, 4);
c19d1205 27668 break;
6c43fab6 27669
c19d1205
ZW
27670#ifdef OBJ_ELF
27671 case BFD_RELOC_ARM_PREL31:
2fc8bdac 27672 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
27673 {
27674 newval = md_chars_to_number (buf, 4) & 0x80000000;
27675 if ((value ^ (value >> 1)) & 0x40000000)
27676 {
27677 as_bad_where (fixP->fx_file, fixP->fx_line,
27678 _("rel31 relocation overflow"));
27679 }
27680 newval |= value & 0x7fffffff;
27681 md_number_to_chars (buf, newval, 4);
27682 }
27683 break;
c19d1205 27684#endif
a737bd4d 27685
c19d1205 27686 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 27687 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
32c36c3c 27688 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
9db2f6b4
RL
27689 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
27690 newval = md_chars_to_number (buf, INSN_SIZE);
27691 else
27692 newval = get_thumb32_insn (buf);
27693 if ((newval & 0x0f200f00) == 0x0d000900)
27694 {
27695 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
27696 has permitted values that are multiples of 2, in the range 0
27697 to 510. */
27698 if (value < -510 || value > 510 || (value & 1))
27699 as_bad_where (fixP->fx_file, fixP->fx_line,
27700 _("co-processor offset out of range"));
27701 }
32c36c3c
AV
27702 else if ((newval & 0xfe001f80) == 0xec000f80)
27703 {
27704 if (value < -511 || value > 512 || (value & 3))
27705 as_bad_where (fixP->fx_file, fixP->fx_line,
27706 _("co-processor offset out of range"));
27707 }
9db2f6b4 27708 else if (value < -1023 || value > 1023 || (value & 3))
c19d1205
ZW
27709 as_bad_where (fixP->fx_file, fixP->fx_line,
27710 _("co-processor offset out of range"));
27711 cp_off_common:
26d97720 27712 sign = value > 0;
c19d1205
ZW
27713 if (value < 0)
27714 value = -value;
8f06b2d8
PB
27715 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27716 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27717 newval = md_chars_to_number (buf, INSN_SIZE);
27718 else
27719 newval = get_thumb32_insn (buf);
26d97720 27720 if (value == 0)
32c36c3c
AV
27721 {
27722 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27723 newval &= 0xffffff80;
27724 else
27725 newval &= 0xffffff00;
27726 }
26d97720
NS
27727 else
27728 {
32c36c3c
AV
27729 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27730 newval &= 0xff7fff80;
27731 else
27732 newval &= 0xff7fff00;
9db2f6b4
RL
27733 if ((newval & 0x0f200f00) == 0x0d000900)
27734 {
27735 /* This is a fp16 vstr/vldr.
27736
27737 It requires the immediate offset in the instruction is shifted
27738 left by 1 to be a half-word offset.
27739
27740 Here, left shift by 1 first, and later right shift by 2
27741 should get the right offset. */
27742 value <<= 1;
27743 }
26d97720
NS
27744 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
27745 }
8f06b2d8
PB
27746 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27747 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27748 md_number_to_chars (buf, newval, INSN_SIZE);
27749 else
27750 put_thumb32_insn (buf, newval);
c19d1205 27751 break;
a737bd4d 27752
c19d1205 27753 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 27754 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
27755 if (value < -255 || value > 255)
27756 as_bad_where (fixP->fx_file, fixP->fx_line,
27757 _("co-processor offset out of range"));
df7849c5 27758 value *= 4;
c19d1205 27759 goto cp_off_common;
6c43fab6 27760
c19d1205
ZW
27761 case BFD_RELOC_ARM_THUMB_OFFSET:
27762 newval = md_chars_to_number (buf, THUMB_SIZE);
27763 /* Exactly what ranges, and where the offset is inserted depends
27764 on the type of instruction, we can establish this from the
27765 top 4 bits. */
27766 switch (newval >> 12)
27767 {
27768 case 4: /* PC load. */
27769 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
27770 forced to zero for these loads; md_pcrel_from has already
27771 compensated for this. */
27772 if (value & 3)
27773 as_bad_where (fixP->fx_file, fixP->fx_line,
27774 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
27775 (((unsigned long) fixP->fx_frag->fr_address
27776 + (unsigned long) fixP->fx_where) & ~3)
27777 + (unsigned long) value);
a737bd4d 27778
c19d1205
ZW
27779 if (value & ~0x3fc)
27780 as_bad_where (fixP->fx_file, fixP->fx_line,
27781 _("invalid offset, value too big (0x%08lX)"),
27782 (long) value);
a737bd4d 27783
c19d1205
ZW
27784 newval |= value >> 2;
27785 break;
a737bd4d 27786
c19d1205
ZW
27787 case 9: /* SP load/store. */
27788 if (value & ~0x3fc)
27789 as_bad_where (fixP->fx_file, fixP->fx_line,
27790 _("invalid offset, value too big (0x%08lX)"),
27791 (long) value);
27792 newval |= value >> 2;
27793 break;
6c43fab6 27794
c19d1205
ZW
27795 case 6: /* Word load/store. */
27796 if (value & ~0x7c)
27797 as_bad_where (fixP->fx_file, fixP->fx_line,
27798 _("invalid offset, value too big (0x%08lX)"),
27799 (long) value);
27800 newval |= value << 4; /* 6 - 2. */
27801 break;
a737bd4d 27802
c19d1205
ZW
27803 case 7: /* Byte load/store. */
27804 if (value & ~0x1f)
27805 as_bad_where (fixP->fx_file, fixP->fx_line,
27806 _("invalid offset, value too big (0x%08lX)"),
27807 (long) value);
27808 newval |= value << 6;
27809 break;
a737bd4d 27810
c19d1205
ZW
27811 case 8: /* Halfword load/store. */
27812 if (value & ~0x3e)
27813 as_bad_where (fixP->fx_file, fixP->fx_line,
27814 _("invalid offset, value too big (0x%08lX)"),
27815 (long) value);
27816 newval |= value << 5; /* 6 - 1. */
27817 break;
a737bd4d 27818
c19d1205
ZW
27819 default:
27820 as_bad_where (fixP->fx_file, fixP->fx_line,
27821 "Unable to process relocation for thumb opcode: %lx",
27822 (unsigned long) newval);
27823 break;
27824 }
27825 md_number_to_chars (buf, newval, THUMB_SIZE);
27826 break;
a737bd4d 27827
c19d1205
ZW
27828 case BFD_RELOC_ARM_THUMB_ADD:
27829 /* This is a complicated relocation, since we use it for all of
27830 the following immediate relocations:
a737bd4d 27831
c19d1205
ZW
27832 3bit ADD/SUB
27833 8bit ADD/SUB
27834 9bit ADD/SUB SP word-aligned
27835 10bit ADD PC/SP word-aligned
a737bd4d 27836
c19d1205
ZW
27837 The type of instruction being processed is encoded in the
27838 instruction field:
a737bd4d 27839
c19d1205
ZW
27840 0x8000 SUB
27841 0x00F0 Rd
27842 0x000F Rs
27843 */
27844 newval = md_chars_to_number (buf, THUMB_SIZE);
27845 {
27846 int rd = (newval >> 4) & 0xf;
27847 int rs = newval & 0xf;
27848 int subtract = !!(newval & 0x8000);
a737bd4d 27849
c19d1205
ZW
27850 /* Check for HI regs, only very restricted cases allowed:
27851 Adjusting SP, and using PC or SP to get an address. */
27852 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
27853 || (rs > 7 && rs != REG_SP && rs != REG_PC))
27854 as_bad_where (fixP->fx_file, fixP->fx_line,
27855 _("invalid Hi register with immediate"));
a737bd4d 27856
c19d1205
ZW
27857 /* If value is negative, choose the opposite instruction. */
27858 if (value < 0)
27859 {
27860 value = -value;
27861 subtract = !subtract;
27862 if (value < 0)
27863 as_bad_where (fixP->fx_file, fixP->fx_line,
27864 _("immediate value out of range"));
27865 }
a737bd4d 27866
c19d1205
ZW
27867 if (rd == REG_SP)
27868 {
75c11999 27869 if (value & ~0x1fc)
c19d1205
ZW
27870 as_bad_where (fixP->fx_file, fixP->fx_line,
27871 _("invalid immediate for stack address calculation"));
27872 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
27873 newval |= value >> 2;
27874 }
27875 else if (rs == REG_PC || rs == REG_SP)
27876 {
c12d2c9d
NC
27877 /* PR gas/18541. If the addition is for a defined symbol
27878 within range of an ADR instruction then accept it. */
27879 if (subtract
27880 && value == 4
27881 && fixP->fx_addsy != NULL)
27882 {
27883 subtract = 0;
27884
27885 if (! S_IS_DEFINED (fixP->fx_addsy)
27886 || S_GET_SEGMENT (fixP->fx_addsy) != seg
27887 || S_IS_WEAK (fixP->fx_addsy))
27888 {
27889 as_bad_where (fixP->fx_file, fixP->fx_line,
27890 _("address calculation needs a strongly defined nearby symbol"));
27891 }
27892 else
27893 {
27894 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
27895
27896 /* Round up to the next 4-byte boundary. */
27897 if (v & 3)
27898 v = (v + 3) & ~ 3;
27899 else
27900 v += 4;
27901 v = S_GET_VALUE (fixP->fx_addsy) - v;
27902
27903 if (v & ~0x3fc)
27904 {
27905 as_bad_where (fixP->fx_file, fixP->fx_line,
27906 _("symbol too far away"));
27907 }
27908 else
27909 {
27910 fixP->fx_done = 1;
27911 value = v;
27912 }
27913 }
27914 }
27915
c19d1205
ZW
27916 if (subtract || value & ~0x3fc)
27917 as_bad_where (fixP->fx_file, fixP->fx_line,
27918 _("invalid immediate for address calculation (value = 0x%08lX)"),
5fc177c8 27919 (unsigned long) (subtract ? - value : value));
c19d1205
ZW
27920 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
27921 newval |= rd << 8;
27922 newval |= value >> 2;
27923 }
27924 else if (rs == rd)
27925 {
27926 if (value & ~0xff)
27927 as_bad_where (fixP->fx_file, fixP->fx_line,
27928 _("immediate value out of range"));
27929 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
27930 newval |= (rd << 8) | value;
27931 }
27932 else
27933 {
27934 if (value & ~0x7)
27935 as_bad_where (fixP->fx_file, fixP->fx_line,
27936 _("immediate value out of range"));
27937 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
27938 newval |= rd | (rs << 3) | (value << 6);
27939 }
27940 }
27941 md_number_to_chars (buf, newval, THUMB_SIZE);
27942 break;
a737bd4d 27943
c19d1205
ZW
27944 case BFD_RELOC_ARM_THUMB_IMM:
27945 newval = md_chars_to_number (buf, THUMB_SIZE);
27946 if (value < 0 || value > 255)
27947 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 27948 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
27949 (long) value);
27950 newval |= value;
27951 md_number_to_chars (buf, newval, THUMB_SIZE);
27952 break;
a737bd4d 27953
c19d1205
ZW
27954 case BFD_RELOC_ARM_THUMB_SHIFT:
27955 /* 5bit shift value (0..32). LSL cannot take 32. */
27956 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
27957 temp = newval & 0xf800;
27958 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
27959 as_bad_where (fixP->fx_file, fixP->fx_line,
27960 _("invalid shift value: %ld"), (long) value);
27961 /* Shifts of zero must be encoded as LSL. */
27962 if (value == 0)
27963 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
27964 /* Shifts of 32 are encoded as zero. */
27965 else if (value == 32)
27966 value = 0;
27967 newval |= value << 6;
27968 md_number_to_chars (buf, newval, THUMB_SIZE);
27969 break;
a737bd4d 27970
c19d1205
ZW
27971 case BFD_RELOC_VTABLE_INHERIT:
27972 case BFD_RELOC_VTABLE_ENTRY:
27973 fixP->fx_done = 0;
27974 return;
6c43fab6 27975
b6895b4f
PB
27976 case BFD_RELOC_ARM_MOVW:
27977 case BFD_RELOC_ARM_MOVT:
27978 case BFD_RELOC_ARM_THUMB_MOVW:
27979 case BFD_RELOC_ARM_THUMB_MOVT:
27980 if (fixP->fx_done || !seg->use_rela_p)
27981 {
27982 /* REL format relocations are limited to a 16-bit addend. */
27983 if (!fixP->fx_done)
27984 {
39623e12 27985 if (value < -0x8000 || value > 0x7fff)
b6895b4f 27986 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 27987 _("offset out of range"));
b6895b4f
PB
27988 }
27989 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27990 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27991 {
27992 value >>= 16;
27993 }
27994
27995 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27996 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27997 {
27998 newval = get_thumb32_insn (buf);
27999 newval &= 0xfbf08f00;
28000 newval |= (value & 0xf000) << 4;
28001 newval |= (value & 0x0800) << 15;
28002 newval |= (value & 0x0700) << 4;
28003 newval |= (value & 0x00ff);
28004 put_thumb32_insn (buf, newval);
28005 }
28006 else
28007 {
28008 newval = md_chars_to_number (buf, 4);
28009 newval &= 0xfff0f000;
28010 newval |= value & 0x0fff;
28011 newval |= (value & 0xf000) << 4;
28012 md_number_to_chars (buf, newval, 4);
28013 }
28014 }
28015 return;
28016
72d98d16
MG
28017 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28018 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28019 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28020 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
28021 gas_assert (!fixP->fx_done);
28022 {
28023 bfd_vma insn;
28024 bfd_boolean is_mov;
28025 bfd_vma encoded_addend = value;
28026
28027 /* Check that addend can be encoded in instruction. */
28028 if (!seg->use_rela_p && (value < 0 || value > 255))
28029 as_bad_where (fixP->fx_file, fixP->fx_line,
28030 _("the offset 0x%08lX is not representable"),
28031 (unsigned long) encoded_addend);
28032
28033 /* Extract the instruction. */
28034 insn = md_chars_to_number (buf, THUMB_SIZE);
28035 is_mov = (insn & 0xf800) == 0x2000;
28036
28037 /* Encode insn. */
28038 if (is_mov)
28039 {
28040 if (!seg->use_rela_p)
28041 insn |= encoded_addend;
28042 }
28043 else
28044 {
28045 int rd, rs;
28046
28047 /* Extract the instruction. */
28048 /* Encoding is the following
28049 0x8000 SUB
28050 0x00F0 Rd
28051 0x000F Rs
28052 */
28053 /* The following conditions must be true :
28054 - ADD
28055 - Rd == Rs
28056 - Rd <= 7
28057 */
28058 rd = (insn >> 4) & 0xf;
28059 rs = insn & 0xf;
28060 if ((insn & 0x8000) || (rd != rs) || rd > 7)
28061 as_bad_where (fixP->fx_file, fixP->fx_line,
28062 _("Unable to process relocation for thumb opcode: %lx"),
28063 (unsigned long) insn);
28064
28065 /* Encode as ADD immediate8 thumb 1 code. */
28066 insn = 0x3000 | (rd << 8);
28067
28068 /* Place the encoded addend into the first 8 bits of the
28069 instruction. */
28070 if (!seg->use_rela_p)
28071 insn |= encoded_addend;
28072 }
28073
28074 /* Update the instruction. */
28075 md_number_to_chars (buf, insn, THUMB_SIZE);
28076 }
28077 break;
28078
4962c51a
MS
28079 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28080 case BFD_RELOC_ARM_ALU_PC_G0:
28081 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28082 case BFD_RELOC_ARM_ALU_PC_G1:
28083 case BFD_RELOC_ARM_ALU_PC_G2:
28084 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28085 case BFD_RELOC_ARM_ALU_SB_G0:
28086 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28087 case BFD_RELOC_ARM_ALU_SB_G1:
28088 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 28089 gas_assert (!fixP->fx_done);
4962c51a
MS
28090 if (!seg->use_rela_p)
28091 {
477330fc
RM
28092 bfd_vma insn;
28093 bfd_vma encoded_addend;
3ca4a8ec 28094 bfd_vma addend_abs = llabs (value);
477330fc
RM
28095
28096 /* Check that the absolute value of the addend can be
28097 expressed as an 8-bit constant plus a rotation. */
28098 encoded_addend = encode_arm_immediate (addend_abs);
28099 if (encoded_addend == (unsigned int) FAIL)
4962c51a 28100 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28101 _("the offset 0x%08lX is not representable"),
28102 (unsigned long) addend_abs);
28103
28104 /* Extract the instruction. */
28105 insn = md_chars_to_number (buf, INSN_SIZE);
28106
28107 /* If the addend is positive, use an ADD instruction.
28108 Otherwise use a SUB. Take care not to destroy the S bit. */
28109 insn &= 0xff1fffff;
28110 if (value < 0)
28111 insn |= 1 << 22;
28112 else
28113 insn |= 1 << 23;
28114
28115 /* Place the encoded addend into the first 12 bits of the
28116 instruction. */
28117 insn &= 0xfffff000;
28118 insn |= encoded_addend;
28119
28120 /* Update the instruction. */
28121 md_number_to_chars (buf, insn, INSN_SIZE);
4962c51a
MS
28122 }
28123 break;
28124
28125 case BFD_RELOC_ARM_LDR_PC_G0:
28126 case BFD_RELOC_ARM_LDR_PC_G1:
28127 case BFD_RELOC_ARM_LDR_PC_G2:
28128 case BFD_RELOC_ARM_LDR_SB_G0:
28129 case BFD_RELOC_ARM_LDR_SB_G1:
28130 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 28131 gas_assert (!fixP->fx_done);
4962c51a 28132 if (!seg->use_rela_p)
477330fc
RM
28133 {
28134 bfd_vma insn;
3ca4a8ec 28135 bfd_vma addend_abs = llabs (value);
4962c51a 28136
477330fc
RM
28137 /* Check that the absolute value of the addend can be
28138 encoded in 12 bits. */
28139 if (addend_abs >= 0x1000)
4962c51a 28140 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28141 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
28142 (unsigned long) addend_abs);
28143
28144 /* Extract the instruction. */
28145 insn = md_chars_to_number (buf, INSN_SIZE);
28146
28147 /* If the addend is negative, clear bit 23 of the instruction.
28148 Otherwise set it. */
28149 if (value < 0)
28150 insn &= ~(1 << 23);
28151 else
28152 insn |= 1 << 23;
28153
28154 /* Place the absolute value of the addend into the first 12 bits
28155 of the instruction. */
28156 insn &= 0xfffff000;
28157 insn |= addend_abs;
28158
28159 /* Update the instruction. */
28160 md_number_to_chars (buf, insn, INSN_SIZE);
28161 }
4962c51a
MS
28162 break;
28163
28164 case BFD_RELOC_ARM_LDRS_PC_G0:
28165 case BFD_RELOC_ARM_LDRS_PC_G1:
28166 case BFD_RELOC_ARM_LDRS_PC_G2:
28167 case BFD_RELOC_ARM_LDRS_SB_G0:
28168 case BFD_RELOC_ARM_LDRS_SB_G1:
28169 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 28170 gas_assert (!fixP->fx_done);
4962c51a 28171 if (!seg->use_rela_p)
477330fc
RM
28172 {
28173 bfd_vma insn;
3ca4a8ec 28174 bfd_vma addend_abs = llabs (value);
4962c51a 28175
477330fc
RM
28176 /* Check that the absolute value of the addend can be
28177 encoded in 8 bits. */
28178 if (addend_abs >= 0x100)
4962c51a 28179 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28180 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
28181 (unsigned long) addend_abs);
28182
28183 /* Extract the instruction. */
28184 insn = md_chars_to_number (buf, INSN_SIZE);
28185
28186 /* If the addend is negative, clear bit 23 of the instruction.
28187 Otherwise set it. */
28188 if (value < 0)
28189 insn &= ~(1 << 23);
28190 else
28191 insn |= 1 << 23;
28192
28193 /* Place the first four bits of the absolute value of the addend
28194 into the first 4 bits of the instruction, and the remaining
28195 four into bits 8 .. 11. */
28196 insn &= 0xfffff0f0;
28197 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
28198
28199 /* Update the instruction. */
28200 md_number_to_chars (buf, insn, INSN_SIZE);
28201 }
4962c51a
MS
28202 break;
28203
28204 case BFD_RELOC_ARM_LDC_PC_G0:
28205 case BFD_RELOC_ARM_LDC_PC_G1:
28206 case BFD_RELOC_ARM_LDC_PC_G2:
28207 case BFD_RELOC_ARM_LDC_SB_G0:
28208 case BFD_RELOC_ARM_LDC_SB_G1:
28209 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 28210 gas_assert (!fixP->fx_done);
4962c51a 28211 if (!seg->use_rela_p)
477330fc
RM
28212 {
28213 bfd_vma insn;
3ca4a8ec 28214 bfd_vma addend_abs = llabs (value);
4962c51a 28215
477330fc
RM
28216 /* Check that the absolute value of the addend is a multiple of
28217 four and, when divided by four, fits in 8 bits. */
28218 if (addend_abs & 0x3)
4962c51a 28219 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28220 _("bad offset 0x%08lX (must be word-aligned)"),
28221 (unsigned long) addend_abs);
4962c51a 28222
477330fc 28223 if ((addend_abs >> 2) > 0xff)
4962c51a 28224 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28225 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
28226 (unsigned long) addend_abs);
28227
28228 /* Extract the instruction. */
28229 insn = md_chars_to_number (buf, INSN_SIZE);
28230
28231 /* If the addend is negative, clear bit 23 of the instruction.
28232 Otherwise set it. */
28233 if (value < 0)
28234 insn &= ~(1 << 23);
28235 else
28236 insn |= 1 << 23;
28237
28238 /* Place the addend (divided by four) into the first eight
28239 bits of the instruction. */
28240 insn &= 0xfffffff0;
28241 insn |= addend_abs >> 2;
28242
28243 /* Update the instruction. */
28244 md_number_to_chars (buf, insn, INSN_SIZE);
28245 }
4962c51a
MS
28246 break;
28247
e12437dc
AV
28248 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28249 if (fixP->fx_addsy
28250 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28251 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28252 && ARM_IS_FUNC (fixP->fx_addsy)
28253 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28254 {
28255 /* Force a relocation for a branch 5 bits wide. */
28256 fixP->fx_done = 0;
28257 }
28258 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
28259 as_bad_where (fixP->fx_file, fixP->fx_line,
28260 BAD_BRANCH_OFF);
28261
28262 if (fixP->fx_done || !seg->use_rela_p)
28263 {
28264 addressT boff = value >> 1;
28265
28266 newval = md_chars_to_number (buf, THUMB_SIZE);
28267 newval |= (boff << 7);
28268 md_number_to_chars (buf, newval, THUMB_SIZE);
28269 }
28270 break;
28271
f6b2b12d
AV
28272 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28273 if (fixP->fx_addsy
28274 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28275 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28276 && ARM_IS_FUNC (fixP->fx_addsy)
28277 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28278 {
28279 fixP->fx_done = 0;
28280 }
28281 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
28282 as_bad_where (fixP->fx_file, fixP->fx_line,
28283 _("branch out of range"));
28284
28285 if (fixP->fx_done || !seg->use_rela_p)
28286 {
28287 newval = md_chars_to_number (buf, THUMB_SIZE);
28288
28289 addressT boff = ((newval & 0x0780) >> 7) << 1;
28290 addressT diff = value - boff;
28291
28292 if (diff == 4)
28293 {
28294 newval |= 1 << 1; /* T bit. */
28295 }
28296 else if (diff != 2)
28297 {
28298 as_bad_where (fixP->fx_file, fixP->fx_line,
28299 _("out of range label-relative fixup value"));
28300 }
28301 md_number_to_chars (buf, newval, THUMB_SIZE);
28302 }
28303 break;
28304
e5d6e09e
AV
28305 case BFD_RELOC_ARM_THUMB_BF17:
28306 if (fixP->fx_addsy
28307 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28308 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28309 && ARM_IS_FUNC (fixP->fx_addsy)
28310 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28311 {
28312 /* Force a relocation for a branch 17 bits wide. */
28313 fixP->fx_done = 0;
28314 }
28315
28316 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
28317 as_bad_where (fixP->fx_file, fixP->fx_line,
28318 BAD_BRANCH_OFF);
28319
28320 if (fixP->fx_done || !seg->use_rela_p)
28321 {
28322 offsetT newval2;
28323 addressT immA, immB, immC;
28324
28325 immA = (value & 0x0001f000) >> 12;
28326 immB = (value & 0x00000ffc) >> 2;
28327 immC = (value & 0x00000002) >> 1;
28328
28329 newval = md_chars_to_number (buf, THUMB_SIZE);
28330 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28331 newval |= immA;
28332 newval2 |= (immC << 11) | (immB << 1);
28333 md_number_to_chars (buf, newval, THUMB_SIZE);
28334 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28335 }
28336 break;
28337
1caf72a5
AV
28338 case BFD_RELOC_ARM_THUMB_BF19:
28339 if (fixP->fx_addsy
28340 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28341 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28342 && ARM_IS_FUNC (fixP->fx_addsy)
28343 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28344 {
28345 /* Force a relocation for a branch 19 bits wide. */
28346 fixP->fx_done = 0;
28347 }
28348
28349 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
28350 as_bad_where (fixP->fx_file, fixP->fx_line,
28351 BAD_BRANCH_OFF);
28352
28353 if (fixP->fx_done || !seg->use_rela_p)
28354 {
28355 offsetT newval2;
28356 addressT immA, immB, immC;
28357
28358 immA = (value & 0x0007f000) >> 12;
28359 immB = (value & 0x00000ffc) >> 2;
28360 immC = (value & 0x00000002) >> 1;
28361
28362 newval = md_chars_to_number (buf, THUMB_SIZE);
28363 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28364 newval |= immA;
28365 newval2 |= (immC << 11) | (immB << 1);
28366 md_number_to_chars (buf, newval, THUMB_SIZE);
28367 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28368 }
28369 break;
28370
1889da70
AV
28371 case BFD_RELOC_ARM_THUMB_BF13:
28372 if (fixP->fx_addsy
28373 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28374 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28375 && ARM_IS_FUNC (fixP->fx_addsy)
28376 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28377 {
28378 /* Force a relocation for a branch 13 bits wide. */
28379 fixP->fx_done = 0;
28380 }
28381
28382 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
28383 as_bad_where (fixP->fx_file, fixP->fx_line,
28384 BAD_BRANCH_OFF);
28385
28386 if (fixP->fx_done || !seg->use_rela_p)
28387 {
28388 offsetT newval2;
28389 addressT immA, immB, immC;
28390
28391 immA = (value & 0x00001000) >> 12;
28392 immB = (value & 0x00000ffc) >> 2;
28393 immC = (value & 0x00000002) >> 1;
28394
28395 newval = md_chars_to_number (buf, THUMB_SIZE);
28396 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28397 newval |= immA;
28398 newval2 |= (immC << 11) | (immB << 1);
28399 md_number_to_chars (buf, newval, THUMB_SIZE);
28400 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28401 }
28402 break;
28403
60f993ce
AV
28404 case BFD_RELOC_ARM_THUMB_LOOP12:
28405 if (fixP->fx_addsy
28406 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28407 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28408 && ARM_IS_FUNC (fixP->fx_addsy)
28409 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28410 {
28411 /* Force a relocation for a branch 12 bits wide. */
28412 fixP->fx_done = 0;
28413 }
28414
28415 bfd_vma insn = get_thumb32_insn (buf);
28416 /* le lr, <label> or le <label> */
28417 if (((insn & 0xffffffff) == 0xf00fc001)
28418 || ((insn & 0xffffffff) == 0xf02fc001))
28419 value = -value;
28420
28421 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
28422 as_bad_where (fixP->fx_file, fixP->fx_line,
28423 BAD_BRANCH_OFF);
28424 if (fixP->fx_done || !seg->use_rela_p)
28425 {
28426 addressT imml, immh;
28427
28428 immh = (value & 0x00000ffc) >> 2;
28429 imml = (value & 0x00000002) >> 1;
28430
28431 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28432 newval |= (imml << 11) | (immh << 1);
28433 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
28434 }
28435 break;
28436
845b51d6
PB
28437 case BFD_RELOC_ARM_V4BX:
28438 /* This will need to go in the object file. */
28439 fixP->fx_done = 0;
28440 break;
28441
c19d1205
ZW
28442 case BFD_RELOC_UNUSED:
28443 default:
28444 as_bad_where (fixP->fx_file, fixP->fx_line,
28445 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
28446 }
6c43fab6
RE
28447}
28448
c19d1205
ZW
28449/* Translate internal representation of relocation info to BFD target
28450 format. */
a737bd4d 28451
c19d1205 28452arelent *
00a97672 28453tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 28454{
c19d1205
ZW
28455 arelent * reloc;
28456 bfd_reloc_code_real_type code;
a737bd4d 28457
325801bd 28458 reloc = XNEW (arelent);
a737bd4d 28459
325801bd 28460 reloc->sym_ptr_ptr = XNEW (asymbol *);
c19d1205
ZW
28461 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
28462 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 28463
2fc8bdac 28464 if (fixp->fx_pcrel)
00a97672
RS
28465 {
28466 if (section->use_rela_p)
28467 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
28468 else
28469 fixp->fx_offset = reloc->address;
28470 }
c19d1205 28471 reloc->addend = fixp->fx_offset;
a737bd4d 28472
c19d1205 28473 switch (fixp->fx_r_type)
a737bd4d 28474 {
c19d1205
ZW
28475 case BFD_RELOC_8:
28476 if (fixp->fx_pcrel)
28477 {
28478 code = BFD_RELOC_8_PCREL;
28479 break;
28480 }
1a0670f3 28481 /* Fall through. */
a737bd4d 28482
c19d1205
ZW
28483 case BFD_RELOC_16:
28484 if (fixp->fx_pcrel)
28485 {
28486 code = BFD_RELOC_16_PCREL;
28487 break;
28488 }
1a0670f3 28489 /* Fall through. */
6c43fab6 28490
c19d1205
ZW
28491 case BFD_RELOC_32:
28492 if (fixp->fx_pcrel)
28493 {
28494 code = BFD_RELOC_32_PCREL;
28495 break;
28496 }
1a0670f3 28497 /* Fall through. */
a737bd4d 28498
b6895b4f
PB
28499 case BFD_RELOC_ARM_MOVW:
28500 if (fixp->fx_pcrel)
28501 {
28502 code = BFD_RELOC_ARM_MOVW_PCREL;
28503 break;
28504 }
1a0670f3 28505 /* Fall through. */
b6895b4f
PB
28506
28507 case BFD_RELOC_ARM_MOVT:
28508 if (fixp->fx_pcrel)
28509 {
28510 code = BFD_RELOC_ARM_MOVT_PCREL;
28511 break;
28512 }
1a0670f3 28513 /* Fall through. */
b6895b4f
PB
28514
28515 case BFD_RELOC_ARM_THUMB_MOVW:
28516 if (fixp->fx_pcrel)
28517 {
28518 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
28519 break;
28520 }
1a0670f3 28521 /* Fall through. */
b6895b4f
PB
28522
28523 case BFD_RELOC_ARM_THUMB_MOVT:
28524 if (fixp->fx_pcrel)
28525 {
28526 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
28527 break;
28528 }
1a0670f3 28529 /* Fall through. */
b6895b4f 28530
c19d1205
ZW
28531 case BFD_RELOC_NONE:
28532 case BFD_RELOC_ARM_PCREL_BRANCH:
28533 case BFD_RELOC_ARM_PCREL_BLX:
28534 case BFD_RELOC_RVA:
28535 case BFD_RELOC_THUMB_PCREL_BRANCH7:
28536 case BFD_RELOC_THUMB_PCREL_BRANCH9:
28537 case BFD_RELOC_THUMB_PCREL_BRANCH12:
28538 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28539 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28540 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
28541 case BFD_RELOC_VTABLE_ENTRY:
28542 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
28543#ifdef TE_PE
28544 case BFD_RELOC_32_SECREL:
28545#endif
c19d1205
ZW
28546 code = fixp->fx_r_type;
28547 break;
a737bd4d 28548
00adf2d4
JB
28549 case BFD_RELOC_THUMB_PCREL_BLX:
28550#ifdef OBJ_ELF
28551 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
28552 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
28553 else
28554#endif
28555 code = BFD_RELOC_THUMB_PCREL_BLX;
28556 break;
28557
c19d1205
ZW
28558 case BFD_RELOC_ARM_LITERAL:
28559 case BFD_RELOC_ARM_HWLITERAL:
28560 /* If this is called then the a literal has
28561 been referenced across a section boundary. */
28562 as_bad_where (fixp->fx_file, fixp->fx_line,
28563 _("literal referenced across section boundary"));
28564 return NULL;
a737bd4d 28565
c19d1205 28566#ifdef OBJ_ELF
0855e32b
NS
28567 case BFD_RELOC_ARM_TLS_CALL:
28568 case BFD_RELOC_ARM_THM_TLS_CALL:
28569 case BFD_RELOC_ARM_TLS_DESCSEQ:
28570 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
28571 case BFD_RELOC_ARM_GOT32:
28572 case BFD_RELOC_ARM_GOTOFF:
b43420e6 28573 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
28574 case BFD_RELOC_ARM_PLT32:
28575 case BFD_RELOC_ARM_TARGET1:
28576 case BFD_RELOC_ARM_ROSEGREL32:
28577 case BFD_RELOC_ARM_SBREL32:
28578 case BFD_RELOC_ARM_PREL31:
28579 case BFD_RELOC_ARM_TARGET2:
c19d1205 28580 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
28581 case BFD_RELOC_ARM_PCREL_CALL:
28582 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
28583 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28584 case BFD_RELOC_ARM_ALU_PC_G0:
28585 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28586 case BFD_RELOC_ARM_ALU_PC_G1:
28587 case BFD_RELOC_ARM_ALU_PC_G2:
28588 case BFD_RELOC_ARM_LDR_PC_G0:
28589 case BFD_RELOC_ARM_LDR_PC_G1:
28590 case BFD_RELOC_ARM_LDR_PC_G2:
28591 case BFD_RELOC_ARM_LDRS_PC_G0:
28592 case BFD_RELOC_ARM_LDRS_PC_G1:
28593 case BFD_RELOC_ARM_LDRS_PC_G2:
28594 case BFD_RELOC_ARM_LDC_PC_G0:
28595 case BFD_RELOC_ARM_LDC_PC_G1:
28596 case BFD_RELOC_ARM_LDC_PC_G2:
28597 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28598 case BFD_RELOC_ARM_ALU_SB_G0:
28599 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28600 case BFD_RELOC_ARM_ALU_SB_G1:
28601 case BFD_RELOC_ARM_ALU_SB_G2:
28602 case BFD_RELOC_ARM_LDR_SB_G0:
28603 case BFD_RELOC_ARM_LDR_SB_G1:
28604 case BFD_RELOC_ARM_LDR_SB_G2:
28605 case BFD_RELOC_ARM_LDRS_SB_G0:
28606 case BFD_RELOC_ARM_LDRS_SB_G1:
28607 case BFD_RELOC_ARM_LDRS_SB_G2:
28608 case BFD_RELOC_ARM_LDC_SB_G0:
28609 case BFD_RELOC_ARM_LDC_SB_G1:
28610 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 28611 case BFD_RELOC_ARM_V4BX:
72d98d16
MG
28612 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28613 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28614 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28615 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
188fd7ae
CL
28616 case BFD_RELOC_ARM_GOTFUNCDESC:
28617 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28618 case BFD_RELOC_ARM_FUNCDESC:
e5d6e09e 28619 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 28620 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 28621 case BFD_RELOC_ARM_THUMB_BF13:
c19d1205
ZW
28622 code = fixp->fx_r_type;
28623 break;
a737bd4d 28624
0855e32b 28625 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205 28626 case BFD_RELOC_ARM_TLS_GD32:
5c5a4843 28627 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
75c11999 28628 case BFD_RELOC_ARM_TLS_LE32:
c19d1205 28629 case BFD_RELOC_ARM_TLS_IE32:
5c5a4843 28630 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
c19d1205 28631 case BFD_RELOC_ARM_TLS_LDM32:
5c5a4843 28632 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
c19d1205
ZW
28633 /* BFD will include the symbol's address in the addend.
28634 But we don't want that, so subtract it out again here. */
28635 if (!S_IS_COMMON (fixp->fx_addsy))
28636 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
28637 code = fixp->fx_r_type;
28638 break;
28639#endif
a737bd4d 28640
c19d1205
ZW
28641 case BFD_RELOC_ARM_IMMEDIATE:
28642 as_bad_where (fixp->fx_file, fixp->fx_line,
28643 _("internal relocation (type: IMMEDIATE) not fixed up"));
28644 return NULL;
a737bd4d 28645
c19d1205
ZW
28646 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
28647 as_bad_where (fixp->fx_file, fixp->fx_line,
28648 _("ADRL used for a symbol not defined in the same file"));
28649 return NULL;
a737bd4d 28650
e12437dc 28651 case BFD_RELOC_THUMB_PCREL_BRANCH5:
f6b2b12d 28652 case BFD_RELOC_THUMB_PCREL_BFCSEL:
60f993ce 28653 case BFD_RELOC_ARM_THUMB_LOOP12:
e12437dc
AV
28654 as_bad_where (fixp->fx_file, fixp->fx_line,
28655 _("%s used for a symbol not defined in the same file"),
28656 bfd_get_reloc_code_name (fixp->fx_r_type));
28657 return NULL;
28658
c19d1205 28659 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
28660 if (section->use_rela_p)
28661 {
28662 code = fixp->fx_r_type;
28663 break;
28664 }
28665
c19d1205
ZW
28666 if (fixp->fx_addsy != NULL
28667 && !S_IS_DEFINED (fixp->fx_addsy)
28668 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 28669 {
c19d1205
ZW
28670 as_bad_where (fixp->fx_file, fixp->fx_line,
28671 _("undefined local label `%s'"),
28672 S_GET_NAME (fixp->fx_addsy));
28673 return NULL;
a737bd4d
NC
28674 }
28675
c19d1205
ZW
28676 as_bad_where (fixp->fx_file, fixp->fx_line,
28677 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
28678 return NULL;
a737bd4d 28679
c19d1205
ZW
28680 default:
28681 {
e0471c16 28682 const char * type;
6c43fab6 28683
c19d1205
ZW
28684 switch (fixp->fx_r_type)
28685 {
28686 case BFD_RELOC_NONE: type = "NONE"; break;
28687 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
28688 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 28689 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
28690 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
28691 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
28692 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 28693 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 28694 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
28695 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
28696 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
28697 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
28698 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
28699 default: type = _("<unknown>"); break;
28700 }
28701 as_bad_where (fixp->fx_file, fixp->fx_line,
28702 _("cannot represent %s relocation in this object file format"),
28703 type);
28704 return NULL;
28705 }
a737bd4d 28706 }
6c43fab6 28707
c19d1205
ZW
28708#ifdef OBJ_ELF
28709 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
28710 && GOT_symbol
28711 && fixp->fx_addsy == GOT_symbol)
28712 {
28713 code = BFD_RELOC_ARM_GOTPC;
28714 reloc->addend = fixp->fx_offset = reloc->address;
28715 }
28716#endif
6c43fab6 28717
c19d1205 28718 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 28719
c19d1205
ZW
28720 if (reloc->howto == NULL)
28721 {
28722 as_bad_where (fixp->fx_file, fixp->fx_line,
28723 _("cannot represent %s relocation in this object file format"),
28724 bfd_get_reloc_code_name (code));
28725 return NULL;
28726 }
6c43fab6 28727
c19d1205
ZW
28728 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
28729 vtable entry to be used in the relocation's section offset. */
28730 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28731 reloc->address = fixp->fx_offset;
6c43fab6 28732
c19d1205 28733 return reloc;
6c43fab6
RE
28734}
28735
c19d1205 28736/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 28737
c19d1205
ZW
28738void
28739cons_fix_new_arm (fragS * frag,
28740 int where,
28741 int size,
62ebcb5c
AM
28742 expressionS * exp,
28743 bfd_reloc_code_real_type reloc)
6c43fab6 28744{
c19d1205 28745 int pcrel = 0;
6c43fab6 28746
c19d1205
ZW
28747 /* Pick a reloc.
28748 FIXME: @@ Should look at CPU word size. */
28749 switch (size)
28750 {
28751 case 1:
62ebcb5c 28752 reloc = BFD_RELOC_8;
c19d1205
ZW
28753 break;
28754 case 2:
62ebcb5c 28755 reloc = BFD_RELOC_16;
c19d1205
ZW
28756 break;
28757 case 4:
28758 default:
62ebcb5c 28759 reloc = BFD_RELOC_32;
c19d1205
ZW
28760 break;
28761 case 8:
62ebcb5c 28762 reloc = BFD_RELOC_64;
c19d1205
ZW
28763 break;
28764 }
6c43fab6 28765
f0927246
NC
28766#ifdef TE_PE
28767 if (exp->X_op == O_secrel)
28768 {
28769 exp->X_op = O_symbol;
62ebcb5c 28770 reloc = BFD_RELOC_32_SECREL;
f0927246
NC
28771 }
28772#endif
28773
62ebcb5c 28774 fix_new_exp (frag, where, size, exp, pcrel, reloc);
c19d1205 28775}
6c43fab6 28776
4343666d 28777#if defined (OBJ_COFF)
c19d1205
ZW
28778void
28779arm_validate_fix (fixS * fixP)
6c43fab6 28780{
c19d1205
ZW
28781 /* If the destination of the branch is a defined symbol which does not have
28782 the THUMB_FUNC attribute, then we must be calling a function which has
28783 the (interfacearm) attribute. We look for the Thumb entry point to that
28784 function and change the branch to refer to that function instead. */
28785 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
28786 && fixP->fx_addsy != NULL
28787 && S_IS_DEFINED (fixP->fx_addsy)
28788 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 28789 {
c19d1205 28790 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 28791 }
c19d1205
ZW
28792}
28793#endif
6c43fab6 28794
267bf995 28795
c19d1205
ZW
28796int
28797arm_force_relocation (struct fix * fixp)
28798{
28799#if defined (OBJ_COFF) && defined (TE_PE)
28800 if (fixp->fx_r_type == BFD_RELOC_RVA)
28801 return 1;
28802#endif
6c43fab6 28803
267bf995
RR
28804 /* In case we have a call or a branch to a function in ARM ISA mode from
28805 a thumb function or vice-versa force the relocation. These relocations
28806 are cleared off for some cores that might have blx and simple transformations
28807 are possible. */
28808
28809#ifdef OBJ_ELF
28810 switch (fixp->fx_r_type)
28811 {
28812 case BFD_RELOC_ARM_PCREL_JUMP:
28813 case BFD_RELOC_ARM_PCREL_CALL:
28814 case BFD_RELOC_THUMB_PCREL_BLX:
28815 if (THUMB_IS_FUNC (fixp->fx_addsy))
28816 return 1;
28817 break;
28818
28819 case BFD_RELOC_ARM_PCREL_BLX:
28820 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28821 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28822 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28823 if (ARM_IS_FUNC (fixp->fx_addsy))
28824 return 1;
28825 break;
28826
28827 default:
28828 break;
28829 }
28830#endif
28831
b5884301
PB
28832 /* Resolve these relocations even if the symbol is extern or weak.
28833 Technically this is probably wrong due to symbol preemption.
28834 In practice these relocations do not have enough range to be useful
28835 at dynamic link time, and some code (e.g. in the Linux kernel)
28836 expects these references to be resolved. */
c19d1205
ZW
28837 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
28838 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 28839 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 28840 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
28841 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28842 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
28843 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 28844 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
28845 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28846 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
28847 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
28848 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
28849 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
28850 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 28851 return 0;
a737bd4d 28852
4962c51a
MS
28853 /* Always leave these relocations for the linker. */
28854 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28855 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28856 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28857 return 1;
28858
f0291e4c
PB
28859 /* Always generate relocations against function symbols. */
28860 if (fixp->fx_r_type == BFD_RELOC_32
28861 && fixp->fx_addsy
28862 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
28863 return 1;
28864
c19d1205 28865 return generic_force_reloc (fixp);
404ff6b5
AH
28866}
28867
0ffdc86c 28868#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
28869/* Relocations against function names must be left unadjusted,
28870 so that the linker can use this information to generate interworking
28871 stubs. The MIPS version of this function
c19d1205
ZW
28872 also prevents relocations that are mips-16 specific, but I do not
28873 know why it does this.
404ff6b5 28874
c19d1205
ZW
28875 FIXME:
28876 There is one other problem that ought to be addressed here, but
28877 which currently is not: Taking the address of a label (rather
28878 than a function) and then later jumping to that address. Such
28879 addresses also ought to have their bottom bit set (assuming that
28880 they reside in Thumb code), but at the moment they will not. */
404ff6b5 28881
c19d1205
ZW
28882bfd_boolean
28883arm_fix_adjustable (fixS * fixP)
404ff6b5 28884{
c19d1205
ZW
28885 if (fixP->fx_addsy == NULL)
28886 return 1;
404ff6b5 28887
e28387c3
PB
28888 /* Preserve relocations against symbols with function type. */
28889 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 28890 return FALSE;
e28387c3 28891
c19d1205
ZW
28892 if (THUMB_IS_FUNC (fixP->fx_addsy)
28893 && fixP->fx_subsy == NULL)
c921be7d 28894 return FALSE;
a737bd4d 28895
c19d1205
ZW
28896 /* We need the symbol name for the VTABLE entries. */
28897 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
28898 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 28899 return FALSE;
404ff6b5 28900
c19d1205
ZW
28901 /* Don't allow symbols to be discarded on GOT related relocs. */
28902 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
28903 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
28904 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
28905 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
5c5a4843 28906 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
c19d1205
ZW
28907 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
28908 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
5c5a4843 28909 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
c19d1205 28910 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
5c5a4843 28911 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
c19d1205 28912 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
28913 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
28914 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
28915 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
28916 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
28917 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 28918 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 28919 return FALSE;
a737bd4d 28920
4962c51a
MS
28921 /* Similarly for group relocations. */
28922 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28923 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28924 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 28925 return FALSE;
4962c51a 28926
79947c54
CD
28927 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
28928 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
28929 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28930 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
28931 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
28932 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28933 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
28934 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
28935 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 28936 return FALSE;
79947c54 28937
72d98d16
MG
28938 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
28939 offsets, so keep these symbols. */
28940 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
28941 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
28942 return FALSE;
28943
c921be7d 28944 return TRUE;
a737bd4d 28945}
0ffdc86c
NC
28946#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
28947
28948#ifdef OBJ_ELF
c19d1205
ZW
28949const char *
28950elf32_arm_target_format (void)
404ff6b5 28951{
c19d1205
ZW
28952#ifdef TE_SYMBIAN
28953 return (target_big_endian
28954 ? "elf32-bigarm-symbian"
28955 : "elf32-littlearm-symbian");
28956#elif defined (TE_VXWORKS)
28957 return (target_big_endian
28958 ? "elf32-bigarm-vxworks"
28959 : "elf32-littlearm-vxworks");
b38cadfb
NC
28960#elif defined (TE_NACL)
28961 return (target_big_endian
28962 ? "elf32-bigarm-nacl"
28963 : "elf32-littlearm-nacl");
c19d1205 28964#else
18a20338
CL
28965 if (arm_fdpic)
28966 {
28967 if (target_big_endian)
28968 return "elf32-bigarm-fdpic";
28969 else
28970 return "elf32-littlearm-fdpic";
28971 }
c19d1205 28972 else
18a20338
CL
28973 {
28974 if (target_big_endian)
28975 return "elf32-bigarm";
28976 else
28977 return "elf32-littlearm";
28978 }
c19d1205 28979#endif
404ff6b5
AH
28980}
28981
c19d1205
ZW
28982void
28983armelf_frob_symbol (symbolS * symp,
28984 int * puntp)
404ff6b5 28985{
c19d1205
ZW
28986 elf_frob_symbol (symp, puntp);
28987}
28988#endif
404ff6b5 28989
c19d1205 28990/* MD interface: Finalization. */
a737bd4d 28991
c19d1205
ZW
28992void
28993arm_cleanup (void)
28994{
28995 literal_pool * pool;
a737bd4d 28996
5ee91343
AV
28997 /* Ensure that all the predication blocks are properly closed. */
28998 check_pred_blocks_finished ();
e07e6e58 28999
c19d1205
ZW
29000 for (pool = list_of_pools; pool; pool = pool->next)
29001 {
5f4273c7 29002 /* Put it at the end of the relevant section. */
c19d1205
ZW
29003 subseg_set (pool->section, pool->sub_section);
29004#ifdef OBJ_ELF
29005 arm_elf_change_section ();
29006#endif
29007 s_ltorg (0);
29008 }
404ff6b5
AH
29009}
29010
cd000bff
DJ
29011#ifdef OBJ_ELF
29012/* Remove any excess mapping symbols generated for alignment frags in
29013 SEC. We may have created a mapping symbol before a zero byte
29014 alignment; remove it if there's a mapping symbol after the
29015 alignment. */
29016static void
29017check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
29018 void *dummy ATTRIBUTE_UNUSED)
29019{
29020 segment_info_type *seginfo = seg_info (sec);
29021 fragS *fragp;
29022
29023 if (seginfo == NULL || seginfo->frchainP == NULL)
29024 return;
29025
29026 for (fragp = seginfo->frchainP->frch_root;
29027 fragp != NULL;
29028 fragp = fragp->fr_next)
29029 {
29030 symbolS *sym = fragp->tc_frag_data.last_map;
29031 fragS *next = fragp->fr_next;
29032
29033 /* Variable-sized frags have been converted to fixed size by
29034 this point. But if this was variable-sized to start with,
29035 there will be a fixed-size frag after it. So don't handle
29036 next == NULL. */
29037 if (sym == NULL || next == NULL)
29038 continue;
29039
29040 if (S_GET_VALUE (sym) < next->fr_address)
29041 /* Not at the end of this frag. */
29042 continue;
29043 know (S_GET_VALUE (sym) == next->fr_address);
29044
29045 do
29046 {
29047 if (next->tc_frag_data.first_map != NULL)
29048 {
29049 /* Next frag starts with a mapping symbol. Discard this
29050 one. */
29051 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
29052 break;
29053 }
29054
29055 if (next->fr_next == NULL)
29056 {
29057 /* This mapping symbol is at the end of the section. Discard
29058 it. */
29059 know (next->fr_fix == 0 && next->fr_var == 0);
29060 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
29061 break;
29062 }
29063
29064 /* As long as we have empty frags without any mapping symbols,
29065 keep looking. */
29066 /* If the next frag is non-empty and does not start with a
29067 mapping symbol, then this mapping symbol is required. */
29068 if (next->fr_address != next->fr_next->fr_address)
29069 break;
29070
29071 next = next->fr_next;
29072 }
29073 while (next != NULL);
29074 }
29075}
29076#endif
29077
c19d1205
ZW
29078/* Adjust the symbol table. This marks Thumb symbols as distinct from
29079 ARM ones. */
404ff6b5 29080
c19d1205
ZW
29081void
29082arm_adjust_symtab (void)
404ff6b5 29083{
c19d1205
ZW
29084#ifdef OBJ_COFF
29085 symbolS * sym;
404ff6b5 29086
c19d1205
ZW
29087 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
29088 {
29089 if (ARM_IS_THUMB (sym))
29090 {
29091 if (THUMB_IS_FUNC (sym))
29092 {
29093 /* Mark the symbol as a Thumb function. */
29094 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
29095 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
29096 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 29097
c19d1205
ZW
29098 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
29099 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
29100 else
29101 as_bad (_("%s: unexpected function type: %d"),
29102 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
29103 }
29104 else switch (S_GET_STORAGE_CLASS (sym))
29105 {
29106 case C_EXT:
29107 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
29108 break;
29109 case C_STAT:
29110 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
29111 break;
29112 case C_LABEL:
29113 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
29114 break;
29115 default:
29116 /* Do nothing. */
29117 break;
29118 }
29119 }
a737bd4d 29120
c19d1205
ZW
29121 if (ARM_IS_INTERWORK (sym))
29122 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 29123 }
c19d1205
ZW
29124#endif
29125#ifdef OBJ_ELF
29126 symbolS * sym;
29127 char bind;
404ff6b5 29128
c19d1205 29129 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 29130 {
c19d1205
ZW
29131 if (ARM_IS_THUMB (sym))
29132 {
29133 elf_symbol_type * elf_sym;
404ff6b5 29134
c19d1205
ZW
29135 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
29136 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 29137
b0796911
PB
29138 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
29139 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
29140 {
29141 /* If it's a .thumb_func, declare it as so,
29142 otherwise tag label as .code 16. */
29143 if (THUMB_IS_FUNC (sym))
39d911fc
TP
29144 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
29145 ST_BRANCH_TO_THUMB);
3ba67470 29146 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
29147 elf_sym->internal_elf_sym.st_info =
29148 ELF_ST_INFO (bind, STT_ARM_16BIT);
29149 }
29150 }
29151 }
cd000bff
DJ
29152
29153 /* Remove any overlapping mapping symbols generated by alignment frags. */
29154 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
29155 /* Now do generic ELF adjustments. */
29156 elf_adjust_symtab ();
c19d1205 29157#endif
404ff6b5
AH
29158}
29159
c19d1205 29160/* MD interface: Initialization. */
404ff6b5 29161
a737bd4d 29162static void
c19d1205 29163set_constant_flonums (void)
a737bd4d 29164{
c19d1205 29165 int i;
404ff6b5 29166
c19d1205
ZW
29167 for (i = 0; i < NUM_FLOAT_VALS; i++)
29168 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
29169 abort ();
a737bd4d 29170}
404ff6b5 29171
3e9e4fcf
JB
29172/* Auto-select Thumb mode if it's the only available instruction set for the
29173 given architecture. */
29174
29175static void
29176autoselect_thumb_from_cpu_variant (void)
29177{
29178 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
29179 opcode_select (16);
29180}
29181
c19d1205
ZW
29182void
29183md_begin (void)
a737bd4d 29184{
c19d1205
ZW
29185 unsigned mach;
29186 unsigned int i;
404ff6b5 29187
c19d1205
ZW
29188 if ( (arm_ops_hsh = hash_new ()) == NULL
29189 || (arm_cond_hsh = hash_new ()) == NULL
5ee91343 29190 || (arm_vcond_hsh = hash_new ()) == NULL
c19d1205
ZW
29191 || (arm_shift_hsh = hash_new ()) == NULL
29192 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 29193 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 29194 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
29195 || (arm_reloc_hsh = hash_new ()) == NULL
29196 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
29197 as_fatal (_("virtual memory exhausted"));
29198
29199 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 29200 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 29201 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 29202 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
5ee91343
AV
29203 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
29204 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
c19d1205 29205 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 29206 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 29207 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 29208 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 29209 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 29210 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
477330fc 29211 (void *) (v7m_psrs + i));
c19d1205 29212 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 29213 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
29214 for (i = 0;
29215 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
29216 i++)
d3ce72d0 29217 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 29218 (void *) (barrier_opt_names + i));
c19d1205 29219#ifdef OBJ_ELF
3da1d841
NC
29220 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
29221 {
29222 struct reloc_entry * entry = reloc_names + i;
29223
29224 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
29225 /* This makes encode_branch() use the EABI versions of this relocation. */
29226 entry->reloc = BFD_RELOC_UNUSED;
29227
29228 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
29229 }
c19d1205
ZW
29230#endif
29231
29232 set_constant_flonums ();
404ff6b5 29233
c19d1205
ZW
29234 /* Set the cpu variant based on the command-line options. We prefer
29235 -mcpu= over -march= if both are set (as for GCC); and we prefer
29236 -mfpu= over any other way of setting the floating point unit.
29237 Use of legacy options with new options are faulted. */
e74cfd16 29238 if (legacy_cpu)
404ff6b5 29239 {
e74cfd16 29240 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
29241 as_bad (_("use of old and new-style options to set CPU type"));
29242
4d354d8b 29243 selected_arch = *legacy_cpu;
404ff6b5 29244 }
4d354d8b
TP
29245 else if (mcpu_cpu_opt)
29246 {
29247 selected_arch = *mcpu_cpu_opt;
29248 selected_ext = *mcpu_ext_opt;
29249 }
29250 else if (march_cpu_opt)
c168ce07 29251 {
4d354d8b
TP
29252 selected_arch = *march_cpu_opt;
29253 selected_ext = *march_ext_opt;
c168ce07 29254 }
4d354d8b 29255 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
404ff6b5 29256
e74cfd16 29257 if (legacy_fpu)
c19d1205 29258 {
e74cfd16 29259 if (mfpu_opt)
c19d1205 29260 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f 29261
4d354d8b 29262 selected_fpu = *legacy_fpu;
03b1477f 29263 }
4d354d8b
TP
29264 else if (mfpu_opt)
29265 selected_fpu = *mfpu_opt;
29266 else
03b1477f 29267 {
45eb4c1b
NS
29268#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
29269 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
29270 /* Some environments specify a default FPU. If they don't, infer it
29271 from the processor. */
e74cfd16 29272 if (mcpu_fpu_opt)
4d354d8b 29273 selected_fpu = *mcpu_fpu_opt;
e7da50fa 29274 else if (march_fpu_opt)
4d354d8b 29275 selected_fpu = *march_fpu_opt;
39c2da32 29276#else
4d354d8b 29277 selected_fpu = fpu_default;
39c2da32 29278#endif
03b1477f
RE
29279 }
29280
4d354d8b 29281 if (ARM_FEATURE_ZERO (selected_fpu))
03b1477f 29282 {
4d354d8b
TP
29283 if (!no_cpu_selected ())
29284 selected_fpu = fpu_default;
03b1477f 29285 else
4d354d8b 29286 selected_fpu = fpu_arch_fpa;
03b1477f
RE
29287 }
29288
ee065d83 29289#ifdef CPU_DEFAULT
4d354d8b 29290 if (ARM_FEATURE_ZERO (selected_arch))
ee065d83 29291 {
4d354d8b
TP
29292 selected_arch = cpu_default;
29293 selected_cpu = selected_arch;
ee065d83 29294 }
4d354d8b 29295 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
e74cfd16 29296#else
4d354d8b
TP
29297 /* Autodection of feature mode: allow all features in cpu_variant but leave
29298 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
29299 after all instruction have been processed and we can decide what CPU
29300 should be selected. */
29301 if (ARM_FEATURE_ZERO (selected_arch))
29302 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
ee065d83 29303 else
4d354d8b 29304 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83 29305#endif
03b1477f 29306
3e9e4fcf
JB
29307 autoselect_thumb_from_cpu_variant ();
29308
e74cfd16 29309 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 29310
f17c130b 29311#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 29312 {
7cc69913
NC
29313 unsigned int flags = 0;
29314
29315#if defined OBJ_ELF
29316 flags = meabi_flags;
d507cf36
PB
29317
29318 switch (meabi_flags)
33a392fb 29319 {
d507cf36 29320 case EF_ARM_EABI_UNKNOWN:
7cc69913 29321#endif
d507cf36
PB
29322 /* Set the flags in the private structure. */
29323 if (uses_apcs_26) flags |= F_APCS26;
29324 if (support_interwork) flags |= F_INTERWORK;
29325 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 29326 if (pic_code) flags |= F_PIC;
e74cfd16 29327 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
29328 flags |= F_SOFT_FLOAT;
29329
d507cf36
PB
29330 switch (mfloat_abi_opt)
29331 {
29332 case ARM_FLOAT_ABI_SOFT:
29333 case ARM_FLOAT_ABI_SOFTFP:
29334 flags |= F_SOFT_FLOAT;
29335 break;
33a392fb 29336
d507cf36
PB
29337 case ARM_FLOAT_ABI_HARD:
29338 if (flags & F_SOFT_FLOAT)
29339 as_bad (_("hard-float conflicts with specified fpu"));
29340 break;
29341 }
03b1477f 29342
e74cfd16
PB
29343 /* Using pure-endian doubles (even if soft-float). */
29344 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 29345 flags |= F_VFP_FLOAT;
f17c130b 29346
fde78edd 29347#if defined OBJ_ELF
e74cfd16 29348 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 29349 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
29350 break;
29351
8cb51566 29352 case EF_ARM_EABI_VER4:
3a4a14e9 29353 case EF_ARM_EABI_VER5:
c19d1205 29354 /* No additional flags to set. */
d507cf36
PB
29355 break;
29356
29357 default:
29358 abort ();
29359 }
7cc69913 29360#endif
b99bd4ef
NC
29361 bfd_set_private_flags (stdoutput, flags);
29362
29363 /* We have run out flags in the COFF header to encode the
29364 status of ATPCS support, so instead we create a dummy,
c19d1205 29365 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
29366 if (atpcs)
29367 {
29368 asection * sec;
29369
29370 sec = bfd_make_section (stdoutput, ".arm.atpcs");
29371
29372 if (sec != NULL)
29373 {
29374 bfd_set_section_flags
29375 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
29376 bfd_set_section_size (stdoutput, sec, 0);
29377 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
29378 }
29379 }
7cc69913 29380 }
f17c130b 29381#endif
b99bd4ef
NC
29382
29383 /* Record the CPU type as well. */
2d447fca
JM
29384 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
29385 mach = bfd_mach_arm_iWMMXt2;
29386 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 29387 mach = bfd_mach_arm_iWMMXt;
e74cfd16 29388 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 29389 mach = bfd_mach_arm_XScale;
e74cfd16 29390 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 29391 mach = bfd_mach_arm_ep9312;
e74cfd16 29392 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 29393 mach = bfd_mach_arm_5TE;
e74cfd16 29394 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 29395 {
e74cfd16 29396 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
29397 mach = bfd_mach_arm_5T;
29398 else
29399 mach = bfd_mach_arm_5;
29400 }
e74cfd16 29401 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 29402 {
e74cfd16 29403 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
29404 mach = bfd_mach_arm_4T;
29405 else
29406 mach = bfd_mach_arm_4;
29407 }
e74cfd16 29408 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 29409 mach = bfd_mach_arm_3M;
e74cfd16
PB
29410 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
29411 mach = bfd_mach_arm_3;
29412 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
29413 mach = bfd_mach_arm_2a;
29414 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
29415 mach = bfd_mach_arm_2;
29416 else
29417 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
29418
29419 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
29420}
29421
c19d1205 29422/* Command line processing. */
b99bd4ef 29423
c19d1205
ZW
29424/* md_parse_option
29425 Invocation line includes a switch not recognized by the base assembler.
29426 See if it's a processor-specific option.
b99bd4ef 29427
c19d1205
ZW
29428 This routine is somewhat complicated by the need for backwards
29429 compatibility (since older releases of gcc can't be changed).
29430 The new options try to make the interface as compatible as
29431 possible with GCC.
b99bd4ef 29432
c19d1205 29433 New options (supported) are:
b99bd4ef 29434
c19d1205
ZW
29435 -mcpu=<cpu name> Assemble for selected processor
29436 -march=<architecture name> Assemble for selected architecture
29437 -mfpu=<fpu architecture> Assemble for selected FPU.
29438 -EB/-mbig-endian Big-endian
29439 -EL/-mlittle-endian Little-endian
29440 -k Generate PIC code
29441 -mthumb Start in Thumb mode
29442 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 29443
278df34e 29444 -m[no-]warn-deprecated Warn about deprecated features
8b2d793c 29445 -m[no-]warn-syms Warn when symbols match instructions
267bf995 29446
c19d1205 29447 For now we will also provide support for:
b99bd4ef 29448
c19d1205
ZW
29449 -mapcs-32 32-bit Program counter
29450 -mapcs-26 26-bit Program counter
29451 -macps-float Floats passed in FP registers
29452 -mapcs-reentrant Reentrant code
29453 -matpcs
29454 (sometime these will probably be replaced with -mapcs=<list of options>
29455 and -matpcs=<list of options>)
b99bd4ef 29456
c19d1205
ZW
29457 The remaining options are only supported for back-wards compatibility.
29458 Cpu variants, the arm part is optional:
29459 -m[arm]1 Currently not supported.
29460 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
29461 -m[arm]3 Arm 3 processor
29462 -m[arm]6[xx], Arm 6 processors
29463 -m[arm]7[xx][t][[d]m] Arm 7 processors
29464 -m[arm]8[10] Arm 8 processors
29465 -m[arm]9[20][tdmi] Arm 9 processors
29466 -mstrongarm[110[0]] StrongARM processors
29467 -mxscale XScale processors
29468 -m[arm]v[2345[t[e]]] Arm architectures
29469 -mall All (except the ARM1)
29470 FP variants:
29471 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
29472 -mfpe-old (No float load/store multiples)
29473 -mvfpxd VFP Single precision
29474 -mvfp All VFP
29475 -mno-fpu Disable all floating point instructions
b99bd4ef 29476
c19d1205
ZW
29477 The following CPU names are recognized:
29478 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
29479 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
29480 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
29481 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
29482 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
29483 arm10t arm10e, arm1020t, arm1020e, arm10200e,
29484 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 29485
c19d1205 29486 */
b99bd4ef 29487
c19d1205 29488const char * md_shortopts = "m:k";
b99bd4ef 29489
c19d1205
ZW
29490#ifdef ARM_BI_ENDIAN
29491#define OPTION_EB (OPTION_MD_BASE + 0)
29492#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 29493#else
c19d1205
ZW
29494#if TARGET_BYTES_BIG_ENDIAN
29495#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 29496#else
c19d1205
ZW
29497#define OPTION_EL (OPTION_MD_BASE + 1)
29498#endif
b99bd4ef 29499#endif
845b51d6 29500#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
18a20338 29501#define OPTION_FDPIC (OPTION_MD_BASE + 3)
b99bd4ef 29502
c19d1205 29503struct option md_longopts[] =
b99bd4ef 29504{
c19d1205
ZW
29505#ifdef OPTION_EB
29506 {"EB", no_argument, NULL, OPTION_EB},
29507#endif
29508#ifdef OPTION_EL
29509 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 29510#endif
845b51d6 29511 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
18a20338
CL
29512#ifdef OBJ_ELF
29513 {"fdpic", no_argument, NULL, OPTION_FDPIC},
29514#endif
c19d1205
ZW
29515 {NULL, no_argument, NULL, 0}
29516};
b99bd4ef 29517
c19d1205 29518size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 29519
c19d1205 29520struct arm_option_table
b99bd4ef 29521{
0198d5e6
TC
29522 const char * option; /* Option name to match. */
29523 const char * help; /* Help information. */
29524 int * var; /* Variable to change. */
29525 int value; /* What to change it to. */
29526 const char * deprecated; /* If non-null, print this message. */
c19d1205 29527};
b99bd4ef 29528
c19d1205
ZW
29529struct arm_option_table arm_opts[] =
29530{
29531 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
29532 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
29533 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
29534 &support_interwork, 1, NULL},
29535 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
29536 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
29537 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
29538 1, NULL},
29539 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
29540 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
29541 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
29542 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
29543 NULL},
b99bd4ef 29544
c19d1205
ZW
29545 /* These are recognized by the assembler, but have no affect on code. */
29546 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
29547 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
29548
29549 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
29550 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
29551 &warn_on_deprecated, 0, NULL},
8b2d793c
NC
29552 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
29553 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
e74cfd16
PB
29554 {NULL, NULL, NULL, 0, NULL}
29555};
29556
29557struct arm_legacy_option_table
29558{
0198d5e6
TC
29559 const char * option; /* Option name to match. */
29560 const arm_feature_set ** var; /* Variable to change. */
29561 const arm_feature_set value; /* What to change it to. */
29562 const char * deprecated; /* If non-null, print this message. */
e74cfd16 29563};
b99bd4ef 29564
e74cfd16
PB
29565const struct arm_legacy_option_table arm_legacy_opts[] =
29566{
c19d1205
ZW
29567 /* DON'T add any new processors to this list -- we want the whole list
29568 to go away... Add them to the processors table instead. */
e74cfd16
PB
29569 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29570 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29571 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29572 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29573 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29574 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29575 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29576 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29577 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29578 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29579 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29580 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29581 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29582 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29583 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29584 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29585 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29586 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29587 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29588 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29589 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29590 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29591 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29592 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29593 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29594 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29595 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29596 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29597 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29598 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29599 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29600 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29601 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29602 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29603 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29604 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29605 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29606 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29607 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29608 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29609 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29610 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29611 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29612 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29613 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29614 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29615 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29616 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29617 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29618 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29619 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29620 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29621 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29622 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29623 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29624 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29625 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29626 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29627 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29628 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29629 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29630 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29631 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29632 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29633 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29634 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29635 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29636 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29637 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
29638 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29639 N_("use -mcpu=strongarm110")},
e74cfd16 29640 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29641 N_("use -mcpu=strongarm1100")},
e74cfd16 29642 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29643 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
29644 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
29645 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
29646 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 29647
c19d1205 29648 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
29649 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29650 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29651 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29652 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29653 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29654 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29655 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29656 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29657 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29658 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29659 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29660 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29661 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29662 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29663 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29664 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29665 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29666 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 29667
c19d1205 29668 /* Floating point variants -- don't add any more to this list either. */
0198d5e6
TC
29669 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
29670 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
29671 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
29672 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 29673 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 29674
e74cfd16 29675 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 29676};
7ed4c4c5 29677
c19d1205 29678struct arm_cpu_option_table
7ed4c4c5 29679{
0198d5e6
TC
29680 const char * name;
29681 size_t name_len;
29682 const arm_feature_set value;
29683 const arm_feature_set ext;
c19d1205
ZW
29684 /* For some CPUs we assume an FPU unless the user explicitly sets
29685 -mfpu=... */
0198d5e6 29686 const arm_feature_set default_fpu;
ee065d83
PB
29687 /* The canonical name of the CPU, or NULL to use NAME converted to upper
29688 case. */
0198d5e6 29689 const char * canonical_name;
c19d1205 29690};
7ed4c4c5 29691
c19d1205
ZW
29692/* This list should, at a minimum, contain all the cpu names
29693 recognized by GCC. */
996b5569 29694#define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
0198d5e6 29695
e74cfd16 29696static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 29697{
996b5569
TP
29698 ARM_CPU_OPT ("all", NULL, ARM_ANY,
29699 ARM_ARCH_NONE,
29700 FPU_ARCH_FPA),
29701 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
29702 ARM_ARCH_NONE,
29703 FPU_ARCH_FPA),
29704 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
29705 ARM_ARCH_NONE,
29706 FPU_ARCH_FPA),
29707 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
29708 ARM_ARCH_NONE,
29709 FPU_ARCH_FPA),
29710 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
29711 ARM_ARCH_NONE,
29712 FPU_ARCH_FPA),
29713 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
29714 ARM_ARCH_NONE,
29715 FPU_ARCH_FPA),
29716 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
29717 ARM_ARCH_NONE,
29718 FPU_ARCH_FPA),
29719 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
29720 ARM_ARCH_NONE,
29721 FPU_ARCH_FPA),
29722 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
29723 ARM_ARCH_NONE,
29724 FPU_ARCH_FPA),
29725 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
29726 ARM_ARCH_NONE,
29727 FPU_ARCH_FPA),
29728 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
29729 ARM_ARCH_NONE,
29730 FPU_ARCH_FPA),
29731 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
29732 ARM_ARCH_NONE,
29733 FPU_ARCH_FPA),
29734 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
29735 ARM_ARCH_NONE,
29736 FPU_ARCH_FPA),
29737 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
29738 ARM_ARCH_NONE,
29739 FPU_ARCH_FPA),
29740 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
29741 ARM_ARCH_NONE,
29742 FPU_ARCH_FPA),
29743 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
29744 ARM_ARCH_NONE,
29745 FPU_ARCH_FPA),
29746 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
29747 ARM_ARCH_NONE,
29748 FPU_ARCH_FPA),
29749 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
29750 ARM_ARCH_NONE,
29751 FPU_ARCH_FPA),
29752 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
29753 ARM_ARCH_NONE,
29754 FPU_ARCH_FPA),
29755 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
29756 ARM_ARCH_NONE,
29757 FPU_ARCH_FPA),
29758 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
29759 ARM_ARCH_NONE,
29760 FPU_ARCH_FPA),
29761 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
29762 ARM_ARCH_NONE,
29763 FPU_ARCH_FPA),
29764 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
29765 ARM_ARCH_NONE,
29766 FPU_ARCH_FPA),
29767 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
29768 ARM_ARCH_NONE,
29769 FPU_ARCH_FPA),
29770 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
29771 ARM_ARCH_NONE,
29772 FPU_ARCH_FPA),
29773 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
29774 ARM_ARCH_NONE,
29775 FPU_ARCH_FPA),
29776 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
29777 ARM_ARCH_NONE,
29778 FPU_ARCH_FPA),
29779 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
29780 ARM_ARCH_NONE,
29781 FPU_ARCH_FPA),
29782 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
29783 ARM_ARCH_NONE,
29784 FPU_ARCH_FPA),
29785 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
29786 ARM_ARCH_NONE,
29787 FPU_ARCH_FPA),
29788 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
29789 ARM_ARCH_NONE,
29790 FPU_ARCH_FPA),
29791 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
29792 ARM_ARCH_NONE,
29793 FPU_ARCH_FPA),
29794 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
29795 ARM_ARCH_NONE,
29796 FPU_ARCH_FPA),
29797 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
29798 ARM_ARCH_NONE,
29799 FPU_ARCH_FPA),
29800 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
29801 ARM_ARCH_NONE,
29802 FPU_ARCH_FPA),
29803 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
29804 ARM_ARCH_NONE,
29805 FPU_ARCH_FPA),
29806 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
29807 ARM_ARCH_NONE,
29808 FPU_ARCH_FPA),
29809 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
29810 ARM_ARCH_NONE,
29811 FPU_ARCH_FPA),
29812 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
29813 ARM_ARCH_NONE,
29814 FPU_ARCH_FPA),
29815 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
29816 ARM_ARCH_NONE,
29817 FPU_ARCH_FPA),
29818 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
29819 ARM_ARCH_NONE,
29820 FPU_ARCH_FPA),
29821 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
29822 ARM_ARCH_NONE,
29823 FPU_ARCH_FPA),
29824 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
29825 ARM_ARCH_NONE,
29826 FPU_ARCH_FPA),
29827 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
29828 ARM_ARCH_NONE,
29829 FPU_ARCH_FPA),
29830 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
29831 ARM_ARCH_NONE,
29832 FPU_ARCH_FPA),
29833 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
29834 ARM_ARCH_NONE,
29835 FPU_ARCH_FPA),
29836
c19d1205
ZW
29837 /* For V5 or later processors we default to using VFP; but the user
29838 should really set the FPU type explicitly. */
996b5569
TP
29839 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
29840 ARM_ARCH_NONE,
29841 FPU_ARCH_VFP_V2),
29842 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
29843 ARM_ARCH_NONE,
29844 FPU_ARCH_VFP_V2),
29845 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29846 ARM_ARCH_NONE,
29847 FPU_ARCH_VFP_V2),
29848 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29849 ARM_ARCH_NONE,
29850 FPU_ARCH_VFP_V2),
29851 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
29852 ARM_ARCH_NONE,
29853 FPU_ARCH_VFP_V2),
29854 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
29855 ARM_ARCH_NONE,
29856 FPU_ARCH_VFP_V2),
29857 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
29858 ARM_ARCH_NONE,
29859 FPU_ARCH_VFP_V2),
29860 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
29861 ARM_ARCH_NONE,
29862 FPU_ARCH_VFP_V2),
29863 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
29864 ARM_ARCH_NONE,
29865 FPU_ARCH_VFP_V2),
29866 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
29867 ARM_ARCH_NONE,
29868 FPU_ARCH_VFP_V2),
29869 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
29870 ARM_ARCH_NONE,
29871 FPU_ARCH_VFP_V2),
29872 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
29873 ARM_ARCH_NONE,
29874 FPU_ARCH_VFP_V2),
29875 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
29876 ARM_ARCH_NONE,
29877 FPU_ARCH_VFP_V1),
29878 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
29879 ARM_ARCH_NONE,
29880 FPU_ARCH_VFP_V1),
29881 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
29882 ARM_ARCH_NONE,
29883 FPU_ARCH_VFP_V2),
29884 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
29885 ARM_ARCH_NONE,
29886 FPU_ARCH_VFP_V2),
29887 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
29888 ARM_ARCH_NONE,
29889 FPU_ARCH_VFP_V1),
29890 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
29891 ARM_ARCH_NONE,
29892 FPU_ARCH_VFP_V2),
29893 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
29894 ARM_ARCH_NONE,
29895 FPU_ARCH_VFP_V2),
29896 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
29897 ARM_ARCH_NONE,
29898 FPU_ARCH_VFP_V2),
29899 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
29900 ARM_ARCH_NONE,
29901 FPU_ARCH_VFP_V2),
29902 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
29903 ARM_ARCH_NONE,
29904 FPU_ARCH_VFP_V2),
29905 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
29906 ARM_ARCH_NONE,
29907 FPU_ARCH_VFP_V2),
29908 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
29909 ARM_ARCH_NONE,
29910 FPU_ARCH_VFP_V2),
29911 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
29912 ARM_ARCH_NONE,
29913 FPU_ARCH_VFP_V2),
29914 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
29915 ARM_ARCH_NONE,
29916 FPU_ARCH_VFP_V2),
29917 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
29918 ARM_ARCH_NONE,
29919 FPU_NONE),
29920 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
29921 ARM_ARCH_NONE,
29922 FPU_NONE),
29923 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
29924 ARM_ARCH_NONE,
29925 FPU_ARCH_VFP_V2),
29926 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
29927 ARM_ARCH_NONE,
29928 FPU_ARCH_VFP_V2),
29929 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
29930 ARM_ARCH_NONE,
29931 FPU_ARCH_VFP_V2),
29932 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
29933 ARM_ARCH_NONE,
29934 FPU_NONE),
29935 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
29936 ARM_ARCH_NONE,
29937 FPU_NONE),
29938 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
29939 ARM_ARCH_NONE,
29940 FPU_ARCH_VFP_V2),
29941 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
29942 ARM_ARCH_NONE,
29943 FPU_NONE),
29944 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
29945 ARM_ARCH_NONE,
29946 FPU_ARCH_VFP_V2),
29947 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
29948 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29949 FPU_NONE),
29950 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
29951 ARM_ARCH_NONE,
29952 FPU_ARCH_NEON_VFP_V4),
29953 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
29954 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29955 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29956 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
29957 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29958 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29959 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
29960 ARM_ARCH_NONE,
29961 FPU_ARCH_NEON_VFP_V4),
29962 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
29963 ARM_ARCH_NONE,
29964 FPU_ARCH_NEON_VFP_V4),
29965 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
29966 ARM_ARCH_NONE,
29967 FPU_ARCH_NEON_VFP_V4),
29968 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
29969 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29970 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29971 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
29972 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29973 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29974 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
29975 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29976 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
29977 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
29978 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 29979 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
29980 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
29981 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29982 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29983 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
29984 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29985 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29986 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
29987 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29988 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
29989 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
29990 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 29991 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
7ebd1359 29992 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
29993 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29994 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
ef8df4ca
KT
29995 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
29996 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29997 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
29998 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
29999 ARM_ARCH_NONE,
30000 FPU_NONE),
30001 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
30002 ARM_ARCH_NONE,
30003 FPU_ARCH_VFP_V3D16),
30004 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
30005 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30006 FPU_NONE),
30007 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
30008 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30009 FPU_ARCH_VFP_V3D16),
30010 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
30011 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30012 FPU_ARCH_VFP_V3D16),
0cda1e19
TP
30013 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
30014 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30015 FPU_ARCH_NEON_VFP_ARMV8),
996b5569
TP
30016 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
30017 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30018 FPU_NONE),
30019 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
30020 ARM_ARCH_NONE,
30021 FPU_NONE),
30022 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
30023 ARM_ARCH_NONE,
30024 FPU_NONE),
30025 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
30026 ARM_ARCH_NONE,
30027 FPU_NONE),
30028 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
30029 ARM_ARCH_NONE,
30030 FPU_NONE),
30031 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
30032 ARM_ARCH_NONE,
30033 FPU_NONE),
30034 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
30035 ARM_ARCH_NONE,
30036 FPU_NONE),
30037 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
30038 ARM_ARCH_NONE,
30039 FPU_NONE),
30040 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
30041 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30042 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
83f43c83
KT
30043 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
30044 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30045 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
c19d1205 30046 /* ??? XSCALE is really an architecture. */
996b5569
TP
30047 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
30048 ARM_ARCH_NONE,
30049 FPU_ARCH_VFP_V2),
30050
c19d1205 30051 /* ??? iwmmxt is not a processor. */
996b5569
TP
30052 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
30053 ARM_ARCH_NONE,
30054 FPU_ARCH_VFP_V2),
30055 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
30056 ARM_ARCH_NONE,
30057 FPU_ARCH_VFP_V2),
30058 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
30059 ARM_ARCH_NONE,
30060 FPU_ARCH_VFP_V2),
30061
0198d5e6 30062 /* Maverick. */
996b5569
TP
30063 ARM_CPU_OPT ("ep9312", "ARM920T",
30064 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
30065 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
30066
da4339ed 30067 /* Marvell processors. */
996b5569
TP
30068 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
30069 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30070 FPU_ARCH_VFP_V3D16),
30071 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
30072 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30073 FPU_ARCH_NEON_VFP_V4),
da4339ed 30074
996b5569
TP
30075 /* APM X-Gene family. */
30076 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
30077 ARM_ARCH_NONE,
30078 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30079 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
30080 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30081 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30082
30083 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 30084};
f3bad469 30085#undef ARM_CPU_OPT
7ed4c4c5 30086
34ef62f4
AV
30087struct arm_ext_table
30088{
30089 const char * name;
30090 size_t name_len;
30091 const arm_feature_set merge;
30092 const arm_feature_set clear;
30093};
30094
c19d1205 30095struct arm_arch_option_table
7ed4c4c5 30096{
34ef62f4
AV
30097 const char * name;
30098 size_t name_len;
30099 const arm_feature_set value;
30100 const arm_feature_set default_fpu;
30101 const struct arm_ext_table * ext_table;
30102};
30103
30104/* Used to add support for +E and +noE extension. */
30105#define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
30106/* Used to add support for a +E extension. */
30107#define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
30108/* Used to add support for a +noE extension. */
30109#define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
30110
30111#define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
30112 ~0 & ~FPU_ENDIAN_PURE)
30113
30114static const struct arm_ext_table armv5te_ext_table[] =
30115{
30116 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
30117 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30118};
30119
30120static const struct arm_ext_table armv7_ext_table[] =
30121{
30122 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30123 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30124};
30125
30126static const struct arm_ext_table armv7ve_ext_table[] =
30127{
30128 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
30129 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
30130 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30131 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30132 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30133 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
30134 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30135
30136 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
30137 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30138
30139 /* Aliases for +simd. */
30140 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30141
30142 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30143 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30144 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30145
30146 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30147};
30148
30149static const struct arm_ext_table armv7a_ext_table[] =
30150{
30151 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30152 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30153 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30154 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30155 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30156 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
30157 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30158
30159 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
30160 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30161
30162 /* Aliases for +simd. */
30163 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30164 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30165
30166 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30167 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30168
30169 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
30170 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
30171 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30172};
30173
30174static const struct arm_ext_table armv7r_ext_table[] =
30175{
30176 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
30177 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
30178 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30179 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30180 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
30181 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30182 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30183 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
30184 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30185};
30186
30187static const struct arm_ext_table armv7em_ext_table[] =
30188{
30189 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
30190 /* Alias for +fp, used to be known as fpv4-sp-d16. */
30191 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
30192 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
30193 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30194 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
30195 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30196};
30197
30198static const struct arm_ext_table armv8a_ext_table[] =
30199{
30200 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30201 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30202 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30203 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30204
30205 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30206 should use the +simd option to turn on FP. */
30207 ARM_REMOVE ("fp", ALL_FP),
30208 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30209 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30210 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30211};
30212
30213
30214static const struct arm_ext_table armv81a_ext_table[] =
30215{
30216 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30217 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30218 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30219
30220 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30221 should use the +simd option to turn on FP. */
30222 ARM_REMOVE ("fp", ALL_FP),
30223 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30224 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30225 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30226};
30227
30228static const struct arm_ext_table armv82a_ext_table[] =
30229{
30230 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30231 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
30232 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
30233 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30234 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30235 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30236
30237 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30238 should use the +simd option to turn on FP. */
30239 ARM_REMOVE ("fp", ALL_FP),
30240 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30241 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30242 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30243};
30244
30245static const struct arm_ext_table armv84a_ext_table[] =
30246{
30247 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30248 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30249 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30250 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30251
30252 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30253 should use the +simd option to turn on FP. */
30254 ARM_REMOVE ("fp", ALL_FP),
30255 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30256 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30257 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30258};
30259
30260static const struct arm_ext_table armv85a_ext_table[] =
30261{
30262 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30263 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30264 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30265 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30266
30267 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30268 should use the +simd option to turn on FP. */
30269 ARM_REMOVE ("fp", ALL_FP),
30270 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30271};
30272
30273static const struct arm_ext_table armv8m_main_ext_table[] =
30274{
30275 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30276 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30277 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
30278 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30279 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30280};
30281
e0991585
AV
30282static const struct arm_ext_table armv8_1m_main_ext_table[] =
30283{
30284 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30285 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30286 ARM_EXT ("fp",
30287 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30288 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
30289 ALL_FP),
30290 ARM_ADD ("fp.dp",
30291 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30292 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
a7ad558c
AV
30293 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
30294 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
30295 ARM_ADD ("mve.fp",
30296 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30297 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
30298 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
e0991585
AV
30299 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30300};
30301
34ef62f4
AV
30302static const struct arm_ext_table armv8r_ext_table[] =
30303{
30304 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30305 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30306 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30307 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30308 ARM_REMOVE ("fp", ALL_FP),
30309 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
30310 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 30311};
7ed4c4c5 30312
c19d1205
ZW
30313/* This list should, at a minimum, contain all the architecture names
30314 recognized by GCC. */
34ef62f4
AV
30315#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
30316#define ARM_ARCH_OPT2(N, V, DF, ext) \
30317 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
0198d5e6 30318
e74cfd16 30319static const struct arm_arch_option_table arm_archs[] =
c19d1205 30320{
497d849d
TP
30321 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
30322 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
30323 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
30324 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
30325 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
30326 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
30327 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
30328 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
30329 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
30330 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
30331 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
30332 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
30333 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
30334 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
34ef62f4
AV
30335 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
30336 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
30337 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
30338 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30339 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30340 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
30341 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
f33026a9
MW
30342 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
30343 kept to preserve existing behaviour. */
34ef62f4
AV
30344 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30345 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30346 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
30347 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
30348 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
f33026a9
MW
30349 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
30350 kept to preserve existing behaviour. */
34ef62f4
AV
30351 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30352 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
497d849d
TP
30353 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
30354 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
34ef62f4 30355 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
c450d570
PB
30356 /* The official spelling of the ARMv7 profile variants is the dashed form.
30357 Accept the non-dashed form for compatibility with old toolchains. */
34ef62f4
AV
30358 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30359 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
30360 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 30361 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4
AV
30362 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30363 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 30364 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4 30365 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
497d849d 30366 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
34ef62f4
AV
30367 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
30368 armv8m_main),
e0991585
AV
30369 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
30370 armv8_1m_main),
34ef62f4
AV
30371 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
30372 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
30373 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
30374 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
30375 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
30376 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
30377 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
497d849d
TP
30378 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
30379 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
30380 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
34ef62f4 30381 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 30382};
f3bad469 30383#undef ARM_ARCH_OPT
7ed4c4c5 30384
69133863 30385/* ISA extensions in the co-processor and main instruction set space. */
0198d5e6 30386
69133863 30387struct arm_option_extension_value_table
c19d1205 30388{
0198d5e6
TC
30389 const char * name;
30390 size_t name_len;
30391 const arm_feature_set merge_value;
30392 const arm_feature_set clear_value;
d942732e
TP
30393 /* List of architectures for which an extension is available. ARM_ARCH_NONE
30394 indicates that an extension is available for all architectures while
30395 ARM_ANY marks an empty entry. */
0198d5e6 30396 const arm_feature_set allowed_archs[2];
c19d1205 30397};
7ed4c4c5 30398
0198d5e6
TC
30399/* The following table must be in alphabetical order with a NULL last entry. */
30400
d942732e
TP
30401#define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
30402#define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
0198d5e6 30403
34ef62f4
AV
30404/* DEPRECATED: Refrain from using this table to add any new extensions, instead
30405 use the context sensitive approach using arm_ext_table's. */
69133863 30406static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 30407{
823d2571
TG
30408 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30409 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
bca38921 30410 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
823d2571
TG
30411 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
30412 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
c604a79a
JW
30413 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
30414 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
30415 ARM_ARCH_V8_2A),
15afaa63
TP
30416 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30417 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30418 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
823d2571
TG
30419 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
30420 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
b8ec4e87
JW
30421 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30422 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30423 ARM_ARCH_V8_2A),
01f48020
TC
30424 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30425 | ARM_EXT2_FP16_FML),
30426 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30427 | ARM_EXT2_FP16_FML),
30428 ARM_ARCH_V8_2A),
d942732e 30429 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
823d2571 30430 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
d942732e
TP
30431 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30432 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
3d030cdb
TP
30433 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
30434 Thumb divide instruction. Due to this having the same name as the
30435 previous entry, this will be ignored when doing command-line parsing and
30436 only considered by build attribute selection code. */
30437 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30438 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30439 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
823d2571 30440 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
d942732e 30441 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
823d2571 30442 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
d942732e 30443 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
823d2571 30444 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
d942732e
TP
30445 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
30446 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
823d2571 30447 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
d942732e
TP
30448 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30449 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
823d2571
TG
30450 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30451 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30452 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
ddfded2f
MW
30453 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
30454 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
ced40572 30455 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
dad0c3bf
SD
30456 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30457 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30458 ARM_ARCH_V8A),
4d1464f2
MW
30459 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
30460 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
ced40572 30461 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
643afb90
MW
30462 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
30463 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
ced40572 30464 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
7fadb25d
SD
30465 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30466 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30467 ARM_ARCH_V8A),
d942732e 30468 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
823d2571 30469 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
d942732e
TP
30470 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
30471 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
643afb90
MW
30472 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
30473 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
30474 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
823d2571
TG
30475 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
30476 | ARM_EXT_DIV),
30477 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
30478 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30479 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
d942732e
TP
30480 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
30481 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
69133863 30482};
f3bad469 30483#undef ARM_EXT_OPT
69133863
MGD
30484
30485/* ISA floating-point and Advanced SIMD extensions. */
30486struct arm_option_fpu_value_table
30487{
0198d5e6
TC
30488 const char * name;
30489 const arm_feature_set value;
c19d1205 30490};
7ed4c4c5 30491
c19d1205
ZW
30492/* This list should, at a minimum, contain all the fpu names
30493 recognized by GCC. */
69133863 30494static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
30495{
30496 {"softfpa", FPU_NONE},
30497 {"fpe", FPU_ARCH_FPE},
30498 {"fpe2", FPU_ARCH_FPE},
30499 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
30500 {"fpa", FPU_ARCH_FPA},
30501 {"fpa10", FPU_ARCH_FPA},
30502 {"fpa11", FPU_ARCH_FPA},
30503 {"arm7500fe", FPU_ARCH_FPA},
30504 {"softvfp", FPU_ARCH_VFP},
30505 {"softvfp+vfp", FPU_ARCH_VFP_V2},
30506 {"vfp", FPU_ARCH_VFP_V2},
30507 {"vfp9", FPU_ARCH_VFP_V2},
d5e0ba9c 30508 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
c19d1205
ZW
30509 {"vfp10", FPU_ARCH_VFP_V2},
30510 {"vfp10-r0", FPU_ARCH_VFP_V1},
30511 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
30512 {"vfpv2", FPU_ARCH_VFP_V2},
30513 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 30514 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 30515 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
30516 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
30517 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
30518 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
30519 {"arm1020t", FPU_ARCH_VFP_V1},
30520 {"arm1020e", FPU_ARCH_VFP_V2},
d5e0ba9c 30521 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
c19d1205
ZW
30522 {"arm1136jf-s", FPU_ARCH_VFP_V2},
30523 {"maverick", FPU_ARCH_MAVERICK},
d5e0ba9c 30524 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
d3375ddd 30525 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 30526 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
30527 {"vfpv4", FPU_ARCH_VFP_V4},
30528 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 30529 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
a715796b
TG
30530 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
30531 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
62f3b8c8 30532 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
30533 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
30534 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
30535 {"crypto-neon-fp-armv8",
30536 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
d6b4b13e 30537 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
081e4c7d
MW
30538 {"crypto-neon-fp-armv8.1",
30539 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
e74cfd16
PB
30540 {NULL, ARM_ARCH_NONE}
30541};
30542
30543struct arm_option_value_table
30544{
e0471c16 30545 const char *name;
e74cfd16 30546 long value;
c19d1205 30547};
7ed4c4c5 30548
e74cfd16 30549static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
30550{
30551 {"hard", ARM_FLOAT_ABI_HARD},
30552 {"softfp", ARM_FLOAT_ABI_SOFTFP},
30553 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 30554 {NULL, 0}
c19d1205 30555};
7ed4c4c5 30556
c19d1205 30557#ifdef OBJ_ELF
3a4a14e9 30558/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 30559static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
30560{
30561 {"gnu", EF_ARM_EABI_UNKNOWN},
30562 {"4", EF_ARM_EABI_VER4},
3a4a14e9 30563 {"5", EF_ARM_EABI_VER5},
e74cfd16 30564 {NULL, 0}
c19d1205
ZW
30565};
30566#endif
7ed4c4c5 30567
c19d1205
ZW
30568struct arm_long_option_table
30569{
0198d5e6 30570 const char * option; /* Substring to match. */
e0471c16 30571 const char * help; /* Help information. */
17b9d67d 30572 int (* func) (const char * subopt); /* Function to decode sub-option. */
e0471c16 30573 const char * deprecated; /* If non-null, print this message. */
c19d1205 30574};
7ed4c4c5 30575
c921be7d 30576static bfd_boolean
c168ce07 30577arm_parse_extension (const char *str, const arm_feature_set *opt_set,
34ef62f4
AV
30578 arm_feature_set *ext_set,
30579 const struct arm_ext_table *ext_table)
7ed4c4c5 30580{
69133863 30581 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
30582 extensions being added before being removed. We achieve this by having
30583 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 30584 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 30585 or removing it (0) and only allowing it to change in the order
69133863
MGD
30586 -1 -> 1 -> 0. */
30587 const struct arm_option_extension_value_table * opt = NULL;
d942732e 30588 const arm_feature_set arm_any = ARM_ANY;
69133863
MGD
30589 int adding_value = -1;
30590
c19d1205 30591 while (str != NULL && *str != 0)
7ed4c4c5 30592 {
82b8a785 30593 const char *ext;
f3bad469 30594 size_t len;
7ed4c4c5 30595
c19d1205
ZW
30596 if (*str != '+')
30597 {
30598 as_bad (_("invalid architectural extension"));
c921be7d 30599 return FALSE;
c19d1205 30600 }
7ed4c4c5 30601
c19d1205
ZW
30602 str++;
30603 ext = strchr (str, '+');
7ed4c4c5 30604
c19d1205 30605 if (ext != NULL)
f3bad469 30606 len = ext - str;
c19d1205 30607 else
f3bad469 30608 len = strlen (str);
7ed4c4c5 30609
f3bad469 30610 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
30611 {
30612 if (adding_value != 0)
30613 {
30614 adding_value = 0;
30615 opt = arm_extensions;
30616 }
30617
f3bad469 30618 len -= 2;
69133863
MGD
30619 str += 2;
30620 }
f3bad469 30621 else if (len > 0)
69133863
MGD
30622 {
30623 if (adding_value == -1)
30624 {
30625 adding_value = 1;
30626 opt = arm_extensions;
30627 }
30628 else if (adding_value != 1)
30629 {
30630 as_bad (_("must specify extensions to add before specifying "
30631 "those to remove"));
30632 return FALSE;
30633 }
30634 }
30635
f3bad469 30636 if (len == 0)
c19d1205
ZW
30637 {
30638 as_bad (_("missing architectural extension"));
c921be7d 30639 return FALSE;
c19d1205 30640 }
7ed4c4c5 30641
69133863
MGD
30642 gas_assert (adding_value != -1);
30643 gas_assert (opt != NULL);
30644
34ef62f4
AV
30645 if (ext_table != NULL)
30646 {
30647 const struct arm_ext_table * ext_opt = ext_table;
30648 bfd_boolean found = FALSE;
30649 for (; ext_opt->name != NULL; ext_opt++)
30650 if (ext_opt->name_len == len
30651 && strncmp (ext_opt->name, str, len) == 0)
30652 {
30653 if (adding_value)
30654 {
30655 if (ARM_FEATURE_ZERO (ext_opt->merge))
30656 /* TODO: Option not supported. When we remove the
30657 legacy table this case should error out. */
30658 continue;
30659
30660 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
30661 }
30662 else
30663 {
30664 if (ARM_FEATURE_ZERO (ext_opt->clear))
30665 /* TODO: Option not supported. When we remove the
30666 legacy table this case should error out. */
30667 continue;
30668 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
30669 }
30670 found = TRUE;
30671 break;
30672 }
30673 if (found)
30674 {
30675 str = ext;
30676 continue;
30677 }
30678 }
30679
69133863
MGD
30680 /* Scan over the options table trying to find an exact match. */
30681 for (; opt->name != NULL; opt++)
f3bad469 30682 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30683 {
d942732e
TP
30684 int i, nb_allowed_archs =
30685 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
69133863 30686 /* Check we can apply the extension to this architecture. */
d942732e
TP
30687 for (i = 0; i < nb_allowed_archs; i++)
30688 {
30689 /* Empty entry. */
30690 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
30691 continue;
c168ce07 30692 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
d942732e
TP
30693 break;
30694 }
30695 if (i == nb_allowed_archs)
69133863
MGD
30696 {
30697 as_bad (_("extension does not apply to the base architecture"));
30698 return FALSE;
30699 }
30700
30701 /* Add or remove the extension. */
30702 if (adding_value)
4d354d8b 30703 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
69133863 30704 else
4d354d8b 30705 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
69133863 30706
3d030cdb
TP
30707 /* Allowing Thumb division instructions for ARMv7 in autodetection
30708 rely on this break so that duplicate extensions (extensions
30709 with the same name as a previous extension in the list) are not
30710 considered for command-line parsing. */
c19d1205
ZW
30711 break;
30712 }
7ed4c4c5 30713
c19d1205
ZW
30714 if (opt->name == NULL)
30715 {
69133863
MGD
30716 /* Did we fail to find an extension because it wasn't specified in
30717 alphabetical order, or because it does not exist? */
30718
30719 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 30720 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
30721 break;
30722
30723 if (opt->name == NULL)
30724 as_bad (_("unknown architectural extension `%s'"), str);
30725 else
30726 as_bad (_("architectural extensions must be specified in "
30727 "alphabetical order"));
30728
c921be7d 30729 return FALSE;
c19d1205 30730 }
69133863
MGD
30731 else
30732 {
30733 /* We should skip the extension we've just matched the next time
30734 round. */
30735 opt++;
30736 }
7ed4c4c5 30737
c19d1205
ZW
30738 str = ext;
30739 };
7ed4c4c5 30740
c921be7d 30741 return TRUE;
c19d1205 30742}
7ed4c4c5 30743
c921be7d 30744static bfd_boolean
17b9d67d 30745arm_parse_cpu (const char *str)
7ed4c4c5 30746{
f3bad469 30747 const struct arm_cpu_option_table *opt;
82b8a785 30748 const char *ext = strchr (str, '+');
f3bad469 30749 size_t len;
7ed4c4c5 30750
c19d1205 30751 if (ext != NULL)
f3bad469 30752 len = ext - str;
7ed4c4c5 30753 else
f3bad469 30754 len = strlen (str);
7ed4c4c5 30755
f3bad469 30756 if (len == 0)
7ed4c4c5 30757 {
c19d1205 30758 as_bad (_("missing cpu name `%s'"), str);
c921be7d 30759 return FALSE;
7ed4c4c5
NC
30760 }
30761
c19d1205 30762 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 30763 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30764 {
c168ce07 30765 mcpu_cpu_opt = &opt->value;
4d354d8b
TP
30766 if (mcpu_ext_opt == NULL)
30767 mcpu_ext_opt = XNEW (arm_feature_set);
30768 *mcpu_ext_opt = opt->ext;
e74cfd16 30769 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 30770 if (opt->canonical_name)
ef8e6722
JW
30771 {
30772 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
30773 strcpy (selected_cpu_name, opt->canonical_name);
30774 }
ee065d83
PB
30775 else
30776 {
f3bad469 30777 size_t i;
c921be7d 30778
ef8e6722
JW
30779 if (len >= sizeof selected_cpu_name)
30780 len = (sizeof selected_cpu_name) - 1;
30781
f3bad469 30782 for (i = 0; i < len; i++)
ee065d83
PB
30783 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30784 selected_cpu_name[i] = 0;
30785 }
7ed4c4c5 30786
c19d1205 30787 if (ext != NULL)
34ef62f4 30788 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
7ed4c4c5 30789
c921be7d 30790 return TRUE;
c19d1205 30791 }
7ed4c4c5 30792
c19d1205 30793 as_bad (_("unknown cpu `%s'"), str);
c921be7d 30794 return FALSE;
7ed4c4c5
NC
30795}
30796
c921be7d 30797static bfd_boolean
17b9d67d 30798arm_parse_arch (const char *str)
7ed4c4c5 30799{
e74cfd16 30800 const struct arm_arch_option_table *opt;
82b8a785 30801 const char *ext = strchr (str, '+');
f3bad469 30802 size_t len;
7ed4c4c5 30803
c19d1205 30804 if (ext != NULL)
f3bad469 30805 len = ext - str;
7ed4c4c5 30806 else
f3bad469 30807 len = strlen (str);
7ed4c4c5 30808
f3bad469 30809 if (len == 0)
7ed4c4c5 30810 {
c19d1205 30811 as_bad (_("missing architecture name `%s'"), str);
c921be7d 30812 return FALSE;
7ed4c4c5
NC
30813 }
30814
c19d1205 30815 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 30816 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30817 {
e74cfd16 30818 march_cpu_opt = &opt->value;
4d354d8b
TP
30819 if (march_ext_opt == NULL)
30820 march_ext_opt = XNEW (arm_feature_set);
30821 *march_ext_opt = arm_arch_none;
e74cfd16 30822 march_fpu_opt = &opt->default_fpu;
5f4273c7 30823 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 30824
c19d1205 30825 if (ext != NULL)
34ef62f4
AV
30826 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
30827 opt->ext_table);
7ed4c4c5 30828
c921be7d 30829 return TRUE;
c19d1205
ZW
30830 }
30831
30832 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 30833 return FALSE;
7ed4c4c5 30834}
eb043451 30835
c921be7d 30836static bfd_boolean
17b9d67d 30837arm_parse_fpu (const char * str)
c19d1205 30838{
69133863 30839 const struct arm_option_fpu_value_table * opt;
b99bd4ef 30840
c19d1205
ZW
30841 for (opt = arm_fpus; opt->name != NULL; opt++)
30842 if (streq (opt->name, str))
30843 {
e74cfd16 30844 mfpu_opt = &opt->value;
c921be7d 30845 return TRUE;
c19d1205 30846 }
b99bd4ef 30847
c19d1205 30848 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 30849 return FALSE;
c19d1205
ZW
30850}
30851
c921be7d 30852static bfd_boolean
17b9d67d 30853arm_parse_float_abi (const char * str)
b99bd4ef 30854{
e74cfd16 30855 const struct arm_option_value_table * opt;
b99bd4ef 30856
c19d1205
ZW
30857 for (opt = arm_float_abis; opt->name != NULL; opt++)
30858 if (streq (opt->name, str))
30859 {
30860 mfloat_abi_opt = opt->value;
c921be7d 30861 return TRUE;
c19d1205 30862 }
cc8a6dd0 30863
c19d1205 30864 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 30865 return FALSE;
c19d1205 30866}
b99bd4ef 30867
c19d1205 30868#ifdef OBJ_ELF
c921be7d 30869static bfd_boolean
17b9d67d 30870arm_parse_eabi (const char * str)
c19d1205 30871{
e74cfd16 30872 const struct arm_option_value_table *opt;
cc8a6dd0 30873
c19d1205
ZW
30874 for (opt = arm_eabis; opt->name != NULL; opt++)
30875 if (streq (opt->name, str))
30876 {
30877 meabi_flags = opt->value;
c921be7d 30878 return TRUE;
c19d1205
ZW
30879 }
30880 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 30881 return FALSE;
c19d1205
ZW
30882}
30883#endif
cc8a6dd0 30884
c921be7d 30885static bfd_boolean
17b9d67d 30886arm_parse_it_mode (const char * str)
e07e6e58 30887{
c921be7d 30888 bfd_boolean ret = TRUE;
e07e6e58
NC
30889
30890 if (streq ("arm", str))
30891 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
30892 else if (streq ("thumb", str))
30893 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
30894 else if (streq ("always", str))
30895 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
30896 else if (streq ("never", str))
30897 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
30898 else
30899 {
30900 as_bad (_("unknown implicit IT mode `%s', should be "\
477330fc 30901 "arm, thumb, always, or never."), str);
c921be7d 30902 ret = FALSE;
e07e6e58
NC
30903 }
30904
30905 return ret;
30906}
30907
2e6976a8 30908static bfd_boolean
17b9d67d 30909arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
2e6976a8
DG
30910{
30911 codecomposer_syntax = TRUE;
30912 arm_comment_chars[0] = ';';
30913 arm_line_separator_chars[0] = 0;
30914 return TRUE;
30915}
30916
c19d1205
ZW
30917struct arm_long_option_table arm_long_opts[] =
30918{
30919 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
30920 arm_parse_cpu, NULL},
30921 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
30922 arm_parse_arch, NULL},
30923 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
30924 arm_parse_fpu, NULL},
30925 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
30926 arm_parse_float_abi, NULL},
30927#ifdef OBJ_ELF
7fac0536 30928 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
30929 arm_parse_eabi, NULL},
30930#endif
e07e6e58
NC
30931 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
30932 arm_parse_it_mode, NULL},
2e6976a8
DG
30933 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
30934 arm_ccs_mode, NULL},
c19d1205
ZW
30935 {NULL, NULL, 0, NULL}
30936};
cc8a6dd0 30937
c19d1205 30938int
17b9d67d 30939md_parse_option (int c, const char * arg)
c19d1205
ZW
30940{
30941 struct arm_option_table *opt;
e74cfd16 30942 const struct arm_legacy_option_table *fopt;
c19d1205 30943 struct arm_long_option_table *lopt;
b99bd4ef 30944
c19d1205 30945 switch (c)
b99bd4ef 30946 {
c19d1205
ZW
30947#ifdef OPTION_EB
30948 case OPTION_EB:
30949 target_big_endian = 1;
30950 break;
30951#endif
cc8a6dd0 30952
c19d1205
ZW
30953#ifdef OPTION_EL
30954 case OPTION_EL:
30955 target_big_endian = 0;
30956 break;
30957#endif
b99bd4ef 30958
845b51d6
PB
30959 case OPTION_FIX_V4BX:
30960 fix_v4bx = TRUE;
30961 break;
30962
18a20338
CL
30963#ifdef OBJ_ELF
30964 case OPTION_FDPIC:
30965 arm_fdpic = TRUE;
30966 break;
30967#endif /* OBJ_ELF */
30968
c19d1205
ZW
30969 case 'a':
30970 /* Listing option. Just ignore these, we don't support additional
30971 ones. */
30972 return 0;
b99bd4ef 30973
c19d1205
ZW
30974 default:
30975 for (opt = arm_opts; opt->option != NULL; opt++)
30976 {
30977 if (c == opt->option[0]
30978 && ((arg == NULL && opt->option[1] == 0)
30979 || streq (arg, opt->option + 1)))
30980 {
c19d1205 30981 /* If the option is deprecated, tell the user. */
278df34e 30982 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
30983 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30984 arg ? arg : "", _(opt->deprecated));
b99bd4ef 30985
c19d1205
ZW
30986 if (opt->var != NULL)
30987 *opt->var = opt->value;
cc8a6dd0 30988
c19d1205
ZW
30989 return 1;
30990 }
30991 }
b99bd4ef 30992
e74cfd16
PB
30993 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
30994 {
30995 if (c == fopt->option[0]
30996 && ((arg == NULL && fopt->option[1] == 0)
30997 || streq (arg, fopt->option + 1)))
30998 {
e74cfd16 30999 /* If the option is deprecated, tell the user. */
278df34e 31000 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
31001 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
31002 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
31003
31004 if (fopt->var != NULL)
31005 *fopt->var = &fopt->value;
31006
31007 return 1;
31008 }
31009 }
31010
c19d1205
ZW
31011 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
31012 {
31013 /* These options are expected to have an argument. */
31014 if (c == lopt->option[0]
31015 && arg != NULL
31016 && strncmp (arg, lopt->option + 1,
31017 strlen (lopt->option + 1)) == 0)
31018 {
c19d1205 31019 /* If the option is deprecated, tell the user. */
278df34e 31020 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
31021 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
31022 _(lopt->deprecated));
b99bd4ef 31023
c19d1205
ZW
31024 /* Call the sup-option parser. */
31025 return lopt->func (arg + strlen (lopt->option) - 1);
31026 }
31027 }
a737bd4d 31028
c19d1205
ZW
31029 return 0;
31030 }
a394c00f 31031
c19d1205
ZW
31032 return 1;
31033}
a394c00f 31034
c19d1205
ZW
31035void
31036md_show_usage (FILE * fp)
a394c00f 31037{
c19d1205
ZW
31038 struct arm_option_table *opt;
31039 struct arm_long_option_table *lopt;
a394c00f 31040
c19d1205 31041 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 31042
c19d1205
ZW
31043 for (opt = arm_opts; opt->option != NULL; opt++)
31044 if (opt->help != NULL)
31045 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 31046
c19d1205
ZW
31047 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
31048 if (lopt->help != NULL)
31049 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 31050
c19d1205
ZW
31051#ifdef OPTION_EB
31052 fprintf (fp, _("\
31053 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
31054#endif
31055
c19d1205
ZW
31056#ifdef OPTION_EL
31057 fprintf (fp, _("\
31058 -EL assemble code for a little-endian cpu\n"));
a737bd4d 31059#endif
845b51d6
PB
31060
31061 fprintf (fp, _("\
31062 --fix-v4bx Allow BX in ARMv4 code\n"));
18a20338
CL
31063
31064#ifdef OBJ_ELF
31065 fprintf (fp, _("\
31066 --fdpic generate an FDPIC object file\n"));
31067#endif /* OBJ_ELF */
c19d1205 31068}
ee065d83 31069
ee065d83 31070#ifdef OBJ_ELF
0198d5e6 31071
62b3e311
PB
31072typedef struct
31073{
31074 int val;
31075 arm_feature_set flags;
31076} cpu_arch_ver_table;
31077
2c6b98ea
TP
31078/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
31079 chronologically for architectures, with an exception for ARMv6-M and
31080 ARMv6S-M due to legacy reasons. No new architecture should have a
31081 special case. This allows for build attribute selection results to be
31082 stable when new architectures are added. */
62b3e311
PB
31083static const cpu_arch_ver_table cpu_arch_ver[] =
31084{
031254f2
AV
31085 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
31086 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
31087 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
31088 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
31089 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
31090 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
31091 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
31092 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
31093 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
31094 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
31095 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
31096 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
31097 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
31098 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
31099 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
31100 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
31101 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
31102 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
31103 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
31104 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
31105 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
31106 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
31107 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
31108 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
2c6b98ea
TP
31109
31110 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
31111 always selected build attributes to match those of ARMv6-M
31112 (resp. ARMv6S-M). However, due to these architectures being a strict
31113 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
31114 would be selected when fully respecting chronology of architectures.
31115 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
31116 move them before ARMv7 architectures. */
031254f2
AV
31117 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
31118 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
31119
31120 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
31121 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
31122 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
31123 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
31124 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
31125 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
31126 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
31127 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
31128 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
31129 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
31130 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
31131 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
31132 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
31133 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
31134 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
31135 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
31136 {-1, ARM_ARCH_NONE}
62b3e311
PB
31137};
31138
ee3c0378 31139/* Set an attribute if it has not already been set by the user. */
0198d5e6 31140
ee3c0378
AS
31141static void
31142aeabi_set_attribute_int (int tag, int value)
31143{
31144 if (tag < 1
31145 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31146 || !attributes_set_explicitly[tag])
31147 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
31148}
31149
31150static void
31151aeabi_set_attribute_string (int tag, const char *value)
31152{
31153 if (tag < 1
31154 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31155 || !attributes_set_explicitly[tag])
31156 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
31157}
31158
2c6b98ea
TP
31159/* Return whether features in the *NEEDED feature set are available via
31160 extensions for the architecture whose feature set is *ARCH_FSET. */
0198d5e6 31161
2c6b98ea
TP
31162static bfd_boolean
31163have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
31164 const arm_feature_set *needed)
31165{
31166 int i, nb_allowed_archs;
31167 arm_feature_set ext_fset;
31168 const struct arm_option_extension_value_table *opt;
31169
31170 ext_fset = arm_arch_none;
31171 for (opt = arm_extensions; opt->name != NULL; opt++)
31172 {
31173 /* Extension does not provide any feature we need. */
31174 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
31175 continue;
31176
31177 nb_allowed_archs =
31178 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
31179 for (i = 0; i < nb_allowed_archs; i++)
31180 {
31181 /* Empty entry. */
31182 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
31183 break;
31184
31185 /* Extension is available, add it. */
31186 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
31187 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
31188 }
31189 }
31190
31191 /* Can we enable all features in *needed? */
31192 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
31193}
31194
31195/* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
31196 a given architecture feature set *ARCH_EXT_FSET including extension feature
31197 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
31198 - if true, check for an exact match of the architecture modulo extensions;
31199 - otherwise, select build attribute value of the first superset
31200 architecture released so that results remains stable when new architectures
31201 are added.
31202 For -march/-mcpu=all the build attribute value of the most featureful
31203 architecture is returned. Tag_CPU_arch_profile result is returned in
31204 PROFILE. */
0198d5e6 31205
2c6b98ea
TP
31206static int
31207get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
31208 const arm_feature_set *ext_fset,
31209 char *profile, int exact_match)
31210{
31211 arm_feature_set arch_fset;
31212 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
31213
31214 /* Select most featureful architecture with all its extensions if building
31215 for -march=all as the feature sets used to set build attributes. */
31216 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
31217 {
31218 /* Force revisiting of decision for each new architecture. */
031254f2 31219 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
2c6b98ea
TP
31220 *profile = 'A';
31221 return TAG_CPU_ARCH_V8;
31222 }
31223
31224 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
31225
31226 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
31227 {
31228 arm_feature_set known_arch_fset;
31229
31230 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
31231 if (exact_match)
31232 {
31233 /* Base architecture match user-specified architecture and
31234 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
31235 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
31236 {
31237 p_ver_ret = p_ver;
31238 goto found;
31239 }
31240 /* Base architecture match user-specified architecture only
31241 (eg. ARMv6-M in the same case as above). Record it in case we
31242 find a match with above condition. */
31243 else if (p_ver_ret == NULL
31244 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
31245 p_ver_ret = p_ver;
31246 }
31247 else
31248 {
31249
31250 /* Architecture has all features wanted. */
31251 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
31252 {
31253 arm_feature_set added_fset;
31254
31255 /* Compute features added by this architecture over the one
31256 recorded in p_ver_ret. */
31257 if (p_ver_ret != NULL)
31258 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
31259 p_ver_ret->flags);
31260 /* First architecture that match incl. with extensions, or the
31261 only difference in features over the recorded match is
31262 features that were optional and are now mandatory. */
31263 if (p_ver_ret == NULL
31264 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
31265 {
31266 p_ver_ret = p_ver;
31267 goto found;
31268 }
31269 }
31270 else if (p_ver_ret == NULL)
31271 {
31272 arm_feature_set needed_ext_fset;
31273
31274 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
31275
31276 /* Architecture has all features needed when using some
31277 extensions. Record it and continue searching in case there
31278 exist an architecture providing all needed features without
31279 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
31280 OS extension). */
31281 if (have_ext_for_needed_feat_p (&known_arch_fset,
31282 &needed_ext_fset))
31283 p_ver_ret = p_ver;
31284 }
31285 }
31286 }
31287
31288 if (p_ver_ret == NULL)
31289 return -1;
31290
31291found:
31292 /* Tag_CPU_arch_profile. */
31293 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
31294 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
31295 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
31296 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
31297 *profile = 'A';
31298 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
31299 *profile = 'R';
31300 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
31301 *profile = 'M';
31302 else
31303 *profile = '\0';
31304 return p_ver_ret->val;
31305}
31306
ee065d83 31307/* Set the public EABI object attributes. */
0198d5e6 31308
c168ce07 31309static void
ee065d83
PB
31310aeabi_set_public_attributes (void)
31311{
b90d5ba0 31312 char profile = '\0';
2c6b98ea 31313 int arch = -1;
90ec0d68 31314 int virt_sec = 0;
bca38921 31315 int fp16_optional = 0;
2c6b98ea
TP
31316 int skip_exact_match = 0;
31317 arm_feature_set flags, flags_arch, flags_ext;
ee065d83 31318
54bab281
TP
31319 /* Autodetection mode, choose the architecture based the instructions
31320 actually used. */
31321 if (no_cpu_selected ())
31322 {
31323 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
ddd7f988 31324
54bab281
TP
31325 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
31326 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
ddd7f988 31327
54bab281
TP
31328 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
31329 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
ddd7f988 31330
54bab281 31331 /* Code run during relaxation relies on selected_cpu being set. */
4d354d8b
TP
31332 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31333 flags_ext = arm_arch_none;
31334 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
31335 selected_ext = flags_ext;
54bab281
TP
31336 selected_cpu = flags;
31337 }
31338 /* Otherwise, choose the architecture based on the capabilities of the
31339 requested cpu. */
31340 else
4d354d8b
TP
31341 {
31342 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
31343 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
31344 flags_ext = selected_ext;
31345 flags = selected_cpu;
31346 }
31347 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
7f78eb34 31348
ddd7f988 31349 /* Allow the user to override the reported architecture. */
4d354d8b 31350 if (!ARM_FEATURE_ZERO (selected_object_arch))
7a1d4c38 31351 {
4d354d8b 31352 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
2c6b98ea 31353 flags_ext = arm_arch_none;
7a1d4c38 31354 }
2c6b98ea 31355 else
4d354d8b 31356 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
2c6b98ea
TP
31357
31358 /* When this function is run again after relaxation has happened there is no
31359 way to determine whether an architecture or CPU was specified by the user:
31360 - selected_cpu is set above for relaxation to work;
31361 - march_cpu_opt is not set if only -mcpu or .cpu is used;
31362 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
31363 Therefore, if not in -march=all case we first try an exact match and fall
31364 back to autodetection. */
31365 if (!skip_exact_match)
31366 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
31367 if (arch == -1)
31368 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
31369 if (arch == -1)
31370 as_bad (_("no architecture contains all the instructions used\n"));
9e3c6df6 31371
ee065d83
PB
31372 /* Tag_CPU_name. */
31373 if (selected_cpu_name[0])
31374 {
91d6fa6a 31375 char *q;
ee065d83 31376
91d6fa6a
NC
31377 q = selected_cpu_name;
31378 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
31379 {
31380 int i;
5f4273c7 31381
91d6fa6a
NC
31382 q += 4;
31383 for (i = 0; q[i]; i++)
31384 q[i] = TOUPPER (q[i]);
ee065d83 31385 }
91d6fa6a 31386 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 31387 }
62f3b8c8 31388
ee065d83 31389 /* Tag_CPU_arch. */
ee3c0378 31390 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 31391
62b3e311 31392 /* Tag_CPU_arch_profile. */
69239280
MGD
31393 if (profile != '\0')
31394 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 31395
15afaa63 31396 /* Tag_DSP_extension. */
4d354d8b 31397 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
6c290d53 31398 aeabi_set_attribute_int (Tag_DSP_extension, 1);
15afaa63 31399
2c6b98ea 31400 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
ee065d83 31401 /* Tag_ARM_ISA_use. */
ee3c0378 31402 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
2c6b98ea 31403 || ARM_FEATURE_ZERO (flags_arch))
ee3c0378 31404 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 31405
ee065d83 31406 /* Tag_THUMB_ISA_use. */
ee3c0378 31407 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
2c6b98ea 31408 || ARM_FEATURE_ZERO (flags_arch))
4ed7ed8d
TP
31409 {
31410 int thumb_isa_use;
31411
31412 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
16a1fa25 31413 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
4ed7ed8d
TP
31414 thumb_isa_use = 3;
31415 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
31416 thumb_isa_use = 2;
31417 else
31418 thumb_isa_use = 1;
31419 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
31420 }
62f3b8c8 31421
ee065d83 31422 /* Tag_VFP_arch. */
a715796b
TG
31423 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
31424 aeabi_set_attribute_int (Tag_VFP_arch,
31425 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31426 ? 7 : 8);
bca38921 31427 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
31428 aeabi_set_attribute_int (Tag_VFP_arch,
31429 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31430 ? 5 : 6);
31431 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
31432 {
31433 fp16_optional = 1;
31434 aeabi_set_attribute_int (Tag_VFP_arch, 3);
31435 }
ada65aa3 31436 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
31437 {
31438 aeabi_set_attribute_int (Tag_VFP_arch, 4);
31439 fp16_optional = 1;
31440 }
ee3c0378
AS
31441 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
31442 aeabi_set_attribute_int (Tag_VFP_arch, 2);
31443 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
477330fc 31444 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
ee3c0378 31445 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 31446
4547cb56
NC
31447 /* Tag_ABI_HardFP_use. */
31448 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
31449 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
31450 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
31451
ee065d83 31452 /* Tag_WMMX_arch. */
ee3c0378
AS
31453 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
31454 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
31455 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
31456 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 31457
ee3c0378 31458 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
9411fd44
MW
31459 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
31460 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
31461 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
bca38921
MGD
31462 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
31463 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
31464 {
31465 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
31466 {
31467 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
31468 }
31469 else
31470 {
31471 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
31472 fp16_optional = 1;
31473 }
31474 }
fa94de6b 31475
a7ad558c
AV
31476 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
31477 aeabi_set_attribute_int (Tag_MVE_arch, 2);
31478 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
31479 aeabi_set_attribute_int (Tag_MVE_arch, 1);
31480
ee3c0378 31481 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 31482 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 31483 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 31484
69239280
MGD
31485 /* Tag_DIV_use.
31486
31487 We set Tag_DIV_use to two when integer divide instructions have been used
31488 in ARM state, or when Thumb integer divide instructions have been used,
31489 but we have no architecture profile set, nor have we any ARM instructions.
31490
4ed7ed8d
TP
31491 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
31492 by the base architecture.
bca38921 31493
69239280 31494 For new architectures we will have to check these tests. */
031254f2 31495 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4ed7ed8d
TP
31496 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31497 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
bca38921
MGD
31498 aeabi_set_attribute_int (Tag_DIV_use, 0);
31499 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
31500 || (profile == '\0'
31501 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
31502 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 31503 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
31504
31505 /* Tag_MP_extension_use. */
31506 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
31507 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
31508
31509 /* Tag Virtualization_use. */
31510 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
31511 virt_sec |= 1;
31512 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
31513 virt_sec |= 2;
31514 if (virt_sec != 0)
31515 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
31516}
31517
c168ce07
TP
31518/* Post relaxation hook. Recompute ARM attributes now that relaxation is
31519 finished and free extension feature bits which will not be used anymore. */
0198d5e6 31520
c168ce07
TP
31521void
31522arm_md_post_relax (void)
31523{
31524 aeabi_set_public_attributes ();
4d354d8b
TP
31525 XDELETE (mcpu_ext_opt);
31526 mcpu_ext_opt = NULL;
31527 XDELETE (march_ext_opt);
31528 march_ext_opt = NULL;
c168ce07
TP
31529}
31530
104d59d1 31531/* Add the default contents for the .ARM.attributes section. */
0198d5e6 31532
ee065d83
PB
31533void
31534arm_md_end (void)
31535{
ee065d83
PB
31536 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
31537 return;
31538
31539 aeabi_set_public_attributes ();
ee065d83 31540}
8463be01 31541#endif /* OBJ_ELF */
ee065d83 31542
ee065d83
PB
31543/* Parse a .cpu directive. */
31544
31545static void
31546s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
31547{
e74cfd16 31548 const struct arm_cpu_option_table *opt;
ee065d83
PB
31549 char *name;
31550 char saved_char;
31551
31552 name = input_line_pointer;
5f4273c7 31553 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31554 input_line_pointer++;
31555 saved_char = *input_line_pointer;
31556 *input_line_pointer = 0;
31557
31558 /* Skip the first "all" entry. */
31559 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
31560 if (streq (opt->name, name))
31561 {
4d354d8b
TP
31562 selected_arch = opt->value;
31563 selected_ext = opt->ext;
31564 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
ee065d83 31565 if (opt->canonical_name)
5f4273c7 31566 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
31567 else
31568 {
31569 int i;
31570 for (i = 0; opt->name[i]; i++)
31571 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 31572
ee065d83
PB
31573 selected_cpu_name[i] = 0;
31574 }
4d354d8b
TP
31575 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31576
ee065d83
PB
31577 *input_line_pointer = saved_char;
31578 demand_empty_rest_of_line ();
31579 return;
31580 }
31581 as_bad (_("unknown cpu `%s'"), name);
31582 *input_line_pointer = saved_char;
31583 ignore_rest_of_line ();
31584}
31585
ee065d83
PB
31586/* Parse a .arch directive. */
31587
31588static void
31589s_arm_arch (int ignored ATTRIBUTE_UNUSED)
31590{
e74cfd16 31591 const struct arm_arch_option_table *opt;
ee065d83
PB
31592 char saved_char;
31593 char *name;
31594
31595 name = input_line_pointer;
5f4273c7 31596 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31597 input_line_pointer++;
31598 saved_char = *input_line_pointer;
31599 *input_line_pointer = 0;
31600
31601 /* Skip the first "all" entry. */
31602 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31603 if (streq (opt->name, name))
31604 {
4d354d8b
TP
31605 selected_arch = opt->value;
31606 selected_ext = arm_arch_none;
31607 selected_cpu = selected_arch;
5f4273c7 31608 strcpy (selected_cpu_name, opt->name);
4d354d8b 31609 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
31610 *input_line_pointer = saved_char;
31611 demand_empty_rest_of_line ();
31612 return;
31613 }
31614
31615 as_bad (_("unknown architecture `%s'\n"), name);
31616 *input_line_pointer = saved_char;
31617 ignore_rest_of_line ();
31618}
31619
7a1d4c38
PB
31620/* Parse a .object_arch directive. */
31621
31622static void
31623s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
31624{
31625 const struct arm_arch_option_table *opt;
31626 char saved_char;
31627 char *name;
31628
31629 name = input_line_pointer;
5f4273c7 31630 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
31631 input_line_pointer++;
31632 saved_char = *input_line_pointer;
31633 *input_line_pointer = 0;
31634
31635 /* Skip the first "all" entry. */
31636 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31637 if (streq (opt->name, name))
31638 {
4d354d8b 31639 selected_object_arch = opt->value;
7a1d4c38
PB
31640 *input_line_pointer = saved_char;
31641 demand_empty_rest_of_line ();
31642 return;
31643 }
31644
31645 as_bad (_("unknown architecture `%s'\n"), name);
31646 *input_line_pointer = saved_char;
31647 ignore_rest_of_line ();
31648}
31649
69133863
MGD
31650/* Parse a .arch_extension directive. */
31651
31652static void
31653s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
31654{
31655 const struct arm_option_extension_value_table *opt;
31656 char saved_char;
31657 char *name;
31658 int adding_value = 1;
31659
31660 name = input_line_pointer;
31661 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31662 input_line_pointer++;
31663 saved_char = *input_line_pointer;
31664 *input_line_pointer = 0;
31665
31666 if (strlen (name) >= 2
31667 && strncmp (name, "no", 2) == 0)
31668 {
31669 adding_value = 0;
31670 name += 2;
31671 }
31672
31673 for (opt = arm_extensions; opt->name != NULL; opt++)
31674 if (streq (opt->name, name))
31675 {
d942732e
TP
31676 int i, nb_allowed_archs =
31677 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
31678 for (i = 0; i < nb_allowed_archs; i++)
31679 {
31680 /* Empty entry. */
4d354d8b 31681 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
d942732e 31682 continue;
4d354d8b 31683 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
d942732e
TP
31684 break;
31685 }
31686
31687 if (i == nb_allowed_archs)
69133863
MGD
31688 {
31689 as_bad (_("architectural extension `%s' is not allowed for the "
31690 "current base architecture"), name);
31691 break;
31692 }
31693
31694 if (adding_value)
4d354d8b 31695 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
5a70a223 31696 opt->merge_value);
69133863 31697 else
4d354d8b 31698 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
69133863 31699
4d354d8b
TP
31700 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31701 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
69133863
MGD
31702 *input_line_pointer = saved_char;
31703 demand_empty_rest_of_line ();
3d030cdb
TP
31704 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
31705 on this return so that duplicate extensions (extensions with the
31706 same name as a previous extension in the list) are not considered
31707 for command-line parsing. */
69133863
MGD
31708 return;
31709 }
31710
31711 if (opt->name == NULL)
e673710a 31712 as_bad (_("unknown architecture extension `%s'\n"), name);
69133863
MGD
31713
31714 *input_line_pointer = saved_char;
31715 ignore_rest_of_line ();
31716}
31717
ee065d83
PB
31718/* Parse a .fpu directive. */
31719
31720static void
31721s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
31722{
69133863 31723 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
31724 char saved_char;
31725 char *name;
31726
31727 name = input_line_pointer;
5f4273c7 31728 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31729 input_line_pointer++;
31730 saved_char = *input_line_pointer;
31731 *input_line_pointer = 0;
5f4273c7 31732
ee065d83
PB
31733 for (opt = arm_fpus; opt->name != NULL; opt++)
31734 if (streq (opt->name, name))
31735 {
4d354d8b
TP
31736 selected_fpu = opt->value;
31737#ifndef CPU_DEFAULT
31738 if (no_cpu_selected ())
31739 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
31740 else
31741#endif
31742 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
31743 *input_line_pointer = saved_char;
31744 demand_empty_rest_of_line ();
31745 return;
31746 }
31747
31748 as_bad (_("unknown floating point format `%s'\n"), name);
31749 *input_line_pointer = saved_char;
31750 ignore_rest_of_line ();
31751}
ee065d83 31752
794ba86a 31753/* Copy symbol information. */
f31fef98 31754
794ba86a
DJ
31755void
31756arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
31757{
31758 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
31759}
e04befd0 31760
f31fef98 31761#ifdef OBJ_ELF
e04befd0
AS
31762/* Given a symbolic attribute NAME, return the proper integer value.
31763 Returns -1 if the attribute is not known. */
f31fef98 31764
e04befd0
AS
31765int
31766arm_convert_symbolic_attribute (const char *name)
31767{
f31fef98
NC
31768 static const struct
31769 {
31770 const char * name;
31771 const int tag;
31772 }
31773 attribute_table[] =
31774 {
31775 /* When you modify this table you should
31776 also modify the list in doc/c-arm.texi. */
e04befd0 31777#define T(tag) {#tag, tag}
f31fef98
NC
31778 T (Tag_CPU_raw_name),
31779 T (Tag_CPU_name),
31780 T (Tag_CPU_arch),
31781 T (Tag_CPU_arch_profile),
31782 T (Tag_ARM_ISA_use),
31783 T (Tag_THUMB_ISA_use),
75375b3e 31784 T (Tag_FP_arch),
f31fef98
NC
31785 T (Tag_VFP_arch),
31786 T (Tag_WMMX_arch),
31787 T (Tag_Advanced_SIMD_arch),
31788 T (Tag_PCS_config),
31789 T (Tag_ABI_PCS_R9_use),
31790 T (Tag_ABI_PCS_RW_data),
31791 T (Tag_ABI_PCS_RO_data),
31792 T (Tag_ABI_PCS_GOT_use),
31793 T (Tag_ABI_PCS_wchar_t),
31794 T (Tag_ABI_FP_rounding),
31795 T (Tag_ABI_FP_denormal),
31796 T (Tag_ABI_FP_exceptions),
31797 T (Tag_ABI_FP_user_exceptions),
31798 T (Tag_ABI_FP_number_model),
75375b3e 31799 T (Tag_ABI_align_needed),
f31fef98 31800 T (Tag_ABI_align8_needed),
75375b3e 31801 T (Tag_ABI_align_preserved),
f31fef98
NC
31802 T (Tag_ABI_align8_preserved),
31803 T (Tag_ABI_enum_size),
31804 T (Tag_ABI_HardFP_use),
31805 T (Tag_ABI_VFP_args),
31806 T (Tag_ABI_WMMX_args),
31807 T (Tag_ABI_optimization_goals),
31808 T (Tag_ABI_FP_optimization_goals),
31809 T (Tag_compatibility),
31810 T (Tag_CPU_unaligned_access),
75375b3e 31811 T (Tag_FP_HP_extension),
f31fef98
NC
31812 T (Tag_VFP_HP_extension),
31813 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
31814 T (Tag_MPextension_use),
31815 T (Tag_DIV_use),
f31fef98
NC
31816 T (Tag_nodefaults),
31817 T (Tag_also_compatible_with),
31818 T (Tag_conformance),
31819 T (Tag_T2EE_use),
31820 T (Tag_Virtualization_use),
15afaa63 31821 T (Tag_DSP_extension),
a7ad558c 31822 T (Tag_MVE_arch),
cd21e546 31823 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 31824#undef T
f31fef98 31825 };
e04befd0
AS
31826 unsigned int i;
31827
31828 if (name == NULL)
31829 return -1;
31830
f31fef98 31831 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 31832 if (streq (name, attribute_table[i].name))
e04befd0
AS
31833 return attribute_table[i].tag;
31834
31835 return -1;
31836}
267bf995 31837
93ef582d
NC
31838/* Apply sym value for relocations only in the case that they are for
31839 local symbols in the same segment as the fixup and you have the
31840 respective architectural feature for blx and simple switches. */
0198d5e6 31841
267bf995 31842int
93ef582d 31843arm_apply_sym_value (struct fix * fixP, segT this_seg)
267bf995
RR
31844{
31845 if (fixP->fx_addsy
31846 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
93ef582d
NC
31847 /* PR 17444: If the local symbol is in a different section then a reloc
31848 will always be generated for it, so applying the symbol value now
31849 will result in a double offset being stored in the relocation. */
31850 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
34e77a92 31851 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
31852 {
31853 switch (fixP->fx_r_type)
31854 {
31855 case BFD_RELOC_ARM_PCREL_BLX:
31856 case BFD_RELOC_THUMB_PCREL_BRANCH23:
31857 if (ARM_IS_FUNC (fixP->fx_addsy))
31858 return 1;
31859 break;
31860
31861 case BFD_RELOC_ARM_PCREL_CALL:
31862 case BFD_RELOC_THUMB_PCREL_BLX:
31863 if (THUMB_IS_FUNC (fixP->fx_addsy))
93ef582d 31864 return 1;
267bf995
RR
31865 break;
31866
31867 default:
31868 break;
31869 }
31870
31871 }
31872 return 0;
31873}
f31fef98 31874#endif /* OBJ_ELF */