]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
MIPS/gas: Reject $0 as source register for DAUI instruction
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
82704155 2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
b99bd4ef
NC
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
ec2655a6 13 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
b99bd4ef 25
42a68e18 26#include "as.h"
5287ad62 27#include <limits.h>
037e8744 28#include <stdarg.h>
c19d1205 29#define NO_RELOC 0
3882b010 30#include "safe-ctype.h"
b99bd4ef
NC
31#include "subsegs.h"
32#include "obstack.h"
3da1d841 33#include "libiberty.h"
f263249b
RE
34#include "opcode/arm.h"
35
b99bd4ef
NC
36#ifdef OBJ_ELF
37#include "elf/arm.h"
a394c00f 38#include "dw2gencfi.h"
b99bd4ef
NC
39#endif
40
f0927246
NC
41#include "dwarf2dbg.h"
42
7ed4c4c5
NC
43#ifdef OBJ_ELF
44/* Must be at least the size of the largest unwind opcode (currently two). */
45#define ARM_OPCODE_CHUNK_SIZE 8
46
47/* This structure holds the unwinding state. */
48
49static struct
50{
c19d1205
ZW
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
7ed4c4c5 55 /* The segment containing the function. */
c19d1205
ZW
56 segT saved_seg;
57 subsegT saved_subseg;
7ed4c4c5
NC
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
c19d1205
ZW
60 int opcode_count;
61 int opcode_alloc;
7ed4c4c5 62 /* The number of bytes pushed to the stack. */
c19d1205 63 offsetT frame_size;
7ed4c4c5
NC
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
c19d1205 67 offsetT pending_offset;
7ed4c4c5 68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
7ed4c4c5 72 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 73 unsigned fp_used:1;
7ed4c4c5 74 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 75 unsigned sp_restored:1;
7ed4c4c5
NC
76} unwind;
77
18a20338
CL
78/* Whether --fdpic was given. */
79static int arm_fdpic;
80
8b1ad454
NC
81#endif /* OBJ_ELF */
82
4962c51a
MS
83/* Results from operand parsing worker functions. */
84
85typedef enum
86{
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90} parse_operand_result;
91
33a392fb
PB
92enum arm_float_abi
93{
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97};
98
c19d1205 99/* Types of processor to assemble for. */
b99bd4ef 100#ifndef CPU_DEFAULT
8a59fff3 101/* The code that was here used to select a default CPU depending on compiler
fa94de6b 102 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
b99bd4ef
NC
107#endif
108
109#ifndef FPU_DEFAULT
c820d418
MM
110# ifdef TE_LINUX
111# define FPU_DEFAULT FPU_ARCH_FPA
112# elif defined (TE_NetBSD)
113# ifdef OBJ_ELF
114# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115# else
116 /* Legacy a.out format. */
117# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118# endif
4e7fd91e
PB
119# elif defined (TE_VXWORKS)
120# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
121# else
122 /* For backwards compatibility, default to FPA. */
123# define FPU_DEFAULT FPU_ARCH_FPA
124# endif
125#endif /* ifndef FPU_DEFAULT */
b99bd4ef 126
c19d1205 127#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 128
4d354d8b
TP
129/* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
e74cfd16 132static arm_feature_set cpu_variant;
4d354d8b
TP
133/* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
e74cfd16
PB
135static arm_feature_set arm_arch_used;
136static arm_feature_set thumb_arch_used;
b99bd4ef 137
b99bd4ef 138/* Flags stored in private area of BFD structure. */
c19d1205
ZW
139static int uses_apcs_26 = FALSE;
140static int atpcs = FALSE;
b34976b6
AM
141static int support_interwork = FALSE;
142static int uses_apcs_float = FALSE;
c19d1205 143static int pic_code = FALSE;
845b51d6 144static int fix_v4bx = FALSE;
278df34e
NS
145/* Warn on using deprecated features. */
146static int warn_on_deprecated = TRUE;
147
2e6976a8
DG
148/* Understand CodeComposer Studio assembly syntax. */
149bfd_boolean codecomposer_syntax = FALSE;
03b1477f
RE
150
151/* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
4d354d8b
TP
154
155/* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157static const arm_feature_set *legacy_cpu = NULL;
158static const arm_feature_set *legacy_fpu = NULL;
159
160/* CPU, extension and FPU feature bits selected by -mcpu. */
161static const arm_feature_set *mcpu_cpu_opt = NULL;
162static arm_feature_set *mcpu_ext_opt = NULL;
163static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165/* CPU, extension and FPU feature bits selected by -march. */
166static const arm_feature_set *march_cpu_opt = NULL;
167static arm_feature_set *march_ext_opt = NULL;
168static const arm_feature_set *march_fpu_opt = NULL;
169
170/* Feature bits selected by -mfpu. */
171static const arm_feature_set *mfpu_opt = NULL;
e74cfd16
PB
172
173/* Constants for known architecture features. */
174static const arm_feature_set fpu_default = FPU_DEFAULT;
f85d59c3 175static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
e74cfd16 176static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
f85d59c3
KT
177static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
e74cfd16
PB
179static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
69c9e028 181#ifdef OBJ_ELF
e74cfd16 182static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
69c9e028 183#endif
e74cfd16
PB
184static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186#ifdef CPU_DEFAULT
187static const arm_feature_set cpu_default = CPU_DEFAULT;
188#endif
189
823d2571 190static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
4070243b 191static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
823d2571
TG
192static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
e74cfd16 198static const arm_feature_set arm_ext_v4t_5 =
823d2571
TG
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
55e8aae7
SP
207/* Only for compatability of hint instructions. */
208static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
823d2571
TG
210static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
69c9e028 222#ifdef OBJ_ELF
e7d39ed3 223static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
69c9e028 224#endif
823d2571 225static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
7e806470 226static const arm_feature_set arm_ext_m =
173205ca 227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
16a1fa25 228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
823d2571
TG
229static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
ddfded2f 234static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
4ed7ed8d 235static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
16a1fa25
TP
236static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
e12437dc
AV
238static const arm_feature_set arm_ext_v8_1m_main =
239ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
16a1fa25
TP
240/* Instructions in ARMv8-M only found in M profile architectures. */
241static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
ff8646ee
TP
243static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
4ed7ed8d
TP
245/* Instructions shared between ARMv8-A and ARMv8-M. */
246static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
69c9e028 248#ifdef OBJ_ELF
15afaa63
TP
249/* DSP instructions Tag_DSP_extension refers to. */
250static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
69c9e028 252#endif
4d1464f2
MW
253static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
b8ec4e87
JW
255/* FP16 instructions. */
256static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
01f48020
TC
258static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
dec41383
JW
260static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
49e8a725
SN
262static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
7fadb25d
SD
264static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
dad0c3bf
SD
266static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
e74cfd16
PB
268
269static const arm_feature_set arm_arch_any = ARM_ANY;
49fa50ef 270#ifdef OBJ_ELF
2c6b98ea 271static const arm_feature_set fpu_any = FPU_ANY;
49fa50ef 272#endif
f85d59c3 273static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
e74cfd16
PB
274static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
2d447fca 277static const arm_feature_set arm_cext_iwmmxt2 =
823d2571 278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
e74cfd16 279static const arm_feature_set arm_cext_iwmmxt =
823d2571 280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
e74cfd16 281static const arm_feature_set arm_cext_xscale =
823d2571 282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
e74cfd16 283static const arm_feature_set arm_cext_maverick =
823d2571
TG
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
e74cfd16 289static const arm_feature_set fpu_vfp_ext_v1xd =
823d2571
TG
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
b1cc4aeb 299static const arm_feature_set fpu_vfp_ext_d32 =
823d2571
TG
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
5287ad62 303static const arm_feature_set fpu_vfp_v3_or_neon_ext =
823d2571 304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
a7ad558c
AV
305static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
69c9e028 309#ifdef OBJ_ELF
823d2571
TG
310static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
69c9e028 314#endif
823d2571
TG
315static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
bca38921 317static const arm_feature_set fpu_vfp_ext_armv8 =
823d2571 318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
a715796b 319static const arm_feature_set fpu_vfp_ext_armv8xd =
823d2571 320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
bca38921 321static const arm_feature_set fpu_neon_ext_armv8 =
823d2571 322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
bca38921 323static const arm_feature_set fpu_crypto_ext_armv8 =
823d2571 324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
dd5181d5 325static const arm_feature_set crc_ext_armv8 =
823d2571 326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
d6b4b13e 327static const arm_feature_set fpu_neon_ext_v8_1 =
643afb90 328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
c604a79a
JW
329static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
e74cfd16 331
33a392fb 332static int mfloat_abi_opt = -1;
4d354d8b
TP
333/* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335static arm_feature_set selected_arch = ARM_ARCH_NONE;
336/* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338static arm_feature_set selected_ext = ARM_ARCH_NONE;
339/* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
e74cfd16 342static arm_feature_set selected_cpu = ARM_ARCH_NONE;
4d354d8b
TP
343/* FPU feature bits selected by the last -mfpu or .fpu directive. */
344static arm_feature_set selected_fpu = FPU_NONE;
345/* Feature bits selected by the last .object_arch directive. */
346static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
ee065d83 347/* Must be long enough to hold any of the names in arm_cpus. */
ef8e6722 348static char selected_cpu_name[20];
8d67f500 349
aacf0b33
KT
350extern FLONUM_TYPE generic_floating_point_number;
351
8d67f500
NC
352/* Return if no cpu was selected on command-line. */
353static bfd_boolean
354no_cpu_selected (void)
355{
823d2571 356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
8d67f500
NC
357}
358
7cc69913 359#ifdef OBJ_ELF
deeaaff8
DJ
360# ifdef EABI_DEFAULT
361static int meabi_flags = EABI_DEFAULT;
362# else
d507cf36 363static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 364# endif
e1da3f5b 365
ee3c0378
AS
366static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
e1da3f5b 368bfd_boolean
5f4273c7 369arm_is_eabi (void)
e1da3f5b
PB
370{
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372}
7cc69913 373#endif
b99bd4ef 374
b99bd4ef 375#ifdef OBJ_ELF
c19d1205 376/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
377symbolS * GOT_symbol;
378#endif
379
b99bd4ef
NC
380/* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384static int thumb_mode = 0;
8dc2430f
NC
385/* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388#define MODE_RECORDED (1 << 4)
b99bd4ef 389
e07e6e58
NC
390/* Specifies the intrinsic IT insn behavior mode. */
391enum implicit_it_mode
392{
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397};
398static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
c19d1205
ZW
400/* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423static bfd_boolean unified_syntax = FALSE;
b99bd4ef 424
bacebabc
RM
425/* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
477330fc
RM
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429const char arm_symbol_chars[] = "#[]{}";
bacebabc 430
5287ad62
JB
431enum neon_el_type
432{
dcbf9037 433 NT_invtype,
5287ad62
JB
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
dcbf9037 439 NT_unsigned
5287ad62
JB
440};
441
442struct neon_type_el
443{
444 enum neon_el_type type;
445 unsigned size;
446};
447
448#define NEON_MAX_TYPE_ELS 4
449
450struct neon_type
451{
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454};
455
5ee91343 456enum pred_instruction_type
e07e6e58 457{
5ee91343
AV
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
e07e6e58
NC
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
477330fc 463 if inside, should be the last one. */
e07e6e58 464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
477330fc 465 i.e. BKPT and NOP. */
5ee91343
AV
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
35c228db 468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
5ee91343 469 a predication code. */
35c228db 470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
e07e6e58
NC
471};
472
ad6cec43
MGD
473/* The maximum number of operands we need. */
474#define ARM_IT_MAX_OPERANDS 6
e2b0ab59 475#define ARM_IT_MAX_RELOCS 3
ad6cec43 476
b99bd4ef
NC
477struct arm_it
478{
c19d1205 479 const char * error;
b99bd4ef 480 unsigned long instruction;
c19d1205
ZW
481 int size;
482 int size_req;
483 int cond;
037e8744
JB
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
5287ad62 488 struct neon_type vectype;
88714cb8
DG
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
0110f2b8
PB
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
b99bd4ef
NC
495 struct
496 {
497 bfd_reloc_code_real_type type;
c19d1205
ZW
498 expressionS exp;
499 int pc_rel;
e2b0ab59 500 } relocs[ARM_IT_MAX_RELOCS];
b99bd4ef 501
5ee91343 502 enum pred_instruction_type pred_insn_type;
e07e6e58 503
c19d1205
ZW
504 struct
505 {
506 unsigned reg;
ca3f61f7 507 signed int imm;
dcbf9037 508 struct neon_type_el vectype;
ca3f61f7
NC
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
f5f10c66
AV
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
57785aa2
AV
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
5287ad62 517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5ee91343 523 unsigned isquad : 1; /* Operand is SIMD quad register. */
037e8744 524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
1b883319 525 unsigned iszr : 1; /* Operand is ZR register. */
ca3f61f7
NC
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 533 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
534};
535
c19d1205 536static struct arm_it inst;
b99bd4ef
NC
537
538#define NUM_FLOAT_VALS 8
539
05d2d07e 540const char * fp_const[] =
b99bd4ef
NC
541{
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543};
544
b99bd4ef
NC
545LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547#define FAIL (-1)
548#define SUCCESS (0)
549
550#define SUFF_S 1
551#define SUFF_D 2
552#define SUFF_E 3
553#define SUFF_P 4
554
c19d1205
ZW
555#define CP_T_X 0x00008000
556#define CP_T_Y 0x00400000
b99bd4ef 557
c19d1205
ZW
558#define CONDS_BIT 0x00100000
559#define LOAD_BIT 0x00100000
b99bd4ef
NC
560
561#define DOUBLE_LOAD_FLAG 0x00000001
562
563struct asm_cond
564{
d3ce72d0 565 const char * template_name;
c921be7d 566 unsigned long value;
b99bd4ef
NC
567};
568
c19d1205 569#define COND_ALWAYS 0xE
b99bd4ef 570
b99bd4ef
NC
571struct asm_psr
572{
d3ce72d0 573 const char * template_name;
c921be7d 574 unsigned long field;
b99bd4ef
NC
575};
576
62b3e311
PB
577struct asm_barrier_opt
578{
e797f7e0
MGD
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
62b3e311
PB
582};
583
2d2255b5 584/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
585#define SPSR_BIT (1 << 22)
586
c19d1205
ZW
587/* The individual PSR flag bits. */
588#define PSR_c (1 << 16)
589#define PSR_x (1 << 17)
590#define PSR_s (1 << 18)
591#define PSR_f (1 << 19)
b99bd4ef 592
c19d1205 593struct reloc_entry
bfae80f2 594{
0198d5e6 595 const char * name;
c921be7d 596 bfd_reloc_code_real_type reloc;
bfae80f2
RE
597};
598
5287ad62 599enum vfp_reg_pos
bfae80f2 600{
5287ad62
JB
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
603};
604
605enum vfp_ldstm_type
606{
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608};
609
dcbf9037
JB
610/* Bits for DEFINED field in neon_typed_alias. */
611#define NTA_HASTYPE 1
612#define NTA_HASINDEX 2
613
614struct neon_typed_alias
615{
c921be7d
NC
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
dcbf9037
JB
619};
620
c19d1205 621/* ARM register categories. This includes coprocessor numbers and various
5aa75429
TP
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
c19d1205 624enum arm_reg_type
bfae80f2 625{
c19d1205
ZW
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
5287ad62 632 REG_TYPE_NQ,
037e8744 633 REG_TYPE_VFSD,
5287ad62 634 REG_TYPE_NDQ,
dec41383 635 REG_TYPE_NSD,
037e8744 636 REG_TYPE_NSDQ,
c19d1205
ZW
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
5ee91343 643 REG_TYPE_MQ,
c19d1205
ZW
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
5ee91343 649 REG_TYPE_RNB,
1b883319 650 REG_TYPE_ZR
bfae80f2
RE
651};
652
dcbf9037
JB
653/* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
657struct reg_entry
658{
c921be7d 659 const char * name;
90ec0d68 660 unsigned int number;
c921be7d
NC
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
6c43fab6
RE
664};
665
c19d1205 666/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 667const char * const reg_expected_msgs[] =
c19d1205 668{
5aa75429
TP
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
5ee91343 692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
5aa75429 693 [REG_TYPE_RNB] = N_("")
6c43fab6
RE
694};
695
c19d1205 696/* Some well known registers that we refer to directly elsewhere. */
bd340a04 697#define REG_R12 12
c19d1205
ZW
698#define REG_SP 13
699#define REG_LR 14
700#define REG_PC 15
404ff6b5 701
b99bd4ef
NC
702/* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
c19d1205 704#define INSN_SIZE 4
b99bd4ef
NC
705
706struct asm_opcode
707{
708 /* Basic string to match. */
d3ce72d0 709 const char * template_name;
c19d1205
ZW
710
711 /* Parameters to instruction. */
5be8be5d 712 unsigned int operands[8];
c19d1205
ZW
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
b99bd4ef
NC
716
717 /* Basic instruction code. */
a302e574 718 unsigned int avalue;
b99bd4ef 719
c19d1205
ZW
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
b99bd4ef 722
90e4755a 723 /* Which architecture variant provides this instruction. */
c921be7d
NC
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
c19d1205
ZW
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
b99bd4ef 729
c19d1205
ZW
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
5ee91343
AV
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
b99bd4ef
NC
735};
736
a737bd4d
NC
737/* Defines for various bits that we will want to toggle. */
738#define INST_IMMEDIATE 0x02000000
739#define OFFSET_REG 0x02000000
c19d1205 740#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
741#define SHIFT_BY_REG 0x00000010
742#define PRE_INDEX 0x01000000
743#define INDEX_UP 0x00800000
744#define WRITE_BACK 0x00200000
745#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 746#define CPSI_MMOD 0x00020000
90e4755a 747
a737bd4d
NC
748#define LITERAL_MASK 0xf000f000
749#define OPCODE_MASK 0xfe1fffff
750#define V4_STR_BIT 0x00000020
8335d6aa 751#define VLDR_VMOV_SAME 0x0040f000
90e4755a 752
efd81785
PB
753#define T2_SUBS_PC_LR 0xf3de8f00
754
a737bd4d 755#define DATA_OP_SHIFT 21
bada4342 756#define SBIT_SHIFT 20
90e4755a 757
ef8d22e6
PB
758#define T2_OPCODE_MASK 0xfe1fffff
759#define T2_DATA_OP_SHIFT 21
bada4342 760#define T2_SBIT_SHIFT 20
ef8d22e6 761
6530b175
NC
762#define A_COND_MASK 0xf0000000
763#define A_PUSH_POP_OP_MASK 0x0fff0000
764
765/* Opcodes for pushing/poping registers to/from the stack. */
766#define A1_OPCODE_PUSH 0x092d0000
767#define A2_OPCODE_PUSH 0x052d0004
768#define A2_OPCODE_POP 0x049d0004
769
a737bd4d
NC
770/* Codes to distinguish the arithmetic instructions. */
771#define OPCODE_AND 0
772#define OPCODE_EOR 1
773#define OPCODE_SUB 2
774#define OPCODE_RSB 3
775#define OPCODE_ADD 4
776#define OPCODE_ADC 5
777#define OPCODE_SBC 6
778#define OPCODE_RSC 7
779#define OPCODE_TST 8
780#define OPCODE_TEQ 9
781#define OPCODE_CMP 10
782#define OPCODE_CMN 11
783#define OPCODE_ORR 12
784#define OPCODE_MOV 13
785#define OPCODE_BIC 14
786#define OPCODE_MVN 15
90e4755a 787
ef8d22e6
PB
788#define T2_OPCODE_AND 0
789#define T2_OPCODE_BIC 1
790#define T2_OPCODE_ORR 2
791#define T2_OPCODE_ORN 3
792#define T2_OPCODE_EOR 4
793#define T2_OPCODE_ADD 8
794#define T2_OPCODE_ADC 10
795#define T2_OPCODE_SBC 11
796#define T2_OPCODE_SUB 13
797#define T2_OPCODE_RSB 14
798
a737bd4d
NC
799#define T_OPCODE_MUL 0x4340
800#define T_OPCODE_TST 0x4200
801#define T_OPCODE_CMN 0x42c0
802#define T_OPCODE_NEG 0x4240
803#define T_OPCODE_MVN 0x43c0
90e4755a 804
a737bd4d
NC
805#define T_OPCODE_ADD_R3 0x1800
806#define T_OPCODE_SUB_R3 0x1a00
807#define T_OPCODE_ADD_HI 0x4400
808#define T_OPCODE_ADD_ST 0xb000
809#define T_OPCODE_SUB_ST 0xb080
810#define T_OPCODE_ADD_SP 0xa800
811#define T_OPCODE_ADD_PC 0xa000
812#define T_OPCODE_ADD_I8 0x3000
813#define T_OPCODE_SUB_I8 0x3800
814#define T_OPCODE_ADD_I3 0x1c00
815#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 816
a737bd4d
NC
817#define T_OPCODE_ASR_R 0x4100
818#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
819#define T_OPCODE_LSR_R 0x40c0
820#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
821#define T_OPCODE_ASR_I 0x1000
822#define T_OPCODE_LSL_I 0x0000
823#define T_OPCODE_LSR_I 0x0800
b99bd4ef 824
a737bd4d
NC
825#define T_OPCODE_MOV_I8 0x2000
826#define T_OPCODE_CMP_I8 0x2800
827#define T_OPCODE_CMP_LR 0x4280
828#define T_OPCODE_MOV_HR 0x4600
829#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 830
a737bd4d
NC
831#define T_OPCODE_LDR_PC 0x4800
832#define T_OPCODE_LDR_SP 0x9800
833#define T_OPCODE_STR_SP 0x9000
834#define T_OPCODE_LDR_IW 0x6800
835#define T_OPCODE_STR_IW 0x6000
836#define T_OPCODE_LDR_IH 0x8800
837#define T_OPCODE_STR_IH 0x8000
838#define T_OPCODE_LDR_IB 0x7800
839#define T_OPCODE_STR_IB 0x7000
840#define T_OPCODE_LDR_RW 0x5800
841#define T_OPCODE_STR_RW 0x5000
842#define T_OPCODE_LDR_RH 0x5a00
843#define T_OPCODE_STR_RH 0x5200
844#define T_OPCODE_LDR_RB 0x5c00
845#define T_OPCODE_STR_RB 0x5400
c9b604bd 846
a737bd4d
NC
847#define T_OPCODE_PUSH 0xb400
848#define T_OPCODE_POP 0xbc00
b99bd4ef 849
2fc8bdac 850#define T_OPCODE_BRANCH 0xe000
b99bd4ef 851
a737bd4d 852#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 853#define THUMB_PP_PC_LR 0x0100
c19d1205 854#define THUMB_LOAD_BIT 0x0800
53365c0d 855#define THUMB2_LOAD_BIT 0x00100000
c19d1205 856
5ee91343 857#define BAD_SYNTAX _("syntax error")
c19d1205 858#define BAD_ARGS _("bad arguments to instruction")
fdfde340 859#define BAD_SP _("r13 not allowed here")
c19d1205 860#define BAD_PC _("r15 not allowed here")
a302e574
AV
861#define BAD_ODD _("Odd register not allowed here")
862#define BAD_EVEN _("Even register not allowed here")
c19d1205
ZW
863#define BAD_COND _("instruction cannot be conditional")
864#define BAD_OVERLAP _("registers may not be the same")
865#define BAD_HIREG _("lo register required")
866#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
35c228db 867#define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
dfa9f0d5 868#define BAD_BRANCH _("branch must be last instruction in IT block")
e12437dc 869#define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
dfa9f0d5 870#define BAD_NOT_IT _("instruction not allowed in IT block")
5ee91343 871#define BAD_NOT_VPT _("instruction missing MVE vector predication code")
037e8744 872#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58 873#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
5ee91343
AV
874#define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
e07e6e58 876#define BAD_IT_COND _("incorrect condition in IT block")
5ee91343 877#define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
e07e6e58 878#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 879#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
880#define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882#define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
9db2f6b4
RL
884#define BAD_RANGE _("branch out of range")
885#define BAD_FP16 _("selected processor does not support fp16 instruction")
dd5181d5 886#define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
a9f02af8 887#define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
5ee91343
AV
888#define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890#define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892#define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894#define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
a302e574 896#define BAD_SIMD_TYPE _("bad type in SIMD instruction")
886e1c73
AV
897#define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900#define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
35c228db 902#define BAD_EL_TYPE _("bad element type for instruction")
1b883319 903#define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
c19d1205 904
c921be7d
NC
905static struct hash_control * arm_ops_hsh;
906static struct hash_control * arm_cond_hsh;
5ee91343 907static struct hash_control * arm_vcond_hsh;
c921be7d
NC
908static struct hash_control * arm_shift_hsh;
909static struct hash_control * arm_psr_hsh;
910static struct hash_control * arm_v7m_psr_hsh;
911static struct hash_control * arm_reg_hsh;
912static struct hash_control * arm_reloc_hsh;
913static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 914
b99bd4ef
NC
915/* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
5f4273c7 922 <insn> */
b99bd4ef
NC
923
924symbolS * last_label_seen;
b34976b6 925static int label_is_thumb_function_name = FALSE;
e07e6e58 926
3d0c9500
NC
927/* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
a737bd4d 929
c19d1205 930#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 931typedef struct literal_pool
b99bd4ef 932{
c921be7d
NC
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
a8040cf2
NC
939#ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941#endif
c921be7d 942 struct literal_pool * next;
8335d6aa 943 unsigned int alignment;
3d0c9500 944} literal_pool;
b99bd4ef 945
3d0c9500
NC
946/* Pointer to a linked list of literal pools. */
947literal_pool * list_of_pools = NULL;
e27ec89e 948
2e6976a8
DG
949typedef enum asmfunc_states
950{
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954} asmfunc_states;
955
956static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
e07e6e58 958#ifdef OBJ_ELF
5ee91343 959# define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
e07e6e58 960#else
5ee91343 961static struct current_pred now_pred;
e07e6e58
NC
962#endif
963
964static inline int
5ee91343 965now_pred_compatible (int cond)
e07e6e58 966{
5ee91343 967 return (cond & ~1) == (now_pred.cc & ~1);
e07e6e58
NC
968}
969
970static inline int
971conditional_insn (void)
972{
973 return inst.cond != COND_ALWAYS;
974}
975
5ee91343 976static int in_pred_block (void);
e07e6e58 977
5ee91343 978static int handle_pred_state (void);
e07e6e58
NC
979
980static void force_automatic_it_block_close (void);
981
c921be7d
NC
982static void it_fsm_post_encode (void);
983
5ee91343 984#define set_pred_insn_type(type) \
e07e6e58
NC
985 do \
986 { \
5ee91343
AV
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
477330fc 989 return; \
e07e6e58
NC
990 } \
991 while (0)
992
5ee91343 993#define set_pred_insn_type_nonvoid(type, failret) \
c921be7d
NC
994 do \
995 { \
5ee91343
AV
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
477330fc 998 return failret; \
c921be7d
NC
999 } \
1000 while(0)
1001
5ee91343 1002#define set_pred_insn_type_last() \
e07e6e58
NC
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
5ee91343 1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
e07e6e58 1007 else \
5ee91343 1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
e07e6e58
NC
1009 } \
1010 while (0)
1011
c19d1205 1012/* Pure syntax. */
b99bd4ef 1013
c19d1205
ZW
1014/* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
2e6976a8 1016char arm_comment_chars[] = "@";
3d0c9500 1017
c19d1205
ZW
1018/* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021/* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024/* Also note that comments like this one will always work. */
1025const char line_comment_chars[] = "#";
3d0c9500 1026
2e6976a8 1027char arm_line_separator_chars[] = ";";
b99bd4ef 1028
c19d1205
ZW
1029/* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031const char EXP_CHARS[] = "eE";
3d0c9500 1032
c19d1205
ZW
1033/* Chars that mean this number is a floating point constant. */
1034/* As in 0f12.456 */
1035/* or 0d1.2345e12 */
b99bd4ef 1036
c19d1205 1037const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 1038
c19d1205
ZW
1039/* Prefix characters that indicate the start of an immediate
1040 value. */
1041#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 1042
c19d1205
ZW
1043/* Separator character handling. */
1044
1045#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047static inline int
1048skip_past_char (char ** str, char c)
1049{
8ab8155f
NC
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
427d0db6 1052
c19d1205
ZW
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
3d0c9500 1057 }
c19d1205
ZW
1058 else
1059 return FAIL;
1060}
c921be7d 1061
c19d1205 1062#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 1063
c19d1205
ZW
1064/* Arithmetic expressions (possibly involving symbols). */
1065
1066/* Return TRUE if anything in the expression is a bignum. */
1067
0198d5e6 1068static bfd_boolean
c19d1205
ZW
1069walk_no_bignums (symbolS * sp)
1070{
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
0198d5e6 1072 return TRUE;
c19d1205
ZW
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 1075 {
c19d1205
ZW
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
1079 }
1080
0198d5e6 1081 return FALSE;
3d0c9500
NC
1082}
1083
0198d5e6 1084static bfd_boolean in_my_get_expression = FALSE;
c19d1205
ZW
1085
1086/* Third argument to my_get_expression. */
1087#define GE_NO_PREFIX 0
1088#define GE_IMM_PREFIX 1
1089#define GE_OPT_PREFIX 2
5287ad62
JB
1090/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092#define GE_OPT_PREFIX_BIG 3
a737bd4d 1093
b99bd4ef 1094static int
c19d1205 1095my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 1096{
c19d1205 1097 char * save_in;
b99bd4ef 1098
c19d1205
ZW
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
5287ad62 1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
477330fc 1102 : GE_OPT_PREFIX;
b99bd4ef 1103
c19d1205 1104 switch (prefix_mode)
b99bd4ef 1105 {
c19d1205
ZW
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
5287ad62 1116 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
0198d5e6
TC
1120 default:
1121 abort ();
c19d1205 1122 }
b99bd4ef 1123
c19d1205 1124 memset (ep, 0, sizeof (expressionS));
b99bd4ef 1125
c19d1205
ZW
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
0198d5e6 1128 in_my_get_expression = TRUE;
2ac93be7 1129 expression (ep);
0198d5e6 1130 in_my_get_expression = FALSE;
c19d1205 1131
f86adc07 1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 1133 {
f86adc07 1134 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
f86adc07
NS
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
1140 return 1;
1141 }
b99bd4ef 1142
c19d1205
ZW
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
5287ad62
JB
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
477330fc 1148 || (ep->X_add_symbol
5287ad62 1149 && (walk_no_bignums (ep->X_add_symbol)
477330fc 1150 || (ep->X_op_symbol
5287ad62 1151 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
b99bd4ef 1158
c19d1205
ZW
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
0198d5e6 1161 return SUCCESS;
b99bd4ef
NC
1162}
1163
c19d1205
ZW
1164/* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
b99bd4ef 1168
c19d1205
ZW
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1175
c19d1205 1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1177
6d4af3c2 1178const char *
c19d1205
ZW
1179md_atof (int type, char * litP, int * sizeP)
1180{
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
b99bd4ef 1185
c19d1205
ZW
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
b99bd4ef 1194
c19d1205
ZW
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
b99bd4ef 1201
c19d1205
ZW
1202 case 'x':
1203 case 'X':
499ac353 1204 prec = 5;
c19d1205 1205 break;
b99bd4ef 1206
c19d1205
ZW
1207 case 'p':
1208 case 'P':
499ac353 1209 prec = 5;
c19d1205 1210 break;
a737bd4d 1211
c19d1205
ZW
1212 default:
1213 *sizeP = 0;
499ac353 1214 return _("Unrecognized or unsupported floating point constant");
c19d1205 1215 }
b99bd4ef 1216
c19d1205
ZW
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
499ac353 1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1221
c19d1205
ZW
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
499ac353
NC
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1228 }
1229 }
1230 else
1231 {
e74cfd16 1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1233 for (i = prec - 1; i >= 0; i--)
1234 {
499ac353
NC
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
499ac353
NC
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1248 }
1249 }
b99bd4ef 1250
499ac353 1251 return NULL;
c19d1205 1252}
b99bd4ef 1253
c19d1205
ZW
1254/* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
0198d5e6 1256
c19d1205 1257void
91d6fa6a 1258md_operand (expressionS * exp)
c19d1205
ZW
1259{
1260 if (in_my_get_expression)
91d6fa6a 1261 exp->X_op = O_illegal;
b99bd4ef
NC
1262}
1263
c19d1205 1264/* Immediate values. */
b99bd4ef 1265
0198d5e6 1266#ifdef OBJ_ELF
c19d1205
ZW
1267/* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
0198d5e6 1270
c19d1205
ZW
1271static int
1272immediate_for_directive (int *val)
b99bd4ef 1273{
c19d1205
ZW
1274 expressionS exp;
1275 exp.X_op = O_illegal;
b99bd4ef 1276
c19d1205
ZW
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
b99bd4ef 1282
c19d1205
ZW
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
b99bd4ef 1291}
c19d1205 1292#endif
b99bd4ef 1293
c19d1205 1294/* Register parsing. */
b99bd4ef 1295
c19d1205
ZW
1296/* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301static struct reg_entry *
1302arm_reg_parse_multi (char **ccp)
b99bd4ef 1303{
c19d1205
ZW
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
b99bd4ef 1307
477330fc
RM
1308 skip_whitespace (start);
1309
c19d1205
ZW
1310#ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
01cfc07f 1312 return NULL;
c19d1205
ZW
1313 start++;
1314#endif
1315#ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318#endif
b99bd4ef 1319
c19d1205
ZW
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
b99bd4ef 1323
c19d1205
ZW
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
b99bd4ef
NC
1335}
1336
1337static int
dcbf9037 1338arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
477330fc 1339 enum arm_reg_type type)
b99bd4ef 1340{
c19d1205
ZW
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
79134647 1349 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1350 return reg->number;
1351 break;
69b97547 1352
c19d1205
ZW
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1a0670f3 1360 /* Fall through. */
6057a28f 1361
c19d1205
ZW
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
79134647 1365 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1366 return reg->number;
6057a28f 1367 break;
c19d1205 1368
6057a28f 1369 default:
c19d1205 1370 break;
6057a28f
NC
1371 }
1372
dcbf9037
JB
1373 return FAIL;
1374}
1375
1376/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379static int
1380arm_reg_parse (char **ccp, enum arm_reg_type type)
1381{
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
c19d1205
ZW
1396 *ccp = start;
1397 return FAIL;
1398}
69b97547 1399
dcbf9037
JB
1400/* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414static int
1415parse_neon_type (struct neon_type *type, char **str)
1416{
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
477330fc
RM
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
dcbf9037
JB
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
477330fc
RM
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
dcbf9037
JB
1467 return FAIL;
1468 }
1469 }
1470
037e8744 1471 done:
dcbf9037 1472 if (type)
477330fc
RM
1473 {
1474 type->el[type->elems].type = thistype;
dcbf9037
JB
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487}
1488
1489/* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494static void
1495first_error (const char *err)
1496{
1497 if (!inst.error)
1498 inst.error = err;
1499}
1500
1501/* Parse a single type, e.g. ".s32", leading period included. */
1502static int
1503parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504{
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
477330fc
RM
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
dcbf9037 1520 else
477330fc
RM
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
dcbf9037
JB
1525 }
1526 else
1527 return FAIL;
5f4273c7 1528
dcbf9037 1529 *ccp = str;
5f4273c7 1530
dcbf9037
JB
1531 return SUCCESS;
1532}
1533
1534/* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537#define NEON_ALL_LANES 15
1538#define NEON_INTERLEAVE_LANES 14
1539
5ee91343
AV
1540/* Record a use of the given feature. */
1541static void
1542record_feature_use (const arm_feature_set *feature)
1543{
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548}
1549
1550/* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552static bfd_boolean
1553mark_feature_used (const arm_feature_set *feature)
1554{
886e1c73
AV
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
5ee91343
AV
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573}
1574
dcbf9037
JB
1575/* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580static int
1581parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
477330fc
RM
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
dcbf9037
JB
1584{
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
477330fc 1601 *ccp = str;
dcbf9037 1602 if (typeinfo)
477330fc 1603 *typeinfo = atype;
dcbf9037
JB
1604 return altreg;
1605 }
1606
037e8744
JB
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
477330fc 1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
037e8744 1612 || (type == REG_TYPE_NSDQ
477330fc
RM
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
dec41383
JW
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
f512f76f
NC
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1619 type = (enum arm_reg_type) reg->type;
dcbf9037 1620
5ee91343
AV
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
dcbf9037
JB
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
5f4273c7 1646
dcbf9037
JB
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
477330fc
RM
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
dcbf9037
JB
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
5f4273c7 1657
dcbf9037
JB
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
dec41383
JW
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
57785aa2
AV
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
477330fc 1665 {
57785aa2
AV
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
477330fc
RM
1670 return FAIL;
1671 }
5f4273c7 1672
dcbf9037 1673 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
dcbf9037
JB
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
477330fc 1682 atype.index = NEON_ALL_LANES;
dcbf9037 1683 else
477330fc
RM
1684 {
1685 expressionS exp;
dcbf9037 1686
477330fc 1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
dcbf9037 1688
477330fc
RM
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
dcbf9037 1694
477330fc
RM
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
dcbf9037 1697
477330fc
RM
1698 atype.index = exp.X_add_number;
1699 }
dcbf9037 1700 }
5f4273c7 1701
dcbf9037
JB
1702 if (typeinfo)
1703 *typeinfo = atype;
5f4273c7 1704
dcbf9037
JB
1705 if (rtype)
1706 *rtype = type;
5f4273c7 1707
dcbf9037 1708 *ccp = str;
5f4273c7 1709
dcbf9037
JB
1710 return reg->number;
1711}
1712
efd6b359 1713/* Like arm_reg_parse, but also allow the following extra features:
dcbf9037
JB
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1718 This function will fault on encountering a scalar. */
dcbf9037
JB
1719
1720static int
1721arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
477330fc 1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
dcbf9037
JB
1723{
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
0855e32b
NS
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
dcbf9037
JB
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748}
1749
1750#define NEON_SCALAR_REG(X) ((X) >> 4)
1751#define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
5287ad62
JB
1753/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757static int
57785aa2
AV
1758parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
5287ad62 1760{
dcbf9037 1761 int reg;
5287ad62 1762 char *str = *ccp;
dcbf9037 1763 struct neon_typed_alias atype;
57785aa2 1764 unsigned reg_size;
5f4273c7 1765
dec41383 1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
5f4273c7 1767
57785aa2
AV
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
dcbf9037 1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1785 return FAIL;
5f4273c7 1786
57785aa2 1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
5287ad62 1788 {
dcbf9037 1789 first_error (_("scalar must have an index"));
5287ad62
JB
1790 return FAIL;
1791 }
57785aa2 1792 else if (atype.index >= reg_size / elsize)
5287ad62 1793 {
dcbf9037 1794 first_error (_("scalar index out of range"));
5287ad62
JB
1795 return FAIL;
1796 }
5f4273c7 1797
dcbf9037
JB
1798 if (type)
1799 *type = atype.eltype;
5f4273c7 1800
5287ad62 1801 *ccp = str;
5f4273c7 1802
dcbf9037 1803 return reg * 16 + atype.index;
5287ad62
JB
1804}
1805
4b5a202f
AV
1806/* Types of registers in a list. */
1807
1808enum reg_list_els
1809{
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
efd6b359 1813 REGLIST_VFP_S_VPR,
4b5a202f 1814 REGLIST_VFP_D,
efd6b359 1815 REGLIST_VFP_D_VPR,
4b5a202f
AV
1816 REGLIST_NEON_D
1817};
1818
c19d1205 1819/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1820
c19d1205 1821static long
4b5a202f 1822parse_reg_list (char ** strp, enum reg_list_els etype)
c19d1205 1823{
4b5a202f
AV
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
a737bd4d 1829
c19d1205
ZW
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
6057a28f 1832 {
477330fc
RM
1833 skip_whitespace (str);
1834
c19d1205 1835 another_range = 0;
a737bd4d 1836
c19d1205
ZW
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
a737bd4d 1841
c19d1205
ZW
1842 str++;
1843 do
1844 {
1845 int reg;
4b5a202f
AV
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
6057a28f 1848
4b5a202f
AV
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
c19d1205 1851 {
4b5a202f
AV
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
c19d1205 1875 }
a737bd4d 1876
c19d1205
ZW
1877 if (in_range)
1878 {
1879 int i;
a737bd4d 1880
c19d1205
ZW
1881 if (reg <= cur_reg)
1882 {
dcbf9037 1883 first_error (_("bad range in register list"));
c19d1205
ZW
1884 return FAIL;
1885 }
40a18ebd 1886
c19d1205
ZW
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
a737bd4d 1898
c19d1205
ZW
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1904
c19d1205
ZW
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
a737bd4d 1911
d996d970 1912 if (skip_past_char (&str, '}') == FAIL)
c19d1205 1913 {
dcbf9037 1914 first_error (_("missing `}'"));
c19d1205
ZW
1915 return FAIL;
1916 }
1917 }
4b5a202f 1918 else if (etype == REGLIST_RN)
c19d1205 1919 {
91d6fa6a 1920 expressionS exp;
40a18ebd 1921
91d6fa6a 1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1923 return FAIL;
40a18ebd 1924
91d6fa6a 1925 if (exp.X_op == O_constant)
c19d1205 1926 {
91d6fa6a
NC
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
a737bd4d 1933
91d6fa6a 1934 if ((range & exp.X_add_number) != 0)
c19d1205 1935 {
91d6fa6a 1936 int regno = range & exp.X_add_number;
a737bd4d 1937
c19d1205
ZW
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
a737bd4d 1944
91d6fa6a 1945 range |= exp.X_add_number;
c19d1205
ZW
1946 }
1947 else
1948 {
e2b0ab59 1949 if (inst.relocs[0].type != 0)
c19d1205
ZW
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
a737bd4d 1954
e2b0ab59
AV
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
c19d1205
ZW
1958 }
1959 }
a737bd4d 1960
c19d1205
ZW
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
a737bd4d 1966 }
c19d1205 1967 while (another_range);
a737bd4d 1968
c19d1205
ZW
1969 *strp = str;
1970 return range;
a737bd4d
NC
1971}
1972
c19d1205
ZW
1973/* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
477330fc
RM
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
dcbf9037
JB
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
6057a28f 1987
c19d1205 1988static int
efd6b359
AV
1989parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
6057a28f 1991{
037e8744 1992 char *str = *ccp;
c19d1205
ZW
1993 int base_reg;
1994 int new_base;
21d799b5 1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1996 int max_regs = 0;
c19d1205
ZW
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
a737bd4d 2000 int i;
efd6b359
AV
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
6057a28f 2004
477330fc 2005 if (skip_past_char (&str, '{') == FAIL)
5287ad62
JB
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
6057a28f 2010
5287ad62 2011 switch (etype)
c19d1205 2012 {
5287ad62 2013 case REGLIST_VFP_S:
efd6b359 2014 case REGLIST_VFP_S_VPR:
c19d1205
ZW
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
5287ad62 2017 break;
5f4273c7 2018
5287ad62 2019 case REGLIST_VFP_D:
efd6b359 2020 case REGLIST_VFP_D_VPR:
5287ad62 2021 regtype = REG_TYPE_VFD;
b7fc2769 2022 break;
5f4273c7 2023
b7fc2769
JB
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
4b5a202f
AV
2027
2028 default:
2029 gas_assert (0);
b7fc2769
JB
2030 }
2031
efd6b359 2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
b7fc2769 2033 {
b1cc4aeb
PB
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
5287ad62 2045 else
477330fc 2046 max_regs = 16;
c19d1205 2047 }
6057a28f 2048
c19d1205 2049 base_reg = max_regs;
efd6b359 2050 *partial_match = FALSE;
a737bd4d 2051
c19d1205
ZW
2052 do
2053 {
5287ad62 2054 int setmask = 1, addregs = 1;
efd6b359
AV
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
dcbf9037 2057
037e8744 2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 2059
efd6b359
AV
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
a737bd4d 2089 {
dcbf9037 2090 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
2091 return FAIL;
2092 }
5f4273c7 2093
efd6b359
AV
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
b7fc2769 2098 if (new_base >= max_regs)
477330fc
RM
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
5f4273c7 2103
5287ad62
JB
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
477330fc
RM
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
5287ad62 2110
c19d1205
ZW
2111 if (new_base < base_reg)
2112 base_reg = new_base;
a737bd4d 2113
5287ad62 2114 if (mask & (setmask << new_base))
c19d1205 2115 {
dcbf9037 2116 first_error (_("invalid register list"));
c19d1205 2117 return FAIL;
a737bd4d 2118 }
a737bd4d 2119
efd6b359 2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
c19d1205
ZW
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
0bbf2aa4 2125
5287ad62
JB
2126 mask |= setmask << new_base;
2127 count += addregs;
0bbf2aa4 2128
037e8744 2129 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
2130 {
2131 int high_range;
0bbf2aa4 2132
037e8744 2133 str++;
0bbf2aa4 2134
037e8744 2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
477330fc 2136 == FAIL)
c19d1205
ZW
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
0bbf2aa4 2141
477330fc
RM
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
b7fc2769 2147
477330fc
RM
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
5287ad62 2150
c19d1205
ZW
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
0bbf2aa4 2156
5287ad62 2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 2158 {
5287ad62 2159 if (mask & (setmask << new_base))
0bbf2aa4 2160 {
c19d1205
ZW
2161 inst.error = _("invalid register list");
2162 return FAIL;
0bbf2aa4 2163 }
c19d1205 2164
5287ad62
JB
2165 mask |= setmask << new_base;
2166 count += addregs;
0bbf2aa4 2167 }
0bbf2aa4 2168 }
0bbf2aa4 2169 }
037e8744 2170 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 2171
037e8744 2172 str++;
0bbf2aa4 2173
c19d1205 2174 /* Sanity check -- should have raised a parse error above. */
efd6b359 2175 if ((!vpr_seen && count == 0) || count > max_regs)
c19d1205
ZW
2176 abort ();
2177
2178 *pbase = base_reg;
2179
efd6b359
AV
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
c19d1205
ZW
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
037e8744
JB
2197 *ccp = str;
2198
c19d1205 2199 return count;
b99bd4ef
NC
2200}
2201
dcbf9037
JB
2202/* True if two alias types are the same. */
2203
c921be7d 2204static bfd_boolean
dcbf9037
JB
2205neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206{
2207 if (!a && !b)
c921be7d 2208 return TRUE;
5f4273c7 2209
dcbf9037 2210 if (!a || !b)
c921be7d 2211 return FALSE;
dcbf9037
JB
2212
2213 if (a->defined != b->defined)
c921be7d 2214 return FALSE;
5f4273c7 2215
dcbf9037
JB
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
477330fc 2218 || a->eltype.size != b->eltype.size))
c921be7d 2219 return FALSE;
dcbf9037
JB
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
c921be7d 2223 return FALSE;
5f4273c7 2224
c921be7d 2225 return TRUE;
dcbf9037
JB
2226}
2227
5287ad62
JB
2228/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
dcbf9037 2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 2235
5287ad62 2236#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 2237#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
2238#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240static int
dcbf9037 2241parse_neon_el_struct_list (char **str, unsigned *pbase,
35c228db 2242 int mve,
477330fc 2243 struct neon_type_el *eltype)
5287ad62
JB
2244{
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
35c228db
AV
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
20203fb9 2254 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 2255 struct neon_typed_alias firsttype;
f85d59c3
KT
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
5f4273c7 2260
5287ad62
JB
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
5f4273c7 2263
5287ad62
JB
2264 do
2265 {
dcbf9037 2266 struct neon_typed_alias atype;
35c228db
AV
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
dcbf9037
JB
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
5287ad62 2271 if (getreg == FAIL)
477330fc
RM
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
5f4273c7 2276
5287ad62 2277 if (base_reg == -1)
477330fc
RM
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
5287ad62 2286 else if (reg_incr == -1)
477330fc
RM
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
5287ad62 2295 else if (getreg != base_reg + reg_incr * count)
477330fc
RM
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
dcbf9037 2300
c921be7d 2301 if (! neon_alias_types_same (&atype, &firsttype))
477330fc
RM
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
5f4273c7 2306
5287ad62 2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
477330fc 2308 modes. */
5287ad62 2309 if (ptr[0] == '-')
477330fc
RM
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
5f4273c7 2342
5287ad62
JB
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
477330fc
RM
2345 {
2346 count += 2;
2347 continue;
2348 }
5f4273c7 2349
dcbf9037 2350 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
5287ad62 2360 else if (lane == -1)
477330fc 2361 lane = NEON_INTERLEAVE_LANES;
5287ad62 2362 else if (lane != NEON_INTERLEAVE_LANES)
477330fc
RM
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
5287ad62
JB
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2370
5287ad62
JB
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2374
5287ad62 2375 /* Sanity check. */
35c228db 2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
5287ad62
JB
2377 || (count > 1 && reg_incr == -1))
2378 {
dcbf9037 2379 first_error (_("error parsing element/structure list"));
5287ad62
JB
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
dcbf9037 2385 first_error (_("expected }"));
5287ad62
JB
2386 return FAIL;
2387 }
5f4273c7 2388
5287ad62
JB
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
dcbf9037
JB
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
5287ad62
JB
2395 *pbase = base_reg;
2396 *str = ptr;
5f4273c7 2397
5287ad62
JB
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399}
2400
c19d1205
ZW
2401/* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2406
c19d1205
ZW
2407static int
2408parse_reloc (char **str)
b99bd4ef 2409{
c19d1205
ZW
2410 struct reloc_entry *r;
2411 char *p, *q;
b99bd4ef 2412
c19d1205
ZW
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
b99bd4ef 2415
c19d1205
ZW
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
21d799b5
NC
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
b99bd4ef
NC
2430}
2431
c19d1205
ZW
2432/* Directives: register aliases. */
2433
dcbf9037 2434static struct reg_entry *
90ec0d68 2435insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2436{
d3ce72d0 2437 struct reg_entry *new_reg;
c19d1205 2438 const char *name;
b99bd4ef 2439
d3ce72d0 2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2441 {
d3ce72d0 2442 if (new_reg->builtin)
c19d1205 2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2444
c19d1205
ZW
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
d3ce72d0 2447 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2449
d929913e 2450 return NULL;
c19d1205 2451 }
b99bd4ef 2452
c19d1205 2453 name = xstrdup (str);
325801bd 2454 new_reg = XNEW (struct reg_entry);
b99bd4ef 2455
d3ce72d0
NC
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
b99bd4ef 2461
d3ce72d0 2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2463 abort ();
5f4273c7 2464
d3ce72d0 2465 return new_reg;
dcbf9037
JB
2466}
2467
2468static void
2469insert_neon_reg_alias (char *str, int number, int type,
477330fc 2470 struct neon_typed_alias *atype)
dcbf9037
JB
2471{
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2473
dcbf9037
JB
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
5f4273c7 2479
dcbf9037
JB
2480 if (atype)
2481 {
325801bd 2482 reg->neon = XNEW (struct neon_typed_alias);
dcbf9037
JB
2483 *reg->neon = *atype;
2484 }
c19d1205 2485}
b99bd4ef 2486
c19d1205 2487/* Look for the .req directive. This is of the form:
b99bd4ef 2488
c19d1205 2489 new_register_name .req existing_register_name
b99bd4ef 2490
c19d1205 2491 If we find one, or if it looks sufficiently like one that we want to
d929913e 2492 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2493
d929913e 2494static bfd_boolean
c19d1205
ZW
2495create_register_alias (char * newname, char *p)
2496{
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
b99bd4ef 2500
c19d1205
ZW
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2505 return FALSE;
b99bd4ef 2506
c19d1205
ZW
2507 oldname += 6;
2508 if (*oldname == '\0')
d929913e 2509 return FALSE;
b99bd4ef 2510
21d799b5 2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2512 if (!old)
b99bd4ef 2513 {
c19d1205 2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2515 return TRUE;
b99bd4ef
NC
2516 }
2517
c19d1205
ZW
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521#ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523#else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526#endif
b99bd4ef 2527
29a2809e 2528 nbuf = xmemdup0 (newname, nlen);
b99bd4ef 2529
c19d1205
ZW
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
d929913e
NC
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
c19d1205 2537
d929913e
NC
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2547 the artificial FOO alias because it has already been created by the
d929913e
NC
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
d929913e 2554 }
c19d1205 2555
d929913e
NC
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
c19d1205 2558
d929913e
NC
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
c19d1205 2562
e1fa0163 2563 free (nbuf);
d929913e 2564 return TRUE;
b99bd4ef
NC
2565}
2566
dcbf9037
JB
2567/* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
5f4273c7 2575 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2576
c921be7d 2577static bfd_boolean
dcbf9037
JB
2578create_neon_reg_alias (char *newname, char *p)
2579{
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
12d6b0b7 2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2586 int namelen;
5f4273c7 2587
dcbf9037
JB
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
5f4273c7 2592
dcbf9037 2593 nameend = p;
5f4273c7 2594
dcbf9037
JB
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
c921be7d 2600 return FALSE;
5f4273c7 2601
dcbf9037 2602 p += 5;
5f4273c7 2603
dcbf9037 2604 if (*p == '\0')
c921be7d 2605 return FALSE;
5f4273c7 2606
dcbf9037
JB
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
c921be7d 2612 return FALSE;
dcbf9037
JB
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
477330fc
RM
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
dcbf9037
JB
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
477330fc 2627 : exp.X_add_number;
dcbf9037
JB
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
477330fc
RM
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
5f4273c7 2642
dcbf9037
JB
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
477330fc
RM
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
dcbf9037
JB
2649 typeinfo.eltype = ntype.el[0];
2650 }
5f4273c7 2651
dcbf9037
JB
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
5f4273c7 2656
dcbf9037 2657 if (typeinfo.defined & NTA_HASINDEX)
477330fc
RM
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
5f4273c7 2662
dcbf9037 2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2664
dcbf9037 2665 if (exp.X_op != O_constant)
477330fc
RM
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
5f4273c7 2670
dcbf9037
JB
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
5f4273c7 2673
dcbf9037 2674 if (skip_past_char (&p, ']') == FAIL)
477330fc
RM
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
dcbf9037
JB
2679 }
2680
15735687
NS
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684#ifdef TC_CASE_SENSITIVE
dcbf9037 2685 namelen = nameend - newname;
15735687
NS
2686#else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689#endif
2690
29a2809e 2691 namebuf = xmemdup0 (newname, namelen);
5f4273c7 2692
dcbf9037 2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2694 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2695
dcbf9037
JB
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
5f4273c7 2699
dcbf9037
JB
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2702 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2703
dcbf9037
JB
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
5f4273c7 2707
dcbf9037
JB
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2710 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2711
e1fa0163 2712 free (namebuf);
c921be7d 2713 return TRUE;
dcbf9037
JB
2714}
2715
c19d1205
ZW
2716/* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
c921be7d 2718
b99bd4ef 2719static void
c19d1205 2720s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2721{
c19d1205
ZW
2722 as_bad (_("invalid syntax for .req directive"));
2723}
b99bd4ef 2724
dcbf9037
JB
2725static void
2726s_dn (int a ATTRIBUTE_UNUSED)
2727{
2728 as_bad (_("invalid syntax for .dn directive"));
2729}
2730
2731static void
2732s_qn (int a ATTRIBUTE_UNUSED)
2733{
2734 as_bad (_("invalid syntax for .qn directive"));
2735}
2736
c19d1205
ZW
2737/* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
b99bd4ef 2739
c19d1205
ZW
2740 my_alias .req r11
2741 .unreq my_alias */
b99bd4ef
NC
2742
2743static void
c19d1205 2744s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2745{
c19d1205
ZW
2746 char * name;
2747 char saved_char;
b99bd4ef 2748
c19d1205
ZW
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
21d799b5 2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
477330fc 2764 name);
c19d1205
ZW
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
a1727c1a 2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2770 name);
2771 else
2772 {
d929913e
NC
2773 char * p;
2774 char * nbuf;
2775
db0bc284 2776 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2777 free ((char *) reg->name);
477330fc
RM
2778 if (reg->neon)
2779 free (reg->neon);
c19d1205 2780 free (reg);
d929913e
NC
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
5f4273c7 2785
d929913e
NC
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
21d799b5 2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2790 if (reg)
2791 {
db0bc284 2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
21d799b5 2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2802 if (reg)
2803 {
db0bc284 2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
c19d1205
ZW
2812 }
2813 }
b99bd4ef 2814
c19d1205 2815 *input_line_pointer = saved_char;
b99bd4ef
NC
2816 demand_empty_rest_of_line ();
2817}
2818
c19d1205
ZW
2819/* Directives: Instruction set selection. */
2820
2821#ifdef OBJ_ELF
2822/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
cd000bff
DJ
2827/* Create a new mapping symbol for the transition to STATE. */
2828
2829static void
2830make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2831{
a737bd4d 2832 symbolS * symbolP;
c19d1205
ZW
2833 const char * symname;
2834 int type;
b99bd4ef 2835
c19d1205 2836 switch (state)
b99bd4ef 2837 {
c19d1205
ZW
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
c19d1205
ZW
2850 default:
2851 abort ();
2852 }
2853
cd000bff 2854 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
cd000bff
DJ
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2de7820f
JZ
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2885 if (value == 0)
2886 {
2de7820f
JZ
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
cd000bff
DJ
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
cd000bff
DJ
2900 frag->tc_frag_data.last_map = symbolP;
2901}
2902
2903/* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907static void
2908insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910{
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2924 }
cd000bff
DJ
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928}
2929
2930static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932/* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
4e9aaefb 2935#define TRANSITION(from, to) (mapstate == (from) && state == (to))
cd000bff
DJ
2936void
2937mapping_state (enum mstate state)
2938{
940b5ce0
DJ
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
cd000bff
DJ
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
49c62a33
NC
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
33eaf5de 2956 PC- relative forms. However, these cases will involve implicit
49c62a33
NC
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
4e9aaefb 2963 /* This case will be evaluated later. */
cd000bff 2964 return;
cd000bff
DJ
2965
2966 mapping_state_2 (state, 0);
cd000bff
DJ
2967}
2968
2969/* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972static void
2973mapping_state_2 (enum mstate state, int max_chars)
2974{
940b5ce0
DJ
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
cd000bff
DJ
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
4e9aaefb
SA
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
cd000bff
DJ
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205 2997}
4e9aaefb 2998#undef TRANSITION
c19d1205 2999#else
d3106081
NS
3000#define mapping_state(x) ((void)0)
3001#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
3002#endif
3003
3004/* Find the real, Thumb encoded start of a Thumb function. */
3005
4343666d 3006#ifdef OBJ_COFF
c19d1205
ZW
3007static symbolS *
3008find_real_start (symbolS * symbolP)
3009{
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015#define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
37f6032b
ZW
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
3026 return symbolP;
3027
e1fa0163 3028 real_start = concat (STUB_NAME, name, NULL);
c19d1205 3029 new_target = symbol_find (real_start);
e1fa0163 3030 free (real_start);
c19d1205
ZW
3031
3032 if (new_target == NULL)
3033 {
bd3ba5d1 3034 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
3035 new_target = symbolP;
3036 }
3037
c19d1205
ZW
3038 return new_target;
3039}
4343666d 3040#endif
c19d1205
ZW
3041
3042static void
3043opcode_select (int width)
3044{
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
e74cfd16 3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
c19d1205
ZW
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
e74cfd16 3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
c19d1205
ZW
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078}
3079
3080static void
3081s_arm (int ignore ATTRIBUTE_UNUSED)
3082{
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085}
3086
3087static void
3088s_thumb (int ignore ATTRIBUTE_UNUSED)
3089{
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092}
3093
3094static void
3095s_code (int unused ATTRIBUTE_UNUSED)
3096{
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110}
3111
3112static void
3113s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114{
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127}
3128
3129static void
3130s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131{
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137}
3138
3139/* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142static void
3143s_thumb_set (int equiv)
3144{
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
d02603dc 3156 delim = get_symbol_name (& name);
c19d1205 3157 end_name = input_line_pointer;
d02603dc 3158 (void) restore_line_pointer (delim);
c19d1205
ZW
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181#ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
c19d1205 3184 for this symbol. */
b99bd4ef
NC
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
21d799b5 3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197#endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200#ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203#endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
c19d1205 3219 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223#if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225#endif
3226}
3227
c19d1205 3228/* Directives: Mode selection. */
b99bd4ef 3229
c19d1205
ZW
3230/* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 3233static void
c19d1205 3234s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 3235{
c19d1205
ZW
3236 char *name, delim;
3237
d02603dc 3238 delim = get_symbol_name (& name);
c19d1205
ZW
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
d02603dc 3249 (void) restore_line_pointer (delim);
b99bd4ef
NC
3250 demand_empty_rest_of_line ();
3251}
3252
c19d1205
ZW
3253/* Directives: sectioning and alignment. */
3254
c19d1205
ZW
3255static void
3256s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 3257{
c19d1205
ZW
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
cd000bff
DJ
3262
3263#ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265#endif
c19d1205 3266}
b99bd4ef 3267
c19d1205
ZW
3268static void
3269s_even (int ignore ATTRIBUTE_UNUSED)
3270{
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
b99bd4ef 3274
c19d1205 3275 record_alignment (now_seg, 1);
b99bd4ef 3276
c19d1205 3277 demand_empty_rest_of_line ();
b99bd4ef
NC
3278}
3279
2e6976a8
DG
3280/* Directives: CodeComposer Studio. */
3281
3282/* .ref (for CodeComposer Studio syntax only). */
3283static void
3284s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285{
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290}
3291
3292/* If name is not NULL, then it is used for marking the beginning of a
2b0f3761 3293 function, whereas if it is NULL then it means the function end. */
2e6976a8
DG
3294static void
3295asmfunc_debug (const char * name)
3296{
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316}
3317
3318static void
3319s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320{
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341}
3342
3343static void
3344s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345{
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367}
3368
3369static void
3370s_ccs_def (int name)
3371{
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376}
3377
c19d1205 3378/* Directives: Literal pools. */
a737bd4d 3379
c19d1205
ZW
3380static literal_pool *
3381find_literal_pool (void)
a737bd4d 3382{
c19d1205 3383 literal_pool * pool;
a737bd4d 3384
c19d1205 3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3386 {
c19d1205
ZW
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
a737bd4d
NC
3390 }
3391
c19d1205 3392 return pool;
a737bd4d
NC
3393}
3394
c19d1205
ZW
3395static literal_pool *
3396find_or_make_literal_pool (void)
a737bd4d 3397{
c19d1205
ZW
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
a737bd4d 3401
c19d1205 3402 pool = find_literal_pool ();
a737bd4d 3403
c19d1205 3404 if (pool == NULL)
a737bd4d 3405 {
c19d1205 3406 /* Create a new pool. */
325801bd 3407 pool = XNEW (literal_pool);
c19d1205
ZW
3408 if (! pool)
3409 return NULL;
a737bd4d 3410
c19d1205
ZW
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
8335d6aa 3416 pool->alignment = 2;
c19d1205
ZW
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
a737bd4d 3420 }
a737bd4d 3421
c19d1205
ZW
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
a737bd4d 3424 {
c19d1205
ZW
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
a737bd4d
NC
3428 }
3429
c19d1205
ZW
3430 /* Done. */
3431 return pool;
a737bd4d
NC
3432}
3433
c19d1205 3434/* Add the literal in the global 'inst'
5f4273c7 3435 structure to the relevant literal pool. */
b99bd4ef
NC
3436
3437static int
8335d6aa 3438add_to_lit_pool (unsigned int nbytes)
b99bd4ef 3439{
8335d6aa
JW
3440#define PADDING_SLOT 0x1
3441#define LIT_ENTRY_SIZE_MASK 0xFF
c19d1205 3442 literal_pool * pool;
8335d6aa
JW
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
e56c722b 3445 unsigned imm1 = 0;
8335d6aa
JW
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
e2b0ab59 3452 : inst.relocs[0].exp.X_unsigned ? 0
2569ceb0 3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
8335d6aa
JW
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
b99bd4ef 3460
c19d1205
ZW
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3465 {
8335d6aa
JW
3466 if (nbytes == 4)
3467 {
e2b0ab59
AV
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
8335d6aa 3470 && (pool->literals[entry].X_add_number
e2b0ab59 3471 == inst.relocs[0].exp.X_add_number)
8335d6aa
JW
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
e2b0ab59 3474 == inst.relocs[0].exp.X_unsigned))
8335d6aa
JW
3475 break;
3476
e2b0ab59
AV
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
8335d6aa 3479 && (pool->literals[entry].X_add_number
e2b0ab59 3480 == inst.relocs[0].exp.X_add_number)
8335d6aa 3481 && (pool->literals[entry].X_add_symbol
e2b0ab59 3482 == inst.relocs[0].exp.X_add_symbol)
8335d6aa 3483 && (pool->literals[entry].X_op_symbol
e2b0ab59 3484 == inst.relocs[0].exp.X_op_symbol)
8335d6aa
JW
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
19f2f6a9 3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
8335d6aa 3493 && (pool->literals[entry].X_unsigned
e2b0ab59 3494 == inst.relocs[0].exp.X_unsigned)
8335d6aa 3495 && (pool->literals[entry + 1].X_op == O_constant)
19f2f6a9 3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
8335d6aa 3497 && (pool->literals[entry + 1].X_unsigned
e2b0ab59 3498 == inst.relocs[0].exp.X_unsigned))
c19d1205
ZW
3499 break;
3500
8335d6aa
JW
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
c19d1205 3503 break;
8335d6aa
JW
3504
3505 pool_size += 4;
b99bd4ef
NC
3506 }
3507
c19d1205
ZW
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
8335d6aa
JW
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
e2b0ab59
AV
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
8335d6aa
JW
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
e2b0ab59 3544 pool->literals[entry] = inst.relocs[0].exp;
a6684f0d 3545 pool->literals[entry].X_op = O_constant;
8335d6aa
JW
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
e2b0ab59 3557 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
e2b0ab59 3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa 3561 pool->literals[entry++].X_md = 4;
e2b0ab59 3562 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
e2b0ab59 3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa
JW
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
e2b0ab59 3572 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3573 pool->literals[entry].X_md = 4;
3574 }
3575
a8040cf2
NC
3576#ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583#endif
c19d1205
ZW
3584 pool->next_free_entry += 1;
3585 }
8335d6aa
JW
3586 else if (padding_slot_p)
3587 {
e2b0ab59 3588 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3589 pool->literals[entry].X_md = nbytes;
3590 }
b99bd4ef 3591
e2b0ab59
AV
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
b99bd4ef 3595
c19d1205 3596 return SUCCESS;
b99bd4ef
NC
3597}
3598
2e6976a8 3599bfd_boolean
2e57ce7b 3600tc_start_label_without_colon (void)
2e6976a8
DG
3601{
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
2e57ce7b 3606 const char *label = input_line_pointer;
2e6976a8
DG
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623}
3624
c19d1205 3625/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 3626 a later date assign it a value. That's what these functions do. */
e16bb312 3627
c19d1205
ZW
3628static void
3629symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634{
e57e6ddc 3635 size_t name_length;
c19d1205 3636 char * preserved_copy_of_name;
e16bb312 3637
c19d1205
ZW
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
21d799b5 3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3641
c19d1205
ZW
3642#ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645#endif
b99bd4ef 3646
c19d1205 3647 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3648
c19d1205
ZW
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
b99bd4ef 3652
c19d1205 3653 symbol_set_frag (symbolP, frag);
b99bd4ef 3654
c19d1205
ZW
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
b99bd4ef 3658
c19d1205
ZW
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
b99bd4ef 3662
c19d1205 3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3664
c19d1205 3665 obj_symbol_new_hook (symbolP);
b99bd4ef 3666
c19d1205
ZW
3667#ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669#endif
3670
3671#ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673#endif /* DEBUG_SYMS */
b99bd4ef
NC
3674}
3675
c19d1205
ZW
3676static void
3677s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3678{
c19d1205
ZW
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
b99bd4ef 3682
c19d1205
ZW
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
b99bd4ef 3688
c19d1205
ZW
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
8335d6aa 3692 frag_align (pool->alignment, 0, 0);
b99bd4ef 3693
c19d1205 3694 record_alignment (now_seg, 2);
b99bd4ef 3695
aaca88ef 3696#ifdef OBJ_ELF
47fc6e36
WN
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
aaca88ef 3699#endif
c19d1205 3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3701
c19d1205
ZW
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
b99bd4ef 3705
c19d1205 3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3707
c19d1205
ZW
3708#if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710#endif
6c43fab6 3711
c19d1205 3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3713 {
3714#ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717#endif
3718 /* First output the expression in the instruction to the pool. */
8335d6aa
JW
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
a8040cf2 3721 }
b99bd4ef 3722
c19d1205
ZW
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
b99bd4ef
NC
3726}
3727
c19d1205
ZW
3728#ifdef OBJ_ELF
3729/* Forward declarations for functions below, in the MD interface
3730 section. */
3731static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732static valueT create_unwind_entry (int);
3733static void start_unwind_section (const segT, int);
3734static void add_unwind_opcode (valueT, int);
3735static void flush_pending_unwind (void);
b99bd4ef 3736
c19d1205 3737/* Directives: Data. */
b99bd4ef 3738
c19d1205
ZW
3739static void
3740s_arm_elf_cons (int nbytes)
3741{
3742 expressionS exp;
b99bd4ef 3743
c19d1205
ZW
3744#ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746#endif
b99bd4ef 3747
c19d1205 3748 if (is_it_end_of_statement ())
b99bd4ef 3749 {
c19d1205
ZW
3750 demand_empty_rest_of_line ();
3751 return;
b99bd4ef
NC
3752 }
3753
c19d1205
ZW
3754#ifdef md_cons_align
3755 md_cons_align (nbytes);
3756#endif
b99bd4ef 3757
c19d1205
ZW
3758 mapping_state (MAP_DATA);
3759 do
b99bd4ef 3760 {
c19d1205
ZW
3761 int reloc;
3762 char *base = input_line_pointer;
b99bd4ef 3763
c19d1205 3764 expression (& exp);
b99bd4ef 3765
c19d1205
ZW
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
21d799b5 3782 reloc_howto_type *howto = (reloc_howto_type *)
477330fc
RM
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
c19d1205 3785 int size = bfd_get_reloc_size (howto);
b99bd4ef 3786
2fc8bdac
ZW
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
c19d1205 3794 if (size > nbytes)
992a06ee
AM
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
c19d1205
ZW
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
325801bd 3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
e1fa0163 3808
c19d1205
ZW
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
4b1a927e
AM
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
c19d1205 3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
e1fa0163 3822 free (save_buf);
c19d1205
ZW
3823 }
3824 }
3825 }
b99bd4ef 3826 }
c19d1205 3827 while (*input_line_pointer++ == ',');
b99bd4ef 3828
c19d1205
ZW
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
b99bd4ef
NC
3832}
3833
c921be7d
NC
3834/* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837static void
3838emit_thumb32_expr (expressionS * exp)
3839{
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846}
3847
3848/* Guess the instruction size based on the opcode. */
3849
3850static int
3851thumb_insn_size (int opcode)
3852{
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859}
3860
3861static bfd_boolean
3862emit_insn (expressionS *exp, int nbytes)
3863{
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
5ee91343
AV
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
c921be7d 3885 else
5ee91343 3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
c921be7d
NC
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904}
3905
3906/* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909static void
3910s_arm_elf_inst (int nbytes)
3911{
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954}
b99bd4ef 3955
c19d1205 3956/* Parse a .rel31 directive. */
b99bd4ef 3957
c19d1205
ZW
3958static void
3959s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960{
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
b99bd4ef 3964
c19d1205
ZW
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
b99bd4ef 3970
c19d1205
ZW
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
b99bd4ef 3975
c19d1205
ZW
3976#ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978#endif
b99bd4ef 3979
c19d1205
ZW
3980#ifdef md_cons_align
3981 md_cons_align (4);
3982#endif
b99bd4ef 3983
c19d1205 3984 mapping_state (MAP_DATA);
b99bd4ef 3985
c19d1205 3986 expression (&exp);
b99bd4ef 3987
c19d1205
ZW
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
b99bd4ef 3992
c19d1205 3993 demand_empty_rest_of_line ();
b99bd4ef
NC
3994}
3995
c19d1205 3996/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3997
c19d1205 3998/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3999
c19d1205
ZW
4000static void
4001s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002{
4003 demand_empty_rest_of_line ();
921e5f0a
PB
4004 if (unwind.proc_start)
4005 {
c921be7d 4006 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
4007 return;
4008 }
4009
c19d1205
ZW
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
b99bd4ef 4012
c19d1205
ZW
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
fdfde340 4020 unwind.fp_reg = REG_SP;
c19d1205
ZW
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023}
b99bd4ef 4024
b99bd4ef 4025
c19d1205
ZW
4026/* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
b99bd4ef 4028
c19d1205
ZW
4029static void
4030s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031{
4032 demand_empty_rest_of_line ();
921e5f0a 4033 if (!unwind.proc_start)
c921be7d 4034 as_bad (MISSING_FNSTART);
921e5f0a 4035
c19d1205 4036 if (unwind.table_entry)
6decc662 4037 as_bad (_("duplicate .handlerdata directive"));
f02232aa 4038
c19d1205
ZW
4039 create_unwind_entry (1);
4040}
a737bd4d 4041
c19d1205 4042/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 4043
c19d1205
ZW
4044static void
4045s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046{
4047 long where;
4048 char *ptr;
4049 valueT val;
940b5ce0 4050 unsigned int marked_pr_dependency;
f02232aa 4051
c19d1205 4052 demand_empty_rest_of_line ();
f02232aa 4053
921e5f0a
PB
4054 if (!unwind.proc_start)
4055 {
c921be7d 4056 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
4057 return;
4058 }
4059
c19d1205
ZW
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
f02232aa 4065
c19d1205
ZW
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
b99bd4ef 4070
c19d1205 4071 ptr = frag_more (8);
5011093d 4072 memset (ptr, 0, 8);
c19d1205 4073 where = frag_now_fix () - 8;
f02232aa 4074
c19d1205
ZW
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
f02232aa 4078
c19d1205
ZW
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
940b5ce0
DJ
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
5f4273c7
NC
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
c19d1205
ZW
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 4095 |= 1 << unwind.personality_index;
c19d1205 4096 }
f02232aa 4097
c19d1205
ZW
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
f02232aa 4105
c19d1205
ZW
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
4108
4109 unwind.proc_start = NULL;
c19d1205 4110}
f02232aa 4111
f02232aa 4112
c19d1205 4113/* Parse an unwind_cantunwind directive. */
b99bd4ef 4114
c19d1205
ZW
4115static void
4116s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117{
4118 demand_empty_rest_of_line ();
921e5f0a 4119 if (!unwind.proc_start)
c921be7d 4120 as_bad (MISSING_FNSTART);
921e5f0a 4121
c19d1205
ZW
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 4124
c19d1205
ZW
4125 unwind.personality_index = -2;
4126}
b99bd4ef 4127
b99bd4ef 4128
c19d1205 4129/* Parse a personalityindex directive. */
b99bd4ef 4130
c19d1205
ZW
4131static void
4132s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133{
4134 expressionS exp;
b99bd4ef 4135
921e5f0a 4136 if (!unwind.proc_start)
c921be7d 4137 as_bad (MISSING_FNSTART);
921e5f0a 4138
c19d1205
ZW
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 4141
c19d1205 4142 expression (&exp);
b99bd4ef 4143
c19d1205
ZW
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 4146 {
c19d1205
ZW
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
b99bd4ef
NC
4150 }
4151
c19d1205 4152 unwind.personality_index = exp.X_add_number;
b99bd4ef 4153
c19d1205
ZW
4154 demand_empty_rest_of_line ();
4155}
e16bb312 4156
e16bb312 4157
c19d1205 4158/* Parse a personality directive. */
e16bb312 4159
c19d1205
ZW
4160static void
4161s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162{
4163 char *name, *p, c;
a737bd4d 4164
921e5f0a 4165 if (!unwind.proc_start)
c921be7d 4166 as_bad (MISSING_FNSTART);
921e5f0a 4167
c19d1205
ZW
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
a737bd4d 4170
d02603dc 4171 c = get_symbol_name (& name);
c19d1205 4172 p = input_line_pointer;
d02603dc
NC
4173 if (c == '"')
4174 ++ input_line_pointer;
c19d1205
ZW
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178}
e16bb312 4179
e16bb312 4180
c19d1205 4181/* Parse a directive saving core registers. */
e16bb312 4182
c19d1205
ZW
4183static void
4184s_arm_unwind_save_core (void)
e16bb312 4185{
c19d1205
ZW
4186 valueT op;
4187 long range;
4188 int n;
e16bb312 4189
4b5a202f 4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
c19d1205 4191 if (range == FAIL)
e16bb312 4192 {
c19d1205
ZW
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
e16bb312 4197
c19d1205 4198 demand_empty_rest_of_line ();
e16bb312 4199
c19d1205
ZW
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
e16bb312 4211
01ae4198
DJ
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
c19d1205 4214 {
01ae4198
DJ
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
0dd132b6 4230 else
01ae4198
DJ
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
c19d1205 4240 }
0dd132b6 4241
c19d1205
ZW
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
0dd132b6
NC
4247 }
4248
c19d1205
ZW
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
0dd132b6
NC
4255}
4256
c19d1205
ZW
4257
4258/* Parse a directive saving FPA registers. */
b99bd4ef
NC
4259
4260static void
c19d1205 4261s_arm_unwind_save_fpa (int reg)
b99bd4ef 4262{
c19d1205
ZW
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
b99bd4ef 4266
c19d1205
ZW
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
b99bd4ef 4272
c19d1205 4273 if (exp.X_op != O_constant)
b99bd4ef 4274 {
c19d1205
ZW
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
b99bd4ef
NC
4277 return;
4278 }
4279
c19d1205
ZW
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
b99bd4ef 4283 {
c19d1205
ZW
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
b99bd4ef
NC
4286 return;
4287 }
4288
c19d1205 4289 demand_empty_rest_of_line ();
b99bd4ef 4290
c19d1205
ZW
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
b99bd4ef
NC
4297 else
4298 {
c19d1205
ZW
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
b99bd4ef 4302 }
c19d1205 4303 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
4304}
4305
c19d1205 4306
fa073d69
MS
4307/* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309static void
4310s_arm_unwind_save_vfp_armv6 (void)
4311{
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
efd6b359 4317 bfd_boolean partial_match;
fa073d69 4318
efd6b359
AV
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
fa073d69
MS
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356}
4357
4358
4359/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
4360
4361static void
c19d1205 4362s_arm_unwind_save_vfp (void)
b99bd4ef 4363{
c19d1205 4364 int count;
ca3f61f7 4365 unsigned int reg;
c19d1205 4366 valueT op;
efd6b359 4367 bfd_boolean partial_match;
b99bd4ef 4368
efd6b359
AV
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
c19d1205 4371 if (count == FAIL)
b99bd4ef 4372 {
c19d1205
ZW
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
b99bd4ef
NC
4375 return;
4376 }
4377
c19d1205 4378 demand_empty_rest_of_line ();
b99bd4ef 4379
c19d1205 4380 if (reg == 8)
b99bd4ef 4381 {
c19d1205
ZW
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
b99bd4ef 4385 }
c19d1205 4386 else
b99bd4ef 4387 {
c19d1205
ZW
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
b99bd4ef 4391 }
c19d1205
ZW
4392 unwind.frame_size += count * 8 + 4;
4393}
b99bd4ef 4394
b99bd4ef 4395
c19d1205
ZW
4396/* Parse a directive saving iWMMXt data registers. */
4397
4398static void
4399s_arm_unwind_save_mmxwr (void)
4400{
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
b99bd4ef 4406
c19d1205
ZW
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
b99bd4ef 4409
c19d1205 4410 do
b99bd4ef 4411 {
dcbf9037 4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 4413
c19d1205 4414 if (reg == FAIL)
b99bd4ef 4415 {
9b7132d3 4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 4417 goto error;
b99bd4ef
NC
4418 }
4419
c19d1205
ZW
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
b99bd4ef 4423
c19d1205
ZW
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
dcbf9037 4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
4428 if (hi_reg == FAIL)
4429 {
9b7132d3 4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4443
d996d970 4444 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4445
c19d1205 4446 demand_empty_rest_of_line ();
b99bd4ef 4447
708587a4 4448 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4449 the list. */
4450 flush_pending_unwind ();
b99bd4ef 4451
c19d1205 4452 for (i = 0; i < 16; i++)
b99bd4ef 4453 {
c19d1205
ZW
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
b99bd4ef
NC
4456 }
4457
c19d1205
ZW
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
b99bd4ef 4462 {
c19d1205
ZW
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
b99bd4ef 4481
c19d1205
ZW
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
87a1fd79 4484 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
b99bd4ef
NC
4493 }
4494
c19d1205
ZW
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
b99bd4ef 4499 {
c19d1205
ZW
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 4505 preceding block. */
c19d1205
ZW
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
b99bd4ef
NC
4523 }
4524
c19d1205
ZW
4525 return;
4526error:
4527 ignore_rest_of_line ();
b99bd4ef
NC
4528}
4529
4530static void
c19d1205 4531s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4532{
c19d1205
ZW
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
b99bd4ef 4537
c19d1205
ZW
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
b99bd4ef 4540
477330fc
RM
4541 skip_whitespace (input_line_pointer);
4542
c19d1205 4543 do
b99bd4ef 4544 {
dcbf9037 4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4546
c19d1205
ZW
4547 if (reg == FAIL)
4548 {
9b7132d3 4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4550 goto error;
4551 }
b99bd4ef 4552
c19d1205
ZW
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
b99bd4ef 4557
c19d1205
ZW
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
dcbf9037 4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4562 if (hi_reg == FAIL)
4563 {
9b7132d3 4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
b99bd4ef 4575 }
c19d1205 4576 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4577
d996d970 4578 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4579
c19d1205
ZW
4580 demand_empty_rest_of_line ();
4581
708587a4 4582 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4583 the list. */
4584 flush_pending_unwind ();
b99bd4ef 4585
c19d1205 4586 for (reg = 0; reg < 16; reg++)
b99bd4ef 4587 {
c19d1205
ZW
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
b99bd4ef 4590 }
c19d1205
ZW
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594error:
4595 ignore_rest_of_line ();
b99bd4ef
NC
4596}
4597
c19d1205 4598
fa073d69
MS
4599/* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4601
b99bd4ef 4602static void
fa073d69 4603s_arm_unwind_save (int arch_v6)
b99bd4ef 4604{
c19d1205
ZW
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
b99bd4ef 4608
921e5f0a 4609 if (!unwind.proc_start)
c921be7d 4610 as_bad (MISSING_FNSTART);
921e5f0a 4611
c19d1205
ZW
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
b99bd4ef 4614
c19d1205 4615 if (*peek == '{')
b99bd4ef 4616 {
c19d1205
ZW
4617 had_brace = TRUE;
4618 peek++;
b99bd4ef
NC
4619 }
4620
c19d1205 4621 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4622
c19d1205 4623 if (!reg)
b99bd4ef 4624 {
c19d1205
ZW
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
b99bd4ef
NC
4627 return;
4628 }
4629
c19d1205 4630 switch (reg->type)
b99bd4ef 4631 {
c19d1205
ZW
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
93ac2687 4639 input_line_pointer = peek;
c19d1205 4640 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4641 return;
c19d1205 4642
1f5afe1c
NC
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
fa073d69
MS
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
477330fc 4649 s_arm_unwind_save_vfp_armv6 ();
fa073d69 4650 else
477330fc 4651 s_arm_unwind_save_vfp ();
fa073d69 4652 return;
1f5afe1c
NC
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
c19d1205
ZW
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
b99bd4ef 4665 }
c19d1205 4666}
b99bd4ef 4667
b99bd4ef 4668
c19d1205
ZW
4669/* Parse an unwind_movsp directive. */
4670
4671static void
4672s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673{
4674 int reg;
4675 valueT op;
4fa3602b 4676 int offset;
c19d1205 4677
921e5f0a 4678 if (!unwind.proc_start)
c921be7d 4679 as_bad (MISSING_FNSTART);
921e5f0a 4680
dcbf9037 4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4682 if (reg == FAIL)
b99bd4ef 4683 {
9b7132d3 4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4685 ignore_rest_of_line ();
b99bd4ef
NC
4686 return;
4687 }
4fa3602b
PB
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
c19d1205 4698 demand_empty_rest_of_line ();
b99bd4ef 4699
c19d1205 4700 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4701 {
c19d1205 4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4703 return;
4704 }
4705
c19d1205
ZW
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4708
c19d1205
ZW
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4fa3602b 4715 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4716 unwind.sp_restored = 1;
b05fe5cf
ZW
4717}
4718
c19d1205
ZW
4719/* Parse an unwind_pad directive. */
4720
b05fe5cf 4721static void
c19d1205 4722s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4723{
c19d1205 4724 int offset;
b05fe5cf 4725
921e5f0a 4726 if (!unwind.proc_start)
c921be7d 4727 as_bad (MISSING_FNSTART);
921e5f0a 4728
c19d1205
ZW
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
b99bd4ef 4731
c19d1205
ZW
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
b99bd4ef 4738
c19d1205
ZW
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744}
4745
4746/* Parse an unwind_setfp directive. */
4747
4748static void
4749s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4750{
c19d1205
ZW
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
921e5f0a 4755 if (!unwind.proc_start)
c921be7d 4756 as_bad (MISSING_FNSTART);
921e5f0a 4757
dcbf9037 4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
dcbf9037 4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4763
c19d1205
ZW
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
b99bd4ef 4770
c19d1205
ZW
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
a737bd4d 4779
c19d1205 4780 demand_empty_rest_of_line ();
a737bd4d 4781
fdfde340 4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4783 {
c19d1205
ZW
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
a737bd4d
NC
4787 }
4788
c19d1205
ZW
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
fdfde340 4792 if (sp_reg == REG_SP)
c19d1205
ZW
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
a737bd4d
NC
4796}
4797
c19d1205
ZW
4798/* Parse an unwind_raw directive. */
4799
4800static void
4801s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4802{
c19d1205 4803 expressionS exp;
708587a4 4804 /* This is an arbitrary limit. */
c19d1205
ZW
4805 unsigned char op[16];
4806 int count;
a737bd4d 4807
921e5f0a 4808 if (!unwind.proc_start)
c921be7d 4809 as_bad (MISSING_FNSTART);
921e5f0a 4810
c19d1205
ZW
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4814 {
c19d1205
ZW
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
a737bd4d 4820
c19d1205
ZW
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
a737bd4d 4827
c19d1205 4828 count = 0;
a737bd4d 4829
c19d1205
ZW
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
a737bd4d 4837 }
c19d1205 4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4839 {
c19d1205
ZW
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
a737bd4d 4843 }
c19d1205 4844 op[count++] = exp.X_add_number;
a737bd4d 4845
c19d1205
ZW
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
a737bd4d 4849
c19d1205
ZW
4850 expression (&exp);
4851 }
b99bd4ef 4852
c19d1205
ZW
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
b99bd4ef 4856
c19d1205 4857 demand_empty_rest_of_line ();
b99bd4ef 4858}
ee065d83
PB
4859
4860
4861/* Parse a .eabi_attribute directive. */
4862
4863static void
4864s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865{
0420f52b 4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
ee3c0378 4867
3076e594 4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
ee3c0378 4869 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4870}
4871
0855e32b
NS
4872/* Emit a tls fix for the symbol. */
4873
4874static void
4875s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876{
4877 char *p;
4878 expressionS exp;
4879#ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881#endif
4882
4883#ifdef md_cons_align
4884 md_cons_align (4);
4885#endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894}
cdf9ccec 4895#endif /* OBJ_ELF */
0855e32b 4896
ee065d83 4897static void s_arm_arch (int);
7a1d4c38 4898static void s_arm_object_arch (int);
ee065d83
PB
4899static void s_arm_cpu (int);
4900static void s_arm_fpu (int);
69133863 4901static void s_arm_arch_extension (int);
b99bd4ef 4902
f0927246
NC
4903#ifdef TE_PE
4904
4905static void
5f4273c7 4906pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4907{
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922}
4923#endif /* TE_PE */
4924
c19d1205
ZW
4925/* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
b99bd4ef 4930
c19d1205 4931const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4932{
c19d1205
ZW
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
dcbf9037
JB
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
c19d1205
ZW
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
db2ed2e0 4940 { "align", s_align_ptwo, 2 },
c19d1205
ZW
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
8463be01
PB
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
7a1d4c38 4953 { "object_arch", s_arm_object_arch, 0 },
8463be01 4954 { "fpu", s_arm_fpu, 0 },
69133863 4955 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4956#ifdef OBJ_ELF
c921be7d
NC
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
fa073d69 4970 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4977#else
4978 { "word", cons, 4},
f0927246
NC
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
68d20676 4985 { "file", dwarf2_directive_file, 0 },
f0927246
NC
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4988#endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
f0927246
NC
4992#ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994#endif
2e6976a8
DG
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
c19d1205
ZW
5002 { 0, 0, 0 }
5003};
5004\f
5005/* Parser functions used exclusively in instruction operands. */
b99bd4ef 5006
c19d1205
ZW
5007/* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
b99bd4ef 5012
c19d1205
ZW
5013static int
5014parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016{
5017 expressionS exp;
0198d5e6 5018
c19d1205
ZW
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
b99bd4ef 5021 {
c19d1205
ZW
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
b99bd4ef 5025
c19d1205
ZW
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
b99bd4ef 5031
c19d1205
ZW
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034}
b99bd4ef 5035
5287ad62 5036/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040static int
8335d6aa
JW
5041parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5287ad62
JB
5043{
5044 expressionS exp;
8335d6aa 5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5287ad62
JB
5046 char *ptr = *str;
5047
8335d6aa 5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5287ad62 5049
8335d6aa 5050 if (exp_p->X_op == O_constant)
036dc3f7 5051 {
8335d6aa 5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
036dc3f7
PB
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
8335d6aa 5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7 5057 {
8335d6aa
JW
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
036dc3f7
PB
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
8335d6aa
JW
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5287ad62
JB
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 5068
5287ad62 5069 /* Bignums have their least significant bits in
477330fc
RM
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 5072 gas_assert (parts != 0);
95b75c01
NC
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
8335d6aa 5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
95b75c01
NC
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
8335d6aa 5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
95b75c01
NC
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5287ad62
JB
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5099 inst.operands[i].regisimm = 1;
5100 }
8335d6aa 5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5287ad62 5102 return FAIL;
5f4273c7 5103
5287ad62
JB
5104 *str = ptr;
5105
5106 return SUCCESS;
5107}
5108
c19d1205
ZW
5109/* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
b99bd4ef 5111
c19d1205
ZW
5112static int
5113parse_fpa_immediate (char ** str)
5114{
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
b99bd4ef 5120
c19d1205
ZW
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
b99bd4ef 5123
c19d1205
ZW
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 5127 {
c19d1205 5128 char *start = *str;
b99bd4ef 5129
c19d1205
ZW
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
b99bd4ef 5136
c19d1205
ZW
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
b99bd4ef 5141
c19d1205 5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 5143
c19d1205
ZW
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 5151 {
c19d1205
ZW
5152 if (words[j] != fp_values[i][j])
5153 break;
b99bd4ef
NC
5154 }
5155
c19d1205 5156 if (j == MAX_LITTLENUMS)
b99bd4ef 5157 {
c19d1205
ZW
5158 *str = save_in;
5159 return i + 8;
b99bd4ef
NC
5160 }
5161 }
5162 }
b99bd4ef 5163
c19d1205
ZW
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
ba592044
AM
5174#define X_PRECISION 5
5175#define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
c19d1205
ZW
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
b99bd4ef 5185
c19d1205
ZW
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
b99bd4ef
NC
5194 }
5195
c19d1205
ZW
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
b99bd4ef
NC
5200}
5201
136da414
JB
5202/* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205static int
5206is_quarter_float (unsigned imm)
5207{
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210}
5211
aacf0b33
KT
5212
5213/* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216static bfd_boolean
5217parse_ifimm_zero (char **in)
5218{
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
3c6452ae
TP
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
0900a05b
JW
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
aacf0b33
KT
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249}
5250
136da414
JB
5251/* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
136da414
JB
5256
5257static unsigned
5258parse_qfloat_immediate (char **ccp, int *immed)
5259{
5260 char *str = *ccp;
c96612cc 5261 char *fpnum;
136da414 5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 5263 int found_fpchar = 0;
5f4273c7 5264
136da414 5265 skip_past_char (&str, '#');
5f4273c7 5266
c96612cc
JB
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
477330fc
RM
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
c96612cc
JB
5285
5286 if (!found_fpchar)
477330fc 5287 return FAIL;
c96612cc 5288 }
5f4273c7 5289
136da414
JB
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5f4273c7 5294
136da414
JB
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
477330fc
RM
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5f4273c7 5301
c96612cc 5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
477330fc 5303 *immed = fpword;
136da414 5304 else
477330fc 5305 return FAIL;
136da414
JB
5306
5307 *ccp = str;
5f4273c7 5308
136da414
JB
5309 return SUCCESS;
5310 }
5f4273c7 5311
136da414
JB
5312 return FAIL;
5313}
5314
c19d1205
ZW
5315/* Shift operands. */
5316enum shift_kind
b99bd4ef 5317{
f5f10c66 5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
c19d1205 5319};
b99bd4ef 5320
c19d1205
ZW
5321struct asm_shift_name
5322{
5323 const char *name;
5324 enum shift_kind kind;
5325};
b99bd4ef 5326
c19d1205
ZW
5327/* Third argument to parse_shift. */
5328enum parse_shift_mode
5329{
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
f5f10c66 5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
c19d1205 5336};
b99bd4ef 5337
c19d1205
ZW
5338/* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
b99bd4ef 5340
c19d1205
ZW
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
b99bd4ef 5344
c19d1205
ZW
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 5347
c19d1205
ZW
5348static int
5349parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 5350{
c19d1205
ZW
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
b99bd4ef 5356
c19d1205
ZW
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
b99bd4ef 5359
c19d1205 5360 if (p == *str)
b99bd4ef 5361 {
c19d1205
ZW
5362 inst.error = _("shift expression expected");
5363 return FAIL;
b99bd4ef
NC
5364 }
5365
21d799b5 5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
477330fc 5367 p - *str);
c19d1205
ZW
5368
5369 if (shift_name == NULL)
b99bd4ef 5370 {
c19d1205
ZW
5371 inst.error = _("shift expression expected");
5372 return FAIL;
b99bd4ef
NC
5373 }
5374
c19d1205 5375 shift = shift_name->kind;
b99bd4ef 5376
c19d1205
ZW
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
f5f10c66
AV
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
b99bd4ef 5387
c19d1205
ZW
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
b99bd4ef 5395
c19d1205
ZW
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
b99bd4ef 5403
c19d1205
ZW
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
f5f10c66
AV
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
b99bd4ef 5418
c19d1205
ZW
5419 default: abort ();
5420 }
b99bd4ef 5421
c19d1205
ZW
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
b99bd4ef 5426
c19d1205 5427 if (mode == NO_SHIFT_RESTRICT
dcbf9037 5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
e2b0ab59 5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
c19d1205
ZW
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
b99bd4ef
NC
5440}
5441
c19d1205 5442/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 5443
c19d1205
ZW
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
b99bd4ef 5448
c19d1205
ZW
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 5451 is deferred to md_apply_fix. */
b99bd4ef 5452
c19d1205
ZW
5453static int
5454parse_shifter_operand (char **str, int i)
5455{
5456 int value;
91d6fa6a 5457 expressionS exp;
b99bd4ef 5458
dcbf9037 5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
b99bd4ef 5463
c19d1205 5464 /* parse_shift will override this if appropriate */
e2b0ab59
AV
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
b99bd4ef 5467
c19d1205
ZW
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
b99bd4ef 5470
c19d1205
ZW
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
5473 }
5474
e2b0ab59 5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
c19d1205 5476 return FAIL;
b99bd4ef 5477
c19d1205 5478 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 5479 {
c19d1205 5480 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 5482 return FAIL;
b99bd4ef 5483
e2b0ab59 5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
c19d1205
ZW
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
b99bd4ef 5489
91d6fa6a 5490 value = exp.X_add_number;
c19d1205
ZW
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
e2b0ab59
AV
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
c19d1205
ZW
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
09d92015 5502
a415b1cd 5503 /* Encode as specified. */
e2b0ab59 5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
a415b1cd 5505 return SUCCESS;
09d92015
MM
5506 }
5507
e2b0ab59
AV
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
c19d1205 5510 return SUCCESS;
09d92015
MM
5511}
5512
4962c51a
MS
5513/* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520struct group_reloc_table_entry
5521{
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527};
5528
5529typedef enum
5530{
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
35c228db
AV
5535 GROUP_LDC,
5536 GROUP_MVE
4962c51a
MS
5537} group_reloc_type;
5538
5539static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
72d98d16
MG
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
4962c51a
MS
5613
5614/* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621static int
5622find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623{
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5f4273c7
NC
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
477330fc
RM
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
4962c51a
MS
5636 }
5637
5638 return FAIL;
5639}
5640
5641/* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655static parse_operand_result
5656parse_shifter_operand_group_reloc (char **str, int i)
5657{
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
477330fc 5668 (*str) += 2;
4962c51a 5669 else
477330fc 5670 (*str)++;
4962c51a
MS
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
477330fc
RM
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
4962c51a
MS
5678
5679 /* We now have the group relocation table entry corresponding to
477330fc 5680 the name in the assembler source. Next, we parse the expression. */
e2b0ab59 5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
477330fc 5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4962c51a
MS
5683
5684 /* Record the relocation type (always the ALU variant here). */
e2b0ab59
AV
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
4962c51a
MS
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
477330fc 5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4962c51a
MS
5693
5694 /* Never reached. */
5695}
5696
8e560766
MGD
5697/* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5699
8e560766
MGD
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701static parse_operand_result
5702parse_neon_alignment (char **str, int i)
5703{
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722}
5723
c19d1205 5724/* Parse all forms of an ARM address expression. Information is written
e2b0ab59 5725 to inst.operands[i] and/or inst.relocs[0].
09d92015 5726
c19d1205 5727 Preindexed addressing (.preind=1):
09d92015 5728
e2b0ab59 5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5732 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5733
c19d1205 5734 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5735
c19d1205 5736 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5737
e2b0ab59 5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5741 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5742
c19d1205 5743 Unindexed addressing (.preind=0, .postind=0):
09d92015 5744
c19d1205 5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5746
c19d1205 5747 Other:
09d92015 5748
c19d1205 5749 [Rn]{!} shorthand for [Rn,#0]{!}
e2b0ab59
AV
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
09d92015 5752
c19d1205 5753 It is the caller's responsibility to check for addressing modes not
e2b0ab59 5754 supported by the instruction, and to set inst.relocs[0].type. */
c19d1205 5755
4962c51a
MS
5756static parse_operand_result
5757parse_address_main (char **str, int i, int group_relocations,
477330fc 5758 group_reloc_type group_type)
09d92015 5759{
c19d1205
ZW
5760 char *p = *str;
5761 int reg;
09d92015 5762
c19d1205 5763 if (skip_past_char (&p, '[') == FAIL)
09d92015 5764 {
c19d1205
ZW
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
974da60d 5767 /* Bare address - translate to PC-relative offset. */
e2b0ab59 5768 inst.relocs[0].pc_rel = 1;
c19d1205
ZW
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
09d92015 5772
e2b0ab59 5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
8335d6aa
JW
5774 return PARSE_OPERAND_FAIL;
5775 }
e2b0ab59 5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
8335d6aa 5777 /*allow_symbol_p=*/TRUE))
4962c51a 5778 return PARSE_OPERAND_FAIL;
09d92015 5779
c19d1205 5780 *str = p;
4962c51a 5781 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5782 }
5783
8ab8155f
NC
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
f5f10c66
AV
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5802 {
35c228db
AV
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5807 return PARSE_OPERAND_FAIL;
09d92015 5808 }
c19d1205
ZW
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
09d92015 5811
c19d1205 5812 if (skip_past_comma (&p) == SUCCESS)
09d92015 5813 {
c19d1205 5814 inst.operands[i].preind = 1;
09d92015 5815
c19d1205
ZW
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
f5f10c66
AV
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5839 {
c19d1205
ZW
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5845 return PARSE_OPERAND_FAIL;
c19d1205 5846 }
5287ad62 5847 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5853
8e560766
MGD
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
c19d1205
ZW
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
4962c51a 5864
5f4273c7
NC
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5867 {
5868 struct group_reloc_table_entry *entry;
5869
477330fc
RM
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
4962c51a
MS
5875
5876 /* Try to parse a group relocation. Anything else is an
477330fc 5877 error. */
4962c51a
MS
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
477330fc 5886 expression. */
e2b0ab59 5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
4962c51a
MS
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
477330fc
RM
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
e2b0ab59
AV
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
477330fc 5896 break;
4962c51a 5897
477330fc 5898 case GROUP_LDRS:
e2b0ab59
AV
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
477330fc 5901 break;
4962c51a 5902
477330fc 5903 case GROUP_LDC:
e2b0ab59
AV
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
477330fc 5906 break;
4962c51a 5907
477330fc
RM
5908 default:
5909 gas_assert (0);
5910 }
4962c51a 5911
e2b0ab59 5912 if (inst.relocs[0].type == 0)
4962c51a
MS
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
477330fc
RM
5917 }
5918 else
26d97720
NS
5919 {
5920 char *q = p;
0198d5e6 5921
e2b0ab59 5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
26d97720
NS
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
09d92015
MM
5938 }
5939 }
8e560766
MGD
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5945
8e560766
MGD
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
09d92015 5949
c19d1205 5950 if (skip_past_char (&p, ']') == FAIL)
09d92015 5951 {
c19d1205 5952 inst.error = _("']' expected");
4962c51a 5953 return PARSE_OPERAND_FAIL;
09d92015
MM
5954 }
5955
c19d1205
ZW
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
09d92015 5958
c19d1205 5959 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5960 {
c19d1205
ZW
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5965 0, 255, TRUE) == FAIL)
4962c51a 5966 return PARSE_OPERAND_FAIL;
09d92015 5967
c19d1205
ZW
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5971 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
4962c51a 5976 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5977 }
5978 *str = p;
4962c51a 5979 return PARSE_OPERAND_SUCCESS;
09d92015 5980 }
c19d1205
ZW
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
09d92015 5985
c19d1205
ZW
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5989 return PARSE_OPERAND_FAIL;
c19d1205 5990 }
09d92015 5991
c19d1205
ZW
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5994
f5f10c66
AV
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 6004 {
477330fc
RM
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
c19d1205 6011 inst.operands[i].immisreg = 1;
a737bd4d 6012
c19d1205
ZW
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 6015 return PARSE_OPERAND_FAIL;
c19d1205
ZW
6016 }
6017 else
6018 {
26d97720 6019 char *q = p;
0198d5e6 6020
c19d1205
ZW
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
e2b0ab59 6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
4962c51a 6027 return PARSE_OPERAND_FAIL;
26d97720 6028 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
c19d1205
ZW
6041 }
6042 }
a737bd4d
NC
6043 }
6044
c19d1205
ZW
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
e2b0ab59
AV
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
c19d1205
ZW
6052 }
6053 *str = p;
4962c51a
MS
6054 return PARSE_OPERAND_SUCCESS;
6055}
6056
6057static int
6058parse_address (char **str, int i)
6059{
21d799b5 6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
477330fc 6061 ? SUCCESS : FAIL;
4962c51a
MS
6062}
6063
6064static parse_operand_result
6065parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066{
6067 return parse_address_main (str, i, 1, type);
a737bd4d
NC
6068}
6069
b6895b4f
PB
6070/* Parse an operand for a MOVW or MOVT instruction. */
6071static int
6072parse_half (char **str)
6073{
6074 char * p;
5f4273c7 6075
b6895b4f
PB
6076 p = *str;
6077 skip_past_char (&p, '#');
5f4273c7 6078 if (strncasecmp (p, ":lower16:", 9) == 0)
e2b0ab59 6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
b6895b4f 6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
e2b0ab59 6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
b6895b4f 6082
e2b0ab59 6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
b6895b4f
PB
6084 {
6085 p += 9;
5f4273c7 6086 skip_whitespace (p);
b6895b4f
PB
6087 }
6088
e2b0ab59 6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
b6895b4f
PB
6090 return FAIL;
6091
e2b0ab59 6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 6093 {
e2b0ab59 6094 if (inst.relocs[0].exp.X_op != O_constant)
b6895b4f
PB
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
e2b0ab59
AV
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
b6895b4f
PB
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108}
6109
c19d1205 6110/* Miscellaneous. */
a737bd4d 6111
c19d1205
ZW
6112/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114static int
d2cd1205 6115parse_psr (char **str, bfd_boolean lhs)
09d92015 6116{
c19d1205
ZW
6117 char *p;
6118 unsigned long psr_field;
62b3e311
PB
6119 const struct asm_psr *psr;
6120 char *start;
d2cd1205 6121 bfd_boolean is_apsr = FALSE;
ac7f631b 6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 6123
a4482bb6
NC
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
823d2571 6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
a4482bb6
NC
6128 m_profile = FALSE;
6129
c19d1205
ZW
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
62b3e311 6133 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
fa94de6b 6137
d2cd1205
JB
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
62b3e311
PB
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
d2cd1205
JB
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
21d799b5 6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
477330fc 6168 p - start);
d2cd1205 6169
62b3e311
PB
6170 if (!psr)
6171 return FAIL;
09d92015 6172
d2cd1205
JB
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
62b3e311 6182 *str = p;
d2cd1205
JB
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
62b3e311 6188 }
d2cd1205
JB
6189 else
6190 goto unsupported_psr;
09d92015 6191
62b3e311 6192 p += 4;
d2cd1205 6193check_suffix:
c19d1205
ZW
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
c19d1205
ZW
6197 p++;
6198 start = p;
a737bd4d 6199
c19d1205
ZW
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
a737bd4d 6203
d2cd1205
JB
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
fa94de6b 6210
d2cd1205
JB
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
477330fc 6214 {
d2cd1205
JB
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
fa94de6b 6230
d2cd1205
JB
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
fa94de6b 6234
d2cd1205
JB
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
fa94de6b 6238
d2cd1205
JB
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
fa94de6b 6244
d2cd1205
JB
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
fa94de6b 6247
d2cd1205
JB
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
477330fc 6251 {
d2cd1205
JB
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
fa94de6b 6259
d2cd1205
JB
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
477330fc 6269 {
d2cd1205 6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
477330fc 6271 p - start);
d2cd1205 6272 if (!psr)
477330fc 6273 goto error;
a737bd4d 6274
d2cd1205
JB
6275 psr_field |= psr->field;
6276 }
a737bd4d 6277 }
c19d1205 6278 else
a737bd4d 6279 {
c19d1205
ZW
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
d2cd1205 6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
477330fc 6284 is deprecated, but allow it anyway. */
d2cd1205
JB
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
a737bd4d 6295 }
c19d1205
ZW
6296 *str = p;
6297 return psr_field;
a737bd4d 6298
d2cd1205
JB
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
c19d1205
ZW
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
a737bd4d
NC
6307}
6308
32c36c3c
AV
6309static int
6310parse_sys_vldr_vstr (char **str)
6311{
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340}
6341
c19d1205
ZW
6342/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 6344
c19d1205
ZW
6345static int
6346parse_cps_flags (char **str)
a737bd4d 6347{
c19d1205
ZW
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
a737bd4d 6351
c19d1205
ZW
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
a737bd4d 6357
c19d1205
ZW
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 6361
c19d1205
ZW
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
a737bd4d 6366
c19d1205
ZW
6367 done:
6368 if (saw_a_flag == 0)
a737bd4d 6369 {
c19d1205
ZW
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
a737bd4d 6372 }
a737bd4d 6373
c19d1205
ZW
6374 *str = s - 1;
6375 return val;
a737bd4d
NC
6376}
6377
c19d1205
ZW
6378/* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
6380
6381static int
c19d1205 6382parse_endian_specifier (char **str)
a737bd4d 6383{
c19d1205
ZW
6384 int little_endian;
6385 char *s = *str;
a737bd4d 6386
c19d1205
ZW
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
a737bd4d 6392 {
c19d1205 6393 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6394 return FAIL;
6395 }
6396
c19d1205 6397 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 6398 {
c19d1205 6399 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6400 return FAIL;
6401 }
6402
c19d1205
ZW
6403 *str = s + 2;
6404 return little_endian;
6405}
a737bd4d 6406
c19d1205
ZW
6407/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411static int
6412parse_ror (char **str)
6413{
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
a737bd4d 6420 {
c19d1205 6421 inst.error = _("missing rotation field after comma");
a737bd4d
NC
6422 return FAIL;
6423 }
c19d1205
ZW
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
a737bd4d 6429 {
c19d1205
ZW
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
6437 return FAIL;
6438 }
c19d1205 6439}
a737bd4d 6440
c19d1205
ZW
6441/* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443static int
6444parse_cond (char **str)
6445{
c462b453 6446 char *q;
c19d1205 6447 const struct asm_cond *c;
c462b453
PB
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
a737bd4d 6452
c462b453
PB
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
e07e6e58 6457 cond[n] = TOLOWER (*q);
c462b453
PB
6458 q++;
6459 n++;
6460 }
a737bd4d 6461
21d799b5 6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 6463 if (!c)
a737bd4d 6464 {
c19d1205 6465 inst.error = _("condition required");
a737bd4d
NC
6466 return FAIL;
6467 }
6468
c19d1205
ZW
6469 *str = q;
6470 return c->value;
6471}
6472
62b3e311
PB
6473/* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475static int
6476parse_barrier (char **str)
6477{
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
21d799b5 6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
477330fc 6486 q - p);
62b3e311
PB
6487 if (!o)
6488 return FAIL;
6489
e797f7e0
MGD
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
62b3e311
PB
6493 *str = q;
6494 return o->value;
6495}
6496
92e90b6e
PB
6497/* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499static int
6500parse_tb (char **str)
6501{
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
92e90b6e 6510
dcbf9037 6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
5f4273c7 6523
dcbf9037 6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
e2b0ab59 6535 if (inst.relocs[0].exp.X_add_number != 1)
92e90b6e
PB
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550}
6551
5287ad62
JB
6552/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
037e8744
JB
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
5287ad62
JB
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559static int
6560parse_neon_mov (char **str, int *which_operand)
6561{
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
dcbf9037 6565 struct neon_type_el optype;
5f4273c7 6566
57785aa2
AV
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
5287ad62
JB
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
dcbf9037 6626 inst.operands[i].vectype = optype;
5287ad62
JB
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
477330fc 6630 goto wanted_comma;
5f4273c7 6631
dcbf9037 6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
477330fc 6633 goto wanted_arm;
5f4273c7 6634
5287ad62
JB
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
57785aa2
AV
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
5287ad62
JB
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
477330fc 6646 goto wanted_comma;
5f4273c7 6647
5287ad62
JB
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
dcbf9037 6653 inst.operands[i].vectype = optype;
5287ad62
JB
6654 inst.operands[i++].present = 1;
6655
dcbf9037 6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
037e8744 6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
477330fc
RM
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
4641781c 6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
477330fc
RM
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
8335d6aa
JW
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
477330fc
RM
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
5287ad62 6731 else
477330fc
RM
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
5287ad62 6736 }
dcbf9037 6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 6738 {
57785aa2 6739 /* Cases 6, 7, 16, 18. */
5287ad62
JB
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
5f4273c7 6743
5287ad62 6744 if (skip_past_comma (&ptr) == FAIL)
477330fc 6745 goto wanted_comma;
5f4273c7 6746
57785aa2
AV
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
477330fc
RM
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
dcbf9037 6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc 6764 {
477330fc
RM
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
57785aa2 6773 != FAIL)
477330fc 6774 {
57785aa2 6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
477330fc 6776
477330fc
RM
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
57785aa2 6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
477330fc
RM
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
57785aa2
AV
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
477330fc
RM
6837 }
6838 }
037e8744 6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
477330fc
RM
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
5287ad62
JB
6850 }
6851 else
6852 {
dcbf9037 6853 first_error (_("parse error"));
5287ad62
JB
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
5f4273c7 6862 wanted_comma:
dcbf9037 6863 first_error (_("expected comma"));
5287ad62 6864 return FAIL;
5f4273c7
NC
6865
6866 wanted_arm:
dcbf9037 6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6868 return FAIL;
5287ad62
JB
6869}
6870
5be8be5d
DG
6871/* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
c19d1205
ZW
6876/* Matcher codes for parse_operands. */
6877enum operand_parse_code
6878{
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6886 optional trailing ! */
c19d1205
ZW
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
5287ad62
JB
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
5ee91343
AV
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
5287ad62 6897 OP_RNQ, /* Neon quad precision register */
5ee91343 6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
037e8744 6899 OP_RVSD, /* VFP single or double precision register */
1b883319 6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
dd9634d9 6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
dec41383 6902 OP_RNSD, /* Neon single or double precision register */
5287ad62 6903 OP_RNDQ, /* Neon double or quad precision register */
5ee91343 6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
7df54120 6905 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
037e8744 6906 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6907 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6908 OP_RVC, /* VFP control register */
6909 OP_RMF, /* Maverick F register */
6910 OP_RMD, /* Maverick D register */
6911 OP_RMFX, /* Maverick FX register */
6912 OP_RMDX, /* Maverick DX register */
6913 OP_RMAX, /* Maverick AX register */
6914 OP_RMDS, /* Maverick DSPSC register */
6915 OP_RIWR, /* iWMMXt wR register */
6916 OP_RIWC, /* iWMMXt wC register */
6917 OP_RIWG, /* iWMMXt wCG register */
6918 OP_RXA, /* XScale accumulator register */
6919
5ee91343
AV
6920 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6921 */
6922 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6923 GPR (no SP/SP) */
a302e574 6924 OP_RMQ, /* MVE vector register. */
1b883319 6925 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
35d1cfc2 6926 OP_RMQRR, /* MVE vector or ARM register. */
a302e574 6927
60f993ce
AV
6928 /* New operands for Armv8.1-M Mainline. */
6929 OP_LR, /* ARM LR register */
a302e574
AV
6930 OP_RRe, /* ARM register, only even numbered. */
6931 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
60f993ce
AV
6932 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6933
c19d1205 6934 OP_REGLST, /* ARM register list */
4b5a202f 6935 OP_CLRMLST, /* CLRM register list */
c19d1205
ZW
6936 OP_VRSLST, /* VFP single-precision register list */
6937 OP_VRDLST, /* VFP double-precision register list */
037e8744 6938 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6939 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6940 OP_NSTRLST, /* Neon element/structure list */
efd6b359 6941 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
35c228db
AV
6942 OP_MSTRLST2, /* MVE vector list with two elements. */
6943 OP_MSTRLST4, /* MVE vector list with four elements. */
5287ad62 6944
5287ad62 6945 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6946 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
aacf0b33 6947 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
1b883319
AV
6948 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6949 zero. */
5287ad62 6950 OP_RR_RNSC, /* ARM reg or Neon scalar. */
dec41383 6951 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
037e8744 6952 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
886e1c73
AV
6953 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6954 */
a8465a06
AV
6955 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
6956 scalar, or ARM register. */
5287ad62 6957 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
42b16635
AV
6958 OP_RNDQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, or ARM register. */
6959 OP_RNDQMQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
6960 register. */
5d281bf0 6961 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
5287ad62
JB
6962 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6963 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6964 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
f601a00c
AV
6965 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6966 OP_RNDQMQ_Ibig,
5287ad62 6967 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5150f0d8
AV
6968 OP_RNDQMQ_I63b_RR, /* Neon D or Q reg, immediate for shift, MVE vector or
6969 ARM register. */
2d447fca 6970 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
32c36c3c 6971 OP_VLDR, /* VLDR operand. */
5287ad62
JB
6972
6973 OP_I0, /* immediate zero */
c19d1205
ZW
6974 OP_I7, /* immediate value 0 .. 7 */
6975 OP_I15, /* 0 .. 15 */
6976 OP_I16, /* 1 .. 16 */
5287ad62 6977 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6978 OP_I31, /* 0 .. 31 */
6979 OP_I31w, /* 0 .. 31, optional trailing ! */
6980 OP_I32, /* 1 .. 32 */
5287ad62
JB
6981 OP_I32z, /* 0 .. 32 */
6982 OP_I63, /* 0 .. 63 */
c19d1205 6983 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6984 OP_I64, /* 1 .. 64 */
6985 OP_I64z, /* 0 .. 64 */
c19d1205 6986 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6987
6988 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6989 OP_I7b, /* 0 .. 7 */
6990 OP_I15b, /* 0 .. 15 */
6991 OP_I31b, /* 0 .. 31 */
6992
6993 OP_SH, /* shifter operand */
4962c51a 6994 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6995 OP_ADDR, /* Memory address expression (any mode) */
35c228db 6996 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
4962c51a
MS
6997 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6998 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6999 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
7000 OP_EXP, /* arbitrary expression */
7001 OP_EXPi, /* same, with optional immediate prefix */
7002 OP_EXPr, /* same, with optional relocation suffix */
e2b0ab59 7003 OP_EXPs, /* same, with optional non-first operand relocation suffix */
b6895b4f 7004 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c28eeff2
SN
7005 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7006 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
c19d1205
ZW
7007
7008 OP_CPSF, /* CPS flags */
7009 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
7010 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7011 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 7012 OP_COND, /* conditional code */
92e90b6e 7013 OP_TB, /* Table branch. */
c19d1205 7014
037e8744
JB
7015 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7016
c19d1205 7017 OP_RRnpc_I0, /* ARM register or literal 0 */
33eaf5de 7018 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
c19d1205
ZW
7019 OP_RR_EXi, /* ARM register or expression with imm prefix */
7020 OP_RF_IF, /* FPA register or immediate */
7021 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 7022 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
7023
7024 /* Optional operands. */
7025 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7026 OP_oI31b, /* 0 .. 31 */
5287ad62 7027 OP_oI32b, /* 1 .. 32 */
5f1af56b 7028 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
7029 OP_oIffffb, /* 0 .. 65535 */
7030 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7031
7032 OP_oRR, /* ARM register */
60f993ce 7033 OP_oLR, /* ARM LR register */
c19d1205 7034 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 7035 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 7036 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
7037 OP_oRND, /* Optional Neon double precision register */
7038 OP_oRNQ, /* Optional Neon quad precision register */
5ee91343 7039 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
5287ad62 7040 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 7041 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5ee91343
AV
7042 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7043 register. */
c19d1205
ZW
7044 OP_oSHll, /* LSL immediate */
7045 OP_oSHar, /* ASR immediate */
7046 OP_oSHllar, /* LSL or ASR immediate */
7047 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 7048 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 7049
1b883319
AV
7050 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7051
5be8be5d
DG
7052 /* Some pre-defined mixed (ARM/THUMB) operands. */
7053 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7054 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7055 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7056
c19d1205
ZW
7057 OP_FIRST_OPTIONAL = OP_oI7b
7058};
a737bd4d 7059
c19d1205
ZW
7060/* Generic instruction operand parser. This does no encoding and no
7061 semantic validation; it merely squirrels values away in the inst
7062 structure. Returns SUCCESS or FAIL depending on whether the
7063 specified grammar matched. */
7064static int
5be8be5d 7065parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 7066{
5be8be5d 7067 unsigned const int *upat = pattern;
c19d1205
ZW
7068 char *backtrack_pos = 0;
7069 const char *backtrack_error = 0;
99aad254 7070 int i, val = 0, backtrack_index = 0;
5287ad62 7071 enum arm_reg_type rtype;
4962c51a 7072 parse_operand_result result;
5be8be5d 7073 unsigned int op_parse_code;
efd6b359 7074 bfd_boolean partial_match;
c19d1205 7075
e07e6e58
NC
7076#define po_char_or_fail(chr) \
7077 do \
7078 { \
7079 if (skip_past_char (&str, chr) == FAIL) \
477330fc 7080 goto bad_args; \
e07e6e58
NC
7081 } \
7082 while (0)
c19d1205 7083
e07e6e58
NC
7084#define po_reg_or_fail(regtype) \
7085 do \
dcbf9037 7086 { \
e07e6e58 7087 val = arm_typed_reg_parse (& str, regtype, & rtype, \
477330fc 7088 & inst.operands[i].vectype); \
e07e6e58 7089 if (val == FAIL) \
477330fc
RM
7090 { \
7091 first_error (_(reg_expected_msgs[regtype])); \
7092 goto failure; \
7093 } \
e07e6e58
NC
7094 inst.operands[i].reg = val; \
7095 inst.operands[i].isreg = 1; \
7096 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7097 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7098 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc
RM
7099 || rtype == REG_TYPE_VFD \
7100 || rtype == REG_TYPE_NQ); \
1b883319 7101 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
dcbf9037 7102 } \
e07e6e58
NC
7103 while (0)
7104
7105#define po_reg_or_goto(regtype, label) \
7106 do \
7107 { \
7108 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7109 & inst.operands[i].vectype); \
7110 if (val == FAIL) \
7111 goto label; \
dcbf9037 7112 \
e07e6e58
NC
7113 inst.operands[i].reg = val; \
7114 inst.operands[i].isreg = 1; \
7115 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7116 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7117 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc 7118 || rtype == REG_TYPE_VFD \
e07e6e58 7119 || rtype == REG_TYPE_NQ); \
1b883319 7120 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
e07e6e58
NC
7121 } \
7122 while (0)
7123
7124#define po_imm_or_fail(min, max, popt) \
7125 do \
7126 { \
7127 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7128 goto failure; \
7129 inst.operands[i].imm = val; \
7130 } \
7131 while (0)
7132
57785aa2 7133#define po_scalar_or_goto(elsz, label, reg_type) \
e07e6e58
NC
7134 do \
7135 { \
57785aa2
AV
7136 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7137 reg_type); \
e07e6e58
NC
7138 if (val == FAIL) \
7139 goto label; \
7140 inst.operands[i].reg = val; \
7141 inst.operands[i].isscalar = 1; \
7142 } \
7143 while (0)
7144
7145#define po_misc_or_fail(expr) \
7146 do \
7147 { \
7148 if (expr) \
7149 goto failure; \
7150 } \
7151 while (0)
7152
7153#define po_misc_or_fail_no_backtrack(expr) \
7154 do \
7155 { \
7156 result = expr; \
7157 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7158 backtrack_pos = 0; \
7159 if (result != PARSE_OPERAND_SUCCESS) \
7160 goto failure; \
7161 } \
7162 while (0)
4962c51a 7163
52e7f43d
RE
7164#define po_barrier_or_imm(str) \
7165 do \
7166 { \
7167 val = parse_barrier (&str); \
ccb84d65
JB
7168 if (val == FAIL && ! ISALPHA (*str)) \
7169 goto immediate; \
7170 if (val == FAIL \
7171 /* ISB can only take SY as an option. */ \
7172 || ((inst.instruction & 0xf0) == 0x60 \
7173 && val != 0xf)) \
52e7f43d 7174 { \
ccb84d65
JB
7175 inst.error = _("invalid barrier type"); \
7176 backtrack_pos = 0; \
7177 goto failure; \
52e7f43d
RE
7178 } \
7179 } \
7180 while (0)
7181
c19d1205
ZW
7182 skip_whitespace (str);
7183
7184 for (i = 0; upat[i] != OP_stop; i++)
7185 {
5be8be5d
DG
7186 op_parse_code = upat[i];
7187 if (op_parse_code >= 1<<16)
7188 op_parse_code = thumb ? (op_parse_code >> 16)
7189 : (op_parse_code & ((1<<16)-1));
7190
7191 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
7192 {
7193 /* Remember where we are in case we need to backtrack. */
c19d1205
ZW
7194 backtrack_pos = str;
7195 backtrack_error = inst.error;
7196 backtrack_index = i;
7197 }
7198
b6702015 7199 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
7200 po_char_or_fail (',');
7201
5be8be5d 7202 switch (op_parse_code)
c19d1205
ZW
7203 {
7204 /* Registers */
7205 case OP_oRRnpc:
5be8be5d 7206 case OP_oRRnpcsp:
c19d1205 7207 case OP_RRnpc:
5be8be5d 7208 case OP_RRnpcsp:
c19d1205 7209 case OP_oRR:
a302e574
AV
7210 case OP_RRe:
7211 case OP_RRo:
60f993ce
AV
7212 case OP_LR:
7213 case OP_oLR:
c19d1205
ZW
7214 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7215 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7216 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7217 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7218 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7219 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
477330fc 7220 case OP_oRND:
5ee91343
AV
7221 case OP_RNDMQR:
7222 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7223 break;
7224 try_rndmq:
7225 case OP_RNDMQ:
7226 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7227 break;
7228 try_rnd:
5287ad62 7229 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
7230 case OP_RVC:
7231 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7232 break;
7233 /* Also accept generic coprocessor regs for unknown registers. */
7234 coproc_reg:
7235 po_reg_or_fail (REG_TYPE_CN);
7236 break;
c19d1205
ZW
7237 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7238 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7239 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7240 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7241 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7242 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7243 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7244 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7245 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7246 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
477330fc 7247 case OP_oRNQ:
5ee91343
AV
7248 case OP_RNQMQ:
7249 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7250 break;
7251 try_nq:
5287ad62 7252 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
dec41383 7253 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7df54120
AV
7254 case OP_RNDQMQR:
7255 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7256 break;
7257 try_rndqmq:
5ee91343
AV
7258 case OP_oRNDQMQ:
7259 case OP_RNDQMQ:
7260 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7261 break;
7262 try_rndq:
477330fc 7263 case OP_oRNDQ:
5287ad62 7264 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
dd9634d9
AV
7265 case OP_RVSDMQ:
7266 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7267 break;
7268 try_rvsd:
477330fc 7269 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
1b883319
AV
7270 case OP_RVSD_COND:
7271 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7272 break;
477330fc
RM
7273 case OP_oRNSDQ:
7274 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5ee91343
AV
7275 case OP_RNSDQMQR:
7276 po_reg_or_goto (REG_TYPE_RN, try_mq);
7277 break;
7278 try_mq:
7279 case OP_oRNSDQMQ:
7280 case OP_RNSDQMQ:
7281 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7282 break;
7283 try_nsdq2:
7284 po_reg_or_fail (REG_TYPE_NSDQ);
7285 inst.error = 0;
7286 break;
35d1cfc2
AV
7287 case OP_RMQRR:
7288 po_reg_or_goto (REG_TYPE_RN, try_rmq);
7289 break;
7290 try_rmq:
a302e574
AV
7291 case OP_RMQ:
7292 po_reg_or_fail (REG_TYPE_MQ);
7293 break;
477330fc
RM
7294 /* Neon scalar. Using an element size of 8 means that some invalid
7295 scalars are accepted here, so deal with those in later code. */
57785aa2 7296 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
477330fc
RM
7297
7298 case OP_RNDQ_I0:
7299 {
7300 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7301 break;
7302 try_imm0:
7303 po_imm_or_fail (0, 0, TRUE);
7304 }
7305 break;
7306
7307 case OP_RVSD_I0:
7308 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7309 break;
7310
1b883319
AV
7311 case OP_RSVDMQ_FI0:
7312 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7313 break;
7314 try_rsvd_fi0:
aacf0b33
KT
7315 case OP_RSVD_FI0:
7316 {
7317 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7318 break;
7319 try_ifimm0:
7320 if (parse_ifimm_zero (&str))
7321 inst.operands[i].imm = 0;
7322 else
7323 {
7324 inst.error
7325 = _("only floating point zero is allowed as immediate value");
7326 goto failure;
7327 }
7328 }
7329 break;
7330
477330fc
RM
7331 case OP_RR_RNSC:
7332 {
57785aa2 7333 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
477330fc
RM
7334 break;
7335 try_rr:
7336 po_reg_or_fail (REG_TYPE_RN);
7337 }
7338 break;
7339
a8465a06
AV
7340 case OP_RNSDQ_RNSC_MQ_RR:
7341 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7342 break;
7343 try_rnsdq_rnsc_mq:
886e1c73
AV
7344 case OP_RNSDQ_RNSC_MQ:
7345 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7346 break;
7347 try_rnsdq_rnsc:
477330fc
RM
7348 case OP_RNSDQ_RNSC:
7349 {
57785aa2
AV
7350 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7351 inst.error = 0;
477330fc
RM
7352 break;
7353 try_nsdq:
7354 po_reg_or_fail (REG_TYPE_NSDQ);
57785aa2 7355 inst.error = 0;
477330fc
RM
7356 }
7357 break;
7358
dec41383
JW
7359 case OP_RNSD_RNSC:
7360 {
57785aa2 7361 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
dec41383
JW
7362 break;
7363 try_s_scalar:
57785aa2 7364 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
dec41383
JW
7365 break;
7366 try_nsd:
7367 po_reg_or_fail (REG_TYPE_NSD);
7368 }
7369 break;
7370
42b16635
AV
7371 case OP_RNDQMQ_RNSC_RR:
7372 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc_rr);
7373 break;
7374 try_rndq_rnsc_rr:
7375 case OP_RNDQ_RNSC_RR:
7376 po_reg_or_goto (REG_TYPE_RN, try_rndq_rnsc);
7377 break;
5d281bf0
AV
7378 case OP_RNDQMQ_RNSC:
7379 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7380 break;
7381 try_rndq_rnsc:
477330fc
RM
7382 case OP_RNDQ_RNSC:
7383 {
57785aa2 7384 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
477330fc
RM
7385 break;
7386 try_ndq:
7387 po_reg_or_fail (REG_TYPE_NDQ);
7388 }
7389 break;
7390
7391 case OP_RND_RNSC:
7392 {
57785aa2 7393 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
477330fc
RM
7394 break;
7395 try_vfd:
7396 po_reg_or_fail (REG_TYPE_VFD);
7397 }
7398 break;
7399
7400 case OP_VMOV:
7401 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7402 not careful then bad things might happen. */
7403 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7404 break;
7405
f601a00c
AV
7406 case OP_RNDQMQ_Ibig:
7407 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7408 break;
7409 try_rndq_ibig:
477330fc
RM
7410 case OP_RNDQ_Ibig:
7411 {
7412 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7413 break;
7414 try_immbig:
7415 /* There's a possibility of getting a 64-bit immediate here, so
7416 we need special handling. */
8335d6aa
JW
7417 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7418 == FAIL)
477330fc
RM
7419 {
7420 inst.error = _("immediate value is out of range");
7421 goto failure;
7422 }
7423 }
7424 break;
7425
5150f0d8
AV
7426 case OP_RNDQMQ_I63b_RR:
7427 po_reg_or_goto (REG_TYPE_MQ, try_rndq_i63b_rr);
7428 break;
7429 try_rndq_i63b_rr:
7430 po_reg_or_goto (REG_TYPE_RN, try_rndq_i63b);
7431 break;
7432 try_rndq_i63b:
477330fc
RM
7433 case OP_RNDQ_I63b:
7434 {
7435 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7436 break;
7437 try_shimm:
7438 po_imm_or_fail (0, 63, TRUE);
7439 }
7440 break;
c19d1205
ZW
7441
7442 case OP_RRnpcb:
7443 po_char_or_fail ('[');
7444 po_reg_or_fail (REG_TYPE_RN);
7445 po_char_or_fail (']');
7446 break;
a737bd4d 7447
55881a11 7448 case OP_RRnpctw:
c19d1205 7449 case OP_RRw:
b6702015 7450 case OP_oRRw:
c19d1205
ZW
7451 po_reg_or_fail (REG_TYPE_RN);
7452 if (skip_past_char (&str, '!') == SUCCESS)
7453 inst.operands[i].writeback = 1;
7454 break;
7455
7456 /* Immediates */
7457 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7458 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7459 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
477330fc 7460 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
7461 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7462 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
477330fc 7463 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 7464 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
477330fc
RM
7465 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7466 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7467 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 7468 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
7469
7470 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7471 case OP_oI7b:
7472 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7473 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7474 case OP_oI31b:
7475 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
477330fc
RM
7476 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7477 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
7478 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7479
7480 /* Immediate variants */
7481 case OP_oI255c:
7482 po_char_or_fail ('{');
7483 po_imm_or_fail (0, 255, TRUE);
7484 po_char_or_fail ('}');
7485 break;
7486
7487 case OP_I31w:
7488 /* The expression parser chokes on a trailing !, so we have
7489 to find it first and zap it. */
7490 {
7491 char *s = str;
7492 while (*s && *s != ',')
7493 s++;
7494 if (s[-1] == '!')
7495 {
7496 s[-1] = '\0';
7497 inst.operands[i].writeback = 1;
7498 }
7499 po_imm_or_fail (0, 31, TRUE);
7500 if (str == s - 1)
7501 str = s;
7502 }
7503 break;
7504
7505 /* Expressions */
7506 case OP_EXPi: EXPi:
e2b0ab59 7507 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7508 GE_OPT_PREFIX));
7509 break;
7510
7511 case OP_EXP:
e2b0ab59 7512 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7513 GE_NO_PREFIX));
7514 break;
7515
7516 case OP_EXPr: EXPr:
e2b0ab59 7517 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205 7518 GE_NO_PREFIX));
e2b0ab59 7519 if (inst.relocs[0].exp.X_op == O_symbol)
a737bd4d 7520 {
c19d1205
ZW
7521 val = parse_reloc (&str);
7522 if (val == -1)
7523 {
7524 inst.error = _("unrecognized relocation suffix");
7525 goto failure;
7526 }
7527 else if (val != BFD_RELOC_UNUSED)
7528 {
7529 inst.operands[i].imm = val;
7530 inst.operands[i].hasreloc = 1;
7531 }
a737bd4d 7532 }
c19d1205 7533 break;
a737bd4d 7534
e2b0ab59
AV
7535 case OP_EXPs:
7536 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7537 GE_NO_PREFIX));
7538 if (inst.relocs[i].exp.X_op == O_symbol)
7539 {
7540 inst.operands[i].hasreloc = 1;
7541 }
7542 else if (inst.relocs[i].exp.X_op == O_constant)
7543 {
7544 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7545 inst.operands[i].hasreloc = 0;
7546 }
7547 break;
7548
b6895b4f
PB
7549 /* Operand for MOVW or MOVT. */
7550 case OP_HALF:
7551 po_misc_or_fail (parse_half (&str));
7552 break;
7553
e07e6e58 7554 /* Register or expression. */
c19d1205
ZW
7555 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7556 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 7557
e07e6e58 7558 /* Register or immediate. */
c19d1205
ZW
7559 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7560 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 7561
c19d1205
ZW
7562 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7563 IF:
7564 if (!is_immediate_prefix (*str))
7565 goto bad_args;
7566 str++;
7567 val = parse_fpa_immediate (&str);
7568 if (val == FAIL)
7569 goto failure;
7570 /* FPA immediates are encoded as registers 8-15.
7571 parse_fpa_immediate has already applied the offset. */
7572 inst.operands[i].reg = val;
7573 inst.operands[i].isreg = 1;
7574 break;
09d92015 7575
2d447fca
JM
7576 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7577 I32z: po_imm_or_fail (0, 32, FALSE); break;
7578
e07e6e58 7579 /* Two kinds of register. */
c19d1205
ZW
7580 case OP_RIWR_RIWC:
7581 {
7582 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
7583 if (!rege
7584 || (rege->type != REG_TYPE_MMXWR
7585 && rege->type != REG_TYPE_MMXWC
7586 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
7587 {
7588 inst.error = _("iWMMXt data or control register expected");
7589 goto failure;
7590 }
7591 inst.operands[i].reg = rege->number;
7592 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7593 }
7594 break;
09d92015 7595
41adaa5c
JM
7596 case OP_RIWC_RIWG:
7597 {
7598 struct reg_entry *rege = arm_reg_parse_multi (&str);
7599 if (!rege
7600 || (rege->type != REG_TYPE_MMXWC
7601 && rege->type != REG_TYPE_MMXWCG))
7602 {
7603 inst.error = _("iWMMXt control register expected");
7604 goto failure;
7605 }
7606 inst.operands[i].reg = rege->number;
7607 inst.operands[i].isreg = 1;
7608 }
7609 break;
7610
c19d1205
ZW
7611 /* Misc */
7612 case OP_CPSF: val = parse_cps_flags (&str); break;
7613 case OP_ENDI: val = parse_endian_specifier (&str); break;
7614 case OP_oROR: val = parse_ror (&str); break;
1b883319 7615 try_cond:
c19d1205 7616 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
7617 case OP_oBARRIER_I15:
7618 po_barrier_or_imm (str); break;
7619 immediate:
7620 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
477330fc 7621 goto failure;
52e7f43d 7622 break;
c19d1205 7623
fa94de6b 7624 case OP_wPSR:
d2cd1205 7625 case OP_rPSR:
90ec0d68
MGD
7626 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7627 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7628 {
7629 inst.error = _("Banked registers are not available with this "
7630 "architecture.");
7631 goto failure;
7632 }
7633 break;
d2cd1205
JB
7634 try_psr:
7635 val = parse_psr (&str, op_parse_code == OP_wPSR);
7636 break;
037e8744 7637
32c36c3c
AV
7638 case OP_VLDR:
7639 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7640 break;
7641 try_sysreg:
7642 val = parse_sys_vldr_vstr (&str);
7643 break;
7644
477330fc
RM
7645 case OP_APSR_RR:
7646 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7647 break;
7648 try_apsr:
7649 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7650 instruction). */
7651 if (strncasecmp (str, "APSR_", 5) == 0)
7652 {
7653 unsigned found = 0;
7654 str += 5;
7655 while (found < 15)
7656 switch (*str++)
7657 {
7658 case 'c': found = (found & 1) ? 16 : found | 1; break;
7659 case 'n': found = (found & 2) ? 16 : found | 2; break;
7660 case 'z': found = (found & 4) ? 16 : found | 4; break;
7661 case 'v': found = (found & 8) ? 16 : found | 8; break;
7662 default: found = 16;
7663 }
7664 if (found != 15)
7665 goto failure;
7666 inst.operands[i].isvec = 1;
f7c21dc7
NC
7667 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7668 inst.operands[i].reg = REG_PC;
477330fc
RM
7669 }
7670 else
7671 goto failure;
7672 break;
037e8744 7673
92e90b6e
PB
7674 case OP_TB:
7675 po_misc_or_fail (parse_tb (&str));
7676 break;
7677
e07e6e58 7678 /* Register lists. */
c19d1205 7679 case OP_REGLST:
4b5a202f 7680 val = parse_reg_list (&str, REGLIST_RN);
c19d1205
ZW
7681 if (*str == '^')
7682 {
5e0d7f77 7683 inst.operands[i].writeback = 1;
c19d1205
ZW
7684 str++;
7685 }
7686 break;
09d92015 7687
4b5a202f
AV
7688 case OP_CLRMLST:
7689 val = parse_reg_list (&str, REGLIST_CLRM);
7690 break;
7691
c19d1205 7692 case OP_VRSLST:
efd6b359
AV
7693 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7694 &partial_match);
c19d1205 7695 break;
09d92015 7696
c19d1205 7697 case OP_VRDLST:
efd6b359
AV
7698 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7699 &partial_match);
c19d1205 7700 break;
a737bd4d 7701
477330fc
RM
7702 case OP_VRSDLST:
7703 /* Allow Q registers too. */
7704 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7705 REGLIST_NEON_D, &partial_match);
477330fc
RM
7706 if (val == FAIL)
7707 {
7708 inst.error = NULL;
7709 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359
AV
7710 REGLIST_VFP_S, &partial_match);
7711 inst.operands[i].issingle = 1;
7712 }
7713 break;
7714
7715 case OP_VRSDVLST:
7716 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7717 REGLIST_VFP_D_VPR, &partial_match);
7718 if (val == FAIL && !partial_match)
7719 {
7720 inst.error = NULL;
7721 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7722 REGLIST_VFP_S_VPR, &partial_match);
477330fc
RM
7723 inst.operands[i].issingle = 1;
7724 }
7725 break;
7726
7727 case OP_NRDLST:
7728 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7729 REGLIST_NEON_D, &partial_match);
477330fc 7730 break;
5287ad62 7731
35c228db
AV
7732 case OP_MSTRLST4:
7733 case OP_MSTRLST2:
7734 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7735 1, &inst.operands[i].vectype);
7736 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7737 goto failure;
7738 break;
5287ad62 7739 case OP_NSTRLST:
477330fc 7740 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
35c228db 7741 0, &inst.operands[i].vectype);
477330fc 7742 break;
5287ad62 7743
c19d1205 7744 /* Addressing modes */
35c228db
AV
7745 case OP_ADDRMVE:
7746 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7747 break;
7748
c19d1205
ZW
7749 case OP_ADDR:
7750 po_misc_or_fail (parse_address (&str, i));
7751 break;
09d92015 7752
4962c51a
MS
7753 case OP_ADDRGLDR:
7754 po_misc_or_fail_no_backtrack (
477330fc 7755 parse_address_group_reloc (&str, i, GROUP_LDR));
4962c51a
MS
7756 break;
7757
7758 case OP_ADDRGLDRS:
7759 po_misc_or_fail_no_backtrack (
477330fc 7760 parse_address_group_reloc (&str, i, GROUP_LDRS));
4962c51a
MS
7761 break;
7762
7763 case OP_ADDRGLDC:
7764 po_misc_or_fail_no_backtrack (
477330fc 7765 parse_address_group_reloc (&str, i, GROUP_LDC));
4962c51a
MS
7766 break;
7767
c19d1205
ZW
7768 case OP_SH:
7769 po_misc_or_fail (parse_shifter_operand (&str, i));
7770 break;
09d92015 7771
4962c51a
MS
7772 case OP_SHG:
7773 po_misc_or_fail_no_backtrack (
477330fc 7774 parse_shifter_operand_group_reloc (&str, i));
4962c51a
MS
7775 break;
7776
c19d1205
ZW
7777 case OP_oSHll:
7778 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7779 break;
09d92015 7780
c19d1205
ZW
7781 case OP_oSHar:
7782 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7783 break;
09d92015 7784
c19d1205
ZW
7785 case OP_oSHllar:
7786 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7787 break;
09d92015 7788
1b883319
AV
7789 case OP_RMQRZ:
7790 case OP_oRMQRZ:
7791 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7792 break;
7793 try_rr_zr:
7794 po_reg_or_goto (REG_TYPE_RN, ZR);
7795 break;
7796 ZR:
7797 po_reg_or_fail (REG_TYPE_ZR);
7798 break;
7799
c19d1205 7800 default:
5be8be5d 7801 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 7802 }
09d92015 7803
c19d1205
ZW
7804 /* Various value-based sanity checks and shared operations. We
7805 do not signal immediate failures for the register constraints;
7806 this allows a syntax error to take precedence. */
5be8be5d 7807 switch (op_parse_code)
c19d1205
ZW
7808 {
7809 case OP_oRRnpc:
7810 case OP_RRnpc:
7811 case OP_RRnpcb:
7812 case OP_RRw:
b6702015 7813 case OP_oRRw:
c19d1205
ZW
7814 case OP_RRnpc_I0:
7815 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7816 inst.error = BAD_PC;
7817 break;
09d92015 7818
5be8be5d
DG
7819 case OP_oRRnpcsp:
7820 case OP_RRnpcsp:
7821 if (inst.operands[i].isreg)
7822 {
7823 if (inst.operands[i].reg == REG_PC)
7824 inst.error = BAD_PC;
5c8ed6a4
JW
7825 else if (inst.operands[i].reg == REG_SP
7826 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7827 relaxed since ARMv8-A. */
7828 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7829 {
7830 gas_assert (thumb);
7831 inst.error = BAD_SP;
7832 }
5be8be5d
DG
7833 }
7834 break;
7835
55881a11 7836 case OP_RRnpctw:
fa94de6b
RM
7837 if (inst.operands[i].isreg
7838 && inst.operands[i].reg == REG_PC
55881a11
MGD
7839 && (inst.operands[i].writeback || thumb))
7840 inst.error = BAD_PC;
7841 break;
7842
1b883319 7843 case OP_RVSD_COND:
32c36c3c
AV
7844 case OP_VLDR:
7845 if (inst.operands[i].isreg)
7846 break;
7847 /* fall through. */
1b883319 7848
c19d1205
ZW
7849 case OP_CPSF:
7850 case OP_ENDI:
7851 case OP_oROR:
d2cd1205
JB
7852 case OP_wPSR:
7853 case OP_rPSR:
c19d1205 7854 case OP_COND:
52e7f43d 7855 case OP_oBARRIER_I15:
c19d1205 7856 case OP_REGLST:
4b5a202f 7857 case OP_CLRMLST:
c19d1205
ZW
7858 case OP_VRSLST:
7859 case OP_VRDLST:
477330fc 7860 case OP_VRSDLST:
efd6b359 7861 case OP_VRSDVLST:
477330fc
RM
7862 case OP_NRDLST:
7863 case OP_NSTRLST:
35c228db
AV
7864 case OP_MSTRLST2:
7865 case OP_MSTRLST4:
c19d1205
ZW
7866 if (val == FAIL)
7867 goto failure;
7868 inst.operands[i].imm = val;
7869 break;
a737bd4d 7870
60f993ce
AV
7871 case OP_LR:
7872 case OP_oLR:
7873 if (inst.operands[i].reg != REG_LR)
7874 inst.error = _("operand must be LR register");
7875 break;
7876
1b883319
AV
7877 case OP_RMQRZ:
7878 case OP_oRMQRZ:
7879 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7880 inst.error = BAD_PC;
7881 break;
7882
a302e574
AV
7883 case OP_RRe:
7884 if (inst.operands[i].isreg
7885 && (inst.operands[i].reg & 0x00000001) != 0)
7886 inst.error = BAD_ODD;
7887 break;
7888
7889 case OP_RRo:
7890 if (inst.operands[i].isreg)
7891 {
7892 if ((inst.operands[i].reg & 0x00000001) != 1)
7893 inst.error = BAD_EVEN;
7894 else if (inst.operands[i].reg == REG_SP)
7895 as_tsktsk (MVE_BAD_SP);
7896 else if (inst.operands[i].reg == REG_PC)
7897 inst.error = BAD_PC;
7898 }
7899 break;
7900
c19d1205
ZW
7901 default:
7902 break;
7903 }
09d92015 7904
c19d1205
ZW
7905 /* If we get here, this operand was successfully parsed. */
7906 inst.operands[i].present = 1;
7907 continue;
09d92015 7908
c19d1205 7909 bad_args:
09d92015 7910 inst.error = BAD_ARGS;
c19d1205
ZW
7911
7912 failure:
7913 if (!backtrack_pos)
d252fdde
PB
7914 {
7915 /* The parse routine should already have set inst.error, but set a
5f4273c7 7916 default here just in case. */
d252fdde 7917 if (!inst.error)
5ee91343 7918 inst.error = BAD_SYNTAX;
d252fdde
PB
7919 return FAIL;
7920 }
c19d1205
ZW
7921
7922 /* Do not backtrack over a trailing optional argument that
7923 absorbed some text. We will only fail again, with the
7924 'garbage following instruction' error message, which is
7925 probably less helpful than the current one. */
7926 if (backtrack_index == i && backtrack_pos != str
7927 && upat[i+1] == OP_stop)
d252fdde
PB
7928 {
7929 if (!inst.error)
5ee91343 7930 inst.error = BAD_SYNTAX;
d252fdde
PB
7931 return FAIL;
7932 }
c19d1205
ZW
7933
7934 /* Try again, skipping the optional argument at backtrack_pos. */
7935 str = backtrack_pos;
7936 inst.error = backtrack_error;
7937 inst.operands[backtrack_index].present = 0;
7938 i = backtrack_index;
7939 backtrack_pos = 0;
09d92015 7940 }
09d92015 7941
c19d1205
ZW
7942 /* Check that we have parsed all the arguments. */
7943 if (*str != '\0' && !inst.error)
7944 inst.error = _("garbage following instruction");
09d92015 7945
c19d1205 7946 return inst.error ? FAIL : SUCCESS;
09d92015
MM
7947}
7948
c19d1205
ZW
7949#undef po_char_or_fail
7950#undef po_reg_or_fail
7951#undef po_reg_or_goto
7952#undef po_imm_or_fail
5287ad62 7953#undef po_scalar_or_fail
52e7f43d 7954#undef po_barrier_or_imm
e07e6e58 7955
c19d1205 7956/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
7957#define constraint(expr, err) \
7958 do \
c19d1205 7959 { \
e07e6e58
NC
7960 if (expr) \
7961 { \
7962 inst.error = err; \
7963 return; \
7964 } \
c19d1205 7965 } \
e07e6e58 7966 while (0)
c19d1205 7967
fdfde340
JM
7968/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7969 instructions are unpredictable if these registers are used. This
5c8ed6a4
JW
7970 is the BadReg predicate in ARM's Thumb-2 documentation.
7971
7972 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7973 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7974#define reject_bad_reg(reg) \
7975 do \
7976 if (reg == REG_PC) \
7977 { \
7978 inst.error = BAD_PC; \
7979 return; \
7980 } \
7981 else if (reg == REG_SP \
7982 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7983 { \
7984 inst.error = BAD_SP; \
7985 return; \
7986 } \
fdfde340
JM
7987 while (0)
7988
94206790
MM
7989/* If REG is R13 (the stack pointer), warn that its use is
7990 deprecated. */
7991#define warn_deprecated_sp(reg) \
7992 do \
7993 if (warn_on_deprecated && reg == REG_SP) \
5c3696f8 7994 as_tsktsk (_("use of r13 is deprecated")); \
94206790
MM
7995 while (0)
7996
c19d1205
ZW
7997/* Functions for operand encoding. ARM, then Thumb. */
7998
d840c081 7999#define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
c19d1205 8000
9db2f6b4
RL
8001/* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
8002
8003 The only binary encoding difference is the Coprocessor number. Coprocessor
8004 9 is used for half-precision calculations or conversions. The format of the
2b0f3761 8005 instruction is the same as the equivalent Coprocessor 10 instruction that
9db2f6b4
RL
8006 exists for Single-Precision operation. */
8007
8008static void
8009do_scalar_fp16_v82_encode (void)
8010{
5ee91343 8011 if (inst.cond < COND_ALWAYS)
9db2f6b4
RL
8012 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
8013 " the behaviour is UNPREDICTABLE"));
8014 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
8015 _(BAD_FP16));
8016
8017 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
8018 mark_feature_used (&arm_ext_fp16);
8019}
8020
c19d1205
ZW
8021/* If VAL can be encoded in the immediate field of an ARM instruction,
8022 return the encoded form. Otherwise, return FAIL. */
8023
8024static unsigned int
8025encode_arm_immediate (unsigned int val)
09d92015 8026{
c19d1205
ZW
8027 unsigned int a, i;
8028
4f1d6205
L
8029 if (val <= 0xff)
8030 return val;
8031
8032 for (i = 2; i < 32; i += 2)
c19d1205
ZW
8033 if ((a = rotate_left (val, i)) <= 0xff)
8034 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8035
8036 return FAIL;
09d92015
MM
8037}
8038
c19d1205
ZW
8039/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8040 return the encoded form. Otherwise, return FAIL. */
8041static unsigned int
8042encode_thumb32_immediate (unsigned int val)
09d92015 8043{
c19d1205 8044 unsigned int a, i;
09d92015 8045
9c3c69f2 8046 if (val <= 0xff)
c19d1205 8047 return val;
a737bd4d 8048
9c3c69f2 8049 for (i = 1; i <= 24; i++)
09d92015 8050 {
9c3c69f2
PB
8051 a = val >> i;
8052 if ((val & ~(0xff << i)) == 0)
8053 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 8054 }
a737bd4d 8055
c19d1205
ZW
8056 a = val & 0xff;
8057 if (val == ((a << 16) | a))
8058 return 0x100 | a;
8059 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8060 return 0x300 | a;
09d92015 8061
c19d1205
ZW
8062 a = val & 0xff00;
8063 if (val == ((a << 16) | a))
8064 return 0x200 | (a >> 8);
a737bd4d 8065
c19d1205 8066 return FAIL;
09d92015 8067}
5287ad62 8068/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
8069
8070static void
5287ad62
JB
8071encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8072{
8073 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8074 && reg > 15)
8075 {
b1cc4aeb 8076 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
8077 {
8078 if (thumb_mode)
8079 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8080 fpu_vfp_ext_d32);
8081 else
8082 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8083 fpu_vfp_ext_d32);
8084 }
5287ad62 8085 else
477330fc
RM
8086 {
8087 first_error (_("D register out of range for selected VFP version"));
8088 return;
8089 }
5287ad62
JB
8090 }
8091
c19d1205 8092 switch (pos)
09d92015 8093 {
c19d1205
ZW
8094 case VFP_REG_Sd:
8095 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8096 break;
8097
8098 case VFP_REG_Sn:
8099 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8100 break;
8101
8102 case VFP_REG_Sm:
8103 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8104 break;
8105
5287ad62
JB
8106 case VFP_REG_Dd:
8107 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8108 break;
5f4273c7 8109
5287ad62
JB
8110 case VFP_REG_Dn:
8111 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8112 break;
5f4273c7 8113
5287ad62
JB
8114 case VFP_REG_Dm:
8115 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8116 break;
8117
c19d1205
ZW
8118 default:
8119 abort ();
09d92015 8120 }
09d92015
MM
8121}
8122
c19d1205 8123/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 8124 if any, is handled by md_apply_fix. */
09d92015 8125static void
c19d1205 8126encode_arm_shift (int i)
09d92015 8127{
008a97ef
RL
8128 /* register-shifted register. */
8129 if (inst.operands[i].immisreg)
8130 {
bf355b69
MR
8131 int op_index;
8132 for (op_index = 0; op_index <= i; ++op_index)
008a97ef 8133 {
5689c942
RL
8134 /* Check the operand only when it's presented. In pre-UAL syntax,
8135 if the destination register is the same as the first operand, two
8136 register form of the instruction can be used. */
bf355b69
MR
8137 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8138 && inst.operands[op_index].reg == REG_PC)
008a97ef
RL
8139 as_warn (UNPRED_REG ("r15"));
8140 }
8141
8142 if (inst.operands[i].imm == REG_PC)
8143 as_warn (UNPRED_REG ("r15"));
8144 }
8145
c19d1205
ZW
8146 if (inst.operands[i].shift_kind == SHIFT_RRX)
8147 inst.instruction |= SHIFT_ROR << 5;
8148 else
09d92015 8149 {
c19d1205
ZW
8150 inst.instruction |= inst.operands[i].shift_kind << 5;
8151 if (inst.operands[i].immisreg)
8152 {
8153 inst.instruction |= SHIFT_BY_REG;
8154 inst.instruction |= inst.operands[i].imm << 8;
8155 }
8156 else
e2b0ab59 8157 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 8158 }
c19d1205 8159}
09d92015 8160
c19d1205
ZW
8161static void
8162encode_arm_shifter_operand (int i)
8163{
8164 if (inst.operands[i].isreg)
09d92015 8165 {
c19d1205
ZW
8166 inst.instruction |= inst.operands[i].reg;
8167 encode_arm_shift (i);
09d92015 8168 }
c19d1205 8169 else
a415b1cd
JB
8170 {
8171 inst.instruction |= INST_IMMEDIATE;
e2b0ab59 8172 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
a415b1cd
JB
8173 inst.instruction |= inst.operands[i].imm;
8174 }
09d92015
MM
8175}
8176
c19d1205 8177/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 8178static void
c19d1205 8179encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 8180{
2b2f5df9
NC
8181 /* PR 14260:
8182 Generate an error if the operand is not a register. */
8183 constraint (!inst.operands[i].isreg,
8184 _("Instruction does not support =N addresses"));
8185
c19d1205 8186 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 8187
c19d1205 8188 if (inst.operands[i].preind)
09d92015 8189 {
c19d1205
ZW
8190 if (is_t)
8191 {
8192 inst.error = _("instruction does not accept preindexed addressing");
8193 return;
8194 }
8195 inst.instruction |= PRE_INDEX;
8196 if (inst.operands[i].writeback)
8197 inst.instruction |= WRITE_BACK;
09d92015 8198
c19d1205
ZW
8199 }
8200 else if (inst.operands[i].postind)
8201 {
9c2799c2 8202 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
8203 if (is_t)
8204 inst.instruction |= WRITE_BACK;
8205 }
8206 else /* unindexed - only for coprocessor */
09d92015 8207 {
c19d1205 8208 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
8209 return;
8210 }
8211
c19d1205
ZW
8212 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8213 && (((inst.instruction & 0x000f0000) >> 16)
8214 == ((inst.instruction & 0x0000f000) >> 12)))
8215 as_warn ((inst.instruction & LOAD_BIT)
8216 ? _("destination register same as write-back base")
8217 : _("source register same as write-back base"));
09d92015
MM
8218}
8219
c19d1205
ZW
8220/* inst.operands[i] was set up by parse_address. Encode it into an
8221 ARM-format mode 2 load or store instruction. If is_t is true,
8222 reject forms that cannot be used with a T instruction (i.e. not
8223 post-indexed). */
a737bd4d 8224static void
c19d1205 8225encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 8226{
5be8be5d
DG
8227 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8228
c19d1205 8229 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8230
c19d1205 8231 if (inst.operands[i].immisreg)
09d92015 8232 {
5be8be5d
DG
8233 constraint ((inst.operands[i].imm == REG_PC
8234 || (is_pc && inst.operands[i].writeback)),
8235 BAD_PC_ADDRESSING);
c19d1205
ZW
8236 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8237 inst.instruction |= inst.operands[i].imm;
8238 if (!inst.operands[i].negative)
8239 inst.instruction |= INDEX_UP;
8240 if (inst.operands[i].shifted)
8241 {
8242 if (inst.operands[i].shift_kind == SHIFT_RRX)
8243 inst.instruction |= SHIFT_ROR << 5;
8244 else
8245 {
8246 inst.instruction |= inst.operands[i].shift_kind << 5;
e2b0ab59 8247 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
c19d1205
ZW
8248 }
8249 }
09d92015 8250 }
e2b0ab59 8251 else /* immediate offset in inst.relocs[0] */
09d92015 8252 {
e2b0ab59 8253 if (is_pc && !inst.relocs[0].pc_rel)
5be8be5d
DG
8254 {
8255 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
8256
8257 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8258 cannot use PC in addressing.
8259 PC cannot be used in writeback addressing, either. */
8260 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 8261 BAD_PC_ADDRESSING);
23a10334 8262
dc5ec521 8263 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
8264 if (warn_on_deprecated
8265 && !is_load
8266 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
5c3696f8 8267 as_tsktsk (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
8268 }
8269
e2b0ab59 8270 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8271 {
8272 /* Prefer + for zero encoded value. */
8273 if (!inst.operands[i].negative)
8274 inst.instruction |= INDEX_UP;
e2b0ab59 8275 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
26d97720 8276 }
09d92015 8277 }
09d92015
MM
8278}
8279
c19d1205
ZW
8280/* inst.operands[i] was set up by parse_address. Encode it into an
8281 ARM-format mode 3 load or store instruction. Reject forms that
8282 cannot be used with such instructions. If is_t is true, reject
8283 forms that cannot be used with a T instruction (i.e. not
8284 post-indexed). */
8285static void
8286encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 8287{
c19d1205 8288 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 8289 {
c19d1205
ZW
8290 inst.error = _("instruction does not accept scaled register index");
8291 return;
09d92015 8292 }
a737bd4d 8293
c19d1205 8294 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8295
c19d1205
ZW
8296 if (inst.operands[i].immisreg)
8297 {
5be8be5d 8298 constraint ((inst.operands[i].imm == REG_PC
eb9f3f00 8299 || (is_t && inst.operands[i].reg == REG_PC)),
5be8be5d 8300 BAD_PC_ADDRESSING);
eb9f3f00
JB
8301 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8302 BAD_PC_WRITEBACK);
c19d1205
ZW
8303 inst.instruction |= inst.operands[i].imm;
8304 if (!inst.operands[i].negative)
8305 inst.instruction |= INDEX_UP;
8306 }
e2b0ab59 8307 else /* immediate offset in inst.relocs[0] */
c19d1205 8308 {
e2b0ab59 8309 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
5be8be5d
DG
8310 && inst.operands[i].writeback),
8311 BAD_PC_WRITEBACK);
c19d1205 8312 inst.instruction |= HWOFFSET_IMM;
e2b0ab59 8313 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8314 {
8315 /* Prefer + for zero encoded value. */
8316 if (!inst.operands[i].negative)
8317 inst.instruction |= INDEX_UP;
8318
e2b0ab59 8319 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
26d97720 8320 }
c19d1205 8321 }
a737bd4d
NC
8322}
8323
8335d6aa
JW
8324/* Write immediate bits [7:0] to the following locations:
8325
8326 |28/24|23 19|18 16|15 4|3 0|
8327 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8328
8329 This function is used by VMOV/VMVN/VORR/VBIC. */
8330
8331static void
8332neon_write_immbits (unsigned immbits)
8333{
8334 inst.instruction |= immbits & 0xf;
8335 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8336 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8337}
8338
8339/* Invert low-order SIZE bits of XHI:XLO. */
8340
8341static void
8342neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8343{
8344 unsigned immlo = xlo ? *xlo : 0;
8345 unsigned immhi = xhi ? *xhi : 0;
8346
8347 switch (size)
8348 {
8349 case 8:
8350 immlo = (~immlo) & 0xff;
8351 break;
8352
8353 case 16:
8354 immlo = (~immlo) & 0xffff;
8355 break;
8356
8357 case 64:
8358 immhi = (~immhi) & 0xffffffff;
8359 /* fall through. */
8360
8361 case 32:
8362 immlo = (~immlo) & 0xffffffff;
8363 break;
8364
8365 default:
8366 abort ();
8367 }
8368
8369 if (xlo)
8370 *xlo = immlo;
8371
8372 if (xhi)
8373 *xhi = immhi;
8374}
8375
8376/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8377 A, B, C, D. */
09d92015 8378
c19d1205 8379static int
8335d6aa 8380neon_bits_same_in_bytes (unsigned imm)
09d92015 8381{
8335d6aa
JW
8382 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8383 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8384 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8385 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8386}
a737bd4d 8387
8335d6aa 8388/* For immediate of above form, return 0bABCD. */
09d92015 8389
8335d6aa
JW
8390static unsigned
8391neon_squash_bits (unsigned imm)
8392{
8393 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8394 | ((imm & 0x01000000) >> 21);
8395}
8396
8397/* Compress quarter-float representation to 0b...000 abcdefgh. */
8398
8399static unsigned
8400neon_qfloat_bits (unsigned imm)
8401{
8402 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8403}
8404
8405/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8406 the instruction. *OP is passed as the initial value of the op field, and
8407 may be set to a different value depending on the constant (i.e.
8408 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8409 MVN). If the immediate looks like a repeated pattern then also
8410 try smaller element sizes. */
8411
8412static int
8413neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8414 unsigned *immbits, int *op, int size,
8415 enum neon_el_type type)
8416{
8417 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8418 float. */
8419 if (type == NT_float && !float_p)
8420 return FAIL;
8421
8422 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
09d92015 8423 {
8335d6aa
JW
8424 if (size != 32 || *op == 1)
8425 return FAIL;
8426 *immbits = neon_qfloat_bits (immlo);
8427 return 0xf;
8428 }
8429
8430 if (size == 64)
8431 {
8432 if (neon_bits_same_in_bytes (immhi)
8433 && neon_bits_same_in_bytes (immlo))
c19d1205 8434 {
8335d6aa
JW
8435 if (*op == 1)
8436 return FAIL;
8437 *immbits = (neon_squash_bits (immhi) << 4)
8438 | neon_squash_bits (immlo);
8439 *op = 1;
8440 return 0xe;
c19d1205 8441 }
a737bd4d 8442
8335d6aa
JW
8443 if (immhi != immlo)
8444 return FAIL;
8445 }
a737bd4d 8446
8335d6aa 8447 if (size >= 32)
09d92015 8448 {
8335d6aa 8449 if (immlo == (immlo & 0x000000ff))
c19d1205 8450 {
8335d6aa
JW
8451 *immbits = immlo;
8452 return 0x0;
c19d1205 8453 }
8335d6aa 8454 else if (immlo == (immlo & 0x0000ff00))
c19d1205 8455 {
8335d6aa
JW
8456 *immbits = immlo >> 8;
8457 return 0x2;
c19d1205 8458 }
8335d6aa
JW
8459 else if (immlo == (immlo & 0x00ff0000))
8460 {
8461 *immbits = immlo >> 16;
8462 return 0x4;
8463 }
8464 else if (immlo == (immlo & 0xff000000))
8465 {
8466 *immbits = immlo >> 24;
8467 return 0x6;
8468 }
8469 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8470 {
8471 *immbits = (immlo >> 8) & 0xff;
8472 return 0xc;
8473 }
8474 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8475 {
8476 *immbits = (immlo >> 16) & 0xff;
8477 return 0xd;
8478 }
8479
8480 if ((immlo & 0xffff) != (immlo >> 16))
8481 return FAIL;
8482 immlo &= 0xffff;
09d92015 8483 }
a737bd4d 8484
8335d6aa 8485 if (size >= 16)
4962c51a 8486 {
8335d6aa
JW
8487 if (immlo == (immlo & 0x000000ff))
8488 {
8489 *immbits = immlo;
8490 return 0x8;
8491 }
8492 else if (immlo == (immlo & 0x0000ff00))
8493 {
8494 *immbits = immlo >> 8;
8495 return 0xa;
8496 }
8497
8498 if ((immlo & 0xff) != (immlo >> 8))
8499 return FAIL;
8500 immlo &= 0xff;
4962c51a
MS
8501 }
8502
8335d6aa
JW
8503 if (immlo == (immlo & 0x000000ff))
8504 {
8505 /* Don't allow MVN with 8-bit immediate. */
8506 if (*op == 1)
8507 return FAIL;
8508 *immbits = immlo;
8509 return 0xe;
8510 }
26d97720 8511
8335d6aa 8512 return FAIL;
c19d1205 8513}
a737bd4d 8514
5fc177c8 8515#if defined BFD_HOST_64_BIT
ba592044
AM
8516/* Returns TRUE if double precision value V may be cast
8517 to single precision without loss of accuracy. */
8518
8519static bfd_boolean
5fc177c8 8520is_double_a_single (bfd_int64_t v)
ba592044 8521{
5fc177c8 8522 int exp = (int)((v >> 52) & 0x7FF);
8fe3f3d6 8523 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8524
8525 return (exp == 0 || exp == 0x7FF
8526 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8527 && (mantissa & 0x1FFFFFFFl) == 0;
8528}
8529
3739860c 8530/* Returns a double precision value casted to single precision
ba592044
AM
8531 (ignoring the least significant bits in exponent and mantissa). */
8532
8533static int
5fc177c8 8534double_to_single (bfd_int64_t v)
ba592044
AM
8535{
8536 int sign = (int) ((v >> 63) & 1l);
5fc177c8 8537 int exp = (int) ((v >> 52) & 0x7FF);
8fe3f3d6 8538 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8539
8540 if (exp == 0x7FF)
8541 exp = 0xFF;
8542 else
8543 {
8544 exp = exp - 1023 + 127;
8545 if (exp >= 0xFF)
8546 {
8547 /* Infinity. */
8548 exp = 0x7F;
8549 mantissa = 0;
8550 }
8551 else if (exp < 0)
8552 {
8553 /* No denormalized numbers. */
8554 exp = 0;
8555 mantissa = 0;
8556 }
8557 }
8558 mantissa >>= 29;
8559 return (sign << 31) | (exp << 23) | mantissa;
8560}
5fc177c8 8561#endif /* BFD_HOST_64_BIT */
ba592044 8562
8335d6aa
JW
8563enum lit_type
8564{
8565 CONST_THUMB,
8566 CONST_ARM,
8567 CONST_VEC
8568};
8569
ba592044
AM
8570static void do_vfp_nsyn_opcode (const char *);
8571
e2b0ab59 8572/* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
c19d1205
ZW
8573 Determine whether it can be performed with a move instruction; if
8574 it can, convert inst.instruction to that move instruction and
c921be7d
NC
8575 return TRUE; if it can't, convert inst.instruction to a literal-pool
8576 load and return FALSE. If this is not a valid thing to do in the
8577 current context, set inst.error and return TRUE.
a737bd4d 8578
c19d1205
ZW
8579 inst.operands[i] describes the destination register. */
8580
c921be7d 8581static bfd_boolean
8335d6aa 8582move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
c19d1205 8583{
53365c0d 8584 unsigned long tbit;
8335d6aa
JW
8585 bfd_boolean thumb_p = (t == CONST_THUMB);
8586 bfd_boolean arm_p = (t == CONST_ARM);
53365c0d
PB
8587
8588 if (thumb_p)
8589 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8590 else
8591 tbit = LOAD_BIT;
8592
8593 if ((inst.instruction & tbit) == 0)
09d92015 8594 {
c19d1205 8595 inst.error = _("invalid pseudo operation");
c921be7d 8596 return TRUE;
09d92015 8597 }
ba592044 8598
e2b0ab59
AV
8599 if (inst.relocs[0].exp.X_op != O_constant
8600 && inst.relocs[0].exp.X_op != O_symbol
8601 && inst.relocs[0].exp.X_op != O_big)
09d92015
MM
8602 {
8603 inst.error = _("constant expression expected");
c921be7d 8604 return TRUE;
09d92015 8605 }
ba592044 8606
e2b0ab59
AV
8607 if (inst.relocs[0].exp.X_op == O_constant
8608 || inst.relocs[0].exp.X_op == O_big)
8335d6aa 8609 {
5fc177c8
NC
8610#if defined BFD_HOST_64_BIT
8611 bfd_int64_t v;
8612#else
ba592044 8613 offsetT v;
5fc177c8 8614#endif
e2b0ab59 8615 if (inst.relocs[0].exp.X_op == O_big)
8335d6aa 8616 {
ba592044
AM
8617 LITTLENUM_TYPE w[X_PRECISION];
8618 LITTLENUM_TYPE * l;
8619
e2b0ab59 8620 if (inst.relocs[0].exp.X_add_number == -1)
8335d6aa 8621 {
ba592044
AM
8622 gen_to_words (w, X_PRECISION, E_PRECISION);
8623 l = w;
8624 /* FIXME: Should we check words w[2..5] ? */
8335d6aa 8625 }
ba592044
AM
8626 else
8627 l = generic_bignum;
3739860c 8628
5fc177c8
NC
8629#if defined BFD_HOST_64_BIT
8630 v =
8631 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8632 << LITTLENUM_NUMBER_OF_BITS)
8633 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8634 << LITTLENUM_NUMBER_OF_BITS)
8635 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8636 << LITTLENUM_NUMBER_OF_BITS)
8637 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8638#else
ba592044
AM
8639 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8640 | (l[0] & LITTLENUM_MASK);
5fc177c8 8641#endif
8335d6aa 8642 }
ba592044 8643 else
e2b0ab59 8644 v = inst.relocs[0].exp.X_add_number;
ba592044
AM
8645
8646 if (!inst.operands[i].issingle)
8335d6aa 8647 {
12569877 8648 if (thumb_p)
8335d6aa 8649 {
53445554
TP
8650 /* LDR should not use lead in a flag-setting instruction being
8651 chosen so we do not check whether movs can be used. */
12569877 8652
53445554 8653 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
ff8646ee 8654 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
53445554
TP
8655 && inst.operands[i].reg != 13
8656 && inst.operands[i].reg != 15)
12569877 8657 {
fc289b0a
TP
8658 /* Check if on thumb2 it can be done with a mov.w, mvn or
8659 movw instruction. */
12569877
AM
8660 unsigned int newimm;
8661 bfd_boolean isNegated;
8662
8663 newimm = encode_thumb32_immediate (v);
8664 if (newimm != (unsigned int) FAIL)
8665 isNegated = FALSE;
8666 else
8667 {
582cfe03 8668 newimm = encode_thumb32_immediate (~v);
12569877
AM
8669 if (newimm != (unsigned int) FAIL)
8670 isNegated = TRUE;
8671 }
8672
fc289b0a
TP
8673 /* The number can be loaded with a mov.w or mvn
8674 instruction. */
ff8646ee
TP
8675 if (newimm != (unsigned int) FAIL
8676 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
12569877 8677 {
fc289b0a 8678 inst.instruction = (0xf04f0000 /* MOV.W. */
582cfe03 8679 | (inst.operands[i].reg << 8));
fc289b0a 8680 /* Change to MOVN. */
582cfe03 8681 inst.instruction |= (isNegated ? 0x200000 : 0);
12569877
AM
8682 inst.instruction |= (newimm & 0x800) << 15;
8683 inst.instruction |= (newimm & 0x700) << 4;
8684 inst.instruction |= (newimm & 0x0ff);
8685 return TRUE;
8686 }
fc289b0a 8687 /* The number can be loaded with a movw instruction. */
ff8646ee
TP
8688 else if ((v & ~0xFFFF) == 0
8689 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
3739860c 8690 {
582cfe03 8691 int imm = v & 0xFFFF;
12569877 8692
582cfe03 8693 inst.instruction = 0xf2400000; /* MOVW. */
12569877
AM
8694 inst.instruction |= (inst.operands[i].reg << 8);
8695 inst.instruction |= (imm & 0xf000) << 4;
8696 inst.instruction |= (imm & 0x0800) << 15;
8697 inst.instruction |= (imm & 0x0700) << 4;
8698 inst.instruction |= (imm & 0x00ff);
8fe9a076
AV
8699 /* In case this replacement is being done on Armv8-M
8700 Baseline we need to make sure to disable the
8701 instruction size check, as otherwise GAS will reject
8702 the use of this T32 instruction. */
8703 inst.size_req = 0;
12569877
AM
8704 return TRUE;
8705 }
8706 }
8335d6aa 8707 }
12569877 8708 else if (arm_p)
ba592044
AM
8709 {
8710 int value = encode_arm_immediate (v);
12569877 8711
ba592044
AM
8712 if (value != FAIL)
8713 {
8714 /* This can be done with a mov instruction. */
8715 inst.instruction &= LITERAL_MASK;
8716 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8717 inst.instruction |= value & 0xfff;
8718 return TRUE;
8719 }
8335d6aa 8720
ba592044
AM
8721 value = encode_arm_immediate (~ v);
8722 if (value != FAIL)
8723 {
8724 /* This can be done with a mvn instruction. */
8725 inst.instruction &= LITERAL_MASK;
8726 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8727 inst.instruction |= value & 0xfff;
8728 return TRUE;
8729 }
8730 }
934c2632 8731 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8335d6aa 8732 {
ba592044
AM
8733 int op = 0;
8734 unsigned immbits = 0;
8735 unsigned immlo = inst.operands[1].imm;
8736 unsigned immhi = inst.operands[1].regisimm
8737 ? inst.operands[1].reg
e2b0ab59 8738 : inst.relocs[0].exp.X_unsigned
ba592044
AM
8739 ? 0
8740 : ((bfd_int64_t)((int) immlo)) >> 32;
8741 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8742 &op, 64, NT_invtype);
8743
8744 if (cmode == FAIL)
8745 {
8746 neon_invert_size (&immlo, &immhi, 64);
8747 op = !op;
8748 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8749 &op, 64, NT_invtype);
8750 }
8751
8752 if (cmode != FAIL)
8753 {
8754 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8755 | (1 << 23)
8756 | (cmode << 8)
8757 | (op << 5)
8758 | (1 << 4);
8759
8760 /* Fill other bits in vmov encoding for both thumb and arm. */
8761 if (thumb_mode)
eff0bc54 8762 inst.instruction |= (0x7U << 29) | (0xF << 24);
ba592044 8763 else
eff0bc54 8764 inst.instruction |= (0xFU << 28) | (0x1 << 25);
ba592044
AM
8765 neon_write_immbits (immbits);
8766 return TRUE;
8767 }
8335d6aa
JW
8768 }
8769 }
8335d6aa 8770
ba592044
AM
8771 if (t == CONST_VEC)
8772 {
8773 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8774 if (inst.operands[i].issingle
8775 && is_quarter_float (inst.operands[1].imm)
8776 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8335d6aa 8777 {
ba592044
AM
8778 inst.operands[1].imm =
8779 neon_qfloat_bits (v);
8780 do_vfp_nsyn_opcode ("fconsts");
8781 return TRUE;
8335d6aa 8782 }
5fc177c8
NC
8783
8784 /* If our host does not support a 64-bit type then we cannot perform
8785 the following optimization. This mean that there will be a
8786 discrepancy between the output produced by an assembler built for
8787 a 32-bit-only host and the output produced from a 64-bit host, but
8788 this cannot be helped. */
8789#if defined BFD_HOST_64_BIT
ba592044
AM
8790 else if (!inst.operands[1].issingle
8791 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8335d6aa 8792 {
ba592044
AM
8793 if (is_double_a_single (v)
8794 && is_quarter_float (double_to_single (v)))
8795 {
8796 inst.operands[1].imm =
8797 neon_qfloat_bits (double_to_single (v));
8798 do_vfp_nsyn_opcode ("fconstd");
8799 return TRUE;
8800 }
8335d6aa 8801 }
5fc177c8 8802#endif
8335d6aa
JW
8803 }
8804 }
8805
8806 if (add_to_lit_pool ((!inst.operands[i].isvec
8807 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8808 return TRUE;
8809
8810 inst.operands[1].reg = REG_PC;
8811 inst.operands[1].isreg = 1;
8812 inst.operands[1].preind = 1;
e2b0ab59
AV
8813 inst.relocs[0].pc_rel = 1;
8814 inst.relocs[0].type = (thumb_p
8335d6aa
JW
8815 ? BFD_RELOC_ARM_THUMB_OFFSET
8816 : (mode_3
8817 ? BFD_RELOC_ARM_HWLITERAL
8818 : BFD_RELOC_ARM_LITERAL));
8819 return FALSE;
8820}
8821
8822/* inst.operands[i] was set up by parse_address. Encode it into an
8823 ARM-format instruction. Reject all forms which cannot be encoded
8824 into a coprocessor load/store instruction. If wb_ok is false,
8825 reject use of writeback; if unind_ok is false, reject use of
8826 unindexed addressing. If reloc_override is not 0, use it instead
8827 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8828 (in which case it is preserved). */
8829
8830static int
8831encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8832{
8833 if (!inst.operands[i].isreg)
8834 {
99b2a2dd
NC
8835 /* PR 18256 */
8836 if (! inst.operands[0].isvec)
8837 {
8838 inst.error = _("invalid co-processor operand");
8839 return FAIL;
8840 }
8335d6aa
JW
8841 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8842 return SUCCESS;
8843 }
8844
8845 inst.instruction |= inst.operands[i].reg << 16;
8846
8847 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8848
8849 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8850 {
8851 gas_assert (!inst.operands[i].writeback);
8852 if (!unind_ok)
8853 {
8854 inst.error = _("instruction does not support unindexed addressing");
8855 return FAIL;
8856 }
8857 inst.instruction |= inst.operands[i].imm;
8858 inst.instruction |= INDEX_UP;
8859 return SUCCESS;
8860 }
8861
8862 if (inst.operands[i].preind)
8863 inst.instruction |= PRE_INDEX;
8864
8865 if (inst.operands[i].writeback)
09d92015 8866 {
8335d6aa 8867 if (inst.operands[i].reg == REG_PC)
c19d1205 8868 {
8335d6aa
JW
8869 inst.error = _("pc may not be used with write-back");
8870 return FAIL;
c19d1205 8871 }
8335d6aa 8872 if (!wb_ok)
c19d1205 8873 {
8335d6aa
JW
8874 inst.error = _("instruction does not support writeback");
8875 return FAIL;
c19d1205 8876 }
8335d6aa 8877 inst.instruction |= WRITE_BACK;
09d92015
MM
8878 }
8879
8335d6aa 8880 if (reloc_override)
e2b0ab59
AV
8881 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8882 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8883 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8884 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
c19d1205 8885 {
8335d6aa 8886 if (thumb_mode)
e2b0ab59 8887 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8335d6aa 8888 else
e2b0ab59 8889 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
c19d1205 8890 }
8335d6aa
JW
8891
8892 /* Prefer + for zero encoded value. */
8893 if (!inst.operands[i].negative)
8894 inst.instruction |= INDEX_UP;
8895
8896 return SUCCESS;
09d92015
MM
8897}
8898
5f4273c7 8899/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
8900 First some generics; their names are taken from the conventional
8901 bit positions for register arguments in ARM format instructions. */
09d92015 8902
a737bd4d 8903static void
c19d1205 8904do_noargs (void)
09d92015 8905{
c19d1205 8906}
a737bd4d 8907
c19d1205
ZW
8908static void
8909do_rd (void)
8910{
8911 inst.instruction |= inst.operands[0].reg << 12;
8912}
a737bd4d 8913
16a1fa25
TP
8914static void
8915do_rn (void)
8916{
8917 inst.instruction |= inst.operands[0].reg << 16;
8918}
8919
c19d1205
ZW
8920static void
8921do_rd_rm (void)
8922{
8923 inst.instruction |= inst.operands[0].reg << 12;
8924 inst.instruction |= inst.operands[1].reg;
8925}
09d92015 8926
9eb6c0f1
MGD
8927static void
8928do_rm_rn (void)
8929{
8930 inst.instruction |= inst.operands[0].reg;
8931 inst.instruction |= inst.operands[1].reg << 16;
8932}
8933
c19d1205
ZW
8934static void
8935do_rd_rn (void)
8936{
8937 inst.instruction |= inst.operands[0].reg << 12;
8938 inst.instruction |= inst.operands[1].reg << 16;
8939}
a737bd4d 8940
c19d1205
ZW
8941static void
8942do_rn_rd (void)
8943{
8944 inst.instruction |= inst.operands[0].reg << 16;
8945 inst.instruction |= inst.operands[1].reg << 12;
8946}
09d92015 8947
4ed7ed8d
TP
8948static void
8949do_tt (void)
8950{
8951 inst.instruction |= inst.operands[0].reg << 8;
8952 inst.instruction |= inst.operands[1].reg << 16;
8953}
8954
59d09be6
MGD
8955static bfd_boolean
8956check_obsolete (const arm_feature_set *feature, const char *msg)
8957{
8958 if (ARM_CPU_IS_ANY (cpu_variant))
8959 {
5c3696f8 8960 as_tsktsk ("%s", msg);
59d09be6
MGD
8961 return TRUE;
8962 }
8963 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8964 {
8965 as_bad ("%s", msg);
8966 return TRUE;
8967 }
8968
8969 return FALSE;
8970}
8971
c19d1205
ZW
8972static void
8973do_rd_rm_rn (void)
8974{
9a64e435 8975 unsigned Rn = inst.operands[2].reg;
708587a4 8976 /* Enforce restrictions on SWP instruction. */
9a64e435 8977 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
8978 {
8979 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8980 _("Rn must not overlap other operands"));
8981
59d09be6
MGD
8982 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8983 */
8984 if (!check_obsolete (&arm_ext_v8,
8985 _("swp{b} use is obsoleted for ARMv8 and later"))
8986 && warn_on_deprecated
8987 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
5c3696f8 8988 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 8989 }
59d09be6 8990
c19d1205
ZW
8991 inst.instruction |= inst.operands[0].reg << 12;
8992 inst.instruction |= inst.operands[1].reg;
9a64e435 8993 inst.instruction |= Rn << 16;
c19d1205 8994}
09d92015 8995
c19d1205
ZW
8996static void
8997do_rd_rn_rm (void)
8998{
8999 inst.instruction |= inst.operands[0].reg << 12;
9000 inst.instruction |= inst.operands[1].reg << 16;
9001 inst.instruction |= inst.operands[2].reg;
9002}
a737bd4d 9003
c19d1205
ZW
9004static void
9005do_rm_rd_rn (void)
9006{
5be8be5d 9007 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
e2b0ab59
AV
9008 constraint (((inst.relocs[0].exp.X_op != O_constant
9009 && inst.relocs[0].exp.X_op != O_illegal)
9010 || inst.relocs[0].exp.X_add_number != 0),
5be8be5d 9011 BAD_ADDR_MODE);
c19d1205
ZW
9012 inst.instruction |= inst.operands[0].reg;
9013 inst.instruction |= inst.operands[1].reg << 12;
9014 inst.instruction |= inst.operands[2].reg << 16;
9015}
09d92015 9016
c19d1205
ZW
9017static void
9018do_imm0 (void)
9019{
9020 inst.instruction |= inst.operands[0].imm;
9021}
09d92015 9022
c19d1205
ZW
9023static void
9024do_rd_cpaddr (void)
9025{
9026 inst.instruction |= inst.operands[0].reg << 12;
9027 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 9028}
a737bd4d 9029
c19d1205
ZW
9030/* ARM instructions, in alphabetical order by function name (except
9031 that wrapper functions appear immediately after the function they
9032 wrap). */
09d92015 9033
c19d1205
ZW
9034/* This is a pseudo-op of the form "adr rd, label" to be converted
9035 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
9036
9037static void
c19d1205 9038do_adr (void)
09d92015 9039{
c19d1205 9040 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9041
c19d1205
ZW
9042 /* Frag hacking will turn this into a sub instruction if the offset turns
9043 out to be negative. */
e2b0ab59
AV
9044 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9045 inst.relocs[0].pc_rel = 1;
9046 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9047
fc6141f0 9048 if (support_interwork
e2b0ab59
AV
9049 && inst.relocs[0].exp.X_op == O_symbol
9050 && inst.relocs[0].exp.X_add_symbol != NULL
9051 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9052 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9053 inst.relocs[0].exp.X_add_number |= 1;
c19d1205 9054}
b99bd4ef 9055
c19d1205
ZW
9056/* This is a pseudo-op of the form "adrl rd, label" to be converted
9057 into a relative address of the form:
9058 add rd, pc, #low(label-.-8)"
9059 add rd, rd, #high(label-.-8)" */
b99bd4ef 9060
c19d1205
ZW
9061static void
9062do_adrl (void)
9063{
9064 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9065
c19d1205
ZW
9066 /* Frag hacking will turn this into a sub instruction if the offset turns
9067 out to be negative. */
e2b0ab59
AV
9068 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9069 inst.relocs[0].pc_rel = 1;
c19d1205 9070 inst.size = INSN_SIZE * 2;
e2b0ab59 9071 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9072
fc6141f0 9073 if (support_interwork
e2b0ab59
AV
9074 && inst.relocs[0].exp.X_op == O_symbol
9075 && inst.relocs[0].exp.X_add_symbol != NULL
9076 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9077 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9078 inst.relocs[0].exp.X_add_number |= 1;
b99bd4ef
NC
9079}
9080
b99bd4ef 9081static void
c19d1205 9082do_arit (void)
b99bd4ef 9083{
e2b0ab59
AV
9084 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9085 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9086 THUMB1_RELOC_ONLY);
c19d1205
ZW
9087 if (!inst.operands[1].present)
9088 inst.operands[1].reg = inst.operands[0].reg;
9089 inst.instruction |= inst.operands[0].reg << 12;
9090 inst.instruction |= inst.operands[1].reg << 16;
9091 encode_arm_shifter_operand (2);
9092}
b99bd4ef 9093
62b3e311
PB
9094static void
9095do_barrier (void)
9096{
9097 if (inst.operands[0].present)
ccb84d65 9098 inst.instruction |= inst.operands[0].imm;
62b3e311
PB
9099 else
9100 inst.instruction |= 0xf;
9101}
9102
c19d1205
ZW
9103static void
9104do_bfc (void)
9105{
9106 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9107 constraint (msb > 32, _("bit-field extends past end of register"));
9108 /* The instruction encoding stores the LSB and MSB,
9109 not the LSB and width. */
9110 inst.instruction |= inst.operands[0].reg << 12;
9111 inst.instruction |= inst.operands[1].imm << 7;
9112 inst.instruction |= (msb - 1) << 16;
9113}
b99bd4ef 9114
c19d1205
ZW
9115static void
9116do_bfi (void)
9117{
9118 unsigned int msb;
b99bd4ef 9119
c19d1205
ZW
9120 /* #0 in second position is alternative syntax for bfc, which is
9121 the same instruction but with REG_PC in the Rm field. */
9122 if (!inst.operands[1].isreg)
9123 inst.operands[1].reg = REG_PC;
b99bd4ef 9124
c19d1205
ZW
9125 msb = inst.operands[2].imm + inst.operands[3].imm;
9126 constraint (msb > 32, _("bit-field extends past end of register"));
9127 /* The instruction encoding stores the LSB and MSB,
9128 not the LSB and width. */
9129 inst.instruction |= inst.operands[0].reg << 12;
9130 inst.instruction |= inst.operands[1].reg;
9131 inst.instruction |= inst.operands[2].imm << 7;
9132 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
9133}
9134
b99bd4ef 9135static void
c19d1205 9136do_bfx (void)
b99bd4ef 9137{
c19d1205
ZW
9138 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9139 _("bit-field extends past end of register"));
9140 inst.instruction |= inst.operands[0].reg << 12;
9141 inst.instruction |= inst.operands[1].reg;
9142 inst.instruction |= inst.operands[2].imm << 7;
9143 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9144}
09d92015 9145
c19d1205
ZW
9146/* ARM V5 breakpoint instruction (argument parse)
9147 BKPT <16 bit unsigned immediate>
9148 Instruction is not conditional.
9149 The bit pattern given in insns[] has the COND_ALWAYS condition,
9150 and it is an error if the caller tried to override that. */
b99bd4ef 9151
c19d1205
ZW
9152static void
9153do_bkpt (void)
9154{
9155 /* Top 12 of 16 bits to bits 19:8. */
9156 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 9157
c19d1205
ZW
9158 /* Bottom 4 of 16 bits to bits 3:0. */
9159 inst.instruction |= inst.operands[0].imm & 0xf;
9160}
09d92015 9161
c19d1205
ZW
9162static void
9163encode_branch (int default_reloc)
9164{
9165 if (inst.operands[0].hasreloc)
9166 {
0855e32b
NS
9167 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9168 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9169 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
e2b0ab59 9170 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
0855e32b
NS
9171 ? BFD_RELOC_ARM_PLT32
9172 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 9173 }
b99bd4ef 9174 else
e2b0ab59
AV
9175 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9176 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
9177}
9178
b99bd4ef 9179static void
c19d1205 9180do_branch (void)
b99bd4ef 9181{
39b41c9c
PB
9182#ifdef OBJ_ELF
9183 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9184 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9185 else
9186#endif
9187 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9188}
9189
9190static void
9191do_bl (void)
9192{
9193#ifdef OBJ_ELF
9194 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9195 {
9196 if (inst.cond == COND_ALWAYS)
9197 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9198 else
9199 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9200 }
9201 else
9202#endif
9203 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 9204}
b99bd4ef 9205
c19d1205
ZW
9206/* ARM V5 branch-link-exchange instruction (argument parse)
9207 BLX <target_addr> ie BLX(1)
9208 BLX{<condition>} <Rm> ie BLX(2)
9209 Unfortunately, there are two different opcodes for this mnemonic.
9210 So, the insns[].value is not used, and the code here zaps values
9211 into inst.instruction.
9212 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 9213
c19d1205
ZW
9214static void
9215do_blx (void)
9216{
9217 if (inst.operands[0].isreg)
b99bd4ef 9218 {
c19d1205
ZW
9219 /* Arg is a register; the opcode provided by insns[] is correct.
9220 It is not illegal to do "blx pc", just useless. */
9221 if (inst.operands[0].reg == REG_PC)
9222 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 9223
c19d1205
ZW
9224 inst.instruction |= inst.operands[0].reg;
9225 }
9226 else
b99bd4ef 9227 {
c19d1205 9228 /* Arg is an address; this instruction cannot be executed
267bf995
RR
9229 conditionally, and the opcode must be adjusted.
9230 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9231 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 9232 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 9233 inst.instruction = 0xfa000000;
267bf995 9234 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 9235 }
c19d1205
ZW
9236}
9237
9238static void
9239do_bx (void)
9240{
845b51d6
PB
9241 bfd_boolean want_reloc;
9242
c19d1205
ZW
9243 if (inst.operands[0].reg == REG_PC)
9244 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 9245
c19d1205 9246 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
9247 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9248 it is for ARMv4t or earlier. */
9249 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
4d354d8b
TP
9250 if (!ARM_FEATURE_ZERO (selected_object_arch)
9251 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
845b51d6
PB
9252 want_reloc = TRUE;
9253
5ad34203 9254#ifdef OBJ_ELF
845b51d6 9255 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 9256#endif
584206db 9257 want_reloc = FALSE;
845b51d6
PB
9258
9259 if (want_reloc)
e2b0ab59 9260 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
09d92015
MM
9261}
9262
c19d1205
ZW
9263
9264/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
9265
9266static void
c19d1205 9267do_bxj (void)
a737bd4d 9268{
c19d1205
ZW
9269 if (inst.operands[0].reg == REG_PC)
9270 as_tsktsk (_("use of r15 in bxj is not really useful"));
9271
9272 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
9273}
9274
c19d1205
ZW
9275/* Co-processor data operation:
9276 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9277 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9278static void
9279do_cdp (void)
9280{
9281 inst.instruction |= inst.operands[0].reg << 8;
9282 inst.instruction |= inst.operands[1].imm << 20;
9283 inst.instruction |= inst.operands[2].reg << 12;
9284 inst.instruction |= inst.operands[3].reg << 16;
9285 inst.instruction |= inst.operands[4].reg;
9286 inst.instruction |= inst.operands[5].imm << 5;
9287}
a737bd4d
NC
9288
9289static void
c19d1205 9290do_cmp (void)
a737bd4d 9291{
c19d1205
ZW
9292 inst.instruction |= inst.operands[0].reg << 16;
9293 encode_arm_shifter_operand (1);
a737bd4d
NC
9294}
9295
c19d1205
ZW
9296/* Transfer between coprocessor and ARM registers.
9297 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9298 MRC2
9299 MCR{cond}
9300 MCR2
9301
9302 No special properties. */
09d92015 9303
dcbd0d71
MGD
9304struct deprecated_coproc_regs_s
9305{
9306 unsigned cp;
9307 int opc1;
9308 unsigned crn;
9309 unsigned crm;
9310 int opc2;
9311 arm_feature_set deprecated;
9312 arm_feature_set obsoleted;
9313 const char *dep_msg;
9314 const char *obs_msg;
9315};
9316
9317#define DEPR_ACCESS_V8 \
9318 N_("This coprocessor register access is deprecated in ARMv8")
9319
9320/* Table of all deprecated coprocessor registers. */
9321static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9322{
9323 {15, 0, 7, 10, 5, /* CP15DMB. */
823d2571 9324 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9325 DEPR_ACCESS_V8, NULL},
9326 {15, 0, 7, 10, 4, /* CP15DSB. */
823d2571 9327 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9328 DEPR_ACCESS_V8, NULL},
9329 {15, 0, 7, 5, 4, /* CP15ISB. */
823d2571 9330 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9331 DEPR_ACCESS_V8, NULL},
9332 {14, 6, 1, 0, 0, /* TEEHBR. */
823d2571 9333 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9334 DEPR_ACCESS_V8, NULL},
9335 {14, 6, 0, 0, 0, /* TEECR. */
823d2571 9336 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9337 DEPR_ACCESS_V8, NULL},
9338};
9339
9340#undef DEPR_ACCESS_V8
9341
9342static const size_t deprecated_coproc_reg_count =
9343 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9344
09d92015 9345static void
c19d1205 9346do_co_reg (void)
09d92015 9347{
fdfde340 9348 unsigned Rd;
dcbd0d71 9349 size_t i;
fdfde340
JM
9350
9351 Rd = inst.operands[2].reg;
9352 if (thumb_mode)
9353 {
9354 if (inst.instruction == 0xee000010
9355 || inst.instruction == 0xfe000010)
9356 /* MCR, MCR2 */
9357 reject_bad_reg (Rd);
5c8ed6a4 9358 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
fdfde340
JM
9359 /* MRC, MRC2 */
9360 constraint (Rd == REG_SP, BAD_SP);
9361 }
9362 else
9363 {
9364 /* MCR */
9365 if (inst.instruction == 0xe000010)
9366 constraint (Rd == REG_PC, BAD_PC);
9367 }
9368
dcbd0d71
MGD
9369 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9370 {
9371 const struct deprecated_coproc_regs_s *r =
9372 deprecated_coproc_regs + i;
9373
9374 if (inst.operands[0].reg == r->cp
9375 && inst.operands[1].imm == r->opc1
9376 && inst.operands[3].reg == r->crn
9377 && inst.operands[4].reg == r->crm
9378 && inst.operands[5].imm == r->opc2)
9379 {
b10bf8c5 9380 if (! ARM_CPU_IS_ANY (cpu_variant)
477330fc 9381 && warn_on_deprecated
dcbd0d71 9382 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
5c3696f8 9383 as_tsktsk ("%s", r->dep_msg);
dcbd0d71
MGD
9384 }
9385 }
fdfde340 9386
c19d1205
ZW
9387 inst.instruction |= inst.operands[0].reg << 8;
9388 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 9389 inst.instruction |= Rd << 12;
c19d1205
ZW
9390 inst.instruction |= inst.operands[3].reg << 16;
9391 inst.instruction |= inst.operands[4].reg;
9392 inst.instruction |= inst.operands[5].imm << 5;
9393}
09d92015 9394
c19d1205
ZW
9395/* Transfer between coprocessor register and pair of ARM registers.
9396 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9397 MCRR2
9398 MRRC{cond}
9399 MRRC2
b99bd4ef 9400
c19d1205 9401 Two XScale instructions are special cases of these:
09d92015 9402
c19d1205
ZW
9403 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9404 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 9405
5f4273c7 9406 Result unpredictable if Rd or Rn is R15. */
a737bd4d 9407
c19d1205
ZW
9408static void
9409do_co_reg2c (void)
9410{
fdfde340
JM
9411 unsigned Rd, Rn;
9412
9413 Rd = inst.operands[2].reg;
9414 Rn = inst.operands[3].reg;
9415
9416 if (thumb_mode)
9417 {
9418 reject_bad_reg (Rd);
9419 reject_bad_reg (Rn);
9420 }
9421 else
9422 {
9423 constraint (Rd == REG_PC, BAD_PC);
9424 constraint (Rn == REG_PC, BAD_PC);
9425 }
9426
873f10f0
TC
9427 /* Only check the MRRC{2} variants. */
9428 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9429 {
9430 /* If Rd == Rn, error that the operation is
9431 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9432 constraint (Rd == Rn, BAD_OVERLAP);
9433 }
9434
c19d1205
ZW
9435 inst.instruction |= inst.operands[0].reg << 8;
9436 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
9437 inst.instruction |= Rd << 12;
9438 inst.instruction |= Rn << 16;
c19d1205 9439 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
9440}
9441
c19d1205
ZW
9442static void
9443do_cpsi (void)
9444{
9445 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
9446 if (inst.operands[1].present)
9447 {
9448 inst.instruction |= CPSI_MMOD;
9449 inst.instruction |= inst.operands[1].imm;
9450 }
c19d1205 9451}
b99bd4ef 9452
62b3e311
PB
9453static void
9454do_dbg (void)
9455{
9456 inst.instruction |= inst.operands[0].imm;
9457}
9458
eea54501
MGD
9459static void
9460do_div (void)
9461{
9462 unsigned Rd, Rn, Rm;
9463
9464 Rd = inst.operands[0].reg;
9465 Rn = (inst.operands[1].present
9466 ? inst.operands[1].reg : Rd);
9467 Rm = inst.operands[2].reg;
9468
9469 constraint ((Rd == REG_PC), BAD_PC);
9470 constraint ((Rn == REG_PC), BAD_PC);
9471 constraint ((Rm == REG_PC), BAD_PC);
9472
9473 inst.instruction |= Rd << 16;
9474 inst.instruction |= Rn << 0;
9475 inst.instruction |= Rm << 8;
9476}
9477
b99bd4ef 9478static void
c19d1205 9479do_it (void)
b99bd4ef 9480{
c19d1205 9481 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
9482 process it to do the validation as if in
9483 thumb mode, just in case the code gets
9484 assembled for thumb using the unified syntax. */
9485
c19d1205 9486 inst.size = 0;
e07e6e58
NC
9487 if (unified_syntax)
9488 {
5ee91343
AV
9489 set_pred_insn_type (IT_INSN);
9490 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9491 now_pred.cc = inst.operands[0].imm;
e07e6e58 9492 }
09d92015 9493}
b99bd4ef 9494
6530b175
NC
9495/* If there is only one register in the register list,
9496 then return its register number. Otherwise return -1. */
9497static int
9498only_one_reg_in_list (int range)
9499{
9500 int i = ffs (range) - 1;
9501 return (i > 15 || range != (1 << i)) ? -1 : i;
9502}
9503
09d92015 9504static void
6530b175 9505encode_ldmstm(int from_push_pop_mnem)
ea6ef066 9506{
c19d1205
ZW
9507 int base_reg = inst.operands[0].reg;
9508 int range = inst.operands[1].imm;
6530b175 9509 int one_reg;
ea6ef066 9510
c19d1205
ZW
9511 inst.instruction |= base_reg << 16;
9512 inst.instruction |= range;
ea6ef066 9513
c19d1205
ZW
9514 if (inst.operands[1].writeback)
9515 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 9516
c19d1205 9517 if (inst.operands[0].writeback)
ea6ef066 9518 {
c19d1205
ZW
9519 inst.instruction |= WRITE_BACK;
9520 /* Check for unpredictable uses of writeback. */
9521 if (inst.instruction & LOAD_BIT)
09d92015 9522 {
c19d1205
ZW
9523 /* Not allowed in LDM type 2. */
9524 if ((inst.instruction & LDM_TYPE_2_OR_3)
9525 && ((range & (1 << REG_PC)) == 0))
9526 as_warn (_("writeback of base register is UNPREDICTABLE"));
9527 /* Only allowed if base reg not in list for other types. */
9528 else if (range & (1 << base_reg))
9529 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9530 }
9531 else /* STM. */
9532 {
9533 /* Not allowed for type 2. */
9534 if (inst.instruction & LDM_TYPE_2_OR_3)
9535 as_warn (_("writeback of base register is UNPREDICTABLE"));
9536 /* Only allowed if base reg not in list, or first in list. */
9537 else if ((range & (1 << base_reg))
9538 && (range & ((1 << base_reg) - 1)))
9539 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 9540 }
ea6ef066 9541 }
6530b175
NC
9542
9543 /* If PUSH/POP has only one register, then use the A2 encoding. */
9544 one_reg = only_one_reg_in_list (range);
9545 if (from_push_pop_mnem && one_reg >= 0)
9546 {
9547 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9548
4f588891
NC
9549 if (is_push && one_reg == 13 /* SP */)
9550 /* PR 22483: The A2 encoding cannot be used when
9551 pushing the stack pointer as this is UNPREDICTABLE. */
9552 return;
9553
6530b175
NC
9554 inst.instruction &= A_COND_MASK;
9555 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9556 inst.instruction |= one_reg << 12;
9557 }
9558}
9559
9560static void
9561do_ldmstm (void)
9562{
9563 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
9564}
9565
c19d1205
ZW
9566/* ARMv5TE load-consecutive (argument parse)
9567 Mode is like LDRH.
9568
9569 LDRccD R, mode
9570 STRccD R, mode. */
9571
a737bd4d 9572static void
c19d1205 9573do_ldrd (void)
a737bd4d 9574{
c19d1205 9575 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 9576 _("first transfer register must be even"));
c19d1205
ZW
9577 constraint (inst.operands[1].present
9578 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 9579 _("can only transfer two consecutive registers"));
c19d1205
ZW
9580 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9581 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 9582
c19d1205
ZW
9583 if (!inst.operands[1].present)
9584 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 9585
c56791bb
RE
9586 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9587 register and the first register written; we have to diagnose
9588 overlap between the base and the second register written here. */
ea6ef066 9589
c56791bb
RE
9590 if (inst.operands[2].reg == inst.operands[1].reg
9591 && (inst.operands[2].writeback || inst.operands[2].postind))
9592 as_warn (_("base register written back, and overlaps "
9593 "second transfer register"));
b05fe5cf 9594
c56791bb
RE
9595 if (!(inst.instruction & V4_STR_BIT))
9596 {
c19d1205 9597 /* For an index-register load, the index register must not overlap the
c56791bb
RE
9598 destination (even if not write-back). */
9599 if (inst.operands[2].immisreg
9600 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9601 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9602 as_warn (_("index register overlaps transfer register"));
b05fe5cf 9603 }
c19d1205
ZW
9604 inst.instruction |= inst.operands[0].reg << 12;
9605 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
9606}
9607
9608static void
c19d1205 9609do_ldrex (void)
b05fe5cf 9610{
c19d1205
ZW
9611 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9612 || inst.operands[1].postind || inst.operands[1].writeback
9613 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
9614 || inst.operands[1].negative
9615 /* This can arise if the programmer has written
9616 strex rN, rM, foo
9617 or if they have mistakenly used a register name as the last
9618 operand, eg:
9619 strex rN, rM, rX
9620 It is very difficult to distinguish between these two cases
9621 because "rX" might actually be a label. ie the register
9622 name has been occluded by a symbol of the same name. So we
9623 just generate a general 'bad addressing mode' type error
9624 message and leave it up to the programmer to discover the
9625 true cause and fix their mistake. */
9626 || (inst.operands[1].reg == REG_PC),
9627 BAD_ADDR_MODE);
b05fe5cf 9628
e2b0ab59
AV
9629 constraint (inst.relocs[0].exp.X_op != O_constant
9630 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9631 _("offset must be zero in ARM encoding"));
b05fe5cf 9632
5be8be5d
DG
9633 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9634
c19d1205
ZW
9635 inst.instruction |= inst.operands[0].reg << 12;
9636 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 9637 inst.relocs[0].type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
9638}
9639
9640static void
c19d1205 9641do_ldrexd (void)
b05fe5cf 9642{
c19d1205
ZW
9643 constraint (inst.operands[0].reg % 2 != 0,
9644 _("even register required"));
9645 constraint (inst.operands[1].present
9646 && inst.operands[1].reg != inst.operands[0].reg + 1,
9647 _("can only load two consecutive registers"));
9648 /* If op 1 were present and equal to PC, this function wouldn't
9649 have been called in the first place. */
9650 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 9651
c19d1205
ZW
9652 inst.instruction |= inst.operands[0].reg << 12;
9653 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
9654}
9655
1be5fd2e
NC
9656/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9657 which is not a multiple of four is UNPREDICTABLE. */
9658static void
9659check_ldr_r15_aligned (void)
9660{
9661 constraint (!(inst.operands[1].immisreg)
9662 && (inst.operands[0].reg == REG_PC
9663 && inst.operands[1].reg == REG_PC
e2b0ab59 9664 && (inst.relocs[0].exp.X_add_number & 0x3)),
de194d85 9665 _("ldr to register 15 must be 4-byte aligned"));
1be5fd2e
NC
9666}
9667
b05fe5cf 9668static void
c19d1205 9669do_ldst (void)
b05fe5cf 9670{
c19d1205
ZW
9671 inst.instruction |= inst.operands[0].reg << 12;
9672 if (!inst.operands[1].isreg)
8335d6aa 9673 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
b05fe5cf 9674 return;
c19d1205 9675 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 9676 check_ldr_r15_aligned ();
b05fe5cf
ZW
9677}
9678
9679static void
c19d1205 9680do_ldstt (void)
b05fe5cf 9681{
c19d1205
ZW
9682 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9683 reject [Rn,...]. */
9684 if (inst.operands[1].preind)
b05fe5cf 9685 {
e2b0ab59
AV
9686 constraint (inst.relocs[0].exp.X_op != O_constant
9687 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9688 _("this instruction requires a post-indexed address"));
b05fe5cf 9689
c19d1205
ZW
9690 inst.operands[1].preind = 0;
9691 inst.operands[1].postind = 1;
9692 inst.operands[1].writeback = 1;
b05fe5cf 9693 }
c19d1205
ZW
9694 inst.instruction |= inst.operands[0].reg << 12;
9695 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9696}
b05fe5cf 9697
c19d1205 9698/* Halfword and signed-byte load/store operations. */
b05fe5cf 9699
c19d1205
ZW
9700static void
9701do_ldstv4 (void)
9702{
ff4a8d2b 9703 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
9704 inst.instruction |= inst.operands[0].reg << 12;
9705 if (!inst.operands[1].isreg)
8335d6aa 9706 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
b05fe5cf 9707 return;
c19d1205 9708 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
9709}
9710
9711static void
c19d1205 9712do_ldsttv4 (void)
b05fe5cf 9713{
c19d1205
ZW
9714 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9715 reject [Rn,...]. */
9716 if (inst.operands[1].preind)
b05fe5cf 9717 {
e2b0ab59
AV
9718 constraint (inst.relocs[0].exp.X_op != O_constant
9719 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9720 _("this instruction requires a post-indexed address"));
b05fe5cf 9721
c19d1205
ZW
9722 inst.operands[1].preind = 0;
9723 inst.operands[1].postind = 1;
9724 inst.operands[1].writeback = 1;
b05fe5cf 9725 }
c19d1205
ZW
9726 inst.instruction |= inst.operands[0].reg << 12;
9727 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9728}
b05fe5cf 9729
c19d1205
ZW
9730/* Co-processor register load/store.
9731 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9732static void
9733do_lstc (void)
9734{
9735 inst.instruction |= inst.operands[0].reg << 8;
9736 inst.instruction |= inst.operands[1].reg << 12;
9737 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
9738}
9739
b05fe5cf 9740static void
c19d1205 9741do_mlas (void)
b05fe5cf 9742{
8fb9d7b9 9743 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 9744 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 9745 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 9746 && !(inst.instruction & 0x00400000))
8fb9d7b9 9747 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 9748
c19d1205
ZW
9749 inst.instruction |= inst.operands[0].reg << 16;
9750 inst.instruction |= inst.operands[1].reg;
9751 inst.instruction |= inst.operands[2].reg << 8;
9752 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 9753}
b05fe5cf 9754
c19d1205
ZW
9755static void
9756do_mov (void)
9757{
e2b0ab59
AV
9758 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9759 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9760 THUMB1_RELOC_ONLY);
c19d1205
ZW
9761 inst.instruction |= inst.operands[0].reg << 12;
9762 encode_arm_shifter_operand (1);
9763}
b05fe5cf 9764
c19d1205
ZW
9765/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9766static void
9767do_mov16 (void)
9768{
b6895b4f
PB
9769 bfd_vma imm;
9770 bfd_boolean top;
9771
9772 top = (inst.instruction & 0x00400000) != 0;
e2b0ab59 9773 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
33eaf5de 9774 _(":lower16: not allowed in this instruction"));
e2b0ab59 9775 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
33eaf5de 9776 _(":upper16: not allowed in this instruction"));
c19d1205 9777 inst.instruction |= inst.operands[0].reg << 12;
e2b0ab59 9778 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 9779 {
e2b0ab59 9780 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
9781 /* The value is in two pieces: 0:11, 16:19. */
9782 inst.instruction |= (imm & 0x00000fff);
9783 inst.instruction |= (imm & 0x0000f000) << 4;
9784 }
b05fe5cf 9785}
b99bd4ef 9786
037e8744
JB
9787static int
9788do_vfp_nsyn_mrs (void)
9789{
9790 if (inst.operands[0].isvec)
9791 {
9792 if (inst.operands[1].reg != 1)
477330fc 9793 first_error (_("operand 1 must be FPSCR"));
037e8744
JB
9794 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9795 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9796 do_vfp_nsyn_opcode ("fmstat");
9797 }
9798 else if (inst.operands[1].isvec)
9799 do_vfp_nsyn_opcode ("fmrx");
9800 else
9801 return FAIL;
5f4273c7 9802
037e8744
JB
9803 return SUCCESS;
9804}
9805
9806static int
9807do_vfp_nsyn_msr (void)
9808{
9809 if (inst.operands[0].isvec)
9810 do_vfp_nsyn_opcode ("fmxr");
9811 else
9812 return FAIL;
9813
9814 return SUCCESS;
9815}
9816
f7c21dc7
NC
9817static void
9818do_vmrs (void)
9819{
9820 unsigned Rt = inst.operands[0].reg;
fa94de6b 9821
16d02dc9 9822 if (thumb_mode && Rt == REG_SP)
f7c21dc7
NC
9823 {
9824 inst.error = BAD_SP;
9825 return;
9826 }
9827
40c7d507
RR
9828 /* MVFR2 is only valid at ARMv8-A. */
9829 if (inst.operands[1].reg == 5)
9830 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9831 _(BAD_FPU));
9832
f7c21dc7 9833 /* APSR_ sets isvec. All other refs to PC are illegal. */
16d02dc9 9834 if (!inst.operands[0].isvec && Rt == REG_PC)
f7c21dc7
NC
9835 {
9836 inst.error = BAD_PC;
9837 return;
9838 }
9839
16d02dc9
JB
9840 /* If we get through parsing the register name, we just insert the number
9841 generated into the instruction without further validation. */
9842 inst.instruction |= (inst.operands[1].reg << 16);
f7c21dc7
NC
9843 inst.instruction |= (Rt << 12);
9844}
9845
9846static void
9847do_vmsr (void)
9848{
9849 unsigned Rt = inst.operands[1].reg;
fa94de6b 9850
f7c21dc7
NC
9851 if (thumb_mode)
9852 reject_bad_reg (Rt);
9853 else if (Rt == REG_PC)
9854 {
9855 inst.error = BAD_PC;
9856 return;
9857 }
9858
40c7d507
RR
9859 /* MVFR2 is only valid for ARMv8-A. */
9860 if (inst.operands[0].reg == 5)
9861 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9862 _(BAD_FPU));
9863
16d02dc9
JB
9864 /* If we get through parsing the register name, we just insert the number
9865 generated into the instruction without further validation. */
9866 inst.instruction |= (inst.operands[0].reg << 16);
f7c21dc7
NC
9867 inst.instruction |= (Rt << 12);
9868}
9869
b99bd4ef 9870static void
c19d1205 9871do_mrs (void)
b99bd4ef 9872{
90ec0d68
MGD
9873 unsigned br;
9874
037e8744
JB
9875 if (do_vfp_nsyn_mrs () == SUCCESS)
9876 return;
9877
ff4a8d2b 9878 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 9879 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
9880
9881 if (inst.operands[1].isreg)
9882 {
9883 br = inst.operands[1].reg;
806ab1c0 9884 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
90ec0d68
MGD
9885 as_bad (_("bad register for mrs"));
9886 }
9887 else
9888 {
9889 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9890 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9891 != (PSR_c|PSR_f),
d2cd1205 9892 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
9893 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9894 }
9895
9896 inst.instruction |= br;
c19d1205 9897}
b99bd4ef 9898
c19d1205
ZW
9899/* Two possible forms:
9900 "{C|S}PSR_<field>, Rm",
9901 "{C|S}PSR_f, #expression". */
b99bd4ef 9902
c19d1205
ZW
9903static void
9904do_msr (void)
9905{
037e8744
JB
9906 if (do_vfp_nsyn_msr () == SUCCESS)
9907 return;
9908
c19d1205
ZW
9909 inst.instruction |= inst.operands[0].imm;
9910 if (inst.operands[1].isreg)
9911 inst.instruction |= inst.operands[1].reg;
9912 else
b99bd4ef 9913 {
c19d1205 9914 inst.instruction |= INST_IMMEDIATE;
e2b0ab59
AV
9915 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9916 inst.relocs[0].pc_rel = 0;
b99bd4ef 9917 }
b99bd4ef
NC
9918}
9919
c19d1205
ZW
9920static void
9921do_mul (void)
a737bd4d 9922{
ff4a8d2b
NC
9923 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9924
c19d1205
ZW
9925 if (!inst.operands[2].present)
9926 inst.operands[2].reg = inst.operands[0].reg;
9927 inst.instruction |= inst.operands[0].reg << 16;
9928 inst.instruction |= inst.operands[1].reg;
9929 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 9930
8fb9d7b9
MS
9931 if (inst.operands[0].reg == inst.operands[1].reg
9932 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9933 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
9934}
9935
c19d1205
ZW
9936/* Long Multiply Parser
9937 UMULL RdLo, RdHi, Rm, Rs
9938 SMULL RdLo, RdHi, Rm, Rs
9939 UMLAL RdLo, RdHi, Rm, Rs
9940 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
9941
9942static void
c19d1205 9943do_mull (void)
b99bd4ef 9944{
c19d1205
ZW
9945 inst.instruction |= inst.operands[0].reg << 12;
9946 inst.instruction |= inst.operands[1].reg << 16;
9947 inst.instruction |= inst.operands[2].reg;
9948 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 9949
682b27ad
PB
9950 /* rdhi and rdlo must be different. */
9951 if (inst.operands[0].reg == inst.operands[1].reg)
9952 as_tsktsk (_("rdhi and rdlo must be different"));
9953
9954 /* rdhi, rdlo and rm must all be different before armv6. */
9955 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 9956 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 9957 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
9958 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9959}
b99bd4ef 9960
c19d1205
ZW
9961static void
9962do_nop (void)
9963{
e7495e45
NS
9964 if (inst.operands[0].present
9965 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
9966 {
9967 /* Architectural NOP hints are CPSR sets with no bits selected. */
9968 inst.instruction &= 0xf0000000;
e7495e45
NS
9969 inst.instruction |= 0x0320f000;
9970 if (inst.operands[0].present)
9971 inst.instruction |= inst.operands[0].imm;
c19d1205 9972 }
b99bd4ef
NC
9973}
9974
c19d1205
ZW
9975/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9976 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9977 Condition defaults to COND_ALWAYS.
9978 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
9979
9980static void
c19d1205 9981do_pkhbt (void)
b99bd4ef 9982{
c19d1205
ZW
9983 inst.instruction |= inst.operands[0].reg << 12;
9984 inst.instruction |= inst.operands[1].reg << 16;
9985 inst.instruction |= inst.operands[2].reg;
9986 if (inst.operands[3].present)
9987 encode_arm_shift (3);
9988}
b99bd4ef 9989
c19d1205 9990/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 9991
c19d1205
ZW
9992static void
9993do_pkhtb (void)
9994{
9995 if (!inst.operands[3].present)
b99bd4ef 9996 {
c19d1205
ZW
9997 /* If the shift specifier is omitted, turn the instruction
9998 into pkhbt rd, rm, rn. */
9999 inst.instruction &= 0xfff00010;
10000 inst.instruction |= inst.operands[0].reg << 12;
10001 inst.instruction |= inst.operands[1].reg;
10002 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10003 }
10004 else
10005 {
c19d1205
ZW
10006 inst.instruction |= inst.operands[0].reg << 12;
10007 inst.instruction |= inst.operands[1].reg << 16;
10008 inst.instruction |= inst.operands[2].reg;
10009 encode_arm_shift (3);
b99bd4ef
NC
10010 }
10011}
10012
c19d1205 10013/* ARMv5TE: Preload-Cache
60e5ef9f 10014 MP Extensions: Preload for write
c19d1205 10015
60e5ef9f 10016 PLD(W) <addr_mode>
c19d1205
ZW
10017
10018 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
10019
10020static void
c19d1205 10021do_pld (void)
b99bd4ef 10022{
c19d1205
ZW
10023 constraint (!inst.operands[0].isreg,
10024 _("'[' expected after PLD mnemonic"));
10025 constraint (inst.operands[0].postind,
10026 _("post-indexed expression used in preload instruction"));
10027 constraint (inst.operands[0].writeback,
10028 _("writeback used in preload instruction"));
10029 constraint (!inst.operands[0].preind,
10030 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
10031 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10032}
b99bd4ef 10033
62b3e311
PB
10034/* ARMv7: PLI <addr_mode> */
10035static void
10036do_pli (void)
10037{
10038 constraint (!inst.operands[0].isreg,
10039 _("'[' expected after PLI mnemonic"));
10040 constraint (inst.operands[0].postind,
10041 _("post-indexed expression used in preload instruction"));
10042 constraint (inst.operands[0].writeback,
10043 _("writeback used in preload instruction"));
10044 constraint (!inst.operands[0].preind,
10045 _("unindexed addressing used in preload instruction"));
10046 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10047 inst.instruction &= ~PRE_INDEX;
10048}
10049
c19d1205
ZW
10050static void
10051do_push_pop (void)
10052{
5e0d7f77
MP
10053 constraint (inst.operands[0].writeback,
10054 _("push/pop do not support {reglist}^"));
c19d1205
ZW
10055 inst.operands[1] = inst.operands[0];
10056 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10057 inst.operands[0].isreg = 1;
10058 inst.operands[0].writeback = 1;
10059 inst.operands[0].reg = REG_SP;
6530b175 10060 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 10061}
b99bd4ef 10062
c19d1205
ZW
10063/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10064 word at the specified address and the following word
10065 respectively.
10066 Unconditionally executed.
10067 Error if Rn is R15. */
b99bd4ef 10068
c19d1205
ZW
10069static void
10070do_rfe (void)
10071{
10072 inst.instruction |= inst.operands[0].reg << 16;
10073 if (inst.operands[0].writeback)
10074 inst.instruction |= WRITE_BACK;
10075}
b99bd4ef 10076
c19d1205 10077/* ARM V6 ssat (argument parse). */
b99bd4ef 10078
c19d1205
ZW
10079static void
10080do_ssat (void)
10081{
10082 inst.instruction |= inst.operands[0].reg << 12;
10083 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10084 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10085
c19d1205
ZW
10086 if (inst.operands[3].present)
10087 encode_arm_shift (3);
b99bd4ef
NC
10088}
10089
c19d1205 10090/* ARM V6 usat (argument parse). */
b99bd4ef
NC
10091
10092static void
c19d1205 10093do_usat (void)
b99bd4ef 10094{
c19d1205
ZW
10095 inst.instruction |= inst.operands[0].reg << 12;
10096 inst.instruction |= inst.operands[1].imm << 16;
10097 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10098
c19d1205
ZW
10099 if (inst.operands[3].present)
10100 encode_arm_shift (3);
b99bd4ef
NC
10101}
10102
c19d1205 10103/* ARM V6 ssat16 (argument parse). */
09d92015
MM
10104
10105static void
c19d1205 10106do_ssat16 (void)
09d92015 10107{
c19d1205
ZW
10108 inst.instruction |= inst.operands[0].reg << 12;
10109 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10110 inst.instruction |= inst.operands[2].reg;
09d92015
MM
10111}
10112
c19d1205
ZW
10113static void
10114do_usat16 (void)
a737bd4d 10115{
c19d1205
ZW
10116 inst.instruction |= inst.operands[0].reg << 12;
10117 inst.instruction |= inst.operands[1].imm << 16;
10118 inst.instruction |= inst.operands[2].reg;
10119}
a737bd4d 10120
c19d1205
ZW
10121/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10122 preserving the other bits.
a737bd4d 10123
c19d1205
ZW
10124 setend <endian_specifier>, where <endian_specifier> is either
10125 BE or LE. */
a737bd4d 10126
c19d1205
ZW
10127static void
10128do_setend (void)
10129{
12e37cbc
MGD
10130 if (warn_on_deprecated
10131 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 10132 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 10133
c19d1205
ZW
10134 if (inst.operands[0].imm)
10135 inst.instruction |= 0x200;
a737bd4d
NC
10136}
10137
10138static void
c19d1205 10139do_shift (void)
a737bd4d 10140{
c19d1205
ZW
10141 unsigned int Rm = (inst.operands[1].present
10142 ? inst.operands[1].reg
10143 : inst.operands[0].reg);
a737bd4d 10144
c19d1205
ZW
10145 inst.instruction |= inst.operands[0].reg << 12;
10146 inst.instruction |= Rm;
10147 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 10148 {
c19d1205
ZW
10149 inst.instruction |= inst.operands[2].reg << 8;
10150 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
10151 /* PR 12854: Error on extraneous shifts. */
10152 constraint (inst.operands[2].shifted,
10153 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
10154 }
10155 else
e2b0ab59 10156 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
10157}
10158
09d92015 10159static void
3eb17e6b 10160do_smc (void)
09d92015 10161{
e2b0ab59
AV
10162 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10163 inst.relocs[0].pc_rel = 0;
09d92015
MM
10164}
10165
90ec0d68
MGD
10166static void
10167do_hvc (void)
10168{
e2b0ab59
AV
10169 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10170 inst.relocs[0].pc_rel = 0;
90ec0d68
MGD
10171}
10172
09d92015 10173static void
c19d1205 10174do_swi (void)
09d92015 10175{
e2b0ab59
AV
10176 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10177 inst.relocs[0].pc_rel = 0;
09d92015
MM
10178}
10179
ddfded2f
MW
10180static void
10181do_setpan (void)
10182{
10183 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10184 _("selected processor does not support SETPAN instruction"));
10185
10186 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10187}
10188
10189static void
10190do_t_setpan (void)
10191{
10192 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10193 _("selected processor does not support SETPAN instruction"));
10194
10195 inst.instruction |= (inst.operands[0].imm << 3);
10196}
10197
c19d1205
ZW
10198/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10199 SMLAxy{cond} Rd,Rm,Rs,Rn
10200 SMLAWy{cond} Rd,Rm,Rs,Rn
10201 Error if any register is R15. */
e16bb312 10202
c19d1205
ZW
10203static void
10204do_smla (void)
e16bb312 10205{
c19d1205
ZW
10206 inst.instruction |= inst.operands[0].reg << 16;
10207 inst.instruction |= inst.operands[1].reg;
10208 inst.instruction |= inst.operands[2].reg << 8;
10209 inst.instruction |= inst.operands[3].reg << 12;
10210}
a737bd4d 10211
c19d1205
ZW
10212/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10213 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10214 Error if any register is R15.
10215 Warning if Rdlo == Rdhi. */
a737bd4d 10216
c19d1205
ZW
10217static void
10218do_smlal (void)
10219{
10220 inst.instruction |= inst.operands[0].reg << 12;
10221 inst.instruction |= inst.operands[1].reg << 16;
10222 inst.instruction |= inst.operands[2].reg;
10223 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 10224
c19d1205
ZW
10225 if (inst.operands[0].reg == inst.operands[1].reg)
10226 as_tsktsk (_("rdhi and rdlo must be different"));
10227}
a737bd4d 10228
c19d1205
ZW
10229/* ARM V5E (El Segundo) signed-multiply (argument parse)
10230 SMULxy{cond} Rd,Rm,Rs
10231 Error if any register is R15. */
a737bd4d 10232
c19d1205
ZW
10233static void
10234do_smul (void)
10235{
10236 inst.instruction |= inst.operands[0].reg << 16;
10237 inst.instruction |= inst.operands[1].reg;
10238 inst.instruction |= inst.operands[2].reg << 8;
10239}
a737bd4d 10240
b6702015
PB
10241/* ARM V6 srs (argument parse). The variable fields in the encoding are
10242 the same for both ARM and Thumb-2. */
a737bd4d 10243
c19d1205
ZW
10244static void
10245do_srs (void)
10246{
b6702015
PB
10247 int reg;
10248
10249 if (inst.operands[0].present)
10250 {
10251 reg = inst.operands[0].reg;
fdfde340 10252 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
10253 }
10254 else
fdfde340 10255 reg = REG_SP;
b6702015
PB
10256
10257 inst.instruction |= reg << 16;
10258 inst.instruction |= inst.operands[1].imm;
10259 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
10260 inst.instruction |= WRITE_BACK;
10261}
a737bd4d 10262
c19d1205 10263/* ARM V6 strex (argument parse). */
a737bd4d 10264
c19d1205
ZW
10265static void
10266do_strex (void)
10267{
10268 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10269 || inst.operands[2].postind || inst.operands[2].writeback
10270 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
10271 || inst.operands[2].negative
10272 /* See comment in do_ldrex(). */
10273 || (inst.operands[2].reg == REG_PC),
10274 BAD_ADDR_MODE);
a737bd4d 10275
c19d1205
ZW
10276 constraint (inst.operands[0].reg == inst.operands[1].reg
10277 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 10278
e2b0ab59
AV
10279 constraint (inst.relocs[0].exp.X_op != O_constant
10280 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10281 _("offset must be zero in ARM encoding"));
a737bd4d 10282
c19d1205
ZW
10283 inst.instruction |= inst.operands[0].reg << 12;
10284 inst.instruction |= inst.operands[1].reg;
10285 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 10286 inst.relocs[0].type = BFD_RELOC_UNUSED;
e16bb312
NC
10287}
10288
877807f8
NC
10289static void
10290do_t_strexbh (void)
10291{
10292 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10293 || inst.operands[2].postind || inst.operands[2].writeback
10294 || inst.operands[2].immisreg || inst.operands[2].shifted
10295 || inst.operands[2].negative,
10296 BAD_ADDR_MODE);
10297
10298 constraint (inst.operands[0].reg == inst.operands[1].reg
10299 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10300
10301 do_rm_rd_rn ();
10302}
10303
e16bb312 10304static void
c19d1205 10305do_strexd (void)
e16bb312 10306{
c19d1205
ZW
10307 constraint (inst.operands[1].reg % 2 != 0,
10308 _("even register required"));
10309 constraint (inst.operands[2].present
10310 && inst.operands[2].reg != inst.operands[1].reg + 1,
10311 _("can only store two consecutive registers"));
10312 /* If op 2 were present and equal to PC, this function wouldn't
10313 have been called in the first place. */
10314 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 10315
c19d1205
ZW
10316 constraint (inst.operands[0].reg == inst.operands[1].reg
10317 || inst.operands[0].reg == inst.operands[1].reg + 1
10318 || inst.operands[0].reg == inst.operands[3].reg,
10319 BAD_OVERLAP);
e16bb312 10320
c19d1205
ZW
10321 inst.instruction |= inst.operands[0].reg << 12;
10322 inst.instruction |= inst.operands[1].reg;
10323 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
10324}
10325
9eb6c0f1
MGD
10326/* ARM V8 STRL. */
10327static void
4b8c8c02 10328do_stlex (void)
9eb6c0f1
MGD
10329{
10330 constraint (inst.operands[0].reg == inst.operands[1].reg
10331 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10332
10333 do_rd_rm_rn ();
10334}
10335
10336static void
4b8c8c02 10337do_t_stlex (void)
9eb6c0f1
MGD
10338{
10339 constraint (inst.operands[0].reg == inst.operands[1].reg
10340 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10341
10342 do_rm_rd_rn ();
10343}
10344
c19d1205
ZW
10345/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10346 extends it to 32-bits, and adds the result to a value in another
10347 register. You can specify a rotation by 0, 8, 16, or 24 bits
10348 before extracting the 16-bit value.
10349 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10350 Condition defaults to COND_ALWAYS.
10351 Error if any register uses R15. */
10352
e16bb312 10353static void
c19d1205 10354do_sxtah (void)
e16bb312 10355{
c19d1205
ZW
10356 inst.instruction |= inst.operands[0].reg << 12;
10357 inst.instruction |= inst.operands[1].reg << 16;
10358 inst.instruction |= inst.operands[2].reg;
10359 inst.instruction |= inst.operands[3].imm << 10;
10360}
e16bb312 10361
c19d1205 10362/* ARM V6 SXTH.
e16bb312 10363
c19d1205
ZW
10364 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10365 Condition defaults to COND_ALWAYS.
10366 Error if any register uses R15. */
e16bb312
NC
10367
10368static void
c19d1205 10369do_sxth (void)
e16bb312 10370{
c19d1205
ZW
10371 inst.instruction |= inst.operands[0].reg << 12;
10372 inst.instruction |= inst.operands[1].reg;
10373 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 10374}
c19d1205
ZW
10375\f
10376/* VFP instructions. In a logical order: SP variant first, monad
10377 before dyad, arithmetic then move then load/store. */
e16bb312
NC
10378
10379static void
c19d1205 10380do_vfp_sp_monadic (void)
e16bb312 10381{
57785aa2
AV
10382 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10383 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10384 _(BAD_FPU));
10385
5287ad62
JB
10386 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10387 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10388}
10389
10390static void
c19d1205 10391do_vfp_sp_dyadic (void)
e16bb312 10392{
5287ad62
JB
10393 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10394 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10395 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10396}
10397
10398static void
c19d1205 10399do_vfp_sp_compare_z (void)
e16bb312 10400{
5287ad62 10401 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
10402}
10403
10404static void
c19d1205 10405do_vfp_dp_sp_cvt (void)
e16bb312 10406{
5287ad62
JB
10407 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10408 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10409}
10410
10411static void
c19d1205 10412do_vfp_sp_dp_cvt (void)
e16bb312 10413{
5287ad62
JB
10414 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10415 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
10416}
10417
10418static void
c19d1205 10419do_vfp_reg_from_sp (void)
e16bb312 10420{
57785aa2
AV
10421 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10422 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10423 _(BAD_FPU));
10424
c19d1205 10425 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 10426 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
10427}
10428
10429static void
c19d1205 10430do_vfp_reg2_from_sp2 (void)
e16bb312 10431{
c19d1205
ZW
10432 constraint (inst.operands[2].imm != 2,
10433 _("only two consecutive VFP SP registers allowed here"));
10434 inst.instruction |= inst.operands[0].reg << 12;
10435 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 10436 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10437}
10438
10439static void
c19d1205 10440do_vfp_sp_from_reg (void)
e16bb312 10441{
57785aa2
AV
10442 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10443 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10444 _(BAD_FPU));
10445
5287ad62 10446 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 10447 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
10448}
10449
10450static void
c19d1205 10451do_vfp_sp2_from_reg2 (void)
e16bb312 10452{
c19d1205
ZW
10453 constraint (inst.operands[0].imm != 2,
10454 _("only two consecutive VFP SP registers allowed here"));
5287ad62 10455 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
10456 inst.instruction |= inst.operands[1].reg << 12;
10457 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
10458}
10459
10460static void
c19d1205 10461do_vfp_sp_ldst (void)
e16bb312 10462{
5287ad62 10463 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 10464 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10465}
10466
10467static void
c19d1205 10468do_vfp_dp_ldst (void)
e16bb312 10469{
5287ad62 10470 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 10471 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10472}
10473
c19d1205 10474
e16bb312 10475static void
c19d1205 10476vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10477{
c19d1205
ZW
10478 if (inst.operands[0].writeback)
10479 inst.instruction |= WRITE_BACK;
10480 else
10481 constraint (ldstm_type != VFP_LDSTMIA,
10482 _("this addressing mode requires base-register writeback"));
10483 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10484 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 10485 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
10486}
10487
10488static void
c19d1205 10489vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10490{
c19d1205 10491 int count;
e16bb312 10492
c19d1205
ZW
10493 if (inst.operands[0].writeback)
10494 inst.instruction |= WRITE_BACK;
10495 else
10496 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10497 _("this addressing mode requires base-register writeback"));
e16bb312 10498
c19d1205 10499 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10500 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 10501
c19d1205
ZW
10502 count = inst.operands[1].imm << 1;
10503 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10504 count += 1;
e16bb312 10505
c19d1205 10506 inst.instruction |= count;
e16bb312
NC
10507}
10508
10509static void
c19d1205 10510do_vfp_sp_ldstmia (void)
e16bb312 10511{
c19d1205 10512 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10513}
10514
10515static void
c19d1205 10516do_vfp_sp_ldstmdb (void)
e16bb312 10517{
c19d1205 10518 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10519}
10520
10521static void
c19d1205 10522do_vfp_dp_ldstmia (void)
e16bb312 10523{
c19d1205 10524 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10525}
10526
10527static void
c19d1205 10528do_vfp_dp_ldstmdb (void)
e16bb312 10529{
c19d1205 10530 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10531}
10532
10533static void
c19d1205 10534do_vfp_xp_ldstmia (void)
e16bb312 10535{
c19d1205
ZW
10536 vfp_dp_ldstm (VFP_LDSTMIAX);
10537}
e16bb312 10538
c19d1205
ZW
10539static void
10540do_vfp_xp_ldstmdb (void)
10541{
10542 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 10543}
5287ad62
JB
10544
10545static void
10546do_vfp_dp_rd_rm (void)
10547{
57785aa2
AV
10548 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10549 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10550 _(BAD_FPU));
10551
5287ad62
JB
10552 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10553 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10554}
10555
10556static void
10557do_vfp_dp_rn_rd (void)
10558{
10559 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10560 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10561}
10562
10563static void
10564do_vfp_dp_rd_rn (void)
10565{
10566 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10567 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10568}
10569
10570static void
10571do_vfp_dp_rd_rn_rm (void)
10572{
57785aa2
AV
10573 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10574 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10575 _(BAD_FPU));
10576
5287ad62
JB
10577 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10578 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10579 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10580}
10581
10582static void
10583do_vfp_dp_rd (void)
10584{
10585 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10586}
10587
10588static void
10589do_vfp_dp_rm_rd_rn (void)
10590{
57785aa2
AV
10591 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10592 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10593 _(BAD_FPU));
10594
5287ad62
JB
10595 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10596 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10597 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10598}
10599
10600/* VFPv3 instructions. */
10601static void
10602do_vfp_sp_const (void)
10603{
10604 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
10605 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10606 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10607}
10608
10609static void
10610do_vfp_dp_const (void)
10611{
10612 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
10613 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10614 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10615}
10616
10617static void
10618vfp_conv (int srcsize)
10619{
5f1af56b
MGD
10620 int immbits = srcsize - inst.operands[1].imm;
10621
fa94de6b
RM
10622 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10623 {
5f1af56b 10624 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
477330fc 10625 i.e. immbits must be in range 0 - 16. */
5f1af56b
MGD
10626 inst.error = _("immediate value out of range, expected range [0, 16]");
10627 return;
10628 }
fa94de6b 10629 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
10630 {
10631 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
477330fc 10632 i.e. immbits must be in range 0 - 31. */
5f1af56b
MGD
10633 inst.error = _("immediate value out of range, expected range [1, 32]");
10634 return;
10635 }
10636
5287ad62
JB
10637 inst.instruction |= (immbits & 1) << 5;
10638 inst.instruction |= (immbits >> 1);
10639}
10640
10641static void
10642do_vfp_sp_conv_16 (void)
10643{
10644 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10645 vfp_conv (16);
10646}
10647
10648static void
10649do_vfp_dp_conv_16 (void)
10650{
10651 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10652 vfp_conv (16);
10653}
10654
10655static void
10656do_vfp_sp_conv_32 (void)
10657{
10658 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10659 vfp_conv (32);
10660}
10661
10662static void
10663do_vfp_dp_conv_32 (void)
10664{
10665 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10666 vfp_conv (32);
10667}
c19d1205
ZW
10668\f
10669/* FPA instructions. Also in a logical order. */
e16bb312 10670
c19d1205
ZW
10671static void
10672do_fpa_cmp (void)
10673{
10674 inst.instruction |= inst.operands[0].reg << 16;
10675 inst.instruction |= inst.operands[1].reg;
10676}
b99bd4ef
NC
10677
10678static void
c19d1205 10679do_fpa_ldmstm (void)
b99bd4ef 10680{
c19d1205
ZW
10681 inst.instruction |= inst.operands[0].reg << 12;
10682 switch (inst.operands[1].imm)
10683 {
10684 case 1: inst.instruction |= CP_T_X; break;
10685 case 2: inst.instruction |= CP_T_Y; break;
10686 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10687 case 4: break;
10688 default: abort ();
10689 }
b99bd4ef 10690
c19d1205
ZW
10691 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10692 {
10693 /* The instruction specified "ea" or "fd", so we can only accept
10694 [Rn]{!}. The instruction does not really support stacking or
10695 unstacking, so we have to emulate these by setting appropriate
10696 bits and offsets. */
e2b0ab59
AV
10697 constraint (inst.relocs[0].exp.X_op != O_constant
10698 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10699 _("this instruction does not support indexing"));
b99bd4ef 10700
c19d1205 10701 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
e2b0ab59 10702 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 10703
c19d1205 10704 if (!(inst.instruction & INDEX_UP))
e2b0ab59 10705 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
b99bd4ef 10706
c19d1205
ZW
10707 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10708 {
10709 inst.operands[2].preind = 0;
10710 inst.operands[2].postind = 1;
10711 }
10712 }
b99bd4ef 10713
c19d1205 10714 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 10715}
c19d1205
ZW
10716\f
10717/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 10718
c19d1205
ZW
10719static void
10720do_iwmmxt_tandorc (void)
10721{
10722 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10723}
b99bd4ef 10724
c19d1205
ZW
10725static void
10726do_iwmmxt_textrc (void)
10727{
10728 inst.instruction |= inst.operands[0].reg << 12;
10729 inst.instruction |= inst.operands[1].imm;
10730}
b99bd4ef
NC
10731
10732static void
c19d1205 10733do_iwmmxt_textrm (void)
b99bd4ef 10734{
c19d1205
ZW
10735 inst.instruction |= inst.operands[0].reg << 12;
10736 inst.instruction |= inst.operands[1].reg << 16;
10737 inst.instruction |= inst.operands[2].imm;
10738}
b99bd4ef 10739
c19d1205
ZW
10740static void
10741do_iwmmxt_tinsr (void)
10742{
10743 inst.instruction |= inst.operands[0].reg << 16;
10744 inst.instruction |= inst.operands[1].reg << 12;
10745 inst.instruction |= inst.operands[2].imm;
10746}
b99bd4ef 10747
c19d1205
ZW
10748static void
10749do_iwmmxt_tmia (void)
10750{
10751 inst.instruction |= inst.operands[0].reg << 5;
10752 inst.instruction |= inst.operands[1].reg;
10753 inst.instruction |= inst.operands[2].reg << 12;
10754}
b99bd4ef 10755
c19d1205
ZW
10756static void
10757do_iwmmxt_waligni (void)
10758{
10759 inst.instruction |= inst.operands[0].reg << 12;
10760 inst.instruction |= inst.operands[1].reg << 16;
10761 inst.instruction |= inst.operands[2].reg;
10762 inst.instruction |= inst.operands[3].imm << 20;
10763}
b99bd4ef 10764
2d447fca
JM
10765static void
10766do_iwmmxt_wmerge (void)
10767{
10768 inst.instruction |= inst.operands[0].reg << 12;
10769 inst.instruction |= inst.operands[1].reg << 16;
10770 inst.instruction |= inst.operands[2].reg;
10771 inst.instruction |= inst.operands[3].imm << 21;
10772}
10773
c19d1205
ZW
10774static void
10775do_iwmmxt_wmov (void)
10776{
10777 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10778 inst.instruction |= inst.operands[0].reg << 12;
10779 inst.instruction |= inst.operands[1].reg << 16;
10780 inst.instruction |= inst.operands[1].reg;
10781}
b99bd4ef 10782
c19d1205
ZW
10783static void
10784do_iwmmxt_wldstbh (void)
10785{
8f06b2d8 10786 int reloc;
c19d1205 10787 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
10788 if (thumb_mode)
10789 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10790 else
10791 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10792 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
10793}
10794
c19d1205
ZW
10795static void
10796do_iwmmxt_wldstw (void)
10797{
10798 /* RIWR_RIWC clears .isreg for a control register. */
10799 if (!inst.operands[0].isreg)
10800 {
10801 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10802 inst.instruction |= 0xf0000000;
10803 }
b99bd4ef 10804
c19d1205
ZW
10805 inst.instruction |= inst.operands[0].reg << 12;
10806 encode_arm_cp_address (1, TRUE, TRUE, 0);
10807}
b99bd4ef
NC
10808
10809static void
c19d1205 10810do_iwmmxt_wldstd (void)
b99bd4ef 10811{
c19d1205 10812 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
10813 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10814 && inst.operands[1].immisreg)
10815 {
10816 inst.instruction &= ~0x1a000ff;
eff0bc54 10817 inst.instruction |= (0xfU << 28);
2d447fca
JM
10818 if (inst.operands[1].preind)
10819 inst.instruction |= PRE_INDEX;
10820 if (!inst.operands[1].negative)
10821 inst.instruction |= INDEX_UP;
10822 if (inst.operands[1].writeback)
10823 inst.instruction |= WRITE_BACK;
10824 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 10825 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
2d447fca
JM
10826 inst.instruction |= inst.operands[1].imm;
10827 }
10828 else
10829 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 10830}
b99bd4ef 10831
c19d1205
ZW
10832static void
10833do_iwmmxt_wshufh (void)
10834{
10835 inst.instruction |= inst.operands[0].reg << 12;
10836 inst.instruction |= inst.operands[1].reg << 16;
10837 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10838 inst.instruction |= (inst.operands[2].imm & 0x0f);
10839}
b99bd4ef 10840
c19d1205
ZW
10841static void
10842do_iwmmxt_wzero (void)
10843{
10844 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10845 inst.instruction |= inst.operands[0].reg;
10846 inst.instruction |= inst.operands[0].reg << 12;
10847 inst.instruction |= inst.operands[0].reg << 16;
10848}
2d447fca
JM
10849
10850static void
10851do_iwmmxt_wrwrwr_or_imm5 (void)
10852{
10853 if (inst.operands[2].isreg)
10854 do_rd_rn_rm ();
10855 else {
10856 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10857 _("immediate operand requires iWMMXt2"));
10858 do_rd_rn ();
10859 if (inst.operands[2].imm == 0)
10860 {
10861 switch ((inst.instruction >> 20) & 0xf)
10862 {
10863 case 4:
10864 case 5:
10865 case 6:
5f4273c7 10866 case 7:
2d447fca
JM
10867 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10868 inst.operands[2].imm = 16;
10869 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10870 break;
10871 case 8:
10872 case 9:
10873 case 10:
10874 case 11:
10875 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10876 inst.operands[2].imm = 32;
10877 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10878 break;
10879 case 12:
10880 case 13:
10881 case 14:
10882 case 15:
10883 {
10884 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10885 unsigned long wrn;
10886 wrn = (inst.instruction >> 16) & 0xf;
10887 inst.instruction &= 0xff0fff0f;
10888 inst.instruction |= wrn;
10889 /* Bail out here; the instruction is now assembled. */
10890 return;
10891 }
10892 }
10893 }
10894 /* Map 32 -> 0, etc. */
10895 inst.operands[2].imm &= 0x1f;
eff0bc54 10896 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
2d447fca
JM
10897 }
10898}
c19d1205
ZW
10899\f
10900/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10901 operations first, then control, shift, and load/store. */
b99bd4ef 10902
c19d1205 10903/* Insns like "foo X,Y,Z". */
b99bd4ef 10904
c19d1205
ZW
10905static void
10906do_mav_triple (void)
10907{
10908 inst.instruction |= inst.operands[0].reg << 16;
10909 inst.instruction |= inst.operands[1].reg;
10910 inst.instruction |= inst.operands[2].reg << 12;
10911}
b99bd4ef 10912
c19d1205
ZW
10913/* Insns like "foo W,X,Y,Z".
10914 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 10915
c19d1205
ZW
10916static void
10917do_mav_quad (void)
10918{
10919 inst.instruction |= inst.operands[0].reg << 5;
10920 inst.instruction |= inst.operands[1].reg << 12;
10921 inst.instruction |= inst.operands[2].reg << 16;
10922 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
10923}
10924
c19d1205
ZW
10925/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10926static void
10927do_mav_dspsc (void)
a737bd4d 10928{
c19d1205
ZW
10929 inst.instruction |= inst.operands[1].reg << 12;
10930}
a737bd4d 10931
c19d1205
ZW
10932/* Maverick shift immediate instructions.
10933 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10934 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 10935
c19d1205
ZW
10936static void
10937do_mav_shift (void)
10938{
10939 int imm = inst.operands[2].imm;
a737bd4d 10940
c19d1205
ZW
10941 inst.instruction |= inst.operands[0].reg << 12;
10942 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 10943
c19d1205
ZW
10944 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10945 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10946 Bit 4 should be 0. */
10947 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 10948
c19d1205
ZW
10949 inst.instruction |= imm;
10950}
10951\f
10952/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 10953
c19d1205
ZW
10954/* Xscale multiply-accumulate (argument parse)
10955 MIAcc acc0,Rm,Rs
10956 MIAPHcc acc0,Rm,Rs
10957 MIAxycc acc0,Rm,Rs. */
a737bd4d 10958
c19d1205
ZW
10959static void
10960do_xsc_mia (void)
10961{
10962 inst.instruction |= inst.operands[1].reg;
10963 inst.instruction |= inst.operands[2].reg << 12;
10964}
a737bd4d 10965
c19d1205 10966/* Xscale move-accumulator-register (argument parse)
a737bd4d 10967
c19d1205 10968 MARcc acc0,RdLo,RdHi. */
b99bd4ef 10969
c19d1205
ZW
10970static void
10971do_xsc_mar (void)
10972{
10973 inst.instruction |= inst.operands[1].reg << 12;
10974 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10975}
10976
c19d1205 10977/* Xscale move-register-accumulator (argument parse)
b99bd4ef 10978
c19d1205 10979 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
10980
10981static void
c19d1205 10982do_xsc_mra (void)
b99bd4ef 10983{
c19d1205
ZW
10984 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10985 inst.instruction |= inst.operands[0].reg << 12;
10986 inst.instruction |= inst.operands[1].reg << 16;
10987}
10988\f
10989/* Encoding functions relevant only to Thumb. */
b99bd4ef 10990
c19d1205
ZW
10991/* inst.operands[i] is a shifted-register operand; encode
10992 it into inst.instruction in the format used by Thumb32. */
10993
10994static void
10995encode_thumb32_shifted_operand (int i)
10996{
e2b0ab59 10997 unsigned int value = inst.relocs[0].exp.X_add_number;
c19d1205 10998 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 10999
9c3c69f2
PB
11000 constraint (inst.operands[i].immisreg,
11001 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
11002 inst.instruction |= inst.operands[i].reg;
11003 if (shift == SHIFT_RRX)
11004 inst.instruction |= SHIFT_ROR << 4;
11005 else
b99bd4ef 11006 {
e2b0ab59 11007 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
11008 _("expression too complex"));
11009
11010 constraint (value > 32
11011 || (value == 32 && (shift == SHIFT_LSL
11012 || shift == SHIFT_ROR)),
11013 _("shift expression is too large"));
11014
11015 if (value == 0)
11016 shift = SHIFT_LSL;
11017 else if (value == 32)
11018 value = 0;
11019
11020 inst.instruction |= shift << 4;
11021 inst.instruction |= (value & 0x1c) << 10;
11022 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 11023 }
c19d1205 11024}
b99bd4ef 11025
b99bd4ef 11026
c19d1205
ZW
11027/* inst.operands[i] was set up by parse_address. Encode it into a
11028 Thumb32 format load or store instruction. Reject forms that cannot
11029 be used with such instructions. If is_t is true, reject forms that
11030 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
11031 that cannot be used with a D instruction. If it is a store insn,
11032 reject PC in Rn. */
b99bd4ef 11033
c19d1205
ZW
11034static void
11035encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11036{
5be8be5d 11037 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
11038
11039 constraint (!inst.operands[i].isreg,
53365c0d 11040 _("Instruction does not support =N addresses"));
b99bd4ef 11041
c19d1205
ZW
11042 inst.instruction |= inst.operands[i].reg << 16;
11043 if (inst.operands[i].immisreg)
b99bd4ef 11044 {
5be8be5d 11045 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
11046 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11047 constraint (inst.operands[i].negative,
11048 _("Thumb does not support negative register indexing"));
11049 constraint (inst.operands[i].postind,
11050 _("Thumb does not support register post-indexing"));
11051 constraint (inst.operands[i].writeback,
11052 _("Thumb does not support register indexing with writeback"));
11053 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11054 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 11055
f40d1643 11056 inst.instruction |= inst.operands[i].imm;
c19d1205 11057 if (inst.operands[i].shifted)
b99bd4ef 11058 {
e2b0ab59 11059 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 11060 _("expression too complex"));
e2b0ab59
AV
11061 constraint (inst.relocs[0].exp.X_add_number < 0
11062 || inst.relocs[0].exp.X_add_number > 3,
c19d1205 11063 _("shift out of range"));
e2b0ab59 11064 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
c19d1205 11065 }
e2b0ab59 11066 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
11067 }
11068 else if (inst.operands[i].preind)
11069 {
5be8be5d 11070 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 11071 constraint (is_t && inst.operands[i].writeback,
c19d1205 11072 _("cannot use writeback with this instruction"));
4755303e
WN
11073 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11074 BAD_PC_ADDRESSING);
c19d1205
ZW
11075
11076 if (is_d)
11077 {
11078 inst.instruction |= 0x01000000;
11079 if (inst.operands[i].writeback)
11080 inst.instruction |= 0x00200000;
b99bd4ef 11081 }
c19d1205 11082 else
b99bd4ef 11083 {
c19d1205
ZW
11084 inst.instruction |= 0x00000c00;
11085 if (inst.operands[i].writeback)
11086 inst.instruction |= 0x00000100;
b99bd4ef 11087 }
e2b0ab59 11088 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 11089 }
c19d1205 11090 else if (inst.operands[i].postind)
b99bd4ef 11091 {
9c2799c2 11092 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
11093 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11094 constraint (is_t, _("cannot use post-indexing with this instruction"));
11095
11096 if (is_d)
11097 inst.instruction |= 0x00200000;
11098 else
11099 inst.instruction |= 0x00000900;
e2b0ab59 11100 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
c19d1205
ZW
11101 }
11102 else /* unindexed - only for coprocessor */
11103 inst.error = _("instruction does not accept unindexed addressing");
11104}
11105
11106/* Table of Thumb instructions which exist in both 16- and 32-bit
11107 encodings (the latter only in post-V6T2 cores). The index is the
11108 value used in the insns table below. When there is more than one
11109 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
11110 holds variant (1).
11111 Also contains several pseudo-instructions used during relaxation. */
c19d1205 11112#define T16_32_TAB \
21d799b5
NC
11113 X(_adc, 4140, eb400000), \
11114 X(_adcs, 4140, eb500000), \
11115 X(_add, 1c00, eb000000), \
11116 X(_adds, 1c00, eb100000), \
11117 X(_addi, 0000, f1000000), \
11118 X(_addis, 0000, f1100000), \
11119 X(_add_pc,000f, f20f0000), \
11120 X(_add_sp,000d, f10d0000), \
11121 X(_adr, 000f, f20f0000), \
11122 X(_and, 4000, ea000000), \
11123 X(_ands, 4000, ea100000), \
11124 X(_asr, 1000, fa40f000), \
11125 X(_asrs, 1000, fa50f000), \
11126 X(_b, e000, f000b000), \
11127 X(_bcond, d000, f0008000), \
4389b29a 11128 X(_bf, 0000, f040e001), \
f6b2b12d 11129 X(_bfcsel,0000, f000e001), \
f1c7f421 11130 X(_bfx, 0000, f060e001), \
65d1bc05 11131 X(_bfl, 0000, f000c001), \
f1c7f421 11132 X(_bflx, 0000, f070e001), \
21d799b5
NC
11133 X(_bic, 4380, ea200000), \
11134 X(_bics, 4380, ea300000), \
11135 X(_cmn, 42c0, eb100f00), \
11136 X(_cmp, 2800, ebb00f00), \
11137 X(_cpsie, b660, f3af8400), \
11138 X(_cpsid, b670, f3af8600), \
11139 X(_cpy, 4600, ea4f0000), \
11140 X(_dec_sp,80dd, f1ad0d00), \
60f993ce 11141 X(_dls, 0000, f040e001), \
1f6234a3 11142 X(_dlstp, 0000, f000e001), \
21d799b5
NC
11143 X(_eor, 4040, ea800000), \
11144 X(_eors, 4040, ea900000), \
11145 X(_inc_sp,00dd, f10d0d00), \
1f6234a3 11146 X(_lctp, 0000, f00fe001), \
21d799b5
NC
11147 X(_ldmia, c800, e8900000), \
11148 X(_ldr, 6800, f8500000), \
11149 X(_ldrb, 7800, f8100000), \
11150 X(_ldrh, 8800, f8300000), \
11151 X(_ldrsb, 5600, f9100000), \
11152 X(_ldrsh, 5e00, f9300000), \
11153 X(_ldr_pc,4800, f85f0000), \
11154 X(_ldr_pc2,4800, f85f0000), \
11155 X(_ldr_sp,9800, f85d0000), \
60f993ce 11156 X(_le, 0000, f00fc001), \
1f6234a3 11157 X(_letp, 0000, f01fc001), \
21d799b5
NC
11158 X(_lsl, 0000, fa00f000), \
11159 X(_lsls, 0000, fa10f000), \
11160 X(_lsr, 0800, fa20f000), \
11161 X(_lsrs, 0800, fa30f000), \
11162 X(_mov, 2000, ea4f0000), \
11163 X(_movs, 2000, ea5f0000), \
11164 X(_mul, 4340, fb00f000), \
11165 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11166 X(_mvn, 43c0, ea6f0000), \
11167 X(_mvns, 43c0, ea7f0000), \
11168 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11169 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11170 X(_orr, 4300, ea400000), \
11171 X(_orrs, 4300, ea500000), \
11172 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11173 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11174 X(_rev, ba00, fa90f080), \
11175 X(_rev16, ba40, fa90f090), \
11176 X(_revsh, bac0, fa90f0b0), \
11177 X(_ror, 41c0, fa60f000), \
11178 X(_rors, 41c0, fa70f000), \
11179 X(_sbc, 4180, eb600000), \
11180 X(_sbcs, 4180, eb700000), \
11181 X(_stmia, c000, e8800000), \
11182 X(_str, 6000, f8400000), \
11183 X(_strb, 7000, f8000000), \
11184 X(_strh, 8000, f8200000), \
11185 X(_str_sp,9000, f84d0000), \
11186 X(_sub, 1e00, eba00000), \
11187 X(_subs, 1e00, ebb00000), \
11188 X(_subi, 8000, f1a00000), \
11189 X(_subis, 8000, f1b00000), \
11190 X(_sxtb, b240, fa4ff080), \
11191 X(_sxth, b200, fa0ff080), \
11192 X(_tst, 4200, ea100f00), \
11193 X(_uxtb, b2c0, fa5ff080), \
11194 X(_uxth, b280, fa1ff080), \
11195 X(_nop, bf00, f3af8000), \
11196 X(_yield, bf10, f3af8001), \
11197 X(_wfe, bf20, f3af8002), \
11198 X(_wfi, bf30, f3af8003), \
60f993ce 11199 X(_wls, 0000, f040c001), \
1f6234a3 11200 X(_wlstp, 0000, f000c001), \
53c4b28b 11201 X(_sev, bf40, f3af8004), \
74db7efb
NC
11202 X(_sevl, bf50, f3af8005), \
11203 X(_udf, de00, f7f0a000)
c19d1205
ZW
11204
11205/* To catch errors in encoding functions, the codes are all offset by
11206 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11207 as 16-bit instructions. */
21d799b5 11208#define X(a,b,c) T_MNEM##a
c19d1205
ZW
11209enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11210#undef X
11211
11212#define X(a,b,c) 0x##b
11213static const unsigned short thumb_op16[] = { T16_32_TAB };
11214#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11215#undef X
11216
11217#define X(a,b,c) 0x##c
11218static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
11219#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11220#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
11221#undef X
11222#undef T16_32_TAB
11223
11224/* Thumb instruction encoders, in alphabetical order. */
11225
92e90b6e 11226/* ADDW or SUBW. */
c921be7d 11227
92e90b6e
PB
11228static void
11229do_t_add_sub_w (void)
11230{
11231 int Rd, Rn;
11232
11233 Rd = inst.operands[0].reg;
11234 Rn = inst.operands[1].reg;
11235
539d4391
NC
11236 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11237 is the SP-{plus,minus}-immediate form of the instruction. */
11238 if (Rn == REG_SP)
11239 constraint (Rd == REG_PC, BAD_PC);
11240 else
11241 reject_bad_reg (Rd);
fdfde340 11242
92e90b6e 11243 inst.instruction |= (Rn << 16) | (Rd << 8);
e2b0ab59 11244 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
92e90b6e
PB
11245}
11246
c19d1205 11247/* Parse an add or subtract instruction. We get here with inst.instruction
33eaf5de 11248 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
c19d1205
ZW
11249
11250static void
11251do_t_add_sub (void)
11252{
11253 int Rd, Rs, Rn;
11254
11255 Rd = inst.operands[0].reg;
11256 Rs = (inst.operands[1].present
11257 ? inst.operands[1].reg /* Rd, Rs, foo */
11258 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11259
e07e6e58 11260 if (Rd == REG_PC)
5ee91343 11261 set_pred_insn_type_last ();
e07e6e58 11262
c19d1205
ZW
11263 if (unified_syntax)
11264 {
0110f2b8
PB
11265 bfd_boolean flags;
11266 bfd_boolean narrow;
11267 int opcode;
11268
11269 flags = (inst.instruction == T_MNEM_adds
11270 || inst.instruction == T_MNEM_subs);
11271 if (flags)
5ee91343 11272 narrow = !in_pred_block ();
0110f2b8 11273 else
5ee91343 11274 narrow = in_pred_block ();
c19d1205 11275 if (!inst.operands[2].isreg)
b99bd4ef 11276 {
16805f35
PB
11277 int add;
11278
5c8ed6a4
JW
11279 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11280 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340 11281
16805f35
PB
11282 add = (inst.instruction == T_MNEM_add
11283 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
11284 opcode = 0;
11285 if (inst.size_req != 4)
11286 {
0110f2b8 11287 /* Attempt to use a narrow opcode, with relaxation if
477330fc 11288 appropriate. */
0110f2b8
PB
11289 if (Rd == REG_SP && Rs == REG_SP && !flags)
11290 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11291 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11292 opcode = T_MNEM_add_sp;
11293 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11294 opcode = T_MNEM_add_pc;
11295 else if (Rd <= 7 && Rs <= 7 && narrow)
11296 {
11297 if (flags)
11298 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11299 else
11300 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11301 }
11302 if (opcode)
11303 {
11304 inst.instruction = THUMB_OP16(opcode);
11305 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59
AV
11306 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11307 || (inst.relocs[0].type
11308 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
a9f02af8
MG
11309 {
11310 if (inst.size_req == 2)
e2b0ab59 11311 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
a9f02af8
MG
11312 else
11313 inst.relax = opcode;
11314 }
0110f2b8
PB
11315 }
11316 else
11317 constraint (inst.size_req == 2, BAD_HIREG);
11318 }
11319 if (inst.size_req == 4
11320 || (inst.size_req != 2 && !opcode))
11321 {
e2b0ab59
AV
11322 constraint ((inst.relocs[0].type
11323 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11324 && (inst.relocs[0].type
11325 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8 11326 THUMB1_RELOC_ONLY);
efd81785
PB
11327 if (Rd == REG_PC)
11328 {
fdfde340 11329 constraint (add, BAD_PC);
efd81785
PB
11330 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11331 _("only SUBS PC, LR, #const allowed"));
e2b0ab59 11332 constraint (inst.relocs[0].exp.X_op != O_constant,
efd81785 11333 _("expression too complex"));
e2b0ab59
AV
11334 constraint (inst.relocs[0].exp.X_add_number < 0
11335 || inst.relocs[0].exp.X_add_number > 0xff,
efd81785
PB
11336 _("immediate value out of range"));
11337 inst.instruction = T2_SUBS_PC_LR
e2b0ab59
AV
11338 | inst.relocs[0].exp.X_add_number;
11339 inst.relocs[0].type = BFD_RELOC_UNUSED;
efd81785
PB
11340 return;
11341 }
11342 else if (Rs == REG_PC)
16805f35
PB
11343 {
11344 /* Always use addw/subw. */
11345 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
e2b0ab59 11346 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
16805f35
PB
11347 }
11348 else
11349 {
11350 inst.instruction = THUMB_OP32 (inst.instruction);
11351 inst.instruction = (inst.instruction & 0xe1ffffff)
11352 | 0x10000000;
11353 if (flags)
e2b0ab59 11354 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
16805f35 11355 else
e2b0ab59 11356 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
16805f35 11357 }
dc4503c6
PB
11358 inst.instruction |= Rd << 8;
11359 inst.instruction |= Rs << 16;
0110f2b8 11360 }
b99bd4ef 11361 }
c19d1205
ZW
11362 else
11363 {
e2b0ab59 11364 unsigned int value = inst.relocs[0].exp.X_add_number;
5f4cb198
NC
11365 unsigned int shift = inst.operands[2].shift_kind;
11366
c19d1205
ZW
11367 Rn = inst.operands[2].reg;
11368 /* See if we can do this with a 16-bit instruction. */
11369 if (!inst.operands[2].shifted && inst.size_req != 4)
11370 {
e27ec89e
PB
11371 if (Rd > 7 || Rs > 7 || Rn > 7)
11372 narrow = FALSE;
11373
11374 if (narrow)
c19d1205 11375 {
e27ec89e
PB
11376 inst.instruction = ((inst.instruction == T_MNEM_adds
11377 || inst.instruction == T_MNEM_add)
c19d1205
ZW
11378 ? T_OPCODE_ADD_R3
11379 : T_OPCODE_SUB_R3);
11380 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11381 return;
11382 }
b99bd4ef 11383
7e806470 11384 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 11385 {
7e806470
PB
11386 /* Thumb-1 cores (except v6-M) require at least one high
11387 register in a narrow non flag setting add. */
11388 if (Rd > 7 || Rn > 7
11389 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11390 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 11391 {
7e806470
PB
11392 if (Rd == Rn)
11393 {
11394 Rn = Rs;
11395 Rs = Rd;
11396 }
c19d1205
ZW
11397 inst.instruction = T_OPCODE_ADD_HI;
11398 inst.instruction |= (Rd & 8) << 4;
11399 inst.instruction |= (Rd & 7);
11400 inst.instruction |= Rn << 3;
11401 return;
11402 }
c19d1205
ZW
11403 }
11404 }
c921be7d 11405
fdfde340 11406 constraint (Rd == REG_PC, BAD_PC);
5c8ed6a4
JW
11407 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11408 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340
JM
11409 constraint (Rs == REG_PC, BAD_PC);
11410 reject_bad_reg (Rn);
11411
c19d1205
ZW
11412 /* If we get here, it can't be done in 16 bits. */
11413 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11414 _("shift must be constant"));
11415 inst.instruction = THUMB_OP32 (inst.instruction);
11416 inst.instruction |= Rd << 8;
11417 inst.instruction |= Rs << 16;
5f4cb198
NC
11418 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11419 _("shift value over 3 not allowed in thumb mode"));
11420 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11421 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
11422 encode_thumb32_shifted_operand (2);
11423 }
11424 }
11425 else
11426 {
11427 constraint (inst.instruction == T_MNEM_adds
11428 || inst.instruction == T_MNEM_subs,
11429 BAD_THUMB32);
b99bd4ef 11430
c19d1205 11431 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 11432 {
c19d1205
ZW
11433 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11434 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11435 BAD_HIREG);
11436
11437 inst.instruction = (inst.instruction == T_MNEM_add
11438 ? 0x0000 : 0x8000);
11439 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59 11440 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
11441 return;
11442 }
11443
c19d1205
ZW
11444 Rn = inst.operands[2].reg;
11445 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 11446
c19d1205
ZW
11447 /* We now have Rd, Rs, and Rn set to registers. */
11448 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 11449 {
c19d1205
ZW
11450 /* Can't do this for SUB. */
11451 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11452 inst.instruction = T_OPCODE_ADD_HI;
11453 inst.instruction |= (Rd & 8) << 4;
11454 inst.instruction |= (Rd & 7);
11455 if (Rs == Rd)
11456 inst.instruction |= Rn << 3;
11457 else if (Rn == Rd)
11458 inst.instruction |= Rs << 3;
11459 else
11460 constraint (1, _("dest must overlap one source register"));
11461 }
11462 else
11463 {
11464 inst.instruction = (inst.instruction == T_MNEM_add
11465 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11466 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 11467 }
b99bd4ef 11468 }
b99bd4ef
NC
11469}
11470
c19d1205
ZW
11471static void
11472do_t_adr (void)
11473{
fdfde340
JM
11474 unsigned Rd;
11475
11476 Rd = inst.operands[0].reg;
11477 reject_bad_reg (Rd);
11478
11479 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
11480 {
11481 /* Defer to section relaxation. */
11482 inst.relax = inst.instruction;
11483 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11484 inst.instruction |= Rd << 4;
0110f2b8
PB
11485 }
11486 else if (unified_syntax && inst.size_req != 2)
e9f89963 11487 {
0110f2b8 11488 /* Generate a 32-bit opcode. */
e9f89963 11489 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11490 inst.instruction |= Rd << 8;
e2b0ab59
AV
11491 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11492 inst.relocs[0].pc_rel = 1;
e9f89963
PB
11493 }
11494 else
11495 {
0110f2b8 11496 /* Generate a 16-bit opcode. */
e9f89963 11497 inst.instruction = THUMB_OP16 (inst.instruction);
e2b0ab59
AV
11498 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11499 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11500 inst.relocs[0].pc_rel = 1;
fdfde340 11501 inst.instruction |= Rd << 4;
e9f89963 11502 }
52a86f84 11503
e2b0ab59
AV
11504 if (inst.relocs[0].exp.X_op == O_symbol
11505 && inst.relocs[0].exp.X_add_symbol != NULL
11506 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11507 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11508 inst.relocs[0].exp.X_add_number += 1;
c19d1205 11509}
b99bd4ef 11510
c19d1205
ZW
11511/* Arithmetic instructions for which there is just one 16-bit
11512 instruction encoding, and it allows only two low registers.
11513 For maximal compatibility with ARM syntax, we allow three register
11514 operands even when Thumb-32 instructions are not available, as long
11515 as the first two are identical. For instance, both "sbc r0,r1" and
11516 "sbc r0,r0,r1" are allowed. */
b99bd4ef 11517static void
c19d1205 11518do_t_arit3 (void)
b99bd4ef 11519{
c19d1205 11520 int Rd, Rs, Rn;
b99bd4ef 11521
c19d1205
ZW
11522 Rd = inst.operands[0].reg;
11523 Rs = (inst.operands[1].present
11524 ? inst.operands[1].reg /* Rd, Rs, foo */
11525 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11526 Rn = inst.operands[2].reg;
b99bd4ef 11527
fdfde340
JM
11528 reject_bad_reg (Rd);
11529 reject_bad_reg (Rs);
11530 if (inst.operands[2].isreg)
11531 reject_bad_reg (Rn);
11532
c19d1205 11533 if (unified_syntax)
b99bd4ef 11534 {
c19d1205
ZW
11535 if (!inst.operands[2].isreg)
11536 {
11537 /* For an immediate, we always generate a 32-bit opcode;
11538 section relaxation will shrink it later if possible. */
11539 inst.instruction = THUMB_OP32 (inst.instruction);
11540 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11541 inst.instruction |= Rd << 8;
11542 inst.instruction |= Rs << 16;
e2b0ab59 11543 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
c19d1205
ZW
11544 }
11545 else
11546 {
e27ec89e
PB
11547 bfd_boolean narrow;
11548
c19d1205 11549 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11550 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11551 narrow = !in_pred_block ();
e27ec89e 11552 else
5ee91343 11553 narrow = in_pred_block ();
e27ec89e
PB
11554
11555 if (Rd > 7 || Rn > 7 || Rs > 7)
11556 narrow = FALSE;
11557 if (inst.operands[2].shifted)
11558 narrow = FALSE;
11559 if (inst.size_req == 4)
11560 narrow = FALSE;
11561
11562 if (narrow
c19d1205
ZW
11563 && Rd == Rs)
11564 {
11565 inst.instruction = THUMB_OP16 (inst.instruction);
11566 inst.instruction |= Rd;
11567 inst.instruction |= Rn << 3;
11568 return;
11569 }
b99bd4ef 11570
c19d1205
ZW
11571 /* If we get here, it can't be done in 16 bits. */
11572 constraint (inst.operands[2].shifted
11573 && inst.operands[2].immisreg,
11574 _("shift must be constant"));
11575 inst.instruction = THUMB_OP32 (inst.instruction);
11576 inst.instruction |= Rd << 8;
11577 inst.instruction |= Rs << 16;
11578 encode_thumb32_shifted_operand (2);
11579 }
a737bd4d 11580 }
c19d1205 11581 else
b99bd4ef 11582 {
c19d1205
ZW
11583 /* On its face this is a lie - the instruction does set the
11584 flags. However, the only supported mnemonic in this mode
11585 says it doesn't. */
11586 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11587
c19d1205
ZW
11588 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11589 _("unshifted register required"));
11590 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11591 constraint (Rd != Rs,
11592 _("dest and source1 must be the same register"));
a737bd4d 11593
c19d1205
ZW
11594 inst.instruction = THUMB_OP16 (inst.instruction);
11595 inst.instruction |= Rd;
11596 inst.instruction |= Rn << 3;
b99bd4ef 11597 }
a737bd4d 11598}
b99bd4ef 11599
c19d1205
ZW
11600/* Similarly, but for instructions where the arithmetic operation is
11601 commutative, so we can allow either of them to be different from
11602 the destination operand in a 16-bit instruction. For instance, all
11603 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11604 accepted. */
11605static void
11606do_t_arit3c (void)
a737bd4d 11607{
c19d1205 11608 int Rd, Rs, Rn;
b99bd4ef 11609
c19d1205
ZW
11610 Rd = inst.operands[0].reg;
11611 Rs = (inst.operands[1].present
11612 ? inst.operands[1].reg /* Rd, Rs, foo */
11613 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11614 Rn = inst.operands[2].reg;
c921be7d 11615
fdfde340
JM
11616 reject_bad_reg (Rd);
11617 reject_bad_reg (Rs);
11618 if (inst.operands[2].isreg)
11619 reject_bad_reg (Rn);
a737bd4d 11620
c19d1205 11621 if (unified_syntax)
a737bd4d 11622 {
c19d1205 11623 if (!inst.operands[2].isreg)
b99bd4ef 11624 {
c19d1205
ZW
11625 /* For an immediate, we always generate a 32-bit opcode;
11626 section relaxation will shrink it later if possible. */
11627 inst.instruction = THUMB_OP32 (inst.instruction);
11628 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11629 inst.instruction |= Rd << 8;
11630 inst.instruction |= Rs << 16;
e2b0ab59 11631 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11632 }
c19d1205 11633 else
a737bd4d 11634 {
e27ec89e
PB
11635 bfd_boolean narrow;
11636
c19d1205 11637 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11638 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11639 narrow = !in_pred_block ();
e27ec89e 11640 else
5ee91343 11641 narrow = in_pred_block ();
e27ec89e
PB
11642
11643 if (Rd > 7 || Rn > 7 || Rs > 7)
11644 narrow = FALSE;
11645 if (inst.operands[2].shifted)
11646 narrow = FALSE;
11647 if (inst.size_req == 4)
11648 narrow = FALSE;
11649
11650 if (narrow)
a737bd4d 11651 {
c19d1205 11652 if (Rd == Rs)
a737bd4d 11653 {
c19d1205
ZW
11654 inst.instruction = THUMB_OP16 (inst.instruction);
11655 inst.instruction |= Rd;
11656 inst.instruction |= Rn << 3;
11657 return;
a737bd4d 11658 }
c19d1205 11659 if (Rd == Rn)
a737bd4d 11660 {
c19d1205
ZW
11661 inst.instruction = THUMB_OP16 (inst.instruction);
11662 inst.instruction |= Rd;
11663 inst.instruction |= Rs << 3;
11664 return;
a737bd4d
NC
11665 }
11666 }
c19d1205
ZW
11667
11668 /* If we get here, it can't be done in 16 bits. */
11669 constraint (inst.operands[2].shifted
11670 && inst.operands[2].immisreg,
11671 _("shift must be constant"));
11672 inst.instruction = THUMB_OP32 (inst.instruction);
11673 inst.instruction |= Rd << 8;
11674 inst.instruction |= Rs << 16;
11675 encode_thumb32_shifted_operand (2);
a737bd4d 11676 }
b99bd4ef 11677 }
c19d1205
ZW
11678 else
11679 {
11680 /* On its face this is a lie - the instruction does set the
11681 flags. However, the only supported mnemonic in this mode
11682 says it doesn't. */
11683 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11684
c19d1205
ZW
11685 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11686 _("unshifted register required"));
11687 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11688
11689 inst.instruction = THUMB_OP16 (inst.instruction);
11690 inst.instruction |= Rd;
11691
11692 if (Rd == Rs)
11693 inst.instruction |= Rn << 3;
11694 else if (Rd == Rn)
11695 inst.instruction |= Rs << 3;
11696 else
11697 constraint (1, _("dest must overlap one source register"));
11698 }
a737bd4d
NC
11699}
11700
c19d1205
ZW
11701static void
11702do_t_bfc (void)
a737bd4d 11703{
fdfde340 11704 unsigned Rd;
c19d1205
ZW
11705 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11706 constraint (msb > 32, _("bit-field extends past end of register"));
11707 /* The instruction encoding stores the LSB and MSB,
11708 not the LSB and width. */
fdfde340
JM
11709 Rd = inst.operands[0].reg;
11710 reject_bad_reg (Rd);
11711 inst.instruction |= Rd << 8;
c19d1205
ZW
11712 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11713 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11714 inst.instruction |= msb - 1;
b99bd4ef
NC
11715}
11716
c19d1205
ZW
11717static void
11718do_t_bfi (void)
b99bd4ef 11719{
fdfde340 11720 int Rd, Rn;
c19d1205 11721 unsigned int msb;
b99bd4ef 11722
fdfde340
JM
11723 Rd = inst.operands[0].reg;
11724 reject_bad_reg (Rd);
11725
c19d1205
ZW
11726 /* #0 in second position is alternative syntax for bfc, which is
11727 the same instruction but with REG_PC in the Rm field. */
11728 if (!inst.operands[1].isreg)
fdfde340
JM
11729 Rn = REG_PC;
11730 else
11731 {
11732 Rn = inst.operands[1].reg;
11733 reject_bad_reg (Rn);
11734 }
b99bd4ef 11735
c19d1205
ZW
11736 msb = inst.operands[2].imm + inst.operands[3].imm;
11737 constraint (msb > 32, _("bit-field extends past end of register"));
11738 /* The instruction encoding stores the LSB and MSB,
11739 not the LSB and width. */
fdfde340
JM
11740 inst.instruction |= Rd << 8;
11741 inst.instruction |= Rn << 16;
c19d1205
ZW
11742 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11743 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11744 inst.instruction |= msb - 1;
b99bd4ef
NC
11745}
11746
c19d1205
ZW
11747static void
11748do_t_bfx (void)
b99bd4ef 11749{
fdfde340
JM
11750 unsigned Rd, Rn;
11751
11752 Rd = inst.operands[0].reg;
11753 Rn = inst.operands[1].reg;
11754
11755 reject_bad_reg (Rd);
11756 reject_bad_reg (Rn);
11757
c19d1205
ZW
11758 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11759 _("bit-field extends past end of register"));
fdfde340
JM
11760 inst.instruction |= Rd << 8;
11761 inst.instruction |= Rn << 16;
c19d1205
ZW
11762 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11763 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11764 inst.instruction |= inst.operands[3].imm - 1;
11765}
b99bd4ef 11766
c19d1205
ZW
11767/* ARM V5 Thumb BLX (argument parse)
11768 BLX <target_addr> which is BLX(1)
11769 BLX <Rm> which is BLX(2)
11770 Unfortunately, there are two different opcodes for this mnemonic.
11771 So, the insns[].value is not used, and the code here zaps values
11772 into inst.instruction.
b99bd4ef 11773
c19d1205
ZW
11774 ??? How to take advantage of the additional two bits of displacement
11775 available in Thumb32 mode? Need new relocation? */
b99bd4ef 11776
c19d1205
ZW
11777static void
11778do_t_blx (void)
11779{
5ee91343 11780 set_pred_insn_type_last ();
e07e6e58 11781
c19d1205 11782 if (inst.operands[0].isreg)
fdfde340
JM
11783 {
11784 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11785 /* We have a register, so this is BLX(2). */
11786 inst.instruction |= inst.operands[0].reg << 3;
11787 }
b99bd4ef
NC
11788 else
11789 {
c19d1205 11790 /* No register. This must be BLX(1). */
2fc8bdac 11791 inst.instruction = 0xf000e800;
0855e32b 11792 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
11793 }
11794}
11795
c19d1205
ZW
11796static void
11797do_t_branch (void)
b99bd4ef 11798{
0110f2b8 11799 int opcode;
dfa9f0d5 11800 int cond;
2fe88214 11801 bfd_reloc_code_real_type reloc;
dfa9f0d5 11802
e07e6e58 11803 cond = inst.cond;
5ee91343 11804 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
e07e6e58 11805
5ee91343 11806 if (in_pred_block ())
dfa9f0d5
PB
11807 {
11808 /* Conditional branches inside IT blocks are encoded as unconditional
477330fc 11809 branches. */
dfa9f0d5 11810 cond = COND_ALWAYS;
dfa9f0d5
PB
11811 }
11812 else
11813 cond = inst.cond;
11814
11815 if (cond != COND_ALWAYS)
0110f2b8
PB
11816 opcode = T_MNEM_bcond;
11817 else
11818 opcode = inst.instruction;
11819
12d6b0b7
RS
11820 if (unified_syntax
11821 && (inst.size_req == 4
10960bfb
PB
11822 || (inst.size_req != 2
11823 && (inst.operands[0].hasreloc
e2b0ab59 11824 || inst.relocs[0].exp.X_op == O_constant))))
c19d1205 11825 {
0110f2b8 11826 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 11827 if (cond == COND_ALWAYS)
9ae92b05 11828 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
11829 else
11830 {
ff8646ee
TP
11831 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11832 _("selected architecture does not support "
11833 "wide conditional branch instruction"));
11834
9c2799c2 11835 gas_assert (cond != 0xF);
dfa9f0d5 11836 inst.instruction |= cond << 22;
9ae92b05 11837 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
11838 }
11839 }
b99bd4ef
NC
11840 else
11841 {
0110f2b8 11842 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 11843 if (cond == COND_ALWAYS)
9ae92b05 11844 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 11845 else
b99bd4ef 11846 {
dfa9f0d5 11847 inst.instruction |= cond << 8;
9ae92b05 11848 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 11849 }
0110f2b8
PB
11850 /* Allow section relaxation. */
11851 if (unified_syntax && inst.size_req != 2)
11852 inst.relax = opcode;
b99bd4ef 11853 }
e2b0ab59
AV
11854 inst.relocs[0].type = reloc;
11855 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
11856}
11857
8884b720 11858/* Actually do the work for Thumb state bkpt and hlt. The only difference
bacebabc 11859 between the two is the maximum immediate allowed - which is passed in
8884b720 11860 RANGE. */
b99bd4ef 11861static void
8884b720 11862do_t_bkpt_hlt1 (int range)
b99bd4ef 11863{
dfa9f0d5
PB
11864 constraint (inst.cond != COND_ALWAYS,
11865 _("instruction is always unconditional"));
c19d1205 11866 if (inst.operands[0].present)
b99bd4ef 11867 {
8884b720 11868 constraint (inst.operands[0].imm > range,
c19d1205
ZW
11869 _("immediate value out of range"));
11870 inst.instruction |= inst.operands[0].imm;
b99bd4ef 11871 }
8884b720 11872
5ee91343 11873 set_pred_insn_type (NEUTRAL_IT_INSN);
8884b720
MGD
11874}
11875
11876static void
11877do_t_hlt (void)
11878{
11879 do_t_bkpt_hlt1 (63);
11880}
11881
11882static void
11883do_t_bkpt (void)
11884{
11885 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
11886}
11887
11888static void
c19d1205 11889do_t_branch23 (void)
b99bd4ef 11890{
5ee91343 11891 set_pred_insn_type_last ();
0855e32b 11892 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 11893
0855e32b
NS
11894 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11895 this file. We used to simply ignore the PLT reloc type here --
11896 the branch encoding is now needed to deal with TLSCALL relocs.
11897 So if we see a PLT reloc now, put it back to how it used to be to
11898 keep the preexisting behaviour. */
e2b0ab59
AV
11899 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11900 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 11901
4343666d 11902#if defined(OBJ_COFF)
c19d1205
ZW
11903 /* If the destination of the branch is a defined symbol which does not have
11904 the THUMB_FUNC attribute, then we must be calling a function which has
11905 the (interfacearm) attribute. We look for the Thumb entry point to that
11906 function and change the branch to refer to that function instead. */
e2b0ab59
AV
11907 if ( inst.relocs[0].exp.X_op == O_symbol
11908 && inst.relocs[0].exp.X_add_symbol != NULL
11909 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11910 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11911 inst.relocs[0].exp.X_add_symbol
11912 = find_real_start (inst.relocs[0].exp.X_add_symbol);
4343666d 11913#endif
90e4755a
RE
11914}
11915
11916static void
c19d1205 11917do_t_bx (void)
90e4755a 11918{
5ee91343 11919 set_pred_insn_type_last ();
c19d1205
ZW
11920 inst.instruction |= inst.operands[0].reg << 3;
11921 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11922 should cause the alignment to be checked once it is known. This is
11923 because BX PC only works if the instruction is word aligned. */
11924}
90e4755a 11925
c19d1205
ZW
11926static void
11927do_t_bxj (void)
11928{
fdfde340 11929 int Rm;
90e4755a 11930
5ee91343 11931 set_pred_insn_type_last ();
fdfde340
JM
11932 Rm = inst.operands[0].reg;
11933 reject_bad_reg (Rm);
11934 inst.instruction |= Rm << 16;
90e4755a
RE
11935}
11936
11937static void
c19d1205 11938do_t_clz (void)
90e4755a 11939{
fdfde340
JM
11940 unsigned Rd;
11941 unsigned Rm;
11942
11943 Rd = inst.operands[0].reg;
11944 Rm = inst.operands[1].reg;
11945
11946 reject_bad_reg (Rd);
11947 reject_bad_reg (Rm);
11948
11949 inst.instruction |= Rd << 8;
11950 inst.instruction |= Rm << 16;
11951 inst.instruction |= Rm;
c19d1205 11952}
90e4755a 11953
91d8b670
JG
11954static void
11955do_t_csdb (void)
11956{
5ee91343 11957 set_pred_insn_type (OUTSIDE_PRED_INSN);
91d8b670
JG
11958}
11959
dfa9f0d5
PB
11960static void
11961do_t_cps (void)
11962{
5ee91343 11963 set_pred_insn_type (OUTSIDE_PRED_INSN);
dfa9f0d5
PB
11964 inst.instruction |= inst.operands[0].imm;
11965}
11966
c19d1205
ZW
11967static void
11968do_t_cpsi (void)
11969{
5ee91343 11970 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205 11971 if (unified_syntax
62b3e311
PB
11972 && (inst.operands[1].present || inst.size_req == 4)
11973 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 11974 {
c19d1205
ZW
11975 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11976 inst.instruction = 0xf3af8000;
11977 inst.instruction |= imod << 9;
11978 inst.instruction |= inst.operands[0].imm << 5;
11979 if (inst.operands[1].present)
11980 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 11981 }
c19d1205 11982 else
90e4755a 11983 {
62b3e311
PB
11984 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11985 && (inst.operands[0].imm & 4),
11986 _("selected processor does not support 'A' form "
11987 "of this instruction"));
11988 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
11989 _("Thumb does not support the 2-argument "
11990 "form of this instruction"));
11991 inst.instruction |= inst.operands[0].imm;
90e4755a 11992 }
90e4755a
RE
11993}
11994
c19d1205
ZW
11995/* THUMB CPY instruction (argument parse). */
11996
90e4755a 11997static void
c19d1205 11998do_t_cpy (void)
90e4755a 11999{
c19d1205 12000 if (inst.size_req == 4)
90e4755a 12001 {
c19d1205
ZW
12002 inst.instruction = THUMB_OP32 (T_MNEM_mov);
12003 inst.instruction |= inst.operands[0].reg << 8;
12004 inst.instruction |= inst.operands[1].reg;
90e4755a 12005 }
c19d1205 12006 else
90e4755a 12007 {
c19d1205
ZW
12008 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
12009 inst.instruction |= (inst.operands[0].reg & 0x7);
12010 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 12011 }
90e4755a
RE
12012}
12013
90e4755a 12014static void
25fe350b 12015do_t_cbz (void)
90e4755a 12016{
5ee91343 12017 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
12018 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12019 inst.instruction |= inst.operands[0].reg;
e2b0ab59
AV
12020 inst.relocs[0].pc_rel = 1;
12021 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
c19d1205 12022}
90e4755a 12023
62b3e311
PB
12024static void
12025do_t_dbg (void)
12026{
12027 inst.instruction |= inst.operands[0].imm;
12028}
12029
12030static void
12031do_t_div (void)
12032{
fdfde340
JM
12033 unsigned Rd, Rn, Rm;
12034
12035 Rd = inst.operands[0].reg;
12036 Rn = (inst.operands[1].present
12037 ? inst.operands[1].reg : Rd);
12038 Rm = inst.operands[2].reg;
12039
12040 reject_bad_reg (Rd);
12041 reject_bad_reg (Rn);
12042 reject_bad_reg (Rm);
12043
12044 inst.instruction |= Rd << 8;
12045 inst.instruction |= Rn << 16;
12046 inst.instruction |= Rm;
62b3e311
PB
12047}
12048
c19d1205
ZW
12049static void
12050do_t_hint (void)
12051{
12052 if (unified_syntax && inst.size_req == 4)
12053 inst.instruction = THUMB_OP32 (inst.instruction);
12054 else
12055 inst.instruction = THUMB_OP16 (inst.instruction);
12056}
90e4755a 12057
c19d1205
ZW
12058static void
12059do_t_it (void)
12060{
12061 unsigned int cond = inst.operands[0].imm;
e27ec89e 12062
5ee91343
AV
12063 set_pred_insn_type (IT_INSN);
12064 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12065 now_pred.cc = cond;
12066 now_pred.warn_deprecated = FALSE;
12067 now_pred.type = SCALAR_PRED;
e27ec89e
PB
12068
12069 /* If the condition is a negative condition, invert the mask. */
c19d1205 12070 if ((cond & 0x1) == 0x0)
90e4755a 12071 {
c19d1205 12072 unsigned int mask = inst.instruction & 0x000f;
90e4755a 12073
c19d1205 12074 if ((mask & 0x7) == 0)
5a01bb1d
MGD
12075 {
12076 /* No conversion needed. */
5ee91343 12077 now_pred.block_length = 1;
5a01bb1d 12078 }
c19d1205 12079 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
12080 {
12081 mask ^= 0x8;
5ee91343 12082 now_pred.block_length = 2;
5a01bb1d 12083 }
e27ec89e 12084 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
12085 {
12086 mask ^= 0xC;
5ee91343 12087 now_pred.block_length = 3;
5a01bb1d 12088 }
c19d1205 12089 else
5a01bb1d
MGD
12090 {
12091 mask ^= 0xE;
5ee91343 12092 now_pred.block_length = 4;
5a01bb1d 12093 }
90e4755a 12094
e27ec89e
PB
12095 inst.instruction &= 0xfff0;
12096 inst.instruction |= mask;
c19d1205 12097 }
90e4755a 12098
c19d1205
ZW
12099 inst.instruction |= cond << 4;
12100}
90e4755a 12101
3c707909
PB
12102/* Helper function used for both push/pop and ldm/stm. */
12103static void
4b5a202f
AV
12104encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12105 bfd_boolean writeback)
3c707909 12106{
4b5a202f 12107 bfd_boolean load, store;
3c707909 12108
4b5a202f
AV
12109 gas_assert (base != -1 || !do_io);
12110 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12111 store = do_io && !load;
3c707909
PB
12112
12113 if (mask & (1 << 13))
12114 inst.error = _("SP not allowed in register list");
1e5b0379 12115
4b5a202f 12116 if (do_io && (mask & (1 << base)) != 0
1e5b0379
NC
12117 && writeback)
12118 inst.error = _("having the base register in the register list when "
12119 "using write back is UNPREDICTABLE");
12120
3c707909
PB
12121 if (load)
12122 {
e07e6e58 12123 if (mask & (1 << 15))
477330fc
RM
12124 {
12125 if (mask & (1 << 14))
12126 inst.error = _("LR and PC should not both be in register list");
12127 else
5ee91343 12128 set_pred_insn_type_last ();
477330fc 12129 }
3c707909 12130 }
4b5a202f 12131 else if (store)
3c707909
PB
12132 {
12133 if (mask & (1 << 15))
12134 inst.error = _("PC not allowed in register list");
3c707909
PB
12135 }
12136
4b5a202f 12137 if (do_io && ((mask & (mask - 1)) == 0))
3c707909
PB
12138 {
12139 /* Single register transfers implemented as str/ldr. */
12140 if (writeback)
12141 {
12142 if (inst.instruction & (1 << 23))
12143 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12144 else
12145 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12146 }
12147 else
12148 {
12149 if (inst.instruction & (1 << 23))
12150 inst.instruction = 0x00800000; /* ia -> [base] */
12151 else
12152 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12153 }
12154
12155 inst.instruction |= 0xf8400000;
12156 if (load)
12157 inst.instruction |= 0x00100000;
12158
5f4273c7 12159 mask = ffs (mask) - 1;
3c707909
PB
12160 mask <<= 12;
12161 }
12162 else if (writeback)
12163 inst.instruction |= WRITE_BACK;
12164
12165 inst.instruction |= mask;
4b5a202f
AV
12166 if (do_io)
12167 inst.instruction |= base << 16;
3c707909
PB
12168}
12169
c19d1205
ZW
12170static void
12171do_t_ldmstm (void)
12172{
12173 /* This really doesn't seem worth it. */
e2b0ab59 12174 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205
ZW
12175 _("expression too complex"));
12176 constraint (inst.operands[1].writeback,
12177 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 12178
c19d1205
ZW
12179 if (unified_syntax)
12180 {
3c707909
PB
12181 bfd_boolean narrow;
12182 unsigned mask;
12183
12184 narrow = FALSE;
c19d1205
ZW
12185 /* See if we can use a 16-bit instruction. */
12186 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12187 && inst.size_req != 4
3c707909 12188 && !(inst.operands[1].imm & ~0xff))
90e4755a 12189 {
3c707909 12190 mask = 1 << inst.operands[0].reg;
90e4755a 12191
eab4f823 12192 if (inst.operands[0].reg <= 7)
90e4755a 12193 {
3c707909 12194 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
12195 ? inst.operands[0].writeback
12196 : (inst.operands[0].writeback
12197 == !(inst.operands[1].imm & mask)))
477330fc 12198 {
eab4f823
MGD
12199 if (inst.instruction == T_MNEM_stmia
12200 && (inst.operands[1].imm & mask)
12201 && (inst.operands[1].imm & (mask - 1)))
12202 as_warn (_("value stored for r%d is UNKNOWN"),
12203 inst.operands[0].reg);
3c707909 12204
eab4f823
MGD
12205 inst.instruction = THUMB_OP16 (inst.instruction);
12206 inst.instruction |= inst.operands[0].reg << 8;
12207 inst.instruction |= inst.operands[1].imm;
12208 narrow = TRUE;
12209 }
12210 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12211 {
12212 /* This means 1 register in reg list one of 3 situations:
12213 1. Instruction is stmia, but without writeback.
12214 2. lmdia without writeback, but with Rn not in
477330fc 12215 reglist.
eab4f823
MGD
12216 3. ldmia with writeback, but with Rn in reglist.
12217 Case 3 is UNPREDICTABLE behaviour, so we handle
12218 case 1 and 2 which can be converted into a 16-bit
12219 str or ldr. The SP cases are handled below. */
12220 unsigned long opcode;
12221 /* First, record an error for Case 3. */
12222 if (inst.operands[1].imm & mask
12223 && inst.operands[0].writeback)
fa94de6b 12224 inst.error =
eab4f823
MGD
12225 _("having the base register in the register list when "
12226 "using write back is UNPREDICTABLE");
fa94de6b
RM
12227
12228 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
12229 : T_MNEM_ldr);
12230 inst.instruction = THUMB_OP16 (opcode);
12231 inst.instruction |= inst.operands[0].reg << 3;
12232 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12233 narrow = TRUE;
12234 }
90e4755a 12235 }
eab4f823 12236 else if (inst.operands[0] .reg == REG_SP)
90e4755a 12237 {
eab4f823
MGD
12238 if (inst.operands[0].writeback)
12239 {
fa94de6b 12240 inst.instruction =
eab4f823 12241 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12242 ? T_MNEM_push : T_MNEM_pop);
eab4f823 12243 inst.instruction |= inst.operands[1].imm;
477330fc 12244 narrow = TRUE;
eab4f823
MGD
12245 }
12246 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12247 {
fa94de6b 12248 inst.instruction =
eab4f823 12249 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12250 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
eab4f823 12251 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
477330fc 12252 narrow = TRUE;
eab4f823 12253 }
90e4755a 12254 }
3c707909
PB
12255 }
12256
12257 if (!narrow)
12258 {
c19d1205
ZW
12259 if (inst.instruction < 0xffff)
12260 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 12261
4b5a202f
AV
12262 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12263 inst.operands[1].imm,
12264 inst.operands[0].writeback);
90e4755a
RE
12265 }
12266 }
c19d1205 12267 else
90e4755a 12268 {
c19d1205
ZW
12269 constraint (inst.operands[0].reg > 7
12270 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
12271 constraint (inst.instruction != T_MNEM_ldmia
12272 && inst.instruction != T_MNEM_stmia,
12273 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 12274 if (inst.instruction == T_MNEM_stmia)
f03698e6 12275 {
c19d1205
ZW
12276 if (!inst.operands[0].writeback)
12277 as_warn (_("this instruction will write back the base register"));
12278 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12279 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 12280 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 12281 inst.operands[0].reg);
f03698e6 12282 }
c19d1205 12283 else
90e4755a 12284 {
c19d1205
ZW
12285 if (!inst.operands[0].writeback
12286 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12287 as_warn (_("this instruction will write back the base register"));
12288 else if (inst.operands[0].writeback
12289 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12290 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
12291 }
12292
c19d1205
ZW
12293 inst.instruction = THUMB_OP16 (inst.instruction);
12294 inst.instruction |= inst.operands[0].reg << 8;
12295 inst.instruction |= inst.operands[1].imm;
12296 }
12297}
e28cd48c 12298
c19d1205
ZW
12299static void
12300do_t_ldrex (void)
12301{
12302 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12303 || inst.operands[1].postind || inst.operands[1].writeback
12304 || inst.operands[1].immisreg || inst.operands[1].shifted
12305 || inst.operands[1].negative,
01cfc07f 12306 BAD_ADDR_MODE);
e28cd48c 12307
5be8be5d
DG
12308 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12309
c19d1205
ZW
12310 inst.instruction |= inst.operands[0].reg << 12;
12311 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 12312 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
c19d1205 12313}
e28cd48c 12314
c19d1205
ZW
12315static void
12316do_t_ldrexd (void)
12317{
12318 if (!inst.operands[1].present)
1cac9012 12319 {
c19d1205
ZW
12320 constraint (inst.operands[0].reg == REG_LR,
12321 _("r14 not allowed as first register "
12322 "when second register is omitted"));
12323 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 12324 }
c19d1205
ZW
12325 constraint (inst.operands[0].reg == inst.operands[1].reg,
12326 BAD_OVERLAP);
b99bd4ef 12327
c19d1205
ZW
12328 inst.instruction |= inst.operands[0].reg << 12;
12329 inst.instruction |= inst.operands[1].reg << 8;
12330 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
12331}
12332
12333static void
c19d1205 12334do_t_ldst (void)
b99bd4ef 12335{
0110f2b8
PB
12336 unsigned long opcode;
12337 int Rn;
12338
e07e6e58
NC
12339 if (inst.operands[0].isreg
12340 && !inst.operands[0].preind
12341 && inst.operands[0].reg == REG_PC)
5ee91343 12342 set_pred_insn_type_last ();
e07e6e58 12343
0110f2b8 12344 opcode = inst.instruction;
c19d1205 12345 if (unified_syntax)
b99bd4ef 12346 {
53365c0d
PB
12347 if (!inst.operands[1].isreg)
12348 {
12349 if (opcode <= 0xffff)
12350 inst.instruction = THUMB_OP32 (opcode);
8335d6aa 12351 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
53365c0d
PB
12352 return;
12353 }
0110f2b8
PB
12354 if (inst.operands[1].isreg
12355 && !inst.operands[1].writeback
c19d1205
ZW
12356 && !inst.operands[1].shifted && !inst.operands[1].postind
12357 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
12358 && opcode <= 0xffff
12359 && inst.size_req != 4)
c19d1205 12360 {
0110f2b8
PB
12361 /* Insn may have a 16-bit form. */
12362 Rn = inst.operands[1].reg;
12363 if (inst.operands[1].immisreg)
12364 {
12365 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 12366 /* [Rn, Rik] */
0110f2b8
PB
12367 if (Rn <= 7 && inst.operands[1].imm <= 7)
12368 goto op16;
5be8be5d
DG
12369 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12370 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
12371 }
12372 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12373 && opcode != T_MNEM_ldrsb)
12374 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12375 || (Rn == REG_SP && opcode == T_MNEM_str))
12376 {
12377 /* [Rn, #const] */
12378 if (Rn > 7)
12379 {
12380 if (Rn == REG_PC)
12381 {
e2b0ab59 12382 if (inst.relocs[0].pc_rel)
0110f2b8
PB
12383 opcode = T_MNEM_ldr_pc2;
12384 else
12385 opcode = T_MNEM_ldr_pc;
12386 }
12387 else
12388 {
12389 if (opcode == T_MNEM_ldr)
12390 opcode = T_MNEM_ldr_sp;
12391 else
12392 opcode = T_MNEM_str_sp;
12393 }
12394 inst.instruction = inst.operands[0].reg << 8;
12395 }
12396 else
12397 {
12398 inst.instruction = inst.operands[0].reg;
12399 inst.instruction |= inst.operands[1].reg << 3;
12400 }
12401 inst.instruction |= THUMB_OP16 (opcode);
12402 if (inst.size_req == 2)
e2b0ab59 12403 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
0110f2b8
PB
12404 else
12405 inst.relax = opcode;
12406 return;
12407 }
c19d1205 12408 }
0110f2b8 12409 /* Definitely a 32-bit variant. */
5be8be5d 12410
8d67f500
NC
12411 /* Warning for Erratum 752419. */
12412 if (opcode == T_MNEM_ldr
12413 && inst.operands[0].reg == REG_SP
12414 && inst.operands[1].writeback == 1
12415 && !inst.operands[1].immisreg)
12416 {
12417 if (no_cpu_selected ()
12418 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
477330fc
RM
12419 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12420 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
8d67f500
NC
12421 as_warn (_("This instruction may be unpredictable "
12422 "if executed on M-profile cores "
12423 "with interrupts enabled."));
12424 }
12425
5be8be5d 12426 /* Do some validations regarding addressing modes. */
1be5fd2e 12427 if (inst.operands[1].immisreg)
5be8be5d
DG
12428 reject_bad_reg (inst.operands[1].imm);
12429
1be5fd2e
NC
12430 constraint (inst.operands[1].writeback == 1
12431 && inst.operands[0].reg == inst.operands[1].reg,
12432 BAD_OVERLAP);
12433
0110f2b8 12434 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
12435 inst.instruction |= inst.operands[0].reg << 12;
12436 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 12437 check_ldr_r15_aligned ();
b99bd4ef
NC
12438 return;
12439 }
12440
c19d1205
ZW
12441 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12442
12443 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 12444 {
c19d1205
ZW
12445 /* Only [Rn,Rm] is acceptable. */
12446 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12447 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12448 || inst.operands[1].postind || inst.operands[1].shifted
12449 || inst.operands[1].negative,
12450 _("Thumb does not support this addressing mode"));
12451 inst.instruction = THUMB_OP16 (inst.instruction);
12452 goto op16;
b99bd4ef 12453 }
5f4273c7 12454
c19d1205
ZW
12455 inst.instruction = THUMB_OP16 (inst.instruction);
12456 if (!inst.operands[1].isreg)
8335d6aa 12457 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
c19d1205 12458 return;
b99bd4ef 12459
c19d1205
ZW
12460 constraint (!inst.operands[1].preind
12461 || inst.operands[1].shifted
12462 || inst.operands[1].writeback,
12463 _("Thumb does not support this addressing mode"));
12464 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 12465 {
c19d1205
ZW
12466 constraint (inst.instruction & 0x0600,
12467 _("byte or halfword not valid for base register"));
12468 constraint (inst.operands[1].reg == REG_PC
12469 && !(inst.instruction & THUMB_LOAD_BIT),
12470 _("r15 based store not allowed"));
12471 constraint (inst.operands[1].immisreg,
12472 _("invalid base register for register offset"));
b99bd4ef 12473
c19d1205
ZW
12474 if (inst.operands[1].reg == REG_PC)
12475 inst.instruction = T_OPCODE_LDR_PC;
12476 else if (inst.instruction & THUMB_LOAD_BIT)
12477 inst.instruction = T_OPCODE_LDR_SP;
12478 else
12479 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 12480
c19d1205 12481 inst.instruction |= inst.operands[0].reg << 8;
e2b0ab59 12482 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12483 return;
12484 }
90e4755a 12485
c19d1205
ZW
12486 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12487 if (!inst.operands[1].immisreg)
12488 {
12489 /* Immediate offset. */
12490 inst.instruction |= inst.operands[0].reg;
12491 inst.instruction |= inst.operands[1].reg << 3;
e2b0ab59 12492 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12493 return;
12494 }
90e4755a 12495
c19d1205
ZW
12496 /* Register offset. */
12497 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12498 constraint (inst.operands[1].negative,
12499 _("Thumb does not support this addressing mode"));
90e4755a 12500
c19d1205
ZW
12501 op16:
12502 switch (inst.instruction)
12503 {
12504 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12505 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12506 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12507 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12508 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12509 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12510 case 0x5600 /* ldrsb */:
12511 case 0x5e00 /* ldrsh */: break;
12512 default: abort ();
12513 }
90e4755a 12514
c19d1205
ZW
12515 inst.instruction |= inst.operands[0].reg;
12516 inst.instruction |= inst.operands[1].reg << 3;
12517 inst.instruction |= inst.operands[1].imm << 6;
12518}
90e4755a 12519
c19d1205
ZW
12520static void
12521do_t_ldstd (void)
12522{
12523 if (!inst.operands[1].present)
b99bd4ef 12524 {
c19d1205
ZW
12525 inst.operands[1].reg = inst.operands[0].reg + 1;
12526 constraint (inst.operands[0].reg == REG_LR,
12527 _("r14 not allowed here"));
bd340a04 12528 constraint (inst.operands[0].reg == REG_R12,
477330fc 12529 _("r12 not allowed here"));
b99bd4ef 12530 }
bd340a04
MGD
12531
12532 if (inst.operands[2].writeback
12533 && (inst.operands[0].reg == inst.operands[2].reg
12534 || inst.operands[1].reg == inst.operands[2].reg))
12535 as_warn (_("base register written back, and overlaps "
477330fc 12536 "one of transfer registers"));
bd340a04 12537
c19d1205
ZW
12538 inst.instruction |= inst.operands[0].reg << 12;
12539 inst.instruction |= inst.operands[1].reg << 8;
12540 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
12541}
12542
c19d1205
ZW
12543static void
12544do_t_ldstt (void)
12545{
12546 inst.instruction |= inst.operands[0].reg << 12;
12547 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12548}
a737bd4d 12549
b99bd4ef 12550static void
c19d1205 12551do_t_mla (void)
b99bd4ef 12552{
fdfde340 12553 unsigned Rd, Rn, Rm, Ra;
c921be7d 12554
fdfde340
JM
12555 Rd = inst.operands[0].reg;
12556 Rn = inst.operands[1].reg;
12557 Rm = inst.operands[2].reg;
12558 Ra = inst.operands[3].reg;
12559
12560 reject_bad_reg (Rd);
12561 reject_bad_reg (Rn);
12562 reject_bad_reg (Rm);
12563 reject_bad_reg (Ra);
12564
12565 inst.instruction |= Rd << 8;
12566 inst.instruction |= Rn << 16;
12567 inst.instruction |= Rm;
12568 inst.instruction |= Ra << 12;
c19d1205 12569}
b99bd4ef 12570
c19d1205
ZW
12571static void
12572do_t_mlal (void)
12573{
fdfde340
JM
12574 unsigned RdLo, RdHi, Rn, Rm;
12575
12576 RdLo = inst.operands[0].reg;
12577 RdHi = inst.operands[1].reg;
12578 Rn = inst.operands[2].reg;
12579 Rm = inst.operands[3].reg;
12580
12581 reject_bad_reg (RdLo);
12582 reject_bad_reg (RdHi);
12583 reject_bad_reg (Rn);
12584 reject_bad_reg (Rm);
12585
12586 inst.instruction |= RdLo << 12;
12587 inst.instruction |= RdHi << 8;
12588 inst.instruction |= Rn << 16;
12589 inst.instruction |= Rm;
c19d1205 12590}
b99bd4ef 12591
c19d1205
ZW
12592static void
12593do_t_mov_cmp (void)
12594{
fdfde340
JM
12595 unsigned Rn, Rm;
12596
12597 Rn = inst.operands[0].reg;
12598 Rm = inst.operands[1].reg;
12599
e07e6e58 12600 if (Rn == REG_PC)
5ee91343 12601 set_pred_insn_type_last ();
e07e6e58 12602
c19d1205 12603 if (unified_syntax)
b99bd4ef 12604 {
c19d1205
ZW
12605 int r0off = (inst.instruction == T_MNEM_mov
12606 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 12607 unsigned long opcode;
3d388997
PB
12608 bfd_boolean narrow;
12609 bfd_boolean low_regs;
12610
fdfde340 12611 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 12612 opcode = inst.instruction;
5ee91343 12613 if (in_pred_block ())
0110f2b8 12614 narrow = opcode != T_MNEM_movs;
3d388997 12615 else
0110f2b8 12616 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
12617 if (inst.size_req == 4
12618 || inst.operands[1].shifted)
12619 narrow = FALSE;
12620
efd81785
PB
12621 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12622 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12623 && !inst.operands[1].shifted
fdfde340
JM
12624 && Rn == REG_PC
12625 && Rm == REG_LR)
efd81785
PB
12626 {
12627 inst.instruction = T2_SUBS_PC_LR;
12628 return;
12629 }
12630
fdfde340
JM
12631 if (opcode == T_MNEM_cmp)
12632 {
12633 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
12634 if (narrow)
12635 {
12636 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12637 but valid. */
12638 warn_deprecated_sp (Rm);
12639 /* R15 was documented as a valid choice for Rm in ARMv6,
12640 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12641 tools reject R15, so we do too. */
12642 constraint (Rm == REG_PC, BAD_PC);
12643 }
12644 else
12645 reject_bad_reg (Rm);
fdfde340
JM
12646 }
12647 else if (opcode == T_MNEM_mov
12648 || opcode == T_MNEM_movs)
12649 {
12650 if (inst.operands[1].isreg)
12651 {
12652 if (opcode == T_MNEM_movs)
12653 {
12654 reject_bad_reg (Rn);
12655 reject_bad_reg (Rm);
12656 }
76fa04a4
MGD
12657 else if (narrow)
12658 {
12659 /* This is mov.n. */
12660 if ((Rn == REG_SP || Rn == REG_PC)
12661 && (Rm == REG_SP || Rm == REG_PC))
12662 {
5c3696f8 12663 as_tsktsk (_("Use of r%u as a source register is "
76fa04a4
MGD
12664 "deprecated when r%u is the destination "
12665 "register."), Rm, Rn);
12666 }
12667 }
12668 else
12669 {
12670 /* This is mov.w. */
12671 constraint (Rn == REG_PC, BAD_PC);
12672 constraint (Rm == REG_PC, BAD_PC);
5c8ed6a4
JW
12673 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12674 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
76fa04a4 12675 }
fdfde340
JM
12676 }
12677 else
12678 reject_bad_reg (Rn);
12679 }
12680
c19d1205
ZW
12681 if (!inst.operands[1].isreg)
12682 {
0110f2b8 12683 /* Immediate operand. */
5ee91343 12684 if (!in_pred_block () && opcode == T_MNEM_mov)
0110f2b8
PB
12685 narrow = 0;
12686 if (low_regs && narrow)
12687 {
12688 inst.instruction = THUMB_OP16 (opcode);
fdfde340 12689 inst.instruction |= Rn << 8;
e2b0ab59
AV
12690 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12691 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
72d98d16 12692 {
a9f02af8 12693 if (inst.size_req == 2)
e2b0ab59 12694 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
a9f02af8
MG
12695 else
12696 inst.relax = opcode;
72d98d16 12697 }
0110f2b8
PB
12698 }
12699 else
12700 {
e2b0ab59
AV
12701 constraint ((inst.relocs[0].type
12702 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12703 && (inst.relocs[0].type
12704 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8
MG
12705 THUMB1_RELOC_ONLY);
12706
0110f2b8
PB
12707 inst.instruction = THUMB_OP32 (inst.instruction);
12708 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12709 inst.instruction |= Rn << r0off;
e2b0ab59 12710 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8 12711 }
c19d1205 12712 }
728ca7c9
PB
12713 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12714 && (inst.instruction == T_MNEM_mov
12715 || inst.instruction == T_MNEM_movs))
12716 {
12717 /* Register shifts are encoded as separate shift instructions. */
12718 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12719
5ee91343 12720 if (in_pred_block ())
728ca7c9
PB
12721 narrow = !flags;
12722 else
12723 narrow = flags;
12724
12725 if (inst.size_req == 4)
12726 narrow = FALSE;
12727
12728 if (!low_regs || inst.operands[1].imm > 7)
12729 narrow = FALSE;
12730
fdfde340 12731 if (Rn != Rm)
728ca7c9
PB
12732 narrow = FALSE;
12733
12734 switch (inst.operands[1].shift_kind)
12735 {
12736 case SHIFT_LSL:
12737 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12738 break;
12739 case SHIFT_ASR:
12740 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12741 break;
12742 case SHIFT_LSR:
12743 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12744 break;
12745 case SHIFT_ROR:
12746 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12747 break;
12748 default:
5f4273c7 12749 abort ();
728ca7c9
PB
12750 }
12751
12752 inst.instruction = opcode;
12753 if (narrow)
12754 {
fdfde340 12755 inst.instruction |= Rn;
728ca7c9
PB
12756 inst.instruction |= inst.operands[1].imm << 3;
12757 }
12758 else
12759 {
12760 if (flags)
12761 inst.instruction |= CONDS_BIT;
12762
fdfde340
JM
12763 inst.instruction |= Rn << 8;
12764 inst.instruction |= Rm << 16;
728ca7c9
PB
12765 inst.instruction |= inst.operands[1].imm;
12766 }
12767 }
3d388997 12768 else if (!narrow)
c19d1205 12769 {
728ca7c9
PB
12770 /* Some mov with immediate shift have narrow variants.
12771 Register shifts are handled above. */
12772 if (low_regs && inst.operands[1].shifted
12773 && (inst.instruction == T_MNEM_mov
12774 || inst.instruction == T_MNEM_movs))
12775 {
5ee91343 12776 if (in_pred_block ())
728ca7c9
PB
12777 narrow = (inst.instruction == T_MNEM_mov);
12778 else
12779 narrow = (inst.instruction == T_MNEM_movs);
12780 }
12781
12782 if (narrow)
12783 {
12784 switch (inst.operands[1].shift_kind)
12785 {
12786 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12787 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12788 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12789 default: narrow = FALSE; break;
12790 }
12791 }
12792
12793 if (narrow)
12794 {
fdfde340
JM
12795 inst.instruction |= Rn;
12796 inst.instruction |= Rm << 3;
e2b0ab59 12797 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
728ca7c9
PB
12798 }
12799 else
12800 {
12801 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12802 inst.instruction |= Rn << r0off;
728ca7c9
PB
12803 encode_thumb32_shifted_operand (1);
12804 }
c19d1205
ZW
12805 }
12806 else
12807 switch (inst.instruction)
12808 {
12809 case T_MNEM_mov:
837b3435 12810 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
12811 results. Don't allow this. */
12812 if (low_regs)
12813 {
12814 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12815 "MOV Rd, Rs with two low registers is not "
12816 "permitted on this architecture");
fa94de6b 12817 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
12818 arm_ext_v6);
12819 }
12820
c19d1205 12821 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
12822 inst.instruction |= (Rn & 0x8) << 4;
12823 inst.instruction |= (Rn & 0x7);
12824 inst.instruction |= Rm << 3;
c19d1205 12825 break;
b99bd4ef 12826
c19d1205
ZW
12827 case T_MNEM_movs:
12828 /* We know we have low registers at this point.
941a8a52
MGD
12829 Generate LSLS Rd, Rs, #0. */
12830 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
12831 inst.instruction |= Rn;
12832 inst.instruction |= Rm << 3;
c19d1205
ZW
12833 break;
12834
12835 case T_MNEM_cmp:
3d388997 12836 if (low_regs)
c19d1205
ZW
12837 {
12838 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
12839 inst.instruction |= Rn;
12840 inst.instruction |= Rm << 3;
c19d1205
ZW
12841 }
12842 else
12843 {
12844 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
12845 inst.instruction |= (Rn & 0x8) << 4;
12846 inst.instruction |= (Rn & 0x7);
12847 inst.instruction |= Rm << 3;
c19d1205
ZW
12848 }
12849 break;
12850 }
b99bd4ef
NC
12851 return;
12852 }
12853
c19d1205 12854 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
12855
12856 /* PR 10443: Do not silently ignore shifted operands. */
12857 constraint (inst.operands[1].shifted,
12858 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12859
c19d1205 12860 if (inst.operands[1].isreg)
b99bd4ef 12861 {
fdfde340 12862 if (Rn < 8 && Rm < 8)
b99bd4ef 12863 {
c19d1205
ZW
12864 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12865 since a MOV instruction produces unpredictable results. */
12866 if (inst.instruction == T_OPCODE_MOV_I8)
12867 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 12868 else
c19d1205 12869 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 12870
fdfde340
JM
12871 inst.instruction |= Rn;
12872 inst.instruction |= Rm << 3;
b99bd4ef
NC
12873 }
12874 else
12875 {
c19d1205
ZW
12876 if (inst.instruction == T_OPCODE_MOV_I8)
12877 inst.instruction = T_OPCODE_MOV_HR;
12878 else
12879 inst.instruction = T_OPCODE_CMP_HR;
12880 do_t_cpy ();
b99bd4ef
NC
12881 }
12882 }
c19d1205 12883 else
b99bd4ef 12884 {
fdfde340 12885 constraint (Rn > 7,
c19d1205 12886 _("only lo regs allowed with immediate"));
fdfde340 12887 inst.instruction |= Rn << 8;
e2b0ab59 12888 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
c19d1205
ZW
12889 }
12890}
b99bd4ef 12891
c19d1205
ZW
12892static void
12893do_t_mov16 (void)
12894{
fdfde340 12895 unsigned Rd;
b6895b4f
PB
12896 bfd_vma imm;
12897 bfd_boolean top;
12898
12899 top = (inst.instruction & 0x00800000) != 0;
e2b0ab59 12900 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
b6895b4f 12901 {
33eaf5de 12902 constraint (top, _(":lower16: not allowed in this instruction"));
e2b0ab59 12903 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
b6895b4f 12904 }
e2b0ab59 12905 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
b6895b4f 12906 {
33eaf5de 12907 constraint (!top, _(":upper16: not allowed in this instruction"));
e2b0ab59 12908 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
b6895b4f
PB
12909 }
12910
fdfde340
JM
12911 Rd = inst.operands[0].reg;
12912 reject_bad_reg (Rd);
12913
12914 inst.instruction |= Rd << 8;
e2b0ab59 12915 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 12916 {
e2b0ab59 12917 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
12918 inst.instruction |= (imm & 0xf000) << 4;
12919 inst.instruction |= (imm & 0x0800) << 15;
12920 inst.instruction |= (imm & 0x0700) << 4;
12921 inst.instruction |= (imm & 0x00ff);
12922 }
c19d1205 12923}
b99bd4ef 12924
c19d1205
ZW
12925static void
12926do_t_mvn_tst (void)
12927{
fdfde340 12928 unsigned Rn, Rm;
c921be7d 12929
fdfde340
JM
12930 Rn = inst.operands[0].reg;
12931 Rm = inst.operands[1].reg;
12932
12933 if (inst.instruction == T_MNEM_cmp
12934 || inst.instruction == T_MNEM_cmn)
12935 constraint (Rn == REG_PC, BAD_PC);
12936 else
12937 reject_bad_reg (Rn);
12938 reject_bad_reg (Rm);
12939
c19d1205
ZW
12940 if (unified_syntax)
12941 {
12942 int r0off = (inst.instruction == T_MNEM_mvn
12943 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
12944 bfd_boolean narrow;
12945
12946 if (inst.size_req == 4
12947 || inst.instruction > 0xffff
12948 || inst.operands[1].shifted
fdfde340 12949 || Rn > 7 || Rm > 7)
3d388997 12950 narrow = FALSE;
fe8b4cc3
KT
12951 else if (inst.instruction == T_MNEM_cmn
12952 || inst.instruction == T_MNEM_tst)
3d388997
PB
12953 narrow = TRUE;
12954 else if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 12955 narrow = !in_pred_block ();
3d388997 12956 else
5ee91343 12957 narrow = in_pred_block ();
3d388997 12958
c19d1205 12959 if (!inst.operands[1].isreg)
b99bd4ef 12960 {
c19d1205
ZW
12961 /* For an immediate, we always generate a 32-bit opcode;
12962 section relaxation will shrink it later if possible. */
12963 if (inst.instruction < 0xffff)
12964 inst.instruction = THUMB_OP32 (inst.instruction);
12965 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12966 inst.instruction |= Rn << r0off;
e2b0ab59 12967 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 12968 }
c19d1205 12969 else
b99bd4ef 12970 {
c19d1205 12971 /* See if we can do this with a 16-bit instruction. */
3d388997 12972 if (narrow)
b99bd4ef 12973 {
c19d1205 12974 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12975 inst.instruction |= Rn;
12976 inst.instruction |= Rm << 3;
b99bd4ef 12977 }
c19d1205 12978 else
b99bd4ef 12979 {
c19d1205
ZW
12980 constraint (inst.operands[1].shifted
12981 && inst.operands[1].immisreg,
12982 _("shift must be constant"));
12983 if (inst.instruction < 0xffff)
12984 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12985 inst.instruction |= Rn << r0off;
c19d1205 12986 encode_thumb32_shifted_operand (1);
b99bd4ef 12987 }
b99bd4ef
NC
12988 }
12989 }
12990 else
12991 {
c19d1205
ZW
12992 constraint (inst.instruction > 0xffff
12993 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12994 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12995 _("unshifted register required"));
fdfde340 12996 constraint (Rn > 7 || Rm > 7,
c19d1205 12997 BAD_HIREG);
b99bd4ef 12998
c19d1205 12999 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13000 inst.instruction |= Rn;
13001 inst.instruction |= Rm << 3;
b99bd4ef 13002 }
b99bd4ef
NC
13003}
13004
b05fe5cf 13005static void
c19d1205 13006do_t_mrs (void)
b05fe5cf 13007{
fdfde340 13008 unsigned Rd;
037e8744
JB
13009
13010 if (do_vfp_nsyn_mrs () == SUCCESS)
13011 return;
13012
90ec0d68
MGD
13013 Rd = inst.operands[0].reg;
13014 reject_bad_reg (Rd);
13015 inst.instruction |= Rd << 8;
13016
13017 if (inst.operands[1].isreg)
62b3e311 13018 {
90ec0d68
MGD
13019 unsigned br = inst.operands[1].reg;
13020 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
13021 as_bad (_("bad register for mrs"));
13022
13023 inst.instruction |= br & (0xf << 16);
13024 inst.instruction |= (br & 0x300) >> 4;
13025 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
13026 }
13027 else
13028 {
90ec0d68 13029 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 13030
d2cd1205 13031 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
13032 {
13033 /* PR gas/12698: The constraint is only applied for m_profile.
13034 If the user has specified -march=all, we want to ignore it as
13035 we are building for any CPU type, including non-m variants. */
823d2571
TG
13036 bfd_boolean m_profile =
13037 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf
NC
13038 constraint ((flags != 0) && m_profile, _("selected processor does "
13039 "not support requested special purpose register"));
13040 }
90ec0d68 13041 else
d2cd1205
JB
13042 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13043 devices). */
13044 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13045 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 13046
90ec0d68
MGD
13047 inst.instruction |= (flags & SPSR_BIT) >> 2;
13048 inst.instruction |= inst.operands[1].imm & 0xff;
13049 inst.instruction |= 0xf0000;
13050 }
c19d1205 13051}
b05fe5cf 13052
c19d1205
ZW
13053static void
13054do_t_msr (void)
13055{
62b3e311 13056 int flags;
fdfde340 13057 unsigned Rn;
62b3e311 13058
037e8744
JB
13059 if (do_vfp_nsyn_msr () == SUCCESS)
13060 return;
13061
c19d1205
ZW
13062 constraint (!inst.operands[1].isreg,
13063 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
13064
13065 if (inst.operands[0].isreg)
13066 flags = (int)(inst.operands[0].reg);
13067 else
13068 flags = inst.operands[0].imm;
13069
d2cd1205 13070 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 13071 {
d2cd1205
JB
13072 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13073
1a43faaf 13074 /* PR gas/12698: The constraint is only applied for m_profile.
477330fc
RM
13075 If the user has specified -march=all, we want to ignore it as
13076 we are building for any CPU type, including non-m variants. */
823d2571
TG
13077 bfd_boolean m_profile =
13078 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf 13079 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
477330fc
RM
13080 && (bits & ~(PSR_s | PSR_f)) != 0)
13081 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13082 && bits != PSR_f)) && m_profile,
13083 _("selected processor does not support requested special "
13084 "purpose register"));
62b3e311
PB
13085 }
13086 else
d2cd1205
JB
13087 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13088 "requested special purpose register"));
c921be7d 13089
fdfde340
JM
13090 Rn = inst.operands[1].reg;
13091 reject_bad_reg (Rn);
13092
62b3e311 13093 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
13094 inst.instruction |= (flags & 0xf0000) >> 8;
13095 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 13096 inst.instruction |= (flags & 0xff);
fdfde340 13097 inst.instruction |= Rn << 16;
c19d1205 13098}
b05fe5cf 13099
c19d1205
ZW
13100static void
13101do_t_mul (void)
13102{
17828f45 13103 bfd_boolean narrow;
fdfde340 13104 unsigned Rd, Rn, Rm;
17828f45 13105
c19d1205
ZW
13106 if (!inst.operands[2].present)
13107 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 13108
fdfde340
JM
13109 Rd = inst.operands[0].reg;
13110 Rn = inst.operands[1].reg;
13111 Rm = inst.operands[2].reg;
13112
17828f45 13113 if (unified_syntax)
b05fe5cf 13114 {
17828f45 13115 if (inst.size_req == 4
fdfde340
JM
13116 || (Rd != Rn
13117 && Rd != Rm)
13118 || Rn > 7
13119 || Rm > 7)
17828f45
JM
13120 narrow = FALSE;
13121 else if (inst.instruction == T_MNEM_muls)
5ee91343 13122 narrow = !in_pred_block ();
17828f45 13123 else
5ee91343 13124 narrow = in_pred_block ();
b05fe5cf 13125 }
c19d1205 13126 else
b05fe5cf 13127 {
17828f45 13128 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 13129 constraint (Rn > 7 || Rm > 7,
c19d1205 13130 BAD_HIREG);
17828f45
JM
13131 narrow = TRUE;
13132 }
b05fe5cf 13133
17828f45
JM
13134 if (narrow)
13135 {
13136 /* 16-bit MULS/Conditional MUL. */
c19d1205 13137 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 13138 inst.instruction |= Rd;
b05fe5cf 13139
fdfde340
JM
13140 if (Rd == Rn)
13141 inst.instruction |= Rm << 3;
13142 else if (Rd == Rm)
13143 inst.instruction |= Rn << 3;
c19d1205
ZW
13144 else
13145 constraint (1, _("dest must overlap one source register"));
13146 }
17828f45
JM
13147 else
13148 {
e07e6e58
NC
13149 constraint (inst.instruction != T_MNEM_mul,
13150 _("Thumb-2 MUL must not set flags"));
17828f45
JM
13151 /* 32-bit MUL. */
13152 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13153 inst.instruction |= Rd << 8;
13154 inst.instruction |= Rn << 16;
13155 inst.instruction |= Rm << 0;
13156
13157 reject_bad_reg (Rd);
13158 reject_bad_reg (Rn);
13159 reject_bad_reg (Rm);
17828f45 13160 }
c19d1205 13161}
b05fe5cf 13162
c19d1205
ZW
13163static void
13164do_t_mull (void)
13165{
fdfde340 13166 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 13167
fdfde340
JM
13168 RdLo = inst.operands[0].reg;
13169 RdHi = inst.operands[1].reg;
13170 Rn = inst.operands[2].reg;
13171 Rm = inst.operands[3].reg;
13172
13173 reject_bad_reg (RdLo);
13174 reject_bad_reg (RdHi);
13175 reject_bad_reg (Rn);
13176 reject_bad_reg (Rm);
13177
13178 inst.instruction |= RdLo << 12;
13179 inst.instruction |= RdHi << 8;
13180 inst.instruction |= Rn << 16;
13181 inst.instruction |= Rm;
13182
13183 if (RdLo == RdHi)
c19d1205
ZW
13184 as_tsktsk (_("rdhi and rdlo must be different"));
13185}
b05fe5cf 13186
c19d1205
ZW
13187static void
13188do_t_nop (void)
13189{
5ee91343 13190 set_pred_insn_type (NEUTRAL_IT_INSN);
e07e6e58 13191
c19d1205
ZW
13192 if (unified_syntax)
13193 {
13194 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 13195 {
c19d1205
ZW
13196 inst.instruction = THUMB_OP32 (inst.instruction);
13197 inst.instruction |= inst.operands[0].imm;
13198 }
13199 else
13200 {
bc2d1808
NC
13201 /* PR9722: Check for Thumb2 availability before
13202 generating a thumb2 nop instruction. */
afa62d5e 13203 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
13204 {
13205 inst.instruction = THUMB_OP16 (inst.instruction);
13206 inst.instruction |= inst.operands[0].imm << 4;
13207 }
13208 else
13209 inst.instruction = 0x46c0;
c19d1205
ZW
13210 }
13211 }
13212 else
13213 {
13214 constraint (inst.operands[0].present,
13215 _("Thumb does not support NOP with hints"));
13216 inst.instruction = 0x46c0;
13217 }
13218}
b05fe5cf 13219
c19d1205
ZW
13220static void
13221do_t_neg (void)
13222{
13223 if (unified_syntax)
13224 {
3d388997
PB
13225 bfd_boolean narrow;
13226
13227 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13228 narrow = !in_pred_block ();
3d388997 13229 else
5ee91343 13230 narrow = in_pred_block ();
3d388997
PB
13231 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13232 narrow = FALSE;
13233 if (inst.size_req == 4)
13234 narrow = FALSE;
13235
13236 if (!narrow)
c19d1205
ZW
13237 {
13238 inst.instruction = THUMB_OP32 (inst.instruction);
13239 inst.instruction |= inst.operands[0].reg << 8;
13240 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
13241 }
13242 else
13243 {
c19d1205
ZW
13244 inst.instruction = THUMB_OP16 (inst.instruction);
13245 inst.instruction |= inst.operands[0].reg;
13246 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
13247 }
13248 }
13249 else
13250 {
c19d1205
ZW
13251 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13252 BAD_HIREG);
13253 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13254
13255 inst.instruction = THUMB_OP16 (inst.instruction);
13256 inst.instruction |= inst.operands[0].reg;
13257 inst.instruction |= inst.operands[1].reg << 3;
13258 }
13259}
13260
1c444d06
JM
13261static void
13262do_t_orn (void)
13263{
13264 unsigned Rd, Rn;
13265
13266 Rd = inst.operands[0].reg;
13267 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13268
fdfde340
JM
13269 reject_bad_reg (Rd);
13270 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13271 reject_bad_reg (Rn);
13272
1c444d06
JM
13273 inst.instruction |= Rd << 8;
13274 inst.instruction |= Rn << 16;
13275
13276 if (!inst.operands[2].isreg)
13277 {
13278 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13279 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
1c444d06
JM
13280 }
13281 else
13282 {
13283 unsigned Rm;
13284
13285 Rm = inst.operands[2].reg;
fdfde340 13286 reject_bad_reg (Rm);
1c444d06
JM
13287
13288 constraint (inst.operands[2].shifted
13289 && inst.operands[2].immisreg,
13290 _("shift must be constant"));
13291 encode_thumb32_shifted_operand (2);
13292 }
13293}
13294
c19d1205
ZW
13295static void
13296do_t_pkhbt (void)
13297{
fdfde340
JM
13298 unsigned Rd, Rn, Rm;
13299
13300 Rd = inst.operands[0].reg;
13301 Rn = inst.operands[1].reg;
13302 Rm = inst.operands[2].reg;
13303
13304 reject_bad_reg (Rd);
13305 reject_bad_reg (Rn);
13306 reject_bad_reg (Rm);
13307
13308 inst.instruction |= Rd << 8;
13309 inst.instruction |= Rn << 16;
13310 inst.instruction |= Rm;
c19d1205
ZW
13311 if (inst.operands[3].present)
13312 {
e2b0ab59
AV
13313 unsigned int val = inst.relocs[0].exp.X_add_number;
13314 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
13315 _("expression too complex"));
13316 inst.instruction |= (val & 0x1c) << 10;
13317 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 13318 }
c19d1205 13319}
b05fe5cf 13320
c19d1205
ZW
13321static void
13322do_t_pkhtb (void)
13323{
13324 if (!inst.operands[3].present)
1ef52f49
NC
13325 {
13326 unsigned Rtmp;
13327
13328 inst.instruction &= ~0x00000020;
13329
13330 /* PR 10168. Swap the Rm and Rn registers. */
13331 Rtmp = inst.operands[1].reg;
13332 inst.operands[1].reg = inst.operands[2].reg;
13333 inst.operands[2].reg = Rtmp;
13334 }
c19d1205 13335 do_t_pkhbt ();
b05fe5cf
ZW
13336}
13337
c19d1205
ZW
13338static void
13339do_t_pld (void)
13340{
fdfde340
JM
13341 if (inst.operands[0].immisreg)
13342 reject_bad_reg (inst.operands[0].imm);
13343
c19d1205
ZW
13344 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13345}
b05fe5cf 13346
c19d1205
ZW
13347static void
13348do_t_push_pop (void)
b99bd4ef 13349{
e9f89963 13350 unsigned mask;
5f4273c7 13351
c19d1205
ZW
13352 constraint (inst.operands[0].writeback,
13353 _("push/pop do not support {reglist}^"));
e2b0ab59 13354 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205 13355 _("expression too complex"));
b99bd4ef 13356
e9f89963 13357 mask = inst.operands[0].imm;
d3bfe16e 13358 if (inst.size_req != 4 && (mask & ~0xff) == 0)
3c707909 13359 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
d3bfe16e 13360 else if (inst.size_req != 4
c6025a80 13361 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
d3bfe16e 13362 ? REG_LR : REG_PC)))
b99bd4ef 13363 {
c19d1205
ZW
13364 inst.instruction = THUMB_OP16 (inst.instruction);
13365 inst.instruction |= THUMB_PP_PC_LR;
3c707909 13366 inst.instruction |= mask & 0xff;
c19d1205
ZW
13367 }
13368 else if (unified_syntax)
13369 {
3c707909 13370 inst.instruction = THUMB_OP32 (inst.instruction);
4b5a202f
AV
13371 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13372 }
13373 else
13374 {
13375 inst.error = _("invalid register list to push/pop instruction");
13376 return;
c19d1205 13377 }
4b5a202f
AV
13378}
13379
13380static void
13381do_t_clrm (void)
13382{
13383 if (unified_syntax)
13384 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
c19d1205
ZW
13385 else
13386 {
13387 inst.error = _("invalid register list to push/pop instruction");
13388 return;
13389 }
c19d1205 13390}
b99bd4ef 13391
efd6b359
AV
13392static void
13393do_t_vscclrm (void)
13394{
13395 if (inst.operands[0].issingle)
13396 {
13397 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13398 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13399 inst.instruction |= inst.operands[0].imm;
13400 }
13401 else
13402 {
13403 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13404 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13405 inst.instruction |= 1 << 8;
13406 inst.instruction |= inst.operands[0].imm << 1;
13407 }
13408}
13409
c19d1205
ZW
13410static void
13411do_t_rbit (void)
13412{
fdfde340
JM
13413 unsigned Rd, Rm;
13414
13415 Rd = inst.operands[0].reg;
13416 Rm = inst.operands[1].reg;
13417
13418 reject_bad_reg (Rd);
13419 reject_bad_reg (Rm);
13420
13421 inst.instruction |= Rd << 8;
13422 inst.instruction |= Rm << 16;
13423 inst.instruction |= Rm;
c19d1205 13424}
b99bd4ef 13425
c19d1205
ZW
13426static void
13427do_t_rev (void)
13428{
fdfde340
JM
13429 unsigned Rd, Rm;
13430
13431 Rd = inst.operands[0].reg;
13432 Rm = inst.operands[1].reg;
13433
13434 reject_bad_reg (Rd);
13435 reject_bad_reg (Rm);
13436
13437 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
13438 && inst.size_req != 4)
13439 {
13440 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13441 inst.instruction |= Rd;
13442 inst.instruction |= Rm << 3;
c19d1205
ZW
13443 }
13444 else if (unified_syntax)
13445 {
13446 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13447 inst.instruction |= Rd << 8;
13448 inst.instruction |= Rm << 16;
13449 inst.instruction |= Rm;
c19d1205
ZW
13450 }
13451 else
13452 inst.error = BAD_HIREG;
13453}
b99bd4ef 13454
1c444d06
JM
13455static void
13456do_t_rrx (void)
13457{
13458 unsigned Rd, Rm;
13459
13460 Rd = inst.operands[0].reg;
13461 Rm = inst.operands[1].reg;
13462
fdfde340
JM
13463 reject_bad_reg (Rd);
13464 reject_bad_reg (Rm);
c921be7d 13465
1c444d06
JM
13466 inst.instruction |= Rd << 8;
13467 inst.instruction |= Rm;
13468}
13469
c19d1205
ZW
13470static void
13471do_t_rsb (void)
13472{
fdfde340 13473 unsigned Rd, Rs;
b99bd4ef 13474
c19d1205
ZW
13475 Rd = inst.operands[0].reg;
13476 Rs = (inst.operands[1].present
13477 ? inst.operands[1].reg /* Rd, Rs, foo */
13478 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 13479
fdfde340
JM
13480 reject_bad_reg (Rd);
13481 reject_bad_reg (Rs);
13482 if (inst.operands[2].isreg)
13483 reject_bad_reg (inst.operands[2].reg);
13484
c19d1205
ZW
13485 inst.instruction |= Rd << 8;
13486 inst.instruction |= Rs << 16;
13487 if (!inst.operands[2].isreg)
13488 {
026d3abb
PB
13489 bfd_boolean narrow;
13490
13491 if ((inst.instruction & 0x00100000) != 0)
5ee91343 13492 narrow = !in_pred_block ();
026d3abb 13493 else
5ee91343 13494 narrow = in_pred_block ();
026d3abb
PB
13495
13496 if (Rd > 7 || Rs > 7)
13497 narrow = FALSE;
13498
13499 if (inst.size_req == 4 || !unified_syntax)
13500 narrow = FALSE;
13501
e2b0ab59
AV
13502 if (inst.relocs[0].exp.X_op != O_constant
13503 || inst.relocs[0].exp.X_add_number != 0)
026d3abb
PB
13504 narrow = FALSE;
13505
13506 /* Turn rsb #0 into 16-bit neg. We should probably do this via
477330fc 13507 relaxation, but it doesn't seem worth the hassle. */
026d3abb
PB
13508 if (narrow)
13509 {
e2b0ab59 13510 inst.relocs[0].type = BFD_RELOC_UNUSED;
026d3abb
PB
13511 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13512 inst.instruction |= Rs << 3;
13513 inst.instruction |= Rd;
13514 }
13515 else
13516 {
13517 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13518 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
026d3abb 13519 }
c19d1205
ZW
13520 }
13521 else
13522 encode_thumb32_shifted_operand (2);
13523}
b99bd4ef 13524
c19d1205
ZW
13525static void
13526do_t_setend (void)
13527{
12e37cbc
MGD
13528 if (warn_on_deprecated
13529 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 13530 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 13531
5ee91343 13532 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
13533 if (inst.operands[0].imm)
13534 inst.instruction |= 0x8;
13535}
b99bd4ef 13536
c19d1205
ZW
13537static void
13538do_t_shift (void)
13539{
13540 if (!inst.operands[1].present)
13541 inst.operands[1].reg = inst.operands[0].reg;
13542
13543 if (unified_syntax)
13544 {
3d388997
PB
13545 bfd_boolean narrow;
13546 int shift_kind;
13547
13548 switch (inst.instruction)
13549 {
13550 case T_MNEM_asr:
13551 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13552 case T_MNEM_lsl:
13553 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13554 case T_MNEM_lsr:
13555 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13556 case T_MNEM_ror:
13557 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13558 default: abort ();
13559 }
13560
13561 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13562 narrow = !in_pred_block ();
3d388997 13563 else
5ee91343 13564 narrow = in_pred_block ();
3d388997
PB
13565 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13566 narrow = FALSE;
13567 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13568 narrow = FALSE;
13569 if (inst.operands[2].isreg
13570 && (inst.operands[1].reg != inst.operands[0].reg
13571 || inst.operands[2].reg > 7))
13572 narrow = FALSE;
13573 if (inst.size_req == 4)
13574 narrow = FALSE;
13575
fdfde340
JM
13576 reject_bad_reg (inst.operands[0].reg);
13577 reject_bad_reg (inst.operands[1].reg);
c921be7d 13578
3d388997 13579 if (!narrow)
c19d1205
ZW
13580 {
13581 if (inst.operands[2].isreg)
b99bd4ef 13582 {
fdfde340 13583 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
13584 inst.instruction = THUMB_OP32 (inst.instruction);
13585 inst.instruction |= inst.operands[0].reg << 8;
13586 inst.instruction |= inst.operands[1].reg << 16;
13587 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
13588
13589 /* PR 12854: Error on extraneous shifts. */
13590 constraint (inst.operands[2].shifted,
13591 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13592 }
13593 else
13594 {
13595 inst.operands[1].shifted = 1;
3d388997 13596 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
13597 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13598 ? T_MNEM_movs : T_MNEM_mov);
13599 inst.instruction |= inst.operands[0].reg << 8;
13600 encode_thumb32_shifted_operand (1);
13601 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
e2b0ab59 13602 inst.relocs[0].type = BFD_RELOC_UNUSED;
b99bd4ef
NC
13603 }
13604 }
13605 else
13606 {
c19d1205 13607 if (inst.operands[2].isreg)
b99bd4ef 13608 {
3d388997 13609 switch (shift_kind)
b99bd4ef 13610 {
3d388997
PB
13611 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13612 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13613 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13614 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 13615 default: abort ();
b99bd4ef 13616 }
5f4273c7 13617
c19d1205
ZW
13618 inst.instruction |= inst.operands[0].reg;
13619 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13620
13621 /* PR 12854: Error on extraneous shifts. */
13622 constraint (inst.operands[2].shifted,
13623 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
13624 }
13625 else
13626 {
3d388997 13627 switch (shift_kind)
b99bd4ef 13628 {
3d388997
PB
13629 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13630 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13631 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 13632 default: abort ();
b99bd4ef 13633 }
e2b0ab59 13634 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13635 inst.instruction |= inst.operands[0].reg;
13636 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13637 }
13638 }
c19d1205
ZW
13639 }
13640 else
13641 {
13642 constraint (inst.operands[0].reg > 7
13643 || inst.operands[1].reg > 7, BAD_HIREG);
13644 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 13645
c19d1205
ZW
13646 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13647 {
13648 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13649 constraint (inst.operands[0].reg != inst.operands[1].reg,
13650 _("source1 and dest must be same register"));
b99bd4ef 13651
c19d1205
ZW
13652 switch (inst.instruction)
13653 {
13654 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13655 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13656 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13657 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13658 default: abort ();
13659 }
5f4273c7 13660
c19d1205
ZW
13661 inst.instruction |= inst.operands[0].reg;
13662 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13663
13664 /* PR 12854: Error on extraneous shifts. */
13665 constraint (inst.operands[2].shifted,
13666 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13667 }
13668 else
b99bd4ef 13669 {
c19d1205
ZW
13670 switch (inst.instruction)
13671 {
13672 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13673 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13674 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13675 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13676 default: abort ();
13677 }
e2b0ab59 13678 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13679 inst.instruction |= inst.operands[0].reg;
13680 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13681 }
13682 }
b99bd4ef
NC
13683}
13684
13685static void
c19d1205 13686do_t_simd (void)
b99bd4ef 13687{
fdfde340
JM
13688 unsigned Rd, Rn, Rm;
13689
13690 Rd = inst.operands[0].reg;
13691 Rn = inst.operands[1].reg;
13692 Rm = inst.operands[2].reg;
13693
13694 reject_bad_reg (Rd);
13695 reject_bad_reg (Rn);
13696 reject_bad_reg (Rm);
13697
13698 inst.instruction |= Rd << 8;
13699 inst.instruction |= Rn << 16;
13700 inst.instruction |= Rm;
c19d1205 13701}
b99bd4ef 13702
03ee1b7f
NC
13703static void
13704do_t_simd2 (void)
13705{
13706 unsigned Rd, Rn, Rm;
13707
13708 Rd = inst.operands[0].reg;
13709 Rm = inst.operands[1].reg;
13710 Rn = inst.operands[2].reg;
13711
13712 reject_bad_reg (Rd);
13713 reject_bad_reg (Rn);
13714 reject_bad_reg (Rm);
13715
13716 inst.instruction |= Rd << 8;
13717 inst.instruction |= Rn << 16;
13718 inst.instruction |= Rm;
13719}
13720
c19d1205 13721static void
3eb17e6b 13722do_t_smc (void)
c19d1205 13723{
e2b0ab59 13724 unsigned int value = inst.relocs[0].exp.X_add_number;
f4c65163
MGD
13725 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13726 _("SMC is not permitted on this architecture"));
e2b0ab59 13727 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13728 _("expression too complex"));
e2b0ab59 13729 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
13730 inst.instruction |= (value & 0xf000) >> 12;
13731 inst.instruction |= (value & 0x0ff0);
13732 inst.instruction |= (value & 0x000f) << 16;
24382199 13733 /* PR gas/15623: SMC instructions must be last in an IT block. */
5ee91343 13734 set_pred_insn_type_last ();
c19d1205 13735}
b99bd4ef 13736
90ec0d68
MGD
13737static void
13738do_t_hvc (void)
13739{
e2b0ab59 13740 unsigned int value = inst.relocs[0].exp.X_add_number;
90ec0d68 13741
e2b0ab59 13742 inst.relocs[0].type = BFD_RELOC_UNUSED;
90ec0d68
MGD
13743 inst.instruction |= (value & 0x0fff);
13744 inst.instruction |= (value & 0xf000) << 4;
13745}
13746
c19d1205 13747static void
3a21c15a 13748do_t_ssat_usat (int bias)
c19d1205 13749{
fdfde340
JM
13750 unsigned Rd, Rn;
13751
13752 Rd = inst.operands[0].reg;
13753 Rn = inst.operands[2].reg;
13754
13755 reject_bad_reg (Rd);
13756 reject_bad_reg (Rn);
13757
13758 inst.instruction |= Rd << 8;
3a21c15a 13759 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 13760 inst.instruction |= Rn << 16;
b99bd4ef 13761
c19d1205 13762 if (inst.operands[3].present)
b99bd4ef 13763 {
e2b0ab59 13764 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
3a21c15a 13765
e2b0ab59 13766 inst.relocs[0].type = BFD_RELOC_UNUSED;
3a21c15a 13767
e2b0ab59 13768 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13769 _("expression too complex"));
b99bd4ef 13770
3a21c15a 13771 if (shift_amount != 0)
6189168b 13772 {
3a21c15a
NC
13773 constraint (shift_amount > 31,
13774 _("shift expression is too large"));
13775
c19d1205 13776 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
13777 inst.instruction |= 0x00200000; /* sh bit. */
13778
13779 inst.instruction |= (shift_amount & 0x1c) << 10;
13780 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
13781 }
13782 }
b99bd4ef 13783}
c921be7d 13784
3a21c15a
NC
13785static void
13786do_t_ssat (void)
13787{
13788 do_t_ssat_usat (1);
13789}
b99bd4ef 13790
0dd132b6 13791static void
c19d1205 13792do_t_ssat16 (void)
0dd132b6 13793{
fdfde340
JM
13794 unsigned Rd, Rn;
13795
13796 Rd = inst.operands[0].reg;
13797 Rn = inst.operands[2].reg;
13798
13799 reject_bad_reg (Rd);
13800 reject_bad_reg (Rn);
13801
13802 inst.instruction |= Rd << 8;
c19d1205 13803 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 13804 inst.instruction |= Rn << 16;
c19d1205 13805}
0dd132b6 13806
c19d1205
ZW
13807static void
13808do_t_strex (void)
13809{
13810 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13811 || inst.operands[2].postind || inst.operands[2].writeback
13812 || inst.operands[2].immisreg || inst.operands[2].shifted
13813 || inst.operands[2].negative,
01cfc07f 13814 BAD_ADDR_MODE);
0dd132b6 13815
5be8be5d
DG
13816 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13817
c19d1205
ZW
13818 inst.instruction |= inst.operands[0].reg << 8;
13819 inst.instruction |= inst.operands[1].reg << 12;
13820 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 13821 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
13822}
13823
b99bd4ef 13824static void
c19d1205 13825do_t_strexd (void)
b99bd4ef 13826{
c19d1205
ZW
13827 if (!inst.operands[2].present)
13828 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 13829
c19d1205
ZW
13830 constraint (inst.operands[0].reg == inst.operands[1].reg
13831 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 13832 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 13833 BAD_OVERLAP);
b99bd4ef 13834
c19d1205
ZW
13835 inst.instruction |= inst.operands[0].reg;
13836 inst.instruction |= inst.operands[1].reg << 12;
13837 inst.instruction |= inst.operands[2].reg << 8;
13838 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
13839}
13840
13841static void
c19d1205 13842do_t_sxtah (void)
b99bd4ef 13843{
fdfde340
JM
13844 unsigned Rd, Rn, Rm;
13845
13846 Rd = inst.operands[0].reg;
13847 Rn = inst.operands[1].reg;
13848 Rm = inst.operands[2].reg;
13849
13850 reject_bad_reg (Rd);
13851 reject_bad_reg (Rn);
13852 reject_bad_reg (Rm);
13853
13854 inst.instruction |= Rd << 8;
13855 inst.instruction |= Rn << 16;
13856 inst.instruction |= Rm;
c19d1205
ZW
13857 inst.instruction |= inst.operands[3].imm << 4;
13858}
b99bd4ef 13859
c19d1205
ZW
13860static void
13861do_t_sxth (void)
13862{
fdfde340
JM
13863 unsigned Rd, Rm;
13864
13865 Rd = inst.operands[0].reg;
13866 Rm = inst.operands[1].reg;
13867
13868 reject_bad_reg (Rd);
13869 reject_bad_reg (Rm);
c921be7d
NC
13870
13871 if (inst.instruction <= 0xffff
13872 && inst.size_req != 4
fdfde340 13873 && Rd <= 7 && Rm <= 7
c19d1205 13874 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 13875 {
c19d1205 13876 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13877 inst.instruction |= Rd;
13878 inst.instruction |= Rm << 3;
b99bd4ef 13879 }
c19d1205 13880 else if (unified_syntax)
b99bd4ef 13881 {
c19d1205
ZW
13882 if (inst.instruction <= 0xffff)
13883 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13884 inst.instruction |= Rd << 8;
13885 inst.instruction |= Rm;
c19d1205 13886 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 13887 }
c19d1205 13888 else
b99bd4ef 13889 {
c19d1205
ZW
13890 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13891 _("Thumb encoding does not support rotation"));
13892 constraint (1, BAD_HIREG);
b99bd4ef 13893 }
c19d1205 13894}
b99bd4ef 13895
c19d1205
ZW
13896static void
13897do_t_swi (void)
13898{
e2b0ab59 13899 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
c19d1205 13900}
b99bd4ef 13901
92e90b6e
PB
13902static void
13903do_t_tb (void)
13904{
fdfde340 13905 unsigned Rn, Rm;
92e90b6e
PB
13906 int half;
13907
13908 half = (inst.instruction & 0x10) != 0;
5ee91343 13909 set_pred_insn_type_last ();
dfa9f0d5
PB
13910 constraint (inst.operands[0].immisreg,
13911 _("instruction requires register index"));
fdfde340
JM
13912
13913 Rn = inst.operands[0].reg;
13914 Rm = inst.operands[0].imm;
c921be7d 13915
5c8ed6a4
JW
13916 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13917 constraint (Rn == REG_SP, BAD_SP);
fdfde340
JM
13918 reject_bad_reg (Rm);
13919
92e90b6e
PB
13920 constraint (!half && inst.operands[0].shifted,
13921 _("instruction does not allow shifted index"));
fdfde340 13922 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
13923}
13924
74db7efb
NC
13925static void
13926do_t_udf (void)
13927{
13928 if (!inst.operands[0].present)
13929 inst.operands[0].imm = 0;
13930
13931 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13932 {
13933 constraint (inst.size_req == 2,
13934 _("immediate value out of range"));
13935 inst.instruction = THUMB_OP32 (inst.instruction);
13936 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13937 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13938 }
13939 else
13940 {
13941 inst.instruction = THUMB_OP16 (inst.instruction);
13942 inst.instruction |= inst.operands[0].imm;
13943 }
13944
5ee91343 13945 set_pred_insn_type (NEUTRAL_IT_INSN);
74db7efb
NC
13946}
13947
13948
c19d1205
ZW
13949static void
13950do_t_usat (void)
13951{
3a21c15a 13952 do_t_ssat_usat (0);
b99bd4ef
NC
13953}
13954
13955static void
c19d1205 13956do_t_usat16 (void)
b99bd4ef 13957{
fdfde340
JM
13958 unsigned Rd, Rn;
13959
13960 Rd = inst.operands[0].reg;
13961 Rn = inst.operands[2].reg;
13962
13963 reject_bad_reg (Rd);
13964 reject_bad_reg (Rn);
13965
13966 inst.instruction |= Rd << 8;
c19d1205 13967 inst.instruction |= inst.operands[1].imm;
fdfde340 13968 inst.instruction |= Rn << 16;
b99bd4ef 13969}
c19d1205 13970
e12437dc
AV
13971/* Checking the range of the branch offset (VAL) with NBITS bits
13972 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13973static int
13974v8_1_branch_value_check (int val, int nbits, int is_signed)
13975{
13976 gas_assert (nbits > 0 && nbits <= 32);
13977 if (is_signed)
13978 {
13979 int cmp = (1 << (nbits - 1));
13980 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13981 return FAIL;
13982 }
13983 else
13984 {
13985 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13986 return FAIL;
13987 }
13988 return SUCCESS;
13989}
13990
4389b29a
AV
13991/* For branches in Armv8.1-M Mainline. */
13992static void
13993do_t_branch_future (void)
13994{
13995 unsigned long insn = inst.instruction;
13996
13997 inst.instruction = THUMB_OP32 (inst.instruction);
13998 if (inst.operands[0].hasreloc == 0)
13999 {
14000 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
14001 as_bad (BAD_BRANCH_OFF);
14002
14003 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
14004 }
14005 else
14006 {
14007 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
14008 inst.relocs[0].pc_rel = 1;
14009 }
14010
14011 switch (insn)
14012 {
14013 case T_MNEM_bf:
14014 if (inst.operands[1].hasreloc == 0)
14015 {
14016 int val = inst.operands[1].imm;
14017 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
14018 as_bad (BAD_BRANCH_OFF);
14019
14020 int immA = (val & 0x0001f000) >> 12;
14021 int immB = (val & 0x00000ffc) >> 2;
14022 int immC = (val & 0x00000002) >> 1;
14023 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14024 }
14025 else
14026 {
14027 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
14028 inst.relocs[1].pc_rel = 1;
14029 }
14030 break;
14031
65d1bc05
AV
14032 case T_MNEM_bfl:
14033 if (inst.operands[1].hasreloc == 0)
14034 {
14035 int val = inst.operands[1].imm;
14036 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14037 as_bad (BAD_BRANCH_OFF);
14038
14039 int immA = (val & 0x0007f000) >> 12;
14040 int immB = (val & 0x00000ffc) >> 2;
14041 int immC = (val & 0x00000002) >> 1;
14042 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14043 }
14044 else
14045 {
14046 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14047 inst.relocs[1].pc_rel = 1;
14048 }
14049 break;
14050
f6b2b12d
AV
14051 case T_MNEM_bfcsel:
14052 /* Operand 1. */
14053 if (inst.operands[1].hasreloc == 0)
14054 {
14055 int val = inst.operands[1].imm;
14056 int immA = (val & 0x00001000) >> 12;
14057 int immB = (val & 0x00000ffc) >> 2;
14058 int immC = (val & 0x00000002) >> 1;
14059 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14060 }
14061 else
14062 {
14063 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14064 inst.relocs[1].pc_rel = 1;
14065 }
14066
14067 /* Operand 2. */
14068 if (inst.operands[2].hasreloc == 0)
14069 {
14070 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14071 int val2 = inst.operands[2].imm;
14072 int val0 = inst.operands[0].imm & 0x1f;
14073 int diff = val2 - val0;
14074 if (diff == 4)
14075 inst.instruction |= 1 << 17; /* T bit. */
14076 else if (diff != 2)
14077 as_bad (_("out of range label-relative fixup value"));
14078 }
14079 else
14080 {
14081 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14082 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14083 inst.relocs[2].pc_rel = 1;
14084 }
14085
14086 /* Operand 3. */
14087 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14088 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14089 break;
14090
f1c7f421
AV
14091 case T_MNEM_bfx:
14092 case T_MNEM_bflx:
14093 inst.instruction |= inst.operands[1].reg << 16;
14094 break;
14095
4389b29a
AV
14096 default: abort ();
14097 }
14098}
14099
60f993ce
AV
14100/* Helper function for do_t_loloop to handle relocations. */
14101static void
14102v8_1_loop_reloc (int is_le)
14103{
14104 if (inst.relocs[0].exp.X_op == O_constant)
14105 {
14106 int value = inst.relocs[0].exp.X_add_number;
14107 value = (is_le) ? -value : value;
14108
14109 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14110 as_bad (BAD_BRANCH_OFF);
14111
14112 int imml, immh;
14113
14114 immh = (value & 0x00000ffc) >> 2;
14115 imml = (value & 0x00000002) >> 1;
14116
14117 inst.instruction |= (imml << 11) | (immh << 1);
14118 }
14119 else
14120 {
14121 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14122 inst.relocs[0].pc_rel = 1;
14123 }
14124}
14125
a302e574
AV
14126/* MVE instruction encoder helpers. */
14127#define M_MNEM_vabav 0xee800f01
14128#define M_MNEM_vmladav 0xeef00e00
14129#define M_MNEM_vmladava 0xeef00e20
14130#define M_MNEM_vmladavx 0xeef01e00
14131#define M_MNEM_vmladavax 0xeef01e20
14132#define M_MNEM_vmlsdav 0xeef00e01
14133#define M_MNEM_vmlsdava 0xeef00e21
14134#define M_MNEM_vmlsdavx 0xeef01e01
14135#define M_MNEM_vmlsdavax 0xeef01e21
886e1c73
AV
14136#define M_MNEM_vmullt 0xee011e00
14137#define M_MNEM_vmullb 0xee010e00
35c228db
AV
14138#define M_MNEM_vst20 0xfc801e00
14139#define M_MNEM_vst21 0xfc801e20
14140#define M_MNEM_vst40 0xfc801e01
14141#define M_MNEM_vst41 0xfc801e21
14142#define M_MNEM_vst42 0xfc801e41
14143#define M_MNEM_vst43 0xfc801e61
14144#define M_MNEM_vld20 0xfc901e00
14145#define M_MNEM_vld21 0xfc901e20
14146#define M_MNEM_vld40 0xfc901e01
14147#define M_MNEM_vld41 0xfc901e21
14148#define M_MNEM_vld42 0xfc901e41
14149#define M_MNEM_vld43 0xfc901e61
f5f10c66
AV
14150#define M_MNEM_vstrb 0xec000e00
14151#define M_MNEM_vstrh 0xec000e10
14152#define M_MNEM_vstrw 0xec000e40
14153#define M_MNEM_vstrd 0xec000e50
14154#define M_MNEM_vldrb 0xec100e00
14155#define M_MNEM_vldrh 0xec100e10
14156#define M_MNEM_vldrw 0xec100e40
14157#define M_MNEM_vldrd 0xec100e50
57785aa2
AV
14158#define M_MNEM_vmovlt 0xeea01f40
14159#define M_MNEM_vmovlb 0xeea00f40
14160#define M_MNEM_vmovnt 0xfe311e81
14161#define M_MNEM_vmovnb 0xfe310e81
c2dafc2a
AV
14162#define M_MNEM_vadc 0xee300f00
14163#define M_MNEM_vadci 0xee301f00
14164#define M_MNEM_vbrsr 0xfe011e60
26c1e780
AV
14165#define M_MNEM_vaddlv 0xee890f00
14166#define M_MNEM_vaddlva 0xee890f20
14167#define M_MNEM_vaddv 0xeef10f00
14168#define M_MNEM_vaddva 0xeef10f20
b409bdb6
AV
14169#define M_MNEM_vddup 0xee011f6e
14170#define M_MNEM_vdwdup 0xee011f60
14171#define M_MNEM_vidup 0xee010f6e
14172#define M_MNEM_viwdup 0xee010f60
13ccd4c0
AV
14173#define M_MNEM_vmaxv 0xeee20f00
14174#define M_MNEM_vmaxav 0xeee00f00
14175#define M_MNEM_vminv 0xeee20f80
14176#define M_MNEM_vminav 0xeee00f80
93925576
AV
14177#define M_MNEM_vmlaldav 0xee800e00
14178#define M_MNEM_vmlaldava 0xee800e20
14179#define M_MNEM_vmlaldavx 0xee801e00
14180#define M_MNEM_vmlaldavax 0xee801e20
14181#define M_MNEM_vmlsldav 0xee800e01
14182#define M_MNEM_vmlsldava 0xee800e21
14183#define M_MNEM_vmlsldavx 0xee801e01
14184#define M_MNEM_vmlsldavax 0xee801e21
14185#define M_MNEM_vrmlaldavhx 0xee801f00
14186#define M_MNEM_vrmlaldavhax 0xee801f20
14187#define M_MNEM_vrmlsldavh 0xfe800e01
14188#define M_MNEM_vrmlsldavha 0xfe800e21
14189#define M_MNEM_vrmlsldavhx 0xfe801e01
14190#define M_MNEM_vrmlsldavhax 0xfe801e21
1be7aba3
AV
14191#define M_MNEM_vqmovnt 0xee331e01
14192#define M_MNEM_vqmovnb 0xee330e01
14193#define M_MNEM_vqmovunt 0xee311e81
14194#define M_MNEM_vqmovunb 0xee310e81
4aa88b50
AV
14195#define M_MNEM_vshrnt 0xee801fc1
14196#define M_MNEM_vshrnb 0xee800fc1
14197#define M_MNEM_vrshrnt 0xfe801fc1
14198#define M_MNEM_vqshrnt 0xee801f40
14199#define M_MNEM_vqshrnb 0xee800f40
14200#define M_MNEM_vqshrunt 0xee801fc0
14201#define M_MNEM_vqshrunb 0xee800fc0
14202#define M_MNEM_vrshrnb 0xfe800fc1
14203#define M_MNEM_vqrshrnt 0xee801f41
14204#define M_MNEM_vqrshrnb 0xee800f41
14205#define M_MNEM_vqrshrunt 0xfe801fc0
14206#define M_MNEM_vqrshrunb 0xfe800fc0
a302e574 14207
5287ad62 14208/* Neon instruction encoder helpers. */
5f4273c7 14209
5287ad62 14210/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 14211
5287ad62
JB
14212/* An "invalid" code for the following tables. */
14213#define N_INV -1u
14214
14215struct neon_tab_entry
b99bd4ef 14216{
5287ad62
JB
14217 unsigned integer;
14218 unsigned float_or_poly;
14219 unsigned scalar_or_imm;
14220};
5f4273c7 14221
5287ad62
JB
14222/* Map overloaded Neon opcodes to their respective encodings. */
14223#define NEON_ENC_TAB \
14224 X(vabd, 0x0000700, 0x1200d00, N_INV), \
5ee91343 14225 X(vabdl, 0x0800700, N_INV, N_INV), \
5287ad62
JB
14226 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14227 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14228 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14229 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14230 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14231 X(vadd, 0x0000800, 0x0000d00, N_INV), \
5ee91343 14232 X(vaddl, 0x0800000, N_INV, N_INV), \
5287ad62 14233 X(vsub, 0x1000800, 0x0200d00, N_INV), \
5ee91343 14234 X(vsubl, 0x0800200, N_INV, N_INV), \
5287ad62
JB
14235 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14236 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14237 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14238 /* Register variants of the following two instructions are encoded as
e07e6e58 14239 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
14240 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14241 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
14242 X(vfma, N_INV, 0x0000c10, N_INV), \
14243 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
14244 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14245 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14246 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14247 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14248 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14249 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14250 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14251 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14252 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14253 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14254 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
d6b4b13e
MW
14255 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14256 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
5287ad62
JB
14257 X(vshl, 0x0000400, N_INV, 0x0800510), \
14258 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14259 X(vand, 0x0000110, N_INV, 0x0800030), \
14260 X(vbic, 0x0100110, N_INV, 0x0800030), \
14261 X(veor, 0x1000110, N_INV, N_INV), \
14262 X(vorn, 0x0300110, N_INV, 0x0800010), \
14263 X(vorr, 0x0200110, N_INV, 0x0800010), \
14264 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14265 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14266 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14267 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14268 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14269 X(vst1, 0x0000000, 0x0800000, N_INV), \
14270 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14271 X(vst2, 0x0000100, 0x0800100, N_INV), \
14272 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14273 X(vst3, 0x0000200, 0x0800200, N_INV), \
14274 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14275 X(vst4, 0x0000300, 0x0800300, N_INV), \
14276 X(vmovn, 0x1b20200, N_INV, N_INV), \
14277 X(vtrn, 0x1b20080, N_INV, N_INV), \
14278 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
14279 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14280 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
14281 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14282 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
14283 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14284 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
14285 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14286 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14287 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
14288 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14289 X(vseleq, 0xe000a00, N_INV, N_INV), \
14290 X(vselvs, 0xe100a00, N_INV, N_INV), \
14291 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
14292 X(vselgt, 0xe300a00, N_INV, N_INV), \
14293 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
7e8e6784 14294 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
30bdf752
MGD
14295 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14296 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
91ff7894 14297 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
48adcd8e 14298 X(aes, 0x3b00300, N_INV, N_INV), \
3c9017d2
MGD
14299 X(sha3op, 0x2000c00, N_INV, N_INV), \
14300 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14301 X(sha2op, 0x3ba0380, N_INV, N_INV)
5287ad62
JB
14302
14303enum neon_opc
14304{
14305#define X(OPC,I,F,S) N_MNEM_##OPC
14306NEON_ENC_TAB
14307#undef X
14308};
b99bd4ef 14309
5287ad62
JB
14310static const struct neon_tab_entry neon_enc_tab[] =
14311{
14312#define X(OPC,I,F,S) { (I), (F), (S) }
14313NEON_ENC_TAB
14314#undef X
14315};
b99bd4ef 14316
88714cb8
DG
14317/* Do not use these macros; instead, use NEON_ENCODE defined below. */
14318#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14319#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14320#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14321#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14322#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14323#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14324#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14325#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14326#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14327#define NEON_ENC_SINGLE_(X) \
037e8744 14328 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 14329#define NEON_ENC_DOUBLE_(X) \
037e8744 14330 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
14331#define NEON_ENC_FPV8_(X) \
14332 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 14333
88714cb8
DG
14334#define NEON_ENCODE(type, inst) \
14335 do \
14336 { \
14337 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14338 inst.is_neon = 1; \
14339 } \
14340 while (0)
14341
14342#define check_neon_suffixes \
14343 do \
14344 { \
14345 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14346 { \
14347 as_bad (_("invalid neon suffix for non neon instruction")); \
14348 return; \
14349 } \
14350 } \
14351 while (0)
14352
037e8744
JB
14353/* Define shapes for instruction operands. The following mnemonic characters
14354 are used in this table:
5287ad62 14355
037e8744 14356 F - VFP S<n> register
5287ad62
JB
14357 D - Neon D<n> register
14358 Q - Neon Q<n> register
14359 I - Immediate
14360 S - Scalar
14361 R - ARM register
14362 L - D<n> register list
5f4273c7 14363
037e8744
JB
14364 This table is used to generate various data:
14365 - enumerations of the form NS_DDR to be used as arguments to
14366 neon_select_shape.
14367 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 14368 - a table used to drive neon_select_shape. */
b99bd4ef 14369
037e8744 14370#define NEON_SHAPE_DEF \
93925576 14371 X(4, (R, R, Q, Q), QUAD), \
b409bdb6 14372 X(4, (Q, R, R, I), QUAD), \
57785aa2
AV
14373 X(4, (R, R, S, S), QUAD), \
14374 X(4, (S, S, R, R), QUAD), \
b409bdb6 14375 X(3, (Q, R, I), QUAD), \
1b883319
AV
14376 X(3, (I, Q, Q), QUAD), \
14377 X(3, (I, Q, R), QUAD), \
a302e574 14378 X(3, (R, Q, Q), QUAD), \
037e8744
JB
14379 X(3, (D, D, D), DOUBLE), \
14380 X(3, (Q, Q, Q), QUAD), \
14381 X(3, (D, D, I), DOUBLE), \
14382 X(3, (Q, Q, I), QUAD), \
14383 X(3, (D, D, S), DOUBLE), \
14384 X(3, (Q, Q, S), QUAD), \
5ee91343 14385 X(3, (Q, Q, R), QUAD), \
26c1e780
AV
14386 X(3, (R, R, Q), QUAD), \
14387 X(2, (R, Q), QUAD), \
037e8744
JB
14388 X(2, (D, D), DOUBLE), \
14389 X(2, (Q, Q), QUAD), \
14390 X(2, (D, S), DOUBLE), \
14391 X(2, (Q, S), QUAD), \
14392 X(2, (D, R), DOUBLE), \
14393 X(2, (Q, R), QUAD), \
14394 X(2, (D, I), DOUBLE), \
14395 X(2, (Q, I), QUAD), \
14396 X(3, (D, L, D), DOUBLE), \
14397 X(2, (D, Q), MIXED), \
14398 X(2, (Q, D), MIXED), \
14399 X(3, (D, Q, I), MIXED), \
14400 X(3, (Q, D, I), MIXED), \
14401 X(3, (Q, D, D), MIXED), \
14402 X(3, (D, Q, Q), MIXED), \
14403 X(3, (Q, Q, D), MIXED), \
14404 X(3, (Q, D, S), MIXED), \
14405 X(3, (D, Q, S), MIXED), \
14406 X(4, (D, D, D, I), DOUBLE), \
14407 X(4, (Q, Q, Q, I), QUAD), \
c28eeff2
SN
14408 X(4, (D, D, S, I), DOUBLE), \
14409 X(4, (Q, Q, S, I), QUAD), \
037e8744
JB
14410 X(2, (F, F), SINGLE), \
14411 X(3, (F, F, F), SINGLE), \
14412 X(2, (F, I), SINGLE), \
14413 X(2, (F, D), MIXED), \
14414 X(2, (D, F), MIXED), \
14415 X(3, (F, F, I), MIXED), \
14416 X(4, (R, R, F, F), SINGLE), \
14417 X(4, (F, F, R, R), SINGLE), \
14418 X(3, (D, R, R), DOUBLE), \
14419 X(3, (R, R, D), DOUBLE), \
14420 X(2, (S, R), SINGLE), \
14421 X(2, (R, S), SINGLE), \
14422 X(2, (F, R), SINGLE), \
d54af2d0 14423 X(2, (R, F), SINGLE), \
1f6234a3
AV
14424/* Used for MVE tail predicated loop instructions. */\
14425 X(2, (R, R), QUAD), \
d54af2d0
RL
14426/* Half float shape supported so far. */\
14427 X (2, (H, D), MIXED), \
14428 X (2, (D, H), MIXED), \
14429 X (2, (H, F), MIXED), \
14430 X (2, (F, H), MIXED), \
14431 X (2, (H, H), HALF), \
14432 X (2, (H, R), HALF), \
14433 X (2, (R, H), HALF), \
14434 X (2, (H, I), HALF), \
14435 X (3, (H, H, H), HALF), \
14436 X (3, (H, F, I), MIXED), \
dec41383
JW
14437 X (3, (F, H, I), MIXED), \
14438 X (3, (D, H, H), MIXED), \
14439 X (3, (D, H, S), MIXED)
037e8744
JB
14440
14441#define S2(A,B) NS_##A##B
14442#define S3(A,B,C) NS_##A##B##C
14443#define S4(A,B,C,D) NS_##A##B##C##D
14444
14445#define X(N, L, C) S##N L
14446
5287ad62
JB
14447enum neon_shape
14448{
037e8744
JB
14449 NEON_SHAPE_DEF,
14450 NS_NULL
5287ad62 14451};
b99bd4ef 14452
037e8744
JB
14453#undef X
14454#undef S2
14455#undef S3
14456#undef S4
14457
14458enum neon_shape_class
14459{
d54af2d0 14460 SC_HALF,
037e8744
JB
14461 SC_SINGLE,
14462 SC_DOUBLE,
14463 SC_QUAD,
14464 SC_MIXED
14465};
14466
14467#define X(N, L, C) SC_##C
14468
14469static enum neon_shape_class neon_shape_class[] =
14470{
14471 NEON_SHAPE_DEF
14472};
14473
14474#undef X
14475
14476enum neon_shape_el
14477{
d54af2d0 14478 SE_H,
037e8744
JB
14479 SE_F,
14480 SE_D,
14481 SE_Q,
14482 SE_I,
14483 SE_S,
14484 SE_R,
14485 SE_L
14486};
14487
14488/* Register widths of above. */
14489static unsigned neon_shape_el_size[] =
14490{
d54af2d0 14491 16,
037e8744
JB
14492 32,
14493 64,
14494 128,
14495 0,
14496 32,
14497 32,
14498 0
14499};
14500
14501struct neon_shape_info
14502{
14503 unsigned els;
14504 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14505};
14506
14507#define S2(A,B) { SE_##A, SE_##B }
14508#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14509#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14510
14511#define X(N, L, C) { N, S##N L }
14512
14513static struct neon_shape_info neon_shape_tab[] =
14514{
14515 NEON_SHAPE_DEF
14516};
14517
14518#undef X
14519#undef S2
14520#undef S3
14521#undef S4
14522
5287ad62
JB
14523/* Bit masks used in type checking given instructions.
14524 'N_EQK' means the type must be the same as (or based on in some way) the key
14525 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14526 set, various other bits can be set as well in order to modify the meaning of
14527 the type constraint. */
14528
14529enum neon_type_mask
14530{
8e79c3df
CM
14531 N_S8 = 0x0000001,
14532 N_S16 = 0x0000002,
14533 N_S32 = 0x0000004,
14534 N_S64 = 0x0000008,
14535 N_U8 = 0x0000010,
14536 N_U16 = 0x0000020,
14537 N_U32 = 0x0000040,
14538 N_U64 = 0x0000080,
14539 N_I8 = 0x0000100,
14540 N_I16 = 0x0000200,
14541 N_I32 = 0x0000400,
14542 N_I64 = 0x0000800,
14543 N_8 = 0x0001000,
14544 N_16 = 0x0002000,
14545 N_32 = 0x0004000,
14546 N_64 = 0x0008000,
14547 N_P8 = 0x0010000,
14548 N_P16 = 0x0020000,
14549 N_F16 = 0x0040000,
14550 N_F32 = 0x0080000,
14551 N_F64 = 0x0100000,
4f51b4bd 14552 N_P64 = 0x0200000,
c921be7d
NC
14553 N_KEY = 0x1000000, /* Key element (main type specifier). */
14554 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 14555 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
91ff7894 14556 N_UNT = 0x8000000, /* Must be explicitly untyped. */
c921be7d
NC
14557 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14558 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14559 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14560 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14561 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14562 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14563 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 14564 N_UTYP = 0,
4f51b4bd 14565 N_MAX_NONSPECIAL = N_P64
5287ad62
JB
14566};
14567
dcbf9037
JB
14568#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14569
5287ad62
JB
14570#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14571#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14572#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
cc933301
JW
14573#define N_S_32 (N_S8 | N_S16 | N_S32)
14574#define N_F_16_32 (N_F16 | N_F32)
14575#define N_SUF_32 (N_SU_32 | N_F_16_32)
5287ad62 14576#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
cc933301 14577#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
d54af2d0 14578#define N_F_ALL (N_F16 | N_F32 | N_F64)
5ee91343
AV
14579#define N_I_MVE (N_I8 | N_I16 | N_I32)
14580#define N_F_MVE (N_F16 | N_F32)
14581#define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
5287ad62
JB
14582
14583/* Pass this as the first type argument to neon_check_type to ignore types
14584 altogether. */
14585#define N_IGNORE_TYPE (N_KEY | N_EQK)
14586
037e8744
JB
14587/* Select a "shape" for the current instruction (describing register types or
14588 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14589 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14590 function of operand parsing, so this function doesn't need to be called.
14591 Shapes should be listed in order of decreasing length. */
5287ad62
JB
14592
14593static enum neon_shape
037e8744 14594neon_select_shape (enum neon_shape shape, ...)
5287ad62 14595{
037e8744
JB
14596 va_list ap;
14597 enum neon_shape first_shape = shape;
5287ad62
JB
14598
14599 /* Fix missing optional operands. FIXME: we don't know at this point how
14600 many arguments we should have, so this makes the assumption that we have
14601 > 1. This is true of all current Neon opcodes, I think, but may not be
14602 true in the future. */
14603 if (!inst.operands[1].present)
14604 inst.operands[1] = inst.operands[0];
14605
037e8744 14606 va_start (ap, shape);
5f4273c7 14607
21d799b5 14608 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
14609 {
14610 unsigned j;
14611 int matches = 1;
14612
14613 for (j = 0; j < neon_shape_tab[shape].els; j++)
477330fc
RM
14614 {
14615 if (!inst.operands[j].present)
14616 {
14617 matches = 0;
14618 break;
14619 }
14620
14621 switch (neon_shape_tab[shape].el[j])
14622 {
d54af2d0
RL
14623 /* If a .f16, .16, .u16, .s16 type specifier is given over
14624 a VFP single precision register operand, it's essentially
14625 means only half of the register is used.
14626
14627 If the type specifier is given after the mnemonics, the
14628 information is stored in inst.vectype. If the type specifier
14629 is given after register operand, the information is stored
14630 in inst.operands[].vectype.
14631
14632 When there is only one type specifier, and all the register
14633 operands are the same type of hardware register, the type
14634 specifier applies to all register operands.
14635
14636 If no type specifier is given, the shape is inferred from
14637 operand information.
14638
14639 for example:
14640 vadd.f16 s0, s1, s2: NS_HHH
14641 vabs.f16 s0, s1: NS_HH
14642 vmov.f16 s0, r1: NS_HR
14643 vmov.f16 r0, s1: NS_RH
14644 vcvt.f16 r0, s1: NS_RH
14645 vcvt.f16.s32 s2, s2, #29: NS_HFI
14646 vcvt.f16.s32 s2, s2: NS_HF
14647 */
14648 case SE_H:
14649 if (!(inst.operands[j].isreg
14650 && inst.operands[j].isvec
14651 && inst.operands[j].issingle
14652 && !inst.operands[j].isquad
14653 && ((inst.vectype.elems == 1
14654 && inst.vectype.el[0].size == 16)
14655 || (inst.vectype.elems > 1
14656 && inst.vectype.el[j].size == 16)
14657 || (inst.vectype.elems == 0
14658 && inst.operands[j].vectype.type != NT_invtype
14659 && inst.operands[j].vectype.size == 16))))
14660 matches = 0;
14661 break;
14662
477330fc
RM
14663 case SE_F:
14664 if (!(inst.operands[j].isreg
14665 && inst.operands[j].isvec
14666 && inst.operands[j].issingle
d54af2d0
RL
14667 && !inst.operands[j].isquad
14668 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14669 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14670 || (inst.vectype.elems == 0
14671 && (inst.operands[j].vectype.size == 32
14672 || inst.operands[j].vectype.type == NT_invtype)))))
477330fc
RM
14673 matches = 0;
14674 break;
14675
14676 case SE_D:
14677 if (!(inst.operands[j].isreg
14678 && inst.operands[j].isvec
14679 && !inst.operands[j].isquad
14680 && !inst.operands[j].issingle))
14681 matches = 0;
14682 break;
14683
14684 case SE_R:
14685 if (!(inst.operands[j].isreg
14686 && !inst.operands[j].isvec))
14687 matches = 0;
14688 break;
14689
14690 case SE_Q:
14691 if (!(inst.operands[j].isreg
14692 && inst.operands[j].isvec
14693 && inst.operands[j].isquad
14694 && !inst.operands[j].issingle))
14695 matches = 0;
14696 break;
14697
14698 case SE_I:
14699 if (!(!inst.operands[j].isreg
14700 && !inst.operands[j].isscalar))
14701 matches = 0;
14702 break;
14703
14704 case SE_S:
14705 if (!(!inst.operands[j].isreg
14706 && inst.operands[j].isscalar))
14707 matches = 0;
14708 break;
14709
14710 case SE_L:
14711 break;
14712 }
3fde54a2
JZ
14713 if (!matches)
14714 break;
477330fc 14715 }
ad6cec43
MGD
14716 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14717 /* We've matched all the entries in the shape table, and we don't
14718 have any left over operands which have not been matched. */
477330fc 14719 break;
037e8744 14720 }
5f4273c7 14721
037e8744 14722 va_end (ap);
5287ad62 14723
037e8744
JB
14724 if (shape == NS_NULL && first_shape != NS_NULL)
14725 first_error (_("invalid instruction shape"));
5287ad62 14726
037e8744
JB
14727 return shape;
14728}
5287ad62 14729
037e8744
JB
14730/* True if SHAPE is predominantly a quadword operation (most of the time, this
14731 means the Q bit should be set). */
14732
14733static int
14734neon_quad (enum neon_shape shape)
14735{
14736 return neon_shape_class[shape] == SC_QUAD;
5287ad62 14737}
037e8744 14738
5287ad62
JB
14739static void
14740neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
477330fc 14741 unsigned *g_size)
5287ad62
JB
14742{
14743 /* Allow modification to be made to types which are constrained to be
14744 based on the key element, based on bits set alongside N_EQK. */
14745 if ((typebits & N_EQK) != 0)
14746 {
14747 if ((typebits & N_HLF) != 0)
14748 *g_size /= 2;
14749 else if ((typebits & N_DBL) != 0)
14750 *g_size *= 2;
14751 if ((typebits & N_SGN) != 0)
14752 *g_type = NT_signed;
14753 else if ((typebits & N_UNS) != 0)
477330fc 14754 *g_type = NT_unsigned;
5287ad62 14755 else if ((typebits & N_INT) != 0)
477330fc 14756 *g_type = NT_integer;
5287ad62 14757 else if ((typebits & N_FLT) != 0)
477330fc 14758 *g_type = NT_float;
dcbf9037 14759 else if ((typebits & N_SIZ) != 0)
477330fc 14760 *g_type = NT_untyped;
5287ad62
JB
14761 }
14762}
5f4273c7 14763
5287ad62
JB
14764/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14765 operand type, i.e. the single type specified in a Neon instruction when it
14766 is the only one given. */
14767
14768static struct neon_type_el
14769neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14770{
14771 struct neon_type_el dest = *key;
5f4273c7 14772
9c2799c2 14773 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 14774
5287ad62
JB
14775 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14776
14777 return dest;
14778}
14779
14780/* Convert Neon type and size into compact bitmask representation. */
14781
14782static enum neon_type_mask
14783type_chk_of_el_type (enum neon_el_type type, unsigned size)
14784{
14785 switch (type)
14786 {
14787 case NT_untyped:
14788 switch (size)
477330fc
RM
14789 {
14790 case 8: return N_8;
14791 case 16: return N_16;
14792 case 32: return N_32;
14793 case 64: return N_64;
14794 default: ;
14795 }
5287ad62
JB
14796 break;
14797
14798 case NT_integer:
14799 switch (size)
477330fc
RM
14800 {
14801 case 8: return N_I8;
14802 case 16: return N_I16;
14803 case 32: return N_I32;
14804 case 64: return N_I64;
14805 default: ;
14806 }
5287ad62
JB
14807 break;
14808
14809 case NT_float:
037e8744 14810 switch (size)
477330fc 14811 {
8e79c3df 14812 case 16: return N_F16;
477330fc
RM
14813 case 32: return N_F32;
14814 case 64: return N_F64;
14815 default: ;
14816 }
5287ad62
JB
14817 break;
14818
14819 case NT_poly:
14820 switch (size)
477330fc
RM
14821 {
14822 case 8: return N_P8;
14823 case 16: return N_P16;
4f51b4bd 14824 case 64: return N_P64;
477330fc
RM
14825 default: ;
14826 }
5287ad62
JB
14827 break;
14828
14829 case NT_signed:
14830 switch (size)
477330fc
RM
14831 {
14832 case 8: return N_S8;
14833 case 16: return N_S16;
14834 case 32: return N_S32;
14835 case 64: return N_S64;
14836 default: ;
14837 }
5287ad62
JB
14838 break;
14839
14840 case NT_unsigned:
14841 switch (size)
477330fc
RM
14842 {
14843 case 8: return N_U8;
14844 case 16: return N_U16;
14845 case 32: return N_U32;
14846 case 64: return N_U64;
14847 default: ;
14848 }
5287ad62
JB
14849 break;
14850
14851 default: ;
14852 }
5f4273c7 14853
5287ad62
JB
14854 return N_UTYP;
14855}
14856
14857/* Convert compact Neon bitmask type representation to a type and size. Only
14858 handles the case where a single bit is set in the mask. */
14859
dcbf9037 14860static int
5287ad62 14861el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
477330fc 14862 enum neon_type_mask mask)
5287ad62 14863{
dcbf9037
JB
14864 if ((mask & N_EQK) != 0)
14865 return FAIL;
14866
5287ad62
JB
14867 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14868 *size = 8;
c70a8987 14869 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
5287ad62 14870 *size = 16;
dcbf9037 14871 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 14872 *size = 32;
4f51b4bd 14873 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
5287ad62 14874 *size = 64;
dcbf9037
JB
14875 else
14876 return FAIL;
14877
5287ad62
JB
14878 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14879 *type = NT_signed;
dcbf9037 14880 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 14881 *type = NT_unsigned;
dcbf9037 14882 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 14883 *type = NT_integer;
dcbf9037 14884 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 14885 *type = NT_untyped;
4f51b4bd 14886 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
5287ad62 14887 *type = NT_poly;
d54af2d0 14888 else if ((mask & (N_F_ALL)) != 0)
5287ad62 14889 *type = NT_float;
dcbf9037
JB
14890 else
14891 return FAIL;
5f4273c7 14892
dcbf9037 14893 return SUCCESS;
5287ad62
JB
14894}
14895
14896/* Modify a bitmask of allowed types. This is only needed for type
14897 relaxation. */
14898
14899static unsigned
14900modify_types_allowed (unsigned allowed, unsigned mods)
14901{
14902 unsigned size;
14903 enum neon_el_type type;
14904 unsigned destmask;
14905 int i;
5f4273c7 14906
5287ad62 14907 destmask = 0;
5f4273c7 14908
5287ad62
JB
14909 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14910 {
21d799b5 14911 if (el_type_of_type_chk (&type, &size,
477330fc
RM
14912 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14913 {
14914 neon_modify_type_size (mods, &type, &size);
14915 destmask |= type_chk_of_el_type (type, size);
14916 }
5287ad62 14917 }
5f4273c7 14918
5287ad62
JB
14919 return destmask;
14920}
14921
14922/* Check type and return type classification.
14923 The manual states (paraphrase): If one datatype is given, it indicates the
14924 type given in:
14925 - the second operand, if there is one
14926 - the operand, if there is no second operand
14927 - the result, if there are no operands.
14928 This isn't quite good enough though, so we use a concept of a "key" datatype
14929 which is set on a per-instruction basis, which is the one which matters when
14930 only one data type is written.
14931 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 14932 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
14933
14934static struct neon_type_el
14935neon_check_type (unsigned els, enum neon_shape ns, ...)
14936{
14937 va_list ap;
14938 unsigned i, pass, key_el = 0;
14939 unsigned types[NEON_MAX_TYPE_ELS];
14940 enum neon_el_type k_type = NT_invtype;
14941 unsigned k_size = -1u;
14942 struct neon_type_el badtype = {NT_invtype, -1};
14943 unsigned key_allowed = 0;
14944
14945 /* Optional registers in Neon instructions are always (not) in operand 1.
14946 Fill in the missing operand here, if it was omitted. */
14947 if (els > 1 && !inst.operands[1].present)
14948 inst.operands[1] = inst.operands[0];
14949
14950 /* Suck up all the varargs. */
14951 va_start (ap, ns);
14952 for (i = 0; i < els; i++)
14953 {
14954 unsigned thisarg = va_arg (ap, unsigned);
14955 if (thisarg == N_IGNORE_TYPE)
477330fc
RM
14956 {
14957 va_end (ap);
14958 return badtype;
14959 }
5287ad62
JB
14960 types[i] = thisarg;
14961 if ((thisarg & N_KEY) != 0)
477330fc 14962 key_el = i;
5287ad62
JB
14963 }
14964 va_end (ap);
14965
dcbf9037
JB
14966 if (inst.vectype.elems > 0)
14967 for (i = 0; i < els; i++)
14968 if (inst.operands[i].vectype.type != NT_invtype)
477330fc
RM
14969 {
14970 first_error (_("types specified in both the mnemonic and operands"));
14971 return badtype;
14972 }
dcbf9037 14973
5287ad62
JB
14974 /* Duplicate inst.vectype elements here as necessary.
14975 FIXME: No idea if this is exactly the same as the ARM assembler,
14976 particularly when an insn takes one register and one non-register
14977 operand. */
14978 if (inst.vectype.elems == 1 && els > 1)
14979 {
14980 unsigned j;
14981 inst.vectype.elems = els;
14982 inst.vectype.el[key_el] = inst.vectype.el[0];
14983 for (j = 0; j < els; j++)
477330fc
RM
14984 if (j != key_el)
14985 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14986 types[j]);
dcbf9037
JB
14987 }
14988 else if (inst.vectype.elems == 0 && els > 0)
14989 {
14990 unsigned j;
14991 /* No types were given after the mnemonic, so look for types specified
477330fc
RM
14992 after each operand. We allow some flexibility here; as long as the
14993 "key" operand has a type, we can infer the others. */
dcbf9037 14994 for (j = 0; j < els; j++)
477330fc
RM
14995 if (inst.operands[j].vectype.type != NT_invtype)
14996 inst.vectype.el[j] = inst.operands[j].vectype;
dcbf9037
JB
14997
14998 if (inst.operands[key_el].vectype.type != NT_invtype)
477330fc
RM
14999 {
15000 for (j = 0; j < els; j++)
15001 if (inst.operands[j].vectype.type == NT_invtype)
15002 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15003 types[j]);
15004 }
dcbf9037 15005 else
477330fc
RM
15006 {
15007 first_error (_("operand types can't be inferred"));
15008 return badtype;
15009 }
5287ad62
JB
15010 }
15011 else if (inst.vectype.elems != els)
15012 {
dcbf9037 15013 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
15014 return badtype;
15015 }
15016
15017 for (pass = 0; pass < 2; pass++)
15018 {
15019 for (i = 0; i < els; i++)
477330fc
RM
15020 {
15021 unsigned thisarg = types[i];
15022 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15023 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15024 enum neon_el_type g_type = inst.vectype.el[i].type;
15025 unsigned g_size = inst.vectype.el[i].size;
15026
15027 /* Decay more-specific signed & unsigned types to sign-insensitive
5287ad62 15028 integer types if sign-specific variants are unavailable. */
477330fc 15029 if ((g_type == NT_signed || g_type == NT_unsigned)
5287ad62
JB
15030 && (types_allowed & N_SU_ALL) == 0)
15031 g_type = NT_integer;
15032
477330fc 15033 /* If only untyped args are allowed, decay any more specific types to
5287ad62
JB
15034 them. Some instructions only care about signs for some element
15035 sizes, so handle that properly. */
477330fc 15036 if (((types_allowed & N_UNT) == 0)
91ff7894
MGD
15037 && ((g_size == 8 && (types_allowed & N_8) != 0)
15038 || (g_size == 16 && (types_allowed & N_16) != 0)
15039 || (g_size == 32 && (types_allowed & N_32) != 0)
15040 || (g_size == 64 && (types_allowed & N_64) != 0)))
5287ad62
JB
15041 g_type = NT_untyped;
15042
477330fc
RM
15043 if (pass == 0)
15044 {
15045 if ((thisarg & N_KEY) != 0)
15046 {
15047 k_type = g_type;
15048 k_size = g_size;
15049 key_allowed = thisarg & ~N_KEY;
cc933301
JW
15050
15051 /* Check architecture constraint on FP16 extension. */
15052 if (k_size == 16
15053 && k_type == NT_float
15054 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15055 {
15056 inst.error = _(BAD_FP16);
15057 return badtype;
15058 }
477330fc
RM
15059 }
15060 }
15061 else
15062 {
15063 if ((thisarg & N_VFP) != 0)
15064 {
15065 enum neon_shape_el regshape;
15066 unsigned regwidth, match;
99b253c5
NC
15067
15068 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15069 if (ns == NS_NULL)
15070 {
15071 first_error (_("invalid instruction shape"));
15072 return badtype;
15073 }
477330fc
RM
15074 regshape = neon_shape_tab[ns].el[i];
15075 regwidth = neon_shape_el_size[regshape];
15076
15077 /* In VFP mode, operands must match register widths. If we
15078 have a key operand, use its width, else use the width of
15079 the current operand. */
15080 if (k_size != -1u)
15081 match = k_size;
15082 else
15083 match = g_size;
15084
9db2f6b4
RL
15085 /* FP16 will use a single precision register. */
15086 if (regwidth == 32 && match == 16)
15087 {
15088 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15089 match = regwidth;
15090 else
15091 {
15092 inst.error = _(BAD_FP16);
15093 return badtype;
15094 }
15095 }
15096
477330fc
RM
15097 if (regwidth != match)
15098 {
15099 first_error (_("operand size must match register width"));
15100 return badtype;
15101 }
15102 }
15103
15104 if ((thisarg & N_EQK) == 0)
15105 {
15106 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15107
15108 if ((given_type & types_allowed) == 0)
15109 {
a302e574 15110 first_error (BAD_SIMD_TYPE);
477330fc
RM
15111 return badtype;
15112 }
15113 }
15114 else
15115 {
15116 enum neon_el_type mod_k_type = k_type;
15117 unsigned mod_k_size = k_size;
15118 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15119 if (g_type != mod_k_type || g_size != mod_k_size)
15120 {
15121 first_error (_("inconsistent types in Neon instruction"));
15122 return badtype;
15123 }
15124 }
15125 }
15126 }
5287ad62
JB
15127 }
15128
15129 return inst.vectype.el[key_el];
15130}
15131
037e8744 15132/* Neon-style VFP instruction forwarding. */
5287ad62 15133
037e8744
JB
15134/* Thumb VFP instructions have 0xE in the condition field. */
15135
15136static void
15137do_vfp_cond_or_thumb (void)
5287ad62 15138{
88714cb8
DG
15139 inst.is_neon = 1;
15140
5287ad62 15141 if (thumb_mode)
037e8744 15142 inst.instruction |= 0xe0000000;
5287ad62 15143 else
037e8744 15144 inst.instruction |= inst.cond << 28;
5287ad62
JB
15145}
15146
037e8744
JB
15147/* Look up and encode a simple mnemonic, for use as a helper function for the
15148 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15149 etc. It is assumed that operand parsing has already been done, and that the
15150 operands are in the form expected by the given opcode (this isn't necessarily
15151 the same as the form in which they were parsed, hence some massaging must
15152 take place before this function is called).
15153 Checks current arch version against that in the looked-up opcode. */
5287ad62 15154
037e8744
JB
15155static void
15156do_vfp_nsyn_opcode (const char *opname)
5287ad62 15157{
037e8744 15158 const struct asm_opcode *opcode;
5f4273c7 15159
21d799b5 15160 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 15161
037e8744
JB
15162 if (!opcode)
15163 abort ();
5287ad62 15164
037e8744 15165 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
477330fc
RM
15166 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15167 _(BAD_FPU));
5287ad62 15168
88714cb8
DG
15169 inst.is_neon = 1;
15170
037e8744
JB
15171 if (thumb_mode)
15172 {
15173 inst.instruction = opcode->tvalue;
15174 opcode->tencode ();
15175 }
15176 else
15177 {
15178 inst.instruction = (inst.cond << 28) | opcode->avalue;
15179 opcode->aencode ();
15180 }
15181}
5287ad62
JB
15182
15183static void
037e8744 15184do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 15185{
037e8744
JB
15186 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15187
9db2f6b4 15188 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15189 {
15190 if (is_add)
477330fc 15191 do_vfp_nsyn_opcode ("fadds");
037e8744 15192 else
477330fc 15193 do_vfp_nsyn_opcode ("fsubs");
9db2f6b4
RL
15194
15195 /* ARMv8.2 fp16 instruction. */
15196 if (rs == NS_HHH)
15197 do_scalar_fp16_v82_encode ();
037e8744
JB
15198 }
15199 else
15200 {
15201 if (is_add)
477330fc 15202 do_vfp_nsyn_opcode ("faddd");
037e8744 15203 else
477330fc 15204 do_vfp_nsyn_opcode ("fsubd");
037e8744
JB
15205 }
15206}
15207
15208/* Check operand types to see if this is a VFP instruction, and if so call
15209 PFN (). */
15210
15211static int
15212try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15213{
15214 enum neon_shape rs;
15215 struct neon_type_el et;
15216
15217 switch (args)
15218 {
15219 case 2:
9db2f6b4
RL
15220 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15221 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
037e8744 15222 break;
5f4273c7 15223
037e8744 15224 case 3:
9db2f6b4
RL
15225 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15226 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15227 N_F_ALL | N_KEY | N_VFP);
037e8744
JB
15228 break;
15229
15230 default:
15231 abort ();
15232 }
15233
15234 if (et.type != NT_invtype)
15235 {
15236 pfn (rs);
15237 return SUCCESS;
15238 }
037e8744 15239
99b253c5 15240 inst.error = NULL;
037e8744
JB
15241 return FAIL;
15242}
15243
15244static void
15245do_vfp_nsyn_mla_mls (enum neon_shape rs)
15246{
15247 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 15248
9db2f6b4 15249 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15250 {
15251 if (is_mla)
477330fc 15252 do_vfp_nsyn_opcode ("fmacs");
037e8744 15253 else
477330fc 15254 do_vfp_nsyn_opcode ("fnmacs");
9db2f6b4
RL
15255
15256 /* ARMv8.2 fp16 instruction. */
15257 if (rs == NS_HHH)
15258 do_scalar_fp16_v82_encode ();
037e8744
JB
15259 }
15260 else
15261 {
15262 if (is_mla)
477330fc 15263 do_vfp_nsyn_opcode ("fmacd");
037e8744 15264 else
477330fc 15265 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
15266 }
15267}
15268
62f3b8c8
PB
15269static void
15270do_vfp_nsyn_fma_fms (enum neon_shape rs)
15271{
15272 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15273
9db2f6b4 15274 if (rs == NS_FFF || rs == NS_HHH)
62f3b8c8
PB
15275 {
15276 if (is_fma)
477330fc 15277 do_vfp_nsyn_opcode ("ffmas");
62f3b8c8 15278 else
477330fc 15279 do_vfp_nsyn_opcode ("ffnmas");
9db2f6b4
RL
15280
15281 /* ARMv8.2 fp16 instruction. */
15282 if (rs == NS_HHH)
15283 do_scalar_fp16_v82_encode ();
62f3b8c8
PB
15284 }
15285 else
15286 {
15287 if (is_fma)
477330fc 15288 do_vfp_nsyn_opcode ("ffmad");
62f3b8c8 15289 else
477330fc 15290 do_vfp_nsyn_opcode ("ffnmad");
62f3b8c8
PB
15291 }
15292}
15293
037e8744
JB
15294static void
15295do_vfp_nsyn_mul (enum neon_shape rs)
15296{
9db2f6b4
RL
15297 if (rs == NS_FFF || rs == NS_HHH)
15298 {
15299 do_vfp_nsyn_opcode ("fmuls");
15300
15301 /* ARMv8.2 fp16 instruction. */
15302 if (rs == NS_HHH)
15303 do_scalar_fp16_v82_encode ();
15304 }
037e8744
JB
15305 else
15306 do_vfp_nsyn_opcode ("fmuld");
15307}
15308
15309static void
15310do_vfp_nsyn_abs_neg (enum neon_shape rs)
15311{
15312 int is_neg = (inst.instruction & 0x80) != 0;
9db2f6b4 15313 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
037e8744 15314
9db2f6b4 15315 if (rs == NS_FF || rs == NS_HH)
037e8744
JB
15316 {
15317 if (is_neg)
477330fc 15318 do_vfp_nsyn_opcode ("fnegs");
037e8744 15319 else
477330fc 15320 do_vfp_nsyn_opcode ("fabss");
9db2f6b4
RL
15321
15322 /* ARMv8.2 fp16 instruction. */
15323 if (rs == NS_HH)
15324 do_scalar_fp16_v82_encode ();
037e8744
JB
15325 }
15326 else
15327 {
15328 if (is_neg)
477330fc 15329 do_vfp_nsyn_opcode ("fnegd");
037e8744 15330 else
477330fc 15331 do_vfp_nsyn_opcode ("fabsd");
037e8744
JB
15332 }
15333}
15334
15335/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15336 insns belong to Neon, and are handled elsewhere. */
15337
15338static void
15339do_vfp_nsyn_ldm_stm (int is_dbmode)
15340{
15341 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15342 if (is_ldm)
15343 {
15344 if (is_dbmode)
477330fc 15345 do_vfp_nsyn_opcode ("fldmdbs");
037e8744 15346 else
477330fc 15347 do_vfp_nsyn_opcode ("fldmias");
037e8744
JB
15348 }
15349 else
15350 {
15351 if (is_dbmode)
477330fc 15352 do_vfp_nsyn_opcode ("fstmdbs");
037e8744 15353 else
477330fc 15354 do_vfp_nsyn_opcode ("fstmias");
037e8744
JB
15355 }
15356}
15357
037e8744
JB
15358static void
15359do_vfp_nsyn_sqrt (void)
15360{
9db2f6b4
RL
15361 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15362 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15363
9db2f6b4
RL
15364 if (rs == NS_FF || rs == NS_HH)
15365 {
15366 do_vfp_nsyn_opcode ("fsqrts");
15367
15368 /* ARMv8.2 fp16 instruction. */
15369 if (rs == NS_HH)
15370 do_scalar_fp16_v82_encode ();
15371 }
037e8744
JB
15372 else
15373 do_vfp_nsyn_opcode ("fsqrtd");
15374}
15375
15376static void
15377do_vfp_nsyn_div (void)
15378{
9db2f6b4 15379 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15380 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15381 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15382
9db2f6b4
RL
15383 if (rs == NS_FFF || rs == NS_HHH)
15384 {
15385 do_vfp_nsyn_opcode ("fdivs");
15386
15387 /* ARMv8.2 fp16 instruction. */
15388 if (rs == NS_HHH)
15389 do_scalar_fp16_v82_encode ();
15390 }
037e8744
JB
15391 else
15392 do_vfp_nsyn_opcode ("fdivd");
15393}
15394
15395static void
15396do_vfp_nsyn_nmul (void)
15397{
9db2f6b4 15398 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15399 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15400 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15401
9db2f6b4 15402 if (rs == NS_FFF || rs == NS_HHH)
037e8744 15403 {
88714cb8 15404 NEON_ENCODE (SINGLE, inst);
037e8744 15405 do_vfp_sp_dyadic ();
9db2f6b4
RL
15406
15407 /* ARMv8.2 fp16 instruction. */
15408 if (rs == NS_HHH)
15409 do_scalar_fp16_v82_encode ();
037e8744
JB
15410 }
15411 else
15412 {
88714cb8 15413 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
15414 do_vfp_dp_rd_rn_rm ();
15415 }
15416 do_vfp_cond_or_thumb ();
9db2f6b4 15417
037e8744
JB
15418}
15419
1b883319
AV
15420/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15421 (0, 1, 2, 3). */
15422
15423static unsigned
15424neon_logbits (unsigned x)
15425{
15426 return ffs (x) - 4;
15427}
15428
15429#define LOW4(R) ((R) & 0xf)
15430#define HI1(R) (((R) >> 4) & 1)
15431
15432static unsigned
15433mve_get_vcmp_vpt_cond (struct neon_type_el et)
15434{
15435 switch (et.type)
15436 {
15437 default:
15438 first_error (BAD_EL_TYPE);
15439 return 0;
15440 case NT_float:
15441 switch (inst.operands[0].imm)
15442 {
15443 default:
15444 first_error (_("invalid condition"));
15445 return 0;
15446 case 0x0:
15447 /* eq. */
15448 return 0;
15449 case 0x1:
15450 /* ne. */
15451 return 1;
15452 case 0xa:
15453 /* ge/ */
15454 return 4;
15455 case 0xb:
15456 /* lt. */
15457 return 5;
15458 case 0xc:
15459 /* gt. */
15460 return 6;
15461 case 0xd:
15462 /* le. */
15463 return 7;
15464 }
15465 case NT_integer:
15466 /* only accept eq and ne. */
15467 if (inst.operands[0].imm > 1)
15468 {
15469 first_error (_("invalid condition"));
15470 return 0;
15471 }
15472 return inst.operands[0].imm;
15473 case NT_unsigned:
15474 if (inst.operands[0].imm == 0x2)
15475 return 2;
15476 else if (inst.operands[0].imm == 0x8)
15477 return 3;
15478 else
15479 {
15480 first_error (_("invalid condition"));
15481 return 0;
15482 }
15483 case NT_signed:
15484 switch (inst.operands[0].imm)
15485 {
15486 default:
15487 first_error (_("invalid condition"));
15488 return 0;
15489 case 0xa:
15490 /* ge. */
15491 return 4;
15492 case 0xb:
15493 /* lt. */
15494 return 5;
15495 case 0xc:
15496 /* gt. */
15497 return 6;
15498 case 0xd:
15499 /* le. */
15500 return 7;
15501 }
15502 }
15503 /* Should be unreachable. */
15504 abort ();
15505}
15506
15507static void
15508do_mve_vpt (void)
15509{
15510 /* We are dealing with a vector predicated block. */
15511 if (inst.operands[0].present)
15512 {
15513 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15514 struct neon_type_el et
15515 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15516 N_EQK);
15517
15518 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15519
15520 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15521
15522 if (et.type == NT_invtype)
15523 return;
15524
15525 if (et.type == NT_float)
15526 {
15527 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15528 BAD_FPU);
15529 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15530 inst.instruction |= (et.size == 16) << 28;
15531 inst.instruction |= 0x3 << 20;
15532 }
15533 else
15534 {
15535 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15536 BAD_EL_TYPE);
15537 inst.instruction |= 1 << 28;
15538 inst.instruction |= neon_logbits (et.size) << 20;
15539 }
15540
15541 if (inst.operands[2].isquad)
15542 {
15543 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15544 inst.instruction |= LOW4 (inst.operands[2].reg);
15545 inst.instruction |= (fcond & 0x2) >> 1;
15546 }
15547 else
15548 {
15549 if (inst.operands[2].reg == REG_SP)
15550 as_tsktsk (MVE_BAD_SP);
15551 inst.instruction |= 1 << 6;
15552 inst.instruction |= (fcond & 0x2) << 4;
15553 inst.instruction |= inst.operands[2].reg;
15554 }
15555 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15556 inst.instruction |= (fcond & 0x4) << 10;
15557 inst.instruction |= (fcond & 0x1) << 7;
15558
15559 }
15560 set_pred_insn_type (VPT_INSN);
15561 now_pred.cc = 0;
15562 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15563 | ((inst.instruction & 0xe000) >> 13);
15564 now_pred.warn_deprecated = FALSE;
15565 now_pred.type = VECTOR_PRED;
15566 inst.is_neon = 1;
15567}
15568
15569static void
15570do_mve_vcmp (void)
15571{
15572 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15573 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15574 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15575 if (!inst.operands[2].present)
15576 first_error (_("MVE vector or ARM register expected"));
15577 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15578
15579 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15580 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15581 && inst.operands[1].isquad)
15582 {
15583 inst.instruction = N_MNEM_vcmp;
15584 inst.cond = 0x10;
15585 }
15586
15587 if (inst.cond > COND_ALWAYS)
15588 inst.pred_insn_type = INSIDE_VPT_INSN;
15589 else
15590 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15591
15592 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15593 struct neon_type_el et
15594 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15595 N_EQK);
15596
15597 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15598 && !inst.operands[2].iszr, BAD_PC);
15599
15600 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15601
15602 inst.instruction = 0xee010f00;
15603 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15604 inst.instruction |= (fcond & 0x4) << 10;
15605 inst.instruction |= (fcond & 0x1) << 7;
15606 if (et.type == NT_float)
15607 {
15608 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15609 BAD_FPU);
15610 inst.instruction |= (et.size == 16) << 28;
15611 inst.instruction |= 0x3 << 20;
15612 }
15613 else
15614 {
15615 inst.instruction |= 1 << 28;
15616 inst.instruction |= neon_logbits (et.size) << 20;
15617 }
15618 if (inst.operands[2].isquad)
15619 {
15620 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15621 inst.instruction |= (fcond & 0x2) >> 1;
15622 inst.instruction |= LOW4 (inst.operands[2].reg);
15623 }
15624 else
15625 {
15626 if (inst.operands[2].reg == REG_SP)
15627 as_tsktsk (MVE_BAD_SP);
15628 inst.instruction |= 1 << 6;
15629 inst.instruction |= (fcond & 0x2) << 4;
15630 inst.instruction |= inst.operands[2].reg;
15631 }
15632
15633 inst.is_neon = 1;
15634 return;
15635}
15636
935295b5
AV
15637static void
15638do_mve_vmaxa_vmina (void)
15639{
15640 if (inst.cond > COND_ALWAYS)
15641 inst.pred_insn_type = INSIDE_VPT_INSN;
15642 else
15643 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15644
15645 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15646 struct neon_type_el et
15647 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
15648
15649 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15650 inst.instruction |= neon_logbits (et.size) << 18;
15651 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15652 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15653 inst.instruction |= LOW4 (inst.operands[1].reg);
15654 inst.is_neon = 1;
15655}
15656
f30ee27c
AV
15657static void
15658do_mve_vfmas (void)
15659{
15660 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15661 struct neon_type_el et
15662 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15663
15664 if (inst.cond > COND_ALWAYS)
15665 inst.pred_insn_type = INSIDE_VPT_INSN;
15666 else
15667 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15668
15669 if (inst.operands[2].reg == REG_SP)
15670 as_tsktsk (MVE_BAD_SP);
15671 else if (inst.operands[2].reg == REG_PC)
15672 as_tsktsk (MVE_BAD_PC);
15673
15674 inst.instruction |= (et.size == 16) << 28;
15675 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15676 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15677 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15678 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15679 inst.instruction |= inst.operands[2].reg;
15680 inst.is_neon = 1;
15681}
15682
b409bdb6
AV
15683static void
15684do_mve_viddup (void)
15685{
15686 if (inst.cond > COND_ALWAYS)
15687 inst.pred_insn_type = INSIDE_VPT_INSN;
15688 else
15689 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15690
15691 unsigned imm = inst.relocs[0].exp.X_add_number;
15692 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15693 _("immediate must be either 1, 2, 4 or 8"));
15694
15695 enum neon_shape rs;
15696 struct neon_type_el et;
15697 unsigned Rm;
15698 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15699 {
15700 rs = neon_select_shape (NS_QRI, NS_NULL);
15701 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15702 Rm = 7;
15703 }
15704 else
15705 {
15706 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15707 if (inst.operands[2].reg == REG_SP)
15708 as_tsktsk (MVE_BAD_SP);
15709 else if (inst.operands[2].reg == REG_PC)
15710 first_error (BAD_PC);
15711
15712 rs = neon_select_shape (NS_QRRI, NS_NULL);
15713 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
15714 Rm = inst.operands[2].reg >> 1;
15715 }
15716 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15717 inst.instruction |= neon_logbits (et.size) << 20;
15718 inst.instruction |= inst.operands[1].reg << 16;
15719 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15720 inst.instruction |= (imm > 2) << 7;
15721 inst.instruction |= Rm << 1;
15722 inst.instruction |= (imm == 2 || imm == 8);
15723 inst.is_neon = 1;
15724}
15725
2d78f95b
AV
15726static void
15727do_mve_vmlas (void)
15728{
15729 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15730 struct neon_type_el et
15731 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
15732
15733 if (inst.operands[2].reg == REG_PC)
15734 as_tsktsk (MVE_BAD_PC);
15735 else if (inst.operands[2].reg == REG_SP)
15736 as_tsktsk (MVE_BAD_SP);
15737
15738 if (inst.cond > COND_ALWAYS)
15739 inst.pred_insn_type = INSIDE_VPT_INSN;
15740 else
15741 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15742
15743 inst.instruction |= (et.type == NT_unsigned) << 28;
15744 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15745 inst.instruction |= neon_logbits (et.size) << 20;
15746 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15747 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15748 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15749 inst.instruction |= inst.operands[2].reg;
15750 inst.is_neon = 1;
15751}
15752
acca5630
AV
15753static void
15754do_mve_vshll (void)
15755{
15756 struct neon_type_el et
15757 = neon_check_type (2, NS_QQI, N_EQK, N_S8 | N_U8 | N_S16 | N_U16 | N_KEY);
15758
15759 if (inst.cond > COND_ALWAYS)
15760 inst.pred_insn_type = INSIDE_VPT_INSN;
15761 else
15762 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15763
15764 int imm = inst.operands[2].imm;
15765 constraint (imm < 1 || (unsigned)imm > et.size,
15766 _("immediate value out of range"));
15767
15768 if ((unsigned)imm == et.size)
15769 {
15770 inst.instruction |= neon_logbits (et.size) << 18;
15771 inst.instruction |= 0x110001;
15772 }
15773 else
15774 {
15775 inst.instruction |= (et.size + imm) << 16;
15776 inst.instruction |= 0x800140;
15777 }
15778
15779 inst.instruction |= (et.type == NT_unsigned) << 28;
15780 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15781 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15782 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15783 inst.instruction |= LOW4 (inst.operands[1].reg);
15784 inst.is_neon = 1;
15785}
15786
15787static void
15788do_mve_vshlc (void)
15789{
15790 if (inst.cond > COND_ALWAYS)
15791 inst.pred_insn_type = INSIDE_VPT_INSN;
15792 else
15793 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15794
15795 if (inst.operands[1].reg == REG_PC)
15796 as_tsktsk (MVE_BAD_PC);
15797 else if (inst.operands[1].reg == REG_SP)
15798 as_tsktsk (MVE_BAD_SP);
15799
15800 int imm = inst.operands[2].imm;
15801 constraint (imm < 1 || imm > 32, _("immediate value out of range"));
15802
15803 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15804 inst.instruction |= (imm & 0x1f) << 16;
15805 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15806 inst.instruction |= inst.operands[1].reg;
15807 inst.is_neon = 1;
15808}
15809
4aa88b50
AV
15810static void
15811do_mve_vshrn (void)
15812{
15813 unsigned types;
15814 switch (inst.instruction)
15815 {
15816 case M_MNEM_vshrnt:
15817 case M_MNEM_vshrnb:
15818 case M_MNEM_vrshrnt:
15819 case M_MNEM_vrshrnb:
15820 types = N_I16 | N_I32;
15821 break;
15822 case M_MNEM_vqshrnt:
15823 case M_MNEM_vqshrnb:
15824 case M_MNEM_vqrshrnt:
15825 case M_MNEM_vqrshrnb:
15826 types = N_U16 | N_U32 | N_S16 | N_S32;
15827 break;
15828 case M_MNEM_vqshrunt:
15829 case M_MNEM_vqshrunb:
15830 case M_MNEM_vqrshrunt:
15831 case M_MNEM_vqrshrunb:
15832 types = N_S16 | N_S32;
15833 break;
15834 default:
15835 abort ();
15836 }
15837
15838 struct neon_type_el et = neon_check_type (2, NS_QQI, N_EQK, types | N_KEY);
15839
15840 if (inst.cond > COND_ALWAYS)
15841 inst.pred_insn_type = INSIDE_VPT_INSN;
15842 else
15843 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15844
15845 unsigned Qd = inst.operands[0].reg;
15846 unsigned Qm = inst.operands[1].reg;
15847 unsigned imm = inst.operands[2].imm;
15848 constraint (imm < 1 || ((unsigned) imm) > (et.size / 2),
15849 et.size == 16
15850 ? _("immediate operand expected in the range [1,8]")
15851 : _("immediate operand expected in the range [1,16]"));
15852
15853 inst.instruction |= (et.type == NT_unsigned) << 28;
15854 inst.instruction |= HI1 (Qd) << 22;
15855 inst.instruction |= (et.size - imm) << 16;
15856 inst.instruction |= LOW4 (Qd) << 12;
15857 inst.instruction |= HI1 (Qm) << 5;
15858 inst.instruction |= LOW4 (Qm);
15859 inst.is_neon = 1;
15860}
15861
1be7aba3
AV
15862static void
15863do_mve_vqmovn (void)
15864{
15865 struct neon_type_el et;
15866 if (inst.instruction == M_MNEM_vqmovnt
15867 || inst.instruction == M_MNEM_vqmovnb)
15868 et = neon_check_type (2, NS_QQ, N_EQK,
15869 N_U16 | N_U32 | N_S16 | N_S32 | N_KEY);
15870 else
15871 et = neon_check_type (2, NS_QQ, N_EQK, N_S16 | N_S32 | N_KEY);
15872
15873 if (inst.cond > COND_ALWAYS)
15874 inst.pred_insn_type = INSIDE_VPT_INSN;
15875 else
15876 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15877
15878 inst.instruction |= (et.type == NT_unsigned) << 28;
15879 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15880 inst.instruction |= (et.size == 32) << 18;
15881 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15882 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15883 inst.instruction |= LOW4 (inst.operands[1].reg);
15884 inst.is_neon = 1;
15885}
15886
3063888e
AV
15887static void
15888do_mve_vpsel (void)
15889{
15890 neon_select_shape (NS_QQQ, NS_NULL);
15891
15892 if (inst.cond > COND_ALWAYS)
15893 inst.pred_insn_type = INSIDE_VPT_INSN;
15894 else
15895 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15896
15897 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15898 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15899 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15900 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15901 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15902 inst.instruction |= LOW4 (inst.operands[2].reg);
15903 inst.is_neon = 1;
15904}
15905
15906static void
15907do_mve_vpnot (void)
15908{
15909 if (inst.cond > COND_ALWAYS)
15910 inst.pred_insn_type = INSIDE_VPT_INSN;
15911 else
15912 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15913}
15914
935295b5
AV
15915static void
15916do_mve_vmaxnma_vminnma (void)
15917{
15918 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15919 struct neon_type_el et
15920 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
15921
15922 if (inst.cond > COND_ALWAYS)
15923 inst.pred_insn_type = INSIDE_VPT_INSN;
15924 else
15925 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15926
15927 inst.instruction |= (et.size == 16) << 28;
15928 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15929 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15930 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15931 inst.instruction |= LOW4 (inst.operands[1].reg);
15932 inst.is_neon = 1;
15933}
15934
5d281bf0
AV
15935static void
15936do_mve_vcmul (void)
15937{
15938 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15939 struct neon_type_el et
15940 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15941
15942 if (inst.cond > COND_ALWAYS)
15943 inst.pred_insn_type = INSIDE_VPT_INSN;
15944 else
15945 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15946
15947 unsigned rot = inst.relocs[0].exp.X_add_number;
15948 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15949 _("immediate out of range"));
15950
15951 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15952 || inst.operands[0].reg == inst.operands[2].reg))
15953 as_tsktsk (BAD_MVE_SRCDEST);
15954
15955 inst.instruction |= (et.size == 32) << 28;
15956 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15957 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15958 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15959 inst.instruction |= (rot > 90) << 12;
15960 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15961 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15962 inst.instruction |= LOW4 (inst.operands[2].reg);
15963 inst.instruction |= (rot == 90 || rot == 270);
15964 inst.is_neon = 1;
15965}
15966
1f6234a3
AV
15967/* To handle the Low Overhead Loop instructions
15968 in Armv8.1-M Mainline and MVE. */
15969static void
15970do_t_loloop (void)
15971{
15972 unsigned long insn = inst.instruction;
15973
15974 inst.instruction = THUMB_OP32 (inst.instruction);
15975
15976 if (insn == T_MNEM_lctp)
15977 return;
15978
15979 set_pred_insn_type (MVE_OUTSIDE_PRED_INSN);
15980
15981 if (insn == T_MNEM_wlstp || insn == T_MNEM_dlstp)
15982 {
15983 struct neon_type_el et
15984 = neon_check_type (2, NS_RR, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15985 inst.instruction |= neon_logbits (et.size) << 20;
15986 inst.is_neon = 1;
15987 }
15988
15989 switch (insn)
15990 {
15991 case T_MNEM_letp:
15992 constraint (!inst.operands[0].present,
15993 _("expected LR"));
15994 /* fall through. */
15995 case T_MNEM_le:
15996 /* le <label>. */
15997 if (!inst.operands[0].present)
15998 inst.instruction |= 1 << 21;
15999
16000 v8_1_loop_reloc (TRUE);
16001 break;
16002
16003 case T_MNEM_wls:
16004 case T_MNEM_wlstp:
16005 v8_1_loop_reloc (FALSE);
16006 /* fall through. */
16007 case T_MNEM_dlstp:
16008 case T_MNEM_dls:
16009 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
16010
16011 if (insn == T_MNEM_wlstp || insn == T_MNEM_dlstp)
16012 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
16013 else if (inst.operands[1].reg == REG_PC)
16014 as_tsktsk (MVE_BAD_PC);
16015 if (inst.operands[1].reg == REG_SP)
16016 as_tsktsk (MVE_BAD_SP);
16017
16018 inst.instruction |= (inst.operands[1].reg << 16);
16019 break;
16020
16021 default:
16022 abort ();
16023 }
16024}
16025
16026
037e8744
JB
16027static void
16028do_vfp_nsyn_cmp (void)
16029{
9db2f6b4 16030 enum neon_shape rs;
1b883319
AV
16031 if (!inst.operands[0].isreg)
16032 {
16033 do_mve_vcmp ();
16034 return;
16035 }
16036 else
16037 {
16038 constraint (inst.operands[2].present, BAD_SYNTAX);
16039 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
16040 BAD_FPU);
16041 }
16042
037e8744
JB
16043 if (inst.operands[1].isreg)
16044 {
9db2f6b4
RL
16045 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
16046 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 16047
9db2f6b4 16048 if (rs == NS_FF || rs == NS_HH)
477330fc
RM
16049 {
16050 NEON_ENCODE (SINGLE, inst);
16051 do_vfp_sp_monadic ();
16052 }
037e8744 16053 else
477330fc
RM
16054 {
16055 NEON_ENCODE (DOUBLE, inst);
16056 do_vfp_dp_rd_rm ();
16057 }
037e8744
JB
16058 }
16059 else
16060 {
9db2f6b4
RL
16061 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
16062 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
037e8744
JB
16063
16064 switch (inst.instruction & 0x0fffffff)
477330fc
RM
16065 {
16066 case N_MNEM_vcmp:
16067 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
16068 break;
16069 case N_MNEM_vcmpe:
16070 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
16071 break;
16072 default:
16073 abort ();
16074 }
5f4273c7 16075
9db2f6b4 16076 if (rs == NS_FI || rs == NS_HI)
477330fc
RM
16077 {
16078 NEON_ENCODE (SINGLE, inst);
16079 do_vfp_sp_compare_z ();
16080 }
037e8744 16081 else
477330fc
RM
16082 {
16083 NEON_ENCODE (DOUBLE, inst);
16084 do_vfp_dp_rd ();
16085 }
037e8744
JB
16086 }
16087 do_vfp_cond_or_thumb ();
9db2f6b4
RL
16088
16089 /* ARMv8.2 fp16 instruction. */
16090 if (rs == NS_HI || rs == NS_HH)
16091 do_scalar_fp16_v82_encode ();
037e8744
JB
16092}
16093
16094static void
16095nsyn_insert_sp (void)
16096{
16097 inst.operands[1] = inst.operands[0];
16098 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 16099 inst.operands[0].reg = REG_SP;
037e8744
JB
16100 inst.operands[0].isreg = 1;
16101 inst.operands[0].writeback = 1;
16102 inst.operands[0].present = 1;
16103}
16104
16105static void
16106do_vfp_nsyn_push (void)
16107{
16108 nsyn_insert_sp ();
b126985e
NC
16109
16110 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16111 _("register list must contain at least 1 and at most 16 "
16112 "registers"));
16113
037e8744
JB
16114 if (inst.operands[1].issingle)
16115 do_vfp_nsyn_opcode ("fstmdbs");
16116 else
16117 do_vfp_nsyn_opcode ("fstmdbd");
16118}
16119
16120static void
16121do_vfp_nsyn_pop (void)
16122{
16123 nsyn_insert_sp ();
b126985e
NC
16124
16125 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16126 _("register list must contain at least 1 and at most 16 "
16127 "registers"));
16128
037e8744 16129 if (inst.operands[1].issingle)
22b5b651 16130 do_vfp_nsyn_opcode ("fldmias");
037e8744 16131 else
22b5b651 16132 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
16133}
16134
16135/* Fix up Neon data-processing instructions, ORing in the correct bits for
16136 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
16137
88714cb8
DG
16138static void
16139neon_dp_fixup (struct arm_it* insn)
037e8744 16140{
88714cb8
DG
16141 unsigned int i = insn->instruction;
16142 insn->is_neon = 1;
16143
037e8744
JB
16144 if (thumb_mode)
16145 {
16146 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
16147 if (i & (1 << 24))
477330fc 16148 i |= 1 << 28;
5f4273c7 16149
037e8744 16150 i &= ~(1 << 24);
5f4273c7 16151
037e8744
JB
16152 i |= 0xef000000;
16153 }
16154 else
16155 i |= 0xf2000000;
5f4273c7 16156
88714cb8 16157 insn->instruction = i;
037e8744
JB
16158}
16159
5ee91343 16160static void
7df54120 16161mve_encode_qqr (int size, int U, int fp)
5ee91343
AV
16162{
16163 if (inst.operands[2].reg == REG_SP)
16164 as_tsktsk (MVE_BAD_SP);
16165 else if (inst.operands[2].reg == REG_PC)
16166 as_tsktsk (MVE_BAD_PC);
16167
16168 if (fp)
16169 {
16170 /* vadd. */
16171 if (((unsigned)inst.instruction) == 0xd00)
16172 inst.instruction = 0xee300f40;
16173 /* vsub. */
16174 else if (((unsigned)inst.instruction) == 0x200d00)
16175 inst.instruction = 0xee301f40;
a8465a06
AV
16176 /* vmul. */
16177 else if (((unsigned)inst.instruction) == 0x1000d10)
16178 inst.instruction = 0xee310e60;
5ee91343
AV
16179
16180 /* Setting size which is 1 for F16 and 0 for F32. */
16181 inst.instruction |= (size == 16) << 28;
16182 }
16183 else
16184 {
16185 /* vadd. */
16186 if (((unsigned)inst.instruction) == 0x800)
16187 inst.instruction = 0xee010f40;
16188 /* vsub. */
16189 else if (((unsigned)inst.instruction) == 0x1000800)
16190 inst.instruction = 0xee011f40;
7df54120
AV
16191 /* vhadd. */
16192 else if (((unsigned)inst.instruction) == 0)
16193 inst.instruction = 0xee000f40;
16194 /* vhsub. */
16195 else if (((unsigned)inst.instruction) == 0x200)
16196 inst.instruction = 0xee001f40;
a8465a06
AV
16197 /* vmla. */
16198 else if (((unsigned)inst.instruction) == 0x900)
16199 inst.instruction = 0xee010e40;
16200 /* vmul. */
16201 else if (((unsigned)inst.instruction) == 0x910)
16202 inst.instruction = 0xee011e60;
16203 /* vqadd. */
16204 else if (((unsigned)inst.instruction) == 0x10)
16205 inst.instruction = 0xee000f60;
16206 /* vqsub. */
16207 else if (((unsigned)inst.instruction) == 0x210)
16208 inst.instruction = 0xee001f60;
42b16635
AV
16209 /* vqrdmlah. */
16210 else if (((unsigned)inst.instruction) == 0x3000b10)
16211 inst.instruction = 0xee000e40;
16212 /* vqdmulh. */
16213 else if (((unsigned)inst.instruction) == 0x0000b00)
16214 inst.instruction = 0xee010e60;
16215 /* vqrdmulh. */
16216 else if (((unsigned)inst.instruction) == 0x1000b00)
16217 inst.instruction = 0xfe010e60;
7df54120
AV
16218
16219 /* Set U-bit. */
16220 inst.instruction |= U << 28;
16221
5ee91343
AV
16222 /* Setting bits for size. */
16223 inst.instruction |= neon_logbits (size) << 20;
16224 }
16225 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16226 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16227 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16228 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16229 inst.instruction |= inst.operands[2].reg;
16230 inst.is_neon = 1;
16231}
16232
a302e574
AV
16233static void
16234mve_encode_rqq (unsigned bit28, unsigned size)
16235{
16236 inst.instruction |= bit28 << 28;
16237 inst.instruction |= neon_logbits (size) << 20;
16238 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16239 inst.instruction |= inst.operands[0].reg << 12;
16240 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16241 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16242 inst.instruction |= LOW4 (inst.operands[2].reg);
16243 inst.is_neon = 1;
16244}
16245
886e1c73
AV
16246static void
16247mve_encode_qqq (int ubit, int size)
16248{
16249
16250 inst.instruction |= (ubit != 0) << 28;
16251 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16252 inst.instruction |= neon_logbits (size) << 20;
16253 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16254 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16255 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16256 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16257 inst.instruction |= LOW4 (inst.operands[2].reg);
16258
16259 inst.is_neon = 1;
16260}
16261
26c1e780
AV
16262static void
16263mve_encode_rq (unsigned bit28, unsigned size)
16264{
16265 inst.instruction |= bit28 << 28;
16266 inst.instruction |= neon_logbits (size) << 18;
16267 inst.instruction |= inst.operands[0].reg << 12;
16268 inst.instruction |= LOW4 (inst.operands[1].reg);
16269 inst.is_neon = 1;
16270}
886e1c73 16271
93925576
AV
16272static void
16273mve_encode_rrqq (unsigned U, unsigned size)
16274{
16275 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
16276
16277 inst.instruction |= U << 28;
16278 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16279 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16280 inst.instruction |= (size == 32) << 16;
16281 inst.instruction |= inst.operands[0].reg << 12;
16282 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16283 inst.instruction |= inst.operands[3].reg;
16284 inst.is_neon = 1;
16285}
16286
037e8744
JB
16287/* Encode insns with bit pattern:
16288
16289 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16290 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 16291
037e8744
JB
16292 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16293 different meaning for some instruction. */
16294
16295static void
16296neon_three_same (int isquad, int ubit, int size)
16297{
16298 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16299 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16300 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16301 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16302 inst.instruction |= LOW4 (inst.operands[2].reg);
16303 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16304 inst.instruction |= (isquad != 0) << 6;
16305 inst.instruction |= (ubit != 0) << 24;
16306 if (size != -1)
16307 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 16308
88714cb8 16309 neon_dp_fixup (&inst);
037e8744
JB
16310}
16311
16312/* Encode instructions of the form:
16313
16314 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16315 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
16316
16317 Don't write size if SIZE == -1. */
16318
16319static void
16320neon_two_same (int qbit, int ubit, int size)
16321{
16322 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16323 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16324 inst.instruction |= LOW4 (inst.operands[1].reg);
16325 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16326 inst.instruction |= (qbit != 0) << 6;
16327 inst.instruction |= (ubit != 0) << 24;
16328
16329 if (size != -1)
16330 inst.instruction |= neon_logbits (size) << 18;
16331
88714cb8 16332 neon_dp_fixup (&inst);
5287ad62
JB
16333}
16334
7df54120
AV
16335enum vfp_or_neon_is_neon_bits
16336{
16337NEON_CHECK_CC = 1,
16338NEON_CHECK_ARCH = 2,
16339NEON_CHECK_ARCH8 = 4
16340};
16341
16342/* Call this function if an instruction which may have belonged to the VFP or
16343 Neon instruction sets, but turned out to be a Neon instruction (due to the
16344 operand types involved, etc.). We have to check and/or fix-up a couple of
16345 things:
16346
16347 - Make sure the user hasn't attempted to make a Neon instruction
16348 conditional.
16349 - Alter the value in the condition code field if necessary.
16350 - Make sure that the arch supports Neon instructions.
16351
16352 Which of these operations take place depends on bits from enum
16353 vfp_or_neon_is_neon_bits.
16354
16355 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16356 current instruction's condition is COND_ALWAYS, the condition field is
16357 changed to inst.uncond_value. This is necessary because instructions shared
16358 between VFP and Neon may be conditional for the VFP variants only, and the
16359 unconditional Neon version must have, e.g., 0xF in the condition field. */
16360
16361static int
16362vfp_or_neon_is_neon (unsigned check)
16363{
16364/* Conditions are always legal in Thumb mode (IT blocks). */
16365if (!thumb_mode && (check & NEON_CHECK_CC))
16366 {
16367 if (inst.cond != COND_ALWAYS)
16368 {
16369 first_error (_(BAD_COND));
16370 return FAIL;
16371 }
16372 if (inst.uncond_value != -1)
16373 inst.instruction |= inst.uncond_value << 28;
16374 }
16375
16376
16377 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16378 || ((check & NEON_CHECK_ARCH8)
16379 && !mark_feature_used (&fpu_neon_ext_armv8)))
16380 {
16381 first_error (_(BAD_FPU));
16382 return FAIL;
16383 }
16384
16385return SUCCESS;
16386}
16387
64c350f2
AV
16388
16389/* Return TRUE if the SIMD instruction is available for the current
16390 cpu_variant. FP is set to TRUE if this is a SIMD floating-point
16391 instruction. CHECK contains th. CHECK contains the set of bits to pass to
16392 vfp_or_neon_is_neon for the NEON specific checks. */
16393
16394static bfd_boolean
7df54120
AV
16395check_simd_pred_availability (int fp, unsigned check)
16396{
16397if (inst.cond > COND_ALWAYS)
16398 {
16399 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16400 {
16401 inst.error = BAD_FPU;
64c350f2 16402 return FALSE;
7df54120
AV
16403 }
16404 inst.pred_insn_type = INSIDE_VPT_INSN;
16405 }
16406else if (inst.cond < COND_ALWAYS)
16407 {
16408 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16409 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16410 else if (vfp_or_neon_is_neon (check) == FAIL)
64c350f2 16411 return FALSE;
7df54120
AV
16412 }
16413else
16414 {
16415 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16416 && vfp_or_neon_is_neon (check) == FAIL)
64c350f2 16417 return FALSE;
7df54120
AV
16418
16419 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16420 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16421 }
64c350f2 16422return TRUE;
7df54120
AV
16423}
16424
5287ad62
JB
16425/* Neon instruction encoders, in approximate order of appearance. */
16426
16427static void
16428do_neon_dyadic_i_su (void)
16429{
64c350f2 16430 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
7df54120
AV
16431 return;
16432
16433 enum neon_shape rs;
16434 struct neon_type_el et;
16435 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16436 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16437 else
16438 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16439
16440 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16441
16442
16443 if (rs != NS_QQR)
16444 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16445 else
16446 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
5287ad62
JB
16447}
16448
16449static void
16450do_neon_dyadic_i64_su (void)
16451{
64c350f2 16452 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
a8465a06
AV
16453 return;
16454 enum neon_shape rs;
16455 struct neon_type_el et;
16456 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16457 {
16458 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16459 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16460 }
16461 else
16462 {
16463 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16464 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16465 }
16466 if (rs == NS_QQR)
16467 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16468 else
16469 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16470}
16471
16472static void
16473neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
477330fc 16474 unsigned immbits)
5287ad62
JB
16475{
16476 unsigned size = et.size >> 3;
16477 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16478 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16479 inst.instruction |= LOW4 (inst.operands[1].reg);
16480 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16481 inst.instruction |= (isquad != 0) << 6;
16482 inst.instruction |= immbits << 16;
16483 inst.instruction |= (size >> 3) << 7;
16484 inst.instruction |= (size & 0x7) << 19;
16485 if (write_ubit)
16486 inst.instruction |= (uval != 0) << 24;
16487
88714cb8 16488 neon_dp_fixup (&inst);
5287ad62
JB
16489}
16490
16491static void
5150f0d8 16492do_neon_shl (void)
5287ad62 16493{
64c350f2 16494 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
5150f0d8
AV
16495 return;
16496
5287ad62
JB
16497 if (!inst.operands[2].isreg)
16498 {
5150f0d8
AV
16499 enum neon_shape rs;
16500 struct neon_type_el et;
16501 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16502 {
16503 rs = neon_select_shape (NS_QQI, NS_NULL);
16504 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_MVE);
16505 }
16506 else
16507 {
16508 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16509 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
16510 }
cb3b1e65
JB
16511 int imm = inst.operands[2].imm;
16512
16513 constraint (imm < 0 || (unsigned)imm >= et.size,
16514 _("immediate out of range for shift"));
88714cb8 16515 NEON_ENCODE (IMMED, inst);
cb3b1e65 16516 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
16517 }
16518 else
16519 {
5150f0d8
AV
16520 enum neon_shape rs;
16521 struct neon_type_el et;
16522 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16523 {
16524 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16525 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
16526 }
16527 else
16528 {
16529 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16530 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16531 }
16532
16533
16534 if (rs == NS_QQR)
16535 {
16536 constraint (inst.operands[0].reg != inst.operands[1].reg,
16537 _("invalid instruction shape"));
16538 if (inst.operands[2].reg == REG_SP)
16539 as_tsktsk (MVE_BAD_SP);
16540 else if (inst.operands[2].reg == REG_PC)
16541 as_tsktsk (MVE_BAD_PC);
16542
16543 inst.instruction = 0xee311e60;
16544 inst.instruction |= (et.type == NT_unsigned) << 28;
16545 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16546 inst.instruction |= neon_logbits (et.size) << 18;
16547 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16548 inst.instruction |= inst.operands[2].reg;
16549 inst.is_neon = 1;
16550 }
16551 else
16552 {
16553 unsigned int tmp;
16554
16555 /* VSHL/VQSHL 3-register variants have syntax such as:
16556 vshl.xx Dd, Dm, Dn
16557 whereas other 3-register operations encoded by neon_three_same have
16558 syntax like:
16559 vadd.xx Dd, Dn, Dm
16560 (i.e. with Dn & Dm reversed). Swap operands[1].reg and
16561 operands[2].reg here. */
16562 tmp = inst.operands[2].reg;
16563 inst.operands[2].reg = inst.operands[1].reg;
16564 inst.operands[1].reg = tmp;
16565 NEON_ENCODE (INTEGER, inst);
16566 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16567 }
5287ad62
JB
16568 }
16569}
16570
16571static void
5150f0d8 16572do_neon_qshl (void)
5287ad62 16573{
64c350f2 16574 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
5150f0d8
AV
16575 return;
16576
5287ad62
JB
16577 if (!inst.operands[2].isreg)
16578 {
5150f0d8
AV
16579 enum neon_shape rs;
16580 struct neon_type_el et;
16581 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16582 {
16583 rs = neon_select_shape (NS_QQI, NS_NULL);
16584 et = neon_check_type (2, rs, N_EQK, N_KEY | N_SU_MVE);
16585 }
16586 else
16587 {
16588 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16589 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16590 }
cb3b1e65 16591 int imm = inst.operands[2].imm;
627907b7 16592
cb3b1e65
JB
16593 constraint (imm < 0 || (unsigned)imm >= et.size,
16594 _("immediate out of range for shift"));
88714cb8 16595 NEON_ENCODE (IMMED, inst);
cb3b1e65 16596 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
5287ad62
JB
16597 }
16598 else
16599 {
5150f0d8
AV
16600 enum neon_shape rs;
16601 struct neon_type_el et;
627907b7 16602
5150f0d8
AV
16603 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16604 {
16605 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16606 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
16607 }
16608 else
16609 {
16610 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16611 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16612 }
16613
16614 if (rs == NS_QQR)
16615 {
16616 constraint (inst.operands[0].reg != inst.operands[1].reg,
16617 _("invalid instruction shape"));
16618 if (inst.operands[2].reg == REG_SP)
16619 as_tsktsk (MVE_BAD_SP);
16620 else if (inst.operands[2].reg == REG_PC)
16621 as_tsktsk (MVE_BAD_PC);
16622
16623 inst.instruction = 0xee311ee0;
16624 inst.instruction |= (et.type == NT_unsigned) << 28;
16625 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16626 inst.instruction |= neon_logbits (et.size) << 18;
16627 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16628 inst.instruction |= inst.operands[2].reg;
16629 inst.is_neon = 1;
16630 }
16631 else
16632 {
16633 unsigned int tmp;
16634
16635 /* See note in do_neon_shl. */
16636 tmp = inst.operands[2].reg;
16637 inst.operands[2].reg = inst.operands[1].reg;
16638 inst.operands[1].reg = tmp;
16639 NEON_ENCODE (INTEGER, inst);
16640 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16641 }
5287ad62
JB
16642 }
16643}
16644
627907b7
JB
16645static void
16646do_neon_rshl (void)
16647{
64c350f2 16648 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
1be7aba3
AV
16649 return;
16650
16651 enum neon_shape rs;
16652 struct neon_type_el et;
16653 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16654 {
16655 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16656 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16657 }
16658 else
16659 {
16660 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16661 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16662 }
16663
627907b7
JB
16664 unsigned int tmp;
16665
1be7aba3
AV
16666 if (rs == NS_QQR)
16667 {
16668 if (inst.operands[2].reg == REG_PC)
16669 as_tsktsk (MVE_BAD_PC);
16670 else if (inst.operands[2].reg == REG_SP)
16671 as_tsktsk (MVE_BAD_SP);
16672
16673 constraint (inst.operands[0].reg != inst.operands[1].reg,
16674 _("invalid instruction shape"));
16675
16676 if (inst.instruction == 0x0000510)
16677 /* We are dealing with vqrshl. */
16678 inst.instruction = 0xee331ee0;
16679 else
16680 /* We are dealing with vrshl. */
16681 inst.instruction = 0xee331e60;
16682
16683 inst.instruction |= (et.type == NT_unsigned) << 28;
16684 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16685 inst.instruction |= neon_logbits (et.size) << 18;
16686 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16687 inst.instruction |= inst.operands[2].reg;
16688 inst.is_neon = 1;
16689 }
16690 else
16691 {
16692 tmp = inst.operands[2].reg;
16693 inst.operands[2].reg = inst.operands[1].reg;
16694 inst.operands[1].reg = tmp;
16695 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16696 }
627907b7
JB
16697}
16698
5287ad62
JB
16699static int
16700neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16701{
036dc3f7
PB
16702 /* Handle .I8 pseudo-instructions. */
16703 if (size == 8)
5287ad62 16704 {
5287ad62 16705 /* Unfortunately, this will make everything apart from zero out-of-range.
477330fc
RM
16706 FIXME is this the intended semantics? There doesn't seem much point in
16707 accepting .I8 if so. */
5287ad62
JB
16708 immediate |= immediate << 8;
16709 size = 16;
036dc3f7
PB
16710 }
16711
16712 if (size >= 32)
16713 {
16714 if (immediate == (immediate & 0x000000ff))
16715 {
16716 *immbits = immediate;
16717 return 0x1;
16718 }
16719 else if (immediate == (immediate & 0x0000ff00))
16720 {
16721 *immbits = immediate >> 8;
16722 return 0x3;
16723 }
16724 else if (immediate == (immediate & 0x00ff0000))
16725 {
16726 *immbits = immediate >> 16;
16727 return 0x5;
16728 }
16729 else if (immediate == (immediate & 0xff000000))
16730 {
16731 *immbits = immediate >> 24;
16732 return 0x7;
16733 }
16734 if ((immediate & 0xffff) != (immediate >> 16))
16735 goto bad_immediate;
16736 immediate &= 0xffff;
5287ad62
JB
16737 }
16738
16739 if (immediate == (immediate & 0x000000ff))
16740 {
16741 *immbits = immediate;
036dc3f7 16742 return 0x9;
5287ad62
JB
16743 }
16744 else if (immediate == (immediate & 0x0000ff00))
16745 {
16746 *immbits = immediate >> 8;
036dc3f7 16747 return 0xb;
5287ad62
JB
16748 }
16749
16750 bad_immediate:
dcbf9037 16751 first_error (_("immediate value out of range"));
5287ad62
JB
16752 return FAIL;
16753}
16754
5287ad62
JB
16755static void
16756do_neon_logic (void)
16757{
16758 if (inst.operands[2].present && inst.operands[2].isreg)
16759 {
037e8744 16760 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
f601a00c 16761 if (rs == NS_QQQ
64c350f2
AV
16762 && !check_simd_pred_availability (FALSE,
16763 NEON_CHECK_ARCH | NEON_CHECK_CC))
f601a00c
AV
16764 return;
16765 else if (rs != NS_QQQ
16766 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16767 first_error (BAD_FPU);
16768
5287ad62
JB
16769 neon_check_type (3, rs, N_IGNORE_TYPE);
16770 /* U bit and size field were set as part of the bitmask. */
88714cb8 16771 NEON_ENCODE (INTEGER, inst);
037e8744 16772 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16773 }
16774 else
16775 {
4316f0d2
DG
16776 const int three_ops_form = (inst.operands[2].present
16777 && !inst.operands[2].isreg);
16778 const int immoperand = (three_ops_form ? 2 : 1);
16779 enum neon_shape rs = (three_ops_form
16780 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16781 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
f601a00c
AV
16782 /* Because neon_select_shape makes the second operand a copy of the first
16783 if the second operand is not present. */
16784 if (rs == NS_QQI
64c350f2
AV
16785 && !check_simd_pred_availability (FALSE,
16786 NEON_CHECK_ARCH | NEON_CHECK_CC))
f601a00c
AV
16787 return;
16788 else if (rs != NS_QQI
16789 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16790 first_error (BAD_FPU);
16791
16792 struct neon_type_el et;
16793 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16794 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16795 else
16796 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16797 | N_KEY, N_EQK);
16798
16799 if (et.type == NT_invtype)
16800 return;
21d799b5 16801 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
16802 unsigned immbits;
16803 int cmode;
5f4273c7 16804
5f4273c7 16805
4316f0d2
DG
16806 if (three_ops_form)
16807 constraint (inst.operands[0].reg != inst.operands[1].reg,
16808 _("first and second operands shall be the same register"));
16809
88714cb8 16810 NEON_ENCODE (IMMED, inst);
5287ad62 16811
4316f0d2 16812 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
16813 if (et.size == 64)
16814 {
16815 /* .i64 is a pseudo-op, so the immediate must be a repeating
16816 pattern. */
4316f0d2
DG
16817 if (immbits != (inst.operands[immoperand].regisimm ?
16818 inst.operands[immoperand].reg : 0))
036dc3f7
PB
16819 {
16820 /* Set immbits to an invalid constant. */
16821 immbits = 0xdeadbeef;
16822 }
16823 }
16824
5287ad62 16825 switch (opcode)
477330fc
RM
16826 {
16827 case N_MNEM_vbic:
16828 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16829 break;
16830
16831 case N_MNEM_vorr:
16832 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16833 break;
16834
16835 case N_MNEM_vand:
16836 /* Pseudo-instruction for VBIC. */
16837 neon_invert_size (&immbits, 0, et.size);
16838 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16839 break;
16840
16841 case N_MNEM_vorn:
16842 /* Pseudo-instruction for VORR. */
16843 neon_invert_size (&immbits, 0, et.size);
16844 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16845 break;
16846
16847 default:
16848 abort ();
16849 }
5287ad62
JB
16850
16851 if (cmode == FAIL)
477330fc 16852 return;
5287ad62 16853
037e8744 16854 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16855 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16856 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16857 inst.instruction |= cmode << 8;
16858 neon_write_immbits (immbits);
5f4273c7 16859
88714cb8 16860 neon_dp_fixup (&inst);
5287ad62
JB
16861 }
16862}
16863
16864static void
16865do_neon_bitfield (void)
16866{
037e8744 16867 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 16868 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 16869 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16870}
16871
16872static void
dcbf9037 16873neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
477330fc 16874 unsigned destbits)
5287ad62 16875{
5ee91343 16876 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
dcbf9037 16877 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
477330fc 16878 types | N_KEY);
5287ad62
JB
16879 if (et.type == NT_float)
16880 {
88714cb8 16881 NEON_ENCODE (FLOAT, inst);
5ee91343 16882 if (rs == NS_QQR)
7df54120 16883 mve_encode_qqr (et.size, 0, 1);
5ee91343
AV
16884 else
16885 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
16886 }
16887 else
16888 {
88714cb8 16889 NEON_ENCODE (INTEGER, inst);
5ee91343 16890 if (rs == NS_QQR)
a8465a06 16891 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
5ee91343
AV
16892 else
16893 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
16894 }
16895}
16896
5287ad62
JB
16897
16898static void
16899do_neon_dyadic_if_su_d (void)
16900{
16901 /* This version only allow D registers, but that constraint is enforced during
16902 operand parsing so we don't need to do anything extra here. */
dcbf9037 16903 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
16904}
16905
5287ad62
JB
16906static void
16907do_neon_dyadic_if_i_d (void)
16908{
428e3f1f
PB
16909 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16910 affected if we specify unsigned args. */
16911 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
16912}
16913
f5f10c66
AV
16914static void
16915do_mve_vstr_vldr_QI (int size, int elsize, int load)
16916{
16917 constraint (size < 32, BAD_ADDR_MODE);
16918 constraint (size != elsize, BAD_EL_TYPE);
16919 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16920 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16921 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16922 _("destination register and offset register may not be the"
16923 " same"));
16924
16925 int imm = inst.relocs[0].exp.X_add_number;
16926 int add = 1;
16927 if (imm < 0)
16928 {
16929 add = 0;
16930 imm = -imm;
16931 }
16932 constraint ((imm % (size / 8) != 0)
16933 || imm > (0x7f << neon_logbits (size)),
16934 (size == 32) ? _("immediate must be a multiple of 4 in the"
16935 " range of +/-[0,508]")
16936 : _("immediate must be a multiple of 8 in the"
16937 " range of +/-[0,1016]"));
16938 inst.instruction |= 0x11 << 24;
16939 inst.instruction |= add << 23;
16940 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16941 inst.instruction |= inst.operands[1].writeback << 21;
16942 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16943 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16944 inst.instruction |= 1 << 12;
16945 inst.instruction |= (size == 64) << 8;
16946 inst.instruction &= 0xffffff00;
16947 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16948 inst.instruction |= imm >> neon_logbits (size);
16949}
16950
16951static void
16952do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16953{
16954 unsigned os = inst.operands[1].imm >> 5;
16955 constraint (os != 0 && size == 8,
16956 _("can not shift offsets when accessing less than half-word"));
16957 constraint (os && os != neon_logbits (size),
16958 _("shift immediate must be 1, 2 or 3 for half-word, word"
16959 " or double-word accesses respectively"));
16960 if (inst.operands[1].reg == REG_PC)
16961 as_tsktsk (MVE_BAD_PC);
16962
16963 switch (size)
16964 {
16965 case 8:
16966 constraint (elsize >= 64, BAD_EL_TYPE);
16967 break;
16968 case 16:
16969 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16970 break;
16971 case 32:
16972 case 64:
16973 constraint (elsize != size, BAD_EL_TYPE);
16974 break;
16975 default:
16976 break;
16977 }
16978 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16979 BAD_ADDR_MODE);
16980 if (load)
16981 {
16982 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16983 _("destination register and offset register may not be"
16984 " the same"));
16985 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16986 BAD_EL_TYPE);
16987 constraint (inst.vectype.el[0].type != NT_unsigned
16988 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16989 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16990 }
16991 else
16992 {
16993 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16994 }
16995
16996 inst.instruction |= 1 << 23;
16997 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16998 inst.instruction |= inst.operands[1].reg << 16;
16999 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17000 inst.instruction |= neon_logbits (elsize) << 7;
17001 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
17002 inst.instruction |= LOW4 (inst.operands[1].imm);
17003 inst.instruction |= !!os;
17004}
17005
17006static void
17007do_mve_vstr_vldr_RI (int size, int elsize, int load)
17008{
17009 enum neon_el_type type = inst.vectype.el[0].type;
17010
17011 constraint (size >= 64, BAD_ADDR_MODE);
17012 switch (size)
17013 {
17014 case 16:
17015 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
17016 break;
17017 case 32:
17018 constraint (elsize != size, BAD_EL_TYPE);
17019 break;
17020 default:
17021 break;
17022 }
17023 if (load)
17024 {
17025 constraint (elsize != size && type != NT_unsigned
17026 && type != NT_signed, BAD_EL_TYPE);
17027 }
17028 else
17029 {
17030 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
17031 }
17032
17033 int imm = inst.relocs[0].exp.X_add_number;
17034 int add = 1;
17035 if (imm < 0)
17036 {
17037 add = 0;
17038 imm = -imm;
17039 }
17040
17041 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
17042 {
17043 switch (size)
17044 {
17045 case 8:
17046 constraint (1, _("immediate must be in the range of +/-[0,127]"));
17047 break;
17048 case 16:
17049 constraint (1, _("immediate must be a multiple of 2 in the"
17050 " range of +/-[0,254]"));
17051 break;
17052 case 32:
17053 constraint (1, _("immediate must be a multiple of 4 in the"
17054 " range of +/-[0,508]"));
17055 break;
17056 }
17057 }
17058
17059 if (size != elsize)
17060 {
17061 constraint (inst.operands[1].reg > 7, BAD_HIREG);
17062 constraint (inst.operands[0].reg > 14,
17063 _("MVE vector register in the range [Q0..Q7] expected"));
17064 inst.instruction |= (load && type == NT_unsigned) << 28;
17065 inst.instruction |= (size == 16) << 19;
17066 inst.instruction |= neon_logbits (elsize) << 7;
17067 }
17068 else
17069 {
17070 if (inst.operands[1].reg == REG_PC)
17071 as_tsktsk (MVE_BAD_PC);
17072 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
17073 as_tsktsk (MVE_BAD_SP);
17074 inst.instruction |= 1 << 12;
17075 inst.instruction |= neon_logbits (size) << 7;
17076 }
17077 inst.instruction |= inst.operands[1].preind << 24;
17078 inst.instruction |= add << 23;
17079 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17080 inst.instruction |= inst.operands[1].writeback << 21;
17081 inst.instruction |= inst.operands[1].reg << 16;
17082 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17083 inst.instruction &= 0xffffff80;
17084 inst.instruction |= imm >> neon_logbits (size);
17085
17086}
17087
17088static void
17089do_mve_vstr_vldr (void)
17090{
17091 unsigned size;
17092 int load = 0;
17093
17094 if (inst.cond > COND_ALWAYS)
17095 inst.pred_insn_type = INSIDE_VPT_INSN;
17096 else
17097 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17098
17099 switch (inst.instruction)
17100 {
17101 default:
17102 gas_assert (0);
17103 break;
17104 case M_MNEM_vldrb:
17105 load = 1;
17106 /* fall through. */
17107 case M_MNEM_vstrb:
17108 size = 8;
17109 break;
17110 case M_MNEM_vldrh:
17111 load = 1;
17112 /* fall through. */
17113 case M_MNEM_vstrh:
17114 size = 16;
17115 break;
17116 case M_MNEM_vldrw:
17117 load = 1;
17118 /* fall through. */
17119 case M_MNEM_vstrw:
17120 size = 32;
17121 break;
17122 case M_MNEM_vldrd:
17123 load = 1;
17124 /* fall through. */
17125 case M_MNEM_vstrd:
17126 size = 64;
17127 break;
17128 }
17129 unsigned elsize = inst.vectype.el[0].size;
17130
17131 if (inst.operands[1].isquad)
17132 {
17133 /* We are dealing with [Q, imm]{!} cases. */
17134 do_mve_vstr_vldr_QI (size, elsize, load);
17135 }
17136 else
17137 {
17138 if (inst.operands[1].immisreg == 2)
17139 {
17140 /* We are dealing with [R, Q, {UXTW #os}] cases. */
17141 do_mve_vstr_vldr_RQ (size, elsize, load);
17142 }
17143 else if (!inst.operands[1].immisreg)
17144 {
17145 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
17146 do_mve_vstr_vldr_RI (size, elsize, load);
17147 }
17148 else
17149 constraint (1, BAD_ADDR_MODE);
17150 }
17151
17152 inst.is_neon = 1;
17153}
17154
35c228db
AV
17155static void
17156do_mve_vst_vld (void)
17157{
17158 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17159 return;
17160
17161 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
17162 || inst.relocs[0].exp.X_add_number != 0
17163 || inst.operands[1].immisreg != 0,
17164 BAD_ADDR_MODE);
17165 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
17166 if (inst.operands[1].reg == REG_PC)
17167 as_tsktsk (MVE_BAD_PC);
17168 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
17169 as_tsktsk (MVE_BAD_SP);
17170
17171
17172 /* These instructions are one of the "exceptions" mentioned in
17173 handle_pred_state. They are MVE instructions that are not VPT compatible
17174 and do not accept a VPT code, thus appending such a code is a syntax
17175 error. */
17176 if (inst.cond > COND_ALWAYS)
17177 first_error (BAD_SYNTAX);
17178 /* If we append a scalar condition code we can set this to
17179 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
17180 else if (inst.cond < COND_ALWAYS)
17181 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17182 else
17183 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
17184
17185 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17186 inst.instruction |= inst.operands[1].writeback << 21;
17187 inst.instruction |= inst.operands[1].reg << 16;
17188 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17189 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
17190 inst.is_neon = 1;
17191}
17192
26c1e780
AV
17193static void
17194do_mve_vaddlv (void)
17195{
17196 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
17197 struct neon_type_el et
17198 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
17199
17200 if (et.type == NT_invtype)
17201 first_error (BAD_EL_TYPE);
17202
17203 if (inst.cond > COND_ALWAYS)
17204 inst.pred_insn_type = INSIDE_VPT_INSN;
17205 else
17206 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17207
17208 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17209
17210 inst.instruction |= (et.type == NT_unsigned) << 28;
17211 inst.instruction |= inst.operands[1].reg << 19;
17212 inst.instruction |= inst.operands[0].reg << 12;
17213 inst.instruction |= inst.operands[2].reg;
17214 inst.is_neon = 1;
17215}
17216
5287ad62 17217static void
5ee91343 17218do_neon_dyadic_if_su (void)
5287ad62 17219{
5ee91343
AV
17220 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17221 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17222 N_SUF_32 | N_KEY);
17223
935295b5
AV
17224 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
17225 || inst.instruction == ((unsigned) N_MNEM_vmin))
17226 && et.type == NT_float
17227 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
17228
64c350f2
AV
17229 if (!check_simd_pred_availability (et.type == NT_float,
17230 NEON_CHECK_ARCH | NEON_CHECK_CC))
037e8744
JB
17231 return;
17232
5ee91343
AV
17233 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
17234}
17235
17236static void
17237do_neon_addsub_if_i (void)
17238{
17239 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
17240 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
037e8744
JB
17241 return;
17242
5ee91343
AV
17243 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17244 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
17245 N_EQK, N_IF_32 | N_I64 | N_KEY);
17246
17247 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
17248 /* If we are parsing Q registers and the element types match MVE, which NEON
17249 also supports, then we must check whether this is an instruction that can
17250 be used by both MVE/NEON. This distinction can be made based on whether
17251 they are predicated or not. */
17252 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
17253 {
64c350f2
AV
17254 if (!check_simd_pred_availability (et.type == NT_float,
17255 NEON_CHECK_ARCH | NEON_CHECK_CC))
5ee91343
AV
17256 return;
17257 }
17258 else
17259 {
17260 /* If they are either in a D register or are using an unsupported. */
17261 if (rs != NS_QQR
17262 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17263 return;
17264 }
17265
5287ad62
JB
17266 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17267 affected if we specify unsigned args. */
dcbf9037 17268 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
17269}
17270
17271/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
17272 result to be:
17273 V<op> A,B (A is operand 0, B is operand 2)
17274 to mean:
17275 V<op> A,B,A
17276 not:
17277 V<op> A,B,B
17278 so handle that case specially. */
17279
17280static void
17281neon_exchange_operands (void)
17282{
5287ad62
JB
17283 if (inst.operands[1].present)
17284 {
e1fa0163
NC
17285 void *scratch = xmalloc (sizeof (inst.operands[0]));
17286
5287ad62
JB
17287 /* Swap operands[1] and operands[2]. */
17288 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
17289 inst.operands[1] = inst.operands[2];
17290 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
e1fa0163 17291 free (scratch);
5287ad62
JB
17292 }
17293 else
17294 {
17295 inst.operands[1] = inst.operands[2];
17296 inst.operands[2] = inst.operands[0];
17297 }
17298}
17299
17300static void
17301neon_compare (unsigned regtypes, unsigned immtypes, int invert)
17302{
17303 if (inst.operands[2].isreg)
17304 {
17305 if (invert)
477330fc 17306 neon_exchange_operands ();
dcbf9037 17307 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
17308 }
17309 else
17310 {
037e8744 17311 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037 17312 struct neon_type_el et = neon_check_type (2, rs,
477330fc 17313 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 17314
88714cb8 17315 NEON_ENCODE (IMMED, inst);
5287ad62
JB
17316 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17317 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17318 inst.instruction |= LOW4 (inst.operands[1].reg);
17319 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 17320 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
17321 inst.instruction |= (et.type == NT_float) << 10;
17322 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17323
88714cb8 17324 neon_dp_fixup (&inst);
5287ad62
JB
17325 }
17326}
17327
17328static void
17329do_neon_cmp (void)
17330{
cc933301 17331 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
5287ad62
JB
17332}
17333
17334static void
17335do_neon_cmp_inv (void)
17336{
cc933301 17337 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
5287ad62
JB
17338}
17339
17340static void
17341do_neon_ceq (void)
17342{
17343 neon_compare (N_IF_32, N_IF_32, FALSE);
17344}
17345
17346/* For multiply instructions, we have the possibility of 16-bit or 32-bit
17347 scalars, which are encoded in 5 bits, M : Rm.
17348 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17349 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
c604a79a
JW
17350 index in M.
17351
17352 Dot Product instructions are similar to multiply instructions except elsize
17353 should always be 32.
17354
17355 This function translates SCALAR, which is GAS's internal encoding of indexed
17356 scalar register, to raw encoding. There is also register and index range
17357 check based on ELSIZE. */
5287ad62
JB
17358
17359static unsigned
17360neon_scalar_for_mul (unsigned scalar, unsigned elsize)
17361{
dcbf9037
JB
17362 unsigned regno = NEON_SCALAR_REG (scalar);
17363 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
17364
17365 switch (elsize)
17366 {
17367 case 16:
17368 if (regno > 7 || elno > 3)
477330fc 17369 goto bad_scalar;
5287ad62 17370 return regno | (elno << 3);
5f4273c7 17371
5287ad62
JB
17372 case 32:
17373 if (regno > 15 || elno > 1)
477330fc 17374 goto bad_scalar;
5287ad62
JB
17375 return regno | (elno << 4);
17376
17377 default:
17378 bad_scalar:
dcbf9037 17379 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
17380 }
17381
17382 return 0;
17383}
17384
17385/* Encode multiply / multiply-accumulate scalar instructions. */
17386
17387static void
17388neon_mul_mac (struct neon_type_el et, int ubit)
17389{
dcbf9037
JB
17390 unsigned scalar;
17391
17392 /* Give a more helpful error message if we have an invalid type. */
17393 if (et.type == NT_invtype)
17394 return;
5f4273c7 17395
dcbf9037 17396 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
17397 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17398 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17399 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17400 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17401 inst.instruction |= LOW4 (scalar);
17402 inst.instruction |= HI1 (scalar) << 5;
17403 inst.instruction |= (et.type == NT_float) << 8;
17404 inst.instruction |= neon_logbits (et.size) << 20;
17405 inst.instruction |= (ubit != 0) << 24;
17406
88714cb8 17407 neon_dp_fixup (&inst);
5287ad62
JB
17408}
17409
17410static void
17411do_neon_mac_maybe_scalar (void)
17412{
037e8744
JB
17413 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17414 return;
17415
64c350f2 17416 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
037e8744
JB
17417 return;
17418
5287ad62
JB
17419 if (inst.operands[2].isscalar)
17420 {
a8465a06 17421 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
037e8744 17422 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 17423 struct neon_type_el et = neon_check_type (3, rs,
589a7d88 17424 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
88714cb8 17425 NEON_ENCODE (SCALAR, inst);
037e8744 17426 neon_mul_mac (et, neon_quad (rs));
5287ad62 17427 }
a8465a06
AV
17428 else if (!inst.operands[2].isvec)
17429 {
17430 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17431
17432 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17433 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17434
17435 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17436 }
5287ad62 17437 else
428e3f1f 17438 {
a8465a06 17439 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
428e3f1f
PB
17440 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17441 affected if we specify unsigned args. */
17442 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17443 }
5287ad62
JB
17444}
17445
62f3b8c8
PB
17446static void
17447do_neon_fmac (void)
17448{
d58196e0
AV
17449 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17450 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
62f3b8c8
PB
17451 return;
17452
64c350f2 17453 if (!check_simd_pred_availability (TRUE, NEON_CHECK_CC | NEON_CHECK_ARCH))
62f3b8c8
PB
17454 return;
17455
d58196e0
AV
17456 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17457 {
17458 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17459 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17460 N_EQK);
17461
17462 if (rs == NS_QQR)
17463 {
17464 if (inst.operands[2].reg == REG_SP)
17465 as_tsktsk (MVE_BAD_SP);
17466 else if (inst.operands[2].reg == REG_PC)
17467 as_tsktsk (MVE_BAD_PC);
17468
17469 inst.instruction = 0xee310e40;
17470 inst.instruction |= (et.size == 16) << 28;
17471 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17472 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17473 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17474 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17475 inst.instruction |= inst.operands[2].reg;
17476 inst.is_neon = 1;
17477 return;
17478 }
17479 }
17480 else
17481 {
17482 constraint (!inst.operands[2].isvec, BAD_FPU);
17483 }
17484
62f3b8c8
PB
17485 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17486}
17487
5287ad62
JB
17488static void
17489do_neon_tst (void)
17490{
037e8744 17491 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
17492 struct neon_type_el et = neon_check_type (3, rs,
17493 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 17494 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
17495}
17496
17497/* VMUL with 3 registers allows the P8 type. The scalar version supports the
17498 same types as the MAC equivalents. The polynomial type for this instruction
17499 is encoded the same as the integer type. */
17500
17501static void
17502do_neon_mul (void)
17503{
037e8744
JB
17504 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17505 return;
17506
64c350f2 17507 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
037e8744
JB
17508 return;
17509
5287ad62 17510 if (inst.operands[2].isscalar)
a8465a06
AV
17511 {
17512 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17513 do_neon_mac_maybe_scalar ();
17514 }
5287ad62 17515 else
a8465a06
AV
17516 {
17517 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17518 {
17519 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17520 struct neon_type_el et
17521 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
17522 if (et.type == NT_float)
17523 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
17524 BAD_FPU);
17525
17526 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
17527 }
17528 else
17529 {
17530 constraint (!inst.operands[2].isvec, BAD_FPU);
17531 neon_dyadic_misc (NT_poly,
17532 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
17533 }
17534 }
5287ad62
JB
17535}
17536
17537static void
17538do_neon_qdmulh (void)
17539{
64c350f2 17540 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
42b16635
AV
17541 return;
17542
5287ad62
JB
17543 if (inst.operands[2].isscalar)
17544 {
42b16635 17545 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
037e8744 17546 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 17547 struct neon_type_el et = neon_check_type (3, rs,
477330fc 17548 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 17549 NEON_ENCODE (SCALAR, inst);
037e8744 17550 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
17551 }
17552 else
17553 {
42b16635
AV
17554 enum neon_shape rs;
17555 struct neon_type_el et;
17556 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17557 {
17558 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17559 et = neon_check_type (3, rs,
17560 N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17561 }
17562 else
17563 {
17564 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17565 et = neon_check_type (3, rs,
17566 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17567 }
17568
88714cb8 17569 NEON_ENCODE (INTEGER, inst);
42b16635
AV
17570 if (rs == NS_QQR)
17571 mve_encode_qqr (et.size, 0, 0);
17572 else
17573 /* The U bit (rounding) comes from bit mask. */
17574 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
17575 }
17576}
17577
26c1e780
AV
17578static void
17579do_mve_vaddv (void)
17580{
17581 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17582 struct neon_type_el et
17583 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17584
17585 if (et.type == NT_invtype)
17586 first_error (BAD_EL_TYPE);
17587
17588 if (inst.cond > COND_ALWAYS)
17589 inst.pred_insn_type = INSIDE_VPT_INSN;
17590 else
17591 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17592
17593 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17594
17595 mve_encode_rq (et.type == NT_unsigned, et.size);
17596}
17597
7df54120
AV
17598static void
17599do_mve_vhcadd (void)
17600{
17601 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
17602 struct neon_type_el et
17603 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17604
17605 if (inst.cond > COND_ALWAYS)
17606 inst.pred_insn_type = INSIDE_VPT_INSN;
17607 else
17608 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17609
17610 unsigned rot = inst.relocs[0].exp.X_add_number;
17611 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17612
17613 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
17614 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17615 "operand makes instruction UNPREDICTABLE"));
17616
17617 mve_encode_qqq (0, et.size);
17618 inst.instruction |= (rot == 270) << 12;
17619 inst.is_neon = 1;
17620}
17621
35d1cfc2
AV
17622static void
17623do_mve_vqdmull (void)
17624{
17625 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17626 struct neon_type_el et
17627 = neon_check_type (3, rs, N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17628
17629 if (et.size == 32
17630 && (inst.operands[0].reg == inst.operands[1].reg
17631 || (rs == NS_QQQ && inst.operands[0].reg == inst.operands[2].reg)))
17632 as_tsktsk (BAD_MVE_SRCDEST);
17633
17634 if (inst.cond > COND_ALWAYS)
17635 inst.pred_insn_type = INSIDE_VPT_INSN;
17636 else
17637 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17638
17639 if (rs == NS_QQQ)
17640 {
17641 mve_encode_qqq (et.size == 32, 64);
17642 inst.instruction |= 1;
17643 }
17644 else
17645 {
17646 mve_encode_qqr (64, et.size == 32, 0);
17647 inst.instruction |= 0x3 << 5;
17648 }
17649}
17650
c2dafc2a
AV
17651static void
17652do_mve_vadc (void)
17653{
17654 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17655 struct neon_type_el et
17656 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17657
17658 if (et.type == NT_invtype)
17659 first_error (BAD_EL_TYPE);
17660
17661 if (inst.cond > COND_ALWAYS)
17662 inst.pred_insn_type = INSIDE_VPT_INSN;
17663 else
17664 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17665
17666 mve_encode_qqq (0, 64);
17667}
17668
17669static void
17670do_mve_vbrsr (void)
17671{
17672 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17673 struct neon_type_el et
17674 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17675
17676 if (inst.cond > COND_ALWAYS)
17677 inst.pred_insn_type = INSIDE_VPT_INSN;
17678 else
17679 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17680
7df54120 17681 mve_encode_qqr (et.size, 0, 0);
c2dafc2a
AV
17682}
17683
17684static void
17685do_mve_vsbc (void)
17686{
17687 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17688
17689 if (inst.cond > COND_ALWAYS)
17690 inst.pred_insn_type = INSIDE_VPT_INSN;
17691 else
17692 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17693
17694 mve_encode_qqq (1, 64);
17695}
17696
2d78f95b
AV
17697static void
17698do_mve_vmulh (void)
17699{
17700 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17701 struct neon_type_el et
17702 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17703
17704 if (inst.cond > COND_ALWAYS)
17705 inst.pred_insn_type = INSIDE_VPT_INSN;
17706 else
17707 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17708
17709 mve_encode_qqq (et.type == NT_unsigned, et.size);
17710}
17711
42b16635
AV
17712static void
17713do_mve_vqdmlah (void)
17714{
17715 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17716 struct neon_type_el et
17717 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17718
17719 if (inst.cond > COND_ALWAYS)
17720 inst.pred_insn_type = INSIDE_VPT_INSN;
17721 else
17722 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17723
17724 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
17725}
8b8b22a4
AV
17726
17727static void
17728do_mve_vqdmladh (void)
17729{
17730 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17731 struct neon_type_el et
17732 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17733
17734 if (inst.cond > COND_ALWAYS)
17735 inst.pred_insn_type = INSIDE_VPT_INSN;
17736 else
17737 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17738
17739 if (et.size == 32
17740 && (inst.operands[0].reg == inst.operands[1].reg
17741 || inst.operands[0].reg == inst.operands[2].reg))
17742 as_tsktsk (BAD_MVE_SRCDEST);
17743
17744 mve_encode_qqq (0, et.size);
17745}
17746
17747
886e1c73
AV
17748static void
17749do_mve_vmull (void)
17750{
17751
17752 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
17753 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
17754 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17755 && inst.cond == COND_ALWAYS
17756 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
17757 {
17758 if (rs == NS_QQQ)
17759 {
17760
17761 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17762 N_SUF_32 | N_F64 | N_P8
17763 | N_P16 | N_I_MVE | N_KEY);
17764 if (((et.type == NT_poly) && et.size == 8
17765 && ARM_CPU_IS_ANY (cpu_variant))
17766 || (et.type == NT_integer) || (et.type == NT_float))
17767 goto neon_vmul;
17768 }
17769 else
17770 goto neon_vmul;
17771 }
17772
17773 constraint (rs != NS_QQQ, BAD_FPU);
17774 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17775 N_SU_32 | N_P8 | N_P16 | N_KEY);
17776
17777 /* We are dealing with MVE's vmullt. */
17778 if (et.size == 32
17779 && (inst.operands[0].reg == inst.operands[1].reg
17780 || inst.operands[0].reg == inst.operands[2].reg))
17781 as_tsktsk (BAD_MVE_SRCDEST);
17782
17783 if (inst.cond > COND_ALWAYS)
17784 inst.pred_insn_type = INSIDE_VPT_INSN;
17785 else
17786 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17787
17788 if (et.type == NT_poly)
17789 mve_encode_qqq (neon_logbits (et.size), 64);
17790 else
17791 mve_encode_qqq (et.type == NT_unsigned, et.size);
17792
17793 return;
17794
17795neon_vmul:
17796 inst.instruction = N_MNEM_vmul;
17797 inst.cond = 0xb;
17798 if (thumb_mode)
17799 inst.pred_insn_type = INSIDE_IT_INSN;
17800 do_neon_mul ();
17801}
17802
a302e574
AV
17803static void
17804do_mve_vabav (void)
17805{
17806 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17807
17808 if (rs == NS_NULL)
17809 return;
17810
17811 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17812 return;
17813
17814 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17815 | N_S16 | N_S32 | N_U8 | N_U16
17816 | N_U32);
17817
17818 if (inst.cond > COND_ALWAYS)
17819 inst.pred_insn_type = INSIDE_VPT_INSN;
17820 else
17821 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17822
17823 mve_encode_rqq (et.type == NT_unsigned, et.size);
17824}
17825
17826static void
17827do_mve_vmladav (void)
17828{
17829 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17830 struct neon_type_el et = neon_check_type (3, rs,
17831 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17832
17833 if (et.type == NT_unsigned
17834 && (inst.instruction == M_MNEM_vmladavx
17835 || inst.instruction == M_MNEM_vmladavax
17836 || inst.instruction == M_MNEM_vmlsdav
17837 || inst.instruction == M_MNEM_vmlsdava
17838 || inst.instruction == M_MNEM_vmlsdavx
17839 || inst.instruction == M_MNEM_vmlsdavax))
17840 first_error (BAD_SIMD_TYPE);
17841
17842 constraint (inst.operands[2].reg > 14,
17843 _("MVE vector register in the range [Q0..Q7] expected"));
17844
17845 if (inst.cond > COND_ALWAYS)
17846 inst.pred_insn_type = INSIDE_VPT_INSN;
17847 else
17848 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17849
17850 if (inst.instruction == M_MNEM_vmlsdav
17851 || inst.instruction == M_MNEM_vmlsdava
17852 || inst.instruction == M_MNEM_vmlsdavx
17853 || inst.instruction == M_MNEM_vmlsdavax)
17854 inst.instruction |= (et.size == 8) << 28;
17855 else
17856 inst.instruction |= (et.size == 8) << 8;
17857
17858 mve_encode_rqq (et.type == NT_unsigned, 64);
17859 inst.instruction |= (et.size == 32) << 16;
17860}
17861
93925576
AV
17862static void
17863do_mve_vmlaldav (void)
17864{
17865 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
17866 struct neon_type_el et
17867 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
17868 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
17869
17870 if (et.type == NT_unsigned
17871 && (inst.instruction == M_MNEM_vmlsldav
17872 || inst.instruction == M_MNEM_vmlsldava
17873 || inst.instruction == M_MNEM_vmlsldavx
17874 || inst.instruction == M_MNEM_vmlsldavax))
17875 first_error (BAD_SIMD_TYPE);
17876
17877 if (inst.cond > COND_ALWAYS)
17878 inst.pred_insn_type = INSIDE_VPT_INSN;
17879 else
17880 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17881
17882 mve_encode_rrqq (et.type == NT_unsigned, et.size);
17883}
17884
17885static void
17886do_mve_vrmlaldavh (void)
17887{
17888 struct neon_type_el et;
17889 if (inst.instruction == M_MNEM_vrmlsldavh
17890 || inst.instruction == M_MNEM_vrmlsldavha
17891 || inst.instruction == M_MNEM_vrmlsldavhx
17892 || inst.instruction == M_MNEM_vrmlsldavhax)
17893 {
17894 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17895 if (inst.operands[1].reg == REG_SP)
17896 as_tsktsk (MVE_BAD_SP);
17897 }
17898 else
17899 {
17900 if (inst.instruction == M_MNEM_vrmlaldavhx
17901 || inst.instruction == M_MNEM_vrmlaldavhax)
17902 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17903 else
17904 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
17905 N_U32 | N_S32 | N_KEY);
17906 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
17907 with vmax/min instructions, making the use of SP in assembly really
17908 nonsensical, so instead of issuing a warning like we do for other uses
17909 of SP for the odd register operand we error out. */
17910 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
17911 }
17912
17913 /* Make sure we still check the second operand is an odd one and that PC is
17914 disallowed. This because we are parsing for any GPR operand, to be able
17915 to distinguish between giving a warning or an error for SP as described
17916 above. */
17917 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
17918 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17919
17920 if (inst.cond > COND_ALWAYS)
17921 inst.pred_insn_type = INSIDE_VPT_INSN;
17922 else
17923 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17924
17925 mve_encode_rrqq (et.type == NT_unsigned, 0);
17926}
17927
17928
8cd78170
AV
17929static void
17930do_mve_vmaxnmv (void)
17931{
17932 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17933 struct neon_type_el et
17934 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
17935
17936 if (inst.cond > COND_ALWAYS)
17937 inst.pred_insn_type = INSIDE_VPT_INSN;
17938 else
17939 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17940
17941 if (inst.operands[0].reg == REG_SP)
17942 as_tsktsk (MVE_BAD_SP);
17943 else if (inst.operands[0].reg == REG_PC)
17944 as_tsktsk (MVE_BAD_PC);
17945
17946 mve_encode_rq (et.size == 16, 64);
17947}
17948
13ccd4c0
AV
17949static void
17950do_mve_vmaxv (void)
17951{
17952 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17953 struct neon_type_el et;
17954
17955 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
17956 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
17957 else
17958 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17959
17960 if (inst.cond > COND_ALWAYS)
17961 inst.pred_insn_type = INSIDE_VPT_INSN;
17962 else
17963 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17964
17965 if (inst.operands[0].reg == REG_SP)
17966 as_tsktsk (MVE_BAD_SP);
17967 else if (inst.operands[0].reg == REG_PC)
17968 as_tsktsk (MVE_BAD_PC);
17969
17970 mve_encode_rq (et.type == NT_unsigned, et.size);
17971}
17972
17973
643afb90
MW
17974static void
17975do_neon_qrdmlah (void)
17976{
64c350f2 17977 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
42b16635
AV
17978 return;
17979 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
643afb90 17980 {
42b16635
AV
17981 /* Check we're on the correct architecture. */
17982 if (!mark_feature_used (&fpu_neon_ext_armv8))
17983 inst.error
17984 = _("instruction form not available on this architecture.");
17985 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17986 {
17987 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17988 record_feature_use (&fpu_neon_ext_v8_1);
17989 }
17990 if (inst.operands[2].isscalar)
17991 {
17992 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17993 struct neon_type_el et = neon_check_type (3, rs,
17994 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17995 NEON_ENCODE (SCALAR, inst);
17996 neon_mul_mac (et, neon_quad (rs));
17997 }
17998 else
17999 {
18000 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18001 struct neon_type_el et = neon_check_type (3, rs,
18002 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18003 NEON_ENCODE (INTEGER, inst);
18004 /* The U bit (rounding) comes from bit mask. */
18005 neon_three_same (neon_quad (rs), 0, et.size);
18006 }
643afb90
MW
18007 }
18008 else
18009 {
42b16635
AV
18010 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
18011 struct neon_type_el et
18012 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
18013
643afb90 18014 NEON_ENCODE (INTEGER, inst);
42b16635 18015 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
643afb90
MW
18016 }
18017}
18018
5287ad62
JB
18019static void
18020do_neon_fcmp_absolute (void)
18021{
037e8744 18022 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
18023 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
18024 N_F_16_32 | N_KEY);
5287ad62 18025 /* Size field comes from bit mask. */
cc933301 18026 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
18027}
18028
18029static void
18030do_neon_fcmp_absolute_inv (void)
18031{
18032 neon_exchange_operands ();
18033 do_neon_fcmp_absolute ();
18034}
18035
18036static void
18037do_neon_step (void)
18038{
037e8744 18039 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
18040 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
18041 N_F_16_32 | N_KEY);
18042 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
18043}
18044
18045static void
18046do_neon_abs_neg (void)
18047{
037e8744
JB
18048 enum neon_shape rs;
18049 struct neon_type_el et;
5f4273c7 18050
037e8744
JB
18051 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
18052 return;
18053
037e8744 18054 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
cc933301 18055 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
5f4273c7 18056
64c350f2
AV
18057 if (!check_simd_pred_availability (et.type == NT_float,
18058 NEON_CHECK_ARCH | NEON_CHECK_CC))
485dee97
AV
18059 return;
18060
5287ad62
JB
18061 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18062 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18063 inst.instruction |= LOW4 (inst.operands[1].reg);
18064 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 18065 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18066 inst.instruction |= (et.type == NT_float) << 10;
18067 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 18068
88714cb8 18069 neon_dp_fixup (&inst);
5287ad62
JB
18070}
18071
18072static void
18073do_neon_sli (void)
18074{
64c350f2 18075 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
4401c241
AV
18076 return;
18077
18078 enum neon_shape rs;
18079 struct neon_type_el et;
18080 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18081 {
18082 rs = neon_select_shape (NS_QQI, NS_NULL);
18083 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18084 }
18085 else
18086 {
18087 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18088 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18089 }
18090
18091
5287ad62
JB
18092 int imm = inst.operands[2].imm;
18093 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 18094 _("immediate out of range for insert"));
037e8744 18095 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
18096}
18097
18098static void
18099do_neon_sri (void)
18100{
64c350f2 18101 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
4401c241
AV
18102 return;
18103
18104 enum neon_shape rs;
18105 struct neon_type_el et;
18106 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18107 {
18108 rs = neon_select_shape (NS_QQI, NS_NULL);
18109 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18110 }
18111 else
18112 {
18113 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18114 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18115 }
18116
5287ad62
JB
18117 int imm = inst.operands[2].imm;
18118 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 18119 _("immediate out of range for insert"));
037e8744 18120 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
18121}
18122
18123static void
18124do_neon_qshlu_imm (void)
18125{
64c350f2 18126 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
5150f0d8
AV
18127 return;
18128
18129 enum neon_shape rs;
18130 struct neon_type_el et;
18131 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18132 {
18133 rs = neon_select_shape (NS_QQI, NS_NULL);
18134 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18135 }
18136 else
18137 {
18138 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18139 et = neon_check_type (2, rs, N_EQK | N_UNS,
18140 N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
18141 }
18142
5287ad62
JB
18143 int imm = inst.operands[2].imm;
18144 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 18145 _("immediate out of range for shift"));
5287ad62
JB
18146 /* Only encodes the 'U present' variant of the instruction.
18147 In this case, signed types have OP (bit 8) set to 0.
18148 Unsigned types have OP set to 1. */
18149 inst.instruction |= (et.type == NT_unsigned) << 8;
18150 /* The rest of the bits are the same as other immediate shifts. */
037e8744 18151 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
18152}
18153
18154static void
18155do_neon_qmovn (void)
18156{
18157 struct neon_type_el et = neon_check_type (2, NS_DQ,
18158 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18159 /* Saturating move where operands can be signed or unsigned, and the
18160 destination has the same signedness. */
88714cb8 18161 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18162 if (et.type == NT_unsigned)
18163 inst.instruction |= 0xc0;
18164 else
18165 inst.instruction |= 0x80;
18166 neon_two_same (0, 1, et.size / 2);
18167}
18168
18169static void
18170do_neon_qmovun (void)
18171{
18172 struct neon_type_el et = neon_check_type (2, NS_DQ,
18173 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18174 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 18175 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18176 neon_two_same (0, 1, et.size / 2);
18177}
18178
18179static void
18180do_neon_rshift_sat_narrow (void)
18181{
18182 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18183 or unsigned. If operands are unsigned, results must also be unsigned. */
18184 struct neon_type_el et = neon_check_type (2, NS_DQI,
18185 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18186 int imm = inst.operands[2].imm;
18187 /* This gets the bounds check, size encoding and immediate bits calculation
18188 right. */
18189 et.size /= 2;
5f4273c7 18190
5287ad62
JB
18191 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
18192 VQMOVN.I<size> <Dd>, <Qm>. */
18193 if (imm == 0)
18194 {
18195 inst.operands[2].present = 0;
18196 inst.instruction = N_MNEM_vqmovn;
18197 do_neon_qmovn ();
18198 return;
18199 }
5f4273c7 18200
5287ad62 18201 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 18202 _("immediate out of range"));
5287ad62
JB
18203 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
18204}
18205
18206static void
18207do_neon_rshift_sat_narrow_u (void)
18208{
18209 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18210 or unsigned. If operands are unsigned, results must also be unsigned. */
18211 struct neon_type_el et = neon_check_type (2, NS_DQI,
18212 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18213 int imm = inst.operands[2].imm;
18214 /* This gets the bounds check, size encoding and immediate bits calculation
18215 right. */
18216 et.size /= 2;
18217
18218 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
18219 VQMOVUN.I<size> <Dd>, <Qm>. */
18220 if (imm == 0)
18221 {
18222 inst.operands[2].present = 0;
18223 inst.instruction = N_MNEM_vqmovun;
18224 do_neon_qmovun ();
18225 return;
18226 }
18227
18228 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 18229 _("immediate out of range"));
5287ad62
JB
18230 /* FIXME: The manual is kind of unclear about what value U should have in
18231 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
18232 must be 1. */
18233 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
18234}
18235
18236static void
18237do_neon_movn (void)
18238{
18239 struct neon_type_el et = neon_check_type (2, NS_DQ,
18240 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 18241 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18242 neon_two_same (0, 1, et.size / 2);
18243}
18244
18245static void
18246do_neon_rshift_narrow (void)
18247{
18248 struct neon_type_el et = neon_check_type (2, NS_DQI,
18249 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18250 int imm = inst.operands[2].imm;
18251 /* This gets the bounds check, size encoding and immediate bits calculation
18252 right. */
18253 et.size /= 2;
5f4273c7 18254
5287ad62
JB
18255 /* If immediate is zero then we are a pseudo-instruction for
18256 VMOVN.I<size> <Dd>, <Qm> */
18257 if (imm == 0)
18258 {
18259 inst.operands[2].present = 0;
18260 inst.instruction = N_MNEM_vmovn;
18261 do_neon_movn ();
18262 return;
18263 }
5f4273c7 18264
5287ad62 18265 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 18266 _("immediate out of range for narrowing operation"));
5287ad62
JB
18267 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
18268}
18269
18270static void
18271do_neon_shll (void)
18272{
18273 /* FIXME: Type checking when lengthening. */
18274 struct neon_type_el et = neon_check_type (2, NS_QDI,
18275 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
18276 unsigned imm = inst.operands[2].imm;
18277
18278 if (imm == et.size)
18279 {
18280 /* Maximum shift variant. */
88714cb8 18281 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18282 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18283 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18284 inst.instruction |= LOW4 (inst.operands[1].reg);
18285 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18286 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 18287
88714cb8 18288 neon_dp_fixup (&inst);
5287ad62
JB
18289 }
18290 else
18291 {
18292 /* A more-specific type check for non-max versions. */
18293 et = neon_check_type (2, NS_QDI,
477330fc 18294 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 18295 NEON_ENCODE (IMMED, inst);
5287ad62
JB
18296 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
18297 }
18298}
18299
037e8744 18300/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
18301 the current instruction is. */
18302
6b9a8b67
MGD
18303#define CVT_FLAVOUR_VAR \
18304 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
18305 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
18306 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
18307 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
18308 /* Half-precision conversions. */ \
cc933301
JW
18309 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18310 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18311 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
18312 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
6b9a8b67
MGD
18313 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
18314 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
9db2f6b4
RL
18315 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
18316 Compared with single/double precision variants, only the co-processor \
18317 field is different, so the encoding flow is reused here. */ \
18318 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
18319 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
18320 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
18321 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
6b9a8b67
MGD
18322 /* VFP instructions. */ \
18323 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
18324 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
18325 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
18326 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
18327 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
18328 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
18329 /* VFP instructions with bitshift. */ \
18330 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
18331 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
18332 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
18333 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
18334 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
18335 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
18336 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
18337 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
18338
18339#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
18340 neon_cvt_flavour_##C,
18341
18342/* The different types of conversions we can do. */
18343enum neon_cvt_flavour
18344{
18345 CVT_FLAVOUR_VAR
18346 neon_cvt_flavour_invalid,
18347 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
18348};
18349
18350#undef CVT_VAR
18351
18352static enum neon_cvt_flavour
18353get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 18354{
6b9a8b67
MGD
18355#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
18356 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
18357 if (et.type != NT_invtype) \
18358 { \
18359 inst.error = NULL; \
18360 return (neon_cvt_flavour_##C); \
5287ad62 18361 }
6b9a8b67 18362
5287ad62 18363 struct neon_type_el et;
037e8744 18364 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
477330fc 18365 || rs == NS_FF) ? N_VFP : 0;
037e8744
JB
18366 /* The instruction versions which take an immediate take one register
18367 argument, which is extended to the width of the full register. Thus the
18368 "source" and "destination" registers must have the same width. Hack that
18369 here by making the size equal to the key (wider, in this case) operand. */
18370 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 18371
6b9a8b67
MGD
18372 CVT_FLAVOUR_VAR;
18373
18374 return neon_cvt_flavour_invalid;
5287ad62
JB
18375#undef CVT_VAR
18376}
18377
7e8e6784
MGD
18378enum neon_cvt_mode
18379{
18380 neon_cvt_mode_a,
18381 neon_cvt_mode_n,
18382 neon_cvt_mode_p,
18383 neon_cvt_mode_m,
18384 neon_cvt_mode_z,
30bdf752
MGD
18385 neon_cvt_mode_x,
18386 neon_cvt_mode_r
7e8e6784
MGD
18387};
18388
037e8744
JB
18389/* Neon-syntax VFP conversions. */
18390
5287ad62 18391static void
6b9a8b67 18392do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 18393{
037e8744 18394 const char *opname = 0;
5f4273c7 18395
d54af2d0
RL
18396 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
18397 || rs == NS_FHI || rs == NS_HFI)
5287ad62 18398 {
037e8744
JB
18399 /* Conversions with immediate bitshift. */
18400 const char *enc[] =
477330fc 18401 {
6b9a8b67
MGD
18402#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
18403 CVT_FLAVOUR_VAR
18404 NULL
18405#undef CVT_VAR
477330fc 18406 };
037e8744 18407
6b9a8b67 18408 if (flavour < (int) ARRAY_SIZE (enc))
477330fc
RM
18409 {
18410 opname = enc[flavour];
18411 constraint (inst.operands[0].reg != inst.operands[1].reg,
18412 _("operands 0 and 1 must be the same register"));
18413 inst.operands[1] = inst.operands[2];
18414 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
18415 }
5287ad62
JB
18416 }
18417 else
18418 {
037e8744
JB
18419 /* Conversions without bitshift. */
18420 const char *enc[] =
477330fc 18421 {
6b9a8b67
MGD
18422#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18423 CVT_FLAVOUR_VAR
18424 NULL
18425#undef CVT_VAR
477330fc 18426 };
037e8744 18427
6b9a8b67 18428 if (flavour < (int) ARRAY_SIZE (enc))
477330fc 18429 opname = enc[flavour];
037e8744
JB
18430 }
18431
18432 if (opname)
18433 do_vfp_nsyn_opcode (opname);
9db2f6b4
RL
18434
18435 /* ARMv8.2 fp16 VCVT instruction. */
18436 if (flavour == neon_cvt_flavour_s32_f16
18437 || flavour == neon_cvt_flavour_u32_f16
18438 || flavour == neon_cvt_flavour_f16_u32
18439 || flavour == neon_cvt_flavour_f16_s32)
18440 do_scalar_fp16_v82_encode ();
037e8744
JB
18441}
18442
18443static void
18444do_vfp_nsyn_cvtz (void)
18445{
d54af2d0 18446 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
6b9a8b67 18447 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
18448 const char *enc[] =
18449 {
6b9a8b67
MGD
18450#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18451 CVT_FLAVOUR_VAR
18452 NULL
18453#undef CVT_VAR
037e8744
JB
18454 };
18455
6b9a8b67 18456 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
18457 do_vfp_nsyn_opcode (enc[flavour]);
18458}
f31fef98 18459
037e8744 18460static void
bacebabc 18461do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
7e8e6784
MGD
18462 enum neon_cvt_mode mode)
18463{
18464 int sz, op;
18465 int rm;
18466
a715796b
TG
18467 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18468 D register operands. */
18469 if (flavour == neon_cvt_flavour_s32_f64
18470 || flavour == neon_cvt_flavour_u32_f64)
18471 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18472 _(BAD_FPU));
18473
9db2f6b4
RL
18474 if (flavour == neon_cvt_flavour_s32_f16
18475 || flavour == neon_cvt_flavour_u32_f16)
18476 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
18477 _(BAD_FP16));
18478
5ee91343 18479 set_pred_insn_type (OUTSIDE_PRED_INSN);
7e8e6784
MGD
18480
18481 switch (flavour)
18482 {
18483 case neon_cvt_flavour_s32_f64:
18484 sz = 1;
827f64ff 18485 op = 1;
7e8e6784
MGD
18486 break;
18487 case neon_cvt_flavour_s32_f32:
18488 sz = 0;
18489 op = 1;
18490 break;
9db2f6b4
RL
18491 case neon_cvt_flavour_s32_f16:
18492 sz = 0;
18493 op = 1;
18494 break;
7e8e6784
MGD
18495 case neon_cvt_flavour_u32_f64:
18496 sz = 1;
18497 op = 0;
18498 break;
18499 case neon_cvt_flavour_u32_f32:
18500 sz = 0;
18501 op = 0;
18502 break;
9db2f6b4
RL
18503 case neon_cvt_flavour_u32_f16:
18504 sz = 0;
18505 op = 0;
18506 break;
7e8e6784
MGD
18507 default:
18508 first_error (_("invalid instruction shape"));
18509 return;
18510 }
18511
18512 switch (mode)
18513 {
18514 case neon_cvt_mode_a: rm = 0; break;
18515 case neon_cvt_mode_n: rm = 1; break;
18516 case neon_cvt_mode_p: rm = 2; break;
18517 case neon_cvt_mode_m: rm = 3; break;
18518 default: first_error (_("invalid rounding mode")); return;
18519 }
18520
18521 NEON_ENCODE (FPV8, inst);
18522 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
18523 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
18524 inst.instruction |= sz << 8;
9db2f6b4
RL
18525
18526 /* ARMv8.2 fp16 VCVT instruction. */
18527 if (flavour == neon_cvt_flavour_s32_f16
18528 ||flavour == neon_cvt_flavour_u32_f16)
18529 do_scalar_fp16_v82_encode ();
7e8e6784
MGD
18530 inst.instruction |= op << 7;
18531 inst.instruction |= rm << 16;
18532 inst.instruction |= 0xf0000000;
18533 inst.is_neon = TRUE;
18534}
18535
18536static void
18537do_neon_cvt_1 (enum neon_cvt_mode mode)
037e8744
JB
18538{
18539 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
d54af2d0
RL
18540 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
18541 NS_FH, NS_HF, NS_FHI, NS_HFI,
18542 NS_NULL);
6b9a8b67 18543 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 18544
cc933301
JW
18545 if (flavour == neon_cvt_flavour_invalid)
18546 return;
18547
e3e535bc 18548 /* PR11109: Handle round-to-zero for VCVT conversions. */
7e8e6784 18549 if (mode == neon_cvt_mode_z
e3e535bc 18550 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
cc933301
JW
18551 && (flavour == neon_cvt_flavour_s16_f16
18552 || flavour == neon_cvt_flavour_u16_f16
18553 || flavour == neon_cvt_flavour_s32_f32
bacebabc
RM
18554 || flavour == neon_cvt_flavour_u32_f32
18555 || flavour == neon_cvt_flavour_s32_f64
6b9a8b67 18556 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
18557 && (rs == NS_FD || rs == NS_FF))
18558 {
18559 do_vfp_nsyn_cvtz ();
18560 return;
18561 }
18562
9db2f6b4
RL
18563 /* ARMv8.2 fp16 VCVT conversions. */
18564 if (mode == neon_cvt_mode_z
18565 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
18566 && (flavour == neon_cvt_flavour_s32_f16
18567 || flavour == neon_cvt_flavour_u32_f16)
18568 && (rs == NS_FH))
18569 {
18570 do_vfp_nsyn_cvtz ();
18571 do_scalar_fp16_v82_encode ();
18572 return;
18573 }
18574
037e8744 18575 /* VFP rather than Neon conversions. */
6b9a8b67 18576 if (flavour >= neon_cvt_flavour_first_fp)
037e8744 18577 {
7e8e6784
MGD
18578 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18579 do_vfp_nsyn_cvt (rs, flavour);
18580 else
18581 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18582
037e8744
JB
18583 return;
18584 }
18585
18586 switch (rs)
18587 {
037e8744 18588 case NS_QQI:
dd9634d9
AV
18589 if (mode == neon_cvt_mode_z
18590 && (flavour == neon_cvt_flavour_f16_s16
18591 || flavour == neon_cvt_flavour_f16_u16
18592 || flavour == neon_cvt_flavour_s16_f16
18593 || flavour == neon_cvt_flavour_u16_f16
18594 || flavour == neon_cvt_flavour_f32_u32
18595 || flavour == neon_cvt_flavour_f32_s32
18596 || flavour == neon_cvt_flavour_s32_f32
18597 || flavour == neon_cvt_flavour_u32_f32))
18598 {
64c350f2
AV
18599 if (!check_simd_pred_availability (TRUE,
18600 NEON_CHECK_CC | NEON_CHECK_ARCH))
dd9634d9
AV
18601 return;
18602 }
18603 else if (mode == neon_cvt_mode_n)
18604 {
18605 /* We are dealing with vcvt with the 'ne' condition. */
18606 inst.cond = 0x1;
18607 inst.instruction = N_MNEM_vcvt;
18608 do_neon_cvt_1 (neon_cvt_mode_z);
18609 return;
18610 }
18611 /* fall through. */
18612 case NS_DDI:
037e8744 18613 {
477330fc 18614 unsigned immbits;
cc933301
JW
18615 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
18616 0x0000100, 0x1000100, 0x0, 0x1000000};
35997600 18617
dd9634d9
AV
18618 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18619 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18620 return;
18621
18622 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18623 {
18624 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
18625 _("immediate value out of range"));
18626 switch (flavour)
18627 {
18628 case neon_cvt_flavour_f16_s16:
18629 case neon_cvt_flavour_f16_u16:
18630 case neon_cvt_flavour_s16_f16:
18631 case neon_cvt_flavour_u16_f16:
18632 constraint (inst.operands[2].imm > 16,
18633 _("immediate value out of range"));
18634 break;
18635 case neon_cvt_flavour_f32_u32:
18636 case neon_cvt_flavour_f32_s32:
18637 case neon_cvt_flavour_s32_f32:
18638 case neon_cvt_flavour_u32_f32:
18639 constraint (inst.operands[2].imm > 32,
18640 _("immediate value out of range"));
18641 break;
18642 default:
18643 inst.error = BAD_FPU;
18644 return;
18645 }
18646 }
037e8744 18647
477330fc
RM
18648 /* Fixed-point conversion with #0 immediate is encoded as an
18649 integer conversion. */
18650 if (inst.operands[2].present && inst.operands[2].imm == 0)
18651 goto int_encode;
477330fc
RM
18652 NEON_ENCODE (IMMED, inst);
18653 if (flavour != neon_cvt_flavour_invalid)
18654 inst.instruction |= enctab[flavour];
18655 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18656 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18657 inst.instruction |= LOW4 (inst.operands[1].reg);
18658 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18659 inst.instruction |= neon_quad (rs) << 6;
18660 inst.instruction |= 1 << 21;
cc933301
JW
18661 if (flavour < neon_cvt_flavour_s16_f16)
18662 {
18663 inst.instruction |= 1 << 21;
18664 immbits = 32 - inst.operands[2].imm;
18665 inst.instruction |= immbits << 16;
18666 }
18667 else
18668 {
18669 inst.instruction |= 3 << 20;
18670 immbits = 16 - inst.operands[2].imm;
18671 inst.instruction |= immbits << 16;
18672 inst.instruction &= ~(1 << 9);
18673 }
477330fc
RM
18674
18675 neon_dp_fixup (&inst);
037e8744
JB
18676 }
18677 break;
18678
037e8744 18679 case NS_QQ:
dd9634d9
AV
18680 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
18681 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
18682 && (flavour == neon_cvt_flavour_s16_f16
18683 || flavour == neon_cvt_flavour_u16_f16
18684 || flavour == neon_cvt_flavour_s32_f32
18685 || flavour == neon_cvt_flavour_u32_f32))
18686 {
64c350f2
AV
18687 if (!check_simd_pred_availability (TRUE,
18688 NEON_CHECK_CC | NEON_CHECK_ARCH8))
dd9634d9
AV
18689 return;
18690 }
18691 else if (mode == neon_cvt_mode_z
18692 && (flavour == neon_cvt_flavour_f16_s16
18693 || flavour == neon_cvt_flavour_f16_u16
18694 || flavour == neon_cvt_flavour_s16_f16
18695 || flavour == neon_cvt_flavour_u16_f16
18696 || flavour == neon_cvt_flavour_f32_u32
18697 || flavour == neon_cvt_flavour_f32_s32
18698 || flavour == neon_cvt_flavour_s32_f32
18699 || flavour == neon_cvt_flavour_u32_f32))
18700 {
64c350f2
AV
18701 if (!check_simd_pred_availability (TRUE,
18702 NEON_CHECK_CC | NEON_CHECK_ARCH))
dd9634d9
AV
18703 return;
18704 }
18705 /* fall through. */
18706 case NS_DD:
7e8e6784
MGD
18707 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
18708 {
7e8e6784 18709
dd9634d9 18710 NEON_ENCODE (FLOAT, inst);
64c350f2
AV
18711 if (!check_simd_pred_availability (TRUE,
18712 NEON_CHECK_CC | NEON_CHECK_ARCH8))
7e8e6784
MGD
18713 return;
18714
18715 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18716 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18717 inst.instruction |= LOW4 (inst.operands[1].reg);
18718 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18719 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
18720 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
18721 || flavour == neon_cvt_flavour_u32_f32) << 7;
7e8e6784 18722 inst.instruction |= mode << 8;
cc933301
JW
18723 if (flavour == neon_cvt_flavour_u16_f16
18724 || flavour == neon_cvt_flavour_s16_f16)
18725 /* Mask off the original size bits and reencode them. */
18726 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
18727
7e8e6784
MGD
18728 if (thumb_mode)
18729 inst.instruction |= 0xfc000000;
18730 else
18731 inst.instruction |= 0xf0000000;
18732 }
18733 else
18734 {
037e8744 18735 int_encode:
7e8e6784 18736 {
cc933301
JW
18737 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
18738 0x100, 0x180, 0x0, 0x080};
037e8744 18739
7e8e6784 18740 NEON_ENCODE (INTEGER, inst);
037e8744 18741
dd9634d9
AV
18742 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18743 {
18744 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18745 return;
18746 }
037e8744 18747
7e8e6784
MGD
18748 if (flavour != neon_cvt_flavour_invalid)
18749 inst.instruction |= enctab[flavour];
037e8744 18750
7e8e6784
MGD
18751 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18752 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18753 inst.instruction |= LOW4 (inst.operands[1].reg);
18754 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18755 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
18756 if (flavour >= neon_cvt_flavour_s16_f16
18757 && flavour <= neon_cvt_flavour_f16_u16)
18758 /* Half precision. */
18759 inst.instruction |= 1 << 18;
18760 else
18761 inst.instruction |= 2 << 18;
037e8744 18762
7e8e6784
MGD
18763 neon_dp_fixup (&inst);
18764 }
18765 }
18766 break;
037e8744 18767
8e79c3df
CM
18768 /* Half-precision conversions for Advanced SIMD -- neon. */
18769 case NS_QD:
18770 case NS_DQ:
bc52d49c
MM
18771 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18772 return;
8e79c3df
CM
18773
18774 if ((rs == NS_DQ)
18775 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
18776 {
18777 as_bad (_("operand size must match register width"));
18778 break;
18779 }
18780
18781 if ((rs == NS_QD)
18782 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
18783 {
18784 as_bad (_("operand size must match register width"));
18785 break;
18786 }
18787
18788 if (rs == NS_DQ)
477330fc 18789 inst.instruction = 0x3b60600;
8e79c3df
CM
18790 else
18791 inst.instruction = 0x3b60700;
18792
18793 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18794 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18795 inst.instruction |= LOW4 (inst.operands[1].reg);
18796 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 18797 neon_dp_fixup (&inst);
8e79c3df
CM
18798 break;
18799
037e8744
JB
18800 default:
18801 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
7e8e6784
MGD
18802 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18803 do_vfp_nsyn_cvt (rs, flavour);
18804 else
18805 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
5287ad62 18806 }
5287ad62
JB
18807}
18808
e3e535bc
NC
18809static void
18810do_neon_cvtr (void)
18811{
7e8e6784 18812 do_neon_cvt_1 (neon_cvt_mode_x);
e3e535bc
NC
18813}
18814
18815static void
18816do_neon_cvt (void)
18817{
7e8e6784
MGD
18818 do_neon_cvt_1 (neon_cvt_mode_z);
18819}
18820
18821static void
18822do_neon_cvta (void)
18823{
18824 do_neon_cvt_1 (neon_cvt_mode_a);
18825}
18826
18827static void
18828do_neon_cvtn (void)
18829{
18830 do_neon_cvt_1 (neon_cvt_mode_n);
18831}
18832
18833static void
18834do_neon_cvtp (void)
18835{
18836 do_neon_cvt_1 (neon_cvt_mode_p);
18837}
18838
18839static void
18840do_neon_cvtm (void)
18841{
18842 do_neon_cvt_1 (neon_cvt_mode_m);
e3e535bc
NC
18843}
18844
8e79c3df 18845static void
c70a8987 18846do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
8e79c3df 18847{
c70a8987
MGD
18848 if (is_double)
18849 mark_feature_used (&fpu_vfp_ext_armv8);
8e79c3df 18850
c70a8987
MGD
18851 encode_arm_vfp_reg (inst.operands[0].reg,
18852 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
18853 encode_arm_vfp_reg (inst.operands[1].reg,
18854 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
18855 inst.instruction |= to ? 0x10000 : 0;
18856 inst.instruction |= t ? 0x80 : 0;
18857 inst.instruction |= is_double ? 0x100 : 0;
18858 do_vfp_cond_or_thumb ();
18859}
8e79c3df 18860
c70a8987
MGD
18861static void
18862do_neon_cvttb_1 (bfd_boolean t)
18863{
d54af2d0 18864 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
dd9634d9 18865 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
8e79c3df 18866
c70a8987
MGD
18867 if (rs == NS_NULL)
18868 return;
dd9634d9
AV
18869 else if (rs == NS_QQ || rs == NS_QQI)
18870 {
18871 int single_to_half = 0;
64c350f2 18872 if (!check_simd_pred_availability (TRUE, NEON_CHECK_ARCH))
dd9634d9
AV
18873 return;
18874
18875 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18876
18877 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18878 && (flavour == neon_cvt_flavour_u16_f16
18879 || flavour == neon_cvt_flavour_s16_f16
18880 || flavour == neon_cvt_flavour_f16_s16
18881 || flavour == neon_cvt_flavour_f16_u16
18882 || flavour == neon_cvt_flavour_u32_f32
18883 || flavour == neon_cvt_flavour_s32_f32
18884 || flavour == neon_cvt_flavour_f32_s32
18885 || flavour == neon_cvt_flavour_f32_u32))
18886 {
18887 inst.cond = 0xf;
18888 inst.instruction = N_MNEM_vcvt;
18889 set_pred_insn_type (INSIDE_VPT_INSN);
18890 do_neon_cvt_1 (neon_cvt_mode_z);
18891 return;
18892 }
18893 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
18894 single_to_half = 1;
18895 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
18896 {
18897 first_error (BAD_FPU);
18898 return;
18899 }
18900
18901 inst.instruction = 0xee3f0e01;
18902 inst.instruction |= single_to_half << 28;
18903 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18904 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
18905 inst.instruction |= t << 12;
18906 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18907 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
18908 inst.is_neon = 1;
18909 }
c70a8987
MGD
18910 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
18911 {
18912 inst.error = NULL;
18913 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
18914 }
18915 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
18916 {
18917 inst.error = NULL;
18918 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
18919 }
18920 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
18921 {
a715796b
TG
18922 /* The VCVTB and VCVTT instructions with D-register operands
18923 don't work for SP only targets. */
18924 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18925 _(BAD_FPU));
18926
c70a8987
MGD
18927 inst.error = NULL;
18928 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
18929 }
18930 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
18931 {
a715796b
TG
18932 /* The VCVTB and VCVTT instructions with D-register operands
18933 don't work for SP only targets. */
18934 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18935 _(BAD_FPU));
18936
c70a8987
MGD
18937 inst.error = NULL;
18938 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
18939 }
18940 else
18941 return;
18942}
18943
18944static void
18945do_neon_cvtb (void)
18946{
18947 do_neon_cvttb_1 (FALSE);
8e79c3df
CM
18948}
18949
18950
18951static void
18952do_neon_cvtt (void)
18953{
c70a8987 18954 do_neon_cvttb_1 (TRUE);
8e79c3df
CM
18955}
18956
5287ad62
JB
18957static void
18958neon_move_immediate (void)
18959{
037e8744
JB
18960 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
18961 struct neon_type_el et = neon_check_type (2, rs,
18962 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 18963 unsigned immlo, immhi = 0, immbits;
c96612cc 18964 int op, cmode, float_p;
5287ad62 18965
037e8744 18966 constraint (et.type == NT_invtype,
477330fc 18967 _("operand size must be specified for immediate VMOV"));
037e8744 18968
5287ad62
JB
18969 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
18970 op = (inst.instruction & (1 << 5)) != 0;
18971
18972 immlo = inst.operands[1].imm;
18973 if (inst.operands[1].regisimm)
18974 immhi = inst.operands[1].reg;
18975
18976 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
477330fc 18977 _("immediate has bits set outside the operand size"));
5287ad62 18978
c96612cc
JB
18979 float_p = inst.operands[1].immisfloat;
18980
18981 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
477330fc 18982 et.size, et.type)) == FAIL)
5287ad62
JB
18983 {
18984 /* Invert relevant bits only. */
18985 neon_invert_size (&immlo, &immhi, et.size);
18986 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
477330fc
RM
18987 with one or the other; those cases are caught by
18988 neon_cmode_for_move_imm. */
5287ad62 18989 op = !op;
c96612cc
JB
18990 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
18991 &op, et.size, et.type)) == FAIL)
477330fc
RM
18992 {
18993 first_error (_("immediate out of range"));
18994 return;
18995 }
5287ad62
JB
18996 }
18997
18998 inst.instruction &= ~(1 << 5);
18999 inst.instruction |= op << 5;
19000
19001 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19002 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 19003 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
19004 inst.instruction |= cmode << 8;
19005
19006 neon_write_immbits (immbits);
19007}
19008
19009static void
19010do_neon_mvn (void)
19011{
64c350f2 19012 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
1a186d29
AV
19013 return;
19014
5287ad62
JB
19015 if (inst.operands[1].isreg)
19016 {
1a186d29
AV
19017 enum neon_shape rs;
19018 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19019 rs = neon_select_shape (NS_QQ, NS_NULL);
19020 else
19021 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 19022
88714cb8 19023 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
19024 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19025 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19026 inst.instruction |= LOW4 (inst.operands[1].reg);
19027 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 19028 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
19029 }
19030 else
19031 {
88714cb8 19032 NEON_ENCODE (IMMED, inst);
5287ad62
JB
19033 neon_move_immediate ();
19034 }
19035
88714cb8 19036 neon_dp_fixup (&inst);
1a186d29
AV
19037
19038 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19039 {
19040 constraint (!inst.operands[1].isreg && !inst.operands[0].isquad, BAD_FPU);
19041 constraint ((inst.instruction & 0xd00) == 0xd00,
19042 _("immediate value out of range"));
19043 }
5287ad62
JB
19044}
19045
19046/* Encode instructions of form:
19047
19048 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 19049 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
19050
19051static void
19052neon_mixed_length (struct neon_type_el et, unsigned size)
19053{
19054 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19055 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19056 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19057 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19058 inst.instruction |= LOW4 (inst.operands[2].reg);
19059 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19060 inst.instruction |= (et.type == NT_unsigned) << 24;
19061 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 19062
88714cb8 19063 neon_dp_fixup (&inst);
5287ad62
JB
19064}
19065
19066static void
19067do_neon_dyadic_long (void)
19068{
5ee91343
AV
19069 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
19070 if (rs == NS_QDD)
19071 {
19072 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
19073 return;
19074
19075 NEON_ENCODE (INTEGER, inst);
19076 /* FIXME: Type checking for lengthening op. */
19077 struct neon_type_el et = neon_check_type (3, NS_QDD,
19078 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
19079 neon_mixed_length (et, et.size);
19080 }
19081 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19082 && (inst.cond == 0xf || inst.cond == 0x10))
19083 {
19084 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
19085 in an IT block with le/lt conditions. */
19086
19087 if (inst.cond == 0xf)
19088 inst.cond = 0xb;
19089 else if (inst.cond == 0x10)
19090 inst.cond = 0xd;
19091
19092 inst.pred_insn_type = INSIDE_IT_INSN;
19093
19094 if (inst.instruction == N_MNEM_vaddl)
19095 {
19096 inst.instruction = N_MNEM_vadd;
19097 do_neon_addsub_if_i ();
19098 }
19099 else if (inst.instruction == N_MNEM_vsubl)
19100 {
19101 inst.instruction = N_MNEM_vsub;
19102 do_neon_addsub_if_i ();
19103 }
19104 else if (inst.instruction == N_MNEM_vabdl)
19105 {
19106 inst.instruction = N_MNEM_vabd;
19107 do_neon_dyadic_if_su ();
19108 }
19109 }
19110 else
19111 first_error (BAD_FPU);
5287ad62
JB
19112}
19113
19114static void
19115do_neon_abal (void)
19116{
19117 struct neon_type_el et = neon_check_type (3, NS_QDD,
19118 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
19119 neon_mixed_length (et, et.size);
19120}
19121
19122static void
19123neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
19124{
19125 if (inst.operands[2].isscalar)
19126 {
dcbf9037 19127 struct neon_type_el et = neon_check_type (3, NS_QDS,
477330fc 19128 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 19129 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
19130 neon_mul_mac (et, et.type == NT_unsigned);
19131 }
19132 else
19133 {
19134 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 19135 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 19136 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
19137 neon_mixed_length (et, et.size);
19138 }
19139}
19140
19141static void
19142do_neon_mac_maybe_scalar_long (void)
19143{
19144 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
19145}
19146
dec41383
JW
19147/* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
19148 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
19149
19150static unsigned
19151neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
19152{
19153 unsigned regno = NEON_SCALAR_REG (scalar);
19154 unsigned elno = NEON_SCALAR_INDEX (scalar);
19155
19156 if (quad_p)
19157 {
19158 if (regno > 7 || elno > 3)
19159 goto bad_scalar;
19160
19161 return ((regno & 0x7)
19162 | ((elno & 0x1) << 3)
19163 | (((elno >> 1) & 0x1) << 5));
19164 }
19165 else
19166 {
19167 if (regno > 15 || elno > 1)
19168 goto bad_scalar;
19169
19170 return (((regno & 0x1) << 5)
19171 | ((regno >> 1) & 0x7)
19172 | ((elno & 0x1) << 3));
19173 }
19174
19175bad_scalar:
19176 first_error (_("scalar out of range for multiply instruction"));
19177 return 0;
19178}
19179
19180static void
19181do_neon_fmac_maybe_scalar_long (int subtype)
19182{
19183 enum neon_shape rs;
19184 int high8;
19185 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
19186 field (bits[21:20]) has different meaning. For scalar index variant, it's
19187 used to differentiate add and subtract, otherwise it's with fixed value
19188 0x2. */
19189 int size = -1;
19190
19191 if (inst.cond != COND_ALWAYS)
19192 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
19193 "behaviour is UNPREDICTABLE"));
19194
01f48020 19195 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
dec41383
JW
19196 _(BAD_FP16));
19197
19198 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19199 _(BAD_FPU));
19200
19201 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
19202 be a scalar index register. */
19203 if (inst.operands[2].isscalar)
19204 {
19205 high8 = 0xfe000000;
19206 if (subtype)
19207 size = 16;
19208 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
19209 }
19210 else
19211 {
19212 high8 = 0xfc000000;
19213 size = 32;
19214 if (subtype)
19215 inst.instruction |= (0x1 << 23);
19216 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
19217 }
19218
19219 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
19220
19221 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
19222 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
19223 so we simply pass -1 as size. */
19224 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
19225 neon_three_same (quad_p, 0, size);
19226
19227 /* Undo neon_dp_fixup. Redo the high eight bits. */
19228 inst.instruction &= 0x00ffffff;
19229 inst.instruction |= high8;
19230
19231#define LOW1(R) ((R) & 0x1)
19232#define HI4(R) (((R) >> 1) & 0xf)
19233 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
19234 whether the instruction is in Q form and whether Vm is a scalar indexed
19235 operand. */
19236 if (inst.operands[2].isscalar)
19237 {
19238 unsigned rm
19239 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
19240 inst.instruction &= 0xffffffd0;
19241 inst.instruction |= rm;
19242
19243 if (!quad_p)
19244 {
19245 /* Redo Rn as well. */
19246 inst.instruction &= 0xfff0ff7f;
19247 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19248 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19249 }
19250 }
19251 else if (!quad_p)
19252 {
19253 /* Redo Rn and Rm. */
19254 inst.instruction &= 0xfff0ff50;
19255 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19256 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19257 inst.instruction |= HI4 (inst.operands[2].reg);
19258 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
19259 }
19260}
19261
19262static void
19263do_neon_vfmal (void)
19264{
19265 return do_neon_fmac_maybe_scalar_long (0);
19266}
19267
19268static void
19269do_neon_vfmsl (void)
19270{
19271 return do_neon_fmac_maybe_scalar_long (1);
19272}
19273
5287ad62
JB
19274static void
19275do_neon_dyadic_wide (void)
19276{
19277 struct neon_type_el et = neon_check_type (3, NS_QQD,
19278 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
19279 neon_mixed_length (et, et.size);
19280}
19281
19282static void
19283do_neon_dyadic_narrow (void)
19284{
19285 struct neon_type_el et = neon_check_type (3, NS_QDD,
19286 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
19287 /* Operand sign is unimportant, and the U bit is part of the opcode,
19288 so force the operand type to integer. */
19289 et.type = NT_integer;
5287ad62
JB
19290 neon_mixed_length (et, et.size / 2);
19291}
19292
19293static void
19294do_neon_mul_sat_scalar_long (void)
19295{
19296 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
19297}
19298
19299static void
19300do_neon_vmull (void)
19301{
19302 if (inst.operands[2].isscalar)
19303 do_neon_mac_maybe_scalar_long ();
19304 else
19305 {
19306 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 19307 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
4f51b4bd 19308
5287ad62 19309 if (et.type == NT_poly)
477330fc 19310 NEON_ENCODE (POLY, inst);
5287ad62 19311 else
477330fc 19312 NEON_ENCODE (INTEGER, inst);
4f51b4bd
MGD
19313
19314 /* For polynomial encoding the U bit must be zero, and the size must
19315 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
19316 obviously, as 0b10). */
19317 if (et.size == 64)
19318 {
19319 /* Check we're on the correct architecture. */
19320 if (!mark_feature_used (&fpu_crypto_ext_armv8))
19321 inst.error =
19322 _("Instruction form not available on this architecture.");
19323
19324 et.size = 32;
19325 }
19326
5287ad62
JB
19327 neon_mixed_length (et, et.size);
19328 }
19329}
19330
19331static void
19332do_neon_ext (void)
19333{
037e8744 19334 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
19335 struct neon_type_el et = neon_check_type (3, rs,
19336 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
19337 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
19338
19339 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
19340 _("shift out of range"));
5287ad62
JB
19341 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19342 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19343 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19344 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19345 inst.instruction |= LOW4 (inst.operands[2].reg);
19346 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 19347 inst.instruction |= neon_quad (rs) << 6;
5287ad62 19348 inst.instruction |= imm << 8;
5f4273c7 19349
88714cb8 19350 neon_dp_fixup (&inst);
5287ad62
JB
19351}
19352
19353static void
19354do_neon_rev (void)
19355{
64c350f2 19356 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
4401c241
AV
19357 return;
19358
19359 enum neon_shape rs;
19360 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19361 rs = neon_select_shape (NS_QQ, NS_NULL);
19362 else
19363 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19364
5287ad62
JB
19365 struct neon_type_el et = neon_check_type (2, rs,
19366 N_EQK, N_8 | N_16 | N_32 | N_KEY);
4401c241 19367
5287ad62
JB
19368 unsigned op = (inst.instruction >> 7) & 3;
19369 /* N (width of reversed regions) is encoded as part of the bitmask. We
19370 extract it here to check the elements to be reversed are smaller.
19371 Otherwise we'd get a reserved instruction. */
19372 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
4401c241
AV
19373
19374 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) && elsize == 64
19375 && inst.operands[0].reg == inst.operands[1].reg)
19376 as_tsktsk (_("Warning: 64-bit element size and same destination and source"
19377 " operands makes instruction UNPREDICTABLE"));
19378
9c2799c2 19379 gas_assert (elsize != 0);
5287ad62 19380 constraint (et.size >= elsize,
477330fc 19381 _("elements must be smaller than reversal region"));
037e8744 19382 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19383}
19384
19385static void
19386do_neon_dup (void)
19387{
19388 if (inst.operands[1].isscalar)
19389 {
b409bdb6
AV
19390 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19391 BAD_FPU);
037e8744 19392 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037 19393 struct neon_type_el et = neon_check_type (2, rs,
477330fc 19394 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 19395 unsigned sizebits = et.size >> 3;
dcbf9037 19396 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 19397 int logsize = neon_logbits (et.size);
dcbf9037 19398 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
19399
19400 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
477330fc 19401 return;
037e8744 19402
88714cb8 19403 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
19404 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19405 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19406 inst.instruction |= LOW4 (dm);
19407 inst.instruction |= HI1 (dm) << 5;
037e8744 19408 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
19409 inst.instruction |= x << 17;
19410 inst.instruction |= sizebits << 16;
5f4273c7 19411
88714cb8 19412 neon_dp_fixup (&inst);
5287ad62
JB
19413 }
19414 else
19415 {
037e8744
JB
19416 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
19417 struct neon_type_el et = neon_check_type (2, rs,
477330fc 19418 N_8 | N_16 | N_32 | N_KEY, N_EQK);
b409bdb6
AV
19419 if (rs == NS_QR)
19420 {
64c350f2 19421 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH))
b409bdb6
AV
19422 return;
19423 }
19424 else
19425 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19426 BAD_FPU);
19427
19428 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19429 {
19430 if (inst.operands[1].reg == REG_SP)
19431 as_tsktsk (MVE_BAD_SP);
19432 else if (inst.operands[1].reg == REG_PC)
19433 as_tsktsk (MVE_BAD_PC);
19434 }
19435
5287ad62 19436 /* Duplicate ARM register to lanes of vector. */
88714cb8 19437 NEON_ENCODE (ARMREG, inst);
5287ad62 19438 switch (et.size)
477330fc
RM
19439 {
19440 case 8: inst.instruction |= 0x400000; break;
19441 case 16: inst.instruction |= 0x000020; break;
19442 case 32: inst.instruction |= 0x000000; break;
19443 default: break;
19444 }
5287ad62
JB
19445 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19446 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
19447 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 19448 inst.instruction |= neon_quad (rs) << 21;
5287ad62 19449 /* The encoding for this instruction is identical for the ARM and Thumb
477330fc 19450 variants, except for the condition field. */
037e8744 19451 do_vfp_cond_or_thumb ();
5287ad62
JB
19452 }
19453}
19454
57785aa2
AV
19455static void
19456do_mve_mov (int toQ)
19457{
19458 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19459 return;
19460 if (inst.cond > COND_ALWAYS)
19461 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
19462
19463 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
19464 if (toQ)
19465 {
19466 Q0 = 0;
19467 Q1 = 1;
19468 Rt = 2;
19469 Rt2 = 3;
19470 }
19471
19472 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
19473 _("Index one must be [2,3] and index two must be two less than"
19474 " index one."));
19475 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
19476 _("General purpose registers may not be the same"));
19477 constraint (inst.operands[Rt].reg == REG_SP
19478 || inst.operands[Rt2].reg == REG_SP,
19479 BAD_SP);
19480 constraint (inst.operands[Rt].reg == REG_PC
19481 || inst.operands[Rt2].reg == REG_PC,
19482 BAD_PC);
19483
19484 inst.instruction = 0xec000f00;
19485 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
19486 inst.instruction |= !!toQ << 20;
19487 inst.instruction |= inst.operands[Rt2].reg << 16;
19488 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
19489 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
19490 inst.instruction |= inst.operands[Rt].reg;
19491}
19492
19493static void
19494do_mve_movn (void)
19495{
19496 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19497 return;
19498
19499 if (inst.cond > COND_ALWAYS)
19500 inst.pred_insn_type = INSIDE_VPT_INSN;
19501 else
19502 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
19503
19504 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
19505 | N_KEY);
19506
19507 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19508 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
19509 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19510 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19511 inst.instruction |= LOW4 (inst.operands[1].reg);
19512 inst.is_neon = 1;
19513
19514}
19515
5287ad62
JB
19516/* VMOV has particularly many variations. It can be one of:
19517 0. VMOV<c><q> <Qd>, <Qm>
19518 1. VMOV<c><q> <Dd>, <Dm>
19519 (Register operations, which are VORR with Rm = Rn.)
19520 2. VMOV<c><q>.<dt> <Qd>, #<imm>
19521 3. VMOV<c><q>.<dt> <Dd>, #<imm>
19522 (Immediate loads.)
19523 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
19524 (ARM register to scalar.)
19525 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
19526 (Two ARM registers to vector.)
19527 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
19528 (Scalar to ARM register.)
19529 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
19530 (Vector to two ARM registers.)
037e8744
JB
19531 8. VMOV.F32 <Sd>, <Sm>
19532 9. VMOV.F64 <Dd>, <Dm>
19533 (VFP register moves.)
19534 10. VMOV.F32 <Sd>, #imm
19535 11. VMOV.F64 <Dd>, #imm
19536 (VFP float immediate load.)
19537 12. VMOV <Rd>, <Sm>
19538 (VFP single to ARM reg.)
19539 13. VMOV <Sd>, <Rm>
19540 (ARM reg to VFP single.)
19541 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
19542 (Two ARM regs to two VFP singles.)
19543 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
19544 (Two VFP singles to two ARM regs.)
57785aa2
AV
19545 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
19546 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
19547 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
19548 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
5f4273c7 19549
037e8744
JB
19550 These cases can be disambiguated using neon_select_shape, except cases 1/9
19551 and 3/11 which depend on the operand type too.
5f4273c7 19552
5287ad62 19553 All the encoded bits are hardcoded by this function.
5f4273c7 19554
b7fc2769
JB
19555 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
19556 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 19557
5287ad62 19558 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 19559 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
19560
19561static void
19562do_neon_mov (void)
19563{
57785aa2
AV
19564 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
19565 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
19566 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
19567 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
19568 NS_NULL);
037e8744
JB
19569 struct neon_type_el et;
19570 const char *ldconst = 0;
5287ad62 19571
037e8744 19572 switch (rs)
5287ad62 19573 {
037e8744
JB
19574 case NS_DD: /* case 1/9. */
19575 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19576 /* It is not an error here if no type is given. */
19577 inst.error = NULL;
19578 if (et.type == NT_float && et.size == 64)
477330fc
RM
19579 {
19580 do_vfp_nsyn_opcode ("fcpyd");
19581 break;
19582 }
037e8744 19583 /* fall through. */
5287ad62 19584
037e8744
JB
19585 case NS_QQ: /* case 0/1. */
19586 {
64c350f2
AV
19587 if (!check_simd_pred_availability (FALSE,
19588 NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc
RM
19589 return;
19590 /* The architecture manual I have doesn't explicitly state which
19591 value the U bit should have for register->register moves, but
19592 the equivalent VORR instruction has U = 0, so do that. */
19593 inst.instruction = 0x0200110;
19594 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19595 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19596 inst.instruction |= LOW4 (inst.operands[1].reg);
19597 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19598 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19599 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19600 inst.instruction |= neon_quad (rs) << 6;
19601
19602 neon_dp_fixup (&inst);
037e8744
JB
19603 }
19604 break;
5f4273c7 19605
037e8744
JB
19606 case NS_DI: /* case 3/11. */
19607 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19608 inst.error = NULL;
19609 if (et.type == NT_float && et.size == 64)
477330fc
RM
19610 {
19611 /* case 11 (fconstd). */
19612 ldconst = "fconstd";
19613 goto encode_fconstd;
19614 }
037e8744
JB
19615 /* fall through. */
19616
19617 case NS_QI: /* case 2/3. */
64c350f2
AV
19618 if (!check_simd_pred_availability (FALSE,
19619 NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc 19620 return;
037e8744
JB
19621 inst.instruction = 0x0800010;
19622 neon_move_immediate ();
88714cb8 19623 neon_dp_fixup (&inst);
5287ad62 19624 break;
5f4273c7 19625
037e8744
JB
19626 case NS_SR: /* case 4. */
19627 {
477330fc
RM
19628 unsigned bcdebits = 0;
19629 int logsize;
19630 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
19631 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
037e8744 19632
05ac0ffb
JB
19633 /* .<size> is optional here, defaulting to .32. */
19634 if (inst.vectype.elems == 0
19635 && inst.operands[0].vectype.type == NT_invtype
19636 && inst.operands[1].vectype.type == NT_invtype)
19637 {
19638 inst.vectype.el[0].type = NT_untyped;
19639 inst.vectype.el[0].size = 32;
19640 inst.vectype.elems = 1;
19641 }
19642
477330fc
RM
19643 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
19644 logsize = neon_logbits (et.size);
19645
57785aa2
AV
19646 if (et.size != 32)
19647 {
19648 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19649 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
19650 return;
19651 }
19652 else
19653 {
19654 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19655 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19656 _(BAD_FPU));
19657 }
19658
19659 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19660 {
19661 if (inst.operands[1].reg == REG_SP)
19662 as_tsktsk (MVE_BAD_SP);
19663 else if (inst.operands[1].reg == REG_PC)
19664 as_tsktsk (MVE_BAD_PC);
19665 }
19666 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
19667
477330fc 19668 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2
AV
19669 constraint (x >= size / et.size, _("scalar index out of range"));
19670
477330fc
RM
19671
19672 switch (et.size)
19673 {
19674 case 8: bcdebits = 0x8; break;
19675 case 16: bcdebits = 0x1; break;
19676 case 32: bcdebits = 0x0; break;
19677 default: ;
19678 }
19679
57785aa2 19680 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
19681
19682 inst.instruction = 0xe000b10;
19683 do_vfp_cond_or_thumb ();
19684 inst.instruction |= LOW4 (dn) << 16;
19685 inst.instruction |= HI1 (dn) << 7;
19686 inst.instruction |= inst.operands[1].reg << 12;
19687 inst.instruction |= (bcdebits & 3) << 5;
57785aa2
AV
19688 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
19689 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
19690 }
19691 break;
5f4273c7 19692
037e8744 19693 case NS_DRR: /* case 5 (fmdrr). */
57785aa2
AV
19694 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19695 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 19696 _(BAD_FPU));
b7fc2769 19697
037e8744
JB
19698 inst.instruction = 0xc400b10;
19699 do_vfp_cond_or_thumb ();
19700 inst.instruction |= LOW4 (inst.operands[0].reg);
19701 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
19702 inst.instruction |= inst.operands[1].reg << 12;
19703 inst.instruction |= inst.operands[2].reg << 16;
19704 break;
5f4273c7 19705
037e8744
JB
19706 case NS_RS: /* case 6. */
19707 {
477330fc
RM
19708 unsigned logsize;
19709 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
19710 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
19711 unsigned abcdebits = 0;
037e8744 19712
05ac0ffb
JB
19713 /* .<dt> is optional here, defaulting to .32. */
19714 if (inst.vectype.elems == 0
19715 && inst.operands[0].vectype.type == NT_invtype
19716 && inst.operands[1].vectype.type == NT_invtype)
19717 {
19718 inst.vectype.el[0].type = NT_untyped;
19719 inst.vectype.el[0].size = 32;
19720 inst.vectype.elems = 1;
19721 }
19722
91d6fa6a
NC
19723 et = neon_check_type (2, NS_NULL,
19724 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
477330fc
RM
19725 logsize = neon_logbits (et.size);
19726
57785aa2
AV
19727 if (et.size != 32)
19728 {
19729 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19730 && vfp_or_neon_is_neon (NEON_CHECK_CC
19731 | NEON_CHECK_ARCH) == FAIL)
19732 return;
19733 }
19734 else
19735 {
19736 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19737 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19738 _(BAD_FPU));
19739 }
19740
19741 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19742 {
19743 if (inst.operands[0].reg == REG_SP)
19744 as_tsktsk (MVE_BAD_SP);
19745 else if (inst.operands[0].reg == REG_PC)
19746 as_tsktsk (MVE_BAD_PC);
19747 }
19748
19749 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
19750
477330fc 19751 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2 19752 constraint (x >= size / et.size, _("scalar index out of range"));
477330fc
RM
19753
19754 switch (et.size)
19755 {
19756 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
19757 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
19758 case 32: abcdebits = 0x00; break;
19759 default: ;
19760 }
19761
57785aa2 19762 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
19763 inst.instruction = 0xe100b10;
19764 do_vfp_cond_or_thumb ();
19765 inst.instruction |= LOW4 (dn) << 16;
19766 inst.instruction |= HI1 (dn) << 7;
19767 inst.instruction |= inst.operands[0].reg << 12;
19768 inst.instruction |= (abcdebits & 3) << 5;
19769 inst.instruction |= (abcdebits >> 2) << 21;
57785aa2 19770 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
19771 }
19772 break;
5f4273c7 19773
037e8744 19774 case NS_RRD: /* case 7 (fmrrd). */
57785aa2
AV
19775 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19776 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 19777 _(BAD_FPU));
037e8744
JB
19778
19779 inst.instruction = 0xc500b10;
19780 do_vfp_cond_or_thumb ();
19781 inst.instruction |= inst.operands[0].reg << 12;
19782 inst.instruction |= inst.operands[1].reg << 16;
19783 inst.instruction |= LOW4 (inst.operands[2].reg);
19784 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19785 break;
5f4273c7 19786
037e8744
JB
19787 case NS_FF: /* case 8 (fcpys). */
19788 do_vfp_nsyn_opcode ("fcpys");
19789 break;
5f4273c7 19790
9db2f6b4 19791 case NS_HI:
037e8744
JB
19792 case NS_FI: /* case 10 (fconsts). */
19793 ldconst = "fconsts";
4ef4710f 19794 encode_fconstd:
58ed5c38
TC
19795 if (!inst.operands[1].immisfloat)
19796 {
4ef4710f 19797 unsigned new_imm;
58ed5c38 19798 /* Immediate has to fit in 8 bits so float is enough. */
4ef4710f
NC
19799 float imm = (float) inst.operands[1].imm;
19800 memcpy (&new_imm, &imm, sizeof (float));
19801 /* But the assembly may have been written to provide an integer
19802 bit pattern that equates to a float, so check that the
19803 conversion has worked. */
19804 if (is_quarter_float (new_imm))
19805 {
19806 if (is_quarter_float (inst.operands[1].imm))
19807 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
19808
19809 inst.operands[1].imm = new_imm;
19810 inst.operands[1].immisfloat = 1;
19811 }
58ed5c38
TC
19812 }
19813
037e8744 19814 if (is_quarter_float (inst.operands[1].imm))
477330fc
RM
19815 {
19816 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
19817 do_vfp_nsyn_opcode (ldconst);
9db2f6b4
RL
19818
19819 /* ARMv8.2 fp16 vmov.f16 instruction. */
19820 if (rs == NS_HI)
19821 do_scalar_fp16_v82_encode ();
477330fc 19822 }
5287ad62 19823 else
477330fc 19824 first_error (_("immediate out of range"));
037e8744 19825 break;
5f4273c7 19826
9db2f6b4 19827 case NS_RH:
037e8744
JB
19828 case NS_RF: /* case 12 (fmrs). */
19829 do_vfp_nsyn_opcode ("fmrs");
9db2f6b4
RL
19830 /* ARMv8.2 fp16 vmov.f16 instruction. */
19831 if (rs == NS_RH)
19832 do_scalar_fp16_v82_encode ();
037e8744 19833 break;
5f4273c7 19834
9db2f6b4 19835 case NS_HR:
037e8744
JB
19836 case NS_FR: /* case 13 (fmsr). */
19837 do_vfp_nsyn_opcode ("fmsr");
9db2f6b4
RL
19838 /* ARMv8.2 fp16 vmov.f16 instruction. */
19839 if (rs == NS_HR)
19840 do_scalar_fp16_v82_encode ();
037e8744 19841 break;
5f4273c7 19842
57785aa2
AV
19843 case NS_RRSS:
19844 do_mve_mov (0);
19845 break;
19846 case NS_SSRR:
19847 do_mve_mov (1);
19848 break;
19849
037e8744
JB
19850 /* The encoders for the fmrrs and fmsrr instructions expect three operands
19851 (one of which is a list), but we have parsed four. Do some fiddling to
19852 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
19853 expect. */
19854 case NS_RRFF: /* case 14 (fmrrs). */
57785aa2
AV
19855 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19856 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19857 _(BAD_FPU));
037e8744 19858 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
477330fc 19859 _("VFP registers must be adjacent"));
037e8744
JB
19860 inst.operands[2].imm = 2;
19861 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19862 do_vfp_nsyn_opcode ("fmrrs");
19863 break;
5f4273c7 19864
037e8744 19865 case NS_FFRR: /* case 15 (fmsrr). */
57785aa2
AV
19866 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19867 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19868 _(BAD_FPU));
037e8744 19869 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
477330fc 19870 _("VFP registers must be adjacent"));
037e8744
JB
19871 inst.operands[1] = inst.operands[2];
19872 inst.operands[2] = inst.operands[3];
19873 inst.operands[0].imm = 2;
19874 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19875 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 19876 break;
5f4273c7 19877
4c261dff
NC
19878 case NS_NULL:
19879 /* neon_select_shape has determined that the instruction
19880 shape is wrong and has already set the error message. */
19881 break;
19882
5287ad62
JB
19883 default:
19884 abort ();
19885 }
19886}
19887
57785aa2
AV
19888static void
19889do_mve_movl (void)
19890{
19891 if (!(inst.operands[0].present && inst.operands[0].isquad
19892 && inst.operands[1].present && inst.operands[1].isquad
19893 && !inst.operands[2].present))
19894 {
19895 inst.instruction = 0;
19896 inst.cond = 0xb;
19897 if (thumb_mode)
19898 set_pred_insn_type (INSIDE_IT_INSN);
19899 do_neon_mov ();
19900 return;
19901 }
19902
19903 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19904 return;
19905
19906 if (inst.cond != COND_ALWAYS)
19907 inst.pred_insn_type = INSIDE_VPT_INSN;
19908
19909 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
19910 | N_S16 | N_U16 | N_KEY);
19911
19912 inst.instruction |= (et.type == NT_unsigned) << 28;
19913 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19914 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
19915 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19916 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19917 inst.instruction |= LOW4 (inst.operands[1].reg);
19918 inst.is_neon = 1;
19919}
19920
5287ad62
JB
19921static void
19922do_neon_rshift_round_imm (void)
19923{
64c350f2 19924 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
4401c241
AV
19925 return;
19926
19927 enum neon_shape rs;
19928 struct neon_type_el et;
19929
19930 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19931 {
19932 rs = neon_select_shape (NS_QQI, NS_NULL);
19933 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
19934 }
19935 else
19936 {
19937 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
19938 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
19939 }
5287ad62
JB
19940 int imm = inst.operands[2].imm;
19941
19942 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
19943 if (imm == 0)
19944 {
19945 inst.operands[2].present = 0;
19946 do_neon_mov ();
19947 return;
19948 }
19949
19950 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 19951 _("immediate out of range for shift"));
037e8744 19952 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
477330fc 19953 et.size - imm);
5287ad62
JB
19954}
19955
9db2f6b4
RL
19956static void
19957do_neon_movhf (void)
19958{
19959 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
19960 constraint (rs != NS_HH, _("invalid suffix"));
19961
7bdf778b
ASDV
19962 if (inst.cond != COND_ALWAYS)
19963 {
19964 if (thumb_mode)
19965 {
19966 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
19967 " the behaviour is UNPREDICTABLE"));
19968 }
19969 else
19970 {
19971 inst.error = BAD_COND;
19972 return;
19973 }
19974 }
19975
9db2f6b4
RL
19976 do_vfp_sp_monadic ();
19977
19978 inst.is_neon = 1;
19979 inst.instruction |= 0xf0000000;
19980}
19981
5287ad62
JB
19982static void
19983do_neon_movl (void)
19984{
19985 struct neon_type_el et = neon_check_type (2, NS_QD,
19986 N_EQK | N_DBL, N_SU_32 | N_KEY);
19987 unsigned sizebits = et.size >> 3;
19988 inst.instruction |= sizebits << 19;
19989 neon_two_same (0, et.type == NT_unsigned, -1);
19990}
19991
19992static void
19993do_neon_trn (void)
19994{
037e8744 19995 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19996 struct neon_type_el et = neon_check_type (2, rs,
19997 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 19998 NEON_ENCODE (INTEGER, inst);
037e8744 19999 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
20000}
20001
20002static void
20003do_neon_zip_uzp (void)
20004{
037e8744 20005 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
20006 struct neon_type_el et = neon_check_type (2, rs,
20007 N_EQK, N_8 | N_16 | N_32 | N_KEY);
20008 if (rs == NS_DD && et.size == 32)
20009 {
20010 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
20011 inst.instruction = N_MNEM_vtrn;
20012 do_neon_trn ();
20013 return;
20014 }
037e8744 20015 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
20016}
20017
20018static void
20019do_neon_sat_abs_neg (void)
20020{
64c350f2 20021 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
1a186d29
AV
20022 return;
20023
20024 enum neon_shape rs;
20025 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20026 rs = neon_select_shape (NS_QQ, NS_NULL);
20027 else
20028 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
20029 struct neon_type_el et = neon_check_type (2, rs,
20030 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 20031 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
20032}
20033
20034static void
20035do_neon_pair_long (void)
20036{
037e8744 20037 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
20038 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
20039 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
20040 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 20041 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
20042}
20043
20044static void
20045do_neon_recip_est (void)
20046{
037e8744 20047 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62 20048 struct neon_type_el et = neon_check_type (2, rs,
cc933301 20049 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
5287ad62 20050 inst.instruction |= (et.type == NT_float) << 8;
037e8744 20051 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
20052}
20053
20054static void
20055do_neon_cls (void)
20056{
64c350f2 20057 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
f30ee27c
AV
20058 return;
20059
20060 enum neon_shape rs;
20061 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20062 rs = neon_select_shape (NS_QQ, NS_NULL);
20063 else
20064 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20065
5287ad62
JB
20066 struct neon_type_el et = neon_check_type (2, rs,
20067 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 20068 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
20069}
20070
20071static void
20072do_neon_clz (void)
20073{
64c350f2 20074 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
f30ee27c
AV
20075 return;
20076
20077 enum neon_shape rs;
20078 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20079 rs = neon_select_shape (NS_QQ, NS_NULL);
20080 else
20081 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20082
5287ad62
JB
20083 struct neon_type_el et = neon_check_type (2, rs,
20084 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 20085 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
20086}
20087
20088static void
20089do_neon_cnt (void)
20090{
037e8744 20091 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
20092 struct neon_type_el et = neon_check_type (2, rs,
20093 N_EQK | N_INT, N_8 | N_KEY);
037e8744 20094 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
20095}
20096
20097static void
20098do_neon_swp (void)
20099{
037e8744
JB
20100 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20101 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
20102}
20103
20104static void
20105do_neon_tbl_tbx (void)
20106{
20107 unsigned listlenbits;
dcbf9037 20108 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 20109
5287ad62
JB
20110 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
20111 {
dcbf9037 20112 first_error (_("bad list length for table lookup"));
5287ad62
JB
20113 return;
20114 }
5f4273c7 20115
5287ad62
JB
20116 listlenbits = inst.operands[1].imm - 1;
20117 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20118 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20119 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20120 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20121 inst.instruction |= LOW4 (inst.operands[2].reg);
20122 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20123 inst.instruction |= listlenbits << 8;
5f4273c7 20124
88714cb8 20125 neon_dp_fixup (&inst);
5287ad62
JB
20126}
20127
20128static void
20129do_neon_ldm_stm (void)
20130{
20131 /* P, U and L bits are part of bitmask. */
20132 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
20133 unsigned offsetbits = inst.operands[1].imm * 2;
20134
037e8744
JB
20135 if (inst.operands[1].issingle)
20136 {
20137 do_vfp_nsyn_ldm_stm (is_dbmode);
20138 return;
20139 }
20140
5287ad62 20141 constraint (is_dbmode && !inst.operands[0].writeback,
477330fc 20142 _("writeback (!) must be used for VLDMDB and VSTMDB"));
5287ad62
JB
20143
20144 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
477330fc
RM
20145 _("register list must contain at least 1 and at most 16 "
20146 "registers"));
5287ad62
JB
20147
20148 inst.instruction |= inst.operands[0].reg << 16;
20149 inst.instruction |= inst.operands[0].writeback << 21;
20150 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
20151 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
20152
20153 inst.instruction |= offsetbits;
5f4273c7 20154
037e8744 20155 do_vfp_cond_or_thumb ();
5287ad62
JB
20156}
20157
20158static void
20159do_neon_ldr_str (void)
20160{
5287ad62 20161 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 20162
6844b2c2
MGD
20163 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
20164 And is UNPREDICTABLE in thumb mode. */
fa94de6b 20165 if (!is_ldr
6844b2c2 20166 && inst.operands[1].reg == REG_PC
ba86b375 20167 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
6844b2c2 20168 {
94dcf8bf 20169 if (thumb_mode)
6844b2c2 20170 inst.error = _("Use of PC here is UNPREDICTABLE");
94dcf8bf 20171 else if (warn_on_deprecated)
5c3696f8 20172 as_tsktsk (_("Use of PC here is deprecated"));
6844b2c2
MGD
20173 }
20174
037e8744
JB
20175 if (inst.operands[0].issingle)
20176 {
cd2f129f 20177 if (is_ldr)
477330fc 20178 do_vfp_nsyn_opcode ("flds");
cd2f129f 20179 else
477330fc 20180 do_vfp_nsyn_opcode ("fsts");
9db2f6b4
RL
20181
20182 /* ARMv8.2 vldr.16/vstr.16 instruction. */
20183 if (inst.vectype.el[0].size == 16)
20184 do_scalar_fp16_v82_encode ();
5287ad62
JB
20185 }
20186 else
5287ad62 20187 {
cd2f129f 20188 if (is_ldr)
477330fc 20189 do_vfp_nsyn_opcode ("fldd");
5287ad62 20190 else
477330fc 20191 do_vfp_nsyn_opcode ("fstd");
5287ad62 20192 }
5287ad62
JB
20193}
20194
32c36c3c
AV
20195static void
20196do_t_vldr_vstr_sysreg (void)
20197{
20198 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
20199 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
20200
20201 /* Use of PC is UNPREDICTABLE. */
20202 if (inst.operands[1].reg == REG_PC)
20203 inst.error = _("Use of PC here is UNPREDICTABLE");
20204
20205 if (inst.operands[1].immisreg)
20206 inst.error = _("instruction does not accept register index");
20207
20208 if (!inst.operands[1].isreg)
20209 inst.error = _("instruction does not accept PC-relative addressing");
20210
20211 if (abs (inst.operands[1].imm) >= (1 << 7))
20212 inst.error = _("immediate value out of range");
20213
20214 inst.instruction = 0xec000f80;
20215 if (is_vldr)
20216 inst.instruction |= 1 << sysreg_vldr_bitno;
20217 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
20218 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
20219 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
20220}
20221
20222static void
20223do_vldr_vstr (void)
20224{
20225 bfd_boolean sysreg_op = !inst.operands[0].isreg;
20226
20227 /* VLDR/VSTR (System Register). */
20228 if (sysreg_op)
20229 {
20230 if (!mark_feature_used (&arm_ext_v8_1m_main))
20231 as_bad (_("Instruction not permitted on this architecture"));
20232
20233 do_t_vldr_vstr_sysreg ();
20234 }
20235 /* VLDR/VSTR. */
20236 else
20237 {
20238 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
20239 as_bad (_("Instruction not permitted on this architecture"));
20240 do_neon_ldr_str ();
20241 }
20242}
20243
5287ad62
JB
20244/* "interleave" version also handles non-interleaving register VLD1/VST1
20245 instructions. */
20246
20247static void
20248do_neon_ld_st_interleave (void)
20249{
037e8744 20250 struct neon_type_el et = neon_check_type (1, NS_NULL,
477330fc 20251 N_8 | N_16 | N_32 | N_64);
5287ad62
JB
20252 unsigned alignbits = 0;
20253 unsigned idx;
20254 /* The bits in this table go:
20255 0: register stride of one (0) or two (1)
20256 1,2: register list length, minus one (1, 2, 3, 4).
20257 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
20258 We use -1 for invalid entries. */
20259 const int typetable[] =
20260 {
20261 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
20262 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
20263 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
20264 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
20265 };
20266 int typebits;
20267
dcbf9037
JB
20268 if (et.type == NT_invtype)
20269 return;
20270
5287ad62
JB
20271 if (inst.operands[1].immisalign)
20272 switch (inst.operands[1].imm >> 8)
20273 {
20274 case 64: alignbits = 1; break;
20275 case 128:
477330fc 20276 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
e23c0ad8 20277 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
477330fc
RM
20278 goto bad_alignment;
20279 alignbits = 2;
20280 break;
5287ad62 20281 case 256:
477330fc
RM
20282 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20283 goto bad_alignment;
20284 alignbits = 3;
20285 break;
5287ad62
JB
20286 default:
20287 bad_alignment:
477330fc
RM
20288 first_error (_("bad alignment"));
20289 return;
5287ad62
JB
20290 }
20291
20292 inst.instruction |= alignbits << 4;
20293 inst.instruction |= neon_logbits (et.size) << 6;
20294
20295 /* Bits [4:6] of the immediate in a list specifier encode register stride
20296 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
20297 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
20298 up the right value for "type" in a table based on this value and the given
20299 list style, then stick it back. */
20300 idx = ((inst.operands[0].imm >> 4) & 7)
477330fc 20301 | (((inst.instruction >> 8) & 3) << 3);
5287ad62
JB
20302
20303 typebits = typetable[idx];
5f4273c7 20304
5287ad62 20305 constraint (typebits == -1, _("bad list type for instruction"));
1d50d57c 20306 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
35c228db 20307 BAD_EL_TYPE);
5287ad62
JB
20308
20309 inst.instruction &= ~0xf00;
20310 inst.instruction |= typebits << 8;
20311}
20312
20313/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
20314 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
20315 otherwise. The variable arguments are a list of pairs of legal (size, align)
20316 values, terminated with -1. */
20317
20318static int
aa8a0863 20319neon_alignment_bit (int size, int align, int *do_alignment, ...)
5287ad62
JB
20320{
20321 va_list ap;
20322 int result = FAIL, thissize, thisalign;
5f4273c7 20323
5287ad62
JB
20324 if (!inst.operands[1].immisalign)
20325 {
aa8a0863 20326 *do_alignment = 0;
5287ad62
JB
20327 return SUCCESS;
20328 }
5f4273c7 20329
aa8a0863 20330 va_start (ap, do_alignment);
5287ad62
JB
20331
20332 do
20333 {
20334 thissize = va_arg (ap, int);
20335 if (thissize == -1)
477330fc 20336 break;
5287ad62
JB
20337 thisalign = va_arg (ap, int);
20338
20339 if (size == thissize && align == thisalign)
477330fc 20340 result = SUCCESS;
5287ad62
JB
20341 }
20342 while (result != SUCCESS);
20343
20344 va_end (ap);
20345
20346 if (result == SUCCESS)
aa8a0863 20347 *do_alignment = 1;
5287ad62 20348 else
dcbf9037 20349 first_error (_("unsupported alignment for instruction"));
5f4273c7 20350
5287ad62
JB
20351 return result;
20352}
20353
20354static void
20355do_neon_ld_st_lane (void)
20356{
037e8744 20357 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 20358 int align_good, do_alignment = 0;
5287ad62
JB
20359 int logsize = neon_logbits (et.size);
20360 int align = inst.operands[1].imm >> 8;
20361 int n = (inst.instruction >> 8) & 3;
20362 int max_el = 64 / et.size;
5f4273c7 20363
dcbf9037
JB
20364 if (et.type == NT_invtype)
20365 return;
5f4273c7 20366
5287ad62 20367 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
477330fc 20368 _("bad list length"));
5287ad62 20369 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
477330fc 20370 _("scalar index out of range"));
5287ad62 20371 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
477330fc
RM
20372 && et.size == 8,
20373 _("stride of 2 unavailable when element size is 8"));
5f4273c7 20374
5287ad62
JB
20375 switch (n)
20376 {
20377 case 0: /* VLD1 / VST1. */
aa8a0863 20378 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
477330fc 20379 32, 32, -1);
5287ad62 20380 if (align_good == FAIL)
477330fc 20381 return;
aa8a0863 20382 if (do_alignment)
477330fc
RM
20383 {
20384 unsigned alignbits = 0;
20385 switch (et.size)
20386 {
20387 case 16: alignbits = 0x1; break;
20388 case 32: alignbits = 0x3; break;
20389 default: ;
20390 }
20391 inst.instruction |= alignbits << 4;
20392 }
5287ad62
JB
20393 break;
20394
20395 case 1: /* VLD2 / VST2. */
aa8a0863
TS
20396 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
20397 16, 32, 32, 64, -1);
5287ad62 20398 if (align_good == FAIL)
477330fc 20399 return;
aa8a0863 20400 if (do_alignment)
477330fc 20401 inst.instruction |= 1 << 4;
5287ad62
JB
20402 break;
20403
20404 case 2: /* VLD3 / VST3. */
20405 constraint (inst.operands[1].immisalign,
477330fc 20406 _("can't use alignment with this instruction"));
5287ad62
JB
20407 break;
20408
20409 case 3: /* VLD4 / VST4. */
aa8a0863 20410 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc 20411 16, 64, 32, 64, 32, 128, -1);
5287ad62 20412 if (align_good == FAIL)
477330fc 20413 return;
aa8a0863 20414 if (do_alignment)
477330fc
RM
20415 {
20416 unsigned alignbits = 0;
20417 switch (et.size)
20418 {
20419 case 8: alignbits = 0x1; break;
20420 case 16: alignbits = 0x1; break;
20421 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
20422 default: ;
20423 }
20424 inst.instruction |= alignbits << 4;
20425 }
5287ad62
JB
20426 break;
20427
20428 default: ;
20429 }
20430
20431 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
20432 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20433 inst.instruction |= 1 << (4 + logsize);
5f4273c7 20434
5287ad62
JB
20435 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
20436 inst.instruction |= logsize << 10;
20437}
20438
20439/* Encode single n-element structure to all lanes VLD<n> instructions. */
20440
20441static void
20442do_neon_ld_dup (void)
20443{
037e8744 20444 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 20445 int align_good, do_alignment = 0;
5287ad62 20446
dcbf9037
JB
20447 if (et.type == NT_invtype)
20448 return;
20449
5287ad62
JB
20450 switch ((inst.instruction >> 8) & 3)
20451 {
20452 case 0: /* VLD1. */
9c2799c2 20453 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62 20454 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863 20455 &do_alignment, 16, 16, 32, 32, -1);
5287ad62 20456 if (align_good == FAIL)
477330fc 20457 return;
5287ad62 20458 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
477330fc
RM
20459 {
20460 case 1: break;
20461 case 2: inst.instruction |= 1 << 5; break;
20462 default: first_error (_("bad list length")); return;
20463 }
5287ad62
JB
20464 inst.instruction |= neon_logbits (et.size) << 6;
20465 break;
20466
20467 case 1: /* VLD2. */
20468 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863
TS
20469 &do_alignment, 8, 16, 16, 32, 32, 64,
20470 -1);
5287ad62 20471 if (align_good == FAIL)
477330fc 20472 return;
5287ad62 20473 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
477330fc 20474 _("bad list length"));
5287ad62 20475 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 20476 inst.instruction |= 1 << 5;
5287ad62
JB
20477 inst.instruction |= neon_logbits (et.size) << 6;
20478 break;
20479
20480 case 2: /* VLD3. */
20481 constraint (inst.operands[1].immisalign,
477330fc 20482 _("can't use alignment with this instruction"));
5287ad62 20483 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
477330fc 20484 _("bad list length"));
5287ad62 20485 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 20486 inst.instruction |= 1 << 5;
5287ad62
JB
20487 inst.instruction |= neon_logbits (et.size) << 6;
20488 break;
20489
20490 case 3: /* VLD4. */
20491 {
477330fc 20492 int align = inst.operands[1].imm >> 8;
aa8a0863 20493 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc
RM
20494 16, 64, 32, 64, 32, 128, -1);
20495 if (align_good == FAIL)
20496 return;
20497 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
20498 _("bad list length"));
20499 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20500 inst.instruction |= 1 << 5;
20501 if (et.size == 32 && align == 128)
20502 inst.instruction |= 0x3 << 6;
20503 else
20504 inst.instruction |= neon_logbits (et.size) << 6;
5287ad62
JB
20505 }
20506 break;
20507
20508 default: ;
20509 }
20510
aa8a0863 20511 inst.instruction |= do_alignment << 4;
5287ad62
JB
20512}
20513
20514/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
20515 apart from bits [11:4]. */
20516
20517static void
20518do_neon_ldx_stx (void)
20519{
b1a769ed
DG
20520 if (inst.operands[1].isreg)
20521 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
20522
5287ad62
JB
20523 switch (NEON_LANE (inst.operands[0].imm))
20524 {
20525 case NEON_INTERLEAVE_LANES:
88714cb8 20526 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
20527 do_neon_ld_st_interleave ();
20528 break;
5f4273c7 20529
5287ad62 20530 case NEON_ALL_LANES:
88714cb8 20531 NEON_ENCODE (DUP, inst);
2d51fb74
JB
20532 if (inst.instruction == N_INV)
20533 {
20534 first_error ("only loads support such operands");
20535 break;
20536 }
5287ad62
JB
20537 do_neon_ld_dup ();
20538 break;
5f4273c7 20539
5287ad62 20540 default:
88714cb8 20541 NEON_ENCODE (LANE, inst);
5287ad62
JB
20542 do_neon_ld_st_lane ();
20543 }
20544
20545 /* L bit comes from bit mask. */
20546 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20547 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20548 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 20549
5287ad62
JB
20550 if (inst.operands[1].postind)
20551 {
20552 int postreg = inst.operands[1].imm & 0xf;
20553 constraint (!inst.operands[1].immisreg,
477330fc 20554 _("post-index must be a register"));
5287ad62 20555 constraint (postreg == 0xd || postreg == 0xf,
477330fc 20556 _("bad register for post-index"));
5287ad62
JB
20557 inst.instruction |= postreg;
20558 }
4f2374c7 20559 else
5287ad62 20560 {
4f2374c7 20561 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
e2b0ab59
AV
20562 constraint (inst.relocs[0].exp.X_op != O_constant
20563 || inst.relocs[0].exp.X_add_number != 0,
4f2374c7
WN
20564 BAD_ADDR_MODE);
20565
20566 if (inst.operands[1].writeback)
20567 {
20568 inst.instruction |= 0xd;
20569 }
20570 else
20571 inst.instruction |= 0xf;
5287ad62 20572 }
5f4273c7 20573
5287ad62
JB
20574 if (thumb_mode)
20575 inst.instruction |= 0xf9000000;
20576 else
20577 inst.instruction |= 0xf4000000;
20578}
33399f07
MGD
20579
20580/* FP v8. */
20581static void
20582do_vfp_nsyn_fpv8 (enum neon_shape rs)
20583{
a715796b
TG
20584 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20585 D register operands. */
20586 if (neon_shape_class[rs] == SC_DOUBLE)
20587 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20588 _(BAD_FPU));
20589
33399f07
MGD
20590 NEON_ENCODE (FPV8, inst);
20591
9db2f6b4
RL
20592 if (rs == NS_FFF || rs == NS_HHH)
20593 {
20594 do_vfp_sp_dyadic ();
20595
20596 /* ARMv8.2 fp16 instruction. */
20597 if (rs == NS_HHH)
20598 do_scalar_fp16_v82_encode ();
20599 }
33399f07
MGD
20600 else
20601 do_vfp_dp_rd_rn_rm ();
20602
20603 if (rs == NS_DDD)
20604 inst.instruction |= 0x100;
20605
20606 inst.instruction |= 0xf0000000;
20607}
20608
20609static void
20610do_vsel (void)
20611{
5ee91343 20612 set_pred_insn_type (OUTSIDE_PRED_INSN);
33399f07
MGD
20613
20614 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
20615 first_error (_("invalid instruction shape"));
20616}
20617
73924fbc
MGD
20618static void
20619do_vmaxnm (void)
20620{
935295b5
AV
20621 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20622 set_pred_insn_type (OUTSIDE_PRED_INSN);
73924fbc
MGD
20623
20624 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
20625 return;
20626
64c350f2 20627 if (!check_simd_pred_availability (TRUE, NEON_CHECK_CC | NEON_CHECK_ARCH8))
73924fbc
MGD
20628 return;
20629
cc933301 20630 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
73924fbc
MGD
20631}
20632
30bdf752
MGD
20633static void
20634do_vrint_1 (enum neon_cvt_mode mode)
20635{
9db2f6b4 20636 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
30bdf752
MGD
20637 struct neon_type_el et;
20638
20639 if (rs == NS_NULL)
20640 return;
20641
a715796b
TG
20642 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20643 D register operands. */
20644 if (neon_shape_class[rs] == SC_DOUBLE)
20645 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20646 _(BAD_FPU));
20647
9db2f6b4
RL
20648 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
20649 | N_VFP);
30bdf752
MGD
20650 if (et.type != NT_invtype)
20651 {
20652 /* VFP encodings. */
20653 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
20654 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
5ee91343 20655 set_pred_insn_type (OUTSIDE_PRED_INSN);
30bdf752
MGD
20656
20657 NEON_ENCODE (FPV8, inst);
9db2f6b4 20658 if (rs == NS_FF || rs == NS_HH)
30bdf752
MGD
20659 do_vfp_sp_monadic ();
20660 else
20661 do_vfp_dp_rd_rm ();
20662
20663 switch (mode)
20664 {
20665 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
20666 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
20667 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
20668 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
20669 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
20670 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
20671 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
20672 default: abort ();
20673 }
20674
20675 inst.instruction |= (rs == NS_DD) << 8;
20676 do_vfp_cond_or_thumb ();
9db2f6b4
RL
20677
20678 /* ARMv8.2 fp16 vrint instruction. */
20679 if (rs == NS_HH)
20680 do_scalar_fp16_v82_encode ();
30bdf752
MGD
20681 }
20682 else
20683 {
20684 /* Neon encodings (or something broken...). */
20685 inst.error = NULL;
cc933301 20686 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
30bdf752
MGD
20687
20688 if (et.type == NT_invtype)
20689 return;
20690
64c350f2
AV
20691 if (!check_simd_pred_availability (TRUE,
20692 NEON_CHECK_CC | NEON_CHECK_ARCH8))
30bdf752
MGD
20693 return;
20694
a710b305
AV
20695 NEON_ENCODE (FLOAT, inst);
20696
30bdf752
MGD
20697 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20698 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20699 inst.instruction |= LOW4 (inst.operands[1].reg);
20700 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20701 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
20702 /* Mask off the original size bits and reencode them. */
20703 inst.instruction = ((inst.instruction & 0xfff3ffff)
20704 | neon_logbits (et.size) << 18);
20705
30bdf752
MGD
20706 switch (mode)
20707 {
20708 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
20709 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
20710 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
20711 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
20712 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
20713 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
20714 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
20715 default: abort ();
20716 }
20717
20718 if (thumb_mode)
20719 inst.instruction |= 0xfc000000;
20720 else
20721 inst.instruction |= 0xf0000000;
20722 }
20723}
20724
20725static void
20726do_vrintx (void)
20727{
20728 do_vrint_1 (neon_cvt_mode_x);
20729}
20730
20731static void
20732do_vrintz (void)
20733{
20734 do_vrint_1 (neon_cvt_mode_z);
20735}
20736
20737static void
20738do_vrintr (void)
20739{
20740 do_vrint_1 (neon_cvt_mode_r);
20741}
20742
20743static void
20744do_vrinta (void)
20745{
20746 do_vrint_1 (neon_cvt_mode_a);
20747}
20748
20749static void
20750do_vrintn (void)
20751{
20752 do_vrint_1 (neon_cvt_mode_n);
20753}
20754
20755static void
20756do_vrintp (void)
20757{
20758 do_vrint_1 (neon_cvt_mode_p);
20759}
20760
20761static void
20762do_vrintm (void)
20763{
20764 do_vrint_1 (neon_cvt_mode_m);
20765}
20766
c28eeff2
SN
20767static unsigned
20768neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
20769{
20770 unsigned regno = NEON_SCALAR_REG (opnd);
20771 unsigned elno = NEON_SCALAR_INDEX (opnd);
20772
20773 if (elsize == 16 && elno < 2 && regno < 16)
20774 return regno | (elno << 4);
20775 else if (elsize == 32 && elno == 0)
20776 return regno;
20777
20778 first_error (_("scalar out of range"));
20779 return 0;
20780}
20781
20782static void
20783do_vcmla (void)
20784{
5d281bf0
AV
20785 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
20786 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20787 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
20788 constraint (inst.relocs[0].exp.X_op != O_constant,
20789 _("expression too complex"));
20790 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2
SN
20791 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
20792 _("immediate out of range"));
20793 rot /= 90;
5d281bf0 20794
64c350f2
AV
20795 if (!check_simd_pred_availability (TRUE,
20796 NEON_CHECK_ARCH8 | NEON_CHECK_CC))
5d281bf0
AV
20797 return;
20798
c28eeff2
SN
20799 if (inst.operands[2].isscalar)
20800 {
5d281bf0
AV
20801 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20802 first_error (_("invalid instruction shape"));
c28eeff2
SN
20803 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
20804 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20805 N_KEY | N_F16 | N_F32).size;
20806 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
20807 inst.is_neon = 1;
20808 inst.instruction = 0xfe000800;
20809 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20810 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20811 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20812 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20813 inst.instruction |= LOW4 (m);
20814 inst.instruction |= HI1 (m) << 5;
20815 inst.instruction |= neon_quad (rs) << 6;
20816 inst.instruction |= rot << 20;
20817 inst.instruction |= (size == 32) << 23;
20818 }
20819 else
20820 {
5d281bf0
AV
20821 enum neon_shape rs;
20822 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20823 rs = neon_select_shape (NS_QQQI, NS_NULL);
20824 else
20825 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20826
c28eeff2
SN
20827 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20828 N_KEY | N_F16 | N_F32).size;
5d281bf0
AV
20829 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
20830 && (inst.operands[0].reg == inst.operands[1].reg
20831 || inst.operands[0].reg == inst.operands[2].reg))
20832 as_tsktsk (BAD_MVE_SRCDEST);
20833
c28eeff2
SN
20834 neon_three_same (neon_quad (rs), 0, -1);
20835 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20836 inst.instruction |= 0xfc200800;
20837 inst.instruction |= rot << 23;
20838 inst.instruction |= (size == 32) << 20;
20839 }
20840}
20841
20842static void
20843do_vcadd (void)
20844{
5d281bf0
AV
20845 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20846 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20847 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
20848 constraint (inst.relocs[0].exp.X_op != O_constant,
20849 _("expression too complex"));
5d281bf0 20850
e2b0ab59 20851 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2 20852 constraint (rot != 90 && rot != 270, _("immediate out of range"));
5d281bf0
AV
20853 enum neon_shape rs;
20854 struct neon_type_el et;
20855 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20856 {
20857 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20858 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
20859 }
20860 else
20861 {
20862 rs = neon_select_shape (NS_QQQI, NS_NULL);
20863 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
20864 | N_I16 | N_I32);
20865 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
20866 as_tsktsk (_("Warning: 32-bit element size and same first and third "
20867 "operand makes instruction UNPREDICTABLE"));
20868 }
20869
20870 if (et.type == NT_invtype)
20871 return;
20872
64c350f2
AV
20873 if (!check_simd_pred_availability (et.type == NT_float,
20874 NEON_CHECK_ARCH8 | NEON_CHECK_CC))
5d281bf0
AV
20875 return;
20876
20877 if (et.type == NT_float)
20878 {
20879 neon_three_same (neon_quad (rs), 0, -1);
20880 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20881 inst.instruction |= 0xfc800800;
20882 inst.instruction |= (rot == 270) << 24;
20883 inst.instruction |= (et.size == 32) << 20;
20884 }
20885 else
20886 {
20887 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
20888 inst.instruction = 0xfe000f00;
20889 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20890 inst.instruction |= neon_logbits (et.size) << 20;
20891 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20892 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20893 inst.instruction |= (rot == 270) << 12;
20894 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20895 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20896 inst.instruction |= LOW4 (inst.operands[2].reg);
20897 inst.is_neon = 1;
20898 }
c28eeff2
SN
20899}
20900
c604a79a
JW
20901/* Dot Product instructions encoding support. */
20902
20903static void
20904do_neon_dotproduct (int unsigned_p)
20905{
20906 enum neon_shape rs;
20907 unsigned scalar_oprd2 = 0;
20908 int high8;
20909
20910 if (inst.cond != COND_ALWAYS)
20911 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
20912 "is UNPREDICTABLE"));
20913
20914 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
20915 _(BAD_FPU));
20916
20917 /* Dot Product instructions are in three-same D/Q register format or the third
20918 operand can be a scalar index register. */
20919 if (inst.operands[2].isscalar)
20920 {
20921 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
20922 high8 = 0xfe000000;
20923 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
20924 }
20925 else
20926 {
20927 high8 = 0xfc000000;
20928 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
20929 }
20930
20931 if (unsigned_p)
20932 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
20933 else
20934 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
20935
20936 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
20937 Product instruction, so we pass 0 as the "ubit" parameter. And the
20938 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
20939 neon_three_same (neon_quad (rs), 0, 32);
20940
20941 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
20942 different NEON three-same encoding. */
20943 inst.instruction &= 0x00ffffff;
20944 inst.instruction |= high8;
20945 /* Encode 'U' bit which indicates signedness. */
20946 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
20947 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
20948 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
20949 the instruction encoding. */
20950 if (inst.operands[2].isscalar)
20951 {
20952 inst.instruction &= 0xffffffd0;
20953 inst.instruction |= LOW4 (scalar_oprd2);
20954 inst.instruction |= HI1 (scalar_oprd2) << 5;
20955 }
20956}
20957
20958/* Dot Product instructions for signed integer. */
20959
20960static void
20961do_neon_dotproduct_s (void)
20962{
20963 return do_neon_dotproduct (0);
20964}
20965
20966/* Dot Product instructions for unsigned integer. */
20967
20968static void
20969do_neon_dotproduct_u (void)
20970{
20971 return do_neon_dotproduct (1);
20972}
20973
91ff7894
MGD
20974/* Crypto v1 instructions. */
20975static void
20976do_crypto_2op_1 (unsigned elttype, int op)
20977{
5ee91343 20978 set_pred_insn_type (OUTSIDE_PRED_INSN);
91ff7894
MGD
20979
20980 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
20981 == NT_invtype)
20982 return;
20983
20984 inst.error = NULL;
20985
20986 NEON_ENCODE (INTEGER, inst);
20987 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20988 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20989 inst.instruction |= LOW4 (inst.operands[1].reg);
20990 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20991 if (op != -1)
20992 inst.instruction |= op << 6;
20993
20994 if (thumb_mode)
20995 inst.instruction |= 0xfc000000;
20996 else
20997 inst.instruction |= 0xf0000000;
20998}
20999
48adcd8e
MGD
21000static void
21001do_crypto_3op_1 (int u, int op)
21002{
5ee91343 21003 set_pred_insn_type (OUTSIDE_PRED_INSN);
48adcd8e
MGD
21004
21005 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
21006 N_32 | N_UNT | N_KEY).type == NT_invtype)
21007 return;
21008
21009 inst.error = NULL;
21010
21011 NEON_ENCODE (INTEGER, inst);
21012 neon_three_same (1, u, 8 << op);
21013}
21014
91ff7894
MGD
21015static void
21016do_aese (void)
21017{
21018 do_crypto_2op_1 (N_8, 0);
21019}
21020
21021static void
21022do_aesd (void)
21023{
21024 do_crypto_2op_1 (N_8, 1);
21025}
21026
21027static void
21028do_aesmc (void)
21029{
21030 do_crypto_2op_1 (N_8, 2);
21031}
21032
21033static void
21034do_aesimc (void)
21035{
21036 do_crypto_2op_1 (N_8, 3);
21037}
21038
48adcd8e
MGD
21039static void
21040do_sha1c (void)
21041{
21042 do_crypto_3op_1 (0, 0);
21043}
21044
21045static void
21046do_sha1p (void)
21047{
21048 do_crypto_3op_1 (0, 1);
21049}
21050
21051static void
21052do_sha1m (void)
21053{
21054 do_crypto_3op_1 (0, 2);
21055}
21056
21057static void
21058do_sha1su0 (void)
21059{
21060 do_crypto_3op_1 (0, 3);
21061}
91ff7894 21062
48adcd8e
MGD
21063static void
21064do_sha256h (void)
21065{
21066 do_crypto_3op_1 (1, 0);
21067}
21068
21069static void
21070do_sha256h2 (void)
21071{
21072 do_crypto_3op_1 (1, 1);
21073}
21074
21075static void
21076do_sha256su1 (void)
21077{
21078 do_crypto_3op_1 (1, 2);
21079}
3c9017d2
MGD
21080
21081static void
21082do_sha1h (void)
21083{
21084 do_crypto_2op_1 (N_32, -1);
21085}
21086
21087static void
21088do_sha1su1 (void)
21089{
21090 do_crypto_2op_1 (N_32, 0);
21091}
21092
21093static void
21094do_sha256su0 (void)
21095{
21096 do_crypto_2op_1 (N_32, 1);
21097}
dd5181d5
KT
21098
21099static void
21100do_crc32_1 (unsigned int poly, unsigned int sz)
21101{
21102 unsigned int Rd = inst.operands[0].reg;
21103 unsigned int Rn = inst.operands[1].reg;
21104 unsigned int Rm = inst.operands[2].reg;
21105
5ee91343 21106 set_pred_insn_type (OUTSIDE_PRED_INSN);
dd5181d5
KT
21107 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
21108 inst.instruction |= LOW4 (Rn) << 16;
21109 inst.instruction |= LOW4 (Rm);
21110 inst.instruction |= sz << (thumb_mode ? 4 : 21);
21111 inst.instruction |= poly << (thumb_mode ? 20 : 9);
21112
21113 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
21114 as_warn (UNPRED_REG ("r15"));
dd5181d5
KT
21115}
21116
21117static void
21118do_crc32b (void)
21119{
21120 do_crc32_1 (0, 0);
21121}
21122
21123static void
21124do_crc32h (void)
21125{
21126 do_crc32_1 (0, 1);
21127}
21128
21129static void
21130do_crc32w (void)
21131{
21132 do_crc32_1 (0, 2);
21133}
21134
21135static void
21136do_crc32cb (void)
21137{
21138 do_crc32_1 (1, 0);
21139}
21140
21141static void
21142do_crc32ch (void)
21143{
21144 do_crc32_1 (1, 1);
21145}
21146
21147static void
21148do_crc32cw (void)
21149{
21150 do_crc32_1 (1, 2);
21151}
21152
49e8a725
SN
21153static void
21154do_vjcvt (void)
21155{
21156 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
21157 _(BAD_FPU));
21158 neon_check_type (2, NS_FD, N_S32, N_F64);
21159 do_vfp_sp_dp_cvt ();
21160 do_vfp_cond_or_thumb ();
21161}
21162
5287ad62
JB
21163\f
21164/* Overall per-instruction processing. */
21165
21166/* We need to be able to fix up arbitrary expressions in some statements.
21167 This is so that we can handle symbols that are an arbitrary distance from
21168 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
21169 which returns part of an address in a form which will be valid for
21170 a data instruction. We do this by pushing the expression into a symbol
21171 in the expr_section, and creating a fix for that. */
21172
21173static void
21174fix_new_arm (fragS * frag,
21175 int where,
21176 short int size,
21177 expressionS * exp,
21178 int pc_rel,
21179 int reloc)
21180{
21181 fixS * new_fix;
21182
21183 switch (exp->X_op)
21184 {
21185 case O_constant:
6e7ce2cd
PB
21186 if (pc_rel)
21187 {
21188 /* Create an absolute valued symbol, so we have something to
477330fc
RM
21189 refer to in the object file. Unfortunately for us, gas's
21190 generic expression parsing will already have folded out
21191 any use of .set foo/.type foo %function that may have
21192 been used to set type information of the target location,
21193 that's being specified symbolically. We have to presume
21194 the user knows what they are doing. */
6e7ce2cd
PB
21195 char name[16 + 8];
21196 symbolS *symbol;
21197
21198 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
21199
21200 symbol = symbol_find_or_make (name);
21201 S_SET_SEGMENT (symbol, absolute_section);
21202 symbol_set_frag (symbol, &zero_address_frag);
21203 S_SET_VALUE (symbol, exp->X_add_number);
21204 exp->X_op = O_symbol;
21205 exp->X_add_symbol = symbol;
21206 exp->X_add_number = 0;
21207 }
21208 /* FALLTHROUGH */
5287ad62
JB
21209 case O_symbol:
21210 case O_add:
21211 case O_subtract:
21d799b5 21212 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
477330fc 21213 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
21214 break;
21215
21216 default:
21d799b5 21217 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
477330fc 21218 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
21219 break;
21220 }
21221
21222 /* Mark whether the fix is to a THUMB instruction, or an ARM
21223 instruction. */
21224 new_fix->tc_fix_data = thumb_mode;
21225}
21226
21227/* Create a frg for an instruction requiring relaxation. */
21228static void
21229output_relax_insn (void)
21230{
21231 char * to;
21232 symbolS *sym;
0110f2b8
PB
21233 int offset;
21234
6e1cb1a6
PB
21235 /* The size of the instruction is unknown, so tie the debug info to the
21236 start of the instruction. */
21237 dwarf2_emit_insn (0);
6e1cb1a6 21238
e2b0ab59 21239 switch (inst.relocs[0].exp.X_op)
0110f2b8
PB
21240 {
21241 case O_symbol:
e2b0ab59
AV
21242 sym = inst.relocs[0].exp.X_add_symbol;
21243 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
21244 break;
21245 case O_constant:
21246 sym = NULL;
e2b0ab59 21247 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
21248 break;
21249 default:
e2b0ab59 21250 sym = make_expr_symbol (&inst.relocs[0].exp);
0110f2b8
PB
21251 offset = 0;
21252 break;
21253 }
21254 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
21255 inst.relax, sym, offset, NULL/*offset, opcode*/);
21256 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
21257}
21258
21259/* Write a 32-bit thumb instruction to buf. */
21260static void
21261put_thumb32_insn (char * buf, unsigned long insn)
21262{
21263 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
21264 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
21265}
21266
b99bd4ef 21267static void
c19d1205 21268output_inst (const char * str)
b99bd4ef 21269{
c19d1205 21270 char * to = NULL;
b99bd4ef 21271
c19d1205 21272 if (inst.error)
b99bd4ef 21273 {
c19d1205 21274 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
21275 return;
21276 }
5f4273c7
NC
21277 if (inst.relax)
21278 {
21279 output_relax_insn ();
0110f2b8 21280 return;
5f4273c7 21281 }
c19d1205
ZW
21282 if (inst.size == 0)
21283 return;
b99bd4ef 21284
c19d1205 21285 to = frag_more (inst.size);
8dc2430f
NC
21286 /* PR 9814: Record the thumb mode into the current frag so that we know
21287 what type of NOP padding to use, if necessary. We override any previous
21288 setting so that if the mode has changed then the NOPS that we use will
21289 match the encoding of the last instruction in the frag. */
cd000bff 21290 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
21291
21292 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 21293 {
9c2799c2 21294 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 21295 put_thumb32_insn (to, inst.instruction);
b99bd4ef 21296 }
c19d1205 21297 else if (inst.size > INSN_SIZE)
b99bd4ef 21298 {
9c2799c2 21299 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
21300 md_number_to_chars (to, inst.instruction, INSN_SIZE);
21301 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 21302 }
c19d1205
ZW
21303 else
21304 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 21305
e2b0ab59
AV
21306 int r;
21307 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21308 {
21309 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
21310 fix_new_arm (frag_now, to - frag_now->fr_literal,
21311 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
21312 inst.relocs[r].type);
21313 }
b99bd4ef 21314
c19d1205 21315 dwarf2_emit_insn (inst.size);
c19d1205 21316}
b99bd4ef 21317
e07e6e58
NC
21318static char *
21319output_it_inst (int cond, int mask, char * to)
21320{
21321 unsigned long instruction = 0xbf00;
21322
21323 mask &= 0xf;
21324 instruction |= mask;
21325 instruction |= cond << 4;
21326
21327 if (to == NULL)
21328 {
21329 to = frag_more (2);
21330#ifdef OBJ_ELF
21331 dwarf2_emit_insn (2);
21332#endif
21333 }
21334
21335 md_number_to_chars (to, instruction, 2);
21336
21337 return to;
21338}
21339
c19d1205
ZW
21340/* Tag values used in struct asm_opcode's tag field. */
21341enum opcode_tag
21342{
21343 OT_unconditional, /* Instruction cannot be conditionalized.
21344 The ARM condition field is still 0xE. */
21345 OT_unconditionalF, /* Instruction cannot be conditionalized
21346 and carries 0xF in its ARM condition field. */
21347 OT_csuffix, /* Instruction takes a conditional suffix. */
5ee91343
AV
21348 OT_csuffixF, /* Some forms of the instruction take a scalar
21349 conditional suffix, others place 0xF where the
21350 condition field would be, others take a vector
21351 conditional suffix. */
c19d1205
ZW
21352 OT_cinfix3, /* Instruction takes a conditional infix,
21353 beginning at character index 3. (In
21354 unified mode, it becomes a suffix.) */
088fa78e
KH
21355 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
21356 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
21357 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
21358 character index 3, even in unified mode. Used for
21359 legacy instructions where suffix and infix forms
21360 may be ambiguous. */
c19d1205 21361 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 21362 suffix or an infix at character index 3. */
c19d1205
ZW
21363 OT_odd_infix_unc, /* This is the unconditional variant of an
21364 instruction that takes a conditional infix
21365 at an unusual position. In unified mode,
21366 this variant will accept a suffix. */
21367 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
21368 are the conditional variants of instructions that
21369 take conditional infixes in unusual positions.
21370 The infix appears at character index
21371 (tag - OT_odd_infix_0). These are not accepted
21372 in unified mode. */
21373};
b99bd4ef 21374
c19d1205
ZW
21375/* Subroutine of md_assemble, responsible for looking up the primary
21376 opcode from the mnemonic the user wrote. STR points to the
21377 beginning of the mnemonic.
21378
21379 This is not simply a hash table lookup, because of conditional
21380 variants. Most instructions have conditional variants, which are
21381 expressed with a _conditional affix_ to the mnemonic. If we were
21382 to encode each conditional variant as a literal string in the opcode
21383 table, it would have approximately 20,000 entries.
21384
21385 Most mnemonics take this affix as a suffix, and in unified syntax,
21386 'most' is upgraded to 'all'. However, in the divided syntax, some
21387 instructions take the affix as an infix, notably the s-variants of
21388 the arithmetic instructions. Of those instructions, all but six
21389 have the infix appear after the third character of the mnemonic.
21390
21391 Accordingly, the algorithm for looking up primary opcodes given
21392 an identifier is:
21393
21394 1. Look up the identifier in the opcode table.
21395 If we find a match, go to step U.
21396
21397 2. Look up the last two characters of the identifier in the
21398 conditions table. If we find a match, look up the first N-2
21399 characters of the identifier in the opcode table. If we
21400 find a match, go to step CE.
21401
21402 3. Look up the fourth and fifth characters of the identifier in
21403 the conditions table. If we find a match, extract those
21404 characters from the identifier, and look up the remaining
21405 characters in the opcode table. If we find a match, go
21406 to step CM.
21407
21408 4. Fail.
21409
21410 U. Examine the tag field of the opcode structure, in case this is
21411 one of the six instructions with its conditional infix in an
21412 unusual place. If it is, the tag tells us where to find the
21413 infix; look it up in the conditions table and set inst.cond
21414 accordingly. Otherwise, this is an unconditional instruction.
21415 Again set inst.cond accordingly. Return the opcode structure.
21416
21417 CE. Examine the tag field to make sure this is an instruction that
21418 should receive a conditional suffix. If it is not, fail.
21419 Otherwise, set inst.cond from the suffix we already looked up,
21420 and return the opcode structure.
21421
21422 CM. Examine the tag field to make sure this is an instruction that
21423 should receive a conditional infix after the third character.
21424 If it is not, fail. Otherwise, undo the edits to the current
21425 line of input and proceed as for case CE. */
21426
21427static const struct asm_opcode *
21428opcode_lookup (char **str)
21429{
21430 char *end, *base;
21431 char *affix;
21432 const struct asm_opcode *opcode;
21433 const struct asm_cond *cond;
e3cb604e 21434 char save[2];
c19d1205
ZW
21435
21436 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 21437 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 21438 for (base = end = *str; *end != '\0'; end++)
721a8186 21439 if (*end == ' ' || *end == '.')
c19d1205 21440 break;
b99bd4ef 21441
c19d1205 21442 if (end == base)
c921be7d 21443 return NULL;
b99bd4ef 21444
5287ad62 21445 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 21446 if (end[0] == '.')
b99bd4ef 21447 {
5287ad62 21448 int offset = 2;
5f4273c7 21449
267d2029 21450 /* The .w and .n suffixes are only valid if the unified syntax is in
477330fc 21451 use. */
267d2029 21452 if (unified_syntax && end[1] == 'w')
c19d1205 21453 inst.size_req = 4;
267d2029 21454 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
21455 inst.size_req = 2;
21456 else
477330fc 21457 offset = 0;
5287ad62
JB
21458
21459 inst.vectype.elems = 0;
21460
21461 *str = end + offset;
b99bd4ef 21462
5f4273c7 21463 if (end[offset] == '.')
5287ad62 21464 {
267d2029 21465 /* See if we have a Neon type suffix (possible in either unified or
477330fc
RM
21466 non-unified ARM syntax mode). */
21467 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 21468 return NULL;
477330fc 21469 }
5287ad62 21470 else if (end[offset] != '\0' && end[offset] != ' ')
477330fc 21471 return NULL;
b99bd4ef 21472 }
c19d1205
ZW
21473 else
21474 *str = end;
b99bd4ef 21475
c19d1205 21476 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5 21477 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 21478 end - base);
c19d1205 21479 if (opcode)
b99bd4ef 21480 {
c19d1205
ZW
21481 /* step U */
21482 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 21483 {
c19d1205
ZW
21484 inst.cond = COND_ALWAYS;
21485 return opcode;
b99bd4ef 21486 }
b99bd4ef 21487
278df34e 21488 if (warn_on_deprecated && unified_syntax)
5c3696f8 21489 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205 21490 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 21491 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 21492 gas_assert (cond);
b99bd4ef 21493
c19d1205
ZW
21494 inst.cond = cond->value;
21495 return opcode;
21496 }
5ee91343
AV
21497 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21498 {
21499 /* Cannot have a conditional suffix on a mnemonic of less than a character.
21500 */
21501 if (end - base < 2)
21502 return NULL;
21503 affix = end - 1;
21504 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
21505 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21506 affix - base);
21507 /* If this opcode can not be vector predicated then don't accept it with a
21508 vector predication code. */
21509 if (opcode && !opcode->mayBeVecPred)
21510 opcode = NULL;
21511 }
21512 if (!opcode || !cond)
21513 {
21514 /* Cannot have a conditional suffix on a mnemonic of less than two
21515 characters. */
21516 if (end - base < 3)
21517 return NULL;
b99bd4ef 21518
5ee91343
AV
21519 /* Look for suffixed mnemonic. */
21520 affix = end - 2;
21521 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21522 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21523 affix - base);
21524 }
b99bd4ef 21525
c19d1205
ZW
21526 if (opcode && cond)
21527 {
21528 /* step CE */
21529 switch (opcode->tag)
21530 {
e3cb604e
PB
21531 case OT_cinfix3_legacy:
21532 /* Ignore conditional suffixes matched on infix only mnemonics. */
21533 break;
21534
c19d1205 21535 case OT_cinfix3:
088fa78e 21536 case OT_cinfix3_deprecated:
c19d1205
ZW
21537 case OT_odd_infix_unc:
21538 if (!unified_syntax)
0198d5e6 21539 return NULL;
1a0670f3 21540 /* Fall through. */
c19d1205
ZW
21541
21542 case OT_csuffix:
477330fc 21543 case OT_csuffixF:
c19d1205
ZW
21544 case OT_csuf_or_in3:
21545 inst.cond = cond->value;
21546 return opcode;
21547
21548 case OT_unconditional:
21549 case OT_unconditionalF:
dfa9f0d5 21550 if (thumb_mode)
c921be7d 21551 inst.cond = cond->value;
dfa9f0d5
PB
21552 else
21553 {
c921be7d 21554 /* Delayed diagnostic. */
dfa9f0d5
PB
21555 inst.error = BAD_COND;
21556 inst.cond = COND_ALWAYS;
21557 }
c19d1205 21558 return opcode;
b99bd4ef 21559
c19d1205 21560 default:
c921be7d 21561 return NULL;
c19d1205
ZW
21562 }
21563 }
b99bd4ef 21564
c19d1205
ZW
21565 /* Cannot have a usual-position infix on a mnemonic of less than
21566 six characters (five would be a suffix). */
21567 if (end - base < 6)
c921be7d 21568 return NULL;
b99bd4ef 21569
c19d1205
ZW
21570 /* Look for infixed mnemonic in the usual position. */
21571 affix = base + 3;
21d799b5 21572 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 21573 if (!cond)
c921be7d 21574 return NULL;
e3cb604e
PB
21575
21576 memcpy (save, affix, 2);
21577 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5 21578 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 21579 (end - base) - 2);
e3cb604e
PB
21580 memmove (affix + 2, affix, (end - affix) - 2);
21581 memcpy (affix, save, 2);
21582
088fa78e
KH
21583 if (opcode
21584 && (opcode->tag == OT_cinfix3
21585 || opcode->tag == OT_cinfix3_deprecated
21586 || opcode->tag == OT_csuf_or_in3
21587 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 21588 {
c921be7d 21589 /* Step CM. */
278df34e 21590 if (warn_on_deprecated && unified_syntax
088fa78e
KH
21591 && (opcode->tag == OT_cinfix3
21592 || opcode->tag == OT_cinfix3_deprecated))
5c3696f8 21593 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205
ZW
21594
21595 inst.cond = cond->value;
21596 return opcode;
b99bd4ef
NC
21597 }
21598
c921be7d 21599 return NULL;
b99bd4ef
NC
21600}
21601
e07e6e58
NC
21602/* This function generates an initial IT instruction, leaving its block
21603 virtually open for the new instructions. Eventually,
5ee91343 21604 the mask will be updated by now_pred_add_mask () each time
e07e6e58
NC
21605 a new instruction needs to be included in the IT block.
21606 Finally, the block is closed with close_automatic_it_block ().
21607 The block closure can be requested either from md_assemble (),
21608 a tencode (), or due to a label hook. */
21609
21610static void
21611new_automatic_it_block (int cond)
21612{
5ee91343
AV
21613 now_pred.state = AUTOMATIC_PRED_BLOCK;
21614 now_pred.mask = 0x18;
21615 now_pred.cc = cond;
21616 now_pred.block_length = 1;
cd000bff 21617 mapping_state (MAP_THUMB);
5ee91343
AV
21618 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
21619 now_pred.warn_deprecated = FALSE;
21620 now_pred.insn_cond = TRUE;
e07e6e58
NC
21621}
21622
21623/* Close an automatic IT block.
21624 See comments in new_automatic_it_block (). */
21625
21626static void
21627close_automatic_it_block (void)
21628{
5ee91343
AV
21629 now_pred.mask = 0x10;
21630 now_pred.block_length = 0;
e07e6e58
NC
21631}
21632
21633/* Update the mask of the current automatically-generated IT
21634 instruction. See comments in new_automatic_it_block (). */
21635
21636static void
5ee91343 21637now_pred_add_mask (int cond)
e07e6e58
NC
21638{
21639#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
21640#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
477330fc 21641 | ((bitvalue) << (nbit)))
e07e6e58 21642 const int resulting_bit = (cond & 1);
c921be7d 21643
5ee91343
AV
21644 now_pred.mask &= 0xf;
21645 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 21646 resulting_bit,
5ee91343
AV
21647 (5 - now_pred.block_length));
21648 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 21649 1,
5ee91343
AV
21650 ((5 - now_pred.block_length) - 1));
21651 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
e07e6e58
NC
21652
21653#undef CLEAR_BIT
21654#undef SET_BIT_VALUE
e07e6e58
NC
21655}
21656
21657/* The IT blocks handling machinery is accessed through the these functions:
21658 it_fsm_pre_encode () from md_assemble ()
5ee91343
AV
21659 set_pred_insn_type () optional, from the tencode functions
21660 set_pred_insn_type_last () ditto
21661 in_pred_block () ditto
e07e6e58 21662 it_fsm_post_encode () from md_assemble ()
33eaf5de 21663 force_automatic_it_block_close () from label handling functions
e07e6e58
NC
21664
21665 Rationale:
21666 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
477330fc
RM
21667 initializing the IT insn type with a generic initial value depending
21668 on the inst.condition.
e07e6e58 21669 2) During the tencode function, two things may happen:
477330fc 21670 a) The tencode function overrides the IT insn type by
5ee91343
AV
21671 calling either set_pred_insn_type (type) or
21672 set_pred_insn_type_last ().
477330fc 21673 b) The tencode function queries the IT block state by
5ee91343 21674 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
477330fc 21675
5ee91343
AV
21676 Both set_pred_insn_type and in_pred_block run the internal FSM state
21677 handling function (handle_pred_state), because: a) setting the IT insn
477330fc
RM
21678 type may incur in an invalid state (exiting the function),
21679 and b) querying the state requires the FSM to be updated.
21680 Specifically we want to avoid creating an IT block for conditional
21681 branches, so it_fsm_pre_encode is actually a guess and we can't
21682 determine whether an IT block is required until the tencode () routine
21683 has decided what type of instruction this actually it.
5ee91343
AV
21684 Because of this, if set_pred_insn_type and in_pred_block have to be
21685 used, set_pred_insn_type has to be called first.
477330fc 21686
5ee91343
AV
21687 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
21688 that determines the insn IT type depending on the inst.cond code.
477330fc
RM
21689 When a tencode () routine encodes an instruction that can be
21690 either outside an IT block, or, in the case of being inside, has to be
5ee91343 21691 the last one, set_pred_insn_type_last () will determine the proper
477330fc 21692 IT instruction type based on the inst.cond code. Otherwise,
5ee91343 21693 set_pred_insn_type can be called for overriding that logic or
477330fc
RM
21694 for covering other cases.
21695
5ee91343
AV
21696 Calling handle_pred_state () may not transition the IT block state to
21697 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
477330fc 21698 still queried. Instead, if the FSM determines that the state should
5ee91343 21699 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
477330fc
RM
21700 after the tencode () function: that's what it_fsm_post_encode () does.
21701
5ee91343 21702 Since in_pred_block () calls the state handling function to get an
477330fc
RM
21703 updated state, an error may occur (due to invalid insns combination).
21704 In that case, inst.error is set.
21705 Therefore, inst.error has to be checked after the execution of
21706 the tencode () routine.
e07e6e58
NC
21707
21708 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
477330fc 21709 any pending state change (if any) that didn't take place in
5ee91343 21710 handle_pred_state () as explained above. */
e07e6e58
NC
21711
21712static void
21713it_fsm_pre_encode (void)
21714{
21715 if (inst.cond != COND_ALWAYS)
5ee91343 21716 inst.pred_insn_type = INSIDE_IT_INSN;
e07e6e58 21717 else
5ee91343 21718 inst.pred_insn_type = OUTSIDE_PRED_INSN;
e07e6e58 21719
5ee91343 21720 now_pred.state_handled = 0;
e07e6e58
NC
21721}
21722
21723/* IT state FSM handling function. */
5ee91343
AV
21724/* MVE instructions and non-MVE instructions are handled differently because of
21725 the introduction of VPT blocks.
21726 Specifications say that any non-MVE instruction inside a VPT block is
21727 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
21728 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
35c228db 21729 few exceptions we have MVE_UNPREDICABLE_INSN.
5ee91343
AV
21730 The error messages provided depending on the different combinations possible
21731 are described in the cases below:
21732 For 'most' MVE instructions:
21733 1) In an IT block, with an IT code: syntax error
21734 2) In an IT block, with a VPT code: error: must be in a VPT block
21735 3) In an IT block, with no code: warning: UNPREDICTABLE
21736 4) In a VPT block, with an IT code: syntax error
21737 5) In a VPT block, with a VPT code: OK!
21738 6) In a VPT block, with no code: error: missing code
21739 7) Outside a pred block, with an IT code: error: syntax error
21740 8) Outside a pred block, with a VPT code: error: should be in a VPT block
21741 9) Outside a pred block, with no code: OK!
21742 For non-MVE instructions:
21743 10) In an IT block, with an IT code: OK!
21744 11) In an IT block, with a VPT code: syntax error
21745 12) In an IT block, with no code: error: missing code
21746 13) In a VPT block, with an IT code: error: should be in an IT block
21747 14) In a VPT block, with a VPT code: syntax error
21748 15) In a VPT block, with no code: UNPREDICTABLE
21749 16) Outside a pred block, with an IT code: error: should be in an IT block
21750 17) Outside a pred block, with a VPT code: syntax error
21751 18) Outside a pred block, with no code: OK!
21752 */
21753
e07e6e58
NC
21754
21755static int
5ee91343 21756handle_pred_state (void)
e07e6e58 21757{
5ee91343
AV
21758 now_pred.state_handled = 1;
21759 now_pred.insn_cond = FALSE;
e07e6e58 21760
5ee91343 21761 switch (now_pred.state)
e07e6e58 21762 {
5ee91343
AV
21763 case OUTSIDE_PRED_BLOCK:
21764 switch (inst.pred_insn_type)
e07e6e58 21765 {
35c228db 21766 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
21767 case MVE_OUTSIDE_PRED_INSN:
21768 if (inst.cond < COND_ALWAYS)
21769 {
21770 /* Case 7: Outside a pred block, with an IT code: error: syntax
21771 error. */
21772 inst.error = BAD_SYNTAX;
21773 return FAIL;
21774 }
21775 /* Case 9: Outside a pred block, with no code: OK! */
21776 break;
21777 case OUTSIDE_PRED_INSN:
21778 if (inst.cond > COND_ALWAYS)
21779 {
21780 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21781 */
21782 inst.error = BAD_SYNTAX;
21783 return FAIL;
21784 }
21785 /* Case 18: Outside a pred block, with no code: OK! */
e07e6e58
NC
21786 break;
21787
5ee91343
AV
21788 case INSIDE_VPT_INSN:
21789 /* Case 8: Outside a pred block, with a VPT code: error: should be in
21790 a VPT block. */
21791 inst.error = BAD_OUT_VPT;
21792 return FAIL;
21793
e07e6e58
NC
21794 case INSIDE_IT_INSN:
21795 case INSIDE_IT_LAST_INSN:
5ee91343 21796 if (inst.cond < COND_ALWAYS)
e07e6e58 21797 {
5ee91343
AV
21798 /* Case 16: Outside a pred block, with an IT code: error: should
21799 be in an IT block. */
21800 if (thumb_mode == 0)
e07e6e58 21801 {
5ee91343
AV
21802 if (unified_syntax
21803 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
21804 as_tsktsk (_("Warning: conditional outside an IT block"\
21805 " for Thumb."));
e07e6e58
NC
21806 }
21807 else
21808 {
5ee91343
AV
21809 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
21810 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
21811 {
21812 /* Automatically generate the IT instruction. */
21813 new_automatic_it_block (inst.cond);
21814 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
21815 close_automatic_it_block ();
21816 }
21817 else
21818 {
21819 inst.error = BAD_OUT_IT;
21820 return FAIL;
21821 }
e07e6e58 21822 }
5ee91343 21823 break;
e07e6e58 21824 }
5ee91343
AV
21825 else if (inst.cond > COND_ALWAYS)
21826 {
21827 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21828 */
21829 inst.error = BAD_SYNTAX;
21830 return FAIL;
21831 }
21832 else
21833 gas_assert (0);
e07e6e58
NC
21834 case IF_INSIDE_IT_LAST_INSN:
21835 case NEUTRAL_IT_INSN:
21836 break;
21837
5ee91343
AV
21838 case VPT_INSN:
21839 if (inst.cond != COND_ALWAYS)
21840 first_error (BAD_SYNTAX);
21841 now_pred.state = MANUAL_PRED_BLOCK;
21842 now_pred.block_length = 0;
21843 now_pred.type = VECTOR_PRED;
21844 now_pred.cc = 0;
21845 break;
e07e6e58 21846 case IT_INSN:
5ee91343
AV
21847 now_pred.state = MANUAL_PRED_BLOCK;
21848 now_pred.block_length = 0;
21849 now_pred.type = SCALAR_PRED;
e07e6e58
NC
21850 break;
21851 }
21852 break;
21853
5ee91343 21854 case AUTOMATIC_PRED_BLOCK:
e07e6e58
NC
21855 /* Three things may happen now:
21856 a) We should increment current it block size;
21857 b) We should close current it block (closing insn or 4 insns);
21858 c) We should close current it block and start a new one (due
21859 to incompatible conditions or
21860 4 insns-length block reached). */
21861
5ee91343 21862 switch (inst.pred_insn_type)
e07e6e58 21863 {
5ee91343
AV
21864 case INSIDE_VPT_INSN:
21865 case VPT_INSN:
35c228db 21866 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
21867 case MVE_OUTSIDE_PRED_INSN:
21868 gas_assert (0);
21869 case OUTSIDE_PRED_INSN:
2b0f3761 21870 /* The closure of the block shall happen immediately,
5ee91343 21871 so any in_pred_block () call reports the block as closed. */
e07e6e58
NC
21872 force_automatic_it_block_close ();
21873 break;
21874
21875 case INSIDE_IT_INSN:
21876 case INSIDE_IT_LAST_INSN:
21877 case IF_INSIDE_IT_LAST_INSN:
5ee91343 21878 now_pred.block_length++;
e07e6e58 21879
5ee91343
AV
21880 if (now_pred.block_length > 4
21881 || !now_pred_compatible (inst.cond))
e07e6e58
NC
21882 {
21883 force_automatic_it_block_close ();
5ee91343 21884 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
e07e6e58
NC
21885 new_automatic_it_block (inst.cond);
21886 }
21887 else
21888 {
5ee91343
AV
21889 now_pred.insn_cond = TRUE;
21890 now_pred_add_mask (inst.cond);
e07e6e58
NC
21891 }
21892
5ee91343
AV
21893 if (now_pred.state == AUTOMATIC_PRED_BLOCK
21894 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
21895 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
e07e6e58
NC
21896 close_automatic_it_block ();
21897 break;
21898
21899 case NEUTRAL_IT_INSN:
5ee91343
AV
21900 now_pred.block_length++;
21901 now_pred.insn_cond = TRUE;
e07e6e58 21902
5ee91343 21903 if (now_pred.block_length > 4)
e07e6e58
NC
21904 force_automatic_it_block_close ();
21905 else
5ee91343 21906 now_pred_add_mask (now_pred.cc & 1);
e07e6e58
NC
21907 break;
21908
21909 case IT_INSN:
21910 close_automatic_it_block ();
5ee91343 21911 now_pred.state = MANUAL_PRED_BLOCK;
e07e6e58
NC
21912 break;
21913 }
21914 break;
21915
5ee91343 21916 case MANUAL_PRED_BLOCK:
e07e6e58 21917 {
5ee91343
AV
21918 int cond, is_last;
21919 if (now_pred.type == SCALAR_PRED)
e07e6e58 21920 {
5ee91343
AV
21921 /* Check conditional suffixes. */
21922 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
21923 now_pred.mask <<= 1;
21924 now_pred.mask &= 0x1f;
21925 is_last = (now_pred.mask == 0x10);
21926 }
21927 else
21928 {
21929 now_pred.cc ^= (now_pred.mask >> 4);
21930 cond = now_pred.cc + 0xf;
21931 now_pred.mask <<= 1;
21932 now_pred.mask &= 0x1f;
21933 is_last = now_pred.mask == 0x10;
21934 }
21935 now_pred.insn_cond = TRUE;
e07e6e58 21936
5ee91343
AV
21937 switch (inst.pred_insn_type)
21938 {
21939 case OUTSIDE_PRED_INSN:
21940 if (now_pred.type == SCALAR_PRED)
21941 {
21942 if (inst.cond == COND_ALWAYS)
21943 {
21944 /* Case 12: In an IT block, with no code: error: missing
21945 code. */
21946 inst.error = BAD_NOT_IT;
21947 return FAIL;
21948 }
21949 else if (inst.cond > COND_ALWAYS)
21950 {
21951 /* Case 11: In an IT block, with a VPT code: syntax error.
21952 */
21953 inst.error = BAD_SYNTAX;
21954 return FAIL;
21955 }
21956 else if (thumb_mode)
21957 {
21958 /* This is for some special cases where a non-MVE
21959 instruction is not allowed in an IT block, such as cbz,
21960 but are put into one with a condition code.
21961 You could argue this should be a syntax error, but we
21962 gave the 'not allowed in IT block' diagnostic in the
21963 past so we will keep doing so. */
21964 inst.error = BAD_NOT_IT;
21965 return FAIL;
21966 }
21967 break;
21968 }
21969 else
21970 {
21971 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
21972 as_tsktsk (MVE_NOT_VPT);
21973 return SUCCESS;
21974 }
21975 case MVE_OUTSIDE_PRED_INSN:
21976 if (now_pred.type == SCALAR_PRED)
21977 {
21978 if (inst.cond == COND_ALWAYS)
21979 {
21980 /* Case 3: In an IT block, with no code: warning:
21981 UNPREDICTABLE. */
21982 as_tsktsk (MVE_NOT_IT);
21983 return SUCCESS;
21984 }
21985 else if (inst.cond < COND_ALWAYS)
21986 {
21987 /* Case 1: In an IT block, with an IT code: syntax error.
21988 */
21989 inst.error = BAD_SYNTAX;
21990 return FAIL;
21991 }
21992 else
21993 gas_assert (0);
21994 }
21995 else
21996 {
21997 if (inst.cond < COND_ALWAYS)
21998 {
21999 /* Case 4: In a VPT block, with an IT code: syntax error.
22000 */
22001 inst.error = BAD_SYNTAX;
22002 return FAIL;
22003 }
22004 else if (inst.cond == COND_ALWAYS)
22005 {
22006 /* Case 6: In a VPT block, with no code: error: missing
22007 code. */
22008 inst.error = BAD_NOT_VPT;
22009 return FAIL;
22010 }
22011 else
22012 {
22013 gas_assert (0);
22014 }
22015 }
35c228db
AV
22016 case MVE_UNPREDICABLE_INSN:
22017 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
22018 return SUCCESS;
e07e6e58 22019 case INSIDE_IT_INSN:
5ee91343 22020 if (inst.cond > COND_ALWAYS)
e07e6e58 22021 {
5ee91343
AV
22022 /* Case 11: In an IT block, with a VPT code: syntax error. */
22023 /* Case 14: In a VPT block, with a VPT code: syntax error. */
22024 inst.error = BAD_SYNTAX;
22025 return FAIL;
22026 }
22027 else if (now_pred.type == SCALAR_PRED)
22028 {
22029 /* Case 10: In an IT block, with an IT code: OK! */
22030 if (cond != inst.cond)
22031 {
22032 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
22033 BAD_VPT_COND;
22034 return FAIL;
22035 }
22036 }
22037 else
22038 {
22039 /* Case 13: In a VPT block, with an IT code: error: should be
22040 in an IT block. */
22041 inst.error = BAD_OUT_IT;
e07e6e58
NC
22042 return FAIL;
22043 }
22044 break;
22045
5ee91343
AV
22046 case INSIDE_VPT_INSN:
22047 if (now_pred.type == SCALAR_PRED)
22048 {
22049 /* Case 2: In an IT block, with a VPT code: error: must be in a
22050 VPT block. */
22051 inst.error = BAD_OUT_VPT;
22052 return FAIL;
22053 }
22054 /* Case 5: In a VPT block, with a VPT code: OK! */
22055 else if (cond != inst.cond)
22056 {
22057 inst.error = BAD_VPT_COND;
22058 return FAIL;
22059 }
22060 break;
e07e6e58
NC
22061 case INSIDE_IT_LAST_INSN:
22062 case IF_INSIDE_IT_LAST_INSN:
5ee91343
AV
22063 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
22064 {
22065 /* Case 4: In a VPT block, with an IT code: syntax error. */
22066 /* Case 11: In an IT block, with a VPT code: syntax error. */
22067 inst.error = BAD_SYNTAX;
22068 return FAIL;
22069 }
22070 else if (cond != inst.cond)
e07e6e58
NC
22071 {
22072 inst.error = BAD_IT_COND;
22073 return FAIL;
22074 }
22075 if (!is_last)
22076 {
22077 inst.error = BAD_BRANCH;
22078 return FAIL;
22079 }
22080 break;
22081
22082 case NEUTRAL_IT_INSN:
5ee91343
AV
22083 /* The BKPT instruction is unconditional even in a IT or VPT
22084 block. */
e07e6e58
NC
22085 break;
22086
22087 case IT_INSN:
5ee91343
AV
22088 if (now_pred.type == SCALAR_PRED)
22089 {
22090 inst.error = BAD_IT_IT;
22091 return FAIL;
22092 }
22093 /* fall through. */
22094 case VPT_INSN:
22095 if (inst.cond == COND_ALWAYS)
22096 {
22097 /* Executing a VPT/VPST instruction inside an IT block or a
22098 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
22099 */
22100 if (now_pred.type == SCALAR_PRED)
22101 as_tsktsk (MVE_NOT_IT);
22102 else
22103 as_tsktsk (MVE_NOT_VPT);
22104 return SUCCESS;
22105 }
22106 else
22107 {
22108 /* VPT/VPST do not accept condition codes. */
22109 inst.error = BAD_SYNTAX;
22110 return FAIL;
22111 }
e07e6e58 22112 }
5ee91343 22113 }
e07e6e58
NC
22114 break;
22115 }
22116
22117 return SUCCESS;
22118}
22119
5a01bb1d
MGD
22120struct depr_insn_mask
22121{
22122 unsigned long pattern;
22123 unsigned long mask;
22124 const char* description;
22125};
22126
22127/* List of 16-bit instruction patterns deprecated in an IT block in
22128 ARMv8. */
22129static const struct depr_insn_mask depr_it_insns[] = {
22130 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
22131 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
22132 { 0xa000, 0xb800, N_("ADR") },
22133 { 0x4800, 0xf800, N_("Literal loads") },
22134 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
22135 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
c8de034b
JW
22136 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
22137 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
22138 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
5a01bb1d
MGD
22139 { 0, 0, NULL }
22140};
22141
e07e6e58
NC
22142static void
22143it_fsm_post_encode (void)
22144{
22145 int is_last;
22146
5ee91343
AV
22147 if (!now_pred.state_handled)
22148 handle_pred_state ();
e07e6e58 22149
5ee91343
AV
22150 if (now_pred.insn_cond
22151 && !now_pred.warn_deprecated
5a01bb1d 22152 && warn_on_deprecated
df9909b8
TP
22153 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
22154 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
5a01bb1d
MGD
22155 {
22156 if (inst.instruction >= 0x10000)
22157 {
5c3696f8 22158 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
df9909b8 22159 "performance deprecated in ARMv8-A and ARMv8-R"));
5ee91343 22160 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
22161 }
22162 else
22163 {
22164 const struct depr_insn_mask *p = depr_it_insns;
22165
22166 while (p->mask != 0)
22167 {
22168 if ((inst.instruction & p->mask) == p->pattern)
22169 {
df9909b8
TP
22170 as_tsktsk (_("IT blocks containing 16-bit Thumb "
22171 "instructions of the following class are "
22172 "performance deprecated in ARMv8-A and "
22173 "ARMv8-R: %s"), p->description);
5ee91343 22174 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
22175 break;
22176 }
22177
22178 ++p;
22179 }
22180 }
22181
5ee91343 22182 if (now_pred.block_length > 1)
5a01bb1d 22183 {
5c3696f8 22184 as_tsktsk (_("IT blocks containing more than one conditional "
df9909b8
TP
22185 "instruction are performance deprecated in ARMv8-A and "
22186 "ARMv8-R"));
5ee91343 22187 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
22188 }
22189 }
22190
5ee91343
AV
22191 is_last = (now_pred.mask == 0x10);
22192 if (is_last)
22193 {
22194 now_pred.state = OUTSIDE_PRED_BLOCK;
22195 now_pred.mask = 0;
22196 }
e07e6e58
NC
22197}
22198
22199static void
22200force_automatic_it_block_close (void)
22201{
5ee91343 22202 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
e07e6e58
NC
22203 {
22204 close_automatic_it_block ();
5ee91343
AV
22205 now_pred.state = OUTSIDE_PRED_BLOCK;
22206 now_pred.mask = 0;
e07e6e58
NC
22207 }
22208}
22209
22210static int
5ee91343 22211in_pred_block (void)
e07e6e58 22212{
5ee91343
AV
22213 if (!now_pred.state_handled)
22214 handle_pred_state ();
e07e6e58 22215
5ee91343 22216 return now_pred.state != OUTSIDE_PRED_BLOCK;
e07e6e58
NC
22217}
22218
ff8646ee
TP
22219/* Whether OPCODE only has T32 encoding. Since this function is only used by
22220 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
22221 here, hence the "known" in the function name. */
fc289b0a
TP
22222
22223static bfd_boolean
ff8646ee 22224known_t32_only_insn (const struct asm_opcode *opcode)
fc289b0a
TP
22225{
22226 /* Original Thumb-1 wide instruction. */
22227 if (opcode->tencode == do_t_blx
22228 || opcode->tencode == do_t_branch23
22229 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
22230 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
22231 return TRUE;
22232
16a1fa25
TP
22233 /* Wide-only instruction added to ARMv8-M Baseline. */
22234 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
ff8646ee
TP
22235 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
22236 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
22237 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
22238 return TRUE;
22239
22240 return FALSE;
22241}
22242
22243/* Whether wide instruction variant can be used if available for a valid OPCODE
22244 in ARCH. */
22245
22246static bfd_boolean
22247t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
22248{
22249 if (known_t32_only_insn (opcode))
22250 return TRUE;
22251
22252 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
22253 of variant T3 of B.W is checked in do_t_branch. */
22254 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
22255 && opcode->tencode == do_t_branch)
22256 return TRUE;
22257
bada4342
JW
22258 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
22259 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
22260 && opcode->tencode == do_t_mov_cmp
22261 /* Make sure CMP instruction is not affected. */
22262 && opcode->aencode == do_mov)
22263 return TRUE;
22264
ff8646ee
TP
22265 /* Wide instruction variants of all instructions with narrow *and* wide
22266 variants become available with ARMv6t2. Other opcodes are either
22267 narrow-only or wide-only and are thus available if OPCODE is valid. */
22268 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
22269 return TRUE;
22270
22271 /* OPCODE with narrow only instruction variant or wide variant not
22272 available. */
fc289b0a
TP
22273 return FALSE;
22274}
22275
c19d1205
ZW
22276void
22277md_assemble (char *str)
b99bd4ef 22278{
c19d1205
ZW
22279 char *p = str;
22280 const struct asm_opcode * opcode;
b99bd4ef 22281
c19d1205
ZW
22282 /* Align the previous label if needed. */
22283 if (last_label_seen != NULL)
b99bd4ef 22284 {
c19d1205
ZW
22285 symbol_set_frag (last_label_seen, frag_now);
22286 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
22287 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
22288 }
22289
c19d1205 22290 memset (&inst, '\0', sizeof (inst));
e2b0ab59
AV
22291 int r;
22292 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
22293 inst.relocs[r].type = BFD_RELOC_UNUSED;
b99bd4ef 22294
c19d1205
ZW
22295 opcode = opcode_lookup (&p);
22296 if (!opcode)
b99bd4ef 22297 {
c19d1205 22298 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 22299 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d 22300 if (! create_register_alias (str, p)
477330fc 22301 && ! create_neon_reg_alias (str, p))
c19d1205 22302 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 22303
b99bd4ef
NC
22304 return;
22305 }
22306
278df34e 22307 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
5c3696f8 22308 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
088fa78e 22309
037e8744
JB
22310 /* The value which unconditional instructions should have in place of the
22311 condition field. */
22312 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
22313
c19d1205 22314 if (thumb_mode)
b99bd4ef 22315 {
e74cfd16 22316 arm_feature_set variant;
8f06b2d8
PB
22317
22318 variant = cpu_variant;
22319 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
22320 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
22321 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 22322 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
22323 if (!opcode->tvariant
22324 || (thumb_mode == 1
22325 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 22326 {
173205ca
TP
22327 if (opcode->tencode == do_t_swi)
22328 as_bad (_("SVC is not permitted on this architecture"));
22329 else
22330 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
b99bd4ef
NC
22331 return;
22332 }
c19d1205
ZW
22333 if (inst.cond != COND_ALWAYS && !unified_syntax
22334 && opcode->tencode != do_t_branch)
b99bd4ef 22335 {
c19d1205 22336 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
22337 return;
22338 }
22339
fc289b0a
TP
22340 /* Two things are addressed here:
22341 1) Implicit require narrow instructions on Thumb-1.
22342 This avoids relaxation accidentally introducing Thumb-2
22343 instructions.
22344 2) Reject wide instructions in non Thumb-2 cores.
22345
22346 Only instructions with narrow and wide variants need to be handled
22347 but selecting all non wide-only instructions is easier. */
22348 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
ff8646ee 22349 && !t32_insn_ok (variant, opcode))
076d447c 22350 {
fc289b0a
TP
22351 if (inst.size_req == 0)
22352 inst.size_req = 2;
22353 else if (inst.size_req == 4)
752d5da4 22354 {
ff8646ee
TP
22355 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
22356 as_bad (_("selected processor does not support 32bit wide "
22357 "variant of instruction `%s'"), str);
22358 else
22359 as_bad (_("selected processor does not support `%s' in "
22360 "Thumb-2 mode"), str);
fc289b0a 22361 return;
752d5da4 22362 }
076d447c
PB
22363 }
22364
c19d1205
ZW
22365 inst.instruction = opcode->tvalue;
22366
5be8be5d 22367 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
477330fc 22368 {
5ee91343 22369 /* Prepare the pred_insn_type for those encodings that don't set
477330fc
RM
22370 it. */
22371 it_fsm_pre_encode ();
c19d1205 22372
477330fc 22373 opcode->tencode ();
e07e6e58 22374
477330fc
RM
22375 it_fsm_post_encode ();
22376 }
e27ec89e 22377
0110f2b8 22378 if (!(inst.error || inst.relax))
b99bd4ef 22379 {
9c2799c2 22380 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
22381 inst.size = (inst.instruction > 0xffff ? 4 : 2);
22382 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 22383 {
c19d1205 22384 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
22385 return;
22386 }
22387 }
076d447c
PB
22388
22389 /* Something has gone badly wrong if we try to relax a fixed size
477330fc 22390 instruction. */
9c2799c2 22391 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 22392
e74cfd16
PB
22393 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22394 *opcode->tvariant);
ee065d83 22395 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
fc289b0a
TP
22396 set those bits when Thumb-2 32-bit instructions are seen. The impact
22397 of relaxable instructions will be considered later after we finish all
22398 relaxation. */
ff8646ee
TP
22399 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
22400 variant = arm_arch_none;
22401 else
22402 variant = cpu_variant;
22403 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
e74cfd16
PB
22404 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22405 arm_ext_v6t2);
cd000bff 22406
88714cb8
DG
22407 check_neon_suffixes;
22408
cd000bff 22409 if (!inst.error)
c877a2f2
NC
22410 {
22411 mapping_state (MAP_THUMB);
22412 }
c19d1205 22413 }
3e9e4fcf 22414 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 22415 {
845b51d6
PB
22416 bfd_boolean is_bx;
22417
22418 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
22419 is_bx = (opcode->aencode == do_bx);
22420
c19d1205 22421 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
22422 if (!(is_bx && fix_v4bx)
22423 && !(opcode->avariant &&
22424 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 22425 {
84b52b66 22426 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
c19d1205 22427 return;
b99bd4ef 22428 }
c19d1205 22429 if (inst.size_req)
b99bd4ef 22430 {
c19d1205
ZW
22431 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
22432 return;
b99bd4ef
NC
22433 }
22434
c19d1205
ZW
22435 inst.instruction = opcode->avalue;
22436 if (opcode->tag == OT_unconditionalF)
eff0bc54 22437 inst.instruction |= 0xFU << 28;
c19d1205
ZW
22438 else
22439 inst.instruction |= inst.cond << 28;
22440 inst.size = INSN_SIZE;
5be8be5d 22441 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
477330fc
RM
22442 {
22443 it_fsm_pre_encode ();
22444 opcode->aencode ();
22445 it_fsm_post_encode ();
22446 }
ee065d83 22447 /* Arm mode bx is marked as both v4T and v5 because it's still required
477330fc 22448 on a hypothetical non-thumb v5 core. */
845b51d6 22449 if (is_bx)
e74cfd16 22450 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 22451 else
e74cfd16
PB
22452 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
22453 *opcode->avariant);
88714cb8
DG
22454
22455 check_neon_suffixes;
22456
cd000bff 22457 if (!inst.error)
c877a2f2
NC
22458 {
22459 mapping_state (MAP_ARM);
22460 }
b99bd4ef 22461 }
3e9e4fcf
JB
22462 else
22463 {
22464 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
22465 "-- `%s'"), str);
22466 return;
22467 }
c19d1205
ZW
22468 output_inst (str);
22469}
b99bd4ef 22470
e07e6e58 22471static void
5ee91343 22472check_pred_blocks_finished (void)
e07e6e58
NC
22473{
22474#ifdef OBJ_ELF
22475 asection *sect;
22476
22477 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
5ee91343
AV
22478 if (seg_info (sect)->tc_segment_info_data.current_pred.state
22479 == MANUAL_PRED_BLOCK)
e07e6e58 22480 {
5ee91343
AV
22481 if (now_pred.type == SCALAR_PRED)
22482 as_warn (_("section '%s' finished with an open IT block."),
22483 sect->name);
22484 else
22485 as_warn (_("section '%s' finished with an open VPT/VPST block."),
22486 sect->name);
e07e6e58
NC
22487 }
22488#else
5ee91343
AV
22489 if (now_pred.state == MANUAL_PRED_BLOCK)
22490 {
22491 if (now_pred.type == SCALAR_PRED)
22492 as_warn (_("file finished with an open IT block."));
22493 else
22494 as_warn (_("file finished with an open VPT/VPST block."));
22495 }
e07e6e58
NC
22496#endif
22497}
22498
c19d1205
ZW
22499/* Various frobbings of labels and their addresses. */
22500
22501void
22502arm_start_line_hook (void)
22503{
22504 last_label_seen = NULL;
b99bd4ef
NC
22505}
22506
c19d1205
ZW
22507void
22508arm_frob_label (symbolS * sym)
b99bd4ef 22509{
c19d1205 22510 last_label_seen = sym;
b99bd4ef 22511
c19d1205 22512 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 22513
c19d1205
ZW
22514#if defined OBJ_COFF || defined OBJ_ELF
22515 ARM_SET_INTERWORK (sym, support_interwork);
22516#endif
b99bd4ef 22517
e07e6e58
NC
22518 force_automatic_it_block_close ();
22519
5f4273c7 22520 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
22521 as Thumb functions. This is because these labels, whilst
22522 they exist inside Thumb code, are not the entry points for
22523 possible ARM->Thumb calls. Also, these labels can be used
22524 as part of a computed goto or switch statement. eg gcc
22525 can generate code that looks like this:
b99bd4ef 22526
c19d1205
ZW
22527 ldr r2, [pc, .Laaa]
22528 lsl r3, r3, #2
22529 ldr r2, [r3, r2]
22530 mov pc, r2
b99bd4ef 22531
c19d1205
ZW
22532 .Lbbb: .word .Lxxx
22533 .Lccc: .word .Lyyy
22534 ..etc...
22535 .Laaa: .word Lbbb
b99bd4ef 22536
c19d1205
ZW
22537 The first instruction loads the address of the jump table.
22538 The second instruction converts a table index into a byte offset.
22539 The third instruction gets the jump address out of the table.
22540 The fourth instruction performs the jump.
b99bd4ef 22541
c19d1205
ZW
22542 If the address stored at .Laaa is that of a symbol which has the
22543 Thumb_Func bit set, then the linker will arrange for this address
22544 to have the bottom bit set, which in turn would mean that the
22545 address computation performed by the third instruction would end
22546 up with the bottom bit set. Since the ARM is capable of unaligned
22547 word loads, the instruction would then load the incorrect address
22548 out of the jump table, and chaos would ensue. */
22549 if (label_is_thumb_function_name
22550 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
22551 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 22552 {
c19d1205
ZW
22553 /* When the address of a Thumb function is taken the bottom
22554 bit of that address should be set. This will allow
22555 interworking between Arm and Thumb functions to work
22556 correctly. */
b99bd4ef 22557
c19d1205 22558 THUMB_SET_FUNC (sym, 1);
b99bd4ef 22559
c19d1205 22560 label_is_thumb_function_name = FALSE;
b99bd4ef 22561 }
07a53e5c 22562
07a53e5c 22563 dwarf2_emit_label (sym);
b99bd4ef
NC
22564}
22565
c921be7d 22566bfd_boolean
c19d1205 22567arm_data_in_code (void)
b99bd4ef 22568{
c19d1205 22569 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 22570 {
c19d1205
ZW
22571 *input_line_pointer = '/';
22572 input_line_pointer += 5;
22573 *input_line_pointer = 0;
c921be7d 22574 return TRUE;
b99bd4ef
NC
22575 }
22576
c921be7d 22577 return FALSE;
b99bd4ef
NC
22578}
22579
c19d1205
ZW
22580char *
22581arm_canonicalize_symbol_name (char * name)
b99bd4ef 22582{
c19d1205 22583 int len;
b99bd4ef 22584
c19d1205
ZW
22585 if (thumb_mode && (len = strlen (name)) > 5
22586 && streq (name + len - 5, "/data"))
22587 *(name + len - 5) = 0;
b99bd4ef 22588
c19d1205 22589 return name;
b99bd4ef 22590}
c19d1205
ZW
22591\f
22592/* Table of all register names defined by default. The user can
22593 define additional names with .req. Note that all register names
22594 should appear in both upper and lowercase variants. Some registers
22595 also have mixed-case names. */
b99bd4ef 22596
dcbf9037 22597#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 22598#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 22599#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
22600#define REGSET(p,t) \
22601 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
22602 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
22603 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
22604 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
22605#define REGSETH(p,t) \
22606 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
22607 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
22608 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
22609 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
22610#define REGSET2(p,t) \
22611 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
22612 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
22613 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
22614 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
22615#define SPLRBANK(base,bank,t) \
22616 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
22617 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
22618 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
22619 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
22620 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
22621 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 22622
c19d1205 22623static const struct reg_entry reg_names[] =
7ed4c4c5 22624{
c19d1205
ZW
22625 /* ARM integer registers. */
22626 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 22627
c19d1205
ZW
22628 /* ATPCS synonyms. */
22629 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
22630 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
22631 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 22632
c19d1205
ZW
22633 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
22634 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
22635 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 22636
c19d1205
ZW
22637 /* Well-known aliases. */
22638 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
22639 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
22640
22641 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
22642 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
22643
1b883319
AV
22644 /* Defining the new Zero register from ARMv8.1-M. */
22645 REGDEF(zr,15,ZR),
22646 REGDEF(ZR,15,ZR),
22647
c19d1205
ZW
22648 /* Coprocessor numbers. */
22649 REGSET(p, CP), REGSET(P, CP),
22650
22651 /* Coprocessor register numbers. The "cr" variants are for backward
22652 compatibility. */
22653 REGSET(c, CN), REGSET(C, CN),
22654 REGSET(cr, CN), REGSET(CR, CN),
22655
90ec0d68
MGD
22656 /* ARM banked registers. */
22657 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
22658 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
22659 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
22660 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
22661 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
22662 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
22663 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
22664
22665 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
22666 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
22667 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
22668 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
22669 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
1472d06f 22670 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
90ec0d68
MGD
22671 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
22672 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
22673
22674 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
22675 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
22676 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
22677 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
22678 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
22679 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
22680 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 22681 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
22682 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
22683
c19d1205
ZW
22684 /* FPA registers. */
22685 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
22686 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
22687
22688 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
22689 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
22690
22691 /* VFP SP registers. */
5287ad62
JB
22692 REGSET(s,VFS), REGSET(S,VFS),
22693 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
22694
22695 /* VFP DP Registers. */
5287ad62
JB
22696 REGSET(d,VFD), REGSET(D,VFD),
22697 /* Extra Neon DP registers. */
22698 REGSETH(d,VFD), REGSETH(D,VFD),
22699
22700 /* Neon QP registers. */
22701 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
22702
22703 /* VFP control registers. */
22704 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
22705 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
22706 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
22707 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
22708 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
22709 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
40c7d507 22710 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
c19d1205
ZW
22711
22712 /* Maverick DSP coprocessor registers. */
22713 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
22714 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
22715
22716 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
22717 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
22718 REGDEF(dspsc,0,DSPSC),
22719
22720 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
22721 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
22722 REGDEF(DSPSC,0,DSPSC),
22723
22724 /* iWMMXt data registers - p0, c0-15. */
22725 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
22726
22727 /* iWMMXt control registers - p1, c0-3. */
22728 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
22729 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
22730 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
22731 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
22732
22733 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
22734 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
22735 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
22736 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
22737 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
22738
22739 /* XScale accumulator registers. */
22740 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
22741};
22742#undef REGDEF
22743#undef REGNUM
22744#undef REGSET
7ed4c4c5 22745
c19d1205
ZW
22746/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
22747 within psr_required_here. */
22748static const struct asm_psr psrs[] =
22749{
22750 /* Backward compatibility notation. Note that "all" is no longer
22751 truly all possible PSR bits. */
22752 {"all", PSR_c | PSR_f},
22753 {"flg", PSR_f},
22754 {"ctl", PSR_c},
22755
22756 /* Individual flags. */
22757 {"f", PSR_f},
22758 {"c", PSR_c},
22759 {"x", PSR_x},
22760 {"s", PSR_s},
59b42a0d 22761
c19d1205
ZW
22762 /* Combinations of flags. */
22763 {"fs", PSR_f | PSR_s},
22764 {"fx", PSR_f | PSR_x},
22765 {"fc", PSR_f | PSR_c},
22766 {"sf", PSR_s | PSR_f},
22767 {"sx", PSR_s | PSR_x},
22768 {"sc", PSR_s | PSR_c},
22769 {"xf", PSR_x | PSR_f},
22770 {"xs", PSR_x | PSR_s},
22771 {"xc", PSR_x | PSR_c},
22772 {"cf", PSR_c | PSR_f},
22773 {"cs", PSR_c | PSR_s},
22774 {"cx", PSR_c | PSR_x},
22775 {"fsx", PSR_f | PSR_s | PSR_x},
22776 {"fsc", PSR_f | PSR_s | PSR_c},
22777 {"fxs", PSR_f | PSR_x | PSR_s},
22778 {"fxc", PSR_f | PSR_x | PSR_c},
22779 {"fcs", PSR_f | PSR_c | PSR_s},
22780 {"fcx", PSR_f | PSR_c | PSR_x},
22781 {"sfx", PSR_s | PSR_f | PSR_x},
22782 {"sfc", PSR_s | PSR_f | PSR_c},
22783 {"sxf", PSR_s | PSR_x | PSR_f},
22784 {"sxc", PSR_s | PSR_x | PSR_c},
22785 {"scf", PSR_s | PSR_c | PSR_f},
22786 {"scx", PSR_s | PSR_c | PSR_x},
22787 {"xfs", PSR_x | PSR_f | PSR_s},
22788 {"xfc", PSR_x | PSR_f | PSR_c},
22789 {"xsf", PSR_x | PSR_s | PSR_f},
22790 {"xsc", PSR_x | PSR_s | PSR_c},
22791 {"xcf", PSR_x | PSR_c | PSR_f},
22792 {"xcs", PSR_x | PSR_c | PSR_s},
22793 {"cfs", PSR_c | PSR_f | PSR_s},
22794 {"cfx", PSR_c | PSR_f | PSR_x},
22795 {"csf", PSR_c | PSR_s | PSR_f},
22796 {"csx", PSR_c | PSR_s | PSR_x},
22797 {"cxf", PSR_c | PSR_x | PSR_f},
22798 {"cxs", PSR_c | PSR_x | PSR_s},
22799 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
22800 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
22801 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
22802 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
22803 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
22804 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
22805 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
22806 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
22807 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
22808 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
22809 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
22810 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
22811 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
22812 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
22813 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
22814 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
22815 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
22816 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
22817 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
22818 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
22819 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
22820 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
22821 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
22822 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
22823};
22824
62b3e311
PB
22825/* Table of V7M psr names. */
22826static const struct asm_psr v7m_psrs[] =
22827{
1a336194
TP
22828 {"apsr", 0x0 }, {"APSR", 0x0 },
22829 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
22830 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
22831 {"psr", 0x3 }, {"PSR", 0x3 },
22832 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
22833 {"ipsr", 0x5 }, {"IPSR", 0x5 },
22834 {"epsr", 0x6 }, {"EPSR", 0x6 },
22835 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
22836 {"msp", 0x8 }, {"MSP", 0x8 },
22837 {"psp", 0x9 }, {"PSP", 0x9 },
22838 {"msplim", 0xa }, {"MSPLIM", 0xa },
22839 {"psplim", 0xb }, {"PSPLIM", 0xb },
22840 {"primask", 0x10}, {"PRIMASK", 0x10},
22841 {"basepri", 0x11}, {"BASEPRI", 0x11},
22842 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
1a336194
TP
22843 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
22844 {"control", 0x14}, {"CONTROL", 0x14},
22845 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
22846 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
22847 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
22848 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
22849 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
22850 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
22851 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
22852 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
22853 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
62b3e311
PB
22854};
22855
c19d1205
ZW
22856/* Table of all shift-in-operand names. */
22857static const struct asm_shift_name shift_names [] =
b99bd4ef 22858{
c19d1205
ZW
22859 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
22860 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
22861 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
22862 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
22863 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
f5f10c66
AV
22864 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
22865 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
c19d1205 22866};
b99bd4ef 22867
c19d1205
ZW
22868/* Table of all explicit relocation names. */
22869#ifdef OBJ_ELF
22870static struct reloc_entry reloc_names[] =
22871{
22872 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
22873 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
22874 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
22875 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
22876 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
22877 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
22878 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
22879 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
22880 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
22881 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 22882 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
22883 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
22884 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
477330fc 22885 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
0855e32b 22886 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
477330fc 22887 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
0855e32b 22888 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
188fd7ae
CL
22889 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
22890 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
22891 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
22892 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22893 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22894 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
5c5a4843
CL
22895 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
22896 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
22897 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
22898 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
c19d1205
ZW
22899};
22900#endif
b99bd4ef 22901
5ee91343 22902/* Table of all conditional affixes. */
c19d1205
ZW
22903static const struct asm_cond conds[] =
22904{
22905 {"eq", 0x0},
22906 {"ne", 0x1},
22907 {"cs", 0x2}, {"hs", 0x2},
22908 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
22909 {"mi", 0x4},
22910 {"pl", 0x5},
22911 {"vs", 0x6},
22912 {"vc", 0x7},
22913 {"hi", 0x8},
22914 {"ls", 0x9},
22915 {"ge", 0xa},
22916 {"lt", 0xb},
22917 {"gt", 0xc},
22918 {"le", 0xd},
22919 {"al", 0xe}
22920};
5ee91343
AV
22921static const struct asm_cond vconds[] =
22922{
22923 {"t", 0xf},
22924 {"e", 0x10}
22925};
bfae80f2 22926
e797f7e0 22927#define UL_BARRIER(L,U,CODE,FEAT) \
823d2571
TG
22928 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
22929 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
e797f7e0 22930
62b3e311
PB
22931static struct asm_barrier_opt barrier_opt_names[] =
22932{
e797f7e0
MGD
22933 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
22934 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
22935 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
22936 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
22937 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
22938 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
22939 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
22940 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
22941 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
22942 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
22943 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
22944 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
22945 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
22946 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
22947 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
22948 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
22949};
22950
e797f7e0
MGD
22951#undef UL_BARRIER
22952
c19d1205
ZW
22953/* Table of ARM-format instructions. */
22954
22955/* Macros for gluing together operand strings. N.B. In all cases
22956 other than OPS0, the trailing OP_stop comes from default
22957 zero-initialization of the unspecified elements of the array. */
22958#define OPS0() { OP_stop, }
22959#define OPS1(a) { OP_##a, }
22960#define OPS2(a,b) { OP_##a,OP_##b, }
22961#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
22962#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
22963#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
22964#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
22965
5be8be5d
DG
22966/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
22967 This is useful when mixing operands for ARM and THUMB, i.e. using the
22968 MIX_ARM_THUMB_OPERANDS macro.
22969 In order to use these macros, prefix the number of operands with _
22970 e.g. _3. */
22971#define OPS_1(a) { a, }
22972#define OPS_2(a,b) { a,b, }
22973#define OPS_3(a,b,c) { a,b,c, }
22974#define OPS_4(a,b,c,d) { a,b,c,d, }
22975#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
22976#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
22977
c19d1205
ZW
22978/* These macros abstract out the exact format of the mnemonic table and
22979 save some repeated characters. */
22980
22981/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
22982#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 22983 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
5ee91343 22984 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
22985
22986/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
22987 a T_MNEM_xyz enumerator. */
22988#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22989 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 22990#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22991 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
22992
22993/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
22994 infix after the third character. */
22995#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 22996 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
5ee91343 22997 THUMB_VARIANT, do_##ae, do_##te, 0 }
088fa78e 22998#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 22999 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
5ee91343 23000 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 23001#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 23002 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 23003#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 23004 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 23005#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 23006 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 23007#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 23008 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205 23009
c19d1205 23010/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
23011 field is still 0xE. Many of the Thumb variants can be executed
23012 conditionally, so this is checked separately. */
c19d1205 23013#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 23014 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 23015 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 23016
dd5181d5
KT
23017/* Same as TUE but the encoding function for ARM and Thumb modes is the same.
23018 Used by mnemonics that have very minimal differences in the encoding for
23019 ARM and Thumb variants and can be handled in a common function. */
23020#define TUEc(mnem, op, top, nops, ops, en) \
23021 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 23022 THUMB_VARIANT, do_##en, do_##en, 0 }
dd5181d5 23023
c19d1205
ZW
23024/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
23025 condition code field. */
23026#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 23027 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 23028 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
23029
23030/* ARM-only variants of all the above. */
6a86118a 23031#define CE(mnem, op, nops, ops, ae) \
5ee91343 23032 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
23033
23034#define C3(mnem, op, nops, ops, ae) \
5ee91343 23035 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 23036
cf3cf39d
TP
23037/* Thumb-only variants of TCE and TUE. */
23038#define ToC(mnem, top, nops, ops, te) \
23039 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
5ee91343 23040 do_##te, 0 }
cf3cf39d
TP
23041
23042#define ToU(mnem, top, nops, ops, te) \
23043 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
5ee91343 23044 NULL, do_##te, 0 }
cf3cf39d 23045
4389b29a
AV
23046/* T_MNEM_xyz enumerator variants of ToC. */
23047#define toC(mnem, top, nops, ops, te) \
23048 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
5ee91343 23049 do_##te, 0 }
4389b29a 23050
f6b2b12d
AV
23051/* T_MNEM_xyz enumerator variants of ToU. */
23052#define toU(mnem, top, nops, ops, te) \
23053 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
5ee91343 23054 NULL, do_##te, 0 }
f6b2b12d 23055
e3cb604e
PB
23056/* Legacy mnemonics that always have conditional infix after the third
23057 character. */
23058#define CL(mnem, op, nops, ops, ae) \
21d799b5 23059 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 23060 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
e3cb604e 23061
8f06b2d8
PB
23062/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
23063#define cCE(mnem, op, nops, ops, ae) \
5ee91343 23064 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 23065
57785aa2
AV
23066/* mov instructions that are shared between coprocessor and MVE. */
23067#define mcCE(mnem, op, nops, ops, ae) \
23068 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
23069
e3cb604e
PB
23070/* Legacy coprocessor instructions where conditional infix and conditional
23071 suffix are ambiguous. For consistency this includes all FPA instructions,
23072 not just the potentially ambiguous ones. */
23073#define cCL(mnem, op, nops, ops, ae) \
21d799b5 23074 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 23075 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
e3cb604e
PB
23076
23077/* Coprocessor, takes either a suffix or a position-3 infix
23078 (for an FPA corner case). */
23079#define C3E(mnem, op, nops, ops, ae) \
21d799b5 23080 { mnem, OPS##nops ops, OT_csuf_or_in3, \
5ee91343 23081 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 23082
6a86118a 23083#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
23084 { m1 #m2 m3, OPS##nops ops, \
23085 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
5ee91343 23086 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
23087
23088#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
23089 xCM_ (m1, , m2, op, nops, ops, ae), \
23090 xCM_ (m1, eq, m2, op, nops, ops, ae), \
23091 xCM_ (m1, ne, m2, op, nops, ops, ae), \
23092 xCM_ (m1, cs, m2, op, nops, ops, ae), \
23093 xCM_ (m1, hs, m2, op, nops, ops, ae), \
23094 xCM_ (m1, cc, m2, op, nops, ops, ae), \
23095 xCM_ (m1, ul, m2, op, nops, ops, ae), \
23096 xCM_ (m1, lo, m2, op, nops, ops, ae), \
23097 xCM_ (m1, mi, m2, op, nops, ops, ae), \
23098 xCM_ (m1, pl, m2, op, nops, ops, ae), \
23099 xCM_ (m1, vs, m2, op, nops, ops, ae), \
23100 xCM_ (m1, vc, m2, op, nops, ops, ae), \
23101 xCM_ (m1, hi, m2, op, nops, ops, ae), \
23102 xCM_ (m1, ls, m2, op, nops, ops, ae), \
23103 xCM_ (m1, ge, m2, op, nops, ops, ae), \
23104 xCM_ (m1, lt, m2, op, nops, ops, ae), \
23105 xCM_ (m1, gt, m2, op, nops, ops, ae), \
23106 xCM_ (m1, le, m2, op, nops, ops, ae), \
23107 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
23108
23109#define UE(mnem, op, nops, ops, ae) \
5ee91343 23110 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
23111
23112#define UF(mnem, op, nops, ops, ae) \
5ee91343 23113 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 23114
5287ad62
JB
23115/* Neon data-processing. ARM versions are unconditional with cond=0xf.
23116 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
23117 use the same encoding function for each. */
23118#define NUF(mnem, op, nops, ops, enc) \
23119 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
5ee91343 23120 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
23121
23122/* Neon data processing, version which indirects through neon_enc_tab for
23123 the various overloaded versions of opcodes. */
23124#define nUF(mnem, op, nops, ops, enc) \
21d799b5 23125 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5ee91343 23126 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
23127
23128/* Neon insn with conditional suffix for the ARM version, non-overloaded
23129 version. */
5ee91343 23130#define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
037e8744 23131 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5ee91343 23132 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 23133
037e8744 23134#define NCE(mnem, op, nops, ops, enc) \
5ee91343 23135 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
23136
23137#define NCEF(mnem, op, nops, ops, enc) \
5ee91343 23138 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
037e8744 23139
5287ad62 23140/* Neon insn with conditional suffix for the ARM version, overloaded types. */
5ee91343 23141#define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
21d799b5 23142 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5ee91343 23143 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 23144
037e8744 23145#define nCE(mnem, op, nops, ops, enc) \
5ee91343 23146 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
23147
23148#define nCEF(mnem, op, nops, ops, enc) \
5ee91343
AV
23149 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
23150
23151/* */
23152#define mCEF(mnem, op, nops, ops, enc) \
a302e574 23153 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
5ee91343
AV
23154 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23155
23156
23157/* nCEF but for MVE predicated instructions. */
23158#define mnCEF(mnem, op, nops, ops, enc) \
23159 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
23160
23161/* nCE but for MVE predicated instructions. */
23162#define mnCE(mnem, op, nops, ops, enc) \
23163 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
037e8744 23164
5ee91343
AV
23165/* NUF but for potentially MVE predicated instructions. */
23166#define MNUF(mnem, op, nops, ops, enc) \
23167 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
23168 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23169
23170/* nUF but for potentially MVE predicated instructions. */
23171#define mnUF(mnem, op, nops, ops, enc) \
23172 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
23173 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23174
23175/* ToC but for potentially MVE predicated instructions. */
23176#define mToC(mnem, top, nops, ops, te) \
23177 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
23178 do_##te, 1 }
23179
23180/* NCE but for MVE predicated instructions. */
23181#define MNCE(mnem, op, nops, ops, enc) \
23182 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
23183
23184/* NCEF but for MVE predicated instructions. */
23185#define MNCEF(mnem, op, nops, ops, enc) \
23186 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
c19d1205
ZW
23187#define do_0 0
23188
c19d1205 23189static const struct asm_opcode insns[] =
bfae80f2 23190{
74db7efb
NC
23191#define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
23192#define THUMB_VARIANT & arm_ext_v4t
21d799b5
NC
23193 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
23194 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
23195 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
23196 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
23197 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
23198 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
23199 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
23200 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
23201 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
23202 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
23203 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
23204 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
23205 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
23206 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
23207 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
23208 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
23209
23210 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
23211 for setting PSR flag bits. They are obsolete in V6 and do not
23212 have Thumb equivalents. */
21d799b5
NC
23213 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
23214 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
23215 CL("tstp", 110f000, 2, (RR, SH), cmp),
23216 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
23217 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
23218 CL("cmpp", 150f000, 2, (RR, SH), cmp),
23219 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
23220 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
23221 CL("cmnp", 170f000, 2, (RR, SH), cmp),
23222
23223 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
72d98d16 23224 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
21d799b5
NC
23225 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
23226 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
23227
23228 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
23229 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
23230 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
23231 OP_RRnpc),
23232 OP_ADDRGLDR),ldst, t_ldst),
23233 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
23234
23235 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23236 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23237 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23238 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23239 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23240 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23241
21d799b5
NC
23242 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
23243 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 23244
c19d1205 23245 /* Pseudo ops. */
21d799b5 23246 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 23247 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 23248 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
74db7efb 23249 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
c19d1205
ZW
23250
23251 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
23252 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
23253 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
23254 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
23255 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
23256 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
23257 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
23258 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
23259 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
23260 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
23261 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
23262 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
23263 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 23264
16a4cf17 23265 /* These may simplify to neg. */
21d799b5
NC
23266 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
23267 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 23268
173205ca
TP
23269#undef THUMB_VARIANT
23270#define THUMB_VARIANT & arm_ext_os
23271
23272 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
23273 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
23274
c921be7d
NC
23275#undef THUMB_VARIANT
23276#define THUMB_VARIANT & arm_ext_v6
23277
21d799b5 23278 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
23279
23280 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
23281#undef THUMB_VARIANT
23282#define THUMB_VARIANT & arm_ext_v6t2
23283
21d799b5
NC
23284 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23285 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23286 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 23287
5be8be5d
DG
23288 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23289 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23290 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
23291 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 23292
21d799b5
NC
23293 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23294 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 23295
21d799b5
NC
23296 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23297 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
23298
23299 /* V1 instructions with no Thumb analogue at all. */
21d799b5 23300 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
23301 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
23302
23303 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
23304 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
23305 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
23306 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
23307 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
23308 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
23309 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
23310 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
23311
c921be7d
NC
23312#undef ARM_VARIANT
23313#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
23314#undef THUMB_VARIANT
23315#define THUMB_VARIANT & arm_ext_v4t
23316
21d799b5
NC
23317 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
23318 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 23319
c921be7d
NC
23320#undef THUMB_VARIANT
23321#define THUMB_VARIANT & arm_ext_v6t2
23322
21d799b5 23323 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
23324 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
23325
23326 /* Generic coprocessor instructions. */
21d799b5
NC
23327 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23328 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23329 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23330 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23331 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23332 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 23333 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 23334
c921be7d
NC
23335#undef ARM_VARIANT
23336#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
23337
21d799b5 23338 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
23339 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23340
c921be7d
NC
23341#undef ARM_VARIANT
23342#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
23343#undef THUMB_VARIANT
23344#define THUMB_VARIANT & arm_ext_msr
23345
d2cd1205
JB
23346 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
23347 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 23348
c921be7d
NC
23349#undef ARM_VARIANT
23350#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
23351#undef THUMB_VARIANT
23352#define THUMB_VARIANT & arm_ext_v6t2
23353
21d799b5
NC
23354 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23355 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23356 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23357 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23358 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23359 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23360 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23361 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 23362
c921be7d
NC
23363#undef ARM_VARIANT
23364#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
23365#undef THUMB_VARIANT
23366#define THUMB_VARIANT & arm_ext_v4t
23367
5be8be5d
DG
23368 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23369 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23370 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23371 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
56c0a61f
RE
23372 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23373 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 23374
c921be7d
NC
23375#undef ARM_VARIANT
23376#define ARM_VARIANT & arm_ext_v4t_5
23377
c19d1205
ZW
23378 /* ARM Architecture 4T. */
23379 /* Note: bx (and blx) are required on V5, even if the processor does
23380 not support Thumb. */
21d799b5 23381 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 23382
c921be7d
NC
23383#undef ARM_VARIANT
23384#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
23385#undef THUMB_VARIANT
23386#define THUMB_VARIANT & arm_ext_v5t
23387
c19d1205
ZW
23388 /* Note: blx has 2 variants; the .value coded here is for
23389 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
23390 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
23391 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 23392
c921be7d
NC
23393#undef THUMB_VARIANT
23394#define THUMB_VARIANT & arm_ext_v6t2
23395
21d799b5
NC
23396 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
23397 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23398 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23399 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23400 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23401 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23402 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23403 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 23404
c921be7d 23405#undef ARM_VARIANT
74db7efb
NC
23406#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
23407#undef THUMB_VARIANT
23408#define THUMB_VARIANT & arm_ext_v5exp
c921be7d 23409
21d799b5
NC
23410 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23411 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23412 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23413 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 23414
21d799b5
NC
23415 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23416 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 23417
21d799b5
NC
23418 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23419 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23420 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23421 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 23422
21d799b5
NC
23423 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23424 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23425 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23426 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 23427
21d799b5
NC
23428 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23429 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 23430
03ee1b7f
NC
23431 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23432 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23433 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23434 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 23435
c921be7d 23436#undef ARM_VARIANT
74db7efb
NC
23437#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
23438#undef THUMB_VARIANT
23439#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 23440
21d799b5 23441 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
23442 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
23443 ldrd, t_ldstd),
23444 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
23445 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 23446
21d799b5
NC
23447 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23448 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 23449
c921be7d
NC
23450#undef ARM_VARIANT
23451#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
23452
21d799b5 23453 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 23454
c921be7d
NC
23455#undef ARM_VARIANT
23456#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
23457#undef THUMB_VARIANT
23458#define THUMB_VARIANT & arm_ext_v6
23459
21d799b5
NC
23460 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
23461 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
23462 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23463 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23464 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23465 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23466 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23467 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23468 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23469 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 23470
c921be7d 23471#undef THUMB_VARIANT
ff8646ee 23472#define THUMB_VARIANT & arm_ext_v6t2_v8m
c921be7d 23473
5be8be5d
DG
23474 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
23475 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23476 strex, t_strex),
ff8646ee
TP
23477#undef THUMB_VARIANT
23478#define THUMB_VARIANT & arm_ext_v6t2
23479
21d799b5
NC
23480 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23481 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 23482
21d799b5
NC
23483 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
23484 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 23485
9e3c6df6 23486/* ARM V6 not included in V7M. */
c921be7d
NC
23487#undef THUMB_VARIANT
23488#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6 23489 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6 23490 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
9e3c6df6
PB
23491 UF(rfeib, 9900a00, 1, (RRw), rfe),
23492 UF(rfeda, 8100a00, 1, (RRw), rfe),
23493 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23494 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6
RE
23495 UF(rfefa, 8100a00, 1, (RRw), rfe),
23496 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23497 UF(rfeed, 9900a00, 1, (RRw), rfe),
9e3c6df6 23498 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
d709e4e6
RE
23499 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23500 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
9e3c6df6 23501 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
d709e4e6 23502 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
9e3c6df6 23503 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
d709e4e6 23504 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
9e3c6df6 23505 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
d709e4e6 23506 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
941c9cad 23507 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c921be7d 23508
9e3c6df6
PB
23509/* ARM V6 not included in V7M (eg. integer SIMD). */
23510#undef THUMB_VARIANT
23511#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
23512 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
23513 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
23514 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23515 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23516 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23517 /* Old name for QASX. */
74db7efb 23518 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 23519 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23520 /* Old name for QSAX. */
74db7efb 23521 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23522 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23523 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23524 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23525 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23526 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23527 /* Old name for SASX. */
74db7efb 23528 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23529 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23530 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23531 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23532 /* Old name for SHASX. */
21d799b5 23533 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23534 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23535 /* Old name for SHSAX. */
21d799b5
NC
23536 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23537 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23538 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23539 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23540 /* Old name for SSAX. */
74db7efb 23541 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23542 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23543 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23544 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23545 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23546 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23547 /* Old name for UASX. */
74db7efb 23548 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23549 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23550 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23551 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23552 /* Old name for UHASX. */
21d799b5
NC
23553 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23554 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23555 /* Old name for UHSAX. */
21d799b5
NC
23556 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23557 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23558 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23559 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23560 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23561 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23562 /* Old name for UQASX. */
21d799b5
NC
23563 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23564 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23565 /* Old name for UQSAX. */
21d799b5
NC
23566 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23567 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23568 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23569 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23570 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23571 /* Old name for USAX. */
74db7efb 23572 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 23573 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23574 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23575 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23576 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23577 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23578 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23579 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23580 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23581 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23582 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23583 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23584 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23585 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23586 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23587 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23588 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23589 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23590 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23591 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23592 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23593 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23594 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23595 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23596 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23597 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23598 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23599 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23600 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
23601 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
23602 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
23603 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23604 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23605 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 23606
c921be7d 23607#undef ARM_VARIANT
55e8aae7 23608#define ARM_VARIANT & arm_ext_v6k_v6t2
c921be7d 23609#undef THUMB_VARIANT
55e8aae7 23610#define THUMB_VARIANT & arm_ext_v6k_v6t2
c921be7d 23611
21d799b5
NC
23612 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
23613 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
23614 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
23615 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 23616
c921be7d
NC
23617#undef THUMB_VARIANT
23618#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
23619 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
23620 ldrexd, t_ldrexd),
23621 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
23622 RRnpcb), strexd, t_strexd),
ebdca51a 23623
c921be7d 23624#undef THUMB_VARIANT
ff8646ee 23625#define THUMB_VARIANT & arm_ext_v6t2_v8m
5be8be5d
DG
23626 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
23627 rd_rn, rd_rn),
23628 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
23629 rd_rn, rd_rn),
23630 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 23631 strex, t_strexbh),
5be8be5d 23632 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 23633 strex, t_strexbh),
21d799b5 23634 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 23635
c921be7d 23636#undef ARM_VARIANT
f4c65163 23637#define ARM_VARIANT & arm_ext_sec
74db7efb 23638#undef THUMB_VARIANT
f4c65163 23639#define THUMB_VARIANT & arm_ext_sec
c921be7d 23640
21d799b5 23641 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 23642
90ec0d68
MGD
23643#undef ARM_VARIANT
23644#define ARM_VARIANT & arm_ext_virt
23645#undef THUMB_VARIANT
23646#define THUMB_VARIANT & arm_ext_virt
23647
23648 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
23649 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
23650
ddfded2f
MW
23651#undef ARM_VARIANT
23652#define ARM_VARIANT & arm_ext_pan
23653#undef THUMB_VARIANT
23654#define THUMB_VARIANT & arm_ext_pan
23655
23656 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
23657
c921be7d 23658#undef ARM_VARIANT
74db7efb 23659#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
23660#undef THUMB_VARIANT
23661#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 23662
21d799b5
NC
23663 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
23664 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
23665 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23666 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 23667
21d799b5 23668 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
21d799b5 23669 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 23670
5be8be5d
DG
23671 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23672 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23673 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23674 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 23675
91d8b670
JG
23676#undef ARM_VARIANT
23677#define ARM_VARIANT & arm_ext_v3
23678#undef THUMB_VARIANT
23679#define THUMB_VARIANT & arm_ext_v6t2
23680
23681 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
c597cc3d
SD
23682 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
23683 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
91d8b670
JG
23684
23685#undef ARM_VARIANT
23686#define ARM_VARIANT & arm_ext_v6t2
ff8646ee
TP
23687#undef THUMB_VARIANT
23688#define THUMB_VARIANT & arm_ext_v6t2_v8m
23689 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
23690 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
23691
bf3eeda7 23692 /* Thumb-only instructions. */
74db7efb 23693#undef ARM_VARIANT
bf3eeda7
NS
23694#define ARM_VARIANT NULL
23695 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
23696 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
23697
23698 /* ARM does not really have an IT instruction, so always allow it.
23699 The opcode is copied from Thumb in order to allow warnings in
23700 -mimplicit-it=[never | arm] modes. */
23701#undef ARM_VARIANT
23702#define ARM_VARIANT & arm_ext_v1
ff8646ee
TP
23703#undef THUMB_VARIANT
23704#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 23705
21d799b5
NC
23706 TUE("it", bf08, bf08, 1, (COND), it, t_it),
23707 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
23708 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
23709 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
23710 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
23711 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
23712 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
23713 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
23714 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
23715 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
23716 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
23717 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
23718 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
23719 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
23720 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 23721 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
23722 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
23723 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 23724
92e90b6e 23725 /* Thumb2 only instructions. */
c921be7d
NC
23726#undef ARM_VARIANT
23727#define ARM_VARIANT NULL
92e90b6e 23728
21d799b5
NC
23729 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23730 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23731 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
23732 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
23733 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
23734 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 23735
eea54501
MGD
23736 /* Hardware division instructions. */
23737#undef ARM_VARIANT
23738#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
23739#undef THUMB_VARIANT
23740#define THUMB_VARIANT & arm_ext_div
23741
eea54501
MGD
23742 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
23743 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 23744
7e806470 23745 /* ARM V6M/V7 instructions. */
c921be7d
NC
23746#undef ARM_VARIANT
23747#define ARM_VARIANT & arm_ext_barrier
23748#undef THUMB_VARIANT
23749#define THUMB_VARIANT & arm_ext_barrier
23750
ccb84d65
JB
23751 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
23752 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
23753 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
7e806470 23754
62b3e311 23755 /* ARM V7 instructions. */
c921be7d
NC
23756#undef ARM_VARIANT
23757#define ARM_VARIANT & arm_ext_v7
23758#undef THUMB_VARIANT
23759#define THUMB_VARIANT & arm_ext_v7
23760
21d799b5
NC
23761 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
23762 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 23763
74db7efb 23764#undef ARM_VARIANT
60e5ef9f 23765#define ARM_VARIANT & arm_ext_mp
74db7efb 23766#undef THUMB_VARIANT
60e5ef9f
MGD
23767#define THUMB_VARIANT & arm_ext_mp
23768
23769 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
23770
53c4b28b
MGD
23771 /* AArchv8 instructions. */
23772#undef ARM_VARIANT
23773#define ARM_VARIANT & arm_ext_v8
4ed7ed8d
TP
23774
23775/* Instructions shared between armv8-a and armv8-m. */
53c4b28b 23776#undef THUMB_VARIANT
4ed7ed8d 23777#define THUMB_VARIANT & arm_ext_atomics
53c4b28b 23778
4ed7ed8d
TP
23779 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23780 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23781 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23782 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23783 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23784 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
4b8c8c02 23785 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
4b8c8c02
RE
23786 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
23787 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23788 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
23789 stlex, t_stlex),
4b8c8c02
RE
23790 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
23791 stlex, t_stlex),
23792 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
23793 stlex, t_stlex),
4ed7ed8d
TP
23794#undef THUMB_VARIANT
23795#define THUMB_VARIANT & arm_ext_v8
53c4b28b 23796
4ed7ed8d 23797 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
4ed7ed8d
TP
23798 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
23799 ldrexd, t_ldrexd),
23800 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
23801 strexd, t_strexd),
f7dd2fb2
TC
23802
23803/* Defined in V8 but is in undefined encoding space for earlier
23804 architectures. However earlier architectures are required to treat
23805 this instuction as a semihosting trap as well. Hence while not explicitly
23806 defined as such, it is in fact correct to define the instruction for all
23807 architectures. */
23808#undef THUMB_VARIANT
23809#define THUMB_VARIANT & arm_ext_v1
23810#undef ARM_VARIANT
23811#define ARM_VARIANT & arm_ext_v1
23812 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
23813
8884b720 23814 /* ARMv8 T32 only. */
74db7efb 23815#undef ARM_VARIANT
b79f7053
MGD
23816#define ARM_VARIANT NULL
23817 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
23818 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
23819 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
23820
33399f07
MGD
23821 /* FP for ARMv8. */
23822#undef ARM_VARIANT
a715796b 23823#define ARM_VARIANT & fpu_vfp_ext_armv8xd
33399f07 23824#undef THUMB_VARIANT
a715796b 23825#define THUMB_VARIANT & fpu_vfp_ext_armv8xd
33399f07
MGD
23826
23827 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
23828 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
23829 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
23830 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
30bdf752 23831 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
a710b305
AV
23832 mnCE(vrintz, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintz),
23833 mnCE(vrintx, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintx),
23834 mnUF(vrinta, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrinta),
23835 mnUF(vrintn, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintn),
23836 mnUF(vrintp, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintp),
23837 mnUF(vrintm, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintm),
33399f07 23838
91ff7894
MGD
23839 /* Crypto v1 extensions. */
23840#undef ARM_VARIANT
23841#define ARM_VARIANT & fpu_crypto_ext_armv8
23842#undef THUMB_VARIANT
23843#define THUMB_VARIANT & fpu_crypto_ext_armv8
23844
23845 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
23846 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
23847 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
23848 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
48adcd8e
MGD
23849 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
23850 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
23851 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
23852 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
23853 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
23854 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
23855 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
3c9017d2
MGD
23856 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
23857 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
23858 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
91ff7894 23859
dd5181d5 23860#undef ARM_VARIANT
74db7efb 23861#define ARM_VARIANT & crc_ext_armv8
dd5181d5
KT
23862#undef THUMB_VARIANT
23863#define THUMB_VARIANT & crc_ext_armv8
23864 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
23865 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
23866 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
23867 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
23868 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
23869 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
23870
105bde57
MW
23871 /* ARMv8.2 RAS extension. */
23872#undef ARM_VARIANT
4d1464f2 23873#define ARM_VARIANT & arm_ext_ras
105bde57 23874#undef THUMB_VARIANT
4d1464f2 23875#define THUMB_VARIANT & arm_ext_ras
105bde57
MW
23876 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
23877
49e8a725
SN
23878#undef ARM_VARIANT
23879#define ARM_VARIANT & arm_ext_v8_3
23880#undef THUMB_VARIANT
23881#define THUMB_VARIANT & arm_ext_v8_3
23882 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
23883
c604a79a
JW
23884#undef ARM_VARIANT
23885#define ARM_VARIANT & fpu_neon_ext_dotprod
23886#undef THUMB_VARIANT
23887#define THUMB_VARIANT & fpu_neon_ext_dotprod
23888 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
23889 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
23890
c921be7d
NC
23891#undef ARM_VARIANT
23892#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
23893#undef THUMB_VARIANT
23894#define THUMB_VARIANT NULL
c921be7d 23895
21d799b5
NC
23896 cCE("wfs", e200110, 1, (RR), rd),
23897 cCE("rfs", e300110, 1, (RR), rd),
23898 cCE("wfc", e400110, 1, (RR), rd),
23899 cCE("rfc", e500110, 1, (RR), rd),
23900
23901 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
23902 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
23903 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
23904 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
23905
23906 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
23907 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
23908 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
23909 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
23910
23911 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
23912 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
23913 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
23914 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
23915 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
23916 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
23917 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
23918 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
23919 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
23920 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
23921 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
23922 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
23923
23924 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
23925 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
23926 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
23927 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
23928 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
23929 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
23930 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
23931 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
23932 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
23933 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
23934 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
23935 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
23936
23937 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
23938 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
23939 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
23940 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
23941 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
23942 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
23943 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
23944 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
23945 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
23946 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
23947 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
23948 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
23949
23950 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
23951 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
23952 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
23953 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
23954 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
23955 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
23956 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
23957 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
23958 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
23959 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
23960 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
23961 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
23962
23963 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
23964 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
23965 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
23966 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
23967 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
23968 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
23969 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
23970 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
23971 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
23972 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
23973 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
23974 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
23975
23976 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
23977 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
23978 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
23979 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
23980 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
23981 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
23982 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
23983 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
23984 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
23985 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
23986 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
23987 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
23988
23989 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
23990 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
23991 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
23992 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
23993 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
23994 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
23995 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
23996 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
23997 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
23998 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
23999 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
24000 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
24001
24002 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
24003 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
24004 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
24005 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
24006 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
24007 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
24008 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
24009 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
24010 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
24011 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
24012 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
24013 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
24014
24015 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
24016 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
24017 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
24018 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
24019 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
24020 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
24021 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
24022 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
24023 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
24024 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
24025 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
24026 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
24027
24028 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
24029 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
24030 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
24031 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
24032 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
24033 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
24034 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
24035 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
24036 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
24037 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
24038 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
24039 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
24040
24041 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
24042 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
24043 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
24044 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
24045 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
24046 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
24047 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
24048 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
24049 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
24050 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
24051 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
24052 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
24053
24054 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
24055 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
24056 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
24057 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
24058 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
24059 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
24060 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
24061 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
24062 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
24063 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
24064 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
24065 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
24066
24067 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
24068 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
24069 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
24070 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
24071 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
24072 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
24073 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
24074 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
24075 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
24076 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
24077 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
24078 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
24079
24080 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
24081 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
24082 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
24083 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
24084 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
24085 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
24086 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
24087 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
24088 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
24089 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
24090 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
24091 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
24092
24093 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
24094 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
24095 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
24096 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
24097 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
24098 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
24099 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
24100 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
24101 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
24102 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
24103 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
24104 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
24105
24106 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
24107 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
24108 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
24109 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
24110 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
24111 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
24112 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
24113 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
24114 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
24115 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
24116 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
24117 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
24118
24119 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
24120 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
24121 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
24122 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
24123 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
24124 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24125 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24126 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24127 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
24128 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
24129 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
24130 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
24131
24132 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
24133 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
24134 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
24135 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
24136 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
24137 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24138 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24139 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24140 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
24141 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
24142 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
24143 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
24144
24145 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
24146 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
24147 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
24148 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
24149 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
24150 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24151 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24152 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24153 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
24154 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
24155 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
24156 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
24157
24158 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
24159 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
24160 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
24161 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
24162 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
24163 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24164 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24165 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24166 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
24167 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
24168 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
24169 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
24170
24171 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
24172 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
24173 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
24174 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
24175 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
24176 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24177 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24178 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24179 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
24180 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
24181 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
24182 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
24183
24184 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
24185 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
24186 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
24187 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
24188 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
24189 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24190 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24191 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24192 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
24193 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
24194 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
24195 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
24196
24197 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
24198 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
24199 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
24200 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
24201 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
24202 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24203 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24204 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24205 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
24206 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
24207 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
24208 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
24209
24210 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
24211 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
24212 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
24213 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
24214 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
24215 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24216 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24217 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24218 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
24219 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
24220 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
24221 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
24222
24223 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
24224 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
24225 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
24226 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
24227 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
24228 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24229 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24230 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24231 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
24232 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
24233 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
24234 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
24235
24236 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
24237 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
24238 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
24239 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
24240 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
24241 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24242 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24243 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24244 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
24245 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
24246 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
24247 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
24248
24249 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24250 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24251 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24252 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24253 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24254 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24255 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24256 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24257 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24258 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24259 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24260 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24261
24262 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24263 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24264 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24265 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24266 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24267 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24268 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24269 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24270 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24271 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24272 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24273 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24274
24275 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24276 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24277 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24278 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24279 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24280 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24281 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24282 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24283 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24284 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24285 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24286 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24287
24288 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
24289 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
24290 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
24291 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
24292
24293 cCL("flts", e000110, 2, (RF, RR), rn_rd),
24294 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
24295 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
24296 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
24297 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
24298 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
24299 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
24300 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
24301 cCL("flte", e080110, 2, (RF, RR), rn_rd),
24302 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
24303 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
24304 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 24305
c19d1205
ZW
24306 /* The implementation of the FIX instruction is broken on some
24307 assemblers, in that it accepts a precision specifier as well as a
24308 rounding specifier, despite the fact that this is meaningless.
24309 To be more compatible, we accept it as well, though of course it
24310 does not set any bits. */
21d799b5
NC
24311 cCE("fix", e100110, 2, (RR, RF), rd_rm),
24312 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
24313 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
24314 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
24315 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
24316 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
24317 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
24318 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
24319 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
24320 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
24321 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
24322 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
24323 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 24324
c19d1205 24325 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
24326#undef ARM_VARIANT
24327#define ARM_VARIANT & fpu_fpa_ext_v2
24328
21d799b5
NC
24329 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24330 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24331 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24332 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24333 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24334 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 24335
c921be7d
NC
24336#undef ARM_VARIANT
24337#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
24338
c19d1205 24339 /* Moves and type conversions. */
21d799b5 24340 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
24341 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
24342 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
24343 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
24344 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
24345 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
24346 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24347 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
24348 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24349 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
24350 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
24351
24352 /* Memory operations. */
21d799b5
NC
24353 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24354 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
24355 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24356 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24357 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24358 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24359 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24360 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24361 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24362 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24363 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24364 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24365 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24366 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24367 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24368 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24369 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24370 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 24371
c19d1205 24372 /* Monadic operations. */
21d799b5
NC
24373 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
24374 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
24375 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
24376
24377 /* Dyadic operations. */
21d799b5
NC
24378 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24379 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24380 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24381 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24382 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24383 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24384 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24385 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24386 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 24387
c19d1205 24388 /* Comparisons. */
21d799b5
NC
24389 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
24390 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
24391 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
24392 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 24393
62f3b8c8
PB
24394 /* Double precision load/store are still present on single precision
24395 implementations. */
24396 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
24397 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
24398 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24399 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24400 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24401 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24402 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24403 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24404 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24405 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 24406
c921be7d
NC
24407#undef ARM_VARIANT
24408#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
24409
c19d1205 24410 /* Moves and type conversions. */
21d799b5
NC
24411 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24412 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24413 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
24414 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
24415 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
24416 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
24417 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24418 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
24419 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24420 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24421 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24422 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 24423
c19d1205 24424 /* Monadic operations. */
21d799b5
NC
24425 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24426 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24427 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
24428
24429 /* Dyadic operations. */
21d799b5
NC
24430 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24431 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24432 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24433 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24434 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24435 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24436 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24437 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24438 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 24439
c19d1205 24440 /* Comparisons. */
21d799b5
NC
24441 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24442 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
24443 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24444 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 24445
037e8744
JB
24446/* Instructions which may belong to either the Neon or VFP instruction sets.
24447 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
24448#undef ARM_VARIANT
24449#define ARM_VARIANT & fpu_vfp_ext_v1xd
24450#undef THUMB_VARIANT
24451#define THUMB_VARIANT & fpu_vfp_ext_v1xd
24452
037e8744
JB
24453 /* These mnemonics are unique to VFP. */
24454 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
24455 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
24456 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24457 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24458 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
037e8744
JB
24459 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
24460 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
24461 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
24462
24463 /* Mnemonics shared by Neon and VFP. */
21d799b5 24464 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 24465
55881a11
MGD
24466 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24467 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24468 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24469 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24470 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24471 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
037e8744 24472
dd9634d9 24473 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
e3e535bc 24474 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
dd9634d9
AV
24475 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
24476 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
f31fef98 24477
037e8744
JB
24478
24479 /* NOTE: All VMOV encoding is special-cased! */
037e8744
JB
24480 NCE(vmovq, 0, 1, (VMOV), neon_mov),
24481
32c36c3c
AV
24482#undef THUMB_VARIANT
24483/* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
24484 by different feature bits. Since we are setting the Thumb guard, we can
24485 require Thumb-1 which makes it a nop guard and set the right feature bit in
24486 do_vldr_vstr (). */
24487#define THUMB_VARIANT & arm_ext_v4t
24488 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24489 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24490
9db2f6b4
RL
24491#undef ARM_VARIANT
24492#define ARM_VARIANT & arm_ext_fp16
24493#undef THUMB_VARIANT
24494#define THUMB_VARIANT & arm_ext_fp16
24495 /* New instructions added from v8.2, allowing the extraction and insertion of
24496 the upper 16 bits of a 32-bit vector register. */
24497 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
24498 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
24499
dec41383
JW
24500 /* New backported fma/fms instructions optional in v8.2. */
24501 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
24502 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
24503
c921be7d
NC
24504#undef THUMB_VARIANT
24505#define THUMB_VARIANT & fpu_neon_ext_v1
24506#undef ARM_VARIANT
24507#define ARM_VARIANT & fpu_neon_ext_v1
24508
5287ad62
JB
24509 /* Data processing with three registers of the same length. */
24510 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
24511 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
24512 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
5287ad62 24513 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
5287ad62 24514 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
5287ad62
JB
24515 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24516 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
5287ad62 24517 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
5287ad62 24518 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7 24519 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
627907b7 24520 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62 24521 /* If not immediate, fall back to neon_dyadic_i64_su.
5150f0d8
AV
24522 shl should accept I8 I16 I32 I64,
24523 qshl should accept S8 S16 S32 S64 U8 U16 U32 U64. */
24524 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl),
24525 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl),
5287ad62 24526 /* Logic ops, types optional & ignored. */
4316f0d2 24527 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24528 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24529 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24530 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24531 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
24532 /* Bitfield ops, untyped. */
24533 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24534 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24535 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24536 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24537 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24538 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
cc933301 24539 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
21d799b5 24540 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21d799b5 24541 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21d799b5 24542 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
24543 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
24544 back to neon_dyadic_if_su. */
21d799b5
NC
24545 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24546 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24547 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24548 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24549 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24550 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24551 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24552 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 24553 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
24554 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
24555 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 24556 /* As above, D registers only. */
21d799b5
NC
24557 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24558 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 24559 /* Int and float variants, signedness unimportant. */
21d799b5
NC
24560 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24561 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24562 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 24563 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
24564 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24565 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
24566 /* vtst takes sizes 8, 16, 32. */
24567 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
24568 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
24569 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 24570 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 24571 /* VQD{R}MULH takes S16 S32. */
21d799b5 24572 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
21d799b5 24573 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
24574 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24575 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24576 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24577 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
24578 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24579 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24580 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24581 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
24582 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24583 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24584 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24585 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
d6b4b13e 24586 /* ARM v8.1 extension. */
643afb90
MW
24587 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24588 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
24589 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
5287ad62
JB
24590
24591 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 24592 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
24593 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
24594
24595 /* Data processing with two registers and a shift amount. */
24596 /* Right shifts, and variants with rounding.
24597 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
5287ad62 24598 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
5287ad62
JB
24599 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24600 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24601 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24602 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24603 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24604 /* Shift and insert. Sizes accepted 8 16 32 64. */
5287ad62 24605 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
5287ad62
JB
24606 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
24607 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
5287ad62
JB
24608 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
24609 /* Right shift immediate, saturating & narrowing, with rounding variants.
24610 Types accepted S16 S32 S64 U16 U32 U64. */
24611 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24612 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24613 /* As above, unsigned. Types accepted S16 S32 S64. */
24614 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24615 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24616 /* Right shift narrowing. Types accepted I16 I32 I64. */
24617 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24618 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24619 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 24620 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 24621 /* CVT with optional immediate for fixed-point variant. */
21d799b5 24622 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 24623
4316f0d2 24624 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
24625
24626 /* Data processing, three registers of different lengths. */
24627 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
24628 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
5287ad62
JB
24629 /* If not scalar, fall back to neon_dyadic_long.
24630 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
24631 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24632 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
24633 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
24634 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24635 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24636 /* Dyadic, narrowing insns. Types I16 I32 I64. */
24637 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24638 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24639 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24640 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24641 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
24642 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24643 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24644 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
24645 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
24646 S16 S32 U16 U32. */
21d799b5 24647 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
24648
24649 /* Extract. Size 8. */
3b8d421e
PB
24650 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
24651 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
24652
24653 /* Two registers, miscellaneous. */
24654 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
5287ad62 24655 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
5287ad62 24656 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
5287ad62
JB
24657 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
24658 /* Vector replicate. Sizes 8 16 32. */
21d799b5 24659 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
24660 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
24661 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
24662 /* VMOVN. Types I16 I32 I64. */
21d799b5 24663 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 24664 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 24665 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 24666 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 24667 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
24668 /* VZIP / VUZP. Sizes 8 16 32. */
24669 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
24670 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
24671 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
24672 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
24673 /* VQABS / VQNEG. Types S8 S16 S32. */
5287ad62 24674 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
5287ad62
JB
24675 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
24676 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
24677 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
24678 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
24679 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
24680 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
cc933301 24681 /* Reciprocal estimates. Types U32 F16 F32. */
5287ad62
JB
24682 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
24683 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
24684 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
24685 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
24686 /* VCLS. Types S8 S16 S32. */
5287ad62
JB
24687 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
24688 /* VCLZ. Types I8 I16 I32. */
5287ad62
JB
24689 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
24690 /* VCNT. Size 8. */
24691 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
24692 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
24693 /* Two address, untyped. */
24694 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
24695 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
24696 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
24697 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
24698 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
24699
24700 /* Table lookup. Size 8. */
24701 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24702 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24703
c921be7d
NC
24704#undef THUMB_VARIANT
24705#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
24706#undef ARM_VARIANT
24707#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
24708
5287ad62 24709 /* Neon element/structure load/store. */
21d799b5
NC
24710 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24711 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24712 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24713 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24714 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24715 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24716 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24717 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 24718
c921be7d 24719#undef THUMB_VARIANT
74db7efb
NC
24720#define THUMB_VARIANT & fpu_vfp_ext_v3xd
24721#undef ARM_VARIANT
24722#define ARM_VARIANT & fpu_vfp_ext_v3xd
62f3b8c8
PB
24723 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
24724 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24725 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24726 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24727 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24728 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24729 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24730 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24731 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24732
74db7efb 24733#undef THUMB_VARIANT
c921be7d
NC
24734#define THUMB_VARIANT & fpu_vfp_ext_v3
24735#undef ARM_VARIANT
24736#define ARM_VARIANT & fpu_vfp_ext_v3
24737
21d799b5 24738 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 24739 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24740 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 24741 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24742 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 24743 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24744 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 24745 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24746 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 24747
74db7efb
NC
24748#undef ARM_VARIANT
24749#define ARM_VARIANT & fpu_vfp_ext_fma
24750#undef THUMB_VARIANT
24751#define THUMB_VARIANT & fpu_vfp_ext_fma
d58196e0 24752 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
62f3b8c8
PB
24753 VFP FMA variant; NEON and VFP FMA always includes the NEON
24754 FMA instructions. */
d58196e0
AV
24755 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
24756 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
24757
62f3b8c8
PB
24758 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
24759 the v form should always be used. */
24760 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24761 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24762 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24763 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24764 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24765 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24766
5287ad62 24767#undef THUMB_VARIANT
c921be7d
NC
24768#undef ARM_VARIANT
24769#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
24770
21d799b5
NC
24771 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24772 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24773 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24774 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24775 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24776 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24777 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
24778 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 24779
c921be7d
NC
24780#undef ARM_VARIANT
24781#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
24782
21d799b5
NC
24783 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
24784 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
24785 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
24786 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
24787 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
24788 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
24789 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
24790 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
24791 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
74db7efb
NC
24792 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24793 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24794 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24795 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24796 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24797 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21d799b5
NC
24798 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24799 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24800 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24801 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
24802 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
24803 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24804 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24805 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24806 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24807 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24808 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
74db7efb
NC
24809 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
24810 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
24811 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21d799b5
NC
24812 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
24813 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
24814 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
24815 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
24816 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
24817 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
24818 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
24819 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
24820 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24821 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24822 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24823 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24824 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24825 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24826 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24827 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24828 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24829 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
74db7efb
NC
24830 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24831 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24832 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24833 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24834 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24835 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24836 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24837 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24838 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24839 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24840 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24841 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24842 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
24843 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24844 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24845 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24846 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24847 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24848 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24849 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24850 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24851 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24852 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24853 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24854 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24855 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24856 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24857 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24858 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24859 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24860 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24861 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24862 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24863 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24864 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24865 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24866 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24867 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24868 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24869 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24870 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24871 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
24872 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24873 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24874 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24875 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24876 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
24877 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24878 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24879 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24880 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24881 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24882 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24883 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24884 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24885 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24886 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24887 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24888 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24889 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24890 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24891 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24892 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24893 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
24894 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24895 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24896 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24897 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24898 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24899 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24900 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24901 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24902 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24903 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24904 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24905 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24906 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24907 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24908 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24909 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24910 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24911 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24912 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24913 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24914 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24915 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24916 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24917 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24918 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24919 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24920 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24921 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24922 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24923 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24924 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24925 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
24926 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
24927 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
24928 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
24929 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
24930 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
24931 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24932 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24933 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24934 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
24935 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
24936 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
24937 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
24938 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
24939 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
24940 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24941 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24942 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24943 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24944 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 24945
c921be7d
NC
24946#undef ARM_VARIANT
24947#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
24948
21d799b5
NC
24949 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
24950 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
24951 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
24952 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
24953 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
24954 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
24955 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24956 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24957 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24958 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24959 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24960 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24961 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24962 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24963 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24964 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24965 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24966 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24967 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24968 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24969 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
24970 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24971 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24972 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24973 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24974 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24975 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24976 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24977 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24978 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24979 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24980 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24981 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24982 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24983 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24984 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24985 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24986 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24987 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24988 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24989 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24990 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24991 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24992 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24993 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24994 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24995 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24996 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24997 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24998 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24999 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25000 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25001 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25002 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25003 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25004 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25005 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 25006
c921be7d
NC
25007#undef ARM_VARIANT
25008#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
25009
21d799b5
NC
25010 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
25011 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
25012 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
25013 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
25014 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
25015 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
25016 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
25017 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
25018 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
25019 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
25020 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
25021 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
25022 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
25023 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
74db7efb
NC
25024 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
25025 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
25026 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
25027 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
25028 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
25029 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
25030 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
25031 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
25032 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
25033 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21d799b5
NC
25034 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
25035 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
25036 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
25037 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
74db7efb
NC
25038 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
25039 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21d799b5
NC
25040 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
25041 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
25042 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
25043 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
74db7efb
NC
25044 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
25045 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
25046 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
25047 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
25048 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
25049 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21d799b5
NC
25050 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
25051 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
74db7efb
NC
25052 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
25053 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21d799b5
NC
25054 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
25055 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
25056 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
25057 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
25058 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
25059 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
25060 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
25061 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
25062 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
25063 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
25064 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
25065 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
25066 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
25067 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
25068 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
25069 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
25070 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
25071 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
25072 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
25073 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
25074 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25075 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25076 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25077 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25078 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25079 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25080 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25081 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
74db7efb
NC
25082 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
25083 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21d799b5
NC
25084 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
25085 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
4ed7ed8d 25086
7fadb25d
SD
25087 /* ARMv8.5-A instructions. */
25088#undef ARM_VARIANT
25089#define ARM_VARIANT & arm_ext_sb
25090#undef THUMB_VARIANT
25091#define THUMB_VARIANT & arm_ext_sb
25092 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
25093
dad0c3bf
SD
25094#undef ARM_VARIANT
25095#define ARM_VARIANT & arm_ext_predres
25096#undef THUMB_VARIANT
25097#define THUMB_VARIANT & arm_ext_predres
25098 CE("cfprctx", e070f93, 1, (RRnpc), rd),
25099 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
25100 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
25101
16a1fa25 25102 /* ARMv8-M instructions. */
4ed7ed8d
TP
25103#undef ARM_VARIANT
25104#define ARM_VARIANT NULL
25105#undef THUMB_VARIANT
25106#define THUMB_VARIANT & arm_ext_v8m
cf3cf39d
TP
25107 ToU("sg", e97fe97f, 0, (), noargs),
25108 ToC("blxns", 4784, 1, (RRnpc), t_blx),
25109 ToC("bxns", 4704, 1, (RRnpc), t_bx),
25110 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
25111 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
25112 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
25113 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
16a1fa25
TP
25114
25115 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
25116 instructions behave as nop if no VFP is present. */
25117#undef THUMB_VARIANT
25118#define THUMB_VARIANT & arm_ext_v8m_main
cf3cf39d
TP
25119 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
25120 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
4389b29a
AV
25121
25122 /* Armv8.1-M Mainline instructions. */
25123#undef THUMB_VARIANT
25124#define THUMB_VARIANT & arm_ext_v8_1m_main
25125 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
f6b2b12d 25126 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
f1c7f421 25127 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
65d1bc05 25128 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
f1c7f421 25129 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
60f993ce
AV
25130
25131 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
25132 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
25133 toU("le", _le, 2, (oLR, EXP), t_loloop),
4b5a202f 25134
efd6b359 25135 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
5ee91343
AV
25136 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
25137
25138#undef THUMB_VARIANT
25139#define THUMB_VARIANT & mve_ext
1b883319
AV
25140
25141 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25142 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25143 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25144 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25145 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25146 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25147 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25148 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25149 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25150 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25151 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25152 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25153 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25154 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25155 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25156
5ee91343
AV
25157 ToC("vpst", fe710f4d, 0, (), mve_vpt),
25158 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
25159 ToC("vpste", fe718f4d, 0, (), mve_vpt),
25160 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
25161 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
25162 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
25163 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
25164 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
25165 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
25166 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
25167 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
25168 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
25169 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
25170 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
25171 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
25172
a302e574 25173 /* MVE and MVE FP only. */
7df54120 25174 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
c2dafc2a
AV
25175 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
25176 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
25177 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
25178 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
886e1c73 25179 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
a302e574
AV
25180 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
25181 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25182 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25183 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
25184 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
25185 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25186 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25187 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25188 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25189 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
25190 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
25191
35c228db
AV
25192 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25193 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25194 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25195 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25196 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25197 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25198 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25199 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25200 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25201 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25202 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25203 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
f5f10c66
AV
25204 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25205 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25206 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25207 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25208 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25209 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25210 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25211 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
35c228db 25212
57785aa2
AV
25213 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
25214 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
c2dafc2a 25215 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
26c1e780
AV
25216 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
25217 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
25218 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
25219 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
b409bdb6
AV
25220 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
25221 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
25222 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
25223 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
935295b5
AV
25224 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
25225 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
13ccd4c0
AV
25226 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
25227 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
25228 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
25229 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
57785aa2 25230
93925576
AV
25231 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25232 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25233 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25234 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25235 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25236 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25237 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25238 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25239 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25240 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25241 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25242 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25243 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25244 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25245 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25246 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25247 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25248 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25249 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25250 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25251
2d78f95b
AV
25252 mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas),
25253 mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
25254 mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
3063888e
AV
25255 mToC("vpnot", fe310f4d, 0, (), mve_vpnot),
25256 mToC("vpsel", fe310f01, 3, (RMQ, RMQ, RMQ), mve_vpsel),
2d78f95b 25257
8b8b22a4
AV
25258 mToC("vqdmladh", ee000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25259 mToC("vqdmladhx", ee001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25260 mToC("vqrdmladh", ee000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25261 mToC("vqrdmladhx",ee001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25262 mToC("vqdmlsdh", fe000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25263 mToC("vqdmlsdhx", fe001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25264 mToC("vqrdmlsdh", fe000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25265 mToC("vqrdmlsdhx",fe001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
42b16635
AV
25266 mToC("vqdmlah", ee000e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25267 mToC("vqdmlash", ee001e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25268 mToC("vqrdmlash", ee001e40, 3, (RMQ, RMQ, RR), mve_vqdmlah),
35d1cfc2
AV
25269 mToC("vqdmullt", ee301f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
25270 mToC("vqdmullb", ee300f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
1be7aba3
AV
25271 mCEF(vqmovnt, _vqmovnt, 2, (RMQ, RMQ), mve_vqmovn),
25272 mCEF(vqmovnb, _vqmovnb, 2, (RMQ, RMQ), mve_vqmovn),
25273 mCEF(vqmovunt, _vqmovunt, 2, (RMQ, RMQ), mve_vqmovn),
25274 mCEF(vqmovunb, _vqmovunb, 2, (RMQ, RMQ), mve_vqmovn),
8b8b22a4 25275
4aa88b50
AV
25276 mCEF(vshrnt, _vshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25277 mCEF(vshrnb, _vshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25278 mCEF(vrshrnt, _vrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25279 mCEF(vrshrnb, _vrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25280 mCEF(vqshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25281 mCEF(vqshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25282 mCEF(vqshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25283 mCEF(vqshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25284 mCEF(vqrshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25285 mCEF(vqrshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25286 mCEF(vqrshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25287 mCEF(vqrshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25288
acca5630
AV
25289 mToC("vshlc", eea00fc0, 3, (RMQ, RR, I32z), mve_vshlc),
25290 mToC("vshllt", ee201e00, 3, (RMQ, RMQ, I32), mve_vshll),
25291 mToC("vshllb", ee200e00, 3, (RMQ, RMQ, I32), mve_vshll),
25292
1f6234a3
AV
25293 toU("dlstp", _dlstp, 2, (LR, RR), t_loloop),
25294 toU("wlstp", _wlstp, 3, (LR, RR, EXP), t_loloop),
25295 toU("letp", _letp, 2, (LR, EXP), t_loloop),
25296 toU("lctp", _lctp, 0, (), t_loloop),
25297
5d281bf0
AV
25298#undef THUMB_VARIANT
25299#define THUMB_VARIANT & mve_fp_ext
25300 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
f30ee27c 25301 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
935295b5
AV
25302 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
25303 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
8cd78170
AV
25304 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
25305 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
25306 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
25307 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
5d281bf0 25308
5ee91343 25309#undef ARM_VARIANT
57785aa2 25310#define ARM_VARIANT & fpu_vfp_ext_v1
5ee91343
AV
25311#undef THUMB_VARIANT
25312#define THUMB_VARIANT & arm_ext_v6t2
a8465a06
AV
25313 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
25314 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
5ee91343 25315
57785aa2
AV
25316 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25317
25318#undef ARM_VARIANT
25319#define ARM_VARIANT & fpu_vfp_ext_v1xd
25320
25321 MNCE(vmov, 0, 1, (VMOV), neon_mov),
25322 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
25323 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
25324 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
25325
886e1c73
AV
25326 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
25327 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
25328 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
5ee91343 25329
485dee97
AV
25330 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25331 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25332
57785aa2
AV
25333 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
25334 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
25335
1b883319
AV
25336 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25337 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25338
57785aa2
AV
25339#undef ARM_VARIANT
25340#define ARM_VARIANT & fpu_vfp_ext_v2
25341
25342 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
25343 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
25344 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
25345 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
25346
dd9634d9
AV
25347#undef ARM_VARIANT
25348#define ARM_VARIANT & fpu_vfp_ext_armv8xd
25349 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
25350 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
25351 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
25352 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
935295b5
AV
25353 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
25354 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
dd9634d9
AV
25355
25356#undef ARM_VARIANT
5ee91343 25357#define ARM_VARIANT & fpu_neon_ext_v1
f601a00c 25358 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
5ee91343
AV
25359 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
25360 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
25361 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
f601a00c
AV
25362 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25363 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25364 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25365 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25366 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
f30ee27c
AV
25367 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
25368 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
b409bdb6 25369 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
7df54120
AV
25370 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
25371 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
25372 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
935295b5
AV
25373 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25374 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
a8465a06
AV
25375 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
25376 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
1a186d29
AV
25377 mnUF(vmvn, _vmvn, 2, (RNDQMQ, RNDQMQ_Ibig), neon_mvn),
25378 MNUF(vqabs, 1b00700, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
25379 MNUF(vqneg, 1b00780, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
42b16635
AV
25380 mnUF(vqrdmlah, _vqrdmlah,3, (RNDQMQ, oRNDQMQ, RNDQ_RNSC_RR), neon_qrdmlah),
25381 mnUF(vqdmulh, _vqdmulh, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
25382 mnUF(vqrdmulh, _vqrdmulh,3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
1be7aba3
AV
25383 MNUF(vqrshl, 0000510, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
25384 MNUF(vrshl, 0000500, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
4401c241
AV
25385 MNUF(vshr, 0800010, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
25386 MNUF(vrshr, 0800210, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
25387 MNUF(vsli, 1800510, 3, (RNDQMQ, oRNDQMQ, I63), neon_sli),
25388 MNUF(vsri, 1800410, 3, (RNDQMQ, oRNDQMQ, I64z), neon_sri),
25389 MNUF(vrev64, 1b00000, 2, (RNDQMQ, RNDQMQ), neon_rev),
25390 MNUF(vrev32, 1b00080, 2, (RNDQMQ, RNDQMQ), neon_rev),
25391 MNUF(vrev16, 1b00100, 2, (RNDQMQ, RNDQMQ), neon_rev),
5150f0d8
AV
25392 mnUF(vshl, _vshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_shl),
25393 mnUF(vqshl, _vqshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_qshl),
25394 MNUF(vqshlu, 1800610, 3, (RNDQMQ, oRNDQMQ, I63), neon_qshlu_imm),
5d281bf0
AV
25395
25396#undef ARM_VARIANT
25397#define ARM_VARIANT & arm_ext_v8_3
25398#undef THUMB_VARIANT
25399#define THUMB_VARIANT & arm_ext_v6t2_v8m
25400 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
25401 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
c19d1205
ZW
25402};
25403#undef ARM_VARIANT
25404#undef THUMB_VARIANT
25405#undef TCE
c19d1205
ZW
25406#undef TUE
25407#undef TUF
25408#undef TCC
8f06b2d8 25409#undef cCE
e3cb604e
PB
25410#undef cCL
25411#undef C3E
4389b29a 25412#undef C3
c19d1205
ZW
25413#undef CE
25414#undef CM
4389b29a 25415#undef CL
c19d1205
ZW
25416#undef UE
25417#undef UF
25418#undef UT
5287ad62
JB
25419#undef NUF
25420#undef nUF
25421#undef NCE
25422#undef nCE
c19d1205
ZW
25423#undef OPS0
25424#undef OPS1
25425#undef OPS2
25426#undef OPS3
25427#undef OPS4
25428#undef OPS5
25429#undef OPS6
25430#undef do_0
4389b29a
AV
25431#undef ToC
25432#undef toC
25433#undef ToU
f6b2b12d 25434#undef toU
c19d1205
ZW
25435\f
25436/* MD interface: bits in the object file. */
bfae80f2 25437
c19d1205
ZW
25438/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
25439 for use in the a.out file, and stores them in the array pointed to by buf.
25440 This knows about the endian-ness of the target machine and does
25441 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
25442 2 (short) and 4 (long) Floating numbers are put out as a series of
25443 LITTLENUMS (shorts, here at least). */
b99bd4ef 25444
c19d1205
ZW
25445void
25446md_number_to_chars (char * buf, valueT val, int n)
25447{
25448 if (target_big_endian)
25449 number_to_chars_bigendian (buf, val, n);
25450 else
25451 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
25452}
25453
c19d1205
ZW
25454static valueT
25455md_chars_to_number (char * buf, int n)
bfae80f2 25456{
c19d1205
ZW
25457 valueT result = 0;
25458 unsigned char * where = (unsigned char *) buf;
bfae80f2 25459
c19d1205 25460 if (target_big_endian)
b99bd4ef 25461 {
c19d1205
ZW
25462 while (n--)
25463 {
25464 result <<= 8;
25465 result |= (*where++ & 255);
25466 }
b99bd4ef 25467 }
c19d1205 25468 else
b99bd4ef 25469 {
c19d1205
ZW
25470 while (n--)
25471 {
25472 result <<= 8;
25473 result |= (where[n] & 255);
25474 }
bfae80f2 25475 }
b99bd4ef 25476
c19d1205 25477 return result;
bfae80f2 25478}
b99bd4ef 25479
c19d1205 25480/* MD interface: Sections. */
b99bd4ef 25481
fa94de6b
RM
25482/* Calculate the maximum variable size (i.e., excluding fr_fix)
25483 that an rs_machine_dependent frag may reach. */
25484
25485unsigned int
25486arm_frag_max_var (fragS *fragp)
25487{
25488 /* We only use rs_machine_dependent for variable-size Thumb instructions,
25489 which are either THUMB_SIZE (2) or INSN_SIZE (4).
25490
25491 Note that we generate relaxable instructions even for cases that don't
25492 really need it, like an immediate that's a trivial constant. So we're
25493 overestimating the instruction size for some of those cases. Rather
25494 than putting more intelligence here, it would probably be better to
25495 avoid generating a relaxation frag in the first place when it can be
25496 determined up front that a short instruction will suffice. */
25497
25498 gas_assert (fragp->fr_type == rs_machine_dependent);
25499 return INSN_SIZE;
25500}
25501
0110f2b8
PB
25502/* Estimate the size of a frag before relaxing. Assume everything fits in
25503 2 bytes. */
25504
c19d1205 25505int
0110f2b8 25506md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
25507 segT segtype ATTRIBUTE_UNUSED)
25508{
0110f2b8
PB
25509 fragp->fr_var = 2;
25510 return 2;
25511}
25512
25513/* Convert a machine dependent frag. */
25514
25515void
25516md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
25517{
25518 unsigned long insn;
25519 unsigned long old_op;
25520 char *buf;
25521 expressionS exp;
25522 fixS *fixp;
25523 int reloc_type;
25524 int pc_rel;
25525 int opcode;
25526
25527 buf = fragp->fr_literal + fragp->fr_fix;
25528
25529 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
25530 if (fragp->fr_symbol)
25531 {
0110f2b8
PB
25532 exp.X_op = O_symbol;
25533 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
25534 }
25535 else
25536 {
0110f2b8 25537 exp.X_op = O_constant;
5f4273c7 25538 }
0110f2b8
PB
25539 exp.X_add_number = fragp->fr_offset;
25540 opcode = fragp->fr_subtype;
25541 switch (opcode)
25542 {
25543 case T_MNEM_ldr_pc:
25544 case T_MNEM_ldr_pc2:
25545 case T_MNEM_ldr_sp:
25546 case T_MNEM_str_sp:
25547 case T_MNEM_ldr:
25548 case T_MNEM_ldrb:
25549 case T_MNEM_ldrh:
25550 case T_MNEM_str:
25551 case T_MNEM_strb:
25552 case T_MNEM_strh:
25553 if (fragp->fr_var == 4)
25554 {
5f4273c7 25555 insn = THUMB_OP32 (opcode);
0110f2b8
PB
25556 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
25557 {
25558 insn |= (old_op & 0x700) << 4;
25559 }
25560 else
25561 {
25562 insn |= (old_op & 7) << 12;
25563 insn |= (old_op & 0x38) << 13;
25564 }
25565 insn |= 0x00000c00;
25566 put_thumb32_insn (buf, insn);
25567 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
25568 }
25569 else
25570 {
25571 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
25572 }
25573 pc_rel = (opcode == T_MNEM_ldr_pc2);
25574 break;
25575 case T_MNEM_adr:
25576 if (fragp->fr_var == 4)
25577 {
25578 insn = THUMB_OP32 (opcode);
25579 insn |= (old_op & 0xf0) << 4;
25580 put_thumb32_insn (buf, insn);
25581 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
25582 }
25583 else
25584 {
25585 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25586 exp.X_add_number -= 4;
25587 }
25588 pc_rel = 1;
25589 break;
25590 case T_MNEM_mov:
25591 case T_MNEM_movs:
25592 case T_MNEM_cmp:
25593 case T_MNEM_cmn:
25594 if (fragp->fr_var == 4)
25595 {
25596 int r0off = (opcode == T_MNEM_mov
25597 || opcode == T_MNEM_movs) ? 0 : 8;
25598 insn = THUMB_OP32 (opcode);
25599 insn = (insn & 0xe1ffffff) | 0x10000000;
25600 insn |= (old_op & 0x700) << r0off;
25601 put_thumb32_insn (buf, insn);
25602 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25603 }
25604 else
25605 {
25606 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
25607 }
25608 pc_rel = 0;
25609 break;
25610 case T_MNEM_b:
25611 if (fragp->fr_var == 4)
25612 {
25613 insn = THUMB_OP32(opcode);
25614 put_thumb32_insn (buf, insn);
25615 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
25616 }
25617 else
25618 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
25619 pc_rel = 1;
25620 break;
25621 case T_MNEM_bcond:
25622 if (fragp->fr_var == 4)
25623 {
25624 insn = THUMB_OP32(opcode);
25625 insn |= (old_op & 0xf00) << 14;
25626 put_thumb32_insn (buf, insn);
25627 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
25628 }
25629 else
25630 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
25631 pc_rel = 1;
25632 break;
25633 case T_MNEM_add_sp:
25634 case T_MNEM_add_pc:
25635 case T_MNEM_inc_sp:
25636 case T_MNEM_dec_sp:
25637 if (fragp->fr_var == 4)
25638 {
25639 /* ??? Choose between add and addw. */
25640 insn = THUMB_OP32 (opcode);
25641 insn |= (old_op & 0xf0) << 4;
25642 put_thumb32_insn (buf, insn);
16805f35
PB
25643 if (opcode == T_MNEM_add_pc)
25644 reloc_type = BFD_RELOC_ARM_T32_IMM12;
25645 else
25646 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
25647 }
25648 else
25649 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25650 pc_rel = 0;
25651 break;
25652
25653 case T_MNEM_addi:
25654 case T_MNEM_addis:
25655 case T_MNEM_subi:
25656 case T_MNEM_subis:
25657 if (fragp->fr_var == 4)
25658 {
25659 insn = THUMB_OP32 (opcode);
25660 insn |= (old_op & 0xf0) << 4;
25661 insn |= (old_op & 0xf) << 16;
25662 put_thumb32_insn (buf, insn);
16805f35
PB
25663 if (insn & (1 << 20))
25664 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25665 else
25666 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
25667 }
25668 else
25669 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25670 pc_rel = 0;
25671 break;
25672 default:
5f4273c7 25673 abort ();
0110f2b8
PB
25674 }
25675 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 25676 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
25677 fixp->fx_file = fragp->fr_file;
25678 fixp->fx_line = fragp->fr_line;
25679 fragp->fr_fix += fragp->fr_var;
3cfdb781
TG
25680
25681 /* Set whether we use thumb-2 ISA based on final relaxation results. */
25682 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
25683 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
25684 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
0110f2b8
PB
25685}
25686
25687/* Return the size of a relaxable immediate operand instruction.
25688 SHIFT and SIZE specify the form of the allowable immediate. */
25689static int
25690relax_immediate (fragS *fragp, int size, int shift)
25691{
25692 offsetT offset;
25693 offsetT mask;
25694 offsetT low;
25695
25696 /* ??? Should be able to do better than this. */
25697 if (fragp->fr_symbol)
25698 return 4;
25699
25700 low = (1 << shift) - 1;
25701 mask = (1 << (shift + size)) - (1 << shift);
25702 offset = fragp->fr_offset;
25703 /* Force misaligned offsets to 32-bit variant. */
25704 if (offset & low)
5e77afaa 25705 return 4;
0110f2b8
PB
25706 if (offset & ~mask)
25707 return 4;
25708 return 2;
25709}
25710
5e77afaa
PB
25711/* Get the address of a symbol during relaxation. */
25712static addressT
5f4273c7 25713relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
25714{
25715 fragS *sym_frag;
25716 addressT addr;
25717 symbolS *sym;
25718
25719 sym = fragp->fr_symbol;
25720 sym_frag = symbol_get_frag (sym);
25721 know (S_GET_SEGMENT (sym) != absolute_section
25722 || sym_frag == &zero_address_frag);
25723 addr = S_GET_VALUE (sym) + fragp->fr_offset;
25724
25725 /* If frag has yet to be reached on this pass, assume it will
25726 move by STRETCH just as we did. If this is not so, it will
25727 be because some frag between grows, and that will force
25728 another pass. */
25729
25730 if (stretch != 0
25731 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
25732 {
25733 fragS *f;
25734
25735 /* Adjust stretch for any alignment frag. Note that if have
25736 been expanding the earlier code, the symbol may be
25737 defined in what appears to be an earlier frag. FIXME:
25738 This doesn't handle the fr_subtype field, which specifies
25739 a maximum number of bytes to skip when doing an
25740 alignment. */
25741 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
25742 {
25743 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
25744 {
25745 if (stretch < 0)
25746 stretch = - ((- stretch)
25747 & ~ ((1 << (int) f->fr_offset) - 1));
25748 else
25749 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
25750 if (stretch == 0)
25751 break;
25752 }
25753 }
25754 if (f != NULL)
25755 addr += stretch;
25756 }
5e77afaa
PB
25757
25758 return addr;
25759}
25760
0110f2b8
PB
25761/* Return the size of a relaxable adr pseudo-instruction or PC-relative
25762 load. */
25763static int
5e77afaa 25764relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
25765{
25766 addressT addr;
25767 offsetT val;
25768
25769 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
25770 if (fragp->fr_symbol == NULL
25771 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
25772 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25773 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
25774 return 4;
25775
5f4273c7 25776 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
25777 addr = fragp->fr_address + fragp->fr_fix;
25778 addr = (addr + 4) & ~3;
5e77afaa 25779 /* Force misaligned targets to 32-bit variant. */
0110f2b8 25780 if (val & 3)
5e77afaa 25781 return 4;
0110f2b8
PB
25782 val -= addr;
25783 if (val < 0 || val > 1020)
25784 return 4;
25785 return 2;
25786}
25787
25788/* Return the size of a relaxable add/sub immediate instruction. */
25789static int
25790relax_addsub (fragS *fragp, asection *sec)
25791{
25792 char *buf;
25793 int op;
25794
25795 buf = fragp->fr_literal + fragp->fr_fix;
25796 op = bfd_get_16(sec->owner, buf);
25797 if ((op & 0xf) == ((op >> 4) & 0xf))
25798 return relax_immediate (fragp, 8, 0);
25799 else
25800 return relax_immediate (fragp, 3, 0);
25801}
25802
e83a675f
RE
25803/* Return TRUE iff the definition of symbol S could be pre-empted
25804 (overridden) at link or load time. */
25805static bfd_boolean
25806symbol_preemptible (symbolS *s)
25807{
25808 /* Weak symbols can always be pre-empted. */
25809 if (S_IS_WEAK (s))
25810 return TRUE;
25811
25812 /* Non-global symbols cannot be pre-empted. */
25813 if (! S_IS_EXTERNAL (s))
25814 return FALSE;
25815
25816#ifdef OBJ_ELF
25817 /* In ELF, a global symbol can be marked protected, or private. In that
25818 case it can't be pre-empted (other definitions in the same link unit
25819 would violate the ODR). */
25820 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
25821 return FALSE;
25822#endif
25823
25824 /* Other global symbols might be pre-empted. */
25825 return TRUE;
25826}
0110f2b8
PB
25827
25828/* Return the size of a relaxable branch instruction. BITS is the
25829 size of the offset field in the narrow instruction. */
25830
25831static int
5e77afaa 25832relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
25833{
25834 addressT addr;
25835 offsetT val;
25836 offsetT limit;
25837
25838 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 25839 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
25840 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25841 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
25842 return 4;
25843
267bf995 25844#ifdef OBJ_ELF
e83a675f 25845 /* A branch to a function in ARM state will require interworking. */
267bf995
RR
25846 if (S_IS_DEFINED (fragp->fr_symbol)
25847 && ARM_IS_FUNC (fragp->fr_symbol))
25848 return 4;
e83a675f 25849#endif
0d9b4b55 25850
e83a675f 25851 if (symbol_preemptible (fragp->fr_symbol))
0d9b4b55 25852 return 4;
267bf995 25853
5f4273c7 25854 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
25855 addr = fragp->fr_address + fragp->fr_fix + 4;
25856 val -= addr;
25857
25858 /* Offset is a signed value *2 */
25859 limit = 1 << bits;
25860 if (val >= limit || val < -limit)
25861 return 4;
25862 return 2;
25863}
25864
25865
25866/* Relax a machine dependent frag. This returns the amount by which
25867 the current size of the frag should change. */
25868
25869int
5e77afaa 25870arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
25871{
25872 int oldsize;
25873 int newsize;
25874
25875 oldsize = fragp->fr_var;
25876 switch (fragp->fr_subtype)
25877 {
25878 case T_MNEM_ldr_pc2:
5f4273c7 25879 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
25880 break;
25881 case T_MNEM_ldr_pc:
25882 case T_MNEM_ldr_sp:
25883 case T_MNEM_str_sp:
5f4273c7 25884 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
25885 break;
25886 case T_MNEM_ldr:
25887 case T_MNEM_str:
5f4273c7 25888 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
25889 break;
25890 case T_MNEM_ldrh:
25891 case T_MNEM_strh:
5f4273c7 25892 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
25893 break;
25894 case T_MNEM_ldrb:
25895 case T_MNEM_strb:
5f4273c7 25896 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
25897 break;
25898 case T_MNEM_adr:
5f4273c7 25899 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
25900 break;
25901 case T_MNEM_mov:
25902 case T_MNEM_movs:
25903 case T_MNEM_cmp:
25904 case T_MNEM_cmn:
5f4273c7 25905 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
25906 break;
25907 case T_MNEM_b:
5f4273c7 25908 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
25909 break;
25910 case T_MNEM_bcond:
5f4273c7 25911 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
25912 break;
25913 case T_MNEM_add_sp:
25914 case T_MNEM_add_pc:
25915 newsize = relax_immediate (fragp, 8, 2);
25916 break;
25917 case T_MNEM_inc_sp:
25918 case T_MNEM_dec_sp:
25919 newsize = relax_immediate (fragp, 7, 2);
25920 break;
25921 case T_MNEM_addi:
25922 case T_MNEM_addis:
25923 case T_MNEM_subi:
25924 case T_MNEM_subis:
25925 newsize = relax_addsub (fragp, sec);
25926 break;
25927 default:
5f4273c7 25928 abort ();
0110f2b8 25929 }
5e77afaa
PB
25930
25931 fragp->fr_var = newsize;
25932 /* Freeze wide instructions that are at or before the same location as
25933 in the previous pass. This avoids infinite loops.
5f4273c7
NC
25934 Don't freeze them unconditionally because targets may be artificially
25935 misaligned by the expansion of preceding frags. */
5e77afaa 25936 if (stretch <= 0 && newsize > 2)
0110f2b8 25937 {
0110f2b8 25938 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 25939 frag_wane (fragp);
0110f2b8 25940 }
5e77afaa 25941
0110f2b8 25942 return newsize - oldsize;
c19d1205 25943}
b99bd4ef 25944
c19d1205 25945/* Round up a section size to the appropriate boundary. */
b99bd4ef 25946
c19d1205
ZW
25947valueT
25948md_section_align (segT segment ATTRIBUTE_UNUSED,
25949 valueT size)
25950{
6844c0cc 25951 return size;
bfae80f2 25952}
b99bd4ef 25953
c19d1205
ZW
25954/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
25955 of an rs_align_code fragment. */
25956
25957void
25958arm_handle_align (fragS * fragP)
bfae80f2 25959{
d9235011 25960 static unsigned char const arm_noop[2][2][4] =
e7495e45
NS
25961 {
25962 { /* ARMv1 */
25963 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
25964 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
25965 },
25966 { /* ARMv6k */
25967 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
25968 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
25969 },
25970 };
d9235011 25971 static unsigned char const thumb_noop[2][2][2] =
e7495e45
NS
25972 {
25973 { /* Thumb-1 */
25974 {0xc0, 0x46}, /* LE */
25975 {0x46, 0xc0}, /* BE */
25976 },
25977 { /* Thumb-2 */
25978 {0x00, 0xbf}, /* LE */
25979 {0xbf, 0x00} /* BE */
25980 }
25981 };
d9235011 25982 static unsigned char const wide_thumb_noop[2][4] =
e7495e45
NS
25983 { /* Wide Thumb-2 */
25984 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
25985 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
25986 };
c921be7d 25987
e7495e45 25988 unsigned bytes, fix, noop_size;
c19d1205 25989 char * p;
d9235011
TS
25990 const unsigned char * noop;
25991 const unsigned char *narrow_noop = NULL;
cd000bff
DJ
25992#ifdef OBJ_ELF
25993 enum mstate state;
25994#endif
bfae80f2 25995
c19d1205 25996 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
25997 return;
25998
c19d1205
ZW
25999 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
26000 p = fragP->fr_literal + fragP->fr_fix;
26001 fix = 0;
bfae80f2 26002
c19d1205
ZW
26003 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
26004 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 26005
cd000bff 26006 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 26007
cd000bff 26008 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 26009 {
7f78eb34
JW
26010 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
26011 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
e7495e45
NS
26012 {
26013 narrow_noop = thumb_noop[1][target_big_endian];
26014 noop = wide_thumb_noop[target_big_endian];
26015 }
c19d1205 26016 else
e7495e45
NS
26017 noop = thumb_noop[0][target_big_endian];
26018 noop_size = 2;
cd000bff
DJ
26019#ifdef OBJ_ELF
26020 state = MAP_THUMB;
26021#endif
7ed4c4c5
NC
26022 }
26023 else
26024 {
7f78eb34
JW
26025 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
26026 ? selected_cpu : arm_arch_none,
26027 arm_ext_v6k) != 0]
e7495e45
NS
26028 [target_big_endian];
26029 noop_size = 4;
cd000bff
DJ
26030#ifdef OBJ_ELF
26031 state = MAP_ARM;
26032#endif
7ed4c4c5 26033 }
c921be7d 26034
e7495e45 26035 fragP->fr_var = noop_size;
c921be7d 26036
c19d1205 26037 if (bytes & (noop_size - 1))
7ed4c4c5 26038 {
c19d1205 26039 fix = bytes & (noop_size - 1);
cd000bff
DJ
26040#ifdef OBJ_ELF
26041 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
26042#endif
c19d1205
ZW
26043 memset (p, 0, fix);
26044 p += fix;
26045 bytes -= fix;
a737bd4d 26046 }
a737bd4d 26047
e7495e45
NS
26048 if (narrow_noop)
26049 {
26050 if (bytes & noop_size)
26051 {
26052 /* Insert a narrow noop. */
26053 memcpy (p, narrow_noop, noop_size);
26054 p += noop_size;
26055 bytes -= noop_size;
26056 fix += noop_size;
26057 }
26058
26059 /* Use wide noops for the remainder */
26060 noop_size = 4;
26061 }
26062
c19d1205 26063 while (bytes >= noop_size)
a737bd4d 26064 {
c19d1205
ZW
26065 memcpy (p, noop, noop_size);
26066 p += noop_size;
26067 bytes -= noop_size;
26068 fix += noop_size;
a737bd4d
NC
26069 }
26070
c19d1205 26071 fragP->fr_fix += fix;
a737bd4d
NC
26072}
26073
c19d1205
ZW
26074/* Called from md_do_align. Used to create an alignment
26075 frag in a code section. */
26076
26077void
26078arm_frag_align_code (int n, int max)
bfae80f2 26079{
c19d1205 26080 char * p;
7ed4c4c5 26081
c19d1205 26082 /* We assume that there will never be a requirement
6ec8e702 26083 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 26084 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
26085 {
26086 char err_msg[128];
26087
fa94de6b 26088 sprintf (err_msg,
477330fc
RM
26089 _("alignments greater than %d bytes not supported in .text sections."),
26090 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 26091 as_fatal ("%s", err_msg);
6ec8e702 26092 }
bfae80f2 26093
c19d1205
ZW
26094 p = frag_var (rs_align_code,
26095 MAX_MEM_FOR_RS_ALIGN_CODE,
26096 1,
26097 (relax_substateT) max,
26098 (symbolS *) NULL,
26099 (offsetT) n,
26100 (char *) NULL);
26101 *p = 0;
26102}
bfae80f2 26103
8dc2430f
NC
26104/* Perform target specific initialisation of a frag.
26105 Note - despite the name this initialisation is not done when the frag
26106 is created, but only when its type is assigned. A frag can be created
26107 and used a long time before its type is set, so beware of assuming that
33eaf5de 26108 this initialisation is performed first. */
bfae80f2 26109
cd000bff
DJ
26110#ifndef OBJ_ELF
26111void
26112arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
26113{
26114 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 26115 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
26116}
26117
26118#else /* OBJ_ELF is defined. */
c19d1205 26119void
cd000bff 26120arm_init_frag (fragS * fragP, int max_chars)
c19d1205 26121{
e8d84ca1 26122 bfd_boolean frag_thumb_mode;
b968d18a 26123
8dc2430f
NC
26124 /* If the current ARM vs THUMB mode has not already
26125 been recorded into this frag then do so now. */
cd000bff 26126 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
b968d18a
JW
26127 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
26128
e8d84ca1
NC
26129 /* PR 21809: Do not set a mapping state for debug sections
26130 - it just confuses other tools. */
26131 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
26132 return;
26133
b968d18a 26134 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
cd000bff 26135
f9c1b181
RL
26136 /* Record a mapping symbol for alignment frags. We will delete this
26137 later if the alignment ends up empty. */
26138 switch (fragP->fr_type)
26139 {
26140 case rs_align:
26141 case rs_align_test:
26142 case rs_fill:
26143 mapping_state_2 (MAP_DATA, max_chars);
26144 break;
26145 case rs_align_code:
b968d18a 26146 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
f9c1b181
RL
26147 break;
26148 default:
26149 break;
cd000bff 26150 }
bfae80f2
RE
26151}
26152
c19d1205
ZW
26153/* When we change sections we need to issue a new mapping symbol. */
26154
26155void
26156arm_elf_change_section (void)
bfae80f2 26157{
c19d1205
ZW
26158 /* Link an unlinked unwind index table section to the .text section. */
26159 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
26160 && elf_linked_to_section (now_seg) == NULL)
26161 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
26162}
26163
c19d1205
ZW
26164int
26165arm_elf_section_type (const char * str, size_t len)
e45d0630 26166{
c19d1205
ZW
26167 if (len == 5 && strncmp (str, "exidx", 5) == 0)
26168 return SHT_ARM_EXIDX;
e45d0630 26169
c19d1205
ZW
26170 return -1;
26171}
26172\f
26173/* Code to deal with unwinding tables. */
e45d0630 26174
c19d1205 26175static void add_unwind_adjustsp (offsetT);
e45d0630 26176
5f4273c7 26177/* Generate any deferred unwind frame offset. */
e45d0630 26178
bfae80f2 26179static void
c19d1205 26180flush_pending_unwind (void)
bfae80f2 26181{
c19d1205 26182 offsetT offset;
bfae80f2 26183
c19d1205
ZW
26184 offset = unwind.pending_offset;
26185 unwind.pending_offset = 0;
26186 if (offset != 0)
26187 add_unwind_adjustsp (offset);
bfae80f2
RE
26188}
26189
c19d1205
ZW
26190/* Add an opcode to this list for this function. Two-byte opcodes should
26191 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
26192 order. */
26193
bfae80f2 26194static void
c19d1205 26195add_unwind_opcode (valueT op, int length)
bfae80f2 26196{
c19d1205
ZW
26197 /* Add any deferred stack adjustment. */
26198 if (unwind.pending_offset)
26199 flush_pending_unwind ();
bfae80f2 26200
c19d1205 26201 unwind.sp_restored = 0;
bfae80f2 26202
c19d1205 26203 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 26204 {
c19d1205
ZW
26205 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
26206 if (unwind.opcodes)
325801bd
TS
26207 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
26208 unwind.opcode_alloc);
c19d1205 26209 else
325801bd 26210 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
bfae80f2 26211 }
c19d1205 26212 while (length > 0)
bfae80f2 26213 {
c19d1205
ZW
26214 length--;
26215 unwind.opcodes[unwind.opcode_count] = op & 0xff;
26216 op >>= 8;
26217 unwind.opcode_count++;
bfae80f2 26218 }
bfae80f2
RE
26219}
26220
c19d1205
ZW
26221/* Add unwind opcodes to adjust the stack pointer. */
26222
bfae80f2 26223static void
c19d1205 26224add_unwind_adjustsp (offsetT offset)
bfae80f2 26225{
c19d1205 26226 valueT op;
bfae80f2 26227
c19d1205 26228 if (offset > 0x200)
bfae80f2 26229 {
c19d1205
ZW
26230 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
26231 char bytes[5];
26232 int n;
26233 valueT o;
bfae80f2 26234
c19d1205
ZW
26235 /* Long form: 0xb2, uleb128. */
26236 /* This might not fit in a word so add the individual bytes,
26237 remembering the list is built in reverse order. */
26238 o = (valueT) ((offset - 0x204) >> 2);
26239 if (o == 0)
26240 add_unwind_opcode (0, 1);
bfae80f2 26241
c19d1205
ZW
26242 /* Calculate the uleb128 encoding of the offset. */
26243 n = 0;
26244 while (o)
26245 {
26246 bytes[n] = o & 0x7f;
26247 o >>= 7;
26248 if (o)
26249 bytes[n] |= 0x80;
26250 n++;
26251 }
26252 /* Add the insn. */
26253 for (; n; n--)
26254 add_unwind_opcode (bytes[n - 1], 1);
26255 add_unwind_opcode (0xb2, 1);
26256 }
26257 else if (offset > 0x100)
bfae80f2 26258 {
c19d1205
ZW
26259 /* Two short opcodes. */
26260 add_unwind_opcode (0x3f, 1);
26261 op = (offset - 0x104) >> 2;
26262 add_unwind_opcode (op, 1);
bfae80f2 26263 }
c19d1205
ZW
26264 else if (offset > 0)
26265 {
26266 /* Short opcode. */
26267 op = (offset - 4) >> 2;
26268 add_unwind_opcode (op, 1);
26269 }
26270 else if (offset < 0)
bfae80f2 26271 {
c19d1205
ZW
26272 offset = -offset;
26273 while (offset > 0x100)
bfae80f2 26274 {
c19d1205
ZW
26275 add_unwind_opcode (0x7f, 1);
26276 offset -= 0x100;
bfae80f2 26277 }
c19d1205
ZW
26278 op = ((offset - 4) >> 2) | 0x40;
26279 add_unwind_opcode (op, 1);
bfae80f2 26280 }
bfae80f2
RE
26281}
26282
c19d1205 26283/* Finish the list of unwind opcodes for this function. */
0198d5e6 26284
c19d1205
ZW
26285static void
26286finish_unwind_opcodes (void)
bfae80f2 26287{
c19d1205 26288 valueT op;
bfae80f2 26289
c19d1205 26290 if (unwind.fp_used)
bfae80f2 26291 {
708587a4 26292 /* Adjust sp as necessary. */
c19d1205
ZW
26293 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
26294 flush_pending_unwind ();
bfae80f2 26295
c19d1205
ZW
26296 /* After restoring sp from the frame pointer. */
26297 op = 0x90 | unwind.fp_reg;
26298 add_unwind_opcode (op, 1);
26299 }
26300 else
26301 flush_pending_unwind ();
bfae80f2
RE
26302}
26303
bfae80f2 26304
c19d1205
ZW
26305/* Start an exception table entry. If idx is nonzero this is an index table
26306 entry. */
bfae80f2
RE
26307
26308static void
c19d1205 26309start_unwind_section (const segT text_seg, int idx)
bfae80f2 26310{
c19d1205
ZW
26311 const char * text_name;
26312 const char * prefix;
26313 const char * prefix_once;
26314 const char * group_name;
c19d1205 26315 char * sec_name;
c19d1205
ZW
26316 int type;
26317 int flags;
26318 int linkonce;
bfae80f2 26319
c19d1205 26320 if (idx)
bfae80f2 26321 {
c19d1205
ZW
26322 prefix = ELF_STRING_ARM_unwind;
26323 prefix_once = ELF_STRING_ARM_unwind_once;
26324 type = SHT_ARM_EXIDX;
bfae80f2 26325 }
c19d1205 26326 else
bfae80f2 26327 {
c19d1205
ZW
26328 prefix = ELF_STRING_ARM_unwind_info;
26329 prefix_once = ELF_STRING_ARM_unwind_info_once;
26330 type = SHT_PROGBITS;
bfae80f2
RE
26331 }
26332
c19d1205
ZW
26333 text_name = segment_name (text_seg);
26334 if (streq (text_name, ".text"))
26335 text_name = "";
26336
26337 if (strncmp (text_name, ".gnu.linkonce.t.",
26338 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 26339 {
c19d1205
ZW
26340 prefix = prefix_once;
26341 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
26342 }
26343
29a2809e 26344 sec_name = concat (prefix, text_name, (char *) NULL);
bfae80f2 26345
c19d1205
ZW
26346 flags = SHF_ALLOC;
26347 linkonce = 0;
26348 group_name = 0;
bfae80f2 26349
c19d1205
ZW
26350 /* Handle COMDAT group. */
26351 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 26352 {
c19d1205
ZW
26353 group_name = elf_group_name (text_seg);
26354 if (group_name == NULL)
26355 {
bd3ba5d1 26356 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
26357 segment_name (text_seg));
26358 ignore_rest_of_line ();
26359 return;
26360 }
26361 flags |= SHF_GROUP;
26362 linkonce = 1;
bfae80f2
RE
26363 }
26364
a91e1603
L
26365 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
26366 linkonce, 0);
bfae80f2 26367
5f4273c7 26368 /* Set the section link for index tables. */
c19d1205
ZW
26369 if (idx)
26370 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
26371}
26372
bfae80f2 26373
c19d1205
ZW
26374/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
26375 personality routine data. Returns zero, or the index table value for
cad0da33 26376 an inline entry. */
c19d1205
ZW
26377
26378static valueT
26379create_unwind_entry (int have_data)
bfae80f2 26380{
c19d1205
ZW
26381 int size;
26382 addressT where;
26383 char *ptr;
26384 /* The current word of data. */
26385 valueT data;
26386 /* The number of bytes left in this word. */
26387 int n;
bfae80f2 26388
c19d1205 26389 finish_unwind_opcodes ();
bfae80f2 26390
c19d1205
ZW
26391 /* Remember the current text section. */
26392 unwind.saved_seg = now_seg;
26393 unwind.saved_subseg = now_subseg;
bfae80f2 26394
c19d1205 26395 start_unwind_section (now_seg, 0);
bfae80f2 26396
c19d1205 26397 if (unwind.personality_routine == NULL)
bfae80f2 26398 {
c19d1205
ZW
26399 if (unwind.personality_index == -2)
26400 {
26401 if (have_data)
5f4273c7 26402 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
26403 return 1; /* EXIDX_CANTUNWIND. */
26404 }
bfae80f2 26405
c19d1205
ZW
26406 /* Use a default personality routine if none is specified. */
26407 if (unwind.personality_index == -1)
26408 {
26409 if (unwind.opcode_count > 3)
26410 unwind.personality_index = 1;
26411 else
26412 unwind.personality_index = 0;
26413 }
bfae80f2 26414
c19d1205
ZW
26415 /* Space for the personality routine entry. */
26416 if (unwind.personality_index == 0)
26417 {
26418 if (unwind.opcode_count > 3)
26419 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 26420
c19d1205
ZW
26421 if (!have_data)
26422 {
26423 /* All the data is inline in the index table. */
26424 data = 0x80;
26425 n = 3;
26426 while (unwind.opcode_count > 0)
26427 {
26428 unwind.opcode_count--;
26429 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26430 n--;
26431 }
bfae80f2 26432
c19d1205
ZW
26433 /* Pad with "finish" opcodes. */
26434 while (n--)
26435 data = (data << 8) | 0xb0;
bfae80f2 26436
c19d1205
ZW
26437 return data;
26438 }
26439 size = 0;
26440 }
26441 else
26442 /* We get two opcodes "free" in the first word. */
26443 size = unwind.opcode_count - 2;
26444 }
26445 else
5011093d 26446 {
cad0da33
NC
26447 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
26448 if (unwind.personality_index != -1)
26449 {
26450 as_bad (_("attempt to recreate an unwind entry"));
26451 return 1;
26452 }
5011093d
NC
26453
26454 /* An extra byte is required for the opcode count. */
26455 size = unwind.opcode_count + 1;
26456 }
bfae80f2 26457
c19d1205
ZW
26458 size = (size + 3) >> 2;
26459 if (size > 0xff)
26460 as_bad (_("too many unwind opcodes"));
bfae80f2 26461
c19d1205
ZW
26462 frag_align (2, 0, 0);
26463 record_alignment (now_seg, 2);
26464 unwind.table_entry = expr_build_dot ();
26465
26466 /* Allocate the table entry. */
26467 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
26468 /* PR 13449: Zero the table entries in case some of them are not used. */
26469 memset (ptr, 0, (size << 2) + 4);
c19d1205 26470 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 26471
c19d1205 26472 switch (unwind.personality_index)
bfae80f2 26473 {
c19d1205
ZW
26474 case -1:
26475 /* ??? Should this be a PLT generating relocation? */
26476 /* Custom personality routine. */
26477 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
26478 BFD_RELOC_ARM_PREL31);
bfae80f2 26479
c19d1205
ZW
26480 where += 4;
26481 ptr += 4;
bfae80f2 26482
c19d1205 26483 /* Set the first byte to the number of additional words. */
5011093d 26484 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
26485 n = 3;
26486 break;
bfae80f2 26487
c19d1205
ZW
26488 /* ABI defined personality routines. */
26489 case 0:
26490 /* Three opcodes bytes are packed into the first word. */
26491 data = 0x80;
26492 n = 3;
26493 break;
bfae80f2 26494
c19d1205
ZW
26495 case 1:
26496 case 2:
26497 /* The size and first two opcode bytes go in the first word. */
26498 data = ((0x80 + unwind.personality_index) << 8) | size;
26499 n = 2;
26500 break;
bfae80f2 26501
c19d1205
ZW
26502 default:
26503 /* Should never happen. */
26504 abort ();
26505 }
bfae80f2 26506
c19d1205
ZW
26507 /* Pack the opcodes into words (MSB first), reversing the list at the same
26508 time. */
26509 while (unwind.opcode_count > 0)
26510 {
26511 if (n == 0)
26512 {
26513 md_number_to_chars (ptr, data, 4);
26514 ptr += 4;
26515 n = 4;
26516 data = 0;
26517 }
26518 unwind.opcode_count--;
26519 n--;
26520 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26521 }
26522
26523 /* Finish off the last word. */
26524 if (n < 4)
26525 {
26526 /* Pad with "finish" opcodes. */
26527 while (n--)
26528 data = (data << 8) | 0xb0;
26529
26530 md_number_to_chars (ptr, data, 4);
26531 }
26532
26533 if (!have_data)
26534 {
26535 /* Add an empty descriptor if there is no user-specified data. */
26536 ptr = frag_more (4);
26537 md_number_to_chars (ptr, 0, 4);
26538 }
26539
26540 return 0;
bfae80f2
RE
26541}
26542
f0927246
NC
26543
26544/* Initialize the DWARF-2 unwind information for this procedure. */
26545
26546void
26547tc_arm_frame_initial_instructions (void)
26548{
26549 cfi_add_CFA_def_cfa (REG_SP, 0);
26550}
26551#endif /* OBJ_ELF */
26552
c19d1205
ZW
26553/* Convert REGNAME to a DWARF-2 register number. */
26554
26555int
1df69f4f 26556tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 26557{
1df69f4f 26558 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
1f5afe1c
NC
26559 if (reg != FAIL)
26560 return reg;
c19d1205 26561
1f5afe1c
NC
26562 /* PR 16694: Allow VFP registers as well. */
26563 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
26564 if (reg != FAIL)
26565 return 64 + reg;
c19d1205 26566
1f5afe1c
NC
26567 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
26568 if (reg != FAIL)
26569 return reg + 256;
26570
0198d5e6 26571 return FAIL;
bfae80f2
RE
26572}
26573
f0927246 26574#ifdef TE_PE
c19d1205 26575void
f0927246 26576tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 26577{
91d6fa6a 26578 expressionS exp;
bfae80f2 26579
91d6fa6a
NC
26580 exp.X_op = O_secrel;
26581 exp.X_add_symbol = symbol;
26582 exp.X_add_number = 0;
26583 emit_expr (&exp, size);
f0927246
NC
26584}
26585#endif
bfae80f2 26586
c19d1205 26587/* MD interface: Symbol and relocation handling. */
bfae80f2 26588
2fc8bdac
ZW
26589/* Return the address within the segment that a PC-relative fixup is
26590 relative to. For ARM, PC-relative fixups applied to instructions
26591 are generally relative to the location of the fixup plus 8 bytes.
26592 Thumb branches are offset by 4, and Thumb loads relative to PC
26593 require special handling. */
bfae80f2 26594
c19d1205 26595long
2fc8bdac 26596md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 26597{
2fc8bdac
ZW
26598 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
26599
26600 /* If this is pc-relative and we are going to emit a relocation
26601 then we just want to put out any pipeline compensation that the linker
53baae48
NC
26602 will need. Otherwise we want to use the calculated base.
26603 For WinCE we skip the bias for externals as well, since this
26604 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 26605 if (fixP->fx_pcrel
2fc8bdac 26606 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
26607 || (arm_force_relocation (fixP)
26608#ifdef TE_WINCE
26609 && !S_IS_EXTERNAL (fixP->fx_addsy)
26610#endif
26611 )))
2fc8bdac 26612 base = 0;
bfae80f2 26613
267bf995 26614
c19d1205 26615 switch (fixP->fx_r_type)
bfae80f2 26616 {
2fc8bdac
ZW
26617 /* PC relative addressing on the Thumb is slightly odd as the
26618 bottom two bits of the PC are forced to zero for the
26619 calculation. This happens *after* application of the
26620 pipeline offset. However, Thumb adrl already adjusts for
26621 this, so we need not do it again. */
c19d1205 26622 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 26623 return base & ~3;
c19d1205
ZW
26624
26625 case BFD_RELOC_ARM_THUMB_OFFSET:
26626 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 26627 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 26628 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 26629 return (base + 4) & ~3;
c19d1205 26630
2fc8bdac 26631 /* Thumb branches are simply offset by +4. */
e12437dc 26632 case BFD_RELOC_THUMB_PCREL_BRANCH5:
2fc8bdac
ZW
26633 case BFD_RELOC_THUMB_PCREL_BRANCH7:
26634 case BFD_RELOC_THUMB_PCREL_BRANCH9:
26635 case BFD_RELOC_THUMB_PCREL_BRANCH12:
26636 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 26637 case BFD_RELOC_THUMB_PCREL_BRANCH25:
f6b2b12d 26638 case BFD_RELOC_THUMB_PCREL_BFCSEL:
e5d6e09e 26639 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 26640 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 26641 case BFD_RELOC_ARM_THUMB_BF13:
60f993ce 26642 case BFD_RELOC_ARM_THUMB_LOOP12:
2fc8bdac 26643 return base + 4;
bfae80f2 26644
267bf995 26645 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
26646 if (fixP->fx_addsy
26647 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26648 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995 26649 && ARM_IS_FUNC (fixP->fx_addsy)
477330fc
RM
26650 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26651 base = fixP->fx_where + fixP->fx_frag->fr_address;
267bf995
RR
26652 return base + 4;
26653
00adf2d4
JB
26654 /* BLX is like branches above, but forces the low two bits of PC to
26655 zero. */
486499d0
CL
26656 case BFD_RELOC_THUMB_PCREL_BLX:
26657 if (fixP->fx_addsy
26658 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26659 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
26660 && THUMB_IS_FUNC (fixP->fx_addsy)
26661 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26662 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
26663 return (base + 4) & ~3;
26664
2fc8bdac
ZW
26665 /* ARM mode branches are offset by +8. However, the Windows CE
26666 loader expects the relocation not to take this into account. */
267bf995 26667 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
26668 if (fixP->fx_addsy
26669 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26670 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
26671 && ARM_IS_FUNC (fixP->fx_addsy)
26672 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26673 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 26674 return base + 8;
267bf995 26675
486499d0
CL
26676 case BFD_RELOC_ARM_PCREL_CALL:
26677 if (fixP->fx_addsy
26678 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26679 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
26680 && THUMB_IS_FUNC (fixP->fx_addsy)
26681 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26682 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 26683 return base + 8;
267bf995 26684
2fc8bdac 26685 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 26686 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 26687 case BFD_RELOC_ARM_PLT32:
c19d1205 26688#ifdef TE_WINCE
5f4273c7 26689 /* When handling fixups immediately, because we have already
477330fc 26690 discovered the value of a symbol, or the address of the frag involved
53baae48 26691 we must account for the offset by +8, as the OS loader will never see the reloc.
477330fc
RM
26692 see fixup_segment() in write.c
26693 The S_IS_EXTERNAL test handles the case of global symbols.
26694 Those need the calculated base, not just the pipe compensation the linker will need. */
53baae48
NC
26695 if (fixP->fx_pcrel
26696 && fixP->fx_addsy != NULL
26697 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26698 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
26699 return base + 8;
2fc8bdac 26700 return base;
c19d1205 26701#else
2fc8bdac 26702 return base + 8;
c19d1205 26703#endif
2fc8bdac 26704
267bf995 26705
2fc8bdac
ZW
26706 /* ARM mode loads relative to PC are also offset by +8. Unlike
26707 branches, the Windows CE loader *does* expect the relocation
26708 to take this into account. */
26709 case BFD_RELOC_ARM_OFFSET_IMM:
26710 case BFD_RELOC_ARM_OFFSET_IMM8:
26711 case BFD_RELOC_ARM_HWLITERAL:
26712 case BFD_RELOC_ARM_LITERAL:
26713 case BFD_RELOC_ARM_CP_OFF_IMM:
26714 return base + 8;
26715
26716
26717 /* Other PC-relative relocations are un-offset. */
26718 default:
26719 return base;
26720 }
bfae80f2
RE
26721}
26722
8b2d793c
NC
26723static bfd_boolean flag_warn_syms = TRUE;
26724
ae8714c2
NC
26725bfd_boolean
26726arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
bfae80f2 26727{
8b2d793c
NC
26728 /* PR 18347 - Warn if the user attempts to create a symbol with the same
26729 name as an ARM instruction. Whilst strictly speaking it is allowed, it
26730 does mean that the resulting code might be very confusing to the reader.
26731 Also this warning can be triggered if the user omits an operand before
26732 an immediate address, eg:
26733
26734 LDR =foo
26735
26736 GAS treats this as an assignment of the value of the symbol foo to a
26737 symbol LDR, and so (without this code) it will not issue any kind of
26738 warning or error message.
26739
26740 Note - ARM instructions are case-insensitive but the strings in the hash
26741 table are all stored in lower case, so we must first ensure that name is
ae8714c2
NC
26742 lower case too. */
26743 if (flag_warn_syms && arm_ops_hsh)
8b2d793c
NC
26744 {
26745 char * nbuf = strdup (name);
26746 char * p;
26747
26748 for (p = nbuf; *p; p++)
26749 *p = TOLOWER (*p);
26750 if (hash_find (arm_ops_hsh, nbuf) != NULL)
26751 {
26752 static struct hash_control * already_warned = NULL;
26753
26754 if (already_warned == NULL)
26755 already_warned = hash_new ();
26756 /* Only warn about the symbol once. To keep the code
26757 simple we let hash_insert do the lookup for us. */
3076e594 26758 if (hash_insert (already_warned, nbuf, NULL) == NULL)
ae8714c2 26759 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
8b2d793c
NC
26760 }
26761 else
26762 free (nbuf);
26763 }
3739860c 26764
ae8714c2
NC
26765 return FALSE;
26766}
26767
26768/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
26769 Otherwise we have no need to default values of symbols. */
26770
26771symbolS *
26772md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
26773{
26774#ifdef OBJ_ELF
26775 if (name[0] == '_' && name[1] == 'G'
26776 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
26777 {
26778 if (!GOT_symbol)
26779 {
26780 if (symbol_find (name))
26781 as_bad (_("GOT already in the symbol table"));
26782
26783 GOT_symbol = symbol_new (name, undefined_section,
26784 (valueT) 0, & zero_address_frag);
26785 }
26786
26787 return GOT_symbol;
26788 }
26789#endif
26790
c921be7d 26791 return NULL;
bfae80f2
RE
26792}
26793
55cf6793 26794/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
26795 computed as two separate immediate values, added together. We
26796 already know that this value cannot be computed by just one ARM
26797 instruction. */
26798
26799static unsigned int
26800validate_immediate_twopart (unsigned int val,
26801 unsigned int * highpart)
bfae80f2 26802{
c19d1205
ZW
26803 unsigned int a;
26804 unsigned int i;
bfae80f2 26805
c19d1205
ZW
26806 for (i = 0; i < 32; i += 2)
26807 if (((a = rotate_left (val, i)) & 0xff) != 0)
26808 {
26809 if (a & 0xff00)
26810 {
26811 if (a & ~ 0xffff)
26812 continue;
26813 * highpart = (a >> 8) | ((i + 24) << 7);
26814 }
26815 else if (a & 0xff0000)
26816 {
26817 if (a & 0xff000000)
26818 continue;
26819 * highpart = (a >> 16) | ((i + 16) << 7);
26820 }
26821 else
26822 {
9c2799c2 26823 gas_assert (a & 0xff000000);
c19d1205
ZW
26824 * highpart = (a >> 24) | ((i + 8) << 7);
26825 }
bfae80f2 26826
c19d1205
ZW
26827 return (a & 0xff) | (i << 7);
26828 }
bfae80f2 26829
c19d1205 26830 return FAIL;
bfae80f2
RE
26831}
26832
c19d1205
ZW
26833static int
26834validate_offset_imm (unsigned int val, int hwse)
26835{
26836 if ((hwse && val > 255) || val > 4095)
26837 return FAIL;
26838 return val;
26839}
bfae80f2 26840
55cf6793 26841/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
26842 negative immediate constant by altering the instruction. A bit of
26843 a hack really.
26844 MOV <-> MVN
26845 AND <-> BIC
26846 ADC <-> SBC
26847 by inverting the second operand, and
26848 ADD <-> SUB
26849 CMP <-> CMN
26850 by negating the second operand. */
bfae80f2 26851
c19d1205
ZW
26852static int
26853negate_data_op (unsigned long * instruction,
26854 unsigned long value)
bfae80f2 26855{
c19d1205
ZW
26856 int op, new_inst;
26857 unsigned long negated, inverted;
bfae80f2 26858
c19d1205
ZW
26859 negated = encode_arm_immediate (-value);
26860 inverted = encode_arm_immediate (~value);
bfae80f2 26861
c19d1205
ZW
26862 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
26863 switch (op)
bfae80f2 26864 {
c19d1205
ZW
26865 /* First negates. */
26866 case OPCODE_SUB: /* ADD <-> SUB */
26867 new_inst = OPCODE_ADD;
26868 value = negated;
26869 break;
bfae80f2 26870
c19d1205
ZW
26871 case OPCODE_ADD:
26872 new_inst = OPCODE_SUB;
26873 value = negated;
26874 break;
bfae80f2 26875
c19d1205
ZW
26876 case OPCODE_CMP: /* CMP <-> CMN */
26877 new_inst = OPCODE_CMN;
26878 value = negated;
26879 break;
bfae80f2 26880
c19d1205
ZW
26881 case OPCODE_CMN:
26882 new_inst = OPCODE_CMP;
26883 value = negated;
26884 break;
bfae80f2 26885
c19d1205
ZW
26886 /* Now Inverted ops. */
26887 case OPCODE_MOV: /* MOV <-> MVN */
26888 new_inst = OPCODE_MVN;
26889 value = inverted;
26890 break;
bfae80f2 26891
c19d1205
ZW
26892 case OPCODE_MVN:
26893 new_inst = OPCODE_MOV;
26894 value = inverted;
26895 break;
bfae80f2 26896
c19d1205
ZW
26897 case OPCODE_AND: /* AND <-> BIC */
26898 new_inst = OPCODE_BIC;
26899 value = inverted;
26900 break;
bfae80f2 26901
c19d1205
ZW
26902 case OPCODE_BIC:
26903 new_inst = OPCODE_AND;
26904 value = inverted;
26905 break;
bfae80f2 26906
c19d1205
ZW
26907 case OPCODE_ADC: /* ADC <-> SBC */
26908 new_inst = OPCODE_SBC;
26909 value = inverted;
26910 break;
bfae80f2 26911
c19d1205
ZW
26912 case OPCODE_SBC:
26913 new_inst = OPCODE_ADC;
26914 value = inverted;
26915 break;
bfae80f2 26916
c19d1205
ZW
26917 /* We cannot do anything. */
26918 default:
26919 return FAIL;
b99bd4ef
NC
26920 }
26921
c19d1205
ZW
26922 if (value == (unsigned) FAIL)
26923 return FAIL;
26924
26925 *instruction &= OPCODE_MASK;
26926 *instruction |= new_inst << DATA_OP_SHIFT;
26927 return value;
b99bd4ef
NC
26928}
26929
ef8d22e6
PB
26930/* Like negate_data_op, but for Thumb-2. */
26931
26932static unsigned int
16dd5e42 26933thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
26934{
26935 int op, new_inst;
26936 int rd;
16dd5e42 26937 unsigned int negated, inverted;
ef8d22e6
PB
26938
26939 negated = encode_thumb32_immediate (-value);
26940 inverted = encode_thumb32_immediate (~value);
26941
26942 rd = (*instruction >> 8) & 0xf;
26943 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
26944 switch (op)
26945 {
26946 /* ADD <-> SUB. Includes CMP <-> CMN. */
26947 case T2_OPCODE_SUB:
26948 new_inst = T2_OPCODE_ADD;
26949 value = negated;
26950 break;
26951
26952 case T2_OPCODE_ADD:
26953 new_inst = T2_OPCODE_SUB;
26954 value = negated;
26955 break;
26956
26957 /* ORR <-> ORN. Includes MOV <-> MVN. */
26958 case T2_OPCODE_ORR:
26959 new_inst = T2_OPCODE_ORN;
26960 value = inverted;
26961 break;
26962
26963 case T2_OPCODE_ORN:
26964 new_inst = T2_OPCODE_ORR;
26965 value = inverted;
26966 break;
26967
26968 /* AND <-> BIC. TST has no inverted equivalent. */
26969 case T2_OPCODE_AND:
26970 new_inst = T2_OPCODE_BIC;
26971 if (rd == 15)
26972 value = FAIL;
26973 else
26974 value = inverted;
26975 break;
26976
26977 case T2_OPCODE_BIC:
26978 new_inst = T2_OPCODE_AND;
26979 value = inverted;
26980 break;
26981
26982 /* ADC <-> SBC */
26983 case T2_OPCODE_ADC:
26984 new_inst = T2_OPCODE_SBC;
26985 value = inverted;
26986 break;
26987
26988 case T2_OPCODE_SBC:
26989 new_inst = T2_OPCODE_ADC;
26990 value = inverted;
26991 break;
26992
26993 /* We cannot do anything. */
26994 default:
26995 return FAIL;
26996 }
26997
16dd5e42 26998 if (value == (unsigned int)FAIL)
ef8d22e6
PB
26999 return FAIL;
27000
27001 *instruction &= T2_OPCODE_MASK;
27002 *instruction |= new_inst << T2_DATA_OP_SHIFT;
27003 return value;
27004}
27005
8f06b2d8 27006/* Read a 32-bit thumb instruction from buf. */
0198d5e6 27007
8f06b2d8
PB
27008static unsigned long
27009get_thumb32_insn (char * buf)
27010{
27011 unsigned long insn;
27012 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
27013 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27014
27015 return insn;
27016}
27017
a8bc6c78
PB
27018/* We usually want to set the low bit on the address of thumb function
27019 symbols. In particular .word foo - . should have the low bit set.
27020 Generic code tries to fold the difference of two symbols to
27021 a constant. Prevent this and force a relocation when the first symbols
27022 is a thumb function. */
c921be7d
NC
27023
27024bfd_boolean
a8bc6c78
PB
27025arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
27026{
27027 if (op == O_subtract
27028 && l->X_op == O_symbol
27029 && r->X_op == O_symbol
27030 && THUMB_IS_FUNC (l->X_add_symbol))
27031 {
27032 l->X_op = O_subtract;
27033 l->X_op_symbol = r->X_add_symbol;
27034 l->X_add_number -= r->X_add_number;
c921be7d 27035 return TRUE;
a8bc6c78 27036 }
c921be7d 27037
a8bc6c78 27038 /* Process as normal. */
c921be7d 27039 return FALSE;
a8bc6c78
PB
27040}
27041
4a42ebbc
RR
27042/* Encode Thumb2 unconditional branches and calls. The encoding
27043 for the 2 are identical for the immediate values. */
27044
27045static void
27046encode_thumb2_b_bl_offset (char * buf, offsetT value)
27047{
27048#define T2I1I2MASK ((1 << 13) | (1 << 11))
27049 offsetT newval;
27050 offsetT newval2;
27051 addressT S, I1, I2, lo, hi;
27052
27053 S = (value >> 24) & 0x01;
27054 I1 = (value >> 23) & 0x01;
27055 I2 = (value >> 22) & 0x01;
27056 hi = (value >> 12) & 0x3ff;
fa94de6b 27057 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
27058 newval = md_chars_to_number (buf, THUMB_SIZE);
27059 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27060 newval |= (S << 10) | hi;
27061 newval2 &= ~T2I1I2MASK;
27062 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
27063 md_number_to_chars (buf, newval, THUMB_SIZE);
27064 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27065}
27066
c19d1205 27067void
55cf6793 27068md_apply_fix (fixS * fixP,
c19d1205
ZW
27069 valueT * valP,
27070 segT seg)
27071{
27072 offsetT value = * valP;
27073 offsetT newval;
27074 unsigned int newimm;
27075 unsigned long temp;
27076 int sign;
27077 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 27078
9c2799c2 27079 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 27080
c19d1205 27081 /* Note whether this will delete the relocation. */
4962c51a 27082
c19d1205
ZW
27083 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
27084 fixP->fx_done = 1;
b99bd4ef 27085
adbaf948 27086 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 27087 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
27088 for emit_reloc. */
27089 value &= 0xffffffff;
27090 value ^= 0x80000000;
5f4273c7 27091 value -= 0x80000000;
adbaf948
ZW
27092
27093 *valP = value;
c19d1205 27094 fixP->fx_addnumber = value;
b99bd4ef 27095
adbaf948
ZW
27096 /* Same treatment for fixP->fx_offset. */
27097 fixP->fx_offset &= 0xffffffff;
27098 fixP->fx_offset ^= 0x80000000;
27099 fixP->fx_offset -= 0x80000000;
27100
c19d1205 27101 switch (fixP->fx_r_type)
b99bd4ef 27102 {
c19d1205
ZW
27103 case BFD_RELOC_NONE:
27104 /* This will need to go in the object file. */
27105 fixP->fx_done = 0;
27106 break;
b99bd4ef 27107
c19d1205
ZW
27108 case BFD_RELOC_ARM_IMMEDIATE:
27109 /* We claim that this fixup has been processed here,
27110 even if in fact we generate an error because we do
27111 not have a reloc for it, so tc_gen_reloc will reject it. */
27112 fixP->fx_done = 1;
b99bd4ef 27113
77db8e2e 27114 if (fixP->fx_addsy)
b99bd4ef 27115 {
77db8e2e 27116 const char *msg = 0;
b99bd4ef 27117
77db8e2e
NC
27118 if (! S_IS_DEFINED (fixP->fx_addsy))
27119 msg = _("undefined symbol %s used as an immediate value");
27120 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
27121 msg = _("symbol %s is in a different section");
27122 else if (S_IS_WEAK (fixP->fx_addsy))
27123 msg = _("symbol %s is weak and may be overridden later");
27124
27125 if (msg)
27126 {
27127 as_bad_where (fixP->fx_file, fixP->fx_line,
27128 msg, S_GET_NAME (fixP->fx_addsy));
27129 break;
27130 }
42e5fcbf
AS
27131 }
27132
c19d1205
ZW
27133 temp = md_chars_to_number (buf, INSN_SIZE);
27134
5e73442d
SL
27135 /* If the offset is negative, we should use encoding A2 for ADR. */
27136 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
27137 newimm = negate_data_op (&temp, value);
27138 else
27139 {
27140 newimm = encode_arm_immediate (value);
27141
27142 /* If the instruction will fail, see if we can fix things up by
27143 changing the opcode. */
27144 if (newimm == (unsigned int) FAIL)
27145 newimm = negate_data_op (&temp, value);
bada4342
JW
27146 /* MOV accepts both ARM modified immediate (A1 encoding) and
27147 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
27148 When disassembling, MOV is preferred when there is no encoding
27149 overlap. */
27150 if (newimm == (unsigned int) FAIL
27151 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
27152 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
27153 && !((temp >> SBIT_SHIFT) & 0x1)
27154 && value >= 0 && value <= 0xffff)
27155 {
27156 /* Clear bits[23:20] to change encoding from A1 to A2. */
27157 temp &= 0xff0fffff;
27158 /* Encoding high 4bits imm. Code below will encode the remaining
27159 low 12bits. */
27160 temp |= (value & 0x0000f000) << 4;
27161 newimm = value & 0x00000fff;
27162 }
5e73442d
SL
27163 }
27164
27165 if (newimm == (unsigned int) FAIL)
b99bd4ef 27166 {
c19d1205
ZW
27167 as_bad_where (fixP->fx_file, fixP->fx_line,
27168 _("invalid constant (%lx) after fixup"),
27169 (unsigned long) value);
27170 break;
b99bd4ef 27171 }
b99bd4ef 27172
c19d1205
ZW
27173 newimm |= (temp & 0xfffff000);
27174 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
27175 break;
b99bd4ef 27176
c19d1205
ZW
27177 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
27178 {
27179 unsigned int highpart = 0;
27180 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 27181
77db8e2e 27182 if (fixP->fx_addsy)
42e5fcbf 27183 {
77db8e2e 27184 const char *msg = 0;
42e5fcbf 27185
77db8e2e
NC
27186 if (! S_IS_DEFINED (fixP->fx_addsy))
27187 msg = _("undefined symbol %s used as an immediate value");
27188 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
27189 msg = _("symbol %s is in a different section");
27190 else if (S_IS_WEAK (fixP->fx_addsy))
27191 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 27192
77db8e2e
NC
27193 if (msg)
27194 {
27195 as_bad_where (fixP->fx_file, fixP->fx_line,
27196 msg, S_GET_NAME (fixP->fx_addsy));
27197 break;
27198 }
27199 }
fa94de6b 27200
c19d1205
ZW
27201 newimm = encode_arm_immediate (value);
27202 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 27203
c19d1205
ZW
27204 /* If the instruction will fail, see if we can fix things up by
27205 changing the opcode. */
27206 if (newimm == (unsigned int) FAIL
27207 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
27208 {
27209 /* No ? OK - try using two ADD instructions to generate
27210 the value. */
27211 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 27212
c19d1205
ZW
27213 /* Yes - then make sure that the second instruction is
27214 also an add. */
27215 if (newimm != (unsigned int) FAIL)
27216 newinsn = temp;
27217 /* Still No ? Try using a negated value. */
27218 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
27219 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
27220 /* Otherwise - give up. */
27221 else
27222 {
27223 as_bad_where (fixP->fx_file, fixP->fx_line,
27224 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
27225 (long) value);
27226 break;
27227 }
b99bd4ef 27228
c19d1205
ZW
27229 /* Replace the first operand in the 2nd instruction (which
27230 is the PC) with the destination register. We have
27231 already added in the PC in the first instruction and we
27232 do not want to do it again. */
27233 newinsn &= ~ 0xf0000;
27234 newinsn |= ((newinsn & 0x0f000) << 4);
27235 }
b99bd4ef 27236
c19d1205
ZW
27237 newimm |= (temp & 0xfffff000);
27238 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 27239
c19d1205
ZW
27240 highpart |= (newinsn & 0xfffff000);
27241 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
27242 }
27243 break;
b99bd4ef 27244
c19d1205 27245 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
27246 if (!fixP->fx_done && seg->use_rela_p)
27247 value = 0;
1a0670f3 27248 /* Fall through. */
00a97672 27249
c19d1205 27250 case BFD_RELOC_ARM_LITERAL:
26d97720 27251 sign = value > 0;
b99bd4ef 27252
c19d1205
ZW
27253 if (value < 0)
27254 value = - value;
b99bd4ef 27255
c19d1205 27256 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 27257 {
c19d1205
ZW
27258 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
27259 as_bad_where (fixP->fx_file, fixP->fx_line,
27260 _("invalid literal constant: pool needs to be closer"));
27261 else
27262 as_bad_where (fixP->fx_file, fixP->fx_line,
27263 _("bad immediate value for offset (%ld)"),
27264 (long) value);
27265 break;
f03698e6
RE
27266 }
27267
c19d1205 27268 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
27269 if (value == 0)
27270 newval &= 0xfffff000;
27271 else
27272 {
27273 newval &= 0xff7ff000;
27274 newval |= value | (sign ? INDEX_UP : 0);
27275 }
c19d1205
ZW
27276 md_number_to_chars (buf, newval, INSN_SIZE);
27277 break;
b99bd4ef 27278
c19d1205
ZW
27279 case BFD_RELOC_ARM_OFFSET_IMM8:
27280 case BFD_RELOC_ARM_HWLITERAL:
26d97720 27281 sign = value > 0;
b99bd4ef 27282
c19d1205
ZW
27283 if (value < 0)
27284 value = - value;
b99bd4ef 27285
c19d1205 27286 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 27287 {
c19d1205
ZW
27288 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
27289 as_bad_where (fixP->fx_file, fixP->fx_line,
27290 _("invalid literal constant: pool needs to be closer"));
27291 else
427d0db6
RM
27292 as_bad_where (fixP->fx_file, fixP->fx_line,
27293 _("bad immediate value for 8-bit offset (%ld)"),
27294 (long) value);
c19d1205 27295 break;
b99bd4ef
NC
27296 }
27297
c19d1205 27298 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
27299 if (value == 0)
27300 newval &= 0xfffff0f0;
27301 else
27302 {
27303 newval &= 0xff7ff0f0;
27304 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
27305 }
c19d1205
ZW
27306 md_number_to_chars (buf, newval, INSN_SIZE);
27307 break;
b99bd4ef 27308
c19d1205
ZW
27309 case BFD_RELOC_ARM_T32_OFFSET_U8:
27310 if (value < 0 || value > 1020 || value % 4 != 0)
27311 as_bad_where (fixP->fx_file, fixP->fx_line,
27312 _("bad immediate value for offset (%ld)"), (long) value);
27313 value /= 4;
b99bd4ef 27314
c19d1205 27315 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
27316 newval |= value;
27317 md_number_to_chars (buf+2, newval, THUMB_SIZE);
27318 break;
b99bd4ef 27319
c19d1205
ZW
27320 case BFD_RELOC_ARM_T32_OFFSET_IMM:
27321 /* This is a complicated relocation used for all varieties of Thumb32
27322 load/store instruction with immediate offset:
27323
27324 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
477330fc 27325 *4, optional writeback(W)
c19d1205
ZW
27326 (doubleword load/store)
27327
27328 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
27329 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
27330 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
27331 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
27332 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
27333
27334 Uppercase letters indicate bits that are already encoded at
27335 this point. Lowercase letters are our problem. For the
27336 second block of instructions, the secondary opcode nybble
27337 (bits 8..11) is present, and bit 23 is zero, even if this is
27338 a PC-relative operation. */
27339 newval = md_chars_to_number (buf, THUMB_SIZE);
27340 newval <<= 16;
27341 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 27342
c19d1205 27343 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 27344 {
c19d1205
ZW
27345 /* Doubleword load/store: 8-bit offset, scaled by 4. */
27346 if (value >= 0)
27347 newval |= (1 << 23);
27348 else
27349 value = -value;
27350 if (value % 4 != 0)
27351 {
27352 as_bad_where (fixP->fx_file, fixP->fx_line,
27353 _("offset not a multiple of 4"));
27354 break;
27355 }
27356 value /= 4;
216d22bc 27357 if (value > 0xff)
c19d1205
ZW
27358 {
27359 as_bad_where (fixP->fx_file, fixP->fx_line,
27360 _("offset out of range"));
27361 break;
27362 }
27363 newval &= ~0xff;
b99bd4ef 27364 }
c19d1205 27365 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 27366 {
c19d1205
ZW
27367 /* PC-relative, 12-bit offset. */
27368 if (value >= 0)
27369 newval |= (1 << 23);
27370 else
27371 value = -value;
216d22bc 27372 if (value > 0xfff)
c19d1205
ZW
27373 {
27374 as_bad_where (fixP->fx_file, fixP->fx_line,
27375 _("offset out of range"));
27376 break;
27377 }
27378 newval &= ~0xfff;
b99bd4ef 27379 }
c19d1205 27380 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 27381 {
c19d1205
ZW
27382 /* Writeback: 8-bit, +/- offset. */
27383 if (value >= 0)
27384 newval |= (1 << 9);
27385 else
27386 value = -value;
216d22bc 27387 if (value > 0xff)
c19d1205
ZW
27388 {
27389 as_bad_where (fixP->fx_file, fixP->fx_line,
27390 _("offset out of range"));
27391 break;
27392 }
27393 newval &= ~0xff;
b99bd4ef 27394 }
c19d1205 27395 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 27396 {
c19d1205 27397 /* T-instruction: positive 8-bit offset. */
216d22bc 27398 if (value < 0 || value > 0xff)
b99bd4ef 27399 {
c19d1205
ZW
27400 as_bad_where (fixP->fx_file, fixP->fx_line,
27401 _("offset out of range"));
27402 break;
b99bd4ef 27403 }
c19d1205
ZW
27404 newval &= ~0xff;
27405 newval |= value;
b99bd4ef
NC
27406 }
27407 else
b99bd4ef 27408 {
c19d1205
ZW
27409 /* Positive 12-bit or negative 8-bit offset. */
27410 int limit;
27411 if (value >= 0)
b99bd4ef 27412 {
c19d1205
ZW
27413 newval |= (1 << 23);
27414 limit = 0xfff;
27415 }
27416 else
27417 {
27418 value = -value;
27419 limit = 0xff;
27420 }
27421 if (value > limit)
27422 {
27423 as_bad_where (fixP->fx_file, fixP->fx_line,
27424 _("offset out of range"));
27425 break;
b99bd4ef 27426 }
c19d1205 27427 newval &= ~limit;
b99bd4ef 27428 }
b99bd4ef 27429
c19d1205
ZW
27430 newval |= value;
27431 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
27432 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
27433 break;
404ff6b5 27434
c19d1205
ZW
27435 case BFD_RELOC_ARM_SHIFT_IMM:
27436 newval = md_chars_to_number (buf, INSN_SIZE);
27437 if (((unsigned long) value) > 32
27438 || (value == 32
27439 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
27440 {
27441 as_bad_where (fixP->fx_file, fixP->fx_line,
27442 _("shift expression is too large"));
27443 break;
27444 }
404ff6b5 27445
c19d1205
ZW
27446 if (value == 0)
27447 /* Shifts of zero must be done as lsl. */
27448 newval &= ~0x60;
27449 else if (value == 32)
27450 value = 0;
27451 newval &= 0xfffff07f;
27452 newval |= (value & 0x1f) << 7;
27453 md_number_to_chars (buf, newval, INSN_SIZE);
27454 break;
404ff6b5 27455
c19d1205 27456 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 27457 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 27458 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 27459 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
27460 /* We claim that this fixup has been processed here,
27461 even if in fact we generate an error because we do
27462 not have a reloc for it, so tc_gen_reloc will reject it. */
27463 fixP->fx_done = 1;
404ff6b5 27464
c19d1205
ZW
27465 if (fixP->fx_addsy
27466 && ! S_IS_DEFINED (fixP->fx_addsy))
27467 {
27468 as_bad_where (fixP->fx_file, fixP->fx_line,
27469 _("undefined symbol %s used as an immediate value"),
27470 S_GET_NAME (fixP->fx_addsy));
27471 break;
27472 }
404ff6b5 27473
c19d1205
ZW
27474 newval = md_chars_to_number (buf, THUMB_SIZE);
27475 newval <<= 16;
27476 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 27477
16805f35 27478 newimm = FAIL;
bada4342
JW
27479 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
27480 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
27481 Thumb2 modified immediate encoding (T2). */
27482 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
16805f35 27483 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
27484 {
27485 newimm = encode_thumb32_immediate (value);
27486 if (newimm == (unsigned int) FAIL)
27487 newimm = thumb32_negate_data_op (&newval, value);
27488 }
bada4342 27489 if (newimm == (unsigned int) FAIL)
92e90b6e 27490 {
bada4342 27491 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
e9f89963 27492 {
bada4342
JW
27493 /* Turn add/sum into addw/subw. */
27494 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27495 newval = (newval & 0xfeffffff) | 0x02000000;
27496 /* No flat 12-bit imm encoding for addsw/subsw. */
27497 if ((newval & 0x00100000) == 0)
40f246e3 27498 {
bada4342
JW
27499 /* 12 bit immediate for addw/subw. */
27500 if (value < 0)
27501 {
27502 value = -value;
27503 newval ^= 0x00a00000;
27504 }
27505 if (value > 0xfff)
27506 newimm = (unsigned int) FAIL;
27507 else
27508 newimm = value;
27509 }
27510 }
27511 else
27512 {
27513 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
27514 UINT16 (T3 encoding), MOVW only accepts UINT16. When
27515 disassembling, MOV is preferred when there is no encoding
db7bf105 27516 overlap. */
bada4342 27517 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
db7bf105
NC
27518 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
27519 but with the Rn field [19:16] set to 1111. */
27520 && (((newval >> 16) & 0xf) == 0xf)
bada4342
JW
27521 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
27522 && !((newval >> T2_SBIT_SHIFT) & 0x1)
db7bf105 27523 && value >= 0 && value <= 0xffff)
bada4342
JW
27524 {
27525 /* Toggle bit[25] to change encoding from T2 to T3. */
27526 newval ^= 1 << 25;
27527 /* Clear bits[19:16]. */
27528 newval &= 0xfff0ffff;
27529 /* Encoding high 4bits imm. Code below will encode the
27530 remaining low 12bits. */
27531 newval |= (value & 0x0000f000) << 4;
27532 newimm = value & 0x00000fff;
40f246e3 27533 }
e9f89963 27534 }
92e90b6e 27535 }
cc8a6dd0 27536
c19d1205 27537 if (newimm == (unsigned int)FAIL)
3631a3c8 27538 {
c19d1205
ZW
27539 as_bad_where (fixP->fx_file, fixP->fx_line,
27540 _("invalid constant (%lx) after fixup"),
27541 (unsigned long) value);
27542 break;
3631a3c8
NC
27543 }
27544
c19d1205
ZW
27545 newval |= (newimm & 0x800) << 15;
27546 newval |= (newimm & 0x700) << 4;
27547 newval |= (newimm & 0x0ff);
cc8a6dd0 27548
c19d1205
ZW
27549 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
27550 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
27551 break;
a737bd4d 27552
3eb17e6b 27553 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
27554 if (((unsigned long) value) > 0xffff)
27555 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 27556 _("invalid smc expression"));
2fc8bdac 27557 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
27558 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27559 md_number_to_chars (buf, newval, INSN_SIZE);
27560 break;
a737bd4d 27561
90ec0d68
MGD
27562 case BFD_RELOC_ARM_HVC:
27563 if (((unsigned long) value) > 0xffff)
27564 as_bad_where (fixP->fx_file, fixP->fx_line,
27565 _("invalid hvc expression"));
27566 newval = md_chars_to_number (buf, INSN_SIZE);
27567 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27568 md_number_to_chars (buf, newval, INSN_SIZE);
27569 break;
27570
c19d1205 27571 case BFD_RELOC_ARM_SWI:
adbaf948 27572 if (fixP->tc_fix_data != 0)
c19d1205
ZW
27573 {
27574 if (((unsigned long) value) > 0xff)
27575 as_bad_where (fixP->fx_file, fixP->fx_line,
27576 _("invalid swi expression"));
2fc8bdac 27577 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
27578 newval |= value;
27579 md_number_to_chars (buf, newval, THUMB_SIZE);
27580 }
27581 else
27582 {
27583 if (((unsigned long) value) > 0x00ffffff)
27584 as_bad_where (fixP->fx_file, fixP->fx_line,
27585 _("invalid swi expression"));
2fc8bdac 27586 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
27587 newval |= value;
27588 md_number_to_chars (buf, newval, INSN_SIZE);
27589 }
27590 break;
a737bd4d 27591
c19d1205
ZW
27592 case BFD_RELOC_ARM_MULTI:
27593 if (((unsigned long) value) > 0xffff)
27594 as_bad_where (fixP->fx_file, fixP->fx_line,
27595 _("invalid expression in load/store multiple"));
27596 newval = value | md_chars_to_number (buf, INSN_SIZE);
27597 md_number_to_chars (buf, newval, INSN_SIZE);
27598 break;
a737bd4d 27599
c19d1205 27600#ifdef OBJ_ELF
39b41c9c 27601 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
27602
27603 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27604 && fixP->fx_addsy
34e77a92 27605 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27606 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27607 && THUMB_IS_FUNC (fixP->fx_addsy))
27608 /* Flip the bl to blx. This is a simple flip
27609 bit here because we generate PCREL_CALL for
27610 unconditional bls. */
27611 {
27612 newval = md_chars_to_number (buf, INSN_SIZE);
27613 newval = newval | 0x10000000;
27614 md_number_to_chars (buf, newval, INSN_SIZE);
27615 temp = 1;
27616 fixP->fx_done = 1;
27617 }
39b41c9c
PB
27618 else
27619 temp = 3;
27620 goto arm_branch_common;
27621
27622 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
27623 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27624 && fixP->fx_addsy
34e77a92 27625 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27626 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27627 && THUMB_IS_FUNC (fixP->fx_addsy))
27628 {
27629 /* This would map to a bl<cond>, b<cond>,
27630 b<always> to a Thumb function. We
27631 need to force a relocation for this particular
27632 case. */
27633 newval = md_chars_to_number (buf, INSN_SIZE);
27634 fixP->fx_done = 0;
27635 }
1a0670f3 27636 /* Fall through. */
267bf995 27637
2fc8bdac 27638 case BFD_RELOC_ARM_PLT32:
c19d1205 27639#endif
39b41c9c
PB
27640 case BFD_RELOC_ARM_PCREL_BRANCH:
27641 temp = 3;
27642 goto arm_branch_common;
a737bd4d 27643
39b41c9c 27644 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 27645
39b41c9c 27646 temp = 1;
267bf995
RR
27647 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27648 && fixP->fx_addsy
34e77a92 27649 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27650 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27651 && ARM_IS_FUNC (fixP->fx_addsy))
27652 {
27653 /* Flip the blx to a bl and warn. */
27654 const char *name = S_GET_NAME (fixP->fx_addsy);
27655 newval = 0xeb000000;
27656 as_warn_where (fixP->fx_file, fixP->fx_line,
27657 _("blx to '%s' an ARM ISA state function changed to bl"),
27658 name);
27659 md_number_to_chars (buf, newval, INSN_SIZE);
27660 temp = 3;
27661 fixP->fx_done = 1;
27662 }
27663
27664#ifdef OBJ_ELF
27665 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
477330fc 27666 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
267bf995
RR
27667#endif
27668
39b41c9c 27669 arm_branch_common:
c19d1205 27670 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
27671 instruction, in a 24 bit, signed field. Bits 26 through 32 either
27672 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
de194d85 27673 also be clear. */
39b41c9c 27674 if (value & temp)
c19d1205 27675 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
27676 _("misaligned branch destination"));
27677 if ((value & (offsetT)0xfe000000) != (offsetT)0
27678 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 27679 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 27680
2fc8bdac 27681 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 27682 {
2fc8bdac
ZW
27683 newval = md_chars_to_number (buf, INSN_SIZE);
27684 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
27685 /* Set the H bit on BLX instructions. */
27686 if (temp == 1)
27687 {
27688 if (value & 2)
27689 newval |= 0x01000000;
27690 else
27691 newval &= ~0x01000000;
27692 }
2fc8bdac 27693 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 27694 }
c19d1205 27695 break;
a737bd4d 27696
25fe350b
MS
27697 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
27698 /* CBZ can only branch forward. */
a737bd4d 27699
738755b0 27700 /* Attempts to use CBZ to branch to the next instruction
477330fc
RM
27701 (which, strictly speaking, are prohibited) will be turned into
27702 no-ops.
738755b0
MS
27703
27704 FIXME: It may be better to remove the instruction completely and
27705 perform relaxation. */
27706 if (value == -2)
2fc8bdac
ZW
27707 {
27708 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 27709 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
27710 md_number_to_chars (buf, newval, THUMB_SIZE);
27711 }
738755b0
MS
27712 else
27713 {
27714 if (value & ~0x7e)
08f10d51 27715 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0 27716
477330fc 27717 if (fixP->fx_done || !seg->use_rela_p)
738755b0
MS
27718 {
27719 newval = md_chars_to_number (buf, THUMB_SIZE);
27720 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
27721 md_number_to_chars (buf, newval, THUMB_SIZE);
27722 }
27723 }
c19d1205 27724 break;
a737bd4d 27725
c19d1205 27726 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 27727 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 27728 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 27729
2fc8bdac
ZW
27730 if (fixP->fx_done || !seg->use_rela_p)
27731 {
27732 newval = md_chars_to_number (buf, THUMB_SIZE);
27733 newval |= (value & 0x1ff) >> 1;
27734 md_number_to_chars (buf, newval, THUMB_SIZE);
27735 }
c19d1205 27736 break;
a737bd4d 27737
c19d1205 27738 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 27739 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 27740 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 27741
2fc8bdac
ZW
27742 if (fixP->fx_done || !seg->use_rela_p)
27743 {
27744 newval = md_chars_to_number (buf, THUMB_SIZE);
27745 newval |= (value & 0xfff) >> 1;
27746 md_number_to_chars (buf, newval, THUMB_SIZE);
27747 }
c19d1205 27748 break;
a737bd4d 27749
c19d1205 27750 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
27751 if (fixP->fx_addsy
27752 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 27753 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27754 && ARM_IS_FUNC (fixP->fx_addsy)
27755 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27756 {
27757 /* Force a relocation for a branch 20 bits wide. */
27758 fixP->fx_done = 0;
27759 }
08f10d51 27760 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
27761 as_bad_where (fixP->fx_file, fixP->fx_line,
27762 _("conditional branch out of range"));
404ff6b5 27763
2fc8bdac
ZW
27764 if (fixP->fx_done || !seg->use_rela_p)
27765 {
27766 offsetT newval2;
27767 addressT S, J1, J2, lo, hi;
404ff6b5 27768
2fc8bdac
ZW
27769 S = (value & 0x00100000) >> 20;
27770 J2 = (value & 0x00080000) >> 19;
27771 J1 = (value & 0x00040000) >> 18;
27772 hi = (value & 0x0003f000) >> 12;
27773 lo = (value & 0x00000ffe) >> 1;
6c43fab6 27774
2fc8bdac
ZW
27775 newval = md_chars_to_number (buf, THUMB_SIZE);
27776 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27777 newval |= (S << 10) | hi;
27778 newval2 |= (J1 << 13) | (J2 << 11) | lo;
27779 md_number_to_chars (buf, newval, THUMB_SIZE);
27780 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27781 }
c19d1205 27782 break;
6c43fab6 27783
c19d1205 27784 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
27785 /* If there is a blx from a thumb state function to
27786 another thumb function flip this to a bl and warn
27787 about it. */
27788
27789 if (fixP->fx_addsy
34e77a92 27790 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27791 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27792 && THUMB_IS_FUNC (fixP->fx_addsy))
27793 {
27794 const char *name = S_GET_NAME (fixP->fx_addsy);
27795 as_warn_where (fixP->fx_file, fixP->fx_line,
27796 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
27797 name);
27798 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27799 newval = newval | 0x1000;
27800 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27801 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27802 fixP->fx_done = 1;
27803 }
27804
27805
27806 goto thumb_bl_common;
27807
c19d1205 27808 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
27809 /* A bl from Thumb state ISA to an internal ARM state function
27810 is converted to a blx. */
27811 if (fixP->fx_addsy
27812 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 27813 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27814 && ARM_IS_FUNC (fixP->fx_addsy)
27815 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27816 {
27817 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27818 newval = newval & ~0x1000;
27819 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27820 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
27821 fixP->fx_done = 1;
27822 }
27823
27824 thumb_bl_common:
27825
2fc8bdac
ZW
27826 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27827 /* For a BLX instruction, make sure that the relocation is rounded up
27828 to a word boundary. This follows the semantics of the instruction
27829 which specifies that bit 1 of the target address will come from bit
27830 1 of the base address. */
d406f3e4
JB
27831 value = (value + 3) & ~ 3;
27832
27833#ifdef OBJ_ELF
27834 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
27835 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27836 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27837#endif
404ff6b5 27838
2b2f5df9
NC
27839 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
27840 {
fc289b0a 27841 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
2b2f5df9
NC
27842 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27843 else if ((value & ~0x1ffffff)
27844 && ((value & ~0x1ffffff) != ~0x1ffffff))
27845 as_bad_where (fixP->fx_file, fixP->fx_line,
27846 _("Thumb2 branch out of range"));
27847 }
4a42ebbc
RR
27848
27849 if (fixP->fx_done || !seg->use_rela_p)
27850 encode_thumb2_b_bl_offset (buf, value);
27851
c19d1205 27852 break;
404ff6b5 27853
c19d1205 27854 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
27855 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
27856 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 27857
2fc8bdac 27858 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 27859 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 27860
2fc8bdac 27861 break;
a737bd4d 27862
2fc8bdac
ZW
27863 case BFD_RELOC_8:
27864 if (fixP->fx_done || !seg->use_rela_p)
4b1a927e 27865 *buf = value;
c19d1205 27866 break;
a737bd4d 27867
c19d1205 27868 case BFD_RELOC_16:
2fc8bdac 27869 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 27870 md_number_to_chars (buf, value, 2);
c19d1205 27871 break;
a737bd4d 27872
c19d1205 27873#ifdef OBJ_ELF
0855e32b
NS
27874 case BFD_RELOC_ARM_TLS_CALL:
27875 case BFD_RELOC_ARM_THM_TLS_CALL:
27876 case BFD_RELOC_ARM_TLS_DESCSEQ:
27877 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
0855e32b 27878 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
27879 case BFD_RELOC_ARM_TLS_GD32:
27880 case BFD_RELOC_ARM_TLS_LE32:
27881 case BFD_RELOC_ARM_TLS_IE32:
27882 case BFD_RELOC_ARM_TLS_LDM32:
27883 case BFD_RELOC_ARM_TLS_LDO32:
27884 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4b1a927e 27885 break;
6c43fab6 27886
5c5a4843
CL
27887 /* Same handling as above, but with the arm_fdpic guard. */
27888 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
27889 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
27890 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
27891 if (arm_fdpic)
27892 {
27893 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27894 }
27895 else
27896 {
27897 as_bad_where (fixP->fx_file, fixP->fx_line,
27898 _("Relocation supported only in FDPIC mode"));
27899 }
27900 break;
27901
c19d1205
ZW
27902 case BFD_RELOC_ARM_GOT32:
27903 case BFD_RELOC_ARM_GOTOFF:
c19d1205 27904 break;
b43420e6
NC
27905
27906 case BFD_RELOC_ARM_GOT_PREL:
27907 if (fixP->fx_done || !seg->use_rela_p)
477330fc 27908 md_number_to_chars (buf, value, 4);
b43420e6
NC
27909 break;
27910
9a6f4e97
NS
27911 case BFD_RELOC_ARM_TARGET2:
27912 /* TARGET2 is not partial-inplace, so we need to write the
477330fc
RM
27913 addend here for REL targets, because it won't be written out
27914 during reloc processing later. */
9a6f4e97
NS
27915 if (fixP->fx_done || !seg->use_rela_p)
27916 md_number_to_chars (buf, fixP->fx_offset, 4);
27917 break;
188fd7ae
CL
27918
27919 /* Relocations for FDPIC. */
27920 case BFD_RELOC_ARM_GOTFUNCDESC:
27921 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27922 case BFD_RELOC_ARM_FUNCDESC:
27923 if (arm_fdpic)
27924 {
27925 if (fixP->fx_done || !seg->use_rela_p)
27926 md_number_to_chars (buf, 0, 4);
27927 }
27928 else
27929 {
27930 as_bad_where (fixP->fx_file, fixP->fx_line,
27931 _("Relocation supported only in FDPIC mode"));
27932 }
27933 break;
c19d1205 27934#endif
6c43fab6 27935
c19d1205
ZW
27936 case BFD_RELOC_RVA:
27937 case BFD_RELOC_32:
27938 case BFD_RELOC_ARM_TARGET1:
27939 case BFD_RELOC_ARM_ROSEGREL32:
27940 case BFD_RELOC_ARM_SBREL32:
27941 case BFD_RELOC_32_PCREL:
f0927246
NC
27942#ifdef TE_PE
27943 case BFD_RELOC_32_SECREL:
27944#endif
2fc8bdac 27945 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
27946#ifdef TE_WINCE
27947 /* For WinCE we only do this for pcrel fixups. */
27948 if (fixP->fx_done || fixP->fx_pcrel)
27949#endif
27950 md_number_to_chars (buf, value, 4);
c19d1205 27951 break;
6c43fab6 27952
c19d1205
ZW
27953#ifdef OBJ_ELF
27954 case BFD_RELOC_ARM_PREL31:
2fc8bdac 27955 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
27956 {
27957 newval = md_chars_to_number (buf, 4) & 0x80000000;
27958 if ((value ^ (value >> 1)) & 0x40000000)
27959 {
27960 as_bad_where (fixP->fx_file, fixP->fx_line,
27961 _("rel31 relocation overflow"));
27962 }
27963 newval |= value & 0x7fffffff;
27964 md_number_to_chars (buf, newval, 4);
27965 }
27966 break;
c19d1205 27967#endif
a737bd4d 27968
c19d1205 27969 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 27970 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
32c36c3c 27971 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
9db2f6b4
RL
27972 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
27973 newval = md_chars_to_number (buf, INSN_SIZE);
27974 else
27975 newval = get_thumb32_insn (buf);
27976 if ((newval & 0x0f200f00) == 0x0d000900)
27977 {
27978 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
27979 has permitted values that are multiples of 2, in the range 0
27980 to 510. */
27981 if (value < -510 || value > 510 || (value & 1))
27982 as_bad_where (fixP->fx_file, fixP->fx_line,
27983 _("co-processor offset out of range"));
27984 }
32c36c3c
AV
27985 else if ((newval & 0xfe001f80) == 0xec000f80)
27986 {
27987 if (value < -511 || value > 512 || (value & 3))
27988 as_bad_where (fixP->fx_file, fixP->fx_line,
27989 _("co-processor offset out of range"));
27990 }
9db2f6b4 27991 else if (value < -1023 || value > 1023 || (value & 3))
c19d1205
ZW
27992 as_bad_where (fixP->fx_file, fixP->fx_line,
27993 _("co-processor offset out of range"));
27994 cp_off_common:
26d97720 27995 sign = value > 0;
c19d1205
ZW
27996 if (value < 0)
27997 value = -value;
8f06b2d8
PB
27998 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27999 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
28000 newval = md_chars_to_number (buf, INSN_SIZE);
28001 else
28002 newval = get_thumb32_insn (buf);
26d97720 28003 if (value == 0)
32c36c3c
AV
28004 {
28005 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
28006 newval &= 0xffffff80;
28007 else
28008 newval &= 0xffffff00;
28009 }
26d97720
NS
28010 else
28011 {
32c36c3c
AV
28012 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
28013 newval &= 0xff7fff80;
28014 else
28015 newval &= 0xff7fff00;
9db2f6b4
RL
28016 if ((newval & 0x0f200f00) == 0x0d000900)
28017 {
28018 /* This is a fp16 vstr/vldr.
28019
28020 It requires the immediate offset in the instruction is shifted
28021 left by 1 to be a half-word offset.
28022
28023 Here, left shift by 1 first, and later right shift by 2
28024 should get the right offset. */
28025 value <<= 1;
28026 }
26d97720
NS
28027 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
28028 }
8f06b2d8
PB
28029 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28030 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
28031 md_number_to_chars (buf, newval, INSN_SIZE);
28032 else
28033 put_thumb32_insn (buf, newval);
c19d1205 28034 break;
a737bd4d 28035
c19d1205 28036 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 28037 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
28038 if (value < -255 || value > 255)
28039 as_bad_where (fixP->fx_file, fixP->fx_line,
28040 _("co-processor offset out of range"));
df7849c5 28041 value *= 4;
c19d1205 28042 goto cp_off_common;
6c43fab6 28043
c19d1205
ZW
28044 case BFD_RELOC_ARM_THUMB_OFFSET:
28045 newval = md_chars_to_number (buf, THUMB_SIZE);
28046 /* Exactly what ranges, and where the offset is inserted depends
28047 on the type of instruction, we can establish this from the
28048 top 4 bits. */
28049 switch (newval >> 12)
28050 {
28051 case 4: /* PC load. */
28052 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
28053 forced to zero for these loads; md_pcrel_from has already
28054 compensated for this. */
28055 if (value & 3)
28056 as_bad_where (fixP->fx_file, fixP->fx_line,
28057 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
28058 (((unsigned long) fixP->fx_frag->fr_address
28059 + (unsigned long) fixP->fx_where) & ~3)
28060 + (unsigned long) value);
a737bd4d 28061
c19d1205
ZW
28062 if (value & ~0x3fc)
28063 as_bad_where (fixP->fx_file, fixP->fx_line,
28064 _("invalid offset, value too big (0x%08lX)"),
28065 (long) value);
a737bd4d 28066
c19d1205
ZW
28067 newval |= value >> 2;
28068 break;
a737bd4d 28069
c19d1205
ZW
28070 case 9: /* SP load/store. */
28071 if (value & ~0x3fc)
28072 as_bad_where (fixP->fx_file, fixP->fx_line,
28073 _("invalid offset, value too big (0x%08lX)"),
28074 (long) value);
28075 newval |= value >> 2;
28076 break;
6c43fab6 28077
c19d1205
ZW
28078 case 6: /* Word load/store. */
28079 if (value & ~0x7c)
28080 as_bad_where (fixP->fx_file, fixP->fx_line,
28081 _("invalid offset, value too big (0x%08lX)"),
28082 (long) value);
28083 newval |= value << 4; /* 6 - 2. */
28084 break;
a737bd4d 28085
c19d1205
ZW
28086 case 7: /* Byte load/store. */
28087 if (value & ~0x1f)
28088 as_bad_where (fixP->fx_file, fixP->fx_line,
28089 _("invalid offset, value too big (0x%08lX)"),
28090 (long) value);
28091 newval |= value << 6;
28092 break;
a737bd4d 28093
c19d1205
ZW
28094 case 8: /* Halfword load/store. */
28095 if (value & ~0x3e)
28096 as_bad_where (fixP->fx_file, fixP->fx_line,
28097 _("invalid offset, value too big (0x%08lX)"),
28098 (long) value);
28099 newval |= value << 5; /* 6 - 1. */
28100 break;
a737bd4d 28101
c19d1205
ZW
28102 default:
28103 as_bad_where (fixP->fx_file, fixP->fx_line,
28104 "Unable to process relocation for thumb opcode: %lx",
28105 (unsigned long) newval);
28106 break;
28107 }
28108 md_number_to_chars (buf, newval, THUMB_SIZE);
28109 break;
a737bd4d 28110
c19d1205
ZW
28111 case BFD_RELOC_ARM_THUMB_ADD:
28112 /* This is a complicated relocation, since we use it for all of
28113 the following immediate relocations:
a737bd4d 28114
c19d1205
ZW
28115 3bit ADD/SUB
28116 8bit ADD/SUB
28117 9bit ADD/SUB SP word-aligned
28118 10bit ADD PC/SP word-aligned
a737bd4d 28119
c19d1205
ZW
28120 The type of instruction being processed is encoded in the
28121 instruction field:
a737bd4d 28122
c19d1205
ZW
28123 0x8000 SUB
28124 0x00F0 Rd
28125 0x000F Rs
28126 */
28127 newval = md_chars_to_number (buf, THUMB_SIZE);
28128 {
28129 int rd = (newval >> 4) & 0xf;
28130 int rs = newval & 0xf;
28131 int subtract = !!(newval & 0x8000);
a737bd4d 28132
c19d1205
ZW
28133 /* Check for HI regs, only very restricted cases allowed:
28134 Adjusting SP, and using PC or SP to get an address. */
28135 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
28136 || (rs > 7 && rs != REG_SP && rs != REG_PC))
28137 as_bad_where (fixP->fx_file, fixP->fx_line,
28138 _("invalid Hi register with immediate"));
a737bd4d 28139
c19d1205
ZW
28140 /* If value is negative, choose the opposite instruction. */
28141 if (value < 0)
28142 {
28143 value = -value;
28144 subtract = !subtract;
28145 if (value < 0)
28146 as_bad_where (fixP->fx_file, fixP->fx_line,
28147 _("immediate value out of range"));
28148 }
a737bd4d 28149
c19d1205
ZW
28150 if (rd == REG_SP)
28151 {
75c11999 28152 if (value & ~0x1fc)
c19d1205
ZW
28153 as_bad_where (fixP->fx_file, fixP->fx_line,
28154 _("invalid immediate for stack address calculation"));
28155 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
28156 newval |= value >> 2;
28157 }
28158 else if (rs == REG_PC || rs == REG_SP)
28159 {
c12d2c9d
NC
28160 /* PR gas/18541. If the addition is for a defined symbol
28161 within range of an ADR instruction then accept it. */
28162 if (subtract
28163 && value == 4
28164 && fixP->fx_addsy != NULL)
28165 {
28166 subtract = 0;
28167
28168 if (! S_IS_DEFINED (fixP->fx_addsy)
28169 || S_GET_SEGMENT (fixP->fx_addsy) != seg
28170 || S_IS_WEAK (fixP->fx_addsy))
28171 {
28172 as_bad_where (fixP->fx_file, fixP->fx_line,
28173 _("address calculation needs a strongly defined nearby symbol"));
28174 }
28175 else
28176 {
28177 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
28178
28179 /* Round up to the next 4-byte boundary. */
28180 if (v & 3)
28181 v = (v + 3) & ~ 3;
28182 else
28183 v += 4;
28184 v = S_GET_VALUE (fixP->fx_addsy) - v;
28185
28186 if (v & ~0x3fc)
28187 {
28188 as_bad_where (fixP->fx_file, fixP->fx_line,
28189 _("symbol too far away"));
28190 }
28191 else
28192 {
28193 fixP->fx_done = 1;
28194 value = v;
28195 }
28196 }
28197 }
28198
c19d1205
ZW
28199 if (subtract || value & ~0x3fc)
28200 as_bad_where (fixP->fx_file, fixP->fx_line,
28201 _("invalid immediate for address calculation (value = 0x%08lX)"),
5fc177c8 28202 (unsigned long) (subtract ? - value : value));
c19d1205
ZW
28203 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
28204 newval |= rd << 8;
28205 newval |= value >> 2;
28206 }
28207 else if (rs == rd)
28208 {
28209 if (value & ~0xff)
28210 as_bad_where (fixP->fx_file, fixP->fx_line,
28211 _("immediate value out of range"));
28212 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
28213 newval |= (rd << 8) | value;
28214 }
28215 else
28216 {
28217 if (value & ~0x7)
28218 as_bad_where (fixP->fx_file, fixP->fx_line,
28219 _("immediate value out of range"));
28220 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
28221 newval |= rd | (rs << 3) | (value << 6);
28222 }
28223 }
28224 md_number_to_chars (buf, newval, THUMB_SIZE);
28225 break;
a737bd4d 28226
c19d1205
ZW
28227 case BFD_RELOC_ARM_THUMB_IMM:
28228 newval = md_chars_to_number (buf, THUMB_SIZE);
28229 if (value < 0 || value > 255)
28230 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 28231 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
28232 (long) value);
28233 newval |= value;
28234 md_number_to_chars (buf, newval, THUMB_SIZE);
28235 break;
a737bd4d 28236
c19d1205
ZW
28237 case BFD_RELOC_ARM_THUMB_SHIFT:
28238 /* 5bit shift value (0..32). LSL cannot take 32. */
28239 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
28240 temp = newval & 0xf800;
28241 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
28242 as_bad_where (fixP->fx_file, fixP->fx_line,
28243 _("invalid shift value: %ld"), (long) value);
28244 /* Shifts of zero must be encoded as LSL. */
28245 if (value == 0)
28246 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
28247 /* Shifts of 32 are encoded as zero. */
28248 else if (value == 32)
28249 value = 0;
28250 newval |= value << 6;
28251 md_number_to_chars (buf, newval, THUMB_SIZE);
28252 break;
a737bd4d 28253
c19d1205
ZW
28254 case BFD_RELOC_VTABLE_INHERIT:
28255 case BFD_RELOC_VTABLE_ENTRY:
28256 fixP->fx_done = 0;
28257 return;
6c43fab6 28258
b6895b4f
PB
28259 case BFD_RELOC_ARM_MOVW:
28260 case BFD_RELOC_ARM_MOVT:
28261 case BFD_RELOC_ARM_THUMB_MOVW:
28262 case BFD_RELOC_ARM_THUMB_MOVT:
28263 if (fixP->fx_done || !seg->use_rela_p)
28264 {
28265 /* REL format relocations are limited to a 16-bit addend. */
28266 if (!fixP->fx_done)
28267 {
39623e12 28268 if (value < -0x8000 || value > 0x7fff)
b6895b4f 28269 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 28270 _("offset out of range"));
b6895b4f
PB
28271 }
28272 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28273 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
28274 {
28275 value >>= 16;
28276 }
28277
28278 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28279 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
28280 {
28281 newval = get_thumb32_insn (buf);
28282 newval &= 0xfbf08f00;
28283 newval |= (value & 0xf000) << 4;
28284 newval |= (value & 0x0800) << 15;
28285 newval |= (value & 0x0700) << 4;
28286 newval |= (value & 0x00ff);
28287 put_thumb32_insn (buf, newval);
28288 }
28289 else
28290 {
28291 newval = md_chars_to_number (buf, 4);
28292 newval &= 0xfff0f000;
28293 newval |= value & 0x0fff;
28294 newval |= (value & 0xf000) << 4;
28295 md_number_to_chars (buf, newval, 4);
28296 }
28297 }
28298 return;
28299
72d98d16
MG
28300 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28301 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28302 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28303 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
28304 gas_assert (!fixP->fx_done);
28305 {
28306 bfd_vma insn;
28307 bfd_boolean is_mov;
28308 bfd_vma encoded_addend = value;
28309
28310 /* Check that addend can be encoded in instruction. */
28311 if (!seg->use_rela_p && (value < 0 || value > 255))
28312 as_bad_where (fixP->fx_file, fixP->fx_line,
28313 _("the offset 0x%08lX is not representable"),
28314 (unsigned long) encoded_addend);
28315
28316 /* Extract the instruction. */
28317 insn = md_chars_to_number (buf, THUMB_SIZE);
28318 is_mov = (insn & 0xf800) == 0x2000;
28319
28320 /* Encode insn. */
28321 if (is_mov)
28322 {
28323 if (!seg->use_rela_p)
28324 insn |= encoded_addend;
28325 }
28326 else
28327 {
28328 int rd, rs;
28329
28330 /* Extract the instruction. */
28331 /* Encoding is the following
28332 0x8000 SUB
28333 0x00F0 Rd
28334 0x000F Rs
28335 */
28336 /* The following conditions must be true :
28337 - ADD
28338 - Rd == Rs
28339 - Rd <= 7
28340 */
28341 rd = (insn >> 4) & 0xf;
28342 rs = insn & 0xf;
28343 if ((insn & 0x8000) || (rd != rs) || rd > 7)
28344 as_bad_where (fixP->fx_file, fixP->fx_line,
28345 _("Unable to process relocation for thumb opcode: %lx"),
28346 (unsigned long) insn);
28347
28348 /* Encode as ADD immediate8 thumb 1 code. */
28349 insn = 0x3000 | (rd << 8);
28350
28351 /* Place the encoded addend into the first 8 bits of the
28352 instruction. */
28353 if (!seg->use_rela_p)
28354 insn |= encoded_addend;
28355 }
28356
28357 /* Update the instruction. */
28358 md_number_to_chars (buf, insn, THUMB_SIZE);
28359 }
28360 break;
28361
4962c51a
MS
28362 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28363 case BFD_RELOC_ARM_ALU_PC_G0:
28364 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28365 case BFD_RELOC_ARM_ALU_PC_G1:
28366 case BFD_RELOC_ARM_ALU_PC_G2:
28367 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28368 case BFD_RELOC_ARM_ALU_SB_G0:
28369 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28370 case BFD_RELOC_ARM_ALU_SB_G1:
28371 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 28372 gas_assert (!fixP->fx_done);
4962c51a
MS
28373 if (!seg->use_rela_p)
28374 {
477330fc
RM
28375 bfd_vma insn;
28376 bfd_vma encoded_addend;
3ca4a8ec 28377 bfd_vma addend_abs = llabs (value);
477330fc
RM
28378
28379 /* Check that the absolute value of the addend can be
28380 expressed as an 8-bit constant plus a rotation. */
28381 encoded_addend = encode_arm_immediate (addend_abs);
28382 if (encoded_addend == (unsigned int) FAIL)
4962c51a 28383 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28384 _("the offset 0x%08lX is not representable"),
28385 (unsigned long) addend_abs);
28386
28387 /* Extract the instruction. */
28388 insn = md_chars_to_number (buf, INSN_SIZE);
28389
28390 /* If the addend is positive, use an ADD instruction.
28391 Otherwise use a SUB. Take care not to destroy the S bit. */
28392 insn &= 0xff1fffff;
28393 if (value < 0)
28394 insn |= 1 << 22;
28395 else
28396 insn |= 1 << 23;
28397
28398 /* Place the encoded addend into the first 12 bits of the
28399 instruction. */
28400 insn &= 0xfffff000;
28401 insn |= encoded_addend;
28402
28403 /* Update the instruction. */
28404 md_number_to_chars (buf, insn, INSN_SIZE);
4962c51a
MS
28405 }
28406 break;
28407
28408 case BFD_RELOC_ARM_LDR_PC_G0:
28409 case BFD_RELOC_ARM_LDR_PC_G1:
28410 case BFD_RELOC_ARM_LDR_PC_G2:
28411 case BFD_RELOC_ARM_LDR_SB_G0:
28412 case BFD_RELOC_ARM_LDR_SB_G1:
28413 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 28414 gas_assert (!fixP->fx_done);
4962c51a 28415 if (!seg->use_rela_p)
477330fc
RM
28416 {
28417 bfd_vma insn;
3ca4a8ec 28418 bfd_vma addend_abs = llabs (value);
4962c51a 28419
477330fc
RM
28420 /* Check that the absolute value of the addend can be
28421 encoded in 12 bits. */
28422 if (addend_abs >= 0x1000)
4962c51a 28423 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28424 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
28425 (unsigned long) addend_abs);
28426
28427 /* Extract the instruction. */
28428 insn = md_chars_to_number (buf, INSN_SIZE);
28429
28430 /* If the addend is negative, clear bit 23 of the instruction.
28431 Otherwise set it. */
28432 if (value < 0)
28433 insn &= ~(1 << 23);
28434 else
28435 insn |= 1 << 23;
28436
28437 /* Place the absolute value of the addend into the first 12 bits
28438 of the instruction. */
28439 insn &= 0xfffff000;
28440 insn |= addend_abs;
28441
28442 /* Update the instruction. */
28443 md_number_to_chars (buf, insn, INSN_SIZE);
28444 }
4962c51a
MS
28445 break;
28446
28447 case BFD_RELOC_ARM_LDRS_PC_G0:
28448 case BFD_RELOC_ARM_LDRS_PC_G1:
28449 case BFD_RELOC_ARM_LDRS_PC_G2:
28450 case BFD_RELOC_ARM_LDRS_SB_G0:
28451 case BFD_RELOC_ARM_LDRS_SB_G1:
28452 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 28453 gas_assert (!fixP->fx_done);
4962c51a 28454 if (!seg->use_rela_p)
477330fc
RM
28455 {
28456 bfd_vma insn;
3ca4a8ec 28457 bfd_vma addend_abs = llabs (value);
4962c51a 28458
477330fc
RM
28459 /* Check that the absolute value of the addend can be
28460 encoded in 8 bits. */
28461 if (addend_abs >= 0x100)
4962c51a 28462 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28463 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
28464 (unsigned long) addend_abs);
28465
28466 /* Extract the instruction. */
28467 insn = md_chars_to_number (buf, INSN_SIZE);
28468
28469 /* If the addend is negative, clear bit 23 of the instruction.
28470 Otherwise set it. */
28471 if (value < 0)
28472 insn &= ~(1 << 23);
28473 else
28474 insn |= 1 << 23;
28475
28476 /* Place the first four bits of the absolute value of the addend
28477 into the first 4 bits of the instruction, and the remaining
28478 four into bits 8 .. 11. */
28479 insn &= 0xfffff0f0;
28480 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
28481
28482 /* Update the instruction. */
28483 md_number_to_chars (buf, insn, INSN_SIZE);
28484 }
4962c51a
MS
28485 break;
28486
28487 case BFD_RELOC_ARM_LDC_PC_G0:
28488 case BFD_RELOC_ARM_LDC_PC_G1:
28489 case BFD_RELOC_ARM_LDC_PC_G2:
28490 case BFD_RELOC_ARM_LDC_SB_G0:
28491 case BFD_RELOC_ARM_LDC_SB_G1:
28492 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 28493 gas_assert (!fixP->fx_done);
4962c51a 28494 if (!seg->use_rela_p)
477330fc
RM
28495 {
28496 bfd_vma insn;
3ca4a8ec 28497 bfd_vma addend_abs = llabs (value);
4962c51a 28498
477330fc
RM
28499 /* Check that the absolute value of the addend is a multiple of
28500 four and, when divided by four, fits in 8 bits. */
28501 if (addend_abs & 0x3)
4962c51a 28502 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28503 _("bad offset 0x%08lX (must be word-aligned)"),
28504 (unsigned long) addend_abs);
4962c51a 28505
477330fc 28506 if ((addend_abs >> 2) > 0xff)
4962c51a 28507 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28508 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
28509 (unsigned long) addend_abs);
28510
28511 /* Extract the instruction. */
28512 insn = md_chars_to_number (buf, INSN_SIZE);
28513
28514 /* If the addend is negative, clear bit 23 of the instruction.
28515 Otherwise set it. */
28516 if (value < 0)
28517 insn &= ~(1 << 23);
28518 else
28519 insn |= 1 << 23;
28520
28521 /* Place the addend (divided by four) into the first eight
28522 bits of the instruction. */
28523 insn &= 0xfffffff0;
28524 insn |= addend_abs >> 2;
28525
28526 /* Update the instruction. */
28527 md_number_to_chars (buf, insn, INSN_SIZE);
28528 }
4962c51a
MS
28529 break;
28530
e12437dc
AV
28531 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28532 if (fixP->fx_addsy
28533 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28534 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28535 && ARM_IS_FUNC (fixP->fx_addsy)
28536 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28537 {
28538 /* Force a relocation for a branch 5 bits wide. */
28539 fixP->fx_done = 0;
28540 }
28541 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
28542 as_bad_where (fixP->fx_file, fixP->fx_line,
28543 BAD_BRANCH_OFF);
28544
28545 if (fixP->fx_done || !seg->use_rela_p)
28546 {
28547 addressT boff = value >> 1;
28548
28549 newval = md_chars_to_number (buf, THUMB_SIZE);
28550 newval |= (boff << 7);
28551 md_number_to_chars (buf, newval, THUMB_SIZE);
28552 }
28553 break;
28554
f6b2b12d
AV
28555 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28556 if (fixP->fx_addsy
28557 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28558 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28559 && ARM_IS_FUNC (fixP->fx_addsy)
28560 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28561 {
28562 fixP->fx_done = 0;
28563 }
28564 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
28565 as_bad_where (fixP->fx_file, fixP->fx_line,
28566 _("branch out of range"));
28567
28568 if (fixP->fx_done || !seg->use_rela_p)
28569 {
28570 newval = md_chars_to_number (buf, THUMB_SIZE);
28571
28572 addressT boff = ((newval & 0x0780) >> 7) << 1;
28573 addressT diff = value - boff;
28574
28575 if (diff == 4)
28576 {
28577 newval |= 1 << 1; /* T bit. */
28578 }
28579 else if (diff != 2)
28580 {
28581 as_bad_where (fixP->fx_file, fixP->fx_line,
28582 _("out of range label-relative fixup value"));
28583 }
28584 md_number_to_chars (buf, newval, THUMB_SIZE);
28585 }
28586 break;
28587
e5d6e09e
AV
28588 case BFD_RELOC_ARM_THUMB_BF17:
28589 if (fixP->fx_addsy
28590 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28591 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28592 && ARM_IS_FUNC (fixP->fx_addsy)
28593 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28594 {
28595 /* Force a relocation for a branch 17 bits wide. */
28596 fixP->fx_done = 0;
28597 }
28598
28599 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
28600 as_bad_where (fixP->fx_file, fixP->fx_line,
28601 BAD_BRANCH_OFF);
28602
28603 if (fixP->fx_done || !seg->use_rela_p)
28604 {
28605 offsetT newval2;
28606 addressT immA, immB, immC;
28607
28608 immA = (value & 0x0001f000) >> 12;
28609 immB = (value & 0x00000ffc) >> 2;
28610 immC = (value & 0x00000002) >> 1;
28611
28612 newval = md_chars_to_number (buf, THUMB_SIZE);
28613 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28614 newval |= immA;
28615 newval2 |= (immC << 11) | (immB << 1);
28616 md_number_to_chars (buf, newval, THUMB_SIZE);
28617 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28618 }
28619 break;
28620
1caf72a5
AV
28621 case BFD_RELOC_ARM_THUMB_BF19:
28622 if (fixP->fx_addsy
28623 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28624 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28625 && ARM_IS_FUNC (fixP->fx_addsy)
28626 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28627 {
28628 /* Force a relocation for a branch 19 bits wide. */
28629 fixP->fx_done = 0;
28630 }
28631
28632 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
28633 as_bad_where (fixP->fx_file, fixP->fx_line,
28634 BAD_BRANCH_OFF);
28635
28636 if (fixP->fx_done || !seg->use_rela_p)
28637 {
28638 offsetT newval2;
28639 addressT immA, immB, immC;
28640
28641 immA = (value & 0x0007f000) >> 12;
28642 immB = (value & 0x00000ffc) >> 2;
28643 immC = (value & 0x00000002) >> 1;
28644
28645 newval = md_chars_to_number (buf, THUMB_SIZE);
28646 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28647 newval |= immA;
28648 newval2 |= (immC << 11) | (immB << 1);
28649 md_number_to_chars (buf, newval, THUMB_SIZE);
28650 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28651 }
28652 break;
28653
1889da70
AV
28654 case BFD_RELOC_ARM_THUMB_BF13:
28655 if (fixP->fx_addsy
28656 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28657 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28658 && ARM_IS_FUNC (fixP->fx_addsy)
28659 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28660 {
28661 /* Force a relocation for a branch 13 bits wide. */
28662 fixP->fx_done = 0;
28663 }
28664
28665 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
28666 as_bad_where (fixP->fx_file, fixP->fx_line,
28667 BAD_BRANCH_OFF);
28668
28669 if (fixP->fx_done || !seg->use_rela_p)
28670 {
28671 offsetT newval2;
28672 addressT immA, immB, immC;
28673
28674 immA = (value & 0x00001000) >> 12;
28675 immB = (value & 0x00000ffc) >> 2;
28676 immC = (value & 0x00000002) >> 1;
28677
28678 newval = md_chars_to_number (buf, THUMB_SIZE);
28679 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28680 newval |= immA;
28681 newval2 |= (immC << 11) | (immB << 1);
28682 md_number_to_chars (buf, newval, THUMB_SIZE);
28683 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28684 }
28685 break;
28686
60f993ce
AV
28687 case BFD_RELOC_ARM_THUMB_LOOP12:
28688 if (fixP->fx_addsy
28689 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28690 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28691 && ARM_IS_FUNC (fixP->fx_addsy)
28692 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28693 {
28694 /* Force a relocation for a branch 12 bits wide. */
28695 fixP->fx_done = 0;
28696 }
28697
28698 bfd_vma insn = get_thumb32_insn (buf);
1f6234a3 28699 /* le lr, <label>, le <label> or letp lr, <label> */
60f993ce 28700 if (((insn & 0xffffffff) == 0xf00fc001)
1f6234a3
AV
28701 || ((insn & 0xffffffff) == 0xf02fc001)
28702 || ((insn & 0xffffffff) == 0xf01fc001))
60f993ce
AV
28703 value = -value;
28704
28705 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
28706 as_bad_where (fixP->fx_file, fixP->fx_line,
28707 BAD_BRANCH_OFF);
28708 if (fixP->fx_done || !seg->use_rela_p)
28709 {
28710 addressT imml, immh;
28711
28712 immh = (value & 0x00000ffc) >> 2;
28713 imml = (value & 0x00000002) >> 1;
28714
28715 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28716 newval |= (imml << 11) | (immh << 1);
28717 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
28718 }
28719 break;
28720
845b51d6
PB
28721 case BFD_RELOC_ARM_V4BX:
28722 /* This will need to go in the object file. */
28723 fixP->fx_done = 0;
28724 break;
28725
c19d1205
ZW
28726 case BFD_RELOC_UNUSED:
28727 default:
28728 as_bad_where (fixP->fx_file, fixP->fx_line,
28729 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
28730 }
6c43fab6
RE
28731}
28732
c19d1205
ZW
28733/* Translate internal representation of relocation info to BFD target
28734 format. */
a737bd4d 28735
c19d1205 28736arelent *
00a97672 28737tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 28738{
c19d1205
ZW
28739 arelent * reloc;
28740 bfd_reloc_code_real_type code;
a737bd4d 28741
325801bd 28742 reloc = XNEW (arelent);
a737bd4d 28743
325801bd 28744 reloc->sym_ptr_ptr = XNEW (asymbol *);
c19d1205
ZW
28745 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
28746 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 28747
2fc8bdac 28748 if (fixp->fx_pcrel)
00a97672
RS
28749 {
28750 if (section->use_rela_p)
28751 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
28752 else
28753 fixp->fx_offset = reloc->address;
28754 }
c19d1205 28755 reloc->addend = fixp->fx_offset;
a737bd4d 28756
c19d1205 28757 switch (fixp->fx_r_type)
a737bd4d 28758 {
c19d1205
ZW
28759 case BFD_RELOC_8:
28760 if (fixp->fx_pcrel)
28761 {
28762 code = BFD_RELOC_8_PCREL;
28763 break;
28764 }
1a0670f3 28765 /* Fall through. */
a737bd4d 28766
c19d1205
ZW
28767 case BFD_RELOC_16:
28768 if (fixp->fx_pcrel)
28769 {
28770 code = BFD_RELOC_16_PCREL;
28771 break;
28772 }
1a0670f3 28773 /* Fall through. */
6c43fab6 28774
c19d1205
ZW
28775 case BFD_RELOC_32:
28776 if (fixp->fx_pcrel)
28777 {
28778 code = BFD_RELOC_32_PCREL;
28779 break;
28780 }
1a0670f3 28781 /* Fall through. */
a737bd4d 28782
b6895b4f
PB
28783 case BFD_RELOC_ARM_MOVW:
28784 if (fixp->fx_pcrel)
28785 {
28786 code = BFD_RELOC_ARM_MOVW_PCREL;
28787 break;
28788 }
1a0670f3 28789 /* Fall through. */
b6895b4f
PB
28790
28791 case BFD_RELOC_ARM_MOVT:
28792 if (fixp->fx_pcrel)
28793 {
28794 code = BFD_RELOC_ARM_MOVT_PCREL;
28795 break;
28796 }
1a0670f3 28797 /* Fall through. */
b6895b4f
PB
28798
28799 case BFD_RELOC_ARM_THUMB_MOVW:
28800 if (fixp->fx_pcrel)
28801 {
28802 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
28803 break;
28804 }
1a0670f3 28805 /* Fall through. */
b6895b4f
PB
28806
28807 case BFD_RELOC_ARM_THUMB_MOVT:
28808 if (fixp->fx_pcrel)
28809 {
28810 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
28811 break;
28812 }
1a0670f3 28813 /* Fall through. */
b6895b4f 28814
c19d1205
ZW
28815 case BFD_RELOC_NONE:
28816 case BFD_RELOC_ARM_PCREL_BRANCH:
28817 case BFD_RELOC_ARM_PCREL_BLX:
28818 case BFD_RELOC_RVA:
28819 case BFD_RELOC_THUMB_PCREL_BRANCH7:
28820 case BFD_RELOC_THUMB_PCREL_BRANCH9:
28821 case BFD_RELOC_THUMB_PCREL_BRANCH12:
28822 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28823 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28824 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
28825 case BFD_RELOC_VTABLE_ENTRY:
28826 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
28827#ifdef TE_PE
28828 case BFD_RELOC_32_SECREL:
28829#endif
c19d1205
ZW
28830 code = fixp->fx_r_type;
28831 break;
a737bd4d 28832
00adf2d4
JB
28833 case BFD_RELOC_THUMB_PCREL_BLX:
28834#ifdef OBJ_ELF
28835 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
28836 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
28837 else
28838#endif
28839 code = BFD_RELOC_THUMB_PCREL_BLX;
28840 break;
28841
c19d1205
ZW
28842 case BFD_RELOC_ARM_LITERAL:
28843 case BFD_RELOC_ARM_HWLITERAL:
28844 /* If this is called then the a literal has
28845 been referenced across a section boundary. */
28846 as_bad_where (fixp->fx_file, fixp->fx_line,
28847 _("literal referenced across section boundary"));
28848 return NULL;
a737bd4d 28849
c19d1205 28850#ifdef OBJ_ELF
0855e32b
NS
28851 case BFD_RELOC_ARM_TLS_CALL:
28852 case BFD_RELOC_ARM_THM_TLS_CALL:
28853 case BFD_RELOC_ARM_TLS_DESCSEQ:
28854 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
28855 case BFD_RELOC_ARM_GOT32:
28856 case BFD_RELOC_ARM_GOTOFF:
b43420e6 28857 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
28858 case BFD_RELOC_ARM_PLT32:
28859 case BFD_RELOC_ARM_TARGET1:
28860 case BFD_RELOC_ARM_ROSEGREL32:
28861 case BFD_RELOC_ARM_SBREL32:
28862 case BFD_RELOC_ARM_PREL31:
28863 case BFD_RELOC_ARM_TARGET2:
c19d1205 28864 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
28865 case BFD_RELOC_ARM_PCREL_CALL:
28866 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
28867 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28868 case BFD_RELOC_ARM_ALU_PC_G0:
28869 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28870 case BFD_RELOC_ARM_ALU_PC_G1:
28871 case BFD_RELOC_ARM_ALU_PC_G2:
28872 case BFD_RELOC_ARM_LDR_PC_G0:
28873 case BFD_RELOC_ARM_LDR_PC_G1:
28874 case BFD_RELOC_ARM_LDR_PC_G2:
28875 case BFD_RELOC_ARM_LDRS_PC_G0:
28876 case BFD_RELOC_ARM_LDRS_PC_G1:
28877 case BFD_RELOC_ARM_LDRS_PC_G2:
28878 case BFD_RELOC_ARM_LDC_PC_G0:
28879 case BFD_RELOC_ARM_LDC_PC_G1:
28880 case BFD_RELOC_ARM_LDC_PC_G2:
28881 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28882 case BFD_RELOC_ARM_ALU_SB_G0:
28883 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28884 case BFD_RELOC_ARM_ALU_SB_G1:
28885 case BFD_RELOC_ARM_ALU_SB_G2:
28886 case BFD_RELOC_ARM_LDR_SB_G0:
28887 case BFD_RELOC_ARM_LDR_SB_G1:
28888 case BFD_RELOC_ARM_LDR_SB_G2:
28889 case BFD_RELOC_ARM_LDRS_SB_G0:
28890 case BFD_RELOC_ARM_LDRS_SB_G1:
28891 case BFD_RELOC_ARM_LDRS_SB_G2:
28892 case BFD_RELOC_ARM_LDC_SB_G0:
28893 case BFD_RELOC_ARM_LDC_SB_G1:
28894 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 28895 case BFD_RELOC_ARM_V4BX:
72d98d16
MG
28896 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28897 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28898 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28899 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
188fd7ae
CL
28900 case BFD_RELOC_ARM_GOTFUNCDESC:
28901 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28902 case BFD_RELOC_ARM_FUNCDESC:
e5d6e09e 28903 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 28904 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 28905 case BFD_RELOC_ARM_THUMB_BF13:
c19d1205
ZW
28906 code = fixp->fx_r_type;
28907 break;
a737bd4d 28908
0855e32b 28909 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205 28910 case BFD_RELOC_ARM_TLS_GD32:
5c5a4843 28911 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
75c11999 28912 case BFD_RELOC_ARM_TLS_LE32:
c19d1205 28913 case BFD_RELOC_ARM_TLS_IE32:
5c5a4843 28914 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
c19d1205 28915 case BFD_RELOC_ARM_TLS_LDM32:
5c5a4843 28916 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
c19d1205
ZW
28917 /* BFD will include the symbol's address in the addend.
28918 But we don't want that, so subtract it out again here. */
28919 if (!S_IS_COMMON (fixp->fx_addsy))
28920 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
28921 code = fixp->fx_r_type;
28922 break;
28923#endif
a737bd4d 28924
c19d1205
ZW
28925 case BFD_RELOC_ARM_IMMEDIATE:
28926 as_bad_where (fixp->fx_file, fixp->fx_line,
28927 _("internal relocation (type: IMMEDIATE) not fixed up"));
28928 return NULL;
a737bd4d 28929
c19d1205
ZW
28930 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
28931 as_bad_where (fixp->fx_file, fixp->fx_line,
28932 _("ADRL used for a symbol not defined in the same file"));
28933 return NULL;
a737bd4d 28934
e12437dc 28935 case BFD_RELOC_THUMB_PCREL_BRANCH5:
f6b2b12d 28936 case BFD_RELOC_THUMB_PCREL_BFCSEL:
60f993ce 28937 case BFD_RELOC_ARM_THUMB_LOOP12:
e12437dc
AV
28938 as_bad_where (fixp->fx_file, fixp->fx_line,
28939 _("%s used for a symbol not defined in the same file"),
28940 bfd_get_reloc_code_name (fixp->fx_r_type));
28941 return NULL;
28942
c19d1205 28943 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
28944 if (section->use_rela_p)
28945 {
28946 code = fixp->fx_r_type;
28947 break;
28948 }
28949
c19d1205
ZW
28950 if (fixp->fx_addsy != NULL
28951 && !S_IS_DEFINED (fixp->fx_addsy)
28952 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 28953 {
c19d1205
ZW
28954 as_bad_where (fixp->fx_file, fixp->fx_line,
28955 _("undefined local label `%s'"),
28956 S_GET_NAME (fixp->fx_addsy));
28957 return NULL;
a737bd4d
NC
28958 }
28959
c19d1205
ZW
28960 as_bad_where (fixp->fx_file, fixp->fx_line,
28961 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
28962 return NULL;
a737bd4d 28963
c19d1205
ZW
28964 default:
28965 {
e0471c16 28966 const char * type;
6c43fab6 28967
c19d1205
ZW
28968 switch (fixp->fx_r_type)
28969 {
28970 case BFD_RELOC_NONE: type = "NONE"; break;
28971 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
28972 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 28973 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
28974 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
28975 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
28976 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 28977 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 28978 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
28979 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
28980 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
28981 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
28982 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
28983 default: type = _("<unknown>"); break;
28984 }
28985 as_bad_where (fixp->fx_file, fixp->fx_line,
28986 _("cannot represent %s relocation in this object file format"),
28987 type);
28988 return NULL;
28989 }
a737bd4d 28990 }
6c43fab6 28991
c19d1205
ZW
28992#ifdef OBJ_ELF
28993 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
28994 && GOT_symbol
28995 && fixp->fx_addsy == GOT_symbol)
28996 {
28997 code = BFD_RELOC_ARM_GOTPC;
28998 reloc->addend = fixp->fx_offset = reloc->address;
28999 }
29000#endif
6c43fab6 29001
c19d1205 29002 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 29003
c19d1205
ZW
29004 if (reloc->howto == NULL)
29005 {
29006 as_bad_where (fixp->fx_file, fixp->fx_line,
29007 _("cannot represent %s relocation in this object file format"),
29008 bfd_get_reloc_code_name (code));
29009 return NULL;
29010 }
6c43fab6 29011
c19d1205
ZW
29012 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
29013 vtable entry to be used in the relocation's section offset. */
29014 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
29015 reloc->address = fixp->fx_offset;
6c43fab6 29016
c19d1205 29017 return reloc;
6c43fab6
RE
29018}
29019
c19d1205 29020/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 29021
c19d1205
ZW
29022void
29023cons_fix_new_arm (fragS * frag,
29024 int where,
29025 int size,
62ebcb5c
AM
29026 expressionS * exp,
29027 bfd_reloc_code_real_type reloc)
6c43fab6 29028{
c19d1205 29029 int pcrel = 0;
6c43fab6 29030
c19d1205
ZW
29031 /* Pick a reloc.
29032 FIXME: @@ Should look at CPU word size. */
29033 switch (size)
29034 {
29035 case 1:
62ebcb5c 29036 reloc = BFD_RELOC_8;
c19d1205
ZW
29037 break;
29038 case 2:
62ebcb5c 29039 reloc = BFD_RELOC_16;
c19d1205
ZW
29040 break;
29041 case 4:
29042 default:
62ebcb5c 29043 reloc = BFD_RELOC_32;
c19d1205
ZW
29044 break;
29045 case 8:
62ebcb5c 29046 reloc = BFD_RELOC_64;
c19d1205
ZW
29047 break;
29048 }
6c43fab6 29049
f0927246
NC
29050#ifdef TE_PE
29051 if (exp->X_op == O_secrel)
29052 {
29053 exp->X_op = O_symbol;
62ebcb5c 29054 reloc = BFD_RELOC_32_SECREL;
f0927246
NC
29055 }
29056#endif
29057
62ebcb5c 29058 fix_new_exp (frag, where, size, exp, pcrel, reloc);
c19d1205 29059}
6c43fab6 29060
4343666d 29061#if defined (OBJ_COFF)
c19d1205
ZW
29062void
29063arm_validate_fix (fixS * fixP)
6c43fab6 29064{
c19d1205
ZW
29065 /* If the destination of the branch is a defined symbol which does not have
29066 the THUMB_FUNC attribute, then we must be calling a function which has
29067 the (interfacearm) attribute. We look for the Thumb entry point to that
29068 function and change the branch to refer to that function instead. */
29069 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
29070 && fixP->fx_addsy != NULL
29071 && S_IS_DEFINED (fixP->fx_addsy)
29072 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 29073 {
c19d1205 29074 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 29075 }
c19d1205
ZW
29076}
29077#endif
6c43fab6 29078
267bf995 29079
c19d1205
ZW
29080int
29081arm_force_relocation (struct fix * fixp)
29082{
29083#if defined (OBJ_COFF) && defined (TE_PE)
29084 if (fixp->fx_r_type == BFD_RELOC_RVA)
29085 return 1;
29086#endif
6c43fab6 29087
267bf995
RR
29088 /* In case we have a call or a branch to a function in ARM ISA mode from
29089 a thumb function or vice-versa force the relocation. These relocations
29090 are cleared off for some cores that might have blx and simple transformations
29091 are possible. */
29092
29093#ifdef OBJ_ELF
29094 switch (fixp->fx_r_type)
29095 {
29096 case BFD_RELOC_ARM_PCREL_JUMP:
29097 case BFD_RELOC_ARM_PCREL_CALL:
29098 case BFD_RELOC_THUMB_PCREL_BLX:
29099 if (THUMB_IS_FUNC (fixp->fx_addsy))
29100 return 1;
29101 break;
29102
29103 case BFD_RELOC_ARM_PCREL_BLX:
29104 case BFD_RELOC_THUMB_PCREL_BRANCH25:
29105 case BFD_RELOC_THUMB_PCREL_BRANCH20:
29106 case BFD_RELOC_THUMB_PCREL_BRANCH23:
29107 if (ARM_IS_FUNC (fixp->fx_addsy))
29108 return 1;
29109 break;
29110
29111 default:
29112 break;
29113 }
29114#endif
29115
b5884301
PB
29116 /* Resolve these relocations even if the symbol is extern or weak.
29117 Technically this is probably wrong due to symbol preemption.
29118 In practice these relocations do not have enough range to be useful
29119 at dynamic link time, and some code (e.g. in the Linux kernel)
29120 expects these references to be resolved. */
c19d1205
ZW
29121 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
29122 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 29123 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 29124 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
29125 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
29126 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
29127 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 29128 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
29129 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
29130 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
29131 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
29132 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
29133 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
29134 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 29135 return 0;
a737bd4d 29136
4962c51a
MS
29137 /* Always leave these relocations for the linker. */
29138 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
29139 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
29140 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
29141 return 1;
29142
f0291e4c
PB
29143 /* Always generate relocations against function symbols. */
29144 if (fixp->fx_r_type == BFD_RELOC_32
29145 && fixp->fx_addsy
29146 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
29147 return 1;
29148
c19d1205 29149 return generic_force_reloc (fixp);
404ff6b5
AH
29150}
29151
0ffdc86c 29152#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
29153/* Relocations against function names must be left unadjusted,
29154 so that the linker can use this information to generate interworking
29155 stubs. The MIPS version of this function
c19d1205
ZW
29156 also prevents relocations that are mips-16 specific, but I do not
29157 know why it does this.
404ff6b5 29158
c19d1205
ZW
29159 FIXME:
29160 There is one other problem that ought to be addressed here, but
29161 which currently is not: Taking the address of a label (rather
29162 than a function) and then later jumping to that address. Such
29163 addresses also ought to have their bottom bit set (assuming that
29164 they reside in Thumb code), but at the moment they will not. */
404ff6b5 29165
c19d1205
ZW
29166bfd_boolean
29167arm_fix_adjustable (fixS * fixP)
404ff6b5 29168{
c19d1205
ZW
29169 if (fixP->fx_addsy == NULL)
29170 return 1;
404ff6b5 29171
e28387c3
PB
29172 /* Preserve relocations against symbols with function type. */
29173 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 29174 return FALSE;
e28387c3 29175
c19d1205
ZW
29176 if (THUMB_IS_FUNC (fixP->fx_addsy)
29177 && fixP->fx_subsy == NULL)
c921be7d 29178 return FALSE;
a737bd4d 29179
c19d1205
ZW
29180 /* We need the symbol name for the VTABLE entries. */
29181 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
29182 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 29183 return FALSE;
404ff6b5 29184
c19d1205
ZW
29185 /* Don't allow symbols to be discarded on GOT related relocs. */
29186 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
29187 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
29188 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
29189 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
5c5a4843 29190 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
c19d1205
ZW
29191 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
29192 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
5c5a4843 29193 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
c19d1205 29194 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
5c5a4843 29195 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
c19d1205 29196 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
29197 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
29198 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
29199 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
29200 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
29201 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 29202 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 29203 return FALSE;
a737bd4d 29204
4962c51a
MS
29205 /* Similarly for group relocations. */
29206 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
29207 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
29208 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 29209 return FALSE;
4962c51a 29210
79947c54
CD
29211 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
29212 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
29213 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
29214 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
29215 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
29216 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
29217 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
29218 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
29219 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 29220 return FALSE;
79947c54 29221
72d98d16
MG
29222 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
29223 offsets, so keep these symbols. */
29224 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
29225 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
29226 return FALSE;
29227
c921be7d 29228 return TRUE;
a737bd4d 29229}
0ffdc86c
NC
29230#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
29231
29232#ifdef OBJ_ELF
c19d1205
ZW
29233const char *
29234elf32_arm_target_format (void)
404ff6b5 29235{
c19d1205
ZW
29236#ifdef TE_SYMBIAN
29237 return (target_big_endian
29238 ? "elf32-bigarm-symbian"
29239 : "elf32-littlearm-symbian");
29240#elif defined (TE_VXWORKS)
29241 return (target_big_endian
29242 ? "elf32-bigarm-vxworks"
29243 : "elf32-littlearm-vxworks");
b38cadfb
NC
29244#elif defined (TE_NACL)
29245 return (target_big_endian
29246 ? "elf32-bigarm-nacl"
29247 : "elf32-littlearm-nacl");
c19d1205 29248#else
18a20338
CL
29249 if (arm_fdpic)
29250 {
29251 if (target_big_endian)
29252 return "elf32-bigarm-fdpic";
29253 else
29254 return "elf32-littlearm-fdpic";
29255 }
c19d1205 29256 else
18a20338
CL
29257 {
29258 if (target_big_endian)
29259 return "elf32-bigarm";
29260 else
29261 return "elf32-littlearm";
29262 }
c19d1205 29263#endif
404ff6b5
AH
29264}
29265
c19d1205
ZW
29266void
29267armelf_frob_symbol (symbolS * symp,
29268 int * puntp)
404ff6b5 29269{
c19d1205
ZW
29270 elf_frob_symbol (symp, puntp);
29271}
29272#endif
404ff6b5 29273
c19d1205 29274/* MD interface: Finalization. */
a737bd4d 29275
c19d1205
ZW
29276void
29277arm_cleanup (void)
29278{
29279 literal_pool * pool;
a737bd4d 29280
5ee91343
AV
29281 /* Ensure that all the predication blocks are properly closed. */
29282 check_pred_blocks_finished ();
e07e6e58 29283
c19d1205
ZW
29284 for (pool = list_of_pools; pool; pool = pool->next)
29285 {
5f4273c7 29286 /* Put it at the end of the relevant section. */
c19d1205
ZW
29287 subseg_set (pool->section, pool->sub_section);
29288#ifdef OBJ_ELF
29289 arm_elf_change_section ();
29290#endif
29291 s_ltorg (0);
29292 }
404ff6b5
AH
29293}
29294
cd000bff
DJ
29295#ifdef OBJ_ELF
29296/* Remove any excess mapping symbols generated for alignment frags in
29297 SEC. We may have created a mapping symbol before a zero byte
29298 alignment; remove it if there's a mapping symbol after the
29299 alignment. */
29300static void
29301check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
29302 void *dummy ATTRIBUTE_UNUSED)
29303{
29304 segment_info_type *seginfo = seg_info (sec);
29305 fragS *fragp;
29306
29307 if (seginfo == NULL || seginfo->frchainP == NULL)
29308 return;
29309
29310 for (fragp = seginfo->frchainP->frch_root;
29311 fragp != NULL;
29312 fragp = fragp->fr_next)
29313 {
29314 symbolS *sym = fragp->tc_frag_data.last_map;
29315 fragS *next = fragp->fr_next;
29316
29317 /* Variable-sized frags have been converted to fixed size by
29318 this point. But if this was variable-sized to start with,
29319 there will be a fixed-size frag after it. So don't handle
29320 next == NULL. */
29321 if (sym == NULL || next == NULL)
29322 continue;
29323
29324 if (S_GET_VALUE (sym) < next->fr_address)
29325 /* Not at the end of this frag. */
29326 continue;
29327 know (S_GET_VALUE (sym) == next->fr_address);
29328
29329 do
29330 {
29331 if (next->tc_frag_data.first_map != NULL)
29332 {
29333 /* Next frag starts with a mapping symbol. Discard this
29334 one. */
29335 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
29336 break;
29337 }
29338
29339 if (next->fr_next == NULL)
29340 {
29341 /* This mapping symbol is at the end of the section. Discard
29342 it. */
29343 know (next->fr_fix == 0 && next->fr_var == 0);
29344 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
29345 break;
29346 }
29347
29348 /* As long as we have empty frags without any mapping symbols,
29349 keep looking. */
29350 /* If the next frag is non-empty and does not start with a
29351 mapping symbol, then this mapping symbol is required. */
29352 if (next->fr_address != next->fr_next->fr_address)
29353 break;
29354
29355 next = next->fr_next;
29356 }
29357 while (next != NULL);
29358 }
29359}
29360#endif
29361
c19d1205
ZW
29362/* Adjust the symbol table. This marks Thumb symbols as distinct from
29363 ARM ones. */
404ff6b5 29364
c19d1205
ZW
29365void
29366arm_adjust_symtab (void)
404ff6b5 29367{
c19d1205
ZW
29368#ifdef OBJ_COFF
29369 symbolS * sym;
404ff6b5 29370
c19d1205
ZW
29371 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
29372 {
29373 if (ARM_IS_THUMB (sym))
29374 {
29375 if (THUMB_IS_FUNC (sym))
29376 {
29377 /* Mark the symbol as a Thumb function. */
29378 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
29379 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
29380 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 29381
c19d1205
ZW
29382 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
29383 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
29384 else
29385 as_bad (_("%s: unexpected function type: %d"),
29386 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
29387 }
29388 else switch (S_GET_STORAGE_CLASS (sym))
29389 {
29390 case C_EXT:
29391 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
29392 break;
29393 case C_STAT:
29394 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
29395 break;
29396 case C_LABEL:
29397 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
29398 break;
29399 default:
29400 /* Do nothing. */
29401 break;
29402 }
29403 }
a737bd4d 29404
c19d1205
ZW
29405 if (ARM_IS_INTERWORK (sym))
29406 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 29407 }
c19d1205
ZW
29408#endif
29409#ifdef OBJ_ELF
29410 symbolS * sym;
29411 char bind;
404ff6b5 29412
c19d1205 29413 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 29414 {
c19d1205
ZW
29415 if (ARM_IS_THUMB (sym))
29416 {
29417 elf_symbol_type * elf_sym;
404ff6b5 29418
c19d1205
ZW
29419 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
29420 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 29421
b0796911
PB
29422 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
29423 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
29424 {
29425 /* If it's a .thumb_func, declare it as so,
29426 otherwise tag label as .code 16. */
29427 if (THUMB_IS_FUNC (sym))
39d911fc
TP
29428 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
29429 ST_BRANCH_TO_THUMB);
3ba67470 29430 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
29431 elf_sym->internal_elf_sym.st_info =
29432 ELF_ST_INFO (bind, STT_ARM_16BIT);
29433 }
29434 }
29435 }
cd000bff
DJ
29436
29437 /* Remove any overlapping mapping symbols generated by alignment frags. */
29438 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
29439 /* Now do generic ELF adjustments. */
29440 elf_adjust_symtab ();
c19d1205 29441#endif
404ff6b5
AH
29442}
29443
c19d1205 29444/* MD interface: Initialization. */
404ff6b5 29445
a737bd4d 29446static void
c19d1205 29447set_constant_flonums (void)
a737bd4d 29448{
c19d1205 29449 int i;
404ff6b5 29450
c19d1205
ZW
29451 for (i = 0; i < NUM_FLOAT_VALS; i++)
29452 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
29453 abort ();
a737bd4d 29454}
404ff6b5 29455
3e9e4fcf
JB
29456/* Auto-select Thumb mode if it's the only available instruction set for the
29457 given architecture. */
29458
29459static void
29460autoselect_thumb_from_cpu_variant (void)
29461{
29462 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
29463 opcode_select (16);
29464}
29465
c19d1205
ZW
29466void
29467md_begin (void)
a737bd4d 29468{
c19d1205
ZW
29469 unsigned mach;
29470 unsigned int i;
404ff6b5 29471
c19d1205
ZW
29472 if ( (arm_ops_hsh = hash_new ()) == NULL
29473 || (arm_cond_hsh = hash_new ()) == NULL
5ee91343 29474 || (arm_vcond_hsh = hash_new ()) == NULL
c19d1205
ZW
29475 || (arm_shift_hsh = hash_new ()) == NULL
29476 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 29477 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 29478 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
29479 || (arm_reloc_hsh = hash_new ()) == NULL
29480 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
29481 as_fatal (_("virtual memory exhausted"));
29482
29483 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 29484 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 29485 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 29486 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
5ee91343
AV
29487 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
29488 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
c19d1205 29489 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 29490 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 29491 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 29492 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 29493 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 29494 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
477330fc 29495 (void *) (v7m_psrs + i));
c19d1205 29496 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 29497 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
29498 for (i = 0;
29499 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
29500 i++)
d3ce72d0 29501 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 29502 (void *) (barrier_opt_names + i));
c19d1205 29503#ifdef OBJ_ELF
3da1d841
NC
29504 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
29505 {
29506 struct reloc_entry * entry = reloc_names + i;
29507
29508 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
29509 /* This makes encode_branch() use the EABI versions of this relocation. */
29510 entry->reloc = BFD_RELOC_UNUSED;
29511
29512 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
29513 }
c19d1205
ZW
29514#endif
29515
29516 set_constant_flonums ();
404ff6b5 29517
c19d1205
ZW
29518 /* Set the cpu variant based on the command-line options. We prefer
29519 -mcpu= over -march= if both are set (as for GCC); and we prefer
29520 -mfpu= over any other way of setting the floating point unit.
29521 Use of legacy options with new options are faulted. */
e74cfd16 29522 if (legacy_cpu)
404ff6b5 29523 {
e74cfd16 29524 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
29525 as_bad (_("use of old and new-style options to set CPU type"));
29526
4d354d8b 29527 selected_arch = *legacy_cpu;
404ff6b5 29528 }
4d354d8b
TP
29529 else if (mcpu_cpu_opt)
29530 {
29531 selected_arch = *mcpu_cpu_opt;
29532 selected_ext = *mcpu_ext_opt;
29533 }
29534 else if (march_cpu_opt)
c168ce07 29535 {
4d354d8b
TP
29536 selected_arch = *march_cpu_opt;
29537 selected_ext = *march_ext_opt;
c168ce07 29538 }
4d354d8b 29539 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
404ff6b5 29540
e74cfd16 29541 if (legacy_fpu)
c19d1205 29542 {
e74cfd16 29543 if (mfpu_opt)
c19d1205 29544 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f 29545
4d354d8b 29546 selected_fpu = *legacy_fpu;
03b1477f 29547 }
4d354d8b
TP
29548 else if (mfpu_opt)
29549 selected_fpu = *mfpu_opt;
29550 else
03b1477f 29551 {
45eb4c1b
NS
29552#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
29553 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
29554 /* Some environments specify a default FPU. If they don't, infer it
29555 from the processor. */
e74cfd16 29556 if (mcpu_fpu_opt)
4d354d8b 29557 selected_fpu = *mcpu_fpu_opt;
e7da50fa 29558 else if (march_fpu_opt)
4d354d8b 29559 selected_fpu = *march_fpu_opt;
39c2da32 29560#else
4d354d8b 29561 selected_fpu = fpu_default;
39c2da32 29562#endif
03b1477f
RE
29563 }
29564
4d354d8b 29565 if (ARM_FEATURE_ZERO (selected_fpu))
03b1477f 29566 {
4d354d8b
TP
29567 if (!no_cpu_selected ())
29568 selected_fpu = fpu_default;
03b1477f 29569 else
4d354d8b 29570 selected_fpu = fpu_arch_fpa;
03b1477f
RE
29571 }
29572
ee065d83 29573#ifdef CPU_DEFAULT
4d354d8b 29574 if (ARM_FEATURE_ZERO (selected_arch))
ee065d83 29575 {
4d354d8b
TP
29576 selected_arch = cpu_default;
29577 selected_cpu = selected_arch;
ee065d83 29578 }
4d354d8b 29579 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
e74cfd16 29580#else
4d354d8b
TP
29581 /* Autodection of feature mode: allow all features in cpu_variant but leave
29582 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
29583 after all instruction have been processed and we can decide what CPU
29584 should be selected. */
29585 if (ARM_FEATURE_ZERO (selected_arch))
29586 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
ee065d83 29587 else
4d354d8b 29588 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83 29589#endif
03b1477f 29590
3e9e4fcf
JB
29591 autoselect_thumb_from_cpu_variant ();
29592
e74cfd16 29593 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 29594
f17c130b 29595#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 29596 {
7cc69913
NC
29597 unsigned int flags = 0;
29598
29599#if defined OBJ_ELF
29600 flags = meabi_flags;
d507cf36
PB
29601
29602 switch (meabi_flags)
33a392fb 29603 {
d507cf36 29604 case EF_ARM_EABI_UNKNOWN:
7cc69913 29605#endif
d507cf36
PB
29606 /* Set the flags in the private structure. */
29607 if (uses_apcs_26) flags |= F_APCS26;
29608 if (support_interwork) flags |= F_INTERWORK;
29609 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 29610 if (pic_code) flags |= F_PIC;
e74cfd16 29611 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
29612 flags |= F_SOFT_FLOAT;
29613
d507cf36
PB
29614 switch (mfloat_abi_opt)
29615 {
29616 case ARM_FLOAT_ABI_SOFT:
29617 case ARM_FLOAT_ABI_SOFTFP:
29618 flags |= F_SOFT_FLOAT;
29619 break;
33a392fb 29620
d507cf36
PB
29621 case ARM_FLOAT_ABI_HARD:
29622 if (flags & F_SOFT_FLOAT)
29623 as_bad (_("hard-float conflicts with specified fpu"));
29624 break;
29625 }
03b1477f 29626
e74cfd16
PB
29627 /* Using pure-endian doubles (even if soft-float). */
29628 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 29629 flags |= F_VFP_FLOAT;
f17c130b 29630
fde78edd 29631#if defined OBJ_ELF
e74cfd16 29632 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 29633 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
29634 break;
29635
8cb51566 29636 case EF_ARM_EABI_VER4:
3a4a14e9 29637 case EF_ARM_EABI_VER5:
c19d1205 29638 /* No additional flags to set. */
d507cf36
PB
29639 break;
29640
29641 default:
29642 abort ();
29643 }
7cc69913 29644#endif
b99bd4ef
NC
29645 bfd_set_private_flags (stdoutput, flags);
29646
29647 /* We have run out flags in the COFF header to encode the
29648 status of ATPCS support, so instead we create a dummy,
c19d1205 29649 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
29650 if (atpcs)
29651 {
29652 asection * sec;
29653
29654 sec = bfd_make_section (stdoutput, ".arm.atpcs");
29655
29656 if (sec != NULL)
29657 {
29658 bfd_set_section_flags
29659 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
29660 bfd_set_section_size (stdoutput, sec, 0);
29661 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
29662 }
29663 }
7cc69913 29664 }
f17c130b 29665#endif
b99bd4ef
NC
29666
29667 /* Record the CPU type as well. */
2d447fca
JM
29668 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
29669 mach = bfd_mach_arm_iWMMXt2;
29670 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 29671 mach = bfd_mach_arm_iWMMXt;
e74cfd16 29672 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 29673 mach = bfd_mach_arm_XScale;
e74cfd16 29674 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 29675 mach = bfd_mach_arm_ep9312;
e74cfd16 29676 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 29677 mach = bfd_mach_arm_5TE;
e74cfd16 29678 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 29679 {
e74cfd16 29680 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
29681 mach = bfd_mach_arm_5T;
29682 else
29683 mach = bfd_mach_arm_5;
29684 }
e74cfd16 29685 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 29686 {
e74cfd16 29687 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
29688 mach = bfd_mach_arm_4T;
29689 else
29690 mach = bfd_mach_arm_4;
29691 }
e74cfd16 29692 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 29693 mach = bfd_mach_arm_3M;
e74cfd16
PB
29694 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
29695 mach = bfd_mach_arm_3;
29696 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
29697 mach = bfd_mach_arm_2a;
29698 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
29699 mach = bfd_mach_arm_2;
29700 else
29701 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
29702
29703 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
29704}
29705
c19d1205 29706/* Command line processing. */
b99bd4ef 29707
c19d1205
ZW
29708/* md_parse_option
29709 Invocation line includes a switch not recognized by the base assembler.
29710 See if it's a processor-specific option.
b99bd4ef 29711
c19d1205
ZW
29712 This routine is somewhat complicated by the need for backwards
29713 compatibility (since older releases of gcc can't be changed).
29714 The new options try to make the interface as compatible as
29715 possible with GCC.
b99bd4ef 29716
c19d1205 29717 New options (supported) are:
b99bd4ef 29718
c19d1205
ZW
29719 -mcpu=<cpu name> Assemble for selected processor
29720 -march=<architecture name> Assemble for selected architecture
29721 -mfpu=<fpu architecture> Assemble for selected FPU.
29722 -EB/-mbig-endian Big-endian
29723 -EL/-mlittle-endian Little-endian
29724 -k Generate PIC code
29725 -mthumb Start in Thumb mode
29726 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 29727
278df34e 29728 -m[no-]warn-deprecated Warn about deprecated features
8b2d793c 29729 -m[no-]warn-syms Warn when symbols match instructions
267bf995 29730
c19d1205 29731 For now we will also provide support for:
b99bd4ef 29732
c19d1205
ZW
29733 -mapcs-32 32-bit Program counter
29734 -mapcs-26 26-bit Program counter
29735 -macps-float Floats passed in FP registers
29736 -mapcs-reentrant Reentrant code
29737 -matpcs
29738 (sometime these will probably be replaced with -mapcs=<list of options>
29739 and -matpcs=<list of options>)
b99bd4ef 29740
c19d1205
ZW
29741 The remaining options are only supported for back-wards compatibility.
29742 Cpu variants, the arm part is optional:
29743 -m[arm]1 Currently not supported.
29744 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
29745 -m[arm]3 Arm 3 processor
29746 -m[arm]6[xx], Arm 6 processors
29747 -m[arm]7[xx][t][[d]m] Arm 7 processors
29748 -m[arm]8[10] Arm 8 processors
29749 -m[arm]9[20][tdmi] Arm 9 processors
29750 -mstrongarm[110[0]] StrongARM processors
29751 -mxscale XScale processors
29752 -m[arm]v[2345[t[e]]] Arm architectures
29753 -mall All (except the ARM1)
29754 FP variants:
29755 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
29756 -mfpe-old (No float load/store multiples)
29757 -mvfpxd VFP Single precision
29758 -mvfp All VFP
29759 -mno-fpu Disable all floating point instructions
b99bd4ef 29760
c19d1205
ZW
29761 The following CPU names are recognized:
29762 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
29763 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
29764 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
29765 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
29766 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
29767 arm10t arm10e, arm1020t, arm1020e, arm10200e,
29768 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 29769
c19d1205 29770 */
b99bd4ef 29771
c19d1205 29772const char * md_shortopts = "m:k";
b99bd4ef 29773
c19d1205
ZW
29774#ifdef ARM_BI_ENDIAN
29775#define OPTION_EB (OPTION_MD_BASE + 0)
29776#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 29777#else
c19d1205
ZW
29778#if TARGET_BYTES_BIG_ENDIAN
29779#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 29780#else
c19d1205
ZW
29781#define OPTION_EL (OPTION_MD_BASE + 1)
29782#endif
b99bd4ef 29783#endif
845b51d6 29784#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
18a20338 29785#define OPTION_FDPIC (OPTION_MD_BASE + 3)
b99bd4ef 29786
c19d1205 29787struct option md_longopts[] =
b99bd4ef 29788{
c19d1205
ZW
29789#ifdef OPTION_EB
29790 {"EB", no_argument, NULL, OPTION_EB},
29791#endif
29792#ifdef OPTION_EL
29793 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 29794#endif
845b51d6 29795 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
18a20338
CL
29796#ifdef OBJ_ELF
29797 {"fdpic", no_argument, NULL, OPTION_FDPIC},
29798#endif
c19d1205
ZW
29799 {NULL, no_argument, NULL, 0}
29800};
b99bd4ef 29801
c19d1205 29802size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 29803
c19d1205 29804struct arm_option_table
b99bd4ef 29805{
0198d5e6
TC
29806 const char * option; /* Option name to match. */
29807 const char * help; /* Help information. */
29808 int * var; /* Variable to change. */
29809 int value; /* What to change it to. */
29810 const char * deprecated; /* If non-null, print this message. */
c19d1205 29811};
b99bd4ef 29812
c19d1205
ZW
29813struct arm_option_table arm_opts[] =
29814{
29815 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
29816 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
29817 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
29818 &support_interwork, 1, NULL},
29819 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
29820 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
29821 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
29822 1, NULL},
29823 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
29824 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
29825 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
29826 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
29827 NULL},
b99bd4ef 29828
c19d1205
ZW
29829 /* These are recognized by the assembler, but have no affect on code. */
29830 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
29831 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
29832
29833 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
29834 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
29835 &warn_on_deprecated, 0, NULL},
8b2d793c
NC
29836 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
29837 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
e74cfd16
PB
29838 {NULL, NULL, NULL, 0, NULL}
29839};
29840
29841struct arm_legacy_option_table
29842{
0198d5e6
TC
29843 const char * option; /* Option name to match. */
29844 const arm_feature_set ** var; /* Variable to change. */
29845 const arm_feature_set value; /* What to change it to. */
29846 const char * deprecated; /* If non-null, print this message. */
e74cfd16 29847};
b99bd4ef 29848
e74cfd16
PB
29849const struct arm_legacy_option_table arm_legacy_opts[] =
29850{
c19d1205
ZW
29851 /* DON'T add any new processors to this list -- we want the whole list
29852 to go away... Add them to the processors table instead. */
e74cfd16
PB
29853 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29854 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29855 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29856 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29857 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29858 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29859 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29860 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29861 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29862 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29863 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29864 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29865 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29866 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29867 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29868 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29869 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29870 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29871 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29872 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29873 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29874 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29875 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29876 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29877 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29878 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29879 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29880 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29881 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29882 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29883 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29884 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29885 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29886 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29887 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29888 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29889 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29890 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29891 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29892 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29893 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29894 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29895 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29896 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29897 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29898 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29899 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29900 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29901 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29902 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29903 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29904 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29905 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29906 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29907 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29908 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29909 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29910 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29911 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29912 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29913 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29914 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29915 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29916 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29917 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29918 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29919 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29920 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29921 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
29922 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29923 N_("use -mcpu=strongarm110")},
e74cfd16 29924 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29925 N_("use -mcpu=strongarm1100")},
e74cfd16 29926 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29927 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
29928 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
29929 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
29930 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 29931
c19d1205 29932 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
29933 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29934 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29935 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29936 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29937 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29938 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29939 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29940 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29941 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29942 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29943 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29944 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29945 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29946 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29947 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29948 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29949 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29950 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 29951
c19d1205 29952 /* Floating point variants -- don't add any more to this list either. */
0198d5e6
TC
29953 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
29954 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
29955 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
29956 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 29957 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 29958
e74cfd16 29959 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 29960};
7ed4c4c5 29961
c19d1205 29962struct arm_cpu_option_table
7ed4c4c5 29963{
0198d5e6
TC
29964 const char * name;
29965 size_t name_len;
29966 const arm_feature_set value;
29967 const arm_feature_set ext;
c19d1205
ZW
29968 /* For some CPUs we assume an FPU unless the user explicitly sets
29969 -mfpu=... */
0198d5e6 29970 const arm_feature_set default_fpu;
ee065d83
PB
29971 /* The canonical name of the CPU, or NULL to use NAME converted to upper
29972 case. */
0198d5e6 29973 const char * canonical_name;
c19d1205 29974};
7ed4c4c5 29975
c19d1205
ZW
29976/* This list should, at a minimum, contain all the cpu names
29977 recognized by GCC. */
996b5569 29978#define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
0198d5e6 29979
e74cfd16 29980static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 29981{
996b5569
TP
29982 ARM_CPU_OPT ("all", NULL, ARM_ANY,
29983 ARM_ARCH_NONE,
29984 FPU_ARCH_FPA),
29985 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
29986 ARM_ARCH_NONE,
29987 FPU_ARCH_FPA),
29988 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
29989 ARM_ARCH_NONE,
29990 FPU_ARCH_FPA),
29991 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
29992 ARM_ARCH_NONE,
29993 FPU_ARCH_FPA),
29994 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
29995 ARM_ARCH_NONE,
29996 FPU_ARCH_FPA),
29997 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
29998 ARM_ARCH_NONE,
29999 FPU_ARCH_FPA),
30000 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
30001 ARM_ARCH_NONE,
30002 FPU_ARCH_FPA),
30003 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
30004 ARM_ARCH_NONE,
30005 FPU_ARCH_FPA),
30006 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
30007 ARM_ARCH_NONE,
30008 FPU_ARCH_FPA),
30009 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
30010 ARM_ARCH_NONE,
30011 FPU_ARCH_FPA),
30012 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
30013 ARM_ARCH_NONE,
30014 FPU_ARCH_FPA),
30015 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
30016 ARM_ARCH_NONE,
30017 FPU_ARCH_FPA),
30018 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
30019 ARM_ARCH_NONE,
30020 FPU_ARCH_FPA),
30021 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
30022 ARM_ARCH_NONE,
30023 FPU_ARCH_FPA),
30024 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
30025 ARM_ARCH_NONE,
30026 FPU_ARCH_FPA),
30027 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
30028 ARM_ARCH_NONE,
30029 FPU_ARCH_FPA),
30030 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
30031 ARM_ARCH_NONE,
30032 FPU_ARCH_FPA),
30033 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
30034 ARM_ARCH_NONE,
30035 FPU_ARCH_FPA),
30036 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
30037 ARM_ARCH_NONE,
30038 FPU_ARCH_FPA),
30039 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
30040 ARM_ARCH_NONE,
30041 FPU_ARCH_FPA),
30042 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
30043 ARM_ARCH_NONE,
30044 FPU_ARCH_FPA),
30045 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
30046 ARM_ARCH_NONE,
30047 FPU_ARCH_FPA),
30048 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
30049 ARM_ARCH_NONE,
30050 FPU_ARCH_FPA),
30051 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
30052 ARM_ARCH_NONE,
30053 FPU_ARCH_FPA),
30054 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
30055 ARM_ARCH_NONE,
30056 FPU_ARCH_FPA),
30057 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
30058 ARM_ARCH_NONE,
30059 FPU_ARCH_FPA),
30060 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
30061 ARM_ARCH_NONE,
30062 FPU_ARCH_FPA),
30063 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
30064 ARM_ARCH_NONE,
30065 FPU_ARCH_FPA),
30066 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
30067 ARM_ARCH_NONE,
30068 FPU_ARCH_FPA),
30069 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
30070 ARM_ARCH_NONE,
30071 FPU_ARCH_FPA),
30072 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
30073 ARM_ARCH_NONE,
30074 FPU_ARCH_FPA),
30075 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
30076 ARM_ARCH_NONE,
30077 FPU_ARCH_FPA),
30078 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
30079 ARM_ARCH_NONE,
30080 FPU_ARCH_FPA),
30081 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
30082 ARM_ARCH_NONE,
30083 FPU_ARCH_FPA),
30084 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
30085 ARM_ARCH_NONE,
30086 FPU_ARCH_FPA),
30087 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
30088 ARM_ARCH_NONE,
30089 FPU_ARCH_FPA),
30090 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
30091 ARM_ARCH_NONE,
30092 FPU_ARCH_FPA),
30093 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
30094 ARM_ARCH_NONE,
30095 FPU_ARCH_FPA),
30096 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
30097 ARM_ARCH_NONE,
30098 FPU_ARCH_FPA),
30099 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
30100 ARM_ARCH_NONE,
30101 FPU_ARCH_FPA),
30102 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
30103 ARM_ARCH_NONE,
30104 FPU_ARCH_FPA),
30105 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
30106 ARM_ARCH_NONE,
30107 FPU_ARCH_FPA),
30108 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
30109 ARM_ARCH_NONE,
30110 FPU_ARCH_FPA),
30111 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
30112 ARM_ARCH_NONE,
30113 FPU_ARCH_FPA),
30114 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
30115 ARM_ARCH_NONE,
30116 FPU_ARCH_FPA),
30117 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
30118 ARM_ARCH_NONE,
30119 FPU_ARCH_FPA),
30120
c19d1205
ZW
30121 /* For V5 or later processors we default to using VFP; but the user
30122 should really set the FPU type explicitly. */
996b5569
TP
30123 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
30124 ARM_ARCH_NONE,
30125 FPU_ARCH_VFP_V2),
30126 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
30127 ARM_ARCH_NONE,
30128 FPU_ARCH_VFP_V2),
30129 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
30130 ARM_ARCH_NONE,
30131 FPU_ARCH_VFP_V2),
30132 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
30133 ARM_ARCH_NONE,
30134 FPU_ARCH_VFP_V2),
30135 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
30136 ARM_ARCH_NONE,
30137 FPU_ARCH_VFP_V2),
30138 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
30139 ARM_ARCH_NONE,
30140 FPU_ARCH_VFP_V2),
30141 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
30142 ARM_ARCH_NONE,
30143 FPU_ARCH_VFP_V2),
30144 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
30145 ARM_ARCH_NONE,
30146 FPU_ARCH_VFP_V2),
30147 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
30148 ARM_ARCH_NONE,
30149 FPU_ARCH_VFP_V2),
30150 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
30151 ARM_ARCH_NONE,
30152 FPU_ARCH_VFP_V2),
30153 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
30154 ARM_ARCH_NONE,
30155 FPU_ARCH_VFP_V2),
30156 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
30157 ARM_ARCH_NONE,
30158 FPU_ARCH_VFP_V2),
30159 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
30160 ARM_ARCH_NONE,
30161 FPU_ARCH_VFP_V1),
30162 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
30163 ARM_ARCH_NONE,
30164 FPU_ARCH_VFP_V1),
30165 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
30166 ARM_ARCH_NONE,
30167 FPU_ARCH_VFP_V2),
30168 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
30169 ARM_ARCH_NONE,
30170 FPU_ARCH_VFP_V2),
30171 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
30172 ARM_ARCH_NONE,
30173 FPU_ARCH_VFP_V1),
30174 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
30175 ARM_ARCH_NONE,
30176 FPU_ARCH_VFP_V2),
30177 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
30178 ARM_ARCH_NONE,
30179 FPU_ARCH_VFP_V2),
30180 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
30181 ARM_ARCH_NONE,
30182 FPU_ARCH_VFP_V2),
30183 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
30184 ARM_ARCH_NONE,
30185 FPU_ARCH_VFP_V2),
30186 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
30187 ARM_ARCH_NONE,
30188 FPU_ARCH_VFP_V2),
30189 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
30190 ARM_ARCH_NONE,
30191 FPU_ARCH_VFP_V2),
30192 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
30193 ARM_ARCH_NONE,
30194 FPU_ARCH_VFP_V2),
30195 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
30196 ARM_ARCH_NONE,
30197 FPU_ARCH_VFP_V2),
30198 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
30199 ARM_ARCH_NONE,
30200 FPU_ARCH_VFP_V2),
30201 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
30202 ARM_ARCH_NONE,
30203 FPU_NONE),
30204 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
30205 ARM_ARCH_NONE,
30206 FPU_NONE),
30207 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
30208 ARM_ARCH_NONE,
30209 FPU_ARCH_VFP_V2),
30210 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
30211 ARM_ARCH_NONE,
30212 FPU_ARCH_VFP_V2),
30213 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
30214 ARM_ARCH_NONE,
30215 FPU_ARCH_VFP_V2),
30216 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
30217 ARM_ARCH_NONE,
30218 FPU_NONE),
30219 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
30220 ARM_ARCH_NONE,
30221 FPU_NONE),
30222 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
30223 ARM_ARCH_NONE,
30224 FPU_ARCH_VFP_V2),
30225 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
30226 ARM_ARCH_NONE,
30227 FPU_NONE),
30228 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
30229 ARM_ARCH_NONE,
30230 FPU_ARCH_VFP_V2),
30231 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
30232 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30233 FPU_NONE),
30234 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
30235 ARM_ARCH_NONE,
30236 FPU_ARCH_NEON_VFP_V4),
30237 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
30238 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30239 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
30240 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
30241 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30242 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
30243 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
30244 ARM_ARCH_NONE,
30245 FPU_ARCH_NEON_VFP_V4),
30246 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
30247 ARM_ARCH_NONE,
30248 FPU_ARCH_NEON_VFP_V4),
30249 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
30250 ARM_ARCH_NONE,
30251 FPU_ARCH_NEON_VFP_V4),
30252 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
30253 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30254 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30255 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
30256 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30257 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30258 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
30259 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30260 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
30261 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
30262 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 30263 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
30264 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
30265 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30266 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30267 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
30268 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30269 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30270 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
30271 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30272 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
30273 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
30274 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 30275 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
7ebd1359 30276 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
30277 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30278 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
ef8df4ca
KT
30279 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
30280 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30281 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
30282 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
30283 ARM_ARCH_NONE,
30284 FPU_NONE),
30285 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
30286 ARM_ARCH_NONE,
30287 FPU_ARCH_VFP_V3D16),
30288 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
30289 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30290 FPU_NONE),
30291 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
30292 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30293 FPU_ARCH_VFP_V3D16),
30294 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
30295 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30296 FPU_ARCH_VFP_V3D16),
0cda1e19
TP
30297 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
30298 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30299 FPU_ARCH_NEON_VFP_ARMV8),
996b5569
TP
30300 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
30301 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30302 FPU_NONE),
30303 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
30304 ARM_ARCH_NONE,
30305 FPU_NONE),
30306 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
30307 ARM_ARCH_NONE,
30308 FPU_NONE),
30309 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
30310 ARM_ARCH_NONE,
30311 FPU_NONE),
30312 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
30313 ARM_ARCH_NONE,
30314 FPU_NONE),
30315 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
30316 ARM_ARCH_NONE,
30317 FPU_NONE),
30318 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
30319 ARM_ARCH_NONE,
30320 FPU_NONE),
30321 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
30322 ARM_ARCH_NONE,
30323 FPU_NONE),
30324 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
30325 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30326 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
83f43c83
KT
30327 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
30328 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30329 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
c19d1205 30330 /* ??? XSCALE is really an architecture. */
996b5569
TP
30331 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
30332 ARM_ARCH_NONE,
30333 FPU_ARCH_VFP_V2),
30334
c19d1205 30335 /* ??? iwmmxt is not a processor. */
996b5569
TP
30336 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
30337 ARM_ARCH_NONE,
30338 FPU_ARCH_VFP_V2),
30339 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
30340 ARM_ARCH_NONE,
30341 FPU_ARCH_VFP_V2),
30342 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
30343 ARM_ARCH_NONE,
30344 FPU_ARCH_VFP_V2),
30345
0198d5e6 30346 /* Maverick. */
996b5569
TP
30347 ARM_CPU_OPT ("ep9312", "ARM920T",
30348 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
30349 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
30350
da4339ed 30351 /* Marvell processors. */
996b5569
TP
30352 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
30353 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30354 FPU_ARCH_VFP_V3D16),
30355 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
30356 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30357 FPU_ARCH_NEON_VFP_V4),
da4339ed 30358
996b5569
TP
30359 /* APM X-Gene family. */
30360 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
30361 ARM_ARCH_NONE,
30362 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30363 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
30364 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30365 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30366
30367 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 30368};
f3bad469 30369#undef ARM_CPU_OPT
7ed4c4c5 30370
34ef62f4
AV
30371struct arm_ext_table
30372{
30373 const char * name;
30374 size_t name_len;
30375 const arm_feature_set merge;
30376 const arm_feature_set clear;
30377};
30378
c19d1205 30379struct arm_arch_option_table
7ed4c4c5 30380{
34ef62f4
AV
30381 const char * name;
30382 size_t name_len;
30383 const arm_feature_set value;
30384 const arm_feature_set default_fpu;
30385 const struct arm_ext_table * ext_table;
30386};
30387
30388/* Used to add support for +E and +noE extension. */
30389#define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
30390/* Used to add support for a +E extension. */
30391#define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
30392/* Used to add support for a +noE extension. */
30393#define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
30394
30395#define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
30396 ~0 & ~FPU_ENDIAN_PURE)
30397
30398static const struct arm_ext_table armv5te_ext_table[] =
30399{
30400 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
30401 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30402};
30403
30404static const struct arm_ext_table armv7_ext_table[] =
30405{
30406 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30407 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30408};
30409
30410static const struct arm_ext_table armv7ve_ext_table[] =
30411{
30412 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
30413 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
30414 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30415 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30416 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30417 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
30418 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30419
30420 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
30421 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30422
30423 /* Aliases for +simd. */
30424 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30425
30426 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30427 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30428 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30429
30430 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30431};
30432
30433static const struct arm_ext_table armv7a_ext_table[] =
30434{
30435 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30436 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30437 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30438 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30439 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30440 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
30441 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30442
30443 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
30444 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30445
30446 /* Aliases for +simd. */
30447 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30448 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30449
30450 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30451 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30452
30453 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
30454 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
30455 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30456};
30457
30458static const struct arm_ext_table armv7r_ext_table[] =
30459{
30460 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
30461 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
30462 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30463 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30464 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
30465 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30466 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30467 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
30468 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30469};
30470
30471static const struct arm_ext_table armv7em_ext_table[] =
30472{
30473 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
30474 /* Alias for +fp, used to be known as fpv4-sp-d16. */
30475 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
30476 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
30477 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30478 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
30479 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30480};
30481
30482static const struct arm_ext_table armv8a_ext_table[] =
30483{
30484 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30485 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30486 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30487 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30488
30489 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30490 should use the +simd option to turn on FP. */
30491 ARM_REMOVE ("fp", ALL_FP),
30492 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30493 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30494 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30495};
30496
30497
30498static const struct arm_ext_table armv81a_ext_table[] =
30499{
30500 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30501 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30502 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30503
30504 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30505 should use the +simd option to turn on FP. */
30506 ARM_REMOVE ("fp", ALL_FP),
30507 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30508 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30509 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30510};
30511
30512static const struct arm_ext_table armv82a_ext_table[] =
30513{
30514 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30515 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
30516 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
30517 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30518 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30519 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30520
30521 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30522 should use the +simd option to turn on FP. */
30523 ARM_REMOVE ("fp", ALL_FP),
30524 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30525 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30526 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30527};
30528
30529static const struct arm_ext_table armv84a_ext_table[] =
30530{
30531 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30532 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30533 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30534 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30535
30536 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30537 should use the +simd option to turn on FP. */
30538 ARM_REMOVE ("fp", ALL_FP),
30539 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30540 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30541 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30542};
30543
30544static const struct arm_ext_table armv85a_ext_table[] =
30545{
30546 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30547 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30548 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30549 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30550
30551 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30552 should use the +simd option to turn on FP. */
30553 ARM_REMOVE ("fp", ALL_FP),
30554 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30555};
30556
30557static const struct arm_ext_table armv8m_main_ext_table[] =
30558{
30559 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30560 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30561 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
30562 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30563 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30564};
30565
e0991585
AV
30566static const struct arm_ext_table armv8_1m_main_ext_table[] =
30567{
30568 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30569 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30570 ARM_EXT ("fp",
30571 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30572 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
30573 ALL_FP),
30574 ARM_ADD ("fp.dp",
30575 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30576 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
a7ad558c
AV
30577 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
30578 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
30579 ARM_ADD ("mve.fp",
30580 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30581 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
30582 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
e0991585
AV
30583 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30584};
30585
34ef62f4
AV
30586static const struct arm_ext_table armv8r_ext_table[] =
30587{
30588 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30589 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30590 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30591 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30592 ARM_REMOVE ("fp", ALL_FP),
30593 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
30594 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 30595};
7ed4c4c5 30596
c19d1205
ZW
30597/* This list should, at a minimum, contain all the architecture names
30598 recognized by GCC. */
34ef62f4
AV
30599#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
30600#define ARM_ARCH_OPT2(N, V, DF, ext) \
30601 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
0198d5e6 30602
e74cfd16 30603static const struct arm_arch_option_table arm_archs[] =
c19d1205 30604{
497d849d
TP
30605 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
30606 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
30607 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
30608 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
30609 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
30610 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
30611 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
30612 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
30613 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
30614 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
30615 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
30616 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
30617 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
30618 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
34ef62f4
AV
30619 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
30620 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
30621 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
30622 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30623 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30624 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
30625 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
f33026a9
MW
30626 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
30627 kept to preserve existing behaviour. */
34ef62f4
AV
30628 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30629 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30630 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
30631 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
30632 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
f33026a9
MW
30633 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
30634 kept to preserve existing behaviour. */
34ef62f4
AV
30635 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30636 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
497d849d
TP
30637 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
30638 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
34ef62f4 30639 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
c450d570
PB
30640 /* The official spelling of the ARMv7 profile variants is the dashed form.
30641 Accept the non-dashed form for compatibility with old toolchains. */
34ef62f4
AV
30642 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30643 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
30644 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 30645 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4
AV
30646 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30647 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 30648 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4 30649 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
497d849d 30650 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
34ef62f4
AV
30651 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
30652 armv8m_main),
e0991585
AV
30653 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
30654 armv8_1m_main),
34ef62f4
AV
30655 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
30656 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
30657 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
30658 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
30659 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
30660 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
30661 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
497d849d
TP
30662 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
30663 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
30664 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
34ef62f4 30665 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 30666};
f3bad469 30667#undef ARM_ARCH_OPT
7ed4c4c5 30668
69133863 30669/* ISA extensions in the co-processor and main instruction set space. */
0198d5e6 30670
69133863 30671struct arm_option_extension_value_table
c19d1205 30672{
0198d5e6
TC
30673 const char * name;
30674 size_t name_len;
30675 const arm_feature_set merge_value;
30676 const arm_feature_set clear_value;
d942732e
TP
30677 /* List of architectures for which an extension is available. ARM_ARCH_NONE
30678 indicates that an extension is available for all architectures while
30679 ARM_ANY marks an empty entry. */
0198d5e6 30680 const arm_feature_set allowed_archs[2];
c19d1205 30681};
7ed4c4c5 30682
0198d5e6
TC
30683/* The following table must be in alphabetical order with a NULL last entry. */
30684
d942732e
TP
30685#define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
30686#define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
0198d5e6 30687
34ef62f4
AV
30688/* DEPRECATED: Refrain from using this table to add any new extensions, instead
30689 use the context sensitive approach using arm_ext_table's. */
69133863 30690static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 30691{
823d2571
TG
30692 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30693 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
bca38921 30694 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
823d2571
TG
30695 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
30696 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
c604a79a
JW
30697 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
30698 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
30699 ARM_ARCH_V8_2A),
15afaa63
TP
30700 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30701 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30702 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
823d2571
TG
30703 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
30704 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
b8ec4e87
JW
30705 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30706 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30707 ARM_ARCH_V8_2A),
01f48020
TC
30708 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30709 | ARM_EXT2_FP16_FML),
30710 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30711 | ARM_EXT2_FP16_FML),
30712 ARM_ARCH_V8_2A),
d942732e 30713 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
823d2571 30714 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
d942732e
TP
30715 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30716 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
3d030cdb
TP
30717 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
30718 Thumb divide instruction. Due to this having the same name as the
30719 previous entry, this will be ignored when doing command-line parsing and
30720 only considered by build attribute selection code. */
30721 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30722 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30723 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
823d2571 30724 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
d942732e 30725 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
823d2571 30726 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
d942732e 30727 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
823d2571 30728 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
d942732e
TP
30729 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
30730 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
823d2571 30731 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
d942732e
TP
30732 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30733 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
823d2571
TG
30734 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30735 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30736 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
ddfded2f
MW
30737 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
30738 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
ced40572 30739 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
dad0c3bf
SD
30740 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30741 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30742 ARM_ARCH_V8A),
4d1464f2
MW
30743 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
30744 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
ced40572 30745 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
643afb90
MW
30746 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
30747 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
ced40572 30748 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
7fadb25d
SD
30749 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30750 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30751 ARM_ARCH_V8A),
d942732e 30752 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
823d2571 30753 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
d942732e
TP
30754 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
30755 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
643afb90
MW
30756 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
30757 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
30758 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
823d2571
TG
30759 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
30760 | ARM_EXT_DIV),
30761 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
30762 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30763 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
d942732e
TP
30764 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
30765 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
69133863 30766};
f3bad469 30767#undef ARM_EXT_OPT
69133863
MGD
30768
30769/* ISA floating-point and Advanced SIMD extensions. */
30770struct arm_option_fpu_value_table
30771{
0198d5e6
TC
30772 const char * name;
30773 const arm_feature_set value;
c19d1205 30774};
7ed4c4c5 30775
c19d1205
ZW
30776/* This list should, at a minimum, contain all the fpu names
30777 recognized by GCC. */
69133863 30778static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
30779{
30780 {"softfpa", FPU_NONE},
30781 {"fpe", FPU_ARCH_FPE},
30782 {"fpe2", FPU_ARCH_FPE},
30783 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
30784 {"fpa", FPU_ARCH_FPA},
30785 {"fpa10", FPU_ARCH_FPA},
30786 {"fpa11", FPU_ARCH_FPA},
30787 {"arm7500fe", FPU_ARCH_FPA},
30788 {"softvfp", FPU_ARCH_VFP},
30789 {"softvfp+vfp", FPU_ARCH_VFP_V2},
30790 {"vfp", FPU_ARCH_VFP_V2},
30791 {"vfp9", FPU_ARCH_VFP_V2},
d5e0ba9c 30792 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
c19d1205
ZW
30793 {"vfp10", FPU_ARCH_VFP_V2},
30794 {"vfp10-r0", FPU_ARCH_VFP_V1},
30795 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
30796 {"vfpv2", FPU_ARCH_VFP_V2},
30797 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 30798 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 30799 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
30800 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
30801 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
30802 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
30803 {"arm1020t", FPU_ARCH_VFP_V1},
30804 {"arm1020e", FPU_ARCH_VFP_V2},
d5e0ba9c 30805 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
c19d1205
ZW
30806 {"arm1136jf-s", FPU_ARCH_VFP_V2},
30807 {"maverick", FPU_ARCH_MAVERICK},
d5e0ba9c 30808 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
d3375ddd 30809 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 30810 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
30811 {"vfpv4", FPU_ARCH_VFP_V4},
30812 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 30813 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
a715796b
TG
30814 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
30815 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
62f3b8c8 30816 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
30817 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
30818 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
30819 {"crypto-neon-fp-armv8",
30820 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
d6b4b13e 30821 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
081e4c7d
MW
30822 {"crypto-neon-fp-armv8.1",
30823 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
e74cfd16
PB
30824 {NULL, ARM_ARCH_NONE}
30825};
30826
30827struct arm_option_value_table
30828{
e0471c16 30829 const char *name;
e74cfd16 30830 long value;
c19d1205 30831};
7ed4c4c5 30832
e74cfd16 30833static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
30834{
30835 {"hard", ARM_FLOAT_ABI_HARD},
30836 {"softfp", ARM_FLOAT_ABI_SOFTFP},
30837 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 30838 {NULL, 0}
c19d1205 30839};
7ed4c4c5 30840
c19d1205 30841#ifdef OBJ_ELF
3a4a14e9 30842/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 30843static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
30844{
30845 {"gnu", EF_ARM_EABI_UNKNOWN},
30846 {"4", EF_ARM_EABI_VER4},
3a4a14e9 30847 {"5", EF_ARM_EABI_VER5},
e74cfd16 30848 {NULL, 0}
c19d1205
ZW
30849};
30850#endif
7ed4c4c5 30851
c19d1205
ZW
30852struct arm_long_option_table
30853{
0198d5e6 30854 const char * option; /* Substring to match. */
e0471c16 30855 const char * help; /* Help information. */
17b9d67d 30856 int (* func) (const char * subopt); /* Function to decode sub-option. */
e0471c16 30857 const char * deprecated; /* If non-null, print this message. */
c19d1205 30858};
7ed4c4c5 30859
c921be7d 30860static bfd_boolean
c168ce07 30861arm_parse_extension (const char *str, const arm_feature_set *opt_set,
34ef62f4
AV
30862 arm_feature_set *ext_set,
30863 const struct arm_ext_table *ext_table)
7ed4c4c5 30864{
69133863 30865 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
30866 extensions being added before being removed. We achieve this by having
30867 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 30868 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 30869 or removing it (0) and only allowing it to change in the order
69133863
MGD
30870 -1 -> 1 -> 0. */
30871 const struct arm_option_extension_value_table * opt = NULL;
d942732e 30872 const arm_feature_set arm_any = ARM_ANY;
69133863
MGD
30873 int adding_value = -1;
30874
c19d1205 30875 while (str != NULL && *str != 0)
7ed4c4c5 30876 {
82b8a785 30877 const char *ext;
f3bad469 30878 size_t len;
7ed4c4c5 30879
c19d1205
ZW
30880 if (*str != '+')
30881 {
30882 as_bad (_("invalid architectural extension"));
c921be7d 30883 return FALSE;
c19d1205 30884 }
7ed4c4c5 30885
c19d1205
ZW
30886 str++;
30887 ext = strchr (str, '+');
7ed4c4c5 30888
c19d1205 30889 if (ext != NULL)
f3bad469 30890 len = ext - str;
c19d1205 30891 else
f3bad469 30892 len = strlen (str);
7ed4c4c5 30893
f3bad469 30894 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
30895 {
30896 if (adding_value != 0)
30897 {
30898 adding_value = 0;
30899 opt = arm_extensions;
30900 }
30901
f3bad469 30902 len -= 2;
69133863
MGD
30903 str += 2;
30904 }
f3bad469 30905 else if (len > 0)
69133863
MGD
30906 {
30907 if (adding_value == -1)
30908 {
30909 adding_value = 1;
30910 opt = arm_extensions;
30911 }
30912 else if (adding_value != 1)
30913 {
30914 as_bad (_("must specify extensions to add before specifying "
30915 "those to remove"));
30916 return FALSE;
30917 }
30918 }
30919
f3bad469 30920 if (len == 0)
c19d1205
ZW
30921 {
30922 as_bad (_("missing architectural extension"));
c921be7d 30923 return FALSE;
c19d1205 30924 }
7ed4c4c5 30925
69133863
MGD
30926 gas_assert (adding_value != -1);
30927 gas_assert (opt != NULL);
30928
34ef62f4
AV
30929 if (ext_table != NULL)
30930 {
30931 const struct arm_ext_table * ext_opt = ext_table;
30932 bfd_boolean found = FALSE;
30933 for (; ext_opt->name != NULL; ext_opt++)
30934 if (ext_opt->name_len == len
30935 && strncmp (ext_opt->name, str, len) == 0)
30936 {
30937 if (adding_value)
30938 {
30939 if (ARM_FEATURE_ZERO (ext_opt->merge))
30940 /* TODO: Option not supported. When we remove the
30941 legacy table this case should error out. */
30942 continue;
30943
30944 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
30945 }
30946 else
30947 {
30948 if (ARM_FEATURE_ZERO (ext_opt->clear))
30949 /* TODO: Option not supported. When we remove the
30950 legacy table this case should error out. */
30951 continue;
30952 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
30953 }
30954 found = TRUE;
30955 break;
30956 }
30957 if (found)
30958 {
30959 str = ext;
30960 continue;
30961 }
30962 }
30963
69133863
MGD
30964 /* Scan over the options table trying to find an exact match. */
30965 for (; opt->name != NULL; opt++)
f3bad469 30966 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30967 {
d942732e
TP
30968 int i, nb_allowed_archs =
30969 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
69133863 30970 /* Check we can apply the extension to this architecture. */
d942732e
TP
30971 for (i = 0; i < nb_allowed_archs; i++)
30972 {
30973 /* Empty entry. */
30974 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
30975 continue;
c168ce07 30976 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
d942732e
TP
30977 break;
30978 }
30979 if (i == nb_allowed_archs)
69133863
MGD
30980 {
30981 as_bad (_("extension does not apply to the base architecture"));
30982 return FALSE;
30983 }
30984
30985 /* Add or remove the extension. */
30986 if (adding_value)
4d354d8b 30987 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
69133863 30988 else
4d354d8b 30989 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
69133863 30990
3d030cdb
TP
30991 /* Allowing Thumb division instructions for ARMv7 in autodetection
30992 rely on this break so that duplicate extensions (extensions
30993 with the same name as a previous extension in the list) are not
30994 considered for command-line parsing. */
c19d1205
ZW
30995 break;
30996 }
7ed4c4c5 30997
c19d1205
ZW
30998 if (opt->name == NULL)
30999 {
69133863
MGD
31000 /* Did we fail to find an extension because it wasn't specified in
31001 alphabetical order, or because it does not exist? */
31002
31003 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 31004 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
31005 break;
31006
31007 if (opt->name == NULL)
31008 as_bad (_("unknown architectural extension `%s'"), str);
31009 else
31010 as_bad (_("architectural extensions must be specified in "
31011 "alphabetical order"));
31012
c921be7d 31013 return FALSE;
c19d1205 31014 }
69133863
MGD
31015 else
31016 {
31017 /* We should skip the extension we've just matched the next time
31018 round. */
31019 opt++;
31020 }
7ed4c4c5 31021
c19d1205
ZW
31022 str = ext;
31023 };
7ed4c4c5 31024
c921be7d 31025 return TRUE;
c19d1205 31026}
7ed4c4c5 31027
c921be7d 31028static bfd_boolean
17b9d67d 31029arm_parse_cpu (const char *str)
7ed4c4c5 31030{
f3bad469 31031 const struct arm_cpu_option_table *opt;
82b8a785 31032 const char *ext = strchr (str, '+');
f3bad469 31033 size_t len;
7ed4c4c5 31034
c19d1205 31035 if (ext != NULL)
f3bad469 31036 len = ext - str;
7ed4c4c5 31037 else
f3bad469 31038 len = strlen (str);
7ed4c4c5 31039
f3bad469 31040 if (len == 0)
7ed4c4c5 31041 {
c19d1205 31042 as_bad (_("missing cpu name `%s'"), str);
c921be7d 31043 return FALSE;
7ed4c4c5
NC
31044 }
31045
c19d1205 31046 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 31047 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 31048 {
c168ce07 31049 mcpu_cpu_opt = &opt->value;
4d354d8b
TP
31050 if (mcpu_ext_opt == NULL)
31051 mcpu_ext_opt = XNEW (arm_feature_set);
31052 *mcpu_ext_opt = opt->ext;
e74cfd16 31053 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 31054 if (opt->canonical_name)
ef8e6722
JW
31055 {
31056 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
31057 strcpy (selected_cpu_name, opt->canonical_name);
31058 }
ee065d83
PB
31059 else
31060 {
f3bad469 31061 size_t i;
c921be7d 31062
ef8e6722
JW
31063 if (len >= sizeof selected_cpu_name)
31064 len = (sizeof selected_cpu_name) - 1;
31065
f3bad469 31066 for (i = 0; i < len; i++)
ee065d83
PB
31067 selected_cpu_name[i] = TOUPPER (opt->name[i]);
31068 selected_cpu_name[i] = 0;
31069 }
7ed4c4c5 31070
c19d1205 31071 if (ext != NULL)
34ef62f4 31072 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
7ed4c4c5 31073
c921be7d 31074 return TRUE;
c19d1205 31075 }
7ed4c4c5 31076
c19d1205 31077 as_bad (_("unknown cpu `%s'"), str);
c921be7d 31078 return FALSE;
7ed4c4c5
NC
31079}
31080
c921be7d 31081static bfd_boolean
17b9d67d 31082arm_parse_arch (const char *str)
7ed4c4c5 31083{
e74cfd16 31084 const struct arm_arch_option_table *opt;
82b8a785 31085 const char *ext = strchr (str, '+');
f3bad469 31086 size_t len;
7ed4c4c5 31087
c19d1205 31088 if (ext != NULL)
f3bad469 31089 len = ext - str;
7ed4c4c5 31090 else
f3bad469 31091 len = strlen (str);
7ed4c4c5 31092
f3bad469 31093 if (len == 0)
7ed4c4c5 31094 {
c19d1205 31095 as_bad (_("missing architecture name `%s'"), str);
c921be7d 31096 return FALSE;
7ed4c4c5
NC
31097 }
31098
c19d1205 31099 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 31100 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 31101 {
e74cfd16 31102 march_cpu_opt = &opt->value;
4d354d8b
TP
31103 if (march_ext_opt == NULL)
31104 march_ext_opt = XNEW (arm_feature_set);
31105 *march_ext_opt = arm_arch_none;
e74cfd16 31106 march_fpu_opt = &opt->default_fpu;
5f4273c7 31107 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 31108
c19d1205 31109 if (ext != NULL)
34ef62f4
AV
31110 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
31111 opt->ext_table);
7ed4c4c5 31112
c921be7d 31113 return TRUE;
c19d1205
ZW
31114 }
31115
31116 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 31117 return FALSE;
7ed4c4c5 31118}
eb043451 31119
c921be7d 31120static bfd_boolean
17b9d67d 31121arm_parse_fpu (const char * str)
c19d1205 31122{
69133863 31123 const struct arm_option_fpu_value_table * opt;
b99bd4ef 31124
c19d1205
ZW
31125 for (opt = arm_fpus; opt->name != NULL; opt++)
31126 if (streq (opt->name, str))
31127 {
e74cfd16 31128 mfpu_opt = &opt->value;
c921be7d 31129 return TRUE;
c19d1205 31130 }
b99bd4ef 31131
c19d1205 31132 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 31133 return FALSE;
c19d1205
ZW
31134}
31135
c921be7d 31136static bfd_boolean
17b9d67d 31137arm_parse_float_abi (const char * str)
b99bd4ef 31138{
e74cfd16 31139 const struct arm_option_value_table * opt;
b99bd4ef 31140
c19d1205
ZW
31141 for (opt = arm_float_abis; opt->name != NULL; opt++)
31142 if (streq (opt->name, str))
31143 {
31144 mfloat_abi_opt = opt->value;
c921be7d 31145 return TRUE;
c19d1205 31146 }
cc8a6dd0 31147
c19d1205 31148 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 31149 return FALSE;
c19d1205 31150}
b99bd4ef 31151
c19d1205 31152#ifdef OBJ_ELF
c921be7d 31153static bfd_boolean
17b9d67d 31154arm_parse_eabi (const char * str)
c19d1205 31155{
e74cfd16 31156 const struct arm_option_value_table *opt;
cc8a6dd0 31157
c19d1205
ZW
31158 for (opt = arm_eabis; opt->name != NULL; opt++)
31159 if (streq (opt->name, str))
31160 {
31161 meabi_flags = opt->value;
c921be7d 31162 return TRUE;
c19d1205
ZW
31163 }
31164 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 31165 return FALSE;
c19d1205
ZW
31166}
31167#endif
cc8a6dd0 31168
c921be7d 31169static bfd_boolean
17b9d67d 31170arm_parse_it_mode (const char * str)
e07e6e58 31171{
c921be7d 31172 bfd_boolean ret = TRUE;
e07e6e58
NC
31173
31174 if (streq ("arm", str))
31175 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
31176 else if (streq ("thumb", str))
31177 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
31178 else if (streq ("always", str))
31179 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
31180 else if (streq ("never", str))
31181 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
31182 else
31183 {
31184 as_bad (_("unknown implicit IT mode `%s', should be "\
477330fc 31185 "arm, thumb, always, or never."), str);
c921be7d 31186 ret = FALSE;
e07e6e58
NC
31187 }
31188
31189 return ret;
31190}
31191
2e6976a8 31192static bfd_boolean
17b9d67d 31193arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
2e6976a8
DG
31194{
31195 codecomposer_syntax = TRUE;
31196 arm_comment_chars[0] = ';';
31197 arm_line_separator_chars[0] = 0;
31198 return TRUE;
31199}
31200
c19d1205
ZW
31201struct arm_long_option_table arm_long_opts[] =
31202{
31203 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
31204 arm_parse_cpu, NULL},
31205 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
31206 arm_parse_arch, NULL},
31207 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
31208 arm_parse_fpu, NULL},
31209 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
31210 arm_parse_float_abi, NULL},
31211#ifdef OBJ_ELF
7fac0536 31212 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
31213 arm_parse_eabi, NULL},
31214#endif
e07e6e58
NC
31215 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
31216 arm_parse_it_mode, NULL},
2e6976a8
DG
31217 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
31218 arm_ccs_mode, NULL},
c19d1205
ZW
31219 {NULL, NULL, 0, NULL}
31220};
cc8a6dd0 31221
c19d1205 31222int
17b9d67d 31223md_parse_option (int c, const char * arg)
c19d1205
ZW
31224{
31225 struct arm_option_table *opt;
e74cfd16 31226 const struct arm_legacy_option_table *fopt;
c19d1205 31227 struct arm_long_option_table *lopt;
b99bd4ef 31228
c19d1205 31229 switch (c)
b99bd4ef 31230 {
c19d1205
ZW
31231#ifdef OPTION_EB
31232 case OPTION_EB:
31233 target_big_endian = 1;
31234 break;
31235#endif
cc8a6dd0 31236
c19d1205
ZW
31237#ifdef OPTION_EL
31238 case OPTION_EL:
31239 target_big_endian = 0;
31240 break;
31241#endif
b99bd4ef 31242
845b51d6
PB
31243 case OPTION_FIX_V4BX:
31244 fix_v4bx = TRUE;
31245 break;
31246
18a20338
CL
31247#ifdef OBJ_ELF
31248 case OPTION_FDPIC:
31249 arm_fdpic = TRUE;
31250 break;
31251#endif /* OBJ_ELF */
31252
c19d1205
ZW
31253 case 'a':
31254 /* Listing option. Just ignore these, we don't support additional
31255 ones. */
31256 return 0;
b99bd4ef 31257
c19d1205
ZW
31258 default:
31259 for (opt = arm_opts; opt->option != NULL; opt++)
31260 {
31261 if (c == opt->option[0]
31262 && ((arg == NULL && opt->option[1] == 0)
31263 || streq (arg, opt->option + 1)))
31264 {
c19d1205 31265 /* If the option is deprecated, tell the user. */
278df34e 31266 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
31267 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
31268 arg ? arg : "", _(opt->deprecated));
b99bd4ef 31269
c19d1205
ZW
31270 if (opt->var != NULL)
31271 *opt->var = opt->value;
cc8a6dd0 31272
c19d1205
ZW
31273 return 1;
31274 }
31275 }
b99bd4ef 31276
e74cfd16
PB
31277 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
31278 {
31279 if (c == fopt->option[0]
31280 && ((arg == NULL && fopt->option[1] == 0)
31281 || streq (arg, fopt->option + 1)))
31282 {
e74cfd16 31283 /* If the option is deprecated, tell the user. */
278df34e 31284 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
31285 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
31286 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
31287
31288 if (fopt->var != NULL)
31289 *fopt->var = &fopt->value;
31290
31291 return 1;
31292 }
31293 }
31294
c19d1205
ZW
31295 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
31296 {
31297 /* These options are expected to have an argument. */
31298 if (c == lopt->option[0]
31299 && arg != NULL
31300 && strncmp (arg, lopt->option + 1,
31301 strlen (lopt->option + 1)) == 0)
31302 {
c19d1205 31303 /* If the option is deprecated, tell the user. */
278df34e 31304 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
31305 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
31306 _(lopt->deprecated));
b99bd4ef 31307
c19d1205
ZW
31308 /* Call the sup-option parser. */
31309 return lopt->func (arg + strlen (lopt->option) - 1);
31310 }
31311 }
a737bd4d 31312
c19d1205
ZW
31313 return 0;
31314 }
a394c00f 31315
c19d1205
ZW
31316 return 1;
31317}
a394c00f 31318
c19d1205
ZW
31319void
31320md_show_usage (FILE * fp)
a394c00f 31321{
c19d1205
ZW
31322 struct arm_option_table *opt;
31323 struct arm_long_option_table *lopt;
a394c00f 31324
c19d1205 31325 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 31326
c19d1205
ZW
31327 for (opt = arm_opts; opt->option != NULL; opt++)
31328 if (opt->help != NULL)
31329 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 31330
c19d1205
ZW
31331 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
31332 if (lopt->help != NULL)
31333 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 31334
c19d1205
ZW
31335#ifdef OPTION_EB
31336 fprintf (fp, _("\
31337 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
31338#endif
31339
c19d1205
ZW
31340#ifdef OPTION_EL
31341 fprintf (fp, _("\
31342 -EL assemble code for a little-endian cpu\n"));
a737bd4d 31343#endif
845b51d6
PB
31344
31345 fprintf (fp, _("\
31346 --fix-v4bx Allow BX in ARMv4 code\n"));
18a20338
CL
31347
31348#ifdef OBJ_ELF
31349 fprintf (fp, _("\
31350 --fdpic generate an FDPIC object file\n"));
31351#endif /* OBJ_ELF */
c19d1205 31352}
ee065d83 31353
ee065d83 31354#ifdef OBJ_ELF
0198d5e6 31355
62b3e311
PB
31356typedef struct
31357{
31358 int val;
31359 arm_feature_set flags;
31360} cpu_arch_ver_table;
31361
2c6b98ea
TP
31362/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
31363 chronologically for architectures, with an exception for ARMv6-M and
31364 ARMv6S-M due to legacy reasons. No new architecture should have a
31365 special case. This allows for build attribute selection results to be
31366 stable when new architectures are added. */
62b3e311
PB
31367static const cpu_arch_ver_table cpu_arch_ver[] =
31368{
031254f2
AV
31369 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
31370 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
31371 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
31372 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
31373 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
31374 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
31375 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
31376 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
31377 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
31378 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
31379 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
31380 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
31381 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
31382 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
31383 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
31384 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
31385 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
31386 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
31387 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
31388 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
31389 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
31390 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
31391 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
31392 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
2c6b98ea
TP
31393
31394 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
31395 always selected build attributes to match those of ARMv6-M
31396 (resp. ARMv6S-M). However, due to these architectures being a strict
31397 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
31398 would be selected when fully respecting chronology of architectures.
31399 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
31400 move them before ARMv7 architectures. */
031254f2
AV
31401 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
31402 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
31403
31404 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
31405 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
31406 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
31407 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
31408 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
31409 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
31410 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
31411 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
31412 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
31413 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
31414 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
31415 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
31416 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
31417 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
31418 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
31419 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
31420 {-1, ARM_ARCH_NONE}
62b3e311
PB
31421};
31422
ee3c0378 31423/* Set an attribute if it has not already been set by the user. */
0198d5e6 31424
ee3c0378
AS
31425static void
31426aeabi_set_attribute_int (int tag, int value)
31427{
31428 if (tag < 1
31429 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31430 || !attributes_set_explicitly[tag])
31431 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
31432}
31433
31434static void
31435aeabi_set_attribute_string (int tag, const char *value)
31436{
31437 if (tag < 1
31438 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31439 || !attributes_set_explicitly[tag])
31440 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
31441}
31442
2c6b98ea
TP
31443/* Return whether features in the *NEEDED feature set are available via
31444 extensions for the architecture whose feature set is *ARCH_FSET. */
0198d5e6 31445
2c6b98ea
TP
31446static bfd_boolean
31447have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
31448 const arm_feature_set *needed)
31449{
31450 int i, nb_allowed_archs;
31451 arm_feature_set ext_fset;
31452 const struct arm_option_extension_value_table *opt;
31453
31454 ext_fset = arm_arch_none;
31455 for (opt = arm_extensions; opt->name != NULL; opt++)
31456 {
31457 /* Extension does not provide any feature we need. */
31458 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
31459 continue;
31460
31461 nb_allowed_archs =
31462 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
31463 for (i = 0; i < nb_allowed_archs; i++)
31464 {
31465 /* Empty entry. */
31466 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
31467 break;
31468
31469 /* Extension is available, add it. */
31470 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
31471 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
31472 }
31473 }
31474
31475 /* Can we enable all features in *needed? */
31476 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
31477}
31478
31479/* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
31480 a given architecture feature set *ARCH_EXT_FSET including extension feature
31481 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
31482 - if true, check for an exact match of the architecture modulo extensions;
31483 - otherwise, select build attribute value of the first superset
31484 architecture released so that results remains stable when new architectures
31485 are added.
31486 For -march/-mcpu=all the build attribute value of the most featureful
31487 architecture is returned. Tag_CPU_arch_profile result is returned in
31488 PROFILE. */
0198d5e6 31489
2c6b98ea
TP
31490static int
31491get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
31492 const arm_feature_set *ext_fset,
31493 char *profile, int exact_match)
31494{
31495 arm_feature_set arch_fset;
31496 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
31497
31498 /* Select most featureful architecture with all its extensions if building
31499 for -march=all as the feature sets used to set build attributes. */
31500 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
31501 {
31502 /* Force revisiting of decision for each new architecture. */
031254f2 31503 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
2c6b98ea
TP
31504 *profile = 'A';
31505 return TAG_CPU_ARCH_V8;
31506 }
31507
31508 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
31509
31510 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
31511 {
31512 arm_feature_set known_arch_fset;
31513
31514 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
31515 if (exact_match)
31516 {
31517 /* Base architecture match user-specified architecture and
31518 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
31519 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
31520 {
31521 p_ver_ret = p_ver;
31522 goto found;
31523 }
31524 /* Base architecture match user-specified architecture only
31525 (eg. ARMv6-M in the same case as above). Record it in case we
31526 find a match with above condition. */
31527 else if (p_ver_ret == NULL
31528 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
31529 p_ver_ret = p_ver;
31530 }
31531 else
31532 {
31533
31534 /* Architecture has all features wanted. */
31535 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
31536 {
31537 arm_feature_set added_fset;
31538
31539 /* Compute features added by this architecture over the one
31540 recorded in p_ver_ret. */
31541 if (p_ver_ret != NULL)
31542 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
31543 p_ver_ret->flags);
31544 /* First architecture that match incl. with extensions, or the
31545 only difference in features over the recorded match is
31546 features that were optional and are now mandatory. */
31547 if (p_ver_ret == NULL
31548 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
31549 {
31550 p_ver_ret = p_ver;
31551 goto found;
31552 }
31553 }
31554 else if (p_ver_ret == NULL)
31555 {
31556 arm_feature_set needed_ext_fset;
31557
31558 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
31559
31560 /* Architecture has all features needed when using some
31561 extensions. Record it and continue searching in case there
31562 exist an architecture providing all needed features without
31563 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
31564 OS extension). */
31565 if (have_ext_for_needed_feat_p (&known_arch_fset,
31566 &needed_ext_fset))
31567 p_ver_ret = p_ver;
31568 }
31569 }
31570 }
31571
31572 if (p_ver_ret == NULL)
31573 return -1;
31574
31575found:
31576 /* Tag_CPU_arch_profile. */
31577 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
31578 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
31579 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
31580 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
31581 *profile = 'A';
31582 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
31583 *profile = 'R';
31584 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
31585 *profile = 'M';
31586 else
31587 *profile = '\0';
31588 return p_ver_ret->val;
31589}
31590
ee065d83 31591/* Set the public EABI object attributes. */
0198d5e6 31592
c168ce07 31593static void
ee065d83
PB
31594aeabi_set_public_attributes (void)
31595{
b90d5ba0 31596 char profile = '\0';
2c6b98ea 31597 int arch = -1;
90ec0d68 31598 int virt_sec = 0;
bca38921 31599 int fp16_optional = 0;
2c6b98ea
TP
31600 int skip_exact_match = 0;
31601 arm_feature_set flags, flags_arch, flags_ext;
ee065d83 31602
54bab281
TP
31603 /* Autodetection mode, choose the architecture based the instructions
31604 actually used. */
31605 if (no_cpu_selected ())
31606 {
31607 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
ddd7f988 31608
54bab281
TP
31609 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
31610 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
ddd7f988 31611
54bab281
TP
31612 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
31613 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
ddd7f988 31614
54bab281 31615 /* Code run during relaxation relies on selected_cpu being set. */
4d354d8b
TP
31616 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31617 flags_ext = arm_arch_none;
31618 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
31619 selected_ext = flags_ext;
54bab281
TP
31620 selected_cpu = flags;
31621 }
31622 /* Otherwise, choose the architecture based on the capabilities of the
31623 requested cpu. */
31624 else
4d354d8b
TP
31625 {
31626 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
31627 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
31628 flags_ext = selected_ext;
31629 flags = selected_cpu;
31630 }
31631 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
7f78eb34 31632
ddd7f988 31633 /* Allow the user to override the reported architecture. */
4d354d8b 31634 if (!ARM_FEATURE_ZERO (selected_object_arch))
7a1d4c38 31635 {
4d354d8b 31636 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
2c6b98ea 31637 flags_ext = arm_arch_none;
7a1d4c38 31638 }
2c6b98ea 31639 else
4d354d8b 31640 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
2c6b98ea
TP
31641
31642 /* When this function is run again after relaxation has happened there is no
31643 way to determine whether an architecture or CPU was specified by the user:
31644 - selected_cpu is set above for relaxation to work;
31645 - march_cpu_opt is not set if only -mcpu or .cpu is used;
31646 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
31647 Therefore, if not in -march=all case we first try an exact match and fall
31648 back to autodetection. */
31649 if (!skip_exact_match)
31650 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
31651 if (arch == -1)
31652 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
31653 if (arch == -1)
31654 as_bad (_("no architecture contains all the instructions used\n"));
9e3c6df6 31655
ee065d83
PB
31656 /* Tag_CPU_name. */
31657 if (selected_cpu_name[0])
31658 {
91d6fa6a 31659 char *q;
ee065d83 31660
91d6fa6a
NC
31661 q = selected_cpu_name;
31662 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
31663 {
31664 int i;
5f4273c7 31665
91d6fa6a
NC
31666 q += 4;
31667 for (i = 0; q[i]; i++)
31668 q[i] = TOUPPER (q[i]);
ee065d83 31669 }
91d6fa6a 31670 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 31671 }
62f3b8c8 31672
ee065d83 31673 /* Tag_CPU_arch. */
ee3c0378 31674 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 31675
62b3e311 31676 /* Tag_CPU_arch_profile. */
69239280
MGD
31677 if (profile != '\0')
31678 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 31679
15afaa63 31680 /* Tag_DSP_extension. */
4d354d8b 31681 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
6c290d53 31682 aeabi_set_attribute_int (Tag_DSP_extension, 1);
15afaa63 31683
2c6b98ea 31684 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
ee065d83 31685 /* Tag_ARM_ISA_use. */
ee3c0378 31686 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
2c6b98ea 31687 || ARM_FEATURE_ZERO (flags_arch))
ee3c0378 31688 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 31689
ee065d83 31690 /* Tag_THUMB_ISA_use. */
ee3c0378 31691 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
2c6b98ea 31692 || ARM_FEATURE_ZERO (flags_arch))
4ed7ed8d
TP
31693 {
31694 int thumb_isa_use;
31695
31696 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
16a1fa25 31697 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
4ed7ed8d
TP
31698 thumb_isa_use = 3;
31699 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
31700 thumb_isa_use = 2;
31701 else
31702 thumb_isa_use = 1;
31703 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
31704 }
62f3b8c8 31705
ee065d83 31706 /* Tag_VFP_arch. */
a715796b
TG
31707 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
31708 aeabi_set_attribute_int (Tag_VFP_arch,
31709 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31710 ? 7 : 8);
bca38921 31711 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
31712 aeabi_set_attribute_int (Tag_VFP_arch,
31713 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31714 ? 5 : 6);
31715 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
31716 {
31717 fp16_optional = 1;
31718 aeabi_set_attribute_int (Tag_VFP_arch, 3);
31719 }
ada65aa3 31720 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
31721 {
31722 aeabi_set_attribute_int (Tag_VFP_arch, 4);
31723 fp16_optional = 1;
31724 }
ee3c0378
AS
31725 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
31726 aeabi_set_attribute_int (Tag_VFP_arch, 2);
31727 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
477330fc 31728 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
ee3c0378 31729 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 31730
4547cb56
NC
31731 /* Tag_ABI_HardFP_use. */
31732 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
31733 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
31734 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
31735
ee065d83 31736 /* Tag_WMMX_arch. */
ee3c0378
AS
31737 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
31738 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
31739 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
31740 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 31741
ee3c0378 31742 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
9411fd44
MW
31743 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
31744 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
31745 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
bca38921
MGD
31746 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
31747 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
31748 {
31749 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
31750 {
31751 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
31752 }
31753 else
31754 {
31755 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
31756 fp16_optional = 1;
31757 }
31758 }
fa94de6b 31759
a7ad558c
AV
31760 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
31761 aeabi_set_attribute_int (Tag_MVE_arch, 2);
31762 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
31763 aeabi_set_attribute_int (Tag_MVE_arch, 1);
31764
ee3c0378 31765 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 31766 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 31767 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 31768
69239280
MGD
31769 /* Tag_DIV_use.
31770
31771 We set Tag_DIV_use to two when integer divide instructions have been used
31772 in ARM state, or when Thumb integer divide instructions have been used,
31773 but we have no architecture profile set, nor have we any ARM instructions.
31774
4ed7ed8d
TP
31775 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
31776 by the base architecture.
bca38921 31777
69239280 31778 For new architectures we will have to check these tests. */
031254f2 31779 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4ed7ed8d
TP
31780 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31781 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
bca38921
MGD
31782 aeabi_set_attribute_int (Tag_DIV_use, 0);
31783 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
31784 || (profile == '\0'
31785 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
31786 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 31787 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
31788
31789 /* Tag_MP_extension_use. */
31790 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
31791 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
31792
31793 /* Tag Virtualization_use. */
31794 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
31795 virt_sec |= 1;
31796 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
31797 virt_sec |= 2;
31798 if (virt_sec != 0)
31799 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
31800}
31801
c168ce07
TP
31802/* Post relaxation hook. Recompute ARM attributes now that relaxation is
31803 finished and free extension feature bits which will not be used anymore. */
0198d5e6 31804
c168ce07
TP
31805void
31806arm_md_post_relax (void)
31807{
31808 aeabi_set_public_attributes ();
4d354d8b
TP
31809 XDELETE (mcpu_ext_opt);
31810 mcpu_ext_opt = NULL;
31811 XDELETE (march_ext_opt);
31812 march_ext_opt = NULL;
c168ce07
TP
31813}
31814
104d59d1 31815/* Add the default contents for the .ARM.attributes section. */
0198d5e6 31816
ee065d83
PB
31817void
31818arm_md_end (void)
31819{
ee065d83
PB
31820 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
31821 return;
31822
31823 aeabi_set_public_attributes ();
ee065d83 31824}
8463be01 31825#endif /* OBJ_ELF */
ee065d83 31826
ee065d83
PB
31827/* Parse a .cpu directive. */
31828
31829static void
31830s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
31831{
e74cfd16 31832 const struct arm_cpu_option_table *opt;
ee065d83
PB
31833 char *name;
31834 char saved_char;
31835
31836 name = input_line_pointer;
5f4273c7 31837 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31838 input_line_pointer++;
31839 saved_char = *input_line_pointer;
31840 *input_line_pointer = 0;
31841
31842 /* Skip the first "all" entry. */
31843 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
31844 if (streq (opt->name, name))
31845 {
4d354d8b
TP
31846 selected_arch = opt->value;
31847 selected_ext = opt->ext;
31848 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
ee065d83 31849 if (opt->canonical_name)
5f4273c7 31850 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
31851 else
31852 {
31853 int i;
31854 for (i = 0; opt->name[i]; i++)
31855 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 31856
ee065d83
PB
31857 selected_cpu_name[i] = 0;
31858 }
4d354d8b
TP
31859 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31860
ee065d83
PB
31861 *input_line_pointer = saved_char;
31862 demand_empty_rest_of_line ();
31863 return;
31864 }
31865 as_bad (_("unknown cpu `%s'"), name);
31866 *input_line_pointer = saved_char;
31867 ignore_rest_of_line ();
31868}
31869
ee065d83
PB
31870/* Parse a .arch directive. */
31871
31872static void
31873s_arm_arch (int ignored ATTRIBUTE_UNUSED)
31874{
e74cfd16 31875 const struct arm_arch_option_table *opt;
ee065d83
PB
31876 char saved_char;
31877 char *name;
31878
31879 name = input_line_pointer;
5f4273c7 31880 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31881 input_line_pointer++;
31882 saved_char = *input_line_pointer;
31883 *input_line_pointer = 0;
31884
31885 /* Skip the first "all" entry. */
31886 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31887 if (streq (opt->name, name))
31888 {
4d354d8b
TP
31889 selected_arch = opt->value;
31890 selected_ext = arm_arch_none;
31891 selected_cpu = selected_arch;
5f4273c7 31892 strcpy (selected_cpu_name, opt->name);
4d354d8b 31893 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
31894 *input_line_pointer = saved_char;
31895 demand_empty_rest_of_line ();
31896 return;
31897 }
31898
31899 as_bad (_("unknown architecture `%s'\n"), name);
31900 *input_line_pointer = saved_char;
31901 ignore_rest_of_line ();
31902}
31903
7a1d4c38
PB
31904/* Parse a .object_arch directive. */
31905
31906static void
31907s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
31908{
31909 const struct arm_arch_option_table *opt;
31910 char saved_char;
31911 char *name;
31912
31913 name = input_line_pointer;
5f4273c7 31914 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
31915 input_line_pointer++;
31916 saved_char = *input_line_pointer;
31917 *input_line_pointer = 0;
31918
31919 /* Skip the first "all" entry. */
31920 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31921 if (streq (opt->name, name))
31922 {
4d354d8b 31923 selected_object_arch = opt->value;
7a1d4c38
PB
31924 *input_line_pointer = saved_char;
31925 demand_empty_rest_of_line ();
31926 return;
31927 }
31928
31929 as_bad (_("unknown architecture `%s'\n"), name);
31930 *input_line_pointer = saved_char;
31931 ignore_rest_of_line ();
31932}
31933
69133863
MGD
31934/* Parse a .arch_extension directive. */
31935
31936static void
31937s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
31938{
31939 const struct arm_option_extension_value_table *opt;
31940 char saved_char;
31941 char *name;
31942 int adding_value = 1;
31943
31944 name = input_line_pointer;
31945 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31946 input_line_pointer++;
31947 saved_char = *input_line_pointer;
31948 *input_line_pointer = 0;
31949
31950 if (strlen (name) >= 2
31951 && strncmp (name, "no", 2) == 0)
31952 {
31953 adding_value = 0;
31954 name += 2;
31955 }
31956
31957 for (opt = arm_extensions; opt->name != NULL; opt++)
31958 if (streq (opt->name, name))
31959 {
d942732e
TP
31960 int i, nb_allowed_archs =
31961 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
31962 for (i = 0; i < nb_allowed_archs; i++)
31963 {
31964 /* Empty entry. */
4d354d8b 31965 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
d942732e 31966 continue;
4d354d8b 31967 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
d942732e
TP
31968 break;
31969 }
31970
31971 if (i == nb_allowed_archs)
69133863
MGD
31972 {
31973 as_bad (_("architectural extension `%s' is not allowed for the "
31974 "current base architecture"), name);
31975 break;
31976 }
31977
31978 if (adding_value)
4d354d8b 31979 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
5a70a223 31980 opt->merge_value);
69133863 31981 else
4d354d8b 31982 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
69133863 31983
4d354d8b
TP
31984 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31985 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
69133863
MGD
31986 *input_line_pointer = saved_char;
31987 demand_empty_rest_of_line ();
3d030cdb
TP
31988 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
31989 on this return so that duplicate extensions (extensions with the
31990 same name as a previous extension in the list) are not considered
31991 for command-line parsing. */
69133863
MGD
31992 return;
31993 }
31994
31995 if (opt->name == NULL)
e673710a 31996 as_bad (_("unknown architecture extension `%s'\n"), name);
69133863
MGD
31997
31998 *input_line_pointer = saved_char;
31999 ignore_rest_of_line ();
32000}
32001
ee065d83
PB
32002/* Parse a .fpu directive. */
32003
32004static void
32005s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
32006{
69133863 32007 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
32008 char saved_char;
32009 char *name;
32010
32011 name = input_line_pointer;
5f4273c7 32012 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
32013 input_line_pointer++;
32014 saved_char = *input_line_pointer;
32015 *input_line_pointer = 0;
5f4273c7 32016
ee065d83
PB
32017 for (opt = arm_fpus; opt->name != NULL; opt++)
32018 if (streq (opt->name, name))
32019 {
4d354d8b
TP
32020 selected_fpu = opt->value;
32021#ifndef CPU_DEFAULT
32022 if (no_cpu_selected ())
32023 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
32024 else
32025#endif
32026 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
32027 *input_line_pointer = saved_char;
32028 demand_empty_rest_of_line ();
32029 return;
32030 }
32031
32032 as_bad (_("unknown floating point format `%s'\n"), name);
32033 *input_line_pointer = saved_char;
32034 ignore_rest_of_line ();
32035}
ee065d83 32036
794ba86a 32037/* Copy symbol information. */
f31fef98 32038
794ba86a
DJ
32039void
32040arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
32041{
32042 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
32043}
e04befd0 32044
f31fef98 32045#ifdef OBJ_ELF
e04befd0
AS
32046/* Given a symbolic attribute NAME, return the proper integer value.
32047 Returns -1 if the attribute is not known. */
f31fef98 32048
e04befd0
AS
32049int
32050arm_convert_symbolic_attribute (const char *name)
32051{
f31fef98
NC
32052 static const struct
32053 {
32054 const char * name;
32055 const int tag;
32056 }
32057 attribute_table[] =
32058 {
32059 /* When you modify this table you should
32060 also modify the list in doc/c-arm.texi. */
e04befd0 32061#define T(tag) {#tag, tag}
f31fef98
NC
32062 T (Tag_CPU_raw_name),
32063 T (Tag_CPU_name),
32064 T (Tag_CPU_arch),
32065 T (Tag_CPU_arch_profile),
32066 T (Tag_ARM_ISA_use),
32067 T (Tag_THUMB_ISA_use),
75375b3e 32068 T (Tag_FP_arch),
f31fef98
NC
32069 T (Tag_VFP_arch),
32070 T (Tag_WMMX_arch),
32071 T (Tag_Advanced_SIMD_arch),
32072 T (Tag_PCS_config),
32073 T (Tag_ABI_PCS_R9_use),
32074 T (Tag_ABI_PCS_RW_data),
32075 T (Tag_ABI_PCS_RO_data),
32076 T (Tag_ABI_PCS_GOT_use),
32077 T (Tag_ABI_PCS_wchar_t),
32078 T (Tag_ABI_FP_rounding),
32079 T (Tag_ABI_FP_denormal),
32080 T (Tag_ABI_FP_exceptions),
32081 T (Tag_ABI_FP_user_exceptions),
32082 T (Tag_ABI_FP_number_model),
75375b3e 32083 T (Tag_ABI_align_needed),
f31fef98 32084 T (Tag_ABI_align8_needed),
75375b3e 32085 T (Tag_ABI_align_preserved),
f31fef98
NC
32086 T (Tag_ABI_align8_preserved),
32087 T (Tag_ABI_enum_size),
32088 T (Tag_ABI_HardFP_use),
32089 T (Tag_ABI_VFP_args),
32090 T (Tag_ABI_WMMX_args),
32091 T (Tag_ABI_optimization_goals),
32092 T (Tag_ABI_FP_optimization_goals),
32093 T (Tag_compatibility),
32094 T (Tag_CPU_unaligned_access),
75375b3e 32095 T (Tag_FP_HP_extension),
f31fef98
NC
32096 T (Tag_VFP_HP_extension),
32097 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
32098 T (Tag_MPextension_use),
32099 T (Tag_DIV_use),
f31fef98
NC
32100 T (Tag_nodefaults),
32101 T (Tag_also_compatible_with),
32102 T (Tag_conformance),
32103 T (Tag_T2EE_use),
32104 T (Tag_Virtualization_use),
15afaa63 32105 T (Tag_DSP_extension),
a7ad558c 32106 T (Tag_MVE_arch),
cd21e546 32107 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 32108#undef T
f31fef98 32109 };
e04befd0
AS
32110 unsigned int i;
32111
32112 if (name == NULL)
32113 return -1;
32114
f31fef98 32115 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 32116 if (streq (name, attribute_table[i].name))
e04befd0
AS
32117 return attribute_table[i].tag;
32118
32119 return -1;
32120}
267bf995 32121
93ef582d
NC
32122/* Apply sym value for relocations only in the case that they are for
32123 local symbols in the same segment as the fixup and you have the
32124 respective architectural feature for blx and simple switches. */
0198d5e6 32125
267bf995 32126int
93ef582d 32127arm_apply_sym_value (struct fix * fixP, segT this_seg)
267bf995
RR
32128{
32129 if (fixP->fx_addsy
32130 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
93ef582d
NC
32131 /* PR 17444: If the local symbol is in a different section then a reloc
32132 will always be generated for it, so applying the symbol value now
32133 will result in a double offset being stored in the relocation. */
32134 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
34e77a92 32135 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
32136 {
32137 switch (fixP->fx_r_type)
32138 {
32139 case BFD_RELOC_ARM_PCREL_BLX:
32140 case BFD_RELOC_THUMB_PCREL_BRANCH23:
32141 if (ARM_IS_FUNC (fixP->fx_addsy))
32142 return 1;
32143 break;
32144
32145 case BFD_RELOC_ARM_PCREL_CALL:
32146 case BFD_RELOC_THUMB_PCREL_BLX:
32147 if (THUMB_IS_FUNC (fixP->fx_addsy))
93ef582d 32148 return 1;
267bf995
RR
32149 break;
32150
32151 default:
32152 break;
32153 }
32154
32155 }
32156 return 0;
32157}
f31fef98 32158#endif /* OBJ_ELF */